
Dealing with Reversibility of Shared Libraries in PDES

Davide Cingolani
Sapienza, University of Rome
cingolani@dis.uniroma1.it

Alessandro Pellegrini
Sapienza, University of Rome
pellegrini@dis.uniroma1.it

Markus Schordan
Lawrence Livermore National

Laboratory
schordan1@llnl.gov

Francesco Quaglia
Sapienza, University of Rome
quaglia@dis.uniroma1.it

David R. Jefferson
Lawrence Livermore National

Laboratory
jefferson6@llnl.gov

ABSTRACT
State recoverability is a crucial aspect of speculative Time
Warp-based Parallel Discrete Event Simulation. In the lit-
erature, we can identify three major classes of techniques to
support the correct restoration of a previous simulation state
upon the execution of a rollback operation: state checkpoint-
ing/restore, manual reverse computation and automatic re-
verse computation. The latter class has been recently sup-
ported by relying either on binary code instrumentation or
on source-to-source code transformation. Nevertheless, both
solutions are not intrinsically meant to support a reversible
execution of third-party shared libraries, which can be pretty
useful when implementing complex simulation models.

In this paper, we present an architectural solution (re-
alized as a static C library) which allows to transparently
instrument at runtime any third party shared library, with
no need for any modification to the model’s code. We also
present a preliminary experimental evaluation, based on the
integration of our library with the ROOT-Sim simulation
engine.

1. INTRODUCTION
In Parallel Discrete Event Simulation (PDES) [15], various

synchronization protocols have been proposed in the liter-
ature. Among them, the Time Warp speculative one [19]
has been proven to be particularly effective, as it is rela-
tively independent (in terms of its run-time dynamics) of
both the simulation model’s lookahead and the communica-
tion latency for exchanging data across simulation platform’s
threads/processes. This allows Time Warp systems to guar-
antee a high performance, as well in systems that are not
tightly coupled and/or encompass millions of processors [5].

The speculative nature of Time Warp allows simulation
events to be processed at any Logical Process (LP) indepen-
dently of their safety (or causal consistency). If an event is
a-posteriori detected to be violating causality, its effects on

ACM acknowledges that this contribution was authored or co-authored by an em-
ployee, or contractor of the national government. As such, the Government retains
a nonexclusive, royalty-free right to publish or reproduce this article, or to allow oth-
ers to do so, for Government purposes only. Permission to make digital or hard copies
for personal or classroom use is granted. Copies must bear this notice and the full ci-
tation on the first page. Copyrights for components of this work owned by others than
ACM must be honored. To copy otherwise, distribute, republish, or post, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.

SIGSIM-PADS ’17, May 24–26, 2017, Singapore.
c© 2017 ACM. ISBN 978-1-4503-4489-0/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3064911.3064927

the simulation state are undone via the rollback operation.
Correctly and efficiently rolling back the simulation state is
therefore a fundamental building block for an effective opti-
mistic simulation platform.

Among the different approaches proposed in the litera-
ture to rollback the simulation state, the main two families
which are considered are checkpoint-based [19] and reverse
computing-based [7], depending on the algorithmic technique
which is used to bring one simulation state to a previous
(consistent) snapshot. The checkpoint-based rollback oper-
ation has been thoroughly studied to reduce its cost (both
in terms of memory and CPU usage), either by reducing
the checkpointing frequency (the so-called sparse or periodic
state saving) [22, 6, 24, 31, 13, 35, 29] or by reducing the
amount of data copied into a state snapshot (the so-called
incremental state saving) [36, 26].

The reverse computing-based rollback operation, which
tries to cancel the non-negligible memory footprint of the
state saving technique, relies on reverse events, which can
be generated either manually [7] or automatically [20, 8, 32,
33]. With respect to automatic generation of reverse events,
the various proposals address it by relying either on binary
instrumentation [20, 8] or on source-to-source transforma-
tion [32, 33]. Nevertheless, none of these solutions is able
to deal with third-party shared libraries, which could be re-
garded as an important building block for the development
of complex simulation models. To mention some, libraries
such as ALGLIB [34], GSL [16], FFTW [14], LAPACK [11],
or BLAS [21] might be necessary for the description of sta-
tistical or algebraic processes, proper of a large number of
simulation scenarios.

These third-party shared libraries are not optimism-aware.
In fact, they are devised for application scenarios which al-
ways operate on committed data. This is something that
speculative synchronization protocols, such as Time Warp,
intentionally do not provide anytime. While static binary
instrumentation and source-to-source transformation could
be directly used on these shared libraries to make them re-
versible, their applicability might fall either due to the lack
of source code (in the case of closed-source libraries) or due
to the fact that instrumenting shared objects could produce
system-wide effects to other programs not related to opti-
mistic simulation. In particular, non-speculative applica-
tions have no need to rely on shared libraries enabled for
reversibility, which can introduce a non-necessary overhead.
Moreover, it would be required to instrument the whole

shared library, even if only a small subportion is actually
used by the simulation model, reducing the maintainability
of the program.

In this paper, we propose an alternative technique, based
on the concept of lazy instrumentation, to complement static
and source-to-source instrumentation, for x86 systems. This
technique allows to intercept any call to any third-party
shared library function, allowing to create (transparently
to the simulation model developer) an instrumented ver-
sion which could be easily coupled with any reversible sim-
ulation engine. Moreover, our technique allows to quickly
switch between instrumented and non-instrumented (origi-
nal) functions, opening to the possibility of fine-grained run-
time self-optimization of the simulation run (similarly to the
technique proposed in [27]) and to a different behavior of the
engine when dealing with model vs. platform code. Overall,
by relying on the approach proposed in this paper, we en-
able speculative execution of any third-party library within a
Time Warp-based simulation engine, significantly increasing
the degree of programmability offered to simulation models’
developers. This is done transparently for any combination
of third-party libraries: libraries which rely on additional
libraries are managed as well, thanks to the simple organi-
zation of our library-call detection system.

Our technique allows to be easily embedded into any Time
Warp-based simulation engine, equipped with a reversible
memory management module, via a set of API functions
which allow to tune its functioning at simulation startup.
No change to the simulation model’s code is required for the
integration. To assess the viability of our proposal, and to il-
lustrate as well its operating simplicity, we present a prelim-
inary experimental evaluation by integrating our approach
with the ROme OpTimistic Simulator (ROOT-Sim) [25].
The experimental evaluation strives to assess the overhead
introduced by our proposal when relying on third-party li-
braries in simulation models.

The remainder of this paper is structured as follows. In
Section 2 we discuss related work. Section 3 presents the
design choices behind our proposal, and its implementation.
The experimental assessment is finally reported in Section 4.

2. RELATED WORK
Despite the fact that reversibility grounds its roots in the

1970’s [37], to the best of our knowledge no one has explic-
itly targeted instrumentation of third-party shared libraries
for software reversibility purposes, in any computer science
application.

The idea of supporting the rollback operation in the con-
text of Time Warp systems by relying on reverse compu-
tation rather than on snapshot restoration dates back to
1999 [7], but at the time the reverse code was hand-generated.
A first attempt to automatically generate reversibility code
can be found in [20], where control flow analysis is used
to generate code which allows to reconstruct the execution
path taken in the forward code. Differently to our proposal,
reverse code is generated at compile time, preventing the
possibility on any number of third-party libraries.

In the recent work in [32], the authors perform source-
to-source transformation of C++ code based on the ROSE
compiler infrastructure [30], intercepting all operations which
modify memory and recording information about the per-
formed updates in a data structure that is used to reverse
the effects of memory updates. As mentioned, our proposal

specifically targets all the scenarios where source code of
third-party libraries is not available, thus preventing source-
to-source transformation from being a viable solution.

The works in [36, 26], similarly to what we do, rely on
static binary instrumentation to track memory updates dur-
ing the forward execution of the events. Nevertheless, their
goal is to use this information to generate periodic incremen-
tal checkpoints, which we avoid by design in our proposal.

Static binary instrumentation is used in [8] to generate
so-called undo code blocks, which are packed data struc-
tures which keep machine instructions generated on the fly
to undo the effects of the forward execution of events. While
this is a proposal similar in spirit to our work, the authors
in [8] do not account for the presence of third-party libraries,
therefore limiting the degree of programmability of simula-
tion models. In particular, the technique presented in [8]
could not be used out-of-the-box to instrument third-party
libraries. Indeed, static binary instrumentation cannot be
used at runtime to intercept generic library calls. This is
exactly the focus of this paper.

An approach similar in spirit to our proposal is the one
of Valgrind [23]. This framework gains control of the pro-
gram’s execution in a way similar to what we do, in order
to generate (in a JIT fashion) instrumented versions of the
program code. Nevertheless, since the goal of Valgrind is
debugging, it relies on a virtualized CPU which runs the
client program. This introduces a slowdown which can be
afforded when debugging, but cannot be tolerated when run-
ning high-performance simulations. Conversely, we generate
instrumented code which is run by physical cores, and inter-
acts with the library only when needed, without relying on
any kind of virtualization.

Our proposal is also related to a number of works in the
field of program execution tracing (see, e.g., [1, 4, 28, 38])
for debugging, vulnerability assessment and repeatability.
These approaches provide detailed analysis of changes in the
state of the program, and of the execution flow. Neverthe-
less, these works do not explicitly deal with the possibility
to reverse a portion of the program’s execution by relying
on runtime-generated reverse instructions.

The US patent in [18] explicitly deals with reversibility of
shared libraries within executables. Yet, differently from our
proposal, the goal is to make reversible the linking process,
thus allowing for different versions of the library to be at-
tached to the same program. Differently, we are interested in
undoing the effects of shared libraries on the memory map,
to support a reversibility-based rollback operation.

3. SHARED LIBRARIES REVERSIBILITY
Before discussing the approach that we undertake to enact

software reversibility of generic third-party shared libraries,
let us summarize how third-party libraries interact with an
executable, taking as reference Linux systems relying on the
Executable and Linkable Format (ELF). Whenever the com-
piler determines that some function referenced in the source
belongs to a shared library, it introduces in the program’s
image additional pieces of information to let the system, at
runtime, resolve any reference to that function towards its
actual implementation. In particular, the compiler:

• Records the name of the shared library in the pro-
gram’s image. This name often comes with the actual
version of the library in it, so that if the executable

Code:

call func@PLT

...

...

PLT:

PLT[0]:

 call resolver

...

PLT[n]:

 jmp *GOT[n]

 prepare resolver

 jmp PLT[0]

GOT:

...

GOT[n]:

 <addr>

(a) GOT and PLT, as organized by the compiler, be-
fore any runtime resolution is carried out. PLT points
to the corresponding GOT entry, which in turn points
to the same PLT entry. This circular reference allows
the activation of the resolver, stored in PLT[0], in or-
der to determine where the symbol is actually placed in
memory.

Code:

func:

 ...

 ...

Code:

call func@PLT

...

...

PLT:

PLT[0]:

 call resolver

...

PLT[n]:

 jmp *GOT[n]

 prepare resolver

 jmp PLT[0]

GOT:

...

GOT[n]:

 <addr>

(b) GOT and PLT organization after the first call to a li-
brary function is issued. The dynamic linker has resolved
the virtual address of the function, which is stored into
the corresponding entry in the GOT table. Any other
invocation to the function will not activate the linker,
rather the address of the function will be immediately
available for activation.

Figure 1: Resolver, GOT, and PLT hooking.

is moved to a different environment where a compati-
ble library’s version is not present, the loader fails to
resolve any call, so as to avoid undefined behaviors;

• Reserves an entry in a special table, called the Pro-
cedure Linkage Table (PLT), for the specific library
function. Any call to that function will actually refer
the associated PLT’s entry, which keeps enough space
to host a couple of machine instructions;

• For any entry in the PLT, it reserves the corresponding
entry in the Global Offset Table (GOT), which only
stores a memory pointer.

The need for two tables arises due to the lazy binding pol-
icy adopted by dynamic loading. In fact, PLT and GOT
reference each other in a way that allows the system to
know whether a library function is being called for the first
time. If it is so, the library symbol is resolved, otherwise the
(already-resolved) function is simply called.

This is exactly where our proposal acts so as to generate
reversibility-enabled copies of third-party library functions.
To illustrate this mechanism, let us suppose that a program
relies on the shared library’s function func. The GOT and
PLT tables are organized as in Figure 1(a). As mentioned,
the call to func is actually a call to an entry of the PLT
table, namely PLT[n], where n is the entry associated with
func. The first entry of this table, namely PLT[0], is a spe-
cial entry, which keeps an instruction to call the resolver,
i.e. the function of the dynamic linker which is in charge of
determining where the entry point of any library function is
in memory. Once the first call to func is issued, the code in
PLT[n] takes control. By PLT contruction, the code jumps
to the address pointed by the corresponding GOT[n] entry.
At program startup, this address points to PLT[n] itself,
specifically to a code snippet which prepares (on the stack)
the parameters needed by the dynamic linker to determine
what library call caused its invocation. Then, the actual re-
solver is called, by jumping to PLT[0]. The resolver performs
the resolution of the actual address of func, places it into

GOT[n], and calls func. The GOT/PLT organization, af-
ter the symbol’s resolution, is depicted in Figure 1(b). Any
other call to func will not cause the activation of the dy-
namic resolver, as the address stored in GOT[n] now points
to the actual virtual address of func.

In order to instrument third-party library function calls,
we specifically intercept the above-described mechanism. In
particular, our approach relies on a static library to be linked
to the executable, which we call libreverse1. This library
contains a program constructor, namely a function which is
activated by the program loader before giving control to the
actual main program. The goal of this constructor is to re-
place the call to resolver to a different function, exposed by
the library itself, which alters the behavior of the latter part
of the dynamic linking process. In particular, the custom
resolver takes the following steps:

1. Similarly to the dynamic linker’s resolver, it deter-
mines what is func’s entry point virtual address;

2. Once func’s address is identified, it creates a copy of
the whole function in memory, instrumenting any in-
struction which has a memory operand as the destina-
tion (namely, a memory-write instruction);

3. The instrumentation is carried in a way such that be-
fore executing the actual memory write operation, con-
trol is given to a trampoline which activates a module
of libreverse;

4. An entry in a custom table, called Library Activation
Trampoline (LAT), is reserved. This entry keeps a
small portion of code to determine whether the instru-
mented version of the library should be called or not;

5. The address of LAT[n] is stored into GOT[n], allowing
any future activation of func to directly give control
to the code in LAT[n];

1The source code of the library is available at https://
github.com/HPDCS/libreverse.

6. Control is given to LAT[n], in order to perform the
actual function call.

This general scheme allows to intercept any call to any
function in any third-party shared library, therefore making
them aware of the reversibility requirements of Time Warp-
based simulations, necessarily to support the rollback oper-
ation. All these points above demand special care, and we
therefore describe in the following how they are supported
by libreverse.

3.1 Intercepting Dynamic Linker’s Resolver
Although the steps taken by the dynamic linker’s resolver

are mostly standardized, there could be some variability
across systems and versions of the linker with respect to the
actual steps taken. To make libreverse of general avail-
ability, we want our custom resolver to take the same steps
as the system’s dynamic linker. To this end, we use the
following strategy to ensure portability across systems and
linker versions.

As mentioned, when the program is launched, libre-

verse’s constructor is activated, which replaced in PLT[0]

the address of the resolver with a custom one. Neverthe-
less, since this custom one should be compliant with the
system’s one, libreverse does not contain the custom re-
solver’s code. Rather, it generates it at program startup.
In particular, any dynamic linker’s resolver has to perform
these tasks:

• Determine whether the image of the shared library is
mapped into the program’s image, if not it has to be
mmap’ed;

• Determine where is the function’s entry point in the
library image. This is commonly done by relying on
a fast hash-function based mechanism, relying on the
data stored in the .dynsym section in case of an ELF
executable;

• The address is stored in GOT[n], where n is passed as
an argument on stack;

• The function is activated directly by the resolver.

The last point is where we hook our custom code. In
particular, the activation of the library function is made
by relying on an indirect jump. On x86 systems, this is
implemented by an instruction in the form jmp *%reg, i.e.
the address of the target function is stored into a register,
which is used as the destination of the jump instruction.
Once libreverse’s constructor takes control, it creates a
copy of the system resolver’s code, and starts scanning its
bytes until such an instruction is found. This jump is then
replaced with a direct jump, whose target is a function within
libreverse which takes care of instrumenting the target
function, before the control is given to it.

This strategy allows libreverse to attach itself to any
version of the dynamic loader’s resolver, independently of
the actual way the identification of the function’s symbol
within the shared library’s image is carried out.

3.2 Instrumentation of Library Functions
Once a library function is first called, by the above inter-

ception of the dynamic linker’s resolver, we are able to take
control right after the address of the function is identified.

At this point, in order to perform the actual instrumenta-
tion of the function, we must determine its size. To this
end, we recall that the executable keeps track of the library
file on disk storage. We are therefore able to navigate the
path of the library file, and open it. A shared library on
Linux systems is represented as an ELF file. By inspecting
the symbol’s table of this file, we can determine what is the
actual size of the called function.

At this point, the instrumentation process can take place.
We allocate a memory area of the same size as the original
function via an mmap() call, making it both writable and
executable. We then copy the whole content of the func-
tions’ binary representation in it. This will be its working
copy, which we can inspect and alter accordingly, in order
to enable reversibility of its actions.

The instrumentation process requires two logical steps.
The first one entails determining the total number of as-
sembly instructions which compose the function. The sec-
ond one relates to identifying, among all the instructions,
those which write on memory. These instructions should
be properly altered to generate reverse instructions on the
fly, namely assembly instructions whose execution undoes
the effects of the original instructions in memory. To this
end, we must determine both the destination address of the
memory write instruction, and its size.

We note that these two steps require two different levels of
detail (and, consequently, of complexity). Indeed, to deter-
mine the number of instructions which compose the library,
we do not need to get into the semantics of the instructions
themselves, which is a non-minimal optimization given that
our target is the x86 architecture. In fact, the x86 ISA is
a variable-size one. This means that the length in bytes of
a single assembly instruction cannot be determined before-
hand. Only by interpreting the opcode it is possible to de-
termine the exact amount of parameters to the instruction,
and therefore its length.

For the sake of performance, libreverse is equipped with
two different disassemblers. The first one, which we call a
length disassembler, is a fast table-based routine which only
tells what is the length of the actual instruction in bytes,
and gives a reference to the actual opcode2. The second
disassembler which is included into libreverse is a full dis-
assembler : it fully decodes the bytecode representation of
the instruction, evaluating all its fields, allowing to extract
the data of interest. The execution of the length disassem-
bler is 3 times faster than the full disassembler, on any x86
instruction (i.e., independently of its length).

Therefore, libreverse enacts the instrumentation process
in the following way. The length disassembler is invoked on
the initial address of the function, returning the size of the
first instruction and a pointer to its actual opcode. This op-
code is matched against a table which tells whether the in-
struction could entail a memory-write operation. In the neg-
ative case, the next instruction can be identified by inspect-
ing the bytecode located n bytes after the initial address,
where n is the length returned by the length disassembler.
In the positive case, the full disassembler is invoked on the
same memory location. This allows to determine whether
the involved instruction is actually a memory-write one and,
if it is so, it allows to extract the size of the memory write

2In fact, x86 instructions can be preceded by an arbitrary
number of prefixes, so that the first byte in a given instruc-
tion is not necessarily the opcode.

save CPU context (except RIP)

call reverse

restore CPU context (except RIP)

<original instruction>

jmp <address>

Figure 2: The instruction trampoline

(which in case of a simple mov instruction is encoded in the
binary representation of the instruction itself) and the des-
tination address of the memory-write operation.

At this point, the instrumentation process replaces the
memory-write instruction with a jump to a code snippet
(which we call the instruction trampoline) generated on the
fly. This snippet is placed into an additional table, called
the INSTRUCTIONS table. This is a table which, for each
memory-write instruction, keeps a portion of code to pre-
pare the required information to generate the associated
reversible instruction. Since the number of memory-write
instructions is not known beforehand, the INSTRUCTIONS ta-
ble is pre-allocated keeping the space for a certain number
of trampolines. If the space in the INSTRUCTIONS table is
exhausted, a new table is silently allocated.

The instruction trampoline’s code is organized as in Fig-
ure 2. The first required action is to save the CPU context.
This is because the original library function must be unaware
of the execution of all the injected code. Unfortunately, since
the code was placed after the program’s compilation, stan-
dard setjmp/longjmp functions cannot be used, as we are
explicitly breaking System V ABI’s calling conventions [2, 3]
and caller save registers are not saved by the code. There-
fore, our solution is to perform a fast CPU-context save by
pushing all required general-purpose registers and the flags
register. Since the code is crafted directly in assembly lan-
guage, we use only caller-save registers, after having pushed
all of them on stack. In this way, we do not need to concern
about registers used by functions called by the trampoline,
as their code is compiler-generated, and therefore respects
the calling conventions. In this way, the consistency of the
program’s execution is preserved.

After having saved the CPU context, we issue a call to re-

verse, a libreverse internal function which computes the
target memory-write address and generates the correspond-
ing reverse instruction. According to the addressing mode
of the x86 architecture, each memory address is identified by
the expression base address+(index∗scale)+displacement.
The parameters scale and displacement are already encoded
in the instruction binary representation, while base address
and index refer to the content of registers, which can be
evaluated only at runtime. Therefore, once the control is
given to the trampoline of a certain instructions, some data
to allow the computation of the memory-write target ad-
dress (and the size of the write, when available) are placed
on stack. These data are the outcome of the instrumentation
process, and are organized as in the following structure:

struct insn_entry {
char flags;
char base;
char idx;
char scale;
int size;
long long offset;

}

where flags tells which are the relevant fields to recompute
the target address, or to identify the class of data-movement
instructions, as we will explain later in details; base keeps
the (3 or 4 bits) base register binary representation; idx

keeps the (3 or 4 bits) index register binary representation;
scale is used to store the scale factor of the addressing
mode; size holds the size (in bytes) of the memory area
being affected by the memory-write instruction (when avail-
able at disassemble time); offset keeps the displacement
of the addressing mode3. By relying on this information,
the reverse function can determine the size and the target
address of the memory-write instruction. This information
is used to generate the corresponding reverse instruction, as
we will discuss later.

As mentioned, the original instruction’s bytecode is re-
placed with a jump to the corresponding entry in the IN-

STRUCTIONS table. In order to execute the original instruc-
tion, we copy the binary representation of the instruction di-
rectly within the corresponding INSTRUCTIONS’ entry, after
the call to the reverse function. Nevertheless, the original
instruction might require contextual information in order to
execute properly. This is due to the fact that many instruc-
tions in the x86 ISA use relative references. As an example,
consider an operation used to store a value into a local vari-
able. These variables are stored on the stack, and are often
referenced using a displacement from either the base frame
pointer, or from the stack pointer. Therefore, before giving
control to the copy of the original memory-write instruc-
tion withing the INSTRUCTIONS entry, we restore the CPU
context (except for the value of the RIP register, the pro-
gram counter). This allows to correctly execute a large set
of instruction, although we must explicitly account for the
fact that the value kept by RIP is different from the original
execution context.

This latter point deserves an additional discussion. In-
deed, in the 64-bit version of the x64 architecture, a spe-
cial addressing mode, which is called RIP-relative, allows to
target symbols (e.g., variables) encoding in the instruction
a displacement from the current value of the RIP register.
This addressing mode is particularly important for library
functions. Indeed, a shared library can be remapped to any
virtual memory address range, depending on the set of li-
braries and/or runtime dynamics. Therefore, to reduce the
overhead related to library loading, shared libraries code is
generated by compilers as position-independent code (PIC).
A PIC library has no indirect reference to any library or
variable. This means that any reference within a library is
expressed as a displacement with respect to the current in-
struction. In the 64-bit x86 ISA, this entails a huge usage
of the RIP-relative addressing mode.

To cope with this issue, we cannot simply restore the
whole CPU context, including the value of RIP. In fact,
at the original address we no longer have the original in-
struction. To execute its copy, RIP must point to the copy,
which is at a different address. Therefore, to correctly ex-
ecute memory-write operations which rely on RIP-relative
addressing, the only option is to fix the displacement. To
this end, we rely on the length disassembler. In particu-

3We provide 64-bits space in the insn_entry structure due
to the fact that the x86 64 assembly language allows one
single instruction, namely movabs, to directly use a 64-bits
addressing mode. In all the other cases, only 32 bits of the
offset field are actually used.

mov %fs:platform_mode@tpoff,%eax

cmpb $0x0,%eax

jz 1f

call original_function

ret

1: call instrumented_function

ret

Figure 3: Entry of the LAT table (x86 64-bit ver-
sion)

lar, this disassembler sets a global (per-thread) flag when-
ever it encounters an assembly instruction which is using the
RIP-relative addressing mode. Once such an instruction is
found, the full disassembler is invoked on it, allowing to de-
termine whether this addressing mode is used in the source
or in the destination operand. In both cases, the offset is
corrected. This correction is trivial: we can at any time
determine what is the additional offset (either positive or
negative) introduced by the fact that the instruction is be-
ing moved to a different location. Anyhow, the correction
of RIP-relative addressing cannot be limited to instructions
copied into the INSTRUCTIONS table. In fact, since we create
a whole copy of the original library function, all RIP-relative
addressing must be corrected. Anyhow, by relying on the
above-described scheme, the correction can be actuated in
place on the copy of the instructions.

To complete the instrumentation process of the library
function, we iterate over all the instructions carrying on the
aforementioned steps, until we reach the end of the function.
As mentioned, we can identify the end of the function by
inspecting the library’s ELF symbol table, to determine its
total length in bytes. The final instruction of the instruction
trampoline must give control back to the library function.
Since there is a one-to-one mapping between the memory-
write instruction and the entry in the INSTRUCTIONS table
which keeps its instruction trampoline, the return to the
function’s flow can be implemented with a direct jmp in-
struction to the correct address.

After that the whole function is instrumented, we have to
hook the altered version to the GOT/PLT invocation mech-
anism. As hinted before, we want to give the possibility to
activate both the original version and the instrumented one,
depending on the execution context. In particular, the re-
versibility facilities are only related to the execution of the
simulation models’ event handlers, while when executing in
platform mode (i.e., when the control is taken by the simula-
tion engine) we do not need to generate reverse instructions.
In this latter case, for the sake of performance, we want to
rely on the original version of the library functions, if they
are used. To allow a fast switching between the two versions,
we rely on the aforementioned LAT table. In particular, the
n-th entry in the LAT, which corresponds to the current
function being instrumented, is organized (for the case of
64-bit x86 Linux systems) as in Figure 3 (for a total of 24
bytes). The goal of this code is to check a (per-thread) global
variable called platform_mode which tells whether a library
function is invoked from the simulation engine level or from
the application-level code. In the former case, the original
(non-instrumented) library function is activated, while in
the latter the instrumented version is called. To change the
execution mode, libreverse offers an internal API function,

named platform_mode(bool) which tells whether control is
being passed to an event handler or it is returning from such
a handler. It is the responsibility of the simulation engine,
when integrating with libreverse, to properly use this func-
tion. Overall, the integration with the GOT/PLT invocation
mechanism is simply done by placing, after the LAT entry is
properly crafted, its address within the corresponding entry
of the GOT table.

There are two classes of instructions which cannot be di-
rectly dealt with according to the aforementioned instru-
mentation scheme, rather require special management. One
is the cmov instruction, which is managed directly in the
trampoline. Specifically, in case of a cmov, we use 4 bits
of the flags field to record what is the check to be emu-
lated. The trampoline checks whether the bits are different
from zero, and in the positive case the corresponding sta-
tus bits are checked to determine whether the condition is
met or not. Nevertheless, the values of status bits might
have been already altered during the execution of the previ-
ous injected operations. To this end, the trampoline’s code
looks on the application stack for the old value, as stored
during the CPU-context save phase. If the condition is met,
the cmov is managed exactly like a standard mov.

The second one is the movs instruction, for which we use
one bit of the flags field to let the trampoline know whether
its invocation is related to such an instruction. In this spe-
cific case, the size flag tells only the size of one single it-
eration of the movs instruction. Therefore, to compute the
total size, the trampoline’s code checks the value of the rcx

register, and multiplies it by size. The starting address of
the write is then computed by first checking the direction
flag of the flags register. In case this flag is cleared, the
destination starting address is already present in the rdi

register. If the flag is set, then the movs instruction will
make a backwards copy, and therefore the (logical) initial
address of the move is computed as rdi - rcx * size.

An additional note must be discussed to complete our
overview of the instrumentation mechanism. In fact, in or-
der to link the place where a library function has a memory-
write instruction with the corresponding INSTRUCTIONS en-
try, a jmp instruction is used to replace the actual mov. Nev-
ertheless, the x86 ISA has a variable length. If the size of
the jmp (which is 5 bytes) is smaller than the size of the ac-
tual intercepted memory-update instruction, the remaining
space can be easily filled using a nop. On the other hand, the
memory-write instruction’s representation might be shorter
than 5 bytes—the classical example is the aforementioned
movs, which is only 1-byte long.

In this case, libreverse “makes room” for the jump in-
struction by coalescing multiple consecutive instructions in
the same INSTRUCTIONS entry. This is done by continuing
the disassembly of the library function, until enough room
for the jmp is found. Nevertheless, there could be the possi-
bility that the end of the function is reached before finding
enough room. In this case, libreverse “backtracks” its ex-
ecution by coalescing instructions before the memory-write
instruction, until enough space is found. Anyhow, since the
length of an assembly instruction is variable, it could be re-
source intensive to perform this latter action. To this end,
while performing the forward instrumentation, libreverse
builds an instruction index. This index keeps, for each in-
struction, its size in bytes. Therefore, if the end of the func-
tion is reached while coalescing instructions, it is possible to

1 5 2 2

T F F F

3 1 2 5

F F F F

6

T

2 2 1 4

F T T F

3

F

4 2 4 5

F F F F

5

F

8 9 1 4

T F F T

2

F

Index
Entry

Instruction
size

Instrumented
Flag

Reference
Pointer

Figure 4: The index of assembly instructions built
while instrumenting a library function.

increase the size up to the required amount of 5 bytes by
simply inspecting this index. Since the number of instruc-
tions that compose the function is not known beforehand,
the instruction index is implemented as a wait-free resizable
array, as described in [10].

While this approach solves the problem related to the
needed amount of bytes to insert the jmp to the INSTRUC-

TIONS’ table entry, it might pose an additional problem. Let
us discuss the following code snippet:

jmp 1f
movl $0x0, %eax
movsl

1: leave
ret

The instrumentation process will detect that the movs is a
memory-write instruction, and will trigger the replacement
with a jmp. Since movs is only 1-byte long, the coalescing
procedure will try to expand over subsequent instructions.
The next is the 1-byte long leave, so the coalescing proce-
dure continues, until the end of the function is reached. At
this point, since the total amount of bytes found amounts
to three, the coalescing procedure inspects the instructions’
index to determine how many instructions behind the movs

should be taken to make enough room to the jmp. Since the
movl $0x0, %eax is 5-byte long, the coalescing procedure
takes it and halts. This gives a grand total of 8 bytes (with
respect to the 5 needed) to place the jmp. Nevertheless, this
action will completely break the functioning of the program.
In fact, the initial instruction in the example is a jmp which
targets one of the instructions which will be moved into the
INSTRUCTIONS’ table entry, having the jmp target the middle
of the (newly-inserted) assembly instruction.

To overcome this issue, we extend the aforementioned in-
structions index, adding (for each instruction) a reference.
In particular, the opcode retrieved by the length disassem-
bler is matched against a second table, which tells whether
the instruction could have as a parameter a reference to a
different instruction (e.g., the case for a jmp instruction). In
the positive case, the instruction index keeps a reference to
the instruction. In case it is a reference to a future instruc-
tion, we keep track of this by relying on a fast hash table.
Once the target instruction is reached, the link between the
two is completed.

Whenever an instruction is moved to an entry of the IN-

STRUCTIONS table, the corresponding entry in the instruc-
tions index is flagged. At the end of the instrumentation
process, a fast scan of the instructions index is performed,

so as to determine whether some instruction referenced by,
e.g., a jmp instruction has been moved into an entry of the
INSTRUCTIONS table. In the positive case, the referencing
instruction’s offset is corrected, simply applying the corre-
sponding shift to the displacement. The final organization
of the instruction index is depicted in Figure 4.

The instructions index becomes handy to solve a couple
of additional issues, related to the way shared libraries are
built. In particular, any library function within a library
can reference any other function within the library itself.
Since a call instruction, to invoke another function in the
library, uses an offset in a way perfectly similar to a jmp, but
this reference will not be found during the instrumentation
process of the current function. Here, two situations might
arise:

1. The function is exposed to the application and is actu-
ally used : in this case, an entry in the PLT is present.
This can be verified by inspecting the ELF symbol ta-
ble of the running application. The call, therefore, is
redirected to the corresponding PLT entry. While this
might reduce a bit any optimization internal to the
library, allows to perform a lazily instrumentation ac-
cording to the scheme that we are presenting in this
paper;

2. The function is exposed to the application but is not
used by the program, or is an internal one: in this sec-
ond case, we cannot rely on the PLT to carry on the
lazy instrumentation. We rather keep within libre-

verse a list of functions internal to this library which
have already been instrumented due to this specific
scenario taking place. If the target function is present
in this list, then the call is redirected to this already-
instrumented symbol. If it is not, then the target func-
tion is instrumented (exactly according to the whole
aforementioned scheme) and then the symbol is added
to libreverse’s internal list.

As a last note, since libraries are often implemented with
high performance in mind, nothing prevents to “break” the
common idea of function—this is something that, e.g., hap-
pens extensively in glibc. In particular, one function might
jump into the middle of another one, just to execute a por-
tion of its code in case some optimized condition of the host
system is detected. While this scenario can be detected in a
way similar to calls to different library functions (i.e., the
reference of the jmp is not resolved while scanning the func-
tion), handling this condition is less trivial, as it would entail
some code flow analysis like the ones presented in [12]. Since
such an analysis is out of the scope of this paper, and consid-
ering that a library as complex as glibc shows this behavior
only in a handful of functions (like, e.g., memmove()), for the
sake of simplicity we have simply replaced these functions
with less-optimized ones which are statically linked to the
executable. Future work entails generalizing the approach,
in order to specifically deal with this corner case with any
third-party library.

To conclude, at the end of the instrumentation process,
the organization of the memory map to execute a call to a
library function is depicted in Figure 5.

LAT:

...

LAT[n]:

 if(platform_mode)

 call original_func

 else

 <install new revwin>

 call instrumented func

 ret

Code:

call func@PLT

...

...

PLT:

PLT[0]:

 call resolver

...

PLT[n]:

 jmp *GOT[n]

 prepare resolver

 jmp PLT[0]

GOT:

...

GOT[n]:

 <addr>

Code:

instrumented_func:

 ...

 jmp INSTRUCTIONS[k]

 ...

 ret

INSTRUCTIONS:

...

INSTRUCTIONS[k]:

 <save CPU context>

 call reverse

 <restore CPU context>

 movq %rax, (%rbx)

 jmp <back>

Code:

original_func:

 ...

 movq %rax, (%rbx)

 ...

 ret
1

2

3

4
5

6

A

Figure 5: Organization of code, tables, and trampolines after instrumentation. 1©: the application invokes
the library function func, by calling into PLT[n]; 2©: the program jumps to the corresponding LAT entry
by dereferencing the n-th pointer in the GOT (3©); A©: if in platform mode, the trampoline activates the
original version of func, otherwise 4© the instrumented one; 5©: instructions moved to the INSTRUCTIONS table
are accessed via jumps; 6©: the instrumented function regains control.

3.3 Generation and Management of Reverse
Instructions

The instrumentation mechanism described so far allows,
at runtime, to activate the reverse function just before any
memory-update operation is performed. At this point, li-
breverse is notified of the application code’s will to update
the simulation model state, and therefore reverse instruc-
tions (to restore the state in case of a rollback operation)
can be built on-the-fly.

If the activation of reverse is related to the execution
(in the forward event) of a mov or a cmov instruction, the
reverse instruction is built by accessing memory at the com-
puted address and by reading the original value (i.e., the one
before the write operation is executed). This value is placed
within a data movement instruction as the source (imme-
diate) operand, having as the destination address the same
address. On the other hand, if the activation of reverse

is due to a movs instruction, this can be easily determined
by the size of the memory-write operation, as it is higher
than the largest representable immediate4. The reverse in-
struction in this case can only be another movs instruction,
having as the source operand a properly-allocated memory
buffer where the original content has been copied upon re-
verse instruction generation.

The generation of reverse instructions is not a costly op-
eration, except for the movs case where a memory buffer
must be explicitly copied. Indeed, the set of instructions
to be generated is very limited, and the opcodes are known
beforehand. Therefore, we rely on a pre-compiled tables of
instructions in which only the memory address and the old
immediate should be packed within. With this approach,
we pay an instrumentation overhead similar to that of in-
cremental state saving solutions (see, e.g., [26]), but we are
completely avoiding any generation of metadata, thus re-
ducing the overhead for the installation of a previous snap-
shot during the execution of a rollback. In addition, dif-
ferently from incremental state saving, our organization of
reverse instructions has a direct positive impact on the re-

4We note that, by using this approach, a possible movs in-
struction involving few bytes of memory is negated using a
standard mov instruction, which is nevertheless correct, and
possibly more efficient.

WCT

Lifetime of one event

Figure 6: Interleaved memory updates within one
event. White circles refer to memory updates di-
rectly made by the model’s code. Grey circles refer
to memory updates made through calls to shared
library functions.

store operation. In fact, traditional incremental state saving
approaches (see, e.g., [27]) require scanning the metadata
table to determine which portions of the simulation state
should be restored from a certain snapshot, and possibly
require to generate temporary additional metadata during
this operation. By relying on dynamically-generated reverse
instructions, we do not incur into this cost.

In order to allow the PDES engine to correctly inter-
act with the management of reversibility of library func-
tion calls, libreverse intrinsically works with the notion
of events and library call incarnation. libreverse orga-
nizes reverse instructions in atomic blocks, on a per-thread
fashion, in a way similar to the work presented in [8]. Ev-
ery time that a new reverse instruction is generated, it is
inserted in a stack of instructions, so that they appear in
reverse order with respect to the forward execution. This
is a fundamental prerequisite to undo the effects of library
calls within an event, as they can be undone by simply is-
suing a call to the first instruction in the reverse window
(i.e., the one pointed by pointer). Since the focus of this
paper is on how to efficiently and effectively enable generic
third-party libraries for reversibility, we will not describe in
details reverse instructions are generated and managed. For
a thorough description of this aspect, we refer the reader to
the previous work in [8].

Nevertheless, packing together all the reverse instructions
generated within the same event could lead to erroneous re-
constructions of a previous state upon the execution of a
rollback operation. In fact, if we look at the example in
Figure 6, the same memory buffer could be updated in an
interleaved fashion by calls to library functions and direct
memory updates by the simulation model. Executing all re-

verse instructions generated by library functions as a whole,
in fact, might not respect the ordering of updates executed
in forward execution. To this end, libreverse uses a re-
verse window for each library call invocation, which is de-
tected since the execution flow has to pass always through
the corresponding LAT entry.

To let the simulation engine keep control of generated re-
verse windows on a per-event basis, libreverse exposes an
API function named finalize_event() which, upon invo-
cation, returns a list of all reverse windows generated since
the last call to finalize_event() itself. The simulation en-
gine can then link this set to any representation of the event
in the just-descheduled LP’s message queue. To facilitate
the management of the operations, libreverse offers two
additional API functions, namely execute_revwin() and
cleanup_revwin(). The former allows to execute the re-
verse instructions kept by a reverse window by giving con-
trol to the instruction pointed by pointer. The latter can be
used to release all memory buffers related to a set of reverse
windows in case, e.g., an event is deemed committed or it is
removed from the message queue due to the reception of an
antimessage. To determine the proper execution order of re-
verse windows, each of them is stamped with a unique mark,
based on the value of the Time Stamp Counter (TSC) x86
register. libreverse exposes the get_mark() API function
(based on the rdtsc assembly instruction) to deliver values
from TSC to the simulation engine. In this way, the en-
gine can stamp as well portion of its data/metadata used to
enforce reversibility of the model, determining in this way
the proper execution order of reverse operations globally, for
each event to be undone. By relying on this set of API func-
tions, any Time Warp-based simulation engine can be easily
integrated with libreverse.

As a last note, we should discuss how we deal with up-
dates of local variables of library functions, which live in the
stack of the instrumented function. In case a functions call
is undone due to a rollback operation, we do not need to
revert changes to these variables—they are ephemeral with
respect to the scope of the function—and therefore we do
not need to generate reverse instructions for these. To this
end, we adopt the following approach to filter out stack up-
dates, trying to reduce as well the overhead introduced at
runtime. In particular, when disassembling an instruction,
we check whether the addressing mode involves any displace-
ment from the stack pointer or the base pointer, which are
related to access to local variables. At the same time, we can
easily check whether a memory-update operation involves
the management of the stack (e.g., in case of push or pop in-
structions). In both cases, libreverse does not instrument
these memory-access instructions, as they are related to data
which is not necessary to reverse. Nevertheless, nothing pre-
vents a program to pass as a reference a variable on stack.
In this case, it is not possible to check the on-stack condi-
tion statically. Therefore, whenever the reverse function
gains control, it checks whether the computed destination
address of the memory write falls within the stack—this can
be easily done by comparing with the current value of the
stack pointer register. If it is so, libreverse simply returns,
without generating any reverse instruction. We note that in
this latter case we pay an additional overhead to compute
the target address, but we keep consistency of the approach
even under complex stack-usage patterns.

3.4 Dealing with Memory Allocations and Deal-
locations

The last aspect to be dealt with in order to support a
correct restoration of a previous state is related to the man-
agement of allocation/deallocation operations. In particu-
lar, if during the execution of a forward event the model’s
code invokes a library function which allocates memory, this
memory logically belongs to the LP which is currently sched-
uled. While designing libreverse, we have assumed that
the simulation engine has a per-LP memory map manager,
such as the one in [27], as providing a memory manager is
out of the scope of our approach. Therefore, in order to
correctly connect libreverse and the simulation engine, we
must provide a means to map a forward memory allocation
with the corresponding memory deallocation and vice versa.

To this end, libreverse offers two additional API func-
tions, namely register_alloc() and register_dealloc().
These functions accept a function pointer each, which are
defined as void *(*allocate)(void *ptr) for the former
function, and void (*deallocate)(void *ptr) for the lat-
ter. These pointers allow to bridge the internals of li-

breverse with the simulation engine’s memory manager,
so that whenever a library allocates some memory a call
to the deallocate() function is placed within the reverse
window, while when a chunk of memory is deallocated, a
call to allocate() is similarly stored. We emphasize that
having the allocate() function accept a pointer is a strate-
gic choice to allow piece-wise-deterministic replay of events
upon a rollback operations, allowing to retrieve buffers at
the same virtual addresses, and therefore support a memory
map laid out in a generic way.

4. EXPERIMENTAL RESULTS

4.1 Test-bed Environment
We have integrated libreverse within the ROOT-Sim

simulation platform5 [25]. This is a C-based open source
simulation package targeted at POSIX systems, which im-
plements a general-purpose simulation environment based
on the Time Warp synchronization paradigm. It offers a
very simple programming model relying on the classical no-
tion of simulation-event handlers (both for processing events
and for accessing a committed and globally-consistent state
image upon GVT calculations), to be implemented accord-
ing to the ANSI-C standard, and transparently supports all
the services required to parallelize the execution. It supports
the execution of the rollback operation either via traditional
checkpointing facilities [27], or via reverse code blocks [8].

Our experiments have been run on top of a 32-core HP
ProLiant server equipped with 64GB of RAM and running
Debian 6 on top of the 2.6.32-5-amd64 Linux kernel. This is
a common setup for HPC applications, as this is a software
configuration which offers a very good tradeoff between the
services exposed to user space applications and performance.
At the same time, our approach is so general that it can be
used as well on more modern environments.

In order to integrate libreverse with ROOT-Sim, we have
slightly touched two different aspects of the simulation en-
gine: the models’ compilation toolchain (which relies on the
rootsim-cc custom compiler) and the reversibility facilities

5ROOT-Sim is available at http://github.com/HPDCS/
ROOT-Sim.

already present in the engine [8]. As for the compilation
toolchain, we have only statically linked the final executable
against libreverse, allowing the program constructor de-
scribed in Section 3 to take control before the actual sim-
ulation engine is started. This allows to setup the patched
dynamic linker’s resolver which will be activated whenever
an invocation to a library function is issued.

On the other hand, ROOT-Sim’s reversibility facilities pre-
sented in [8] rely on an instrumentation mechanism similar in
spirit to the one used by libreverse. In particular, at com-
pile time, ROOT-Sim performs a static binary instrumentation
process, picking all the memory-update operations that are
located in the simulation model’s code. These instructions
are intercepted by the memory map manager, which gener-
ate undo code blocks to reverse the effects of the execution of
the event on memory. libreverse, on the other hand, keeps
its reverse instructions in a separate buffer, as described in
Section 3.3.

To ensure that the reverse execution is performed in the
proper order, we rely on the get_mark() API exposed by
libreverse, so that reverse code generated by ROOT-Sim
can be tagged with data which allow to determine the total
order of reverse actions to take. In this way, upon a roll-
back execution, ROOT-Sim is able to undo the effects on
memory by the forward execution of events by either rely-
ing on its internal reversibility management, or invoking the
execute_revwin() function.

4.2 Test-Bed Application Model
As a test-bed application, we rely on the Sensors Network

Model (SNM), which simulate the behavior of wireless sen-
sor networks (WSN). WSN are networks composed of small
devices featuring power source, a microprocessor, a wireless
interface, some memory and one or more sensors. They are
used to gather information in a given location or region, yet
due to the limited radio communication range, nodes can
communicate using multi-hop routing protocols.

SNM implements the Collection Tree Protocol (CTP) [17]
to collect data from wireless sensors networks. In particu-
lar, it relies on a variant of the library offered by TinyOS [9].
CTP is a distance vector routing protocol, which computes
the routes from each node in the network to the root (speci-
fied destinations) in the network. Each node forwards pack-
ets to its parent, chosen among its neighbor nodes. In order
to make a choice, each node must be aware of the state of its
neighbors: that’s why nodes continuously broadcast special
packets, called beacons, describing their condition.

The metric adopted in CTP for the selection of the parent
node is the Expected Transmissions (ETX). A node whose
ETX is equal to n can deliver a data packet to the root node
with an average of n transmissions. The ETX of any node is
recursively defined as the ETX of its parent plus the ETX of
its link to the parent; the root node represents the base case
in this recursion, and its ETX is obviously equal to zero.

CTP uses these three mechanisms to overcome the chal-
lenges faced by distance vector routing protocol in a highly
dynamic wireless network: i) the link estimator, which is in
charge of computing incoming and outgoing quality of the
links; ii) the routing engine, which is dedicated to the selec-
tion of the parent node, i.e. the neighbor with the lowest
value of the multi-hop ETX, and iii) the forwarding engine,
which forwards data packets, detects and tries to fix routing
loops, and detects and drops duplicate packets.

It is interesting to note that the routing engine has to
maintain a table, called routing table, where it stores the
last ETX value read in the beacons from each neighbor.
In this way, it is able to always choose the “best” neigh-
bor (the one with the lowest multi-hop ETX) as parent.
Therefore, it has to continuously update the table reading
the information contained in the beacons received from the
neighbors. In the simulation model, each LP represents a
wireless sensor. The routing table managed by the routing
engine (along with other data structures related to all three
components of the CTP protocol) is kept within the LP’s
simulation state. Upon the reception of a simulation event
representing a beacon, the simulation model passes the re-
ceived information to the CTP library, which recomputes
all parameters related to the network and then updates the
routing table in the LP state, thus performing a set of mem-
ory updates. These memory updates are intercepted by li-

breverse, which therefore enables for reversibility the CTP
library.

4.3 Experimental Data
In order to assess the overhead introduced by our pro-

posal, we have relied on experiments using two variants of
the model. In one variant, the CTP algorithm is dynami-
cally linked to the simulation model, while in the other, the
library’s code is directly incorporated into the simulation
model. In this latter configuration, the actions to correctly
restore a previous checkpoint are completely demanded from
ROOT-Sim. As mentioned, ROOT-Sim supports the rollback
operation via both checkpointing facilities and reversibility
facilities. Therefore, in the experiments we present data re-
lated to reversibility obtained when having the CTP library
linked against the executable (LIB in the plots), by relying
on the reversibility facilities offered by ROOT-Sim (REV in
the plots), and by relying on traditional sparse state sav-
ing (CKPT in the plots), with the checkpointing interval
optimized according to the results in [27].

We have run two sets of experiments. In one experiment,
we have set the total number of sensors to 300, while in a
second one, we have set it to 2000. At the same time, the
area in which the sensors are deployed is kept fixed in both
configuration, thus having a denser concentration of sensors
in the second setup. In both configurations, the sensors are
randomly placed within a square region. Since the CTP al-
gorithm keeps a routing table within each LP’s state, and
since it is updated whenever a beacon message is received,
the denser scenario has a twofold effect: i) the size of the
state of each LP is larger, and ii) the frequency of state up-
date by the CTP library is increased. Indeed, since when
the number of sensors is increased to 2000, the average dis-
tance between two sensors decreases, so the number of bea-
cons that can travel the transmission channel without being
affected by fading effects is higher. All the experimental
results are averaged over 10 different runs.

In Figure 7, we report experimental data when the model
is run using 300 sensors. By the results, we can see that
the configuration presenting the best performance profile is
the one associated with reversible execution managed na-
tively by ROOT-Sim. This is mainly due to the fact that
the memory-update profile associated with this configura-
tion does not entail a large number of memory updates.
When using libreverse, there is an overhead around 7%,

 0

 10

 20

 30

 40

 50

 60
E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
s
)

LIB REV CKPT

Figure 7: Results with 300 sensors.

 0

 200

 400

 600

 800

 1000

 1200

 1400

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
s
)

LIB REV CKPT

Figure 8: Results with 2000 sensors.

while when relying on checkpointing there is an overhead
around 4%, which are both anyhow negligible.

The overhead introduced by libreverse is mostly related
to the fact that the simulation model performs memory up-
dates as well. Therefore, since the amount of data written
by the CTP shared library is not very large, the time spent
by the simulation engine to switch among the two reversibil-
ity approaches in order to guarantee the correct order of the
actions is not paid off. At the same time, the overhead of li-
breverse is slightly higher than that of the checkpoint-based
state restore exactly because both the size of the state and
the amount of data updated in it is reduced, thus optimized
checkpointing facilities (especially is realized according to
autonomic facilities as in [27]) are able to fine tune them-
selves significantly. In addition to this, the rollback length
is reduced—sensors are sparse, the communication is orga-
nized according to a tree, and therefore the probability of
cascading rollbacks are small, and the number of LPs that
can rollback each other is limited. In this scenario, plain
reverse computation is not surprisingly delivering a better
performance.

Figure 8 reports experimental data when running the con-
figuration with 2000 sensors. In this configuration, the re-
sults slightly change: reverse computation managed by ROOT-

Sim still has the better performance result, checkpoint-based
executions have the highest performance penalty (more than
12%), while libreverse-based reversibility has a overhead
slightly smaller than 10%. The trend inversion among check-
point based and reversibility based is due to the fact that,
since the amount of state updates is non minimal, the check-
pointing system has to restore a large amount of data, either
in a full or incremental fashion. At the same time, the per-
formance gain by the reversibility engine internal to ROOT-
Sim is again related to the fact that in this case there is
no need for the continuous switch to guarantee the correct
order of the reversibility actions.

Overall, the overhead introduced by relying on libre-

verse is not extremely high (10% in the worst case), con-
sidering that much overhead is introduced by the fact that
the simulation engine has the burden of ensuring the proper
order of execution of reverse activities. What is most im-
portant, anyhow, is that the approach proposed allows to
enable reversibility of generic third-party shared libraries in
a completely transparent manner towards the application
level code, closing the circle of automatic reversibility in the
context of speculative Time Warp-based simulation.

5. CONCLUSIONS AND FUTURE WORK
In this paper we have discussed the design and implemen-

tation of libreverse, which allows to create on the fly in-
strumented versions of functions offered by any third-party
library. By relying on this approach, it is possible to enable
for reversibility any shared library, making them compliant
with the Time Warp optimistic synchronization protocol.
The experimental assessment has shown that it is possible
to increase the programmability degree of PDES models, ex-
actly relying on services offered by shared libraries, paying
only a little overhead.

Future work entails the design of a reversible memory map
manager, which can offer to the simulation engine (or, in
general, to any program) a memory map on which effects
of atomic actions (such as the execution of an event) can
be reverted. This approach will drastically reduce the over-
head due to repeatedly switching between reversibility ac-
tions. Additionally, it will be possible to rely on incremental
checkpointing and reverse computing based both on binary
instrumentation and source to source transformation, to any
degree of integration. Similarly, a thorough experimental
evaluation of the trade-offs between these approaches will
be topic of future work.

Acknowledgements
This work was partially performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344, Lawrence
Livermore National Security, LLC. IM release number LLNL-
CONF-723277.

The authors warmly thank Davide Leoni for his imple-
mentation of SNM which has been used in this work for the
experimental assessment.

6. REFERENCES
[1] GDB: The GNU Project Debugger.

[2] System V Application Binary Interface, Intel386
Architecture Processor Supplement, 1997.

[3] System V Application Binary Interface AMD64
Architecture Processor Supplement, 2007.

[4] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a
transparent dynamic optimization system. SIGPLAN
Notices, 35(5):1–12, 2000.

[5] P. D. Barnes, C. D. Carothers, D. R. Jefferson, and J. M.
LaPre. Warp speed: executing time warp on 1,966,080
cores. In Proceedings of the 2013 ACM SIGSIM
Conference on Principles of advanced discrete simulation,
PADS, pages 327–336, 2013. ACM Press.

[6] S. Bellenot. State skipping performance with the Time
Warp operating system. In Proceedings of the 6th
Workshop on Parallel and Distributed Simulation, PADS,
pages 53–64, 1992. ACM Press.

[7] C. D. Carothers, K. S. Perumalla, and R. M. Fujimoto.
Efficient optimistic parallel simulations using reverse
computation. ACM Transactions on Modeling and
Computer Simulation, 9(3):224–253, 1999.

[8] D. Cingolani, A. Pellegrini, and F. Quaglia. Transparently
mixing undo logs and software reversibility for state
recovery in optimistic PDES. In Proceedings of the 2015
ACM SIGSIM Conference on Principles of Advanced
Discrete Simulation, PADS, 2015. ACM Press.

[9] U. Colesanti and S. Santini. The collection tree protocol for
the castalia wireless sensor networks simulator. Technical
report, ETH Zurich, 2011.

[10] D. Dechev, P. Pirkelbauer, and B. Stroustrup. Lock-Free
Dynamically Resizable Arrays. In Proceedings of the 10th
International Conference on Principles of Distributed
Systems, pages 142–156. Springer-Verlag, 2006.

[11] J. Demmel. LAPACK: A portable linear algebra library for
high-performance computers. Concurrency: Practice and
Experience, 3(6):655–666, dec 1991.

[12] S. Economo, D. Cingolani, A. Pellegrini, and F. Quaglia.
Configurable and Efficient Memory Access Tracing via
Selective Expression-Based x86 Binary Instrumentation. In
Proceedings of the 24th International Symposium on
Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, MASCOTS, pages 261–270.
IEEE Computer Society, 2016.

[13] J. Fleischmann and P. A. Wilsey. Comparative Analysis of
Periodic State Saving Techniques in Time Warp
Simulators. In Proceedings of the 9th Workshop on Parallel
and Distributed Simulation, pages 50–58. IEEE Computer
Society, 1995.

[14] M. Frigo and S. G. Johnson. FFTW: An adaptive software
architecture for the FFT. In Proceesings of the
International Conference on Acoustics, Speech and Signal
Processing, ICASSP, pages 1381–1384, 1998.

[15] R. M. Fujimoto. Performance of Time Warp Under
Synthetic Workloads. In Proceedings of the Multiconference
on Distributed Simulation, pages 23–28. Society for
Computer Simulation, 1990.

[16] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman,
M. Booth, and F. Rossi. GNU Scientific Library Reference
Manual. Distribution, 954161734:592, 2009.

[17] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and
P. Levis. Collection tree protocol. In Proceedings of the 7th
Conference on Embedded Networked Sensor Systems, 2009.

[18] G. C. Hunt. Reversible load-time dynamic linking, 1998.
[19] D. R. Jefferson. Virtual Time. ACM Transactions on

Programming Languages and System, 7(3):404–425, 1985.

[20] J. M. LaPre, E. J. Gonsiorowski, and C. D. Carothers.
LORAIN: a step closer to the PDES ‘holy grail’. In
Proceedings of the 2nd ACM SIGSIM Conference on
Principles of Advanced Discrete Simulation, PADS, pages
3–14, New York, USA, 2014. ACM Press.

[21] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T.
Krogh. Basic Linear Algebra Subprograms for Fortran
Usage. ACM Transactions on Mathematical Software,
5(3):308–323, 1979.

[22] Y.-B. Lin and E. D. Lazowska. Reducing the saving
overhead for Time Warp parallel simulation. University of
Washington Department of Computer Science and
Engineering, 1990.

[23] N. Nethercote and J. Seward. Valgrind: A program
supervision framework. In Electronic Notes in Theoretical
Computer Science, volume 89, pages 47–69, 2003.

[24] A. C. Palaniswamy and P. A. Wilsey. An analytical
comparison of periodic checkpointing and incremental state
saving. In Proceedings of the 7th Workshop on Parallel and
Distributed Simulation, PADS, pages 127–134. ACM Press,
1993.

[25] A. Pellegrini and F. Quaglia. The ROme OpTimistic
Simulator: A tutorial. In D. an Mey, M. Alexander,
P. Bientinesi, M. Cannataro, C. Clauss, A. Constan,
G. Kecskemeti, C. Morin, L. Ricci, J. Sahuquillo,
M. Schulz, V. Scarano, S. L. Scott, and J. Weidendorfer,
editors, Proceedings of the Euro-Par 2013: Parallel
Processing Workshops, PADABS, pages 501–512. LNCS,
Springer-Verlag, 2014.

[26] A. Pellegrini, R. Vitali, and F. Quaglia. Di-DyMeLoR:
Logging only dirty chunks for efficient management of
dynamic memory based optimistic simulation objects. In
Proceedings - Workshop on Principles of Advanced and
Distributed Simulation, PADS, pages 45–53. IEEE, 2009.

[27] A. Pellegrini, R. Vitali, and F. Quaglia. Autonomic state
management for optimistic simulation platforms. IEEE
Transactions on Parallel and Distributed Systems,
26(6):1560–1569, 2015.

[28] F. Qin, C. Wang, Z. Li, H.-s. Kim, Y. Zhou, and Y. Wu.
LIFT: A Low-Overhead Practical Information Flow
Tracking System for Detecting Security Attacks. In
Proceedings of the Annual IEEE/ACM International
Symposium on Microarchitecture, pages 135–148, 2006.

[29] F. Quaglia. A Cost Model for Selecting Checkpoint
Positions in Time Warp Parallel Simulation. IEEE
Transactions on Parallel and Distributed Systems,
12(4):346–362, 2001.

[30] D. Quinlan, C. Liao, J. Too, R. Matzke, and M. Schordan.
ROSE Compiler Infrastructure, 2013.

[31] R. Rönngren and R. Ayani. Adaptive Checkpointing in
Time Warp. In Proceedings of the 8th Workshop on
Parallel and Distributed Simulation, pages 110–117.
Society for Computer Simulation, 1994.

[32] M. Schordan, D. Jefferson, P. Barnes, T. Oppelstrup, and
D. Quinlan. Reverse Code Generation for Parallel Discrete
Event Simulation. pages 95–110. 2015.

[33] M. Schordan, T. Oppelstrup, D. R. Jefferson, P. D. Barnes,
and D. Quinlan. Automatic Generation of Reversible C++
Code and Its Performance in a Scalable Kinetic
Monte-Carlo Application. In Proceedings of the 2016 ACM
SIGSIM Conference on Principles of Advanced Discrete
Simulation, PADS. ACM Press, 2016.

[34] J. M. Shearer and M. A. Wolfe. ALGLIB, a simple
symbol-manipulation package. Communications of the
ACM, 28(8):820–825, aug 1985.

[35] S. Skold and R. Rönngren. Event Sensitive State Saving in
Time Warp Parallel Discrete Event Simulation. In
Proceedings of the 1996 Winter Simulation Conference,
pages 653–660. Society for Computer Simulation, 1996.

[36] D. West and K. Panesar. Automatic Incremental State
Saving. In Proceedings of the 10th Workshop on Parallel
and Distributed Simulation, PADS, pages 78–85. IEEE
Computer Society, 1996.

[37] M. V. Zelkowitz. Reversible execution. Communications of
the ACM, 16(9):566, 1973.

[38] Q. Zhao, R. Rabbah, S. Amarasinghe, L. Rudolph, and
W. F. Wong. How to do a million watchpoints: Efficient
Debugging using dynamic instrumentation. Lecture Notes
in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in
Bioinformatics), 4959 LNCS:147–162, 2008.

