
applied
sciences

Article

VirtFogSim: A Parallel Toolbox for Dynamic
Energy-Delay Performance Testing and Optimization
of 5G Mobile-Fog-Cloud Virtualized Platforms

Michele Scarpiniti * , Enzo Baccarelli and Alireza Momenzadeh

Department of Information Engineering, Electronics and Telecommunications (DIET),
Sapienza University of Rome, via Eudossiana 18, 00184 Rome, Italy; enzo.baccarelli@uniroma1.it (E.B.);
alireza.momenzadeh@uniroma1.it (A.M.)
* Correspondence: michele.scarpiniti@uniroma1.it; Tel.: +39-06-44585869

Received: 14 February 2019; Accepted: 14 March 2019; Published: 19 March 2019
����������
�������

Abstract: It is expected that the pervasive deployment of multi-tier 5G-supported
Mobile-Fog-Cloudtechnological computing platforms will constitute an effective means to support the
real-time execution of future Internet applications by resource- and energy-limited mobile devices.
Increasing interest in this emerging networking-computing technology demands the optimization and
performance evaluation of several parts of the underlying infrastructures. However, field trials are
challenging due to their operational costs, and in every case, the obtained results could be difficult to
repeat and customize. These emerging Mobile-Fog-Cloud ecosystems still lack, indeed, customizable
software tools for the performance simulation of their computing-networking building blocks. Motivated
by these considerations, in this contribution, we present VirtFogSim. It is a MATLAB-supported software
toolbox that allows the dynamic joint optimization and tracking of the energy and delay performance of
Mobile-Fog-Cloud systems for the execution of applications described by general Directed Application
Graphs (DAGs). In a nutshell, the main peculiar features of the proposed VirtFogSim toolbox are that:
(i) it allows the joint dynamic energy-aware optimization of the placement of the application tasks and the
allocation of the needed computing-networking resources under hard constraints on acceptable overall
execution times; (ii) it allows the repeatable and customizable simulation of the resulting energy-delay
performance of the overall system; (iii) it allows the dynamic tracking of the performed resource allocation
under time-varying operational environments, as those typically featuring mobile applications; (iv) it is
equipped with a user-friendly Graphic User Interface (GUI) that supports a number of graphic formats for
data rendering; and (v) its MATLAB code is optimized for running atop multi-core parallel execution
platforms. To check both the actual optimization and scalability capabilities of the VirtFogSim toolbox,
a number of experimental setups featuring different use cases and operational environments are
simulated, and their performances are compared.

Keywords: 5G-supported Mobile-Fog-Cloud platforms; energy and delay-constrained mobile
applications; modeling and dynamic optimization; simulation and parallel execution

1. Introduction

Modern mobile devices are equipped with a number of both heterogeneous Network Interface
Cards (NICs) and multimedia sensors that allow them to host emerging perception-related applications,
such as face/gesture detection/classification, visual text translation, fusion of sensed data, and
video image processing, just to cite a few. Typically, these applications are delay-sensitive and
computation-intensive, while the computing and battery capacities of current mobile devices are
still limited. In order to cope with these limitations, the so-called Mobile Cloud Computing (MCC)

Appl. Sci. 2019, 9, 1160; doi:10.3390/app9061160 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-3164-6256
https://orcid.org/0000-0002-9791-7901
https://orcid.org/0000-0002-5682-4186
http://www.mdpi.com/2076-3417/9/6/1160?type=check_update&version=1
http://dx.doi.org/10.3390/app9061160
http://www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 1160 2 of 48

paradigm proposes to offload computation-intensive tasks to the remote Cloud for the execution [1].
However, task offloading towards remote large-size cloud-based data centers undergoes large network
latencies, mainly induced by the limited bandwidth still offered by multi-hop cellular Wide Area
Networks (WANs) [1]. In principle, a more appealing approach could be, indeed, to allow mobile
devices to exploit both the simultaneous utilization of the hosted NICs and the sub-millisecond
network latencies featuring the forthcoming Fifth-Generation (5G) communication technology, in order
to distribute task offloading suitably to both the remote Cloud and nearby small-sized virtualized data
centers, generally referred to as Fog nodes [2].

The reason why the convergence of the three-pillar paradigm of Fog Computing (FC) [3],
Cloud Computing (CC) [4] and 5G [5,6] is expected to improve both the energy and delay performance
of task offloading of computing-intensive mobile applications relies on their complementary native
features (see Table 1 for a synoptic comparison).

Table 1. The expected Fog-Cloud-5G synergic interplay for the support of future computing-intensive
and delay-critical Mobile applications.

FOG CLOUD 5G

Distributed
deployment
and
low-access
latency

Fog nodes are
expected to undergo a
pervasive deployment.
This reduces the
access distance and,
then, the resulting
propagation delay

Centralized
deployment
and
high-access
latency

Cloud data centers
typically serve large
spatial areas and, then,
incur high
propagation delays

Real-time
support for
heterogeneous
network
technologies

A number of
ultra-short-/short-/long-
range UWB/WiFi/
3G-4G Cellular
network technologies
are simultaneously
supported and
dynamically turned
ON-OFF

Low-density
resource
virtualization

Clones of the served
mobile devices may be
allocated onto
medium-/small-sized
Fog servers in real
time. In order to
reduce the resulting
bootstrapping delays,
light low-density
virtualization
technologies are
employed

High-density
resource
virtualization

Clones of the served
devices are
quasi-statically
deployed by resorting
to high-density
virtualization of the
computing resources
of large servers

Dynamic
provisioning,
multiplexing,
and isolation
of the
wireless
bandwidth

Wireless bandwidth is
dynamically provided
on-demand to the
requiring Mobile
devices. Dynamic
multiplexing is used, in
order to provide
inter-device isolation
and per-device
bandwidth guarantee.

Support for
light
delay-sensitive
Mobile
applications

Fog nodes may exploit
low-latency WiFi links,
in order to enable
seamless light
data/code offloading
from Mobile devices

Support for
computing-intensive
delay-tolerant
applications

By exploiting the their
huge computing
resources, Cloud data
centers may support
computing-intensive
delay-tolerant
applications offloaded
by remote devices

Bandwidth
pooling

The simultaneous
utilization of multiple
transmission
technologies allows
increasing the total
available wireless
bandwidth

Energy
efficient

Resource-limited
Mobile devices may
save energy by
exploiting nearby Fog
nodes as computing
clones

Energy
hungry

Both network and
server infrastructures
hosted by Cloud data
centers are
resource-rich, but
energy hungry

Ultra-low
access latency

Sub-millisecond access
delays are achieved by
the synergic
exploitation of multiple
network technologies

Overall, it is expected that the forthcoming 5G paradigm will be capable of simultaneously
exploiting the benefits of centralized CC infrastructures, distributed FC infrastructures,
and heterogeneous radio technologies, in order to provide seamless resource-augmentation to
resource-limited mobile devices. The pivotal idea is to take full advantage of the cooperative radio
resource management and distributed computing capability at nearby Fog nodes, in order to: (i)
shorten the communication latencies for the execution of delay-sensitive light tasks; and (ii) resort to
centralized remote cloud data centers only for the execution of delay-tolerant workload-intensive tasks.

Appl. Sci. 2019, 9, 1160 3 of 48

1.1. The Multi-Tiered Networked Simulated Environment

According to these considerations, Figure 1 reports the general architecture of the virtualized
5G-enabled Mobile-Fog-Cloud technological platform that is considered in this paper.

Multi NIC Mobile Device

CT

Remote Cloud

3G/4G CELLULAR

Clone

Device

GWR

Edge Net

 Low latency

 Low computing capacity

Core Net

 High latency

 High computing capacity

B
U

B
D

Clone

Device

GWR

GWR

GWR

R
0

R
0

GWR

Proximate Fog Node

AP

RU

R
D

WiFi LAN

Backhaul Net

Backhaul Net

5G NETWORK

Figure 1. The considered 5G-supported Mobile-Fog-Cloud virtualized infrastructure. WAN: Wide Area
Network; LAN: Local Area Network; CT: Cellular Tower; AP: Access Point; GWR: GateWay Router.
Single (resp., double)-arrowed paths indicate one-way (resp., two-way) TCP/IP connections.

The platform is composed of a virtualized Mobile device, a proximate virtualized Fog node, and
a remote virtualized Cloud node. These nodes inter-communicate through Transport -layer TCP/IP
connections that are supported, in turn, by the underlying 5G networking infrastructure. Specifically,
in Figure 1, we have that:

1. Mobile-Fog communication is supported by a two-way WiFi-based (possibly, mobile) single-hop
TCP/IP connection. RU (resp., RD) is the steady-state throughput of the Mobile-to-Fog (resp.,
Fog-to-Mobile) upstream (resp., downstream) TCP/IP one-way connection. Their peak values
depend, in turn, on the adopted WiFi technology;

2. Mobile-Cloud communication is supported by a two-way 3G/4G cellular (possibly, mobile and/or
multi-hop) TCP/IP connection. BU (resp., BD) is the steady-state throughput of the Mobile-to-Cloud
(resp., Cloud-to-Mobile) upstream (resp., downstream) TCP/IP one-way connection;

3. Cloud-Fog communication is supported by a two-way (possibly, wired and multi-hop) backhaul
TCP/IP connection. R0 is the corresponding steady-state throughput.

From a technological perspective, the key role of the 5G paradigm is to allow the computing
nodes of Figure 1 to exploit simultaneously multiple heterogeneous radio technologies, in order
to perform bandwidth pooling and/or trading network energy versus access latency (see the last
column of Table 1). According to this consideration, the reference architecture of Figure 1 assumes that:
(i) the mobile device is equipped with at least two Network Interface Cards (NICs), typically, a WiFi
NIC and a 3G/4G Cellular NIC; (ii) the Fog node is equipped with a WiFi NIC and an Ethernet NIC;
and (iii) the Cloud node is equipped with a Cellular NIC and an Ethernet NIC.

Appl. Sci. 2019, 9, 1160 4 of 48

The mobile device must run a given application that is composed of multiple inter-connected tasks
(i.e., subroutines or methods). Being energy limited and equipped with limited computing resources,
the mobile device may decide to execute each task locally or offload it to the Fog node or the Cloud node.
For this purpose, the Fog node (resp., the Cloud node) is virtualized, in order to host a Fog clone (resp.,
a Cloud clone) of the mobile device. These clones act as virtual processors and execute the offloaded
tasks on behalf of the mobile device. At the Application layer, inter-task communications exploit the
(aforementioned) Mobile-Fog, Mobile-Cloud, and Cloud-Fog 5G-supported TCP/IP connections.

In the considered reference scenario, the mobile clones at the Fog and Cloud nodes are
implemented by resorting to the emerging CoNTainer (CNT)-based technology [7]. Its main peculiar
feature is that it uses an Execution Engine, in order to dynamically carry out resource allocation (see
Figure 2 of the VirtFogSim user guide for a description of the virtualized clone organization). As a
consequence, the physical resources required by a container may be scaled up/down in real time by the
corresponding Execution Engine. For this purpose, each server at the Mobile, Fog, and Cloud nodes
hosts a number nc ≥ 1 of containers. All the containers hosted by a same physical server share the
pool of computing (e.g., CPU cycles) and networking (e.g., I/O bandwidth) physical resources made
available by the physical CPU and NICs that equip the host server. The main task of the Execution
Engine managing each container is to allocate dynamically the bandwidth and computing resources
made available by the host server. In so doing, the containers at the Fog and Cloud nodes play the
role of virtual clones for the associated mobile device and execute the tasks offloaded by the mobile
device on behalf of it. For this purpose, each container acts as a Multi-core Virtual Processor, that
comprises a number of (typically, homogeneous) Virtual Cores (VCs), whose processing frequencies
are dynamically scaled up/down by the execution engine. The final goal of the Execution Engine is to
allocate the pending application tasks over the set of available virtual cores according to the actually
adopted task allocation strategy.

1.2. A Motivational Example

In order to gain a first intuitive insight about the potential energy-saving capability of the
three-tiered networked computing platform of Figure 1, let us consider the toy example of Figure 2.
It illustrates a “wise” strategy for allocating the tasks of an application DAG. The considered DAG
is composed of eight tasks and nine (directed) edges. Each red-marked label (a, b, c) on the nodes
reports the (possibly, profiled) energies needed for the execution of the corresponding task at the
Mobile, Fog, and Cloud, respectively. In the considered example, Nodes A and H are the input and
output tasks of the overall DAG, respectively. Hence, by design, they are forced to be executed on the
Mobile device (hence, the energies needed for their executions on the Fog and Cloud nodes are infinite;
see the corresponding red-marked labels of Figure 2). Furthermore, in Figure 2, each blue-marked
(resp., black-marked) label (f , g) on the edges indicates the Mobile-to-Cloud and Cloud-to-Mobile
(resp., Mobile-to-Fog and Fog-to-Mobile) energies needed for the inter-node transport of the data in
the corresponding DAG edge. The computing energy ECMP and the networking energy ENET can be
easily evaluated by summing the related elements in the red-marked, black marked, and blue-marked
labels of Figure 2. These energies will be formally defined in Equations (5) and (6) of Section 3.2. The
considered DAG being quite simple, it may be analyzed by hand. The analysis leads to the conclusion
that the task allocation strategy that minimizes the total computing-plus-networking consumed energy
ETOT , ECMP + ENET allocates: (i) tasks {A, H} to the Mobile device (see the green-colored tasks); (ii)
tasks {C, G} to the Fog (see the red-colored tasks); and (iii) tasks {B, D, E, F} to the Cloud (see the
blue-colored tasks). In so doing, the total energy consumed by the optimal task allocation strategy
equates: ETOT = 32.0 (Joule), with the computing energy ECMP = 20.5 (Joule) and the networking
energy ENET = 11.5 (Joule). By contrast, the more direct (but sub-optimal) strategies that execute all
tasks at the Mobile, Fog, and Cloud would require: ETOT = 57.0, 35.0, and 43.0 (Joule), respectively.
This confirms that a “wise” task allocation strategy that exploits all the available Mobile-Fog-Cloud

Appl. Sci. 2019, 9, 1160 5 of 48

computing nodes may lead to energy saving, even in the presence of non-negligible inter-node network
energy consumption.

A

B C

D E

F G

H

(3,∞,∞)

(7,4,1)

(8,3,3) (8,2,1)

(4,1,0.5)

(2,∞,∞)

(10,7,6.5)

(15,3,2.5)

(4,3
)

(8,
7)

(3,2)

(4.5
,4) (10,6)

(9,
8)

(10,8) (11,9)
(12

,9)

(13
,10
)

(7,6) (8,7)

(2,1
)

(8,6
)

(4,2)
(5,3)

(9,8) (11,9)

Mobile

Fog

Cloud

Figure 2. A toy example illustrating the energy-saving capability of multi-tiered Mobile-Fog-Cloud
computing platforms that employ both WiFi and Cellular links, in order to connect the
computing nodes.

1.3. Motivations, Main Contributions, and Organization of the Paper

Barring toy examples, it may be very challenging to plan online “wise” decisions about which
tasks should be offloaded and towards which computing nodes, especially when the executions of
the considered applications must be in real time, so that hard upper limits are present on the overall
computing-plus-communication delays. Roughly speaking, the challenging issue stems from two main
factors. First, since the combination of offloading decisions generally increases exponentially with the
number of tasks of the considered DAG, exhaustive searches quickly become very time consuming, or
even infeasible. Second, it is challenging to calculate analytically in closed-form the execution time of an
application described by a DAG with a general (possibly, pseudo-random) topology, especially when
the communication latencies must be also accounted for. In fact, the execution time generally depends
on many factors like, for example, the parallelism of the Mobile-Cloud-Fog computing nodes, their
(possibly, scalable) computing speeds, the number of virtual cores available at the Cloud and Fog nodes,
as well as the available (and possibly scalable) inter-node network bandwidths, just to name a few.

Hence, to enable an energy-efficient real-time exploitation of the mobile technological platform of
Figure 1, we need a flexible evaluation environment for the dynamic test of different task offloading
and resource allocation strategies under programmable (e.g., settable by the user) models for the
energy-delay profiles of the virtualized computing and network blocks composing the reference
architecture of Figure 1. The hardware implementation of the 5G-supported Mobile-Fog-Cloud
test-bed, although valuable, could be too cumbersome, and (moreover) it could not guarantee a
repeatable and controllable performance environment.

Motivated by these considerations, in this paper, we present the general architecture and test the
main functionalities of the VirtFogSim package. It is a new software toolbox that allows:

• simulation on parallel hardware machines;
• dynamic optimization;
• dynamic tracking;
• comparison;
• graphic rendering through an ad-hoc-designed Graphic Use Interface (GUI),

Appl. Sci. 2019, 9, 1160 6 of 48

of the energy-delay performances of heuristic and meta-heuristic strategies for joint task offloading
and dynamic resource allocation of application DAGs with general topologies over the three-tiered
networked virtualized computing platform of Figure 1, under hard real-time constraints on the overall
(i.e., computing-plus-communication) execution times. VirtFogSim allows the users to:

• test their desired application DAGs by customizing the simulation environment of Figure 1
through the setting of the 67 input parameters of the simulator package;

• track dynamically the energy-delay DAG performance against abrupt (possibly, unpredictable)
changes of the simulated environment of Figure 1, like mobility-induced changes of the available
up/down Cellular-WiFi bandwidths;

• optimize the obtained DAG performance against a number of metrics, like total consumed energy,
network consumed energy, network bandwidth, computing frequency, and execution delays, just
to name a few.

On the basis of an overview of the related work available in the open literature (see the next
Section 2), we anticipate that the major peculiar features of the proposed VirtFogSim toolbox are the
following ones:

• it allows the numerical evaluation of the delay-constrained minimization of the overall
computing-plus-network energy consumed by the execution of the input DAG. The optimization is
performed by task offloading and allocation of the per-core computing frequencies and up/down
Cellular-WiFi bandwidths of the platform of Figure 1 in a joint and adaptive way;

• resource allocation is performed by explicitly accounting for the container-based virtualized nature
of the reference platform of Figure 1. For this purpose, the VirtFogSim toolbox relies on
a gradient-based primal-dual iterative procedure that implements a set of ad-hoc designed
adaptive (e.g., time-varying) step-sizes: The goal is to speed up the convergence to the
corresponding steady-states of the per-core computing frequencies and per-connection bandwidths
to be dynamically allocated;

• it allows the user to test the energy-delay performances of six different task allocation
strategies, namely the Genetic, Only-Mobile, Only-Fog, Only-Cloud, Only-Task Allocation, and
Exhaustive-Search strategies (see Section 4), and to add new user-defined strategies;

• the code of the core engine of the simulator leverages the Parallel Toolbox of MATLAB, in order
to exploit automatically the multi-core capability possibly retained by the execution environment
of the simulator.

Furthermore, regarding the consideration of the formats of rendering data supported by the
proposed VirtFogSim toolbox, we point out that it is equipped with a GUI that allows:

• the display of the dynamic time behavior of the performed resource allocation under the time-varying
simulation environment set by the user and;

• the rendering of the data output by the simulator in tabular, bar-plot, and colored map graph
formats (see Section 5).

Finally, a last contribution of the paper concerns the actual test of the numerical and scalability
capabilities of the proposed VirtFogSim toolbox. In this regard, we point out that:

• the adaptive capability and the energy-delay performance of the (aforementioned) six task
allocation strategies have been checked and compared under three benchmark DAGs. They
refer to different use cases featuring some computing, multimedia, and scientific applications
of practical interest and exhibit different symmetric/asymmetric/pseudo-random topologies of
various sizes and in/out node degrees;

• the scaling capability of the simulator has been numerically profiled in terms of both simulation
times and volumes of data that are exchanged among the running cores.

Appl. Sci. 2019, 9, 1160 7 of 48

The rest of this contribution is organized as follows. After reviewing in Section 2 the related work
on the current software tools for the simulation of Fog-Cloud computing platforms, in Section 3, we
present the formal models describing the simulated technological platform of Figure 1. Section 4 is
devoted to an in-depth description of the task offloading and dynamic resource allocation strategies
supported by the current Version 4.0 of the VirtFogSim toolbox, as well as their implementation on
multi-core parallel hardware execution platforms. Afterward, Section 5 describes the associated graphic
formats for the display of the rendered data. Section 6 focuses on: (i) checking the numerical capability
of VirtFogSim; and (ii) testing the scalability of the simulator in terms of both simulation time and
memory consumption on multi-core parallel hardware execution platforms. Some hints for possible
future developments and the availability of the VirtFogSim package are reported in the conclusive
Sections 7 and 8. The reader may refer to Appendix A for the presentation of the dual-mode user
interfaces of the VirtFogSim toolbox and to the final Appendix B for the full list of the (settable) input
parameters of the VirtFogSim simulator and the corresponding meaning, roles, and measuring units.

2. Related Work

The development of simulation tools for Fog computing is still in its infancy. Roughly speaking,
the major part of the current contributions constitute the follow up of some (quite recent) toolkits
designed for the simulation of the (somewhat more consolidated) environment of Cloud computing
and, then, account for a limited number of specific aspects of the Fog computing paradigm. Under this
perspective, an overview of the current open literature leads to the conclusion that the development of
simulation tools for Cloud-Fog computing platforms has proceeded along three main research lines.

The first (somewhat more traditional) research line leads to the development of toolboxes for the
software simulation of networked large-scale Cloud data centers [8–10].

In this regard, CloudSim [8] is a broad simulation toolkit that allows modeling and simulation
of applications on a remote Cloud platform according to the Infrastructure-as-a-Service provisioning
model. It allows the user to setup a customized modeling of the major building blocks of
conventional Cloud infrastructures, like Virtual Machines (VMs), resource provisioning policies,
resource consolidation policies, and VM migration policies. As a consequence, at the present time,
CloudSim seems to be the most popular simulator for Cloud computing scenarios. However, although
the Fog and Cloud computing paradigms share some virtualization features that, in principle, enable
the re-use of some Cloud solutions even for Fog computing (see Table 1), the Fog environment mainly
targets the support of delay-sensitive (possibly mobile) applications. From this point of view, the
CloudSim toolkit presents three main deficiencies. First, it does not allow the customized setup of
network-related parameters, like the per-link wireless access bandwidths and the round-trip-times
of Transport-layer TCP/IP connections. Second, it relies on VM-based virtualization and does not
allow the modeling of emerging CNT-based virtualization. Third, the implemented resource allocation
policies are of the static-type, and no support for dynamic resource tracking is provided.

GreenCloud [9] is a follow up of the NS2 network simulator. Its main focus is on the modeling
and simulation of the energy profiles of some main computing and network components of the Cloud
ecosystem. Being an extension of the NS2 toolkit, GreenCloud allows the customized setting and
simulation of the full TCP/IP protocol stacks equipping the switches of the intra-cloud network.
However, it does not account for the Mobile-to-Cloud wireless access links and does not allow the
characterization of the submitted application as DAGs.

The main goal of iCanCloud [10] is the simulation of Cloud-supported large ecosystems with
thousands of served devices through a suitable extension of the native OMNeT++ platform. Hence,
scalability being the main concern of this toolkit, it does not support dynamic resource tracking and
per-device performance optimization.

A second more recent research line attempts to address the (aforementioned) deficiencies of
Cloud-oriented toolkits by explicitly accounting for the specific features of real Fog platforms for the
support of IoT-based sensor applications [11–13].

Appl. Sci. 2019, 9, 1160 8 of 48

Under this perspective, SimIOT [11] equips the (previously-developed) SimIC [14] simulator by
including a bottom IoT layer, in order to allow the user to model the request of Cloud resources of a
settable number of sensor/actuator devices. This is obtained by including a communication broker
module atop the native SimIC platform, in order to gather the sensed data and redirect them to the
SimIC Cloud agents. As a consequence, SimIOT explicitly lacks support of an intermediate Fog layer.

IOTSim [12] is implemented as an extension of (aforementioned) CloudSim. It is targeted to
the simulation of Fog computing environments in which sensor-acquired big data streams have
to be quickly processed. For this purpose, the IOTSim platform equips the native CloudSim
architecture with a storage layer and, then, provides the software primitives for the simulation
and storage-induced delays. However, the core processing engine supported by the current IOTSim
release is MapReduce-compliant, so that it implements batch processing models for the support of
delay-tolerant big data applications.

iFogSim [13] is another toolbox whose implementation is an extension of CloudSim. It aims
to simulate IoT-based Fog platforms by providing: (i) suitable software Java-based primitives for
modeling the energy-delay performances of sensors, actuators, Fog, and Cloud nodes; (ii) two service
models, e.g., the Sense-Process-Actuate and the Stream processing services; and (iii) two heuristic task
allocation policies, namely the All-Cloud and Edge -ward task placement policies. However, in the
current release of iFogSim, we have that: (i) all the supported devices’ profiling facilities and task
allocation policies are inherently static; (ii) the network delays are assumed fixed; and (iii) support
for the dynamic allocation and/or tracking of network bandwidths and computing frequencies is
not provided.

Very recently, a third research line focused on the development of the software toolkit
EdgeCloudSim [15], for the simulation and performance evaluation of general multi-tiered Cloud-Fog
computing platforms. The main feature of EdgeCloudSim is the provisioning of a software
environment for the setting and dynamic simulation of the profiles of WLAN/WAN networks, wireless
network traffic, device mobility, Fog nodes, and Cloud nodes. For this purpose, EdgeCloudSim:
(i) provides a customizable edge orchestration module for the performance evaluation of different
task placement policies under different time scales; (ii) implements a customizable load generator
that allows simulating the workload of the served mobile devices as streams of independent
tasks with Poisson-distributed arrival times; and (iii) relies on the CloudSim support for the
creation/management/migration/shut-down of VMs. Hence, like the proposed VirtFogSim,
EdgeCloudSim aims at simulating the performance of multi-tiered networked Fog-Cloud platforms
for the support of time-critical tasks. However, unlike VirtFogSim, EdgeCloudSim: (i) does
not support the utilization of application DAGs and, then, does not allow the characterization
of the inter-task dependency; (ii) being VM-oriented, does not support the characterization of
container-based virtualization; (iii) does not provide software primitives for the tracking of the
allocated network/computing resources; and (iv) being mainly focused on the delay-performance of
the simulated platform, does not provide support for the modeling of the power/energy profiles of
the Mobile, Fog, and Cloud nodes.

3. VirtFogSim: A View of the Simulated Formal Models

In this section, the basic definitions and formal assumptions about the constrained optimization
problem tackled by the VirtFogSim engine are briefly explained. The reference framework is that
already reported in Figure 1.

3.1. Profiling the Simulated Workflows

By definition, a task allocation vector:

~x def
= [x (1) ≡ 1, x (2) , . . . , x (V − 1) , x (V) ≡ 1] , (1)

Appl. Sci. 2019, 9, 1160 9 of 48

is a dimensionless (1×V) ternary vector, whose components are defined as follows:

x (i) def
=

0 , if the ith task is executed at the Fog clone,

1 , if the ith task is executed at the Mobile Device, i = 1, . . . , V.

2 , if the ith task is executed at the Cloud clone,

By design, the first and last tasks are always executed at the Mobile device, and therefore,
x (1) ≡ x (V) ≡ 1 (see Equation (1)). Hence, the size of the set of the admissible task allocation vectors
is 3V−2.

By definition, a resource allocation vector:

−→
RS def

= [fM, fF, fC, RU , RD, BU , BD] (bit/s) , (2)

is a (1× 7) non-negative row vector whose components are measured in bit/s. It reports the values
assumed by (see Figure 1) in the order:

1. the processing frequency fM at the Mobile device;
2. the processing frequency fF at the Fog clone;
3. the processing frequency fC at the Cloud clone;
4. the throughput RU of the Mobile-to-Fog TCP/IP connection;
5. the throughput RD of the Fog-to-Mobile TCP/IP connection;
6. the throughput BU of the Mobile-to-Cloud TCP/IP connection;
7. the throughput BD of the Cloud-to-Mobile TCP/IP connection.

3.2. The Considered Throughput-Constrained Joint Task and Dynamic Resource Allocation Problem

In this section, we give a glimpse of the constrained optimization problem whose solution is
numerically evaluated by VirtFogSim. For this purpose, let EM, EF, and EC (Joule) be the computing
energies consumed by the Mobile device, Fog clone, and Cloud clone of Figure 1 in order to process the
assigned tasks of the considered application DAG. Furthermore, let EWiFi, ECELL, and EWD (Joule) be the
energies consumed by the Mobile-Fog, Mobile-Cloud, and Cloud-Fog two-way TCP/IP connections, in
order to transport the inter-task data among the Mobile, Cloud, and Fog computing nodes. Finally, let:

ETOT
def
= ϑM × EM + ϑF × EF + ϑC × EC + EWiFi + ECELL + EWD (Joule) , (3)

be the resulting computing-plus-communication total consumed energy, with ϑM, ϑF, and ϑC being
binary {0, 1}-valued constants.

Hence, the considered Joint Optimization Problem (JOP) is defined as follows:

min−→
RS,~x

ETOT , (4a)

s.t.:

(1/TDAG) ≥ THMIN
0 , (4b)

0 ≤ fM ≤ f MAX
M , (4c)

0 ≤ fF ≤ f MAX
F , (4d)

0 ≤ fC ≤ f MAX
C , (4e)

0 ≤ RU ≤ RMAX
U , (4f)

0 ≤ RD ≤ RMAX
D , (4g)

0 ≤ BU ≤ BMAX
U , (4h)

Appl. Sci. 2019, 9, 1160 10 of 48

0 ≤ BD ≤ BMAX
D , (4i)

x (1) = x (V) = 1 , (4j)

x (i) ∈ {0, 1, 2} , i = 2, . . . , (V − 1) . (4k)

In the above equations, we have that:

1.
−→
RS is the resource allocation vector defined in Equation (2);

2. ~x is the task allocation vector defined in Equation (1);
3. TDAG (s) is the overall time needed to execute the assigned application DAG, in short, the DAG

execution time. It generally depends on the optimization variables
−→
RS and ~x;

4. THMIN
0 (app/s) is the required minimum application throughput, i.e., the minimum number

of application DAGs to be performed in the time interval of one second. It is a non-negative
real number;

5. Equations (4c)–(4g) account for the maximum available resources;
6. Equations (4j)–(4k) account for the ternary nature of the considered task allocation vectors.

The considered JOP is solved in VirtFogSim by the RAP_p function described in Section 4.2. Before
proceeding, four main remarks about the formulated JOP are in order.

First, it aims to jointly optimize the allocation of the tasks over the Mobile, Fog, and Cloud
computing nodes of Figure 1 and the corresponding computing-plus-communication resources.
Formally speaking, it is a mixed-integer non-convex optimization problem, that resists closed-form
solution. In the sequel, we will denote as:

−→
RS∗ and ~x∗ the solution of the constrained JOP in

Equations (4a)–(4k).
Second, for positive THMIN

0 , the constraint in Equation (4b) enforces a hard (e.g., deterministic)
QoS constraint on the minimum desired application throughput. As a consequence, too many larger
values of THMIN

0 may give rise to infeasible JOP.
Third, the actual values of the binary constants: ϑM, ϑF, and ϑC depend on the application service

model adopted by the Service Provider . Specifically, ϑM and/or ϑF and/or ϑC are unit valued (resp.,
vanish) when the energies consumed by the Mobile, Fog, and Cloud computing nodes are for free
(resp., are taxed).

Fourth, the summation of the first three terms in the objective function in (3) represents the
consumed computing energy, i.e.,

ECMP
def
= ϑM × EM + ϑF × EF + ϑC × EC (Joule) , (5)

while the summation of the remaining three terms is the corresponding wasted network energy ENET ,
formally defined as follows:

ENET
def
= EWiFi + ECELL + EWD (Joule) . (6)

3.3. Simulated Computing and Networking Energy Profiles

In this section, we (briefly) present the analytical expressions of the computing and network
energies involving the objective function in (4a), together with the corresponding analytical expression
of the (constrained) TDAG in (4b). The goal is to allow the VirtFogSim user to acquire basic insight
about the roles played and the possible impacts of the input parameters in Table A2 of the simulator
on the resulting solution

(−→
RS∗, ~x∗

)
of the underlying JOP in Equations (4a)–(4k). In this regard, four

introductory remarks are in order.
First, since the Mobile device of Figure 1 may both upload to and download from the connected

Fog an Cloud clones, the previously-defined network energies: EWiFi and ECELL split in the summation

Appl. Sci. 2019, 9, 1160 11 of 48

of the corresponding up and down network energies plus the underlying idle energies, so that we
can write:

EWiFi = E
(IDLE)
WiFi + EU

WiFi + E
D
WiFi (Joule) , (7)

and:
ECELL = E (IDLE)

CELL + EU
CELL + ED

CELL (Joule) . (8)

Second, in the considered framework of Figure 1, the Fog-Cloud (typically wired) backhaul is
assumed sustained by a two-way TCP/IP transport connection that operates in the steady-state. Hence,
according to the seminal analysis reported for example in [16], the corresponding transport throughput
R0 may be directly evaluated as in:

R0 =
1.22×MSS

RTTWD ×
√

ProbLOSS
(bit/s) , (9)

where (see Figure 1): (i) MSS (bit) is the maximum size of a TCP segment; (ii) RTTWD (s) is the
steady-state Round-Trip-Time of the two-way Fog-Cloud TCP/IP connection; and (iii) ProbLOSS is the
associated steady-state segment loss probability.

Third, according to a number of both analytical and experimental models (see, for example, [17,18]
and the references therein), the computing and network energy present in the objective function in
Equations (4a)–(4k) is the summation of static energy and dynamic energy. Specifically, we note that:

1. the static energy accounts for the energy wasted by the device in the idle state (e.g., the device is
turned ON, but it is not running). As a consequence, since the power consumed by the device
in the idle state PIDLE (Watt) does not depend on the optimization variables, the static energy
depends on the optimization variables

−→
RS and ~x only through the corresponding DAG execution

time TDAG (s);
2. the dynamic energy accounts for the energy wasted by the device when it is in the running state.

As a consequence, since the resulting dynamic power depends on the operating computing
frequency or communication bit rate, the dynamic energy of each device depends on the
optimization variables

−→
RS and ~x through both the DAG execution time TDAG (s) and the

corresponding dynamic power PDYN (Watt).

Fourth, a number of both analytical and experimental studies recently appeared in the open
literature [18–23], supporting the conclusion that the dynamic power PDYN (y) (Watt) consumed by
a computing (resp., network) device operating at the computing frequency (resp., bit-rate) y may be
accurately profiled by a power-like relationship, e.g., PDYN = K (y)γ (Watt), where both the coefficient
K and exponent γ depend on the specifically considered device and operating conditions. Hence, by
definition, the corresponding dynamic energy PDYN (y) (Joule) equates to:

EDYN (y) def
= PDYN (y) /y = K (y)γ−1 (Joule) . (10)

Therefore, after indicating by:

1. δ (x) Kronecker’s delta (e.g., δ (x) = 1 for x = 1 and δ (x) = 0, otherwise); and by:
2. u−1 (x) the unit-step function (e.g., u−1 (x) = 1 for x > 0 and u−1 (x) = 0, otherwise),

the above considerations lead to the following sum-power-like analytical models for the profiles of the
(previously-introduced) computing energies:

EM =

P (IDLE)
CPU−M
ncM

× TDAG × u−1

(
∑V

i=1 δ (x (i)− 1)
)

+
(
∑V

i=1 s (i) δ (x (i)− 1)
)

KM (1− rM) (fM)γM−1 ,

(11a)

Appl. Sci. 2019, 9, 1160 12 of 48

EF =

P (IDLE)
CPU−C
ncC

× TDAG × u−1

(
∑V

i=1 δ (x (i)− 2)
)

+
(
∑V

i=1 s (i) δ (x (i)− 2)
)

KC (1− rC) (fC)
γC−1 ,

(11b)

EC =

P (IDLE)
CPU−C
ncC

× TDAG × u−1

(
∑V

i=1 δ (x (i)− 2)
)

+
(
∑V

i=1 s (i) δ (x (i)− 2)
)

KC (1− rC) (fC)
γC−1 ,

(11c)

where all the device-depending parameters: P (IDLE)
CPU , nc, K, r, and γ involved in the above

energy-profiling relationships are detailed in Table A2, together with their meaning/role and proper
measuring units.

In order to introduce the energy profiles of the five up/down WiFi, up/down Cellular, and
two-way backhaul connections referenced by Equations (7)–(9), let: VM→F, VF→M, VM→C, VC→M, and
VF↔C indicate the volumes (in bit) of data transported (see Figure 1): (i) from Mobile to Fog; (ii) from
Fog to Mobile; (iii) from Mobile to Cloud; (iv) from Cloud to Mobile; and (v) exchanged between Fog
and Cloud, respectively. Hence, directly from the basic definitions of the adjacency (binary-valued)
A ,

[
aij
]

and (real-valued) Da ,
[
dij
]

connection matrices, featuring the assigned DAG, as well as the
task allocation vector ~x in Equation (1), these volumes may be formally expressed as:

VM→F =
(
1 + NFWiFi

) (
∑V

i,j=1 aijδ (x (i)− 1) δ (x (j))dij

)
, (12a)

VF→M =
(
1 + NFWiFi

) (
∑V

i,j=1 aijδ (x (i)) δ (x (j)− 1) dij

)
, (12b)

VM→C =
(
1 + NFCELL

) (
∑V

i,j=1 aijδ (x (i)− 1) δ (x (j)− 2) dij

)
, (12c)

VC→M =
(
1 + NFCELL

) (
∑V

i,j=1 aijδ (x (i)− 2) δ (x (j)− 1) dij

)
, (12d)

VF↔C =
(
1 + NFWD

) (
∑V

i,j=1 aij (δ (x (i)− 2) δ (x (j)) + δ (x (i)) δ (x (j)− 2)) dij

)
, (12e)

where NF is the average number of failures of the considered connection [22,23] (see also Table A2)
and V is the number of tasks of the considered DAG. Hence, the idle, up, and down energies of the
WiFi and Cellular network connections in Equations (7) and (8) may be profiled as follows:

E (IDLE)
WiFi = (ϑM + ϑF)×P

(IDLE)
WiFi−M × TDAG × u−1

(
∑V

i=1 δ (x (i))
)

, (13a)

EU
WiFi = VM→F ×

(
ϑMΩ(TX)

WiFi (RU)
ξ
(TX)
WiFi−1 + ϑFΩ(RX)

WiFi (RU)
ξ
(RX)
WiFi−1

)
, (13b)

ED
WiFi = VF→M ×

(
ϑMΩ(RX)

WiFi (RD)
ξ
(RX)
WiFi−1 + ϑFΩ(TX)

WiFi (RD)
ξ
(TX)
WiFi−1

)
, (13c)

and:

E (IDLE)
CELL = (ϑM + ϑC)×P

(IDLE)
CELL−M × TDAG × u−1

(
∑V

i=1 δ (x (i)− 2)
)

, (14a)

EU
CELL = VM→C ×

(
ϑMΩ(TX)

CELL (BU)
ξ
(TX)
CELL−1 + ϑCΩ(RX)

CELL (BU)
ξ
(RX)
CELL−1

)
, (14b)

ED
CELL = VC→M ×

(
ϑMΩ(RX)

CELLX (BD)
ξ
(RX)
CELL−1 + ϑCΩ(TX)

CELL (BD)
ξ
(TX)
CELL−1

)
. (14c)

Appl. Sci. 2019, 9, 1160 13 of 48

Finally, the energy consumed by the backhaul connection reads as:

EWD =
(

ϑCP
(IDLE)
ETH−C + ϑFP

(IDLE)
ETH−F

)
× TDAG×

u−1

(
∑V

i,j=1 aij (δ (x (i)) δ (x (j)− 2) + δ (x (i)− 2) δ (x (j)))
)
+ VF↔C ×

(
PWD

R0

)
,

(15)

where the corresponding wasted dynamic power PWD (Watt) is given by the product:

PWD = noHOP ×PHOP, (16)

of the number of hops noHOP of the connection by the per-hop consumed power PHOP (Watt) (see
Table A2).

3.4. Simulated Profiles of the per-DAG and per-Task Execution Times

The analytical expression assumed by TDAG in Equation (4b) depends on the vectors
−→
RS, ~x, as

well as the adopted inter-node Task Scheduling and intra-node Task Service disciplines. The current
implementation of VirtFogSim assumes that the adopted Task Scheduling discipline over the computing
nodes and the adopted Task Service discipline at each computing node are both of the sequential type.
They are, indeed, the Task Scheduling and Task Service disciplines currently adopted by a number of
middleware software tools for the support of mobile computing, such as MAUI, Volare, Cuckoo, and
CloneCloud (see, for example, [24,25] and the references therein for an overview of state-of-the-art
middleware solutions for the support of computing-intensive smartphone-based applications).

As direct consequence, the following sum expression holds for the analytical profile of TDAG:

TDAG = ∑V
i=1

(
δ (x (i)− 1) TM (i) + δ (x (i)) TF (i) + δ (x (i)− 2) TC (i)

)
, (17)

where TM (i), TF (i), and TC (i) are the total execution times of the ith task of the considered DAG when
it is executed at the Mobile, Fog, and Cloud node, respectively.

In this regard, two main remarks are in order. First, each total execution time TN (i) , N ∈
{M, F, C}, in Equation (17), is, by design, the summation of two terms. The first term is the computing
time (e.g., the service time): TSER

N (i) , N ∈ {M, F, C}, wasted for the processing of the ith task at the
computing node N, while the second term is the communication delay: TNET

N (i) , N ∈ {M, F, C},
induced by the transport from the other two computing nodes of the input data needed for the
processing of the ith task at the computing node N. Second, when a set of tasks is processed by the
same computing node, the resulting overall communication delay is, by design, zero [23,26,27].

Therefore, according to these two remarks, the following analytical expressions hold for the
profiles of the per-node execution times in Equation (17):

Appl. Sci. 2019, 9, 1160 14 of 48

TM (i) = TSER
M (i) + TNET

M (i) =

(
∑V

j=1 s (j) δ (x (j)− 1)

nM fM

)

+

[(
1 + NFWiFi

) (∑V
j=1 ajidjiδ (x (j))

RD

)
+
(
1 + NFCELL

) (∑V
j=1 ajidjiδ (x (j)− 2)

BD

)]
,

(18a)

TF (i) = TSER
F (i) + TNET

F (i) =

(
∑V

j=1 s (j) δ (x (j))

nF fF

)

+

[(
1 + NFWiFi

) (∑V
j=1 ajidjiδ (x (j)− 1)

RU

)
+

(
∑V

j=1 ajidjiδ (x (j)− 2)

R0

)]
,

(18b)

TC (i) = TSER
C (i) + TNET

C (i) =

(
∑V

j=1 s (j) δ (x (j)− 2)

nC fC

)

+

[(
1 + NFCELL

) (∑V
j=1 ajidjiδ (x (j)− 1)

BU

)
+

(
∑V

j=1 ajidjiδ (x (j))

R0

)]
,

(18c)

where i = 1, . . . , V and nM, nF, and nC are the number of cores equipping the Mobile, Fog, and Cloud
nodes, respectively (see Table A2).

3.5. Simulated Adaptive Resource Allocation Framework

In this subsection, we briefly present the general analytical framework implemented by the
RAP_p and FogTracker functions of Sections 4.2 and 4.4, in order to perform the adaptive updating of
the computing frequencies: fM, fF, fC, the wireless network bandwidths: RU , RD, BU , BD, and the
Lagrange multiplier λ associated with the throughput constraint in Equation (4b). The final goal is to
allow the user to acquire insights about the role played by the input step-size aMAX and related input
step-size vector~aMAX−FT on the adaptive capability of the resource allocation engine implemented
by VirtFogSim.

For this purpose, after indicating by L the Lagrangian function of the JOP of Equation (4), let:
y ∈ { fM, fF, fC, RU , RD, BU , BD, λ} indicate a (scalar and non-negative) variable to be optimized, and
let yMAX be its allowed maximum value. Furthermore, after denoting by t an integer-valued iteration
index, let ∇yL (t) be the derivative of the Lagrangian function L with respect to the considered
optimization variable y at iteration t. Hence, according to the so-called primal-dual iteration-based
approach recently customized in [28] for broadband networked application scenarios, the adaptive
updating of y (t + 1) reads as follows:

y (t + 1) = max{0, min{yMAX , y (t)− gy (t)∇yL (t)}}, (19)

where the outer max{.} (resp., the inner min{.}) accounts for the non-negative (resp., maximum) value
of y.

The peculiar feature of the updating relationship in (19) is that it resorts to a y-depending and
time-varying gain function: gy (t), in order to guarantee quick adaptation of the optimization variable
y in response to abrupt changes of the wireless environment of Figure 1. On the basis of the general
results of [28] about the convergence to the steady-state of the iterations in (19), we planned to
implement in the current version of VirtFogSim the following time-varying gain formula:

gy (t + 1) = max{aMAX , min{aMAX × yMAX ,
1
2
(y (t))2}}. (20)

An examination of the above formula unveils the role played by the (positive) step-size aMAX , as
well as its potential impact on the adaptive capability of the overall simulator. Specifically, on the basis

Appl. Sci. 2019, 9, 1160 15 of 48

of (20), we expect that large (resp., small) values of aMAX lead to quick (resp., slow) response to abrupt
environmental changes, together with large (resp., small) possible oscillations in the steady-state.
In this regard, we anticipate that the final goal of the FogTracker function of Section 4.4 is to guide the
user towards the right trade-off among these two aMAX-depending contrasting behaviors.

4. VirtFogSim: Supported Task Allocation Strategies and Their Parallel Execution

The engine of the VirtFogSim simulator is built of a main core of eight software routines that
implement a number of strategies (e.g., optimization policies), in order to check the feasibility and, then,
solve numerically the constrained optimization problem in (4). MATLAB is the native environment
under which the optimization routines are developed and run.

In this regard, it must be remarked that the VirtFogSim package is capable of automatically turning
ON and exploiting the multi-core capability retained by the supporting hardware platform, in order
to run parallel programming and, then, speed up the execution of the implemented task allocation
policies. This is done in a fully-transparent way, e.g., without any direct user involvement. For this
purpose, some instructions for parallel programming on multi-core hardware platforms specifically
supported by the Parallel Toolbox of MATLAB are utilized by the VirtFogSim package. However,
VirtFogSim is capable of automatically switching to the sequential execution mode when the underlying
hardware platform is single-core or the MATLAB Parallel Toolbox is not installed.

4.1. General Architecture of the Developed Simulation Platform

The main functionalities of VirtFogSim are implemented by the functions listed in Table 2. In
the sequel of the paper, these functions are briefly described. A deep explanation about the usage
of such functions can be found in the VirtFogSim User Guide, which can be downloaded along with
the software package (see Section 8). The main functions in Table 2 use some auxiliary functionalities
implemented in the set of routines listed in Table 3.

Table 2. Main functions implemented by VirtFogSim.

Function Description[
~̃y, ẼTOT , ẼNET

]
= RAP_ p (~x, ~z, ~s, Da, SRAP) It implements the Resource Allocation Problem described

in Equation (4).[
Eaux, ENET

aux , λaux
]
= FogTracker (x1, x2, x3) It tests the convergence rate to the steady-state and

the steady-state stability of the primal-dual iterations
performed by the RAP_p function when abrupt
changes happen.[

~xbest,
−→
RSbest, Ebest, ENET

best , RBbest

]
= GeneticTA_par It runs the parallel Genetic Task Allocation strategy.[−→

RSOM, EOM, ENET
OM

]
= OM_S It runs the Only Mobile strategy.[−→

RSOF, EOF, ENET
OF

]
= OF_S It runs the Only Fog strategy.[−→

RSOC, EOC, ENET
OC

]
= OC_S It runs the Only Cloud strategy.[

~xOTAS, EOTAS, ENET
OTAS

]
= O_TAS_par It runs the Only Task Allocation strategy.[

~xESS,
−→
RSESS, EESS, ENET

ESS , RBESS

]
= ES_S It runs the Exhaustive Search strategy.

Regarding the description of the general software architecture of the simulator, VirtFogSim acts as
the main program that:

1. allows the user to setup 67 input parameters that characterize the scenario to be simulated by the
user (see Figure 1);

2. calls the GeneticTA_par function for parallel execution and returns the corresponding:

(a) ~xbest ∈ {0, 1, 2}V , i.e., ternary V-tuple best allocation vector;

Appl. Sci. 2019, 9, 1160 16 of 48

(b)
−→
RSbest

def
=
[

f ∗M, f ∗F , f ∗C, R∗U , R∗D, B∗U , B∗D
]

(bit/s), i.e. the seven-tuple vector of the optimal
resource allocation of the Mobile computing frequency, Fog computing frequency, Cloud
computing frequency, Mobile-to-Fog transport throughput, Fog-to-Mobile transport
throughput, Mobile-to-Cloud transport throughput, and Cloud-to-Mobile transport
throughput (see Figure 1);

(c) Ebest (Joule), i.e., the total computing-plus-network energy consumed by the infrastructure
of Figure 1 under the returned ~xbest task allocation vector. For this purpose, the GeneticTA
function calls, in turn, the auxiliary functions RAP , Crossover , and Mutation ;

3. optionally, calls the OM_S function and returns:

(a)
−→
RSOM

def
= [fM, fF, fC, RU , RD, BU , BD] (bit/s), i.e., the seven-tuple vector of the optimal

resource allocation under the (1×V) All-Mobile task allocation vector: ~xOM
def
= [1, 1, . . . , 1, 1];

(b) EOM (Joule), i.e., the total computing-plus-network energy consumed by the infrastructure
of Figure 1 under ~xOM. If the returned EOM is infinite, then the All-Mobile task allocation
~xOM is infeasible. The OM_S function calls, in turn, the RAP function;

4. optionally, calls the OF_S function and returns:

(a)
−→
RSOF

def
= [fM, fF, fC, RU , RD, BU , BD] (bit/s), i.e., the seven-tuple vector of the optimal

resource allocation under the (1×V) All-Fog task allocation vector: ~xOF
def
= [1, 0, . . . , 0, 1];

(b) EOF (Joule), i.e., the total computing-plus-network energy consumed by the infrastructure
of Figure 1 under ~xOF. If the returned EOF is infinite, then the All-Fog task allocation ~xOF is
infeasible. The OF_S function calls, in turn, the RAP function;

5. optionally, calls the OC_S function and returns:

(a)
−→
RSOC

def
= [fM, fF, fC, RU , RD, BU , BD] (bit/s), i.e., the seven-tuple vector of the optimal

resource allocation under the (1×V) All-Cloud task allocation vector: ~xOC
def
= [1, 2, . . . , 2, 1];

(b) EOC (Joule), i.e., the total computing-plus-network energy consumed by the infrastructure of
Figure 1 under ~xOC. If the returned EOC is infinite, then, the All-Cloud task allocation ~xOC is
infeasible. The OC_S function calls, in turn, the RAP function;

6. optionally, calls the O_TAS_par function for parallel execution and returns:

(a) ~xOTAS ∈ {0, 1, 2}V , i.e., the ternary V-tuple best allocation vector computed by O_TAS under
the assumption that the optimization of the resource allocation is not performed;

(b) EOTAS (Joule), i.e., the total computing-plus-network energy consumed by the infrastructure
of Figure 1 under ~xOTAS. If the returned EOTAS is infinite, then the O_TAS task allocation
~xOTAS is infeasible. The O_TAS function calls, in turn, the Crossover, Mutation, and
evaluatestaticenergy_p functions;

7. optionally, calls the ES_S_par function and returns:

(a) ~xESS ∈ {0, 1, 2}V , i.e., the ternary V-tuple best task allocation vector computed by
performing the exhaustive search over the full population of task allocation vectors of
the size 3V−2;

(b)
−→
RSESS

def
= [fM, fF, fC, RU , RD, BU , BD] (bit/s), i.e., the seven-tuple vector of the optimal

resource allocation under ~xESS;
(c) EESS (Joule), i.e., the total computing-plus-network energy consumed by the infrastructure

of Figure 1 under ~xESS. If the returned EESS is infinite, then the overall afforded optimization
problem is infeasible. The ES_S function calls, in turn, the RAP function and requires that
the task allocation vectors ~xbest and ~xOTAS are already available;

8. optionally, calls the FogTracker function. It returns the time plots over the interval:
[1, iteration_number] of the:

(a) total energy ETOT consumed by the overall Mobile-Fog-Cloud ecosystem;

Appl. Sci. 2019, 9, 1160 17 of 48

(b) the corresponding energy ENET consumed by the up/down WiFi, Cellular, and Backhaul
connections of Figure 1; and,

(c) the behavior of the lambda multiplier associated with the hard throughput constraint of
Equation (4b),

when abrupt changes in the pattern of the allocated tasks and/or maximum bandwidths of
the WiFi/Cellular connections occur. The user may set the magnitude of these changes, in
order to test various (possibly mobility induced) time-fluctuations of the simulated environment
of Figure 1 (see Section 4.4 in the sequel for a full description of the FogTracker function and
supported options).

The current version of the VirtFogSim simulator is equipped with a (rich) Graphical User Interface
(GUI) that displays:

1. the numerical values of the up/down WiFi-Cellular-Backhaul bandwidths and Mobile-Fog-Cloud
computing frequencies returned by the allocation policies GeneticTA_par, O_TAS_par, ES_S_par,
OM_S, OF_S, and OC_S in the form of colored bar plots;

2. the (generally different) task allocation patterns performed by GeneticTA_par, O_TAS_par,
ES_S_par, OM_S, OF_S, and OC_S in the form of suitably-colored labeled graphs of the underlying
application DAG (see Appendix A.2 in the sequel for a description of the main screen-shoots
returned by the GUI of VirtFogSim).

Furthermore, VirtFogSim allows the user to:

1. set 67 input parameters, in order to customize the desired computing and communication setup
of the infrastructure of Figure 1;

2. select any subset of the (aforementioned) GeneticTA_p, OM_S, OC_S, OF_S, O_TAS_ par, ES_S_par,
and FogTracker functions, in order to test and compare various task and/or resource allocation
strategies under the scenario dictated by the desired input parameters.

4.2. Supported Task Allocation Strategies and Adaptive Resource Allocation

In this subsection, we describe the supported task allocation strategies provided by the VirtFogSim
and listed in Table 2.

We begin with the parallel Only-Task Allocation Strategy (O_TAS_par) function that acts as follows:

1. it performs task allocation by implementing (in a parallel way) a genetic algorithm. For this
purpose, O_TAS_par calls the Crossover and Mutation functions over a randomly-generated
population of {0, 1, 2}-ternary task allocation vectors of size PS;

2. it evaluates the energy of each tested ternary allocation vector by computing the corresponding
energies: EM, EF, EC, EWiFi, EWD, and ECELL under the static (e.g., not optimized) maximal resource
allocation vector:

−→
RSMAX =

[
f MAX
M , f MAX

F , f MAX
C , RMAX

U , RMAX
D , BMAX

U , BMAX
D , R0

]
(bit/s). For

this purpose, O_TAS_par not longer calls the RAP_p function, but calls the evaluatestaticenergy_ p
function.

The O_TAS_ par outputs are:

1. the V-tuple (0, 1, 2)-ternary minimum-energy task allocation vector: x_OTAS, which is computed
by applying the genetic algorithm run by O_TAS_par under

−→
RSMAX ;

2. the corresponding total energy: EOTAS (Joule) and network energy: ENET
OTAS (Joule) consumed by

~xOTAS under the (aforementioned) fixed maximal resource allocation vector
−→
RSMAX .

The function O_TAS_ par assumes that all the global variables of parallel VirtFogSim are already
setup. It also utilizes the following main set of local variables: Popmatrix, Childlist, Mutationlist, and
Candidatelist, all of dimensions PS× (V + 1).

Appl. Sci. 2019, 9, 1160 18 of 48

Algorithm 1 reports a pseudo-code of the O_TAS_ par function. Due to the utilization of the
parfor-cycle, the resulting asymptotic computational complexity of the O_TAS_ par function scales up
as: O ((PS× GMAX) /ncore), where:

1. PS is the population size of the checked task allocation vectors;
2. GMAX is the number of iterations (that is, the number of generations) run by the genetic algorithm

implemented by O_TAS_par; and,
3. ncore ≥ 1 is the number of available parallel cores that support the execution of VirtFogSim.

Algorithm 1 O_TAS_ par function.

function:
[
~xOTAS, EOTAS, ENET

OTAS
]
= O_TAS_par (PS, CF , GMAX , MN).

Output: (1×V) ternary vector of the best task allocation ~xOTAS ∈ {0, 1, 2}V under the fixed maximal
resource allocation vector; scalar total energy EOTAS (Joule) and network energy ENET

OTAS (Joule)
consumed by ~xOTAS under the fixed maximal allocation vector.
blank row . Begin O_TAS_ par function
blank row . Initialization phase

1: Randomly generate a list
{
~xi ∈ {0, 1, 2}V , i = 1, . . . , PS

}
of task allocation vectors and store it

into [Popmatrix];
2: Compute and store into the (V + 1)th column of [Popmatrix] the energy consumed by each

~x ∈ [Popmatrix] by calling PS times the evaluatestaticenergy_p function;
3: Sort the PS elements of [Popmatrix] for increasing values of their energies;
4: Copy the first row of the sorted [Popmatrix] into ~xOTAS, EOTAS, and ENET

OTAS;
5: Set the number Q = dCF× PSe of the elements of [Popmatrix] for crossover at each generation;
6: for j = 1 : GMAX do . Iterative phase
7: Perform the pair-wise crossover of the first Q elements of [Popmatrix] by calling (Q/2) times

the Crossover function and store the Q crossover elements in [Childlist];
8: Randomly mute MN positions of the last (PS−Q) elements of [PopMatrix] by calling (PS−Q)

times the Mutation function and store the mutated elements into [Mutationlist];
9: Compute and store the consumed energy of each element of [Childlist] and [Mutationlist] by

calling PS times the function evaluatestaticenergy_p;
10: Copy the first Q elements of [Popmatrix] and the overall [Childlist] and [Mutationlist]

into [Candidatelist];
11: Sort the (PS + Q) elements of [Candidatelist] for increasing values of their energies;
12: Copy the first PS elements of [Candidatelist] into [Popmatrix];
13: if the total energy of the first element of [Popmatrix] is lower than EOTAS then
14: Copy the first row of [Popmatrix] into ~xOTAS, EOTAS and ENET

OTAS;
15: end if
16: end for
17: return

[
~xOTAS, EOTAS, ENET

OTAS
]
. . End O_TAS_ par function

The RAP_p function implements primal-dual adaptive iterations on the cluster of available
parallel workers that supports the execution of VirtFogSim. The goal is to perform the optimal resource
allocation under the input task allocation vector ~x. Its input formal variables are the vectors ~x,~z, and~s
and the matrices A, Da, and SRAP. The corresponding output variables are the vector ~̃y and the scalars
ẼTOT and ẼNET .

Specifically, we have that:

1. ~x is a (1×V)-dimensional {0, 1, 2}-ternary vector. It fixes the allocation to the Fog/Mobile/Cloud
nodes of the V tasks that compose the considered application DAG. Specifically, x (i) = 0, 1,
and 2 means that the ith application task is executed at the Fog clone, Mobile device, and Cloud
clone, respectively;

Appl. Sci. 2019, 9, 1160 19 of 48

2. z ,
[

f 0
M, f 0

F , f 0
C, R0

U , R0
D, B0

U , B0
D, λ0] is a (1× 8) vector of real-valued non-negative scalars.

It fixes the vector starting point of the primal-dual iterations to be performed. Its first seven
components are measured in bit/s, while the starting Lagrange multiplier λ0 is measured in Joule.

3. ~̃y ,
[

f̃M, f̃F, f̃C, R̃U , R̃D, B̃U , B̃D

]
is a (1× 7) vector of real-valued non-negative scalars.

It returns the vector of the optimal resource allocation attained by the performed primal-dual
iterations. Its seven components are measured in bit/s;

4. ẼTOT is the total communication-plus-computing energy consumed by the computed optimal
resource allocation ỹ under the given task allocation x. ẼTOT is measured in Joule.

5. ẼNET is the overall network energy consumed by the computed optimal resource allocation ỹ
under the given task allocation x. ẼNET is measured in Joule;

6. s, A and Da are respectively the global workload vector, adjacency matrix, and edge matrix of the
underlying DAG;

7. SRAP is the (1× 54)-dimensional vector of all other global variables used by RAP_p for
its execution.

Since RAP_p is executed by the calling functions in the body of parfor-cycles, the global variables:
s, A, Da, and SRAP must be passed to the RAP_ p function as input parameters, in order to guarantee
the synchronization of the parfor-cycles performed by multiple parallel workers.

The RAP_ p function requires (110 + 6×V) scalar local variables and two (1× IMAX) vector
local variables. The IMAX parameter is stored by SRAP and fixes the maximum number of allowed
primal-dual iterations. The asymptotic implementation complexity of the RAP_ p function scales as:
O (8× IMAX).

The parallel Exhaustive Search-Strategy (ES_S_par) function returns:

1. the V-tuple (0, 1, 2)-ternary ~xESS. It is the globally best task allocation vector, which is generated
by performing the exhaustive search over the full population of the 3(V−2) ternary task allocation
vectors. The first and last components of each ternary task allocation vector are unit valued, i.e.,
the first and last tasks of the application DAG are executed, by design, at the Mobile device;

2. the seven-tuple resource allocation vector:
−→
RSESS =

[
f ∗M, f ∗F , f ∗C, R∗U , R∗D, B∗U , B∗D

]
(bit/s),

corresponding to the returned global task allocation vector ~xESS;
3. the total communication-plus-computing energy EESS (Joule), network energy EESS

NET (Joule), and
bandwidth RBESS (bit/s) of the backhaul connection consumed under the returned searched
global best task allocation vector ~xESS.

Being obtained through an exhaustive search, EESS is, by design, the global minimum total energy
consumed under the considered application scenario of Figure 1.

In order to guarantee that the full search space of the the task allocation vectors is actually
explored, the ES_S_par function calls the auxiliary function: find_ allocations, which returns the:(

3(V−2) ×V
)

-dimensional POP matrix of all possible (0, 1, 2)-ary task allocation patterns. Afterward,
ES_S_par calls the RAP_p function under each ternary task allocation vector returned by find_allocations,
in order to evaluate the resulting best resource allocation vector, the corresponding total and network
consumed energies, and the utilized backhaul bandwidth. After checking all the 3(V−2) task allocations,
ES_S_par sorts them for increasing values of their total consumed energies and, then, picks out the
first element of the attained sorted list. This last comprises the globally best task allocation xESS, its
associated resource allocation vector

−→
RSESS, the corresponding consumed energies EESS and EESS

NET ,
and the utilized backhaul bandwidth RBESS.

A pseudo-code of the ES_E_ par function is reported in Algorithm 2. The resulting asymptotic
computational complexity scales up as: O

((
3(V−2) × 8× GMAX

)
/ncore

)
.

Appl. Sci. 2019, 9, 1160 20 of 48

Algorithm 2 ES_S_par function.

function:
[
~xESS,

−→
RSESS, ENET

ESS , RBESS

]
= ES_S_ par.

Output: (1×V) ternary vector of the best task allocation over the full population~xESS; (1× 7) resource
allocation vector:

−→
RSESS ,

[
f ?M, f ?F , f ?C, R?

U , R?
D, B?

U , B?
D
]

(bit/s) under ~xESS; total energy EESS (Joule)
and network energy ENET

ESS (Joule) and backhaul bandwidth RBESS (bit/s) consumed by ~xESS.
blank row . Begin ES_S_par function

1: Call the find-allocation function, in order to generate the full set list:{
~xi ∈ {0, 1, 2}V , i = 1, . . . , 3V−2

}
of ternary V-tuple candidate task allocation vectors,

with the first and last elements set to the unit;
2: Store (by row) {~xi} into the first V columns of the [POP] matrix;
3: for i = 1 : 3V−2 do
4: Compute the resource allocation vector and the total consumed energy of each {~xi} by calling

the RAP_p function, and store them (by row) into the last columns of the [POP] matrix;
5: end for
6: Sort the 3V−2 elements of the [POP] matrix for increasing values of their total energies;
7: Store the first row of the sorted [POP] matrix into ~xESS,

−→
RSESS, EESS, ENET

ESS and RBESS;
8: return

[
~xESS,

−→
RSESS, EESS, ENET

ESS , RBESS

]
. . End ES_S_par function

The parallel Genetic Task Allocation (GeneticTA_par) function assumes that all the global variables
of parallel VirtFogSim are already setup. The GeneticTA_ par function jointly optimizes the task
allocation and the resource allocation in an adaptive way. It returns:

1. the (0, 1, 2)-ternary V-long vector ~xbest of the best searched task allocation;
2. the corresponding (1× 7) vector:

−→
RSbest =

[
f ∗M, f ∗F , f ∗C, R∗U , R∗D, B∗U , B∗D

]
(bit/s), of the optimal

resource allocation computed by the RAP_p function under the best task allocation vector ~xbest;
3. the total and network energies: Ebest, ENET

best (Joule) that are consumed under the returned
−→
RSbest;

4. the actual transmission rate: RBbest (bit/s) of the two-way Fog↔ Cloud backhaul connection.

Task allocation is performed by GeneticTA_ par by running a genetic algorithm. For this purpose,
GeneticTA_ par calls the Crossover and Mutation functions.

Resource allocation is performed by GeneticTA_ par in an adaptive way. For this purpose, at
each parallel iteration called by a parfor-cycle, GeneticTA_ par calls the RAP_ p function. Afterward,
GeneticTA_ par picks up and stores:

1. the best (that is, the minimum energy) task allocation vector ~xbest;
2. the corresponding resource allocation vector

−→
RSbest;

3. the total consumed energy Ebest and the corresponding network energy ENET
best computed up to the

current generation.

PS is the size of each generation of task allocation vectors; GMAX is the number of carried out
generations; CF is the fraction of crossover elements of the current generation; and MN is the number
of mutated locations on a per-task-allocation basis.

Let ncore ≥ 1 be the number of parallel cores (e.g., parallel workers) managed by the Parallel
Toolbox of MATLAB, in order to support the execution of the VirtFogSim package. Hence, the resulting
asymptotic implementation complexity scales as in: O ((PS× GMAX × 8× IMAX) / (ncore)).

The Only Mobile Strategy (OM_S) function assumes that all the V tasks of the assigned
application DAG are executed at the Mobile device. Then, it returns the (1× 7) vector

−→
RSOM =

[fM, fF, fC, RU , RD, BU , BD] (bit/s) of the corresponding resource allocation, the corresponding total
computing-plus-communication consumed energy EOM (Joule), and the (vanishing) network energy:
EOM

NET (Joule). It is expected that the returned fM is not zero, while the returned fC, fF, RU , RD, BU , BD,
and EOM

NET vanish. The asymptotic complexity of the OM_S function scales up as in: O (8× IMAX).

Appl. Sci. 2019, 9, 1160 21 of 48

The Only Fog Strategy (OF_S) function assumes that the first and last tasks of the assigned
application DAG are executed at the Mobile device, while all the remaining inner (V − 2) tasks are
executed at the Fog clone. Then, OF_S returns the (1× 7) vector

−→
RSOF = [fM, fF, fC, RU , RD, BU , BD]

(bit/s) of the corresponding resource allocation, the corresponding total computing-plus-networking
consumed energy EOF, and the network energy EOF

NET (Joule). It is expected that the returned fM, fF,
RU , and RD are not zero, while the returned fC, BU , and BD vanish.

The Only Cloud Strategy (OC_S) function assumes that the first and last tasks of the assigned
application DAG are executed at the Mobile device, while all the remaining inner (V − 2) tasks are
executed at the Cloud clone. Then, it returns the (1× 7) vector

−→
RSOC = [fM, fF, fC, RU , RD, BU , BD]

(bit/s) of the corresponding resource allocation, the corresponding total computing-plus-networking
consumed energy EOC (Joule), and the network energy EOC

NET (Joule).
It is expected that the returned fM, fC, BU , and BD are not zero, while the returned fF, RU , and

RD vanish. The functions OM_S, OF_S, and OC_S call a sequential version RAP of the RAP_p function,
with the following initialization vector: z = [0, 0, 0, 0, 0, 0, 0, 1].

4.3. Implemented Auxiliary Functions

In this subsection, we provide the description of some auxiliary functions called from the previous
allocation routines. These auxiliary functions are listed in Table 3.

Table 3. Auxiliary functions implemented by VirtFogSim.

Function Description[
Child1

v, Child2
v
]
= Crossover

(
Parent1

v, Parent2
v
)

It implements the Crossover operation.
−→
outv = Mutation (~xv) It implements the Mutation operation.

[Eaux, ENET] = evaluatestaticenergy_p (~xv, ~s, A, Da, SRAP) It evaluates the static energy evaluation in O_TAS.

TA = find_allocations (N, K) It returns all the KN patterns of N numbers that can
assume the first K integer values: 0, 1, 2, . . . , K− 1.

In the Crossover function, Parent1
v and Parent2

v are two V-tuple parent vectors to crossover, while
Child1

v and Child2
v are the resulting V-tuple vectors produced by the performed crossover operation.

The crossover operation generates an integer index I over the set {2, 3, . . . , (V − 1)}. It is the pointer
to the crossover point. Afterward, Child1

v and Child2
v are obtained by swapping the first I components

of Parent1
v and Parent2

v with the last (V − I) components of Parent2
v and Parent1

v, respectively.
In the Mutation function, the global input parameter MN fixes the number of the components

of the input vector ~xv to be mutated. ~xv is the V-tuple (0, 1, 2)-ternary input vector to be mutated.−→
outv is the V-tuple (0, 1, 2)-ternary mutated output vector. It is guaranteed that the first and last
components of

−→
outv are unit valued. The function Mutation generates MN random positions (with

1 ≤ MN ≤ (V − 2)) and MN random (0, 1, 2)-ternary mutation numbers. Then, it mutates ~xv at the
generated MN positions by replacing the generated MN mutation numbers for the corresponding
components of ~xv.

In the evaluatestaticenergy_p function for parallel execution, ~xv is the (1 × V)-long input
(0, 1, 2)-ternary task allocation vector to be checked. Since the function evaluatestaticenergy_p is called in
the body of the parfor-cycle by the O_TAS_par function, all the needed global variables:~s, A, Da, and
SRAP must be passed to evaluatestaticenergy_p as input parameters. This guarantees the synchronization
of the used global variables under parallel execution. If ~xv is a feasible task allocation pattern, Eaux and
ENET are the total and network energies consumed by ~xv under the static maximal resource allocation
vector defined as:

−→
RSMAX =

[
f MAX
M , f MAX

F , f MAX
C , RMAX

U , RMAX
D , BMAX

U , BMAX
D

]
(bit/s). If ~xv is an

infeasible task allocation pattern, then Eaux = ENET = ∞ is returned. The asymptotic complexity of the
evaluatestaticenergy_p function is: O(7), where seven is the number of the computed resource variables.

Appl. Sci. 2019, 9, 1160 22 of 48

Finally, the find_allocations function returns in the matrix TA all the possible: KN patterns of N
numbers that can assume the first K integer values: 0, 1, 2, . . . , K − 1. This function is used by the
ES_S_par strategy function to obtain all the possible allocations to be tested in the exhaustive search.

4.4. Dynamic Performance Tracking Function

The numerical outputs of the FogTracker function are three matrices that store the time behaviors
of: (i) the consumed total energy ETOT (Joule); (ii) the corresponding consumed network energy ENET
(Joule); and (iii) the lambda multiplier (Joule), for values of the iteration index going from one to the
given iteration_number. The goal of FogTracker is to test the convergence rate to the steady-state and
the steady-state stability of the primal-dual iterations performed by the RAP_ p function when abrupt
changes of the maximum allowed WiFi and Cellular up/down bandwidths and task allocation vectors
simultaneously happen. For this purpose, at the time indexes:

1. round ((1/5)× iteration_number) + 1;
2. round ((2/5)× iteration_number) + 1;
3. round ((3/5)× iteration_number) + 1;
4. round ((4/5)× iteration_number) + 1,

the initial values of the global variables: RMAX
U , RMAX

D , BMAX
U , BMAX

D undergo abrupt changes. These
changes are obtained by multiplying them by the (non-negative) input factors: jump1

WiFi, jump1
CELL,

jump2
WiFi, and jump2

CELL. These jump coefficients are declared as global variables and set by the user.
At the same time, the task allocation vector passes from ~x1 to ~x2 and, then, from ~x2 to ~x3. Finally,
it comes back to ~x1.

The resulting time behaviors of the total energies, network energies, and lambda multiplier values
over the time window: [1, iteration_number] are plotted under the three user-specified values of aMAX ,
which are stored by the (1× 3) global input vector~aMAX−FT . In so doing, the FogTracker function
tests the convergence rate of the RAP_ p function when the task allocation vector undergoes abrupt
changes. The actual feasibility of the task allocation vectors: ~x1, ~x2, and ~x3 is explicitly checked in the
body of the FogTracker function. If at least one of these feasibility checks fails, the FogTracker function
generates a suitable error message and, then, halts.

In detail, the FogTracker function performs the following nine steps:

1. it begins to run the RAP_ p function over the time interval: [1, round ((1/5)× iteration_number)],
under the original settings of: RMAX

U , RMAX
D , BMAX

U , BMAX
D dictated by the main program

VirtFogSim and the first input task allocation vector ~x1;
2. at the end of the iteration number: round ((1/5)× iteration_number), the WiFi maximum

bandwidths: RMAX
U and RMAX

D are multiplied by the (non-negative) scaling factor: jump1
WiFi,

while the maximum cellular bandwidths: BMAX
U and BMAX

D are multiplied by the corresponding
(possibly, coincident) scaling factor: jump1

CELL. Furthermore, the task allocation vector is changed
into ~x2. In so doing, both the maximum available bandwidths and the task allocation vector
undergo abrupt (typically, user mobility induced) variations;

3. the RAP_ p function runs over the time-interval:
[round ((1/5)× iteration_number) + 1, round ((2/5)× iteration_number)] under the setting of
Step 2. Its initial vector is the last returned vector of the RAP_p at the previous iteration:
round ((1/5)× iteration_number);

4. at the end of iteration number: round ((2/5)× iteration_number), all four maximum bandwidths:
RMAX

U , RMAX
D , BMAX

U , and BMAX
D are restored to their original values. Furthermore, even the task

allocation vector is set back to its original value ~x1;
5. the RAP_ p function runs over the time interval:

[round ((2/5)× iteration_number) + 1, round ((3/5)× iteration_number)] under the setting of
Step 4. Its initial vector is the last returned vector of the RAP_ p at the previous iteration number:
round ((2/5)× iteration_number);

Appl. Sci. 2019, 9, 1160 23 of 48

6. after the iteration number: round ((3/5)× iteration_number), the WiFi maximum up/down
bandwidths: RMAX

U , and RMAX
D are multiplied by the non-negative scaling factor jump2

WiFi, while
the cellular maximum up/down bandwidths: BMAX

U and BMAX
D are multiplied by the scaling

factor: jump2
CELL. At the same time, even the task allocation vector is changed to the third value

~x3. In so doing, both the maximum available bandwidths and the task allocation vector undergo
abrupt (typically, user mobility-induced) variations;

7. the RAP_ p function runs over the time-interval:
[round ((3/5)× iteration_number) + 1, round ((4/5)× iteration_number)] under the setting of
Step 6. Its initial vector is the last returned vector of the RAP_p at the previous iteration number:
round ((3/5)× iteration_number);

8. after the iteration number: round ((4/5)× iteration_number), all four WiFi/CELLmaximum
up/down bandwidths are restored to their original values. Furthermore, even the task allocation
vector is set back to the first value ~x1;

9. finally, the RAP_ p function runs over the time-interval:
[round ((4/5)× iteration_number) + 1, iteration_number] under the setting of Step 8. Its
initial vector is the last returned vector of the RAP_ p at the previous iteration number:
round ((3/5)× iteration_number).

Graphic plots of the time behaviors of the returned ETOT , ENET , and lambda are displayed at the
end of each FogTracker run (see Section 5 in the sequel). From the outset, it follows that the asymptotic
complexity of the FogTracker function scales up as in: O (8× iteration_number× 3).

Overall, Table 4 reports a synoptic view of the asymptotic computational complexities of the
described GeneticTA_par, OM_S, OF_S, OC_S, O_TAS_par, ES_S_par, and FogTracker functions under
their parallel implementations.

Table 4. A synoptic overview of the computational complexities of the main functions supported by
the VirtFogSim package.

Function Asymptotic Computational Complexity

GeneticTA_par O ((PS× GMAX × 8× IMAX) / (ncore))

OM_S O (8× IMAX)

OF_S O (8× IMAX)

OC_S O (8× IMAX)

O_TAS_par O ((PS× GMAX) /ncore)

ES_S O
((

3(V−2) × 8× GMAX

)
/ncore

)
FogTracker O (8× iteration_number× 3)

5. VirtFogSim: Supported Formats of the Rendered Data

Under the current version of the simulator, both the VirtFogSim and VirtFogSimGUI interfaces
(see Appendix A) support four main formats, in order to render the results output by the seven
optimization algorithms of Table 4. The functions used to obtain these formats are listed in Table 5 and
fully described in the VirtFogSim User Guide (see Section 8). These rendering formats are:

1. the Tabular format. It is enabled by the print_solution graphic function;
2. the Colored Bar Plot format. It is enabled by the plot_solution graphic function;
3. the Colored Time Plot format. It is enabled by the plot_FogTracker graphic function;
4. the Colored Labeled DAG Map format. It is enabled by the plot_ DAG graphic function.

Appl. Sci. 2019, 9, 1160 24 of 48

Table 5. Rendering functions for the supported formats implemented in VirtFogSim.

Function Description

print_solution
(−→

RS, ~E , RB, strategy
)

It implements the tabular format.

plot_solution
(
~x,
−→
RS, ~E , RB, f ignumber, strategy

)
It implements the colored bar plot format.

plot_DAG (~s, A, Da, ~x, strategy, type) It implements the colored labeled DAG map.
plot_FogTracker

(
Em, ENET

m , λm, f ignumber, interpolation
)

It implements the colored time plot format.

Specifically, the print_solution function prints on the MATLAB prompt the result obtained by
running the tested strategies under the selected DAG and given input parameters (see Table A2).
Its input parameters are: (i) the vector

−→
RS collecting the seven allocated resources; (ii) the vector

~E collecting the total computing–plus-networking consumed energy; (iii) the bandwidth RB of the
Fog↔Cloud two-way backhaul connection; and (iv) a string strategy representing the name of the
tested strategy. Then, the function prints the following results in a numerical form:

1. the Computing/Communication Ratio (CCR);
2. the required minimum DAG execution throughput (THMIN

0);
3. the per-core computing frequency at the Mobile device (fM);
4. the per-core computing frequency at the Fog clone (fF);
5. the per-core computing frequency at the Cloud clone (fC);
6. the transport bit rate of the WiFi-based TCP/IP Mobile-to-Fog connection (RU);
7. the transport bit rate of the WiFi-based TCP/IP Fog-to-Mobile connection (RD);
8. the transport bit rate of the 3G/4G Cellular TCP/IP Mobile-to-Cloud connection (BU);
9. the transport bit rate of the 3G/4G Cellular TCP/IP Cloud-to-Mobile connection (BD);

10. the transport rate of the TCP/IP two-way Fog↔Cloud backhaul connection (RB);
11. the total computing-plus-networking consumed energy (ETOT);
12. the consumed computing energy (ECOM);
13. the consumed networking energy (ENET);
14. the percent networking-to-total ratio of the consumed energies: % (ENET/ETOT).

If the input vector
−→
RS is empty, only a reduced set of information is printed.

The plot_solution function displays the: (i) utilized computing/bandwidth resources; (ii) task
allocation pattern; and (iii) consumed energies, returned by the carried out VirtFogSim run in terms
of suitable three-colored bar plots. In addition to the input used by the previous function, the other
parameters are: (i) the (0, 1, 2)-ary allocation vector ~x to be displayed; and (ii) the number of the
fignumber to be displayed. The function renders a figure that is composed of three horizontal subplots.
These subplots display:

1. the returned task allocation in the form of a three-color bar plot;
2. the allocated computing frequencies and network bandwidths in the form of a plot with eight

bars;
3. the total, computing and networking consumed energies in the form of a plot with three bars.

If the passed task allocation vector~x and/or resource allocation vector
−→
RS are empty, then only one

or two subplots are rendered. An illustrative screen-shoot of the bar-plots rendered by the execution of
the GeneticTA_par function is shown in Figure 3.

The plot_DAG function returns a graphic representation of the application DAG passed as the
input. Its input parameters are: (i) the vector~s containing the nodes’ weights of the DAG; (ii) the
adjacency matrix A of the DAG; (iii) the matrix Da of the weights of the DAG edges; (iv) the vector ~x
of task allocation to be visualized; (v) a string of characters with the name of the policy that will be
shown; and (vi) an optional three-valued parameter type, which allows selecting the desired DAG
visualization format as follows:

1. all DAG nodes with the same color and unlabeled;

Appl. Sci. 2019, 9, 1160 25 of 48

2. all DAG nodes with the same color and labeled by increasing identification numbers;
3. each DAG node is numbered and colored on the basis of the allocation actually stored by the

input vector ~x.

Task-vs.-Fog/Mobile/Cloud allocation performed by GeneticTA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Task index

F

M

C

Resource allocation performed by GeneticTA

fM fF fC RU RD BU BD RB
0

5

10

(M
bi

t/s
ec

)

Energy consumed by GeneticTA

ETOT ECOM ENET

0

20

(J
ou

le
)

Figure 3. An illustrative screen-shoot of the bar-plots rendered by the execution of the GeneticTA_par
function. (top) reported task allocation; (middle) reported resource allocation; (bottom) consumed
total and network energies. Analogous bar-plot graphs are reported at the end of the executions of the
other task allocation strategies supported by VirtFogSim.

The plot_DAG function needs the Bioinformatics Toolbox to be installed in the MATLAB environment.
By default, the graph returned by plot_DAG retains the following features:

1. all the workload values labeling the DAG nodes and edges are expressed in kilo-bit;
2. red-colored tasks are understood to be allocated to the Fog node;
3. green-colored tasks are understood to be allocated to the Mobile node; and,
4. blue-colored tasks are understood to be allocated to the Cloud node.

An illustrative screen-shoot of the colored task map DAG rendered by the execution of the
GeneticTA_par function is shown in Figure 4.

Finally, the plot_fogTracker function provides the graphic capabilities needed for a proper plot
of the time-traces of the total energies, networking energies, and lambda multipliers generated by
the FogTracker function under the three values of the step-size that are stored by the vector~aMAX−FT
(see Table A2). Its input parameters are: (i) the matrix Em of the total consumed energies returned by
FogTracker; (ii) the matrix ENET

m of the consumed networking energies returned by FogTracker; (iii) the
matrix λm of the values of the lambda multipliers returned by FogTracker; and (iv) an optional parameter
interpolation allowing the plot of an interpolated version of the figures if set to one. The function
renders a figure composed of three horizontal sub-plots that trace:

Appl. Sci. 2019, 9, 1160 26 of 48

1. the total consumed computing-plus-networking energies under the three values of the step-size
stored by~aMAX−FT ;

2. the corresponding consumed networking energies;
3. the related values of the lambda multiplier.

Some illustrative screen-shoot of the dynamic plots rendered by the FogTracker function are shown
in Figures 7–9 of Section 6.2.

 50

 45
 20 20 20

 213

 100

 130 15 15 15 220

 160 260

 46

 1

 71

 29

 69
 65 71

10

680

220 584 584 584 30

40 392

40

60

2046 18

12

10 1

680 2

220 3 584 4 584 5 584 6 30 7

40 8 392 9

40 10

60 11

20 1246 13 18 14

12 15

DAG allocation performed by Genetic TA -- Black labels in kilobit

Mobile

Fog

Cloud

Figure 4. An illustrative screen-shoot of the colored task map DAG rendered by the execution of the
GeneticTA_par function. Analogous bar-plot graphs are reported at the end of the executions of the
other task allocation strategies supported by VirtFogSim.

Pre-Loaded Application DAGs

In the current version of the VirtFogSimGUI interface (see Figure A1 in Appendix A) is available
an archive that stores fourteen test DAGs, together with the related sets of (suitably-tuned) input
parameters. These DAGs are ready-for-use, e.g., they may be retrieved by the user and, then, run
under both the (previously-described) interfaces of the simulator.

The archived DAGs were retrieved from the current literature [25–27,29–33] and feature a number
of heterogeneous real-world applications of practical interest. Their topologies cover a large spectrum
(e.g., tree, fork, parallel, mesh, and hybrid topologies, just to name a few), and their number of nodes
ranges from V = 9 to V = 45.

6. VirtFogSim in Action: Testing Its Numerical Capabilities

The aim of this section is to provide insights about the actual capability of the developed
VirtFogSim package by: (i) numerically testing and comparing the energy-delay-tracking performance
of its natively-supported optimization tools of Section 4.4 (see also Table 4) under three use cases of
practical interest; and (ii) checking the performance of the underlying MATLAB code by numerically
profiling its simulation times and volumes of inter-core exchanged data over a spectrum of multi-core
execution environments.

Appl. Sci. 2019, 9, 1160 27 of 48

All the carried out simulations have been done by exploiting the capabilities of a hardware
execution platform equipped with: (i) an Intel 10-core i9-7900X processor; (ii) 32 GB of RAM DDR 4;
(iii) an SSD with 512 GB plus an HDD with 2 TB; (iv) a GPU ZOTAC GeForce GTX 1070. The release
R2018a of MATLAB provided the underlying software execution platform. It is equipped with the
MATLAB Parallel Toolbox, in order to exploit the multi-core capability (possibly) offered by the host
hardware platform.

We anticipate that, unless otherwise stated, all the simulations have been carried out under the
parameter setting reported in the last column of the final Table A2 in the Appendix.

6.1. Use Cases and Related DAGs

Three real-world use cases have been selected, in order to test the performance of the proposed
VirtFogSim package under different application environments featured by (very) heterogeneous
workflows and DAG topologies. Figures 5 and 6 report the graphs of the considered test DAGs.

DAG1 in Figure 5a describes the workflow of a (small-sized) parallel MAP/REDUCER computing
application [34]. This DAG is composed of the parallel combination of two MAP/REDUCER nodes
(e.g., MAP/REDUCER#1 on the left and MAP/REDUCER#2 on the right of Figure 5a, respectively).
They share the same input and output nodes (e.g., Nodes 1 and 12 in Figure 5a, respectively), which
are forced to be executed by the mobile device. Nodes 2 and 7 act as load balancers, while Nodes 3, 4,
5 and 8, 9 10 act as Mappers . Finally, Nodes 6 and 11 perform reduce operations. The resulting DAG
topology of Figure 5a possesses the following features: (i) it is symmetric; (ii) all six input-output paths
are equal-length; and (iii) MAP/REDUCER#1 (resp., MAP/REDUCER#2) is more computing-intensive
(resp., more communication-intensive) than MAP/REDUCER#2 (resp., MAP/REDUCER#1).

2 × 103

1

(bit)

12

600 × 103
3

(bit)

600 × 103
4

(bit)

228 × 103

2

(bit)

5

6

 8
6

.6
×

1
0

3
(𝑏
𝑖𝑡

)
 1

8
0

×
1

0
3

(𝑏
𝑖𝑡

)

86.6
×

10
3 (𝑏
𝑖𝑡

)

 1
80

×
10

3 (𝑏
𝑖𝑡

)

86.6
×

10 3
(𝑏𝑖𝑡)

 180
×

10 3
(𝑏𝑖𝑡)

8 9

7

10

11

5
6

.7
3

×
1

0
3

(𝑏
𝑖𝑡

)
 9

7
×

1
0

3
(𝑏
𝑖𝑡

)

 5
6.7

3
×

10
3 (𝑏
𝑖𝑡

)

 9
7

×
10

3 (𝑏
𝑖𝑡

)

 56.73
×

10 3
(𝑏𝑖𝑡)

 97
×

10 3
(𝑏𝑖𝑡)

 15 × 10
3 (𝑏𝑖𝑡

) 180 × 10 3
(𝑏𝑖𝑡)

MAP/REDUCER #1 MAP/REDUCER #2

SPLITTER #2

MAPPERS #2MAPPERS #1

REDUCER #2REDUCER #1

SPLITTER #1

164 × 10
3 (𝑏𝑖𝑡

) 40 × 10 3
(𝑏𝑖𝑡)

600 × 103

(bit)

280 × 103

(bit)

280 × 103

(bit)

280 × 103

(bit)

170 × 103

(bit)

178 × 103

(bit)

2 × 103
(bit)

100 × 103
(bit)

(a) Graph of the considered DAG1.

Figure 5. Cont.

Appl. Sci. 2019, 9, 1160 28 of 48

 50 × 10
3 (𝑏𝑖𝑡

)

11

7

14

2
2

0
×

1
0

3
(𝑏
𝑖𝑡

)
 2

9
×

1
0

3
(𝑏
𝑖𝑡

)

10 129

 1
5

×
1

0
3

(𝑏
𝑖𝑡

)

 1
5

×
1

0
3 (𝑏

𝑖𝑡
) 1

5
×

1
0

3
(𝑏
𝑖𝑡)

32

13

54 6

8

 213 × 10 3(𝑏𝑖𝑡)
 45 × 10

3 (𝑏𝑖
𝑡)

 2
0

×
10

3 (𝑏
𝑖𝑡)

 2
0

×
1

0
3
(𝑏
𝑖𝑡

)

1

 20 ×
10 3

(𝑏𝑖𝑡)

 1
3

0
×

1
0

3
(𝑏
𝑖𝑡

)

 1
0

0
×

1
0

3
(𝑏
𝑖𝑡

)

 1
6

0
×

1
0

3 (𝑏
𝑖𝑡

)

 2
6

0
×

1
0

3
(𝑏
𝑖𝑡)

 4
0

×
1

0
3 (𝑏

𝑖𝑡
)

 69 × 10
3 (𝑏𝑖𝑡)

 71 × 10
3 (𝑏𝑖𝑡

) 71 × 10
3 (𝑏𝑖𝑡

)
 65 × 10 3

(𝑏𝑖𝑡)

 1
×

1
0

3
(𝑏
𝑖𝑡

)

15

Graphic

Subprogram
Face Detection

Subprogram

Video Processing

Subprogram

10 × 103

(bit)

680 × 103

(bit)
220 × 103

(bit)

584 × 103

(bit)

584 × 103

(bit)
584 × 103

(bit)
30 × 103

(bit)

40 × 103

(bit)
60 × 103

(bit)

46 × 103
(bit)

392 × 103

(bit)

40 × 103

(bit)
18 × 103

(bit)

20 × 103

(bit)

12 × 103

(bit)

(b) Graph of the considered DAG2.

Figure 5. Graphs of the tested DAGS. (a) DAG1 and (b) DAG2. All the numeric labels are in Kbit.
The total workload (e.g., summation of the node labels) and inter-node traffic (e.g., summation of the
edge weights) of the test DAGs are the same. They equate to 3.32 (Mbit) and 1.66 (Mbit), respectively.

DAG2 in Figure 5b details the workflow of a video navigation application [33], which involves
the parallel execution of three sub-programs, namely a graphic sub-program (left section of Figure 5b),
a subprogram for face detection (middle section of Figure 5b), and a video-processing subprogram
(right section of Figure 5b). All these sub-programs share the same input and output nodes
(e.g., Nodes 1 and 15 in Figure 5b), which implement data-rendering functionalities and, then, are
forced to be executed at the Mobile device. DAG2 is medium-sized (e.g., it is composed of 15 tasks and
21 edges), and its topology possesses the following features: (i) it is asymmetric; (ii) it is composed
of the parallel combination of three heterogeneous sub-DAGs, which exhibit fork, parallel, and
tree-shaped sub-topologies, respectively; and (iii) the face detection and video processing subprograms
are computing- and communication-intensive, respectively, while the graphic subprogram is of a
mixed type.

Lastly, DAG3 in Figure 6 describes the workflow for the simulation of Newton’s equations
describing pseudo-chaotic molecular dynamics [29]. It is a large-sized DAG (e.g., it is composed of
41 tasks and 70 edges), and its topology exhibits the following main features: (i) it is very irregular and
mimics a random graph, which combines a number of heterogeneous sub-graphs with chain, parallel,
fork, tree, and mesh-type sub-topologies; (ii) it is composed of a large number of pseudo-generated
edges, which join randomly-selected task pairs. As a consequence, in Figure 6, there are a number of
inter-crossing edges, as well as a number of variable-length paths that go from the input task to the
output one. (iii) Task workloads and edge weights have been randomly generated.

Appl. Sci. 2019, 9, 1160 29 of 48

10.0
41

90.0
16

100.0
17

84.0
18

106.0
19

36.0
20

80.0
21

52.0
12

104.0
5

266.0
3

10.0
1

106.0
13

50.0
29

6
52.0

7

104.0
27

264.0
2

54.0
22

104.0
14

52.0
15

54.0
8

64.0
9

66.0
10

64.0
11

52.0
4

110.0
24

96.0
23

100.0
25

104.0
31

56.0
30

100.0
36

100.0
32

60.0
37

50.0
39

56.0
26

54.0
28

102.0
33

106.0
34

46.0
35

96.0
38

54.0
40

• Multiply task workloads by 103(𝑏𝑖𝑡)

• Multiply edge workloads by 103(𝑏𝑖𝑡)

106.0

Figure 6. Graphs of the tested DAG3. All the numeric labels are in Kbit. The total workload
(e.g., summation of the node labels) and inter-node traffic (e.g., summation of the edge weights)
of the test DAGs are the same. They equate to 3.32 (Mbit) and 1.66 (Mbit), respectively.

Finally, we point out that the summations of task workloads and edge weights of all considered
DAGs of Figures 5 and 6 are the same and equate to 3.32 (Mbit) and 1.66 (Mbit), respectively. In so
doing, we expect that the results of the performance comparisons carried out in the next sub-sections
are fair.

Appl. Sci. 2019, 9, 1160 30 of 48

6.2. Comparative Tracking Performance under Intermittent WiFi Connectivity

The goal of this section is to test the convergence speed to the steady-state and the steady-state
stability of the primal-dual iterations implemented by the RAP_p function of Section 4.4 when abrupt
changes of the available WiFi up/down bandwidths and task allocation patterns simultaneously
happen. For this purpose, we run the FogTracker function of Section 4.4 at TDAG = 0.3 under the
(previously-described) three test DAGs. The obtained dynamic behaviors of the total consumed
energies ETOT , network energies ENET , and lambda multipliers are reported in Figure 7a–c (resp.,
Figures 8a–c and 9a–c) for various test values of the speed-up factor aMAX of Section 3.5 under DAG1
(resp., DAG2 and DAG3).

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Iteration index

50

100

150

200

250

(J
ou

le
)

FogTracker -- Time plots of ETOT

a
MAX

 = 1.295e-07

a
MAX

 = 1.21e-07

a
MAX

 = 1.1e-07

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Iteration index

0

100

200

(J
ou

le
)

FogTracker -- Time plots of ENET

a
MAX

 = 1.295e-07

a
MAX

 = 1.21e-07

a
MAX

 = 1.1e-07

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Iteration index

0

5000

10000

(J
ou

le
)

FogTracker -- Time plots of

a
MAX

 = 1.295e-07

a
MAX

 = 1.21e-07

a
MAX

 = 1.1e-07

(a)

(b)

(c)

Figure 7. Tracking performance under DAG1 for three values of the speed-factor aMAX . (a) time
behaviors of the total energy ETOT ; (b) time behaviors of the corresponding network energy ENET ; and
(c) time behaviors of the λ multiplier.

All the reported time behaviors refer to a common application scenario under which both task
allocation patterns and up/down WiFi bandwidths undergo simultaneous abrupt changes at the
iteration indexes t = 1, 1000, 2000, 3000, and 4000 (see the corresponding step-like jumps of the plots
of Figures 7–9). These changes are typically triggered by device mobility, which may give rise to an
intermittent availability of the WiFi connectivity. More in detail, we have that: (i) at t = 1, the up/down
cellular (resp., WiFi) bandwidths are turned ON (resp., turned OFF), and all tasks are allocated to
the Cloud node; (ii) at t = 1000, the up/down WiFi bandwidths are turned ON, and all tasks are
allocated to the Mobile node; (iii) at t = 2000, the WiFi bandwidths are still turned OFF, and all tasks
are re-allocated to the Cloud node; (iv) at t = 3000, the up/down WiFi bandwidths are turned ON
once time, and all tasks are allocated to the Fog node; and, finally, (v) at t = 4000, the up/down WiFi
bandwidths are definitively turned OFF, and all tasks are re-migrated to the Cloud node. After each
change of the setup environment, the RAP_p function runs, in order to re-allocate both the per-clone
computing frequencies at the Mobile-Fog-Cloud nodes and the corresponding up/down Cellular-WiFi
bandwidths properly.

Appl. Sci. 2019, 9, 1160 31 of 48

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Iteration index

100

200

300

(J
ou

le
)

FogTracker -- Time plots of ETOT

a
MAX

 = 1.34e-07

a
MAX

 = 1.2e-07

a
MAX

 = 9.97e-08

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Iteration index

0

100

200

300

(J
ou

le
)

FogTracker -- Time plots of ENET

a
MAX

 = 1.34e-07

a
MAX

 = 1.2e-07

a
MAX

 = 9.97e-08

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Iteration index

0

5000

10000

15000

(J
ou

le
)

FogTracker -- Time plots of

a
MAX

 = 1.34e-07

a
MAX

 = 1.2e-07

a
MAX

 = 9.97e-08

(a)

(b)

(c)

Figure 8. Tracking performance under DAG2 for three values of the speed-factor aMAX . (a) time
behaviors of the total energy ETOT ; (b) time behaviors of the corresponding network energy ENET ; and
(c) time behaviors of the λ multiplier.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Iteration index

50

100

150

200

(J
ou

le
)

FogTracker -- Time plots of ETOT

a
MAX

 = 2.23e-07

a
MAX

 = 2.2e-07

a
MAX

 = 2.14e-07

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Iteration index

0

50

100

(J
ou

le
)

FogTracker -- Time plots of ENET

a
MAX

 = 2.23e-07

a
MAX

 = 2.2e-07

a
MAX

 = 2.14e-07

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Iteration index

0

1

2

(J
ou

le
)

104 FogTracker -- Time plots of

a
MAX

 = 2.23e-07

a
MAX

 = 2.2e-07

a
MAX

 = 2.14e-07

(a)

(b)

(c)

Figure 9. Tracking performance under DAG3 for three values of the speed-factor aMAX . (a) time
behaviors of the total energy ETOT ; (b) time behaviors of the corresponding network energy ENET ; and
(c) time behaviors of the λ multiplier.

An examination of the time-plots reported in Figures 7–9 leads to three main insights. First, even
in the presence of the (aforementioned) abrupt changes of the operating setups, the corresponding

Appl. Sci. 2019, 9, 1160 32 of 48

lambda multipliers remain almost surely vanishing (see Figures 7c, 8c, and 9c), and this supports
the conclusion that all the performed resource allocations computed by the RAP_p function are,
indeed, feasible (e.g., they meet the constraint in Equation (4) on the allowed maximum DAG execution
time). Second, we have numerically ascertained that the abrupt step-like jumps experienced by the
plots of ENET in Figures 7b, 8b, and 9b at the changing instants are the combined effects of both the
ON-OFF availability of the WiFi connectivity and the associated re-allocation of the Cellular up/down
bandwidths. Third, a comparative examination of the red-green-blue colored plots of Figures 7a, 8a,
and 9a confirms that bigger values of the speed-up factor aMAX of Section 3.5 speed-up the convergence
to the corresponding steady-states, but also tend to introduce larger oscillation phenomena.

Overall, two final lessons are learned by the carried out tracking analysis. First, at least
under the considered application scenarios, values of aMAX ranging over the (quite broad)
interval: 9.5× 10−8–2.25× 10−7 exhibit good tradeoffs among the contrasting requirements of
quick reaction to abrupt (possibly mobility-induced) changes of the operative scenarios and stable
behavior in the steady-state. Second, values of the primal-dual iterations IMAX limited up to
500–700 suffice for attaining stable resource allocations, even in the presence of abrupt changes
of the operation environment.

6.3. Comparative Task and Resource Allocation Performance

In this section, we compare the task placement, resource allocation, and energy performance of
the (previously-described) GeneticTA_par strategy under the considered test DAGs. This is done for
values of the allowed execution times TDAG of 0.3, 0.6, 0.9, 1.5, and 3.0 (s). The final goal is to acquire
insights about the effects of the DAG topologies, their sizes, and corresponding distributions of the
task workloads and edge weights on the allocation patterns returned by GeneticTA_par.

The numerical results obtained by running the VirtFogSim toolbox are reported in Tables 6–8
under DAG1, DAG2, and DAG3, respectively.

A view of these results leads to the following four main sets of remarks.
Consumed total energies and allocated resources: A comparative examination of the profiled values

reported in the 13th column of Tables 6–8 points out that, in all simulated cases, the total consumed
energy ETOT remains limited up to 32 Joule. Since all the test DAGs share the same sum values of the
task workloads and edge weights, this supports the conclusion that, at the first order, these factors play
a major role in dictating the energy efficiency of the performed task and resource allocations. However,
a more detailed examination of these results also unveils the following two trends: (i) at fixed DAG, the
consumed energies tend to decrease for increasing values of TDAG; and (ii) at fixed TDAG, the energy
consumption tends to decrease by passing from the (more symmetric and regular) DAG1 to the (more
random and irregular) DAG3 (see the DAG graphs of Figures 5 and 6). Roughly speaking, the first
trend reflects the fact that larger values of TDAG make the underlying application environment more
delay-tolerant. As a consequence, the RAP_p function lowers the steady-state computing frequencies
and/or the network bandwidths (see the numerical values reported by the corresponding columns
of Tables 6–8). This reduces, in turn, the dynamic (e.g., resource-depending) components of the total
consumed energies. The second trend confirms the fact that, by design, the optimization capability of
genetic-based strategies generally increases with the size and/or the pseudo-random irregular nature
of the topology of the underlying DAGs.

Appl. Sci. 2019, 9, 1160 33 of 48

Table 6. Task, resource allocation, and energy consumption returned by GeneticTA_par under DAG1. Resources are measured in Mbit/s and energies in Joule.

TDAG Mobile Tasks Fog Tasks Cloud Tasks fM fF fC RU RD BU BD BR ETOT ENET

0.3 {1, 12} {3, 7− 9, 11} {2, 4− 6, 10} 11.81 3.00 2.50 7.42 8.25 3.96 1.16 0.0 31.81 16.72

0.6 {1, 12} {3, 7− 9, 11} {2, 4− 6, 10} 11.75 2.38 2.47 6.97 7.61 2.31 0.95 0.0 28.76 13.70

0.9 {1, 3, 12} {−} {2, 4− 11} 11.60 0.00 2.00 0.00 0.00 0.75 0.76 0.0 27.59 11.38

1.5 {1, 3, 12} {2, 4− 11} {−} 11.50 1.82 0.00 6.75 7.15 0.00 0.00 0.0 26.11 9.48

3.0 {1, 2, 3, 12} {4− 11} {−} 11.35 1.79 0.00 6.72 7.10 0.00 0.00 0.0 25.75 9.45

Table 7. Task, resource allocation, and energy consumption returned by GeneticTA_par under DAG2. Resources are measured in Mbit/s and energies in Joule.

TDAG Mobile Tasks Fog Tasks Cloud Tasks fM fF fC RU RD BU BD BR ETOT ENET

0.3 {1, 7, 10− 12, 14, 15} {2, 3, 8, 13} {4− 6, 9} 11.90 2.47 2.48 7.50 8.51 0.95 6.64 0.0 27.09 8.45

0.6 {1, 7, 10− 12, 14, 15} {2, 3, 8, 13} {4− 6, 9} 11.80 2.35 2.37 7.35 8.39 0.93 6.52 0.0 26.78 8.35

0.9 {1, 7, 10− 12, 14, 15} {2− 6, 8, 9, 13} {−} 11.68 1.83 0.00 6.85 8.21 0.00 0.00 0.0 23.63 7.33

1.5 {1, 7, 10− 12, 14, 15} {2− 6, 8, 9, 13} {−} 11.58 1.73 0.00 6.65 8.11 0.00 0.00 0.0 22.81 7.30
3.0 {1− 3, 7, 8, 10− 12, 14, 15} {4− 6, 9} {−} 10.98 1.64 0.00 6.55 8.01 0.00 0.00 0.0 22.50 7.22

Table 8. Task, resource allocation, and energy consumption returned by GeneticTA_par under DAG3. Resources are measured in Mbit/s and energies in Joule.

TDAG Mobile Tasks Fog Tasks Cloud Tasks fM fF fC RU RD BU BD BR ETOT ENET

0.3 {1, 41} {39, 40} {2− 38} 11.92 4.37 2.74 0.00 6.27 0.95 0.00 3.70 18.37 6.16

0.6 {1, 41} {39, 40} {2− 38} 11.90 4.35 2.48 0.00 6.26 0.94 0.00 3.70 17.85 6.02

0.9 {1, 41} {38− 40} {2− 37} 11.77 4.25 2.47 0.00 6.25 0.95 0.00 3.70 17.60 6.01

1.5 {1, 41} {35− 40} {2− 34} 11.67 5.01 2.45 0.00 6.23 0.92 0.00 3.70 17.17 5.81
3.0 {1, 41} {34− 40} {2− 33} 11.50 4.05 2.37 0.00 6.09 0.90 0.00 3.70 17.17 5.78

Appl. Sci. 2019, 9, 1160 34 of 48

Consumed network energies: The impact of the DAG topology and distribution of the edge weights
on the resulting consumed network energy ENET seems to be, indeed, more relevant. In fact, a
comparative examination of the results reported in the last column of Tables 6–8 points out that:
(i) under DAG1, the percent ratios of the network energies to the corresponding total ones quickly
decrease for increasing values of TDAG and pass from 52% at TDAG = 0.3 s to: 36.5% at TDAG = 3.0 s;
and (ii) under DAG2 and DAG3, the corresponding network-to-total energy ratios are not so sensitive
to the values of TDAG. They remain clipped, indeed, around: 31–32%, and around: 33.5–33.7%
under DAG2 and DAG3, respectively. This supports the conclusions that: (i) DAG1 features a
communication-intensive application, especially at low values of TDAG; while (ii) DAG2 and DAG3
describe more computing-intensive applications.

Task allocation patterns: Columns 2, 3, and 4 of Tables 6–8 report the Identification Numbers (IDs)
of the tasks allocated by GeneticTA_par to the Mobile, Fog, and Cloud nodes under DAG1, DAG2, and
DAG3, respectively. Although the reported allocation patterns may strongly depend on the specifically
considered DAGs, nevertheless, three main quite general trends seem to stand out. First, at low values
of TDAG, medium-sized and communication-intensive tasks are typically allocated at the Fog node,
while large-sized and communication-light tasks are allotted at the Cloud node. The Mobile device
only executes small-sized, but communication-intensive tasks. Second, more and more tasks are shifted
from the Cloud node to the Fog node and/or to the Mobile device for decreasing values of TDAG.

Utilization of the Fog-Cloud backhaul connection: A peculiar feature of the three-tiered technological
platform of Figure 1 is the presence of a (possibly multi-hop and/or wired) two-way backhaul
connection, which interconnects the Fog and Cloud nodes. Hence, it may be of interest to attain
insights about its utilization for the support of the (previously-mentioned) task allocation patterns
performed by GeneticTA_par. Intuitively, we expect that the backhaul connection is used when there
are large-sized tasks to be allocated at the Cloud and the volumes of data output by the execution of
these tasks are large. Therefore, since the Fog-to-Mobile WiFi connection is more energy efficient than
the corresponding Cloud-to-Mobile cellular one, it may be energy-saving to transport the processed
data from the Cloud to the Fog over the backhaul connection and, then, use the Fog as a relay node, in
order to forward these data to the Mobile device by exploiting the WiFi downlink of Figure 1. This
is, indeed, the strategy dictated by GeneticTA_par, in order to execute DAG3. In fact, an examination
of the corresponding Table 8 points out that the winner strategy returned by GeneticTA_par utilizes:
(i) the cellular bandwidth BU for the upload of the data to be processed by the Cloud; (ii) the backhaul
bandwidth BR for forwarding the processed data to the Fog node; and (iii) the WiFi bandwidth RD for
the final download of the processed data to the Mobile device.

The final conclusion is that, in the considered operating scenario, the utilization of (single-hop)
Cloud-to-Mobile and/or Mobile-to-Fog links is less energy efficient than the exploitation of the
(multi-hop) Cloud-Fog-Mobile path.

6.4. The Performance Impact of Different Task and Resource Allocation Strategies

In this section, we compare the energy performances of the (previously-described) task and
resource allocation strategies supported by the VirtFogSim toolbox under the considered test DAGs.
The three-fold final goal is to acquire some insight about: (i) the energy reduction stemming from the
dynamic optimization of the computing-networking resources versus the corresponding case of static
resource usage; (ii) the performance gap between the genetic-based and the Exhaustive Search-based
allocation strategies; and (iii) the energy-saving capability offered by the Mobile-Fog-Cloud
three-tier computing platform of Figure 1 versus the corresponding Mobile only, Mobile-Cloud, and
Mobile-Fog ones.

The profiled results are reported in Figures 10–12 under DAG1, DAG2, and DAG3, respectively.
Their examination gives arise to the following three main sets of remarks.

Appl. Sci. 2019, 9, 1160 35 of 48

Energy ratios returned by VirtFogSim under DAG1

0.3 0.6 0.9 1.5 3

T
DAG

 (s)

0

1

2

3

4

5

E
ne

rg
y

R
at

io
E

GeneticTA_par
E

O_TAS_par
E

OM_S
E

OF_S
E

OC_S

Figure 10. Energy ratios returned by VirtFogSim under DAG1 for TDAG = 0.3 s, 0.6 s, 0.9 s, 1.2 s, and
1.5 s. All the reported ratio values are normalized with respect to the corresponding total energies
consumed by ES_S_par.

Dynamic-vs.-static resource allocation: A number of benchmark (even quite recent)
contributions [26,30,31,33] afford the problem of the resource augmentation of mobile devices by
developing various heuristic/meta-heuristic/optimal solutions for energy-efficient task offloading.
However, they neglect considering, indeed, the companion problem of dynamic scaling of the
computing and/or network resources. Hence, a key (still pending) question is: how much energy may
be actually saved by jointly performing task and dynamic resource allocation? In this regard, we point
out that both the GeneticTA_par and O_TAS_par strategies implemented by the VirtFogSim toolbox rely
on the same genetic-based meta-heuristic for performing task placement. However, GeneticTA_par also
performs dynamic resource allocation by invoking the auxiliary RAP_p function, while O_TAS_par
does not scale up/down the involved computing frequencies and wireless bandwidths of Figure 1 and
clips them at their corresponding maximum values (see Section 4.2). Hence, a direct comparison of the
energies consumed by GeneticTA_par and O_TAS_par allows us to profile how much energy may be
saved by performing dynamic resource allocation.

In this regard, an examination of the numerical results reported in the first and second bars of
Figures 10–12 leads to three main insights. First, the energy ratio: EO_TAS_par/EGeneticTA_par ranges
over the intervals: 2.85–3.50, 3.46–4.10, and: 4.50–4.56 under DAG1, DAG2, and DAG3, respectively.
Second, at fixed DAG, the energy savings stemming from performing dynamic resource allocation
reaches their maxima at values of TDAG of the order of 0.6–0.9 s, while tending to somewhat decrease
at smaller and higher execution delays. Third, the average energy-saving stemming from dynamic
optimization is more relevant under DAG3.

Overall, the performed analysis unveils that the dynamic optimization of the allocated
computing-networking resources plays, indeed, a pivotal role in reducing the energy consumption of
the overall technological platform of Figure 1.

Genetic-vs.-Exhaustive Search performance comparison: The focus of this subsection is on the tradeoffs
among energy performance and execution complexity that are attained by the (meta-heuristic)
GeneticTA_par and the (optimal) exhaustive E_ESS_par strategies. In this regard, we point out that
all the simulations of the GeneticTA_par function are carried out at population size PS = 120 and
per-population number of generations GMAX = 100. In so doing, the resulting computational
complexity of the run GeneticTA_par code is of the order of (see Table 4) O (120× 100) under all
test DAGs. At the same time, since the implementation complexity of the E_ESS_par function scales
up exponentially as O

(
3(V−2)

)
with the size V of the considered DAG, the execution of E_ESS_par

Appl. Sci. 2019, 9, 1160 36 of 48

under DAG3 is out of discussion, while the resulting execution complexities are of the order of O
(
310)

and O
(
313) under DAG1 and DAG2, respectively. As a consequence, the (profiled) execution times of

E_ESS_par are about five- and 133-times larger than the corresponding ones of GeneticTA_par.

Energy ratios returned by VirtFogSim under DAG2

0.3 0.6 0.9 1.5 3

T
DAG

 (s)

0

1

2

3

4

5

6

E
ne

rg
y

R
at

io

E
GeneticTA_par

E
O_TAS_par

E
OM_S

E
OF_S

E
OC_S

Figure 11. Energy ratios returned by VirtFogSim under DAG2 for TDAG = 0.3 s, 0.6 s, 0.9 s, 1.2 s, and
1.5 s. All the reported ratio values are normalized with respect to the corresponding total energies
consumed by ES_S_par.

Regarding the analysis of the first bars of Figures 10 and 11, the following three main insights
may be drawn. First, under the (small-sized) DAG1, GeneticTA_par and E_ESS_par return the same
optimal task and resource allocation patterns at TDAG = 0.3, 1.5, 3.0 s. Furthermore, the energy ratio:
EGeneticTA_par/EE_ESS_par is limited up to 1.07 (e.g., 7%) in the remaining two cases. Second, under
the (medium-sized) DAG2, GeneticTA_par and E_ESS_par share the same energy consumption at
TDAG = 0.3, while the corresponding energy ratio: EGeneticTA_par/EE_ESS_par is no larger than 1.26 in
the other cases.

Overall, the carried out analysis supports the conclusion that the tested implementation of
GeneticTA_par is capable of attaining, indeed, good performance-vs.-complexity tradeoffs.

Three tiered-vs.-single and two-tiered execution platforms: A potential drawback of multi-tiered
distributed computing platforms is that the number of involved communication links tends to grow
with the number of inter-connected tiers, and this may lead, in turn, to an increment of the network
component of the overall consumed energy. Hence, the goal of this subsection is to give insight into the
following (rather basic) question: What is the net tradeoff among the reduction of the computing energy
arising from the utilization of multi-tiered computing nodes and the corresponding increment of the
network energy needed for their inter-connection? In order to address this question, the VirtFogSim
toolbox makes available the OM_S, OF_S, and OC_S strategies. By design, they utilize only the Mobile
device, the two-tiered Fog-Mobile platform, and the two-tier Cloud-Mobile platform for the execution
of the application DAGs. Furthermore, all these strategies perform dynamic scaling of the utilized
computing frequencies and wireless network bandwidths (see Section 4.2).

Hence, since GeneticTA_par exploits, by design, all the Mobile, Fog, and Cloud nodes of Figure 1
for task placement, a comparative analysis of the energy ratios in the last three bars of Figures 10–12
provides a direct response to the above question by providing the following three main insights.

First, the energy ratio: EOM_S/EGeneticTA_par takes values over the intervals: 2.84–3.84, 3.3–3.9,
and 4.8–5.1, under DAG1, DAG2, and DAG3, respectively. The corresponding intervals of the energy
ratios: EOF_S/EGeneticTA_par and EOC_S/EGeneticTA_par are: 1.53–1.88, 2.0–2.73, 1.23–1.32, and 1.35–1.52,
1.99–2.59, 1.35–1.63, respectively. Hence, in the carried out simulations, the minimum (e.g., worst-case)

Appl. Sci. 2019, 9, 1160 37 of 48

energy-savings guaranteed by the three-tier Mobile-Fog-Cloud platform over the Mobile, Mobile-Fog,
and Mobile-Cloud ones are: 184%, 23% and 35%, respectively.

Energy ratios returned by VirtFogSim under DAG3

0.3 0.6 0.9 1.5 3

T
DAG

 (s)

0

1

2

3

4

5

6

7
E

ne
rg

y
R

at
io

E
O_TAS_par

E
OM_S

E
OF_S

E
OC_S

Figure 12. Energy ratios returned by VirtFogSim under DAG3 for TDAG = 0.3 s, 0.6 s, 0.9 s, 1.2 s, and
1.5 s. All the reported ratio values are normalized with respect to the corresponding total energies
consumed by GeneticTA_par.

Second, at fixed TDAG, the average energy savings offered by the Mobile-Fog-Cloud platform
over the considered benchmark ones tend to be somewhat more substantial under DAG2. Roughly
speaking, this is due to the fact that DAG2 is the parallel combination of three sub-DAGs, whose
energy-saving executions “naturally” lead to the simultaneous utilization of all the available Mobile,
Fog, and Cloud computing nodes (see Figure 5b).

Third, regarding the comparison of the relative energy performances of the OM_S, OF_S, and
OC_S strategies, we may conclude that: (i) the OM_S strategy is the most energy-consuming under all
the tested cases; and (ii) in general, the OC_S (resp., OF_S) strategy is more energy saving than the
OF_S (resp., OC_S) one under the more regular (resp., more random) DAG1 and DAG2 (resp. DAG3).

As a concluding remark, we point out that the reported numerical results give practical evidence
of the support offered by the proposed VirtFogSim toolbox in the analysis and optimization of the
multiple performance aspects of the multi-tiered technological platform of Figure 1.

6.5. Scalability of the Simulation Time of the VirtFogSim Toolbox

The two-fold goal of this section is to test the scalability of the execution times of the VirtFogSim
toolbox versus both the number of cores available for its execution and the computational complexity
of the run task allocation strategies. For this purpose, DAG1 at TDAG = 0.3 has been considered, and
then, both the execution times and the total input/output volumes (in MByte) of data transferred
to/from the available pool of working cores have been numerically profiled through the tictoc and
ticByte–tocByte commands available in the Parallel Toolbox of MATLAB. The attained results are reported
by the bar-plots of Figures 13 and 14. Each reported result has been obtained by averaging over 10
independent runs of the (complexity-tunable) GeneticTA_par task allocation strategy.

An examination of the execution times of Figure 13 points out that the speed-up factors attained
at ncore = 2, 4, 6, 8, and 10 over the benchmark case of ncore = 1 are around 1.91, 3.51, 4.98, 5.94, and
6.60, respectively. Hence, these speed-factors scale in a (quasi-) linear way for values of ncore limited
up to 3–4, while the scaling becomes more and more sub-linear for larger values of ncore. The reason
behind this scaling behavior of the execution times is provided by a comparative examination of the
corresponding total input/output data traffic generated by the carried out parallel executions. In this
regard, the traffic bars of Figure 13 unveil that both the generated volumes of data (which is the most)

Appl. Sci. 2019, 9, 1160 38 of 48

and the corresponding growing rate increase for increasing values of ncore. The resulting net effect
is that the experienced execution times become more and more dominated by the corresponding
inter-core communication times, so that the corresponding relative decrements in the execution times
tend to decrease for large values of ncore.

1 2 4 6 8 10

n
CORE

0

100

200

300

400

E
xe

cu
tio

n
tim

e
(s

)

0

10

20

30

40

D
at

a
tr

af
fic

 (
M

B
)

Execution Time
Total Input Data
Total Output Data

Figure 13. Bar-plots profiling the simulation times and corresponding input/output data traffics
generated by parallel executions of GeneticTA_par for increasing values of the number ncore of the
employed cores under DAG1 at PS = 300. The case: ncore = 1 corresponds to the sequential execution
of GeneticTA_par.

This conclusion is further corroborated by the bar plots of Figure 14. They report the profiled
execution times and generated inter-core traffic volumes obtained by running GeneticTA_par for
increasing values of the population size PS at fixed ncore = 10. In fact, since the computational
complexity of GeneticTA_par scales in a linear way with PS (see Table 4), it could be expected that
the same scaling behavior would be also exhibited by the corresponding profiled execution times.
However, an examination of the execution-time bars of Figure 14 unveils that the slow-down factors
attained at PS = 100, 150, 200, 250, and 300 against the benchmark case of PS = 50 do not scale, indeed,
linearly, and are around 1.76, 2.38, 3.16, 3.40, and 4.53, respectively. Even in this case, the reason is the
nonlinear growing behaviors of the corresponding input/output volumes of inter-core data (see the
bars of data traffic in Figure 14).

50 100 150 200 250 300

PS

0

10

20

30

40

50

60

E
xe

cu
tio

n
tim

e
(s

)

0

10

20

30

40

D
at

a
tr

af
fic

 (
M

B
)

Execution Time
Total Input Data
Total Output Data

Figure 14. Bar-plots profiling the simulation times and corresponding input/output data traffics
generated by parallel executions of GeneticTA_par for increasing values of the population size PS. The
case of DAG1 at ncore = 10.

In this regard, we point out that similar trends are also exhibited by the (profiled) execution times
of the other parallel functions: ES_S_par and O_TAS_par implemented by the VirtFogSim package.

Appl. Sci. 2019, 9, 1160 39 of 48

To conclude this section, we underline that the RAM used by VirtFogSim is essentially that
allocated by the MATLAB environment. Additional memory space is used to store all the variables
involved by the chosen strategies. This additional memory space depends mainly on the DAG size V
and the population size PS, but anyway, it is limited up to the interval 50–150 MB for the tested cases.

7. Conclusions and Future Developments

The actual development of delay-sensitive 5G-supported mobile applications demands for the
dynamic profiling and energy optimization of emerging multi-tiered Fog-Cloud virtualized ecosystems.
Since field-trials and deployment of test-beds are expensive and could not guarantee repeatable
results, the development of customizable simulation toolboxes is welcome. VirtFogSim is compliant
with this expectation by developing a new software environment that accounts for the main system
parameters featuring the computing and network aspects of Mobile-Fog-Cloud technological platforms.
The core engine of the VirtFogSim toolbox allows the optimization, simulation, and tracking of a
number of heuristic/meta-heuristic/exhaustive search-based policies for the energy-saving dynamic
allocation of tasks and computing-networking resources needed for the delay-constrained execution of
mobile applications described by general DAGs. The GUI equipping the VirtFogSim package allows a
user-friendly rendering of the simulated data under a number of easy-to-understand graphic formats.

The current version of the VirtFogSim package being the first open-access release, it is amenable to
further extensions along three main directions.

According to the underlying 5G paradigm, additional customizable primitives for the profiling
and performance simulation of massive MIMO wireless access technologies could provide a first
valuable extension [35–37]. Furthermore, the current version of the simulator relies on purely reactive
formal methods for the dynamic optimization of the needed computing-plus-networking resources.
Including pro-active optimization tools that are capable of exploiting mobility-triggered resource
forecasting could be second extension of potential interest [38]. Finally, software functionalities for
the support and performance evaluation of (possibly, mobility and/or failure-triggered) energy and
delay-efficient task migration strategies could represent a third extension of practical interest.

8. Availability of the VirtFogSim Package

The complete software package of the VirtFogSim simulator and the corresponding User Guide
may be downloaded for free on the GitHub repository site at: https://github.com/mscarpiniti/
VirtFogSim. In addition, it can be downloaded from the authors’ web pages, specifically at: http:
//enzobaccarelli.site.uniroma1.it, by accessing the section: Downloadable packages.

Author Contributions: The authors contributed equally to this work.

Funding: This work has been supported by the project: “GAUChO—A Green Adaptive Fog Computing and
networking Architectures” funded by the MIUR Progetti di Ricerca di Rilevante Interesse Nazionale (PRIN)
Bando 2015, Grant 2015YPXH4W_004, and by the projects: “Vehicular Fog energy-efficient QoS mining and
dissemination of multimedia Big Data streams (V-Fog and V-Fog2)” and “SoFT: Fog of Social IoT”, funded by
Sapienza University of Rome Bando 2016, 2017, and 2018.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following main abbreviations are used in this manuscript:

CC Cloud Computing
CNT Container
ES Exhaustive Search
DAG Direct Acyclic Graph
FC Fog Computing

https://github.com/mscarpiniti/VirtFogSim
https://github.com/mscarpiniti/VirtFogSim
http://enzobaccarelli.site.uniroma1.it
http://enzobaccarelli.site.uniroma1.it

Appl. Sci. 2019, 9, 1160 40 of 48

GUI Graphical User Interface
LAN Local Area Network
NIC Network Interface Card
OC Only Cloud
OF Only Fog
OM Only Mobile
OTA Only Task Allocation
VM Virtual Machine
WAN Wide Area Network

Appendix A. VirtFogSim: Supported Dual-Mode User Interfaces

The current version of the simulator supports two user interfaces, VirtFogSim and VirtFogSim
Graphic User Interface (VirtFogSimGUI), respectively. As detailed in the following two sub-sections, both
interfaces make available the same set of basic optimization routines of Table 4, and then, they provide
the same set of numerical results. However,

1. the VirtFogSim interface is oriented to a scientific use of the simulator. Its utilization requires
some basics about the MATLAB environment. Hence, it may be appealing for skilled research
users, who desire to work in an interactive way and are mainly interested in checking and
optimizing the performance of their own customized DAGs under (possibly multiple) customized
simulation setups;

2. the VirtFogSimGUI interface provides a rich set of self-explanatory, ready-to-use native facilities
that allow less (or even un-) skilled users to directly run the simulator under a number of
pre-loaded (but, in any case, customizable) application scenarios. Hence, since its utilization does
not require any specific skill regarding the MATLAB environment, it allows the user to interact
with the simulator as a “black-box”. For this purpose: (i) the obtained numerical results are
rendered in the form of graphics, colored maps, and plots, in order to make their interpretation
and mining more intuitive; and (ii) an easy-to-consult on-line version of this User Guide is
also enclosed.

Figure A1. A screen-shoot of the GUI interface.

Appl. Sci. 2019, 9, 1160 41 of 48

Appendix A.1. The VirtFogSim Interface

This interface is activated by entering the command: VirtFogSim in the command line of a
running MATLAB session. The script acts as the main program of the VirtFogSim package. This script
allows the user to select any subset of the natively-supported optimization algorithms by setting some
binary flags to one (for running it) or to zero (for not running it) and to choose which DAG should
be analyzed by writing the name of the related configuration script. If the user desires to change the
configuration, the script defining the DAG can be opened in the editor window of MATLAB.

By programming in the MATLAB language, this allows the user to:

1. edit the desired DAG by setting the corresponding workload vector~s, adjacency matrix A, and
edge weight matrix Da;

2. define the desired simulation setup by editing the input parameters listed in Table A2;
3. select any subset of the supported optimization functions of Table 4;
4. resort to the on-line help of MATLAB, in order to display information about any specific function

supported by the VirtFogSim package; and,
5. write and call user-defined customized functions that are not natively supported by the current

version of the simulator.

Depending on the selected functions (see Table 4), after running VirtFogSim, the attained numerical
results are displayed in tabular form, and/or as colored time-plots, and/or as colored bar plots, and/or
as colored DAG maps (see Section 5 for additional details about the graphic rendering capabilities and
related options supported by the simulator).

Appendix A.2. The VirtFogSimGUI Interface

The GUI interface is open by entering the command: VirtFogSimGUI in the command line of a
running MATLAB session. The screen-shoot of the displayed graphic window is reported in Figure A1.

This interface is supported by the MATLAB code: VirtFogSim_Run, which acts as the main script
of the overall simulator.

An examination of Figure A1 points out that the GUI interface of the simulator supports seven
pre-built functions (namely, Help, Algorithm, Archived DAG, Edit DAG, Save DAG, Run, and Close),
which may be activated by the user by clicking on the corresponding buttons. Table A1 lists these
native GUI functions and points out their meaning and associated actions.

Table A1. A synoptic overview of the functionalities offered to the user by the GUI interface.

Available GUI Functions Associated Actions

Help
Allows access to the User Guide of the simulator by opening a
dedicated PDF file.

Algorithm
Allows selecting any subset of the natively-supported optimization
algorithms by clicking the corresponding labels.

Archived DAG
Allows retrieving an already archived DAG with the corresponding
simulation setup, in order to run it.

Edit DAG
Allows editing a new DAG and/or a new simulation setup by
compiling the list of input parameters of Table A2.

Save DAG
Allows saving the last edit of DAG and assigning it an identification
label.

Run
Allows running the selected optimization algorithm under the
retrieved/edit DAG and associated simulation setup.

Close
Shuts down the current working session of the VirtFogSim simulator
and closes all the figure windows.

Appl. Sci. 2019, 9, 1160 42 of 48

From the user perspective, a typical VirtFogGUI-enabled working session should proceed
according to the following ordered list of steps:

1. enter VirtFogGUI at the MATLAB prompt, in order to open the GUI interface;
2. click the Help button, in order to access the PDF version of the User Guide. This step is optional;
3. select any desired subset of the supported optimization procedures by clicking the corresponding

labels in the Algorithm window. This step is mandatory;
4. retrieve an already stored DAG in ∗.mat format and the associated list of input parameters by

accessing the Archived DAG. Alternatively, build a new DAG and set the desired input parameters
of Table A by clicking the Edit DAG button. This step is mandatory;

5. store in the Archived DAG database the last edit of DAG in ∗.mat format by clicking the Save DAG
button. An identification label for the Save DAG is required. This step is optional;

6. click the Run button, in order to start the execution of the selected algorithms under the (retrieved
or edit) selected DAG. At the end of the execution, the attained results are returned in tabular
form, and/or as colored time-plots, and/or as colored bar plots, and/or as colored DAG maps
(see Section 5 for additional details about the graphic rendering capabilities and related options
supported by the simulator);

7. after finishing the current working session of the simulator, click the Close button, in order to shut
down the VirtFogSimGUI interface.

Appendix B. Full List of the Input Parameters of VirtFogSim

The following Table A2 reports the full list of the (settable) input parameters of the current
Version 4.0 of the simulator, together with their meaning/role, measuring units, and default values
used for the simulation of Section 6.

Table A2. Input parameters of the VirtFogSim simulator and their simulated settings of Section 6.

Parameter Meaning/Role Measuring Units Simulated Settings

V
Number of tasks of the application
DAG

Dimensionless 9 ≤ V ≤ 45

~s
V-tuple row vector of the task
workloads

(bit)
Computing- and communi-
cation-intensive DAG

A
(V ×V) binary (i.e., {0, 1}) DAG
adjacency matrix

Dimensionless

Da
(V ×V) weight matrix of the
(directed) edges of the DAG

(bit)
Computing- and communi-
cation-intensive DAG

nM
Number of the (virtual) computing
cores equipping the Mobile device

Dimensionless nM = 1

nF

Number of the (virtual) computing
cores equipping the device clone at
the Fog node

Dimensionless nF = 4

nC

Number of (virtual) computing cores
equipping the device clone at the
Cloud node

Dimensionless nC = 12

NFWiFi

Average per-connection number of
failures of the one-way Mobile→Fog
and Fog→Mobile WiFi TCP/IP
connections

Dimensionless NFWiFi = 1.1

NFCELL

Average per-connection number of
failures of the cellular one-way
Mobile→Cloud and Cloud→Mobile
TCP/IP connections

Dimensionless NFCELL = 0.1

Appl. Sci. 2019, 9, 1160 43 of 48

Table A2. Cont.

Parameter Meaning/Role Measuring Units Simulated Settings

NFWD

Average per-connection number of
failures of the two-way Cloud↔Fog
TCP/IP backhaul connection

Dimensionless NFWD = 0.01

f MAX
M

Per-core maximum computing
frequency at the Mobile device

(bit/s) f MAX
M = 12× 106

f MAX
F

Per-core maximum computing
frequency at the Fog clone

(bit/s) f MAX
F = 12× 106

f MAX
C

Per-core maximum computing
frequency at the Cloud clone

(bit/s) f MAX
F = 12× 106

RMAX
U

Maximum bit rate of the WiFi-based
one-way Mobile→Fog TCP/IP
connection

(bit/s) RMAX
U = 8.0× 106

RMAX
D

Maximum bit rate of the WiFi-based
one-way Fog→Mobile TCP/IP
connection

(bit/s) RMAX
D = 9.0× 106

BMAX
U

Maximum bit rate of the cellular
one-way Mobile→Cloud TCP/IP
connection

(bit/s) BMAX
U = 6.5× 106

BMAX
D

Maximum bit rate of the cellular
one-way Cloud→Mobile TCP/IP
connection

(bit/s) BMAX
D = 7.0× 106

THMIN
0

Scalar non-negative real parameter. It
is the minimum required application
throughput

(DAG/s) 0.333 ≤ THMIN
0 ≤ 3.33

θM

Binary {0, 1}-parameter. It depends
on the utilized application service
model at the Mobile device

Dimensionless

θM = 0 (resp., θM = 1) if
computing-plus-networking
energy consumed by the
Mobile device is (resp., is
not) for free

θF

Binary {0, 1}-parameter. It depends
on the utilized application service
model at the Fog node

Dimensionless

θF = 0 (resp., θM = 1) if the
computing-plus-networking
energy consumed by the
Fog clone is (resp., is not)
for free

θC

Binary {0, 1}-parameter. It depends
on the utilized application service
model at the Cloud node

Dimensionless

θC = 0 (resp., θC = 1) if
computing-plus-networking
energy consumed by the
Cloud clone is (resp., is not)
for free

P(IDLE)
CPU−M

Power consumed in the idle state by
the physical CPU at the Mobile
device

(Watt) P(IDLE)
CPU−M = 1.2

P(IDLE)
CPU−F

Power consumed by a single physical
server in the idle state at the Fog
node

(Watt) P(IDLE)
CPU−F = 220

P(IDLE)
CPU−C

Power consumed by a single physical
server in the idle state at the Cloud
node

(Watt) P(IDLE)
CPU−C = 440

ncM

Number of containers
simultaneously running on the
Mobile CPU

Dimensionless ncM = 1

Appl. Sci. 2019, 9, 1160 44 of 48

Table A2. Cont.

Parameter Meaning/Role Measuring Units Simulated Settings

ncF

Number of containers
simultaneously running on a single
physical server at the Fog node

Dimensionless ncF = 16

ncC

Number of containers
simultaneously running on a single
physical server at the Cloud node

Dimensionless ncC = 24

γM

Positive exponent of the dynamic
power consumption of the CPU at
the Mobile device

Dimensionless γM = 3.2

γF

Positive exponent of the dynamic
power consumption of a single
physical server at the Fog node

Dimensionless γF = 3.1

γC

Positive exponent of the dynamic
power consumption of a single
physical server at the Cloud node

Dimensionless γC = 3.0

kM

Positive parameter. It profiles the
dynamic power consumption of the
CPU at the Mobile device

(Watt)/(bit/s)γM kM = 7.5× 10−21

kF

Positive parameter. It profiles the
dynamic power consumption of a
single physical server at the Fog node

(Watt)/(bit/s)γF kF = 9.78× 10−20

kC

Positive scalar parameter. It profiles
the dynamic power consumption of a
single physical server at the Cloud
node

(Watt)/(bit/s)γC kF = 1.14× 10−19

rM

Scalar fraction of the overall
computing power shared by the
computing cores at the Mobile device

Dimensionless rM = 0

rF

Scalar fraction of the overall
computing power shared by the
computing cores of a single physical
server at the Fog node

Dimensionless rF = 0.2

rC

Scalar fraction of the overall
computing power shared by the
computing cores of a single physical
server at the Cloud node

Dimensionless rC = 0.1

P(IDLE)
ETH

Power consumed in the idle state by
each physical Ethernet NIC at the
Fog and Cloud nodes

(Watt) P(IDLE)
ETH = 10−4

P(IDLE)
WiFi−M

Power consumed in the idle state by
each physical WiFi NIC at the Mobile
device and Fog node

(Watt) P(IDLE)
WiFi−M = 1.3

P(IDLE)
CELL−M

Power consumed in the idle state by
each physical cellular NIC at the
Mobile device and Cloud node

(Watt) P(IDLE)
CELL−M = 0.82

ζ
(TX)
WiFi

Positive scalar exponent of the
dynamic power consumption of the
WiFi NIC in the transmit mode

Dimensionless ζ
(TX)
WiFi = 2.40

ζ
(RX)
WiFi

Positive scalar exponent of the
dynamic power consumption of the
WiFi NIC in the receive mode

Dimensionless ζ
(RX)
WiFi = 2.20

Appl. Sci. 2019, 9, 1160 45 of 48

Table A2. Cont.

Parameter Meaning/Role Measuring Units Simulated Settings

ζ
(TX)
CELL

Positive scalar exponent of the
dynamic power consumption of the
cellular NIC in the transmit mode

Dimensionless ζ
(TX)
CELL = 2.45

ζ
(RX)
CELL

Positive exponent of the dynamic
power consumption of the cellular
NIC in the receive mode

Dimensionless ζ
(RX)
CELL = 2.34

η

Positive exponent of the Round Trip
Times (RTTs) of the TCP/IP WiFi and
Cellular connections

Dimensionless η = 0.6

RTTWiFi
Average RTT of the TCP/IP WiFi
up/down connections

(s) RTTWiFi = 1.0× 10−2

RTTCELL
Average RTT of the TCP/IP cellular
up/down connections

(s) RTTCELL = 1.0× 10−1

RTTWD
Average RTT of the (possibly,
multi-hop) two-way backhaul

(s) RTTWD = 1.0

MSS Maximum size of a TCP segment (bit) Typically MSS = 1.2× 104

ProbLOSS
Loss probability of the Cloud↔Fog
TCP/IP connection

Dimensionless ProbLOSS = 1.56× 10−5

χ
(TX)
WiFi

Power profile of the WiFi NIC in the
transmit mode

(Watt)

(bit/s)ζ
(TX)
WiFi ×(s)η

χ
(TX)
WiFi = 5.0× 10−14

χ
(RX)
WiFi

Power profile of the WiFi NIC in the
receive mode

(Watt)

(bit/s)ζ
(RX)
WiFi ×(s)η

χ
(RX)
WiFi = 1.4× 10−14

χ
(TX)
CELL

Power profile of the cellular NIC in
the transmit mode

(Watt)

(bit/s)ζ
(TX)
CELL×(s)η

χ
(TX)
CELL = 2.31× 10−13

χ
(RX)
CELL

Power profile of the cellular NIC in
the receive mode

(Watt)

(bit/s)ζ
(RX)
CELL×(s)η

χ
(RX)
CELL = 8.1× 10−15

IMAX

Maximum number of primal-dual
iterations performed by the RAP_p
function

Dimensionless 500 ≤ IMAX ≤ 700

aMAX
Speed-factor of the iterations
performed by the RAP_p function

Dimensionless 10−7 ≤ aMAX ≤ 8× 10−7

noHOP
Number of hops of the two-way
Cloud↔Fog backhaul connection

Dimensionless noHOP = 4

PHOP
Per-hop average power consumed
the two-way backhaul connection

(Watt) PHOP = 5.7× 10−1

PS
Population size of the simulated
genetic functions. It must be even and
no less than 4

Dimensionless 120 ≤ PS ≤ 400

CF
Fraction of the population size that
undergoes genetic crossover

Dimensionless CF = 0.5

GMAX

Positive scalar integer parameter. It is
the number of generations run by the
genetic functions

Dimensionless 20 ≤ GMAX ≤ 100

MN
Number of elements of each task
allocation vector that undergo genetic
mutation

Dimensionless MN = round ((V − 2) /2)

~aMAX−FT

3-tuple vector of positive
speed-factors of the gradient-based
iterations performed by FogTracker

Dimensionless
Each element of the vector
~aMAX−FT is in the range:[

7.0× 10−8, 9.0× 10−7]

Appl. Sci. 2019, 9, 1160 46 of 48

Table A2. Cont.

Parameter Meaning/Role Measuring Units Simulated Settings

jump1
WiFi

Non-negative parameter. It is the
first multiply scaling applied by
FogTracker to RMAX

U and RMAX
D

Dimensionless jump1
WiFi = 0.0

jump1
CELL

Non-negative parameter. It is the
first multiply scaling applied by
FogTracker to BMAX

U and BMAX
D

Dimensionless jump1
CELL = 1.0

jump2
WiFi

Non-negative parameter. It is the
second multiply scaling applied by
FogTracker to RMAX

U and RMAX
D

Dimensionless jump2
WiFi = 1.0

jump2
CELL

Non-negative parameter. It specifies
the second multiply scaling applied
by FogTracker to BMAX

U and BMAX
D

Dimensionless jump2
CELL = 0.0

iteration_number
Number of iterations performed by
FogTracker (must be in multiples of 5)

Dimensionless iteration_number = 5× 103

References

1. Khan, A.U.R.; Othman, M.; Madani, S.A.; Khan, S.U. A survey of mobile cloud computing application
models. IEEE Commun. Surv. Tutor. 2014, 16, 393–413. [CrossRef]

2. Gupta, A.; Jha, R.K. A survey of 5G network: Architecture and emerging technologies. IEEE Access 2015,
3, 1206–1232. [CrossRef]

3. Baccarelli, E.; Vinueza Naranjo, P.G.; Scarpiniti, M.; Shojafar, M.; Abawajy, J.H. Fog of Everything:
Energy-efficient Networked Computing Architectures, Research Challenges, and a Case Study. IEEE Access
2017, 5, 9882–9910. [CrossRef]

4. Checko, A.; Christiansen, H.L.; Yan, Y.; Scolari, L.; Kardaras, G.; Berger, M.S.; Dittmann, L. Cloud RAN for
mobile networks: A technology overview. IEEE Commun. Surv. Tutor. 2015, 17, 405–426. [CrossRef]

5. Baccarelli, E.; Biagi, M.; Bruno, R.; Conti, M.; Gregori, E. Broadband Wireless Access Networks: A Roadmap
on Emerging Trends and Standards. In Broadband Services: Business Models and Technologies for Community
Networks; Wiley Online Library: Hoboken, NJ, USA, 2005; Chapter 14; pp. 215–240. [CrossRef]

6. Baccarelli, E.; Scarpiniti, M.; Momenzadeh, A. Fog-Supported Delay-Constrained Energy-Saving Live
Migration of VMs Over MultiPath TCP/IP 5G Connections. IEEE Access 2018, 6, 42327–42354. [CrossRef]

7. Pahl, C.; Brogi, A.; Soldani, J.; Jamshidi, P. Cloud container technologies: A state-of-the-art review. IEEE Trans.
Cloud Comput. 2017. [CrossRef]

8. Calheiros, R.N.; Ranjan, R.; Beloglazov, A.; De Rose, C.A.; Buyya, R. CloudSim: A toolkit for modeling
and simulation of cloud computing environments and evaluation of resource provisioning algorithms.
Softw. Pract. Exp. 2011, 41, 23–50. [CrossRef]

9. Kliazovich, D.; Bouvry, P.; Audzevich, Y.; Khan, S.U. GreenCloud: A packet-level simulator of energy-aware
cloud computing data centers. In Proceedings of the 2010 IEEE Global Telecommunications Conference
(GLOBECOM 2010), Miami, FL, USA, 6–10 December 2010. [CrossRef]

10. Núñez, A.; Vázquez-Poletti, J.L.; Camineiro, A.C.; Castañé, G.G.; Carretero, J.; Llorente, I.M. iCanCloud:
A flexible and scalable cloud infrastructure simulator. J. Grid Comput. 2012, 10, 185–209. [CrossRef]

11. Sotiriadis, S.; Bessis, N.; Asimakopoulos, E.; Mustafee, N. Towards simulating the Internet of Things.
In Proceedings of the 28th International Conference on Advanced Information Networking and Application
Workshops, Victoria, BC, Canada, 13–16 May 2014. [CrossRef]

12. Zeng, X.; Garg, S.K.; Strazdnis, P.; Jayaraman, P.; Georgakopoulos, D.; Ranjan, R. IOTSim: A simulator for
analysing IoT applications. J. Syst. Archit. 2017, 72, 93–107. [CrossRef]

13. Gupta, H.; Dastjerdi, A.V.; Ghosh, S.K.; Buyya, R. iFogSim: A toolkit for modeling and simulation of resource
management techniques in the Internet of Things, Edge and Fog computing environments. Softw. Pract. Exp.
2017, 47, 1275–1296. [CrossRef]

http://dx.doi.org/10.1109/SURV.2013.062613.00160
http://dx.doi.org/10.1109/ACCESS.2015.2461602
http://dx.doi.org/10.1109/ACCESS.2017.2702013
http://dx.doi.org/10.1109/COMST.2014.2355255
http://dx.doi.org/10.1002/0470022515.ch14
http://dx.doi.org/10.1109/ACCESS.2018.2860249
http://dx.doi.org/10.1109/TCC.2017.2702586
http://dx.doi.org/10.1002/spe.995
http://dx.doi.org/10.1109/GLOCOM.2010.5683561
http://dx.doi.org/10.1007/s10723-012-9208-5
http://dx.doi.org/10.1109/WAINA.2014.74
http://dx.doi.org/10.1016/j.sysarc.2016.06.008
http://dx.doi.org/10.1002/spe.2509

Appl. Sci. 2019, 9, 1160 47 of 48

14. Sotiriadis, S.; Bessis, N.; Antonopoulos, N.; Anjum, A. SimIC: Designing a new inter-cloud simulation
platform for integrating large-scale resource management. In Proceedings of the 27th IEEEE International
Conference on Advanced Information Networking and Applications (ANIA 2013), Barcelona, Spain,
25–28 March 2013. [CrossRef]

15. Sonmez, C.; Ozgovde, A.; Ersoy, C. EdgeCloudSim: An environment for performance evaluation of Edge
Computing systems. Trans. Emerg. Telecommun. Technol. 2018, 29, e3493. [CrossRef]

16. Padhye, J.; Firoiu, V.; Towsley, D.; Kurose, J. Modeling TCP throughput: A simple model and its
empirical validation. In Proceedings of the ACM SIGCOMM ’98 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, Vancouver, BC, Canada, 31 August–4 September
1998; ACM: New York, NY, USA, 1998; pp. 303–314. [CrossRef]

17. Vallina-Rodriguez, N.; Crowcroft, J. Energy management techniques in modern mobile handsets.
IEEE Commun. Surv. Tutor. 2013, 15, 179–198. [CrossRef]

18. Altamimi, M.; Abdrabou, A.; Naik, K.; Nayak, A. Energy cost models of smartphones for task offloading to
the cloud. IEEE Trans. Emerg. Top. Comput. 2015, 3, 384–398. [CrossRef]

19. Kwak, J.; Choi, O.; Chong, S.; Mohapatra, P. Processor-network speed scaling for energy: Delay tradeoff in
smartphone applications. IEEE/ACM Trans. Netw. 2016, 24, 1647–1660. [CrossRef]

20. Zhang, L.; Tiwana, B.; Qian, Z.; Wang, Z.; Dick, R.P.; Mao, Z.M.; Yang, L. Accurate online power estimation
and automatic battery behavior based power model generation for smartphones. In Proceedings of the
2010 IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), Scottsdale, AZ, USA, 24–29 October 2010; pp. 105–114.

21. Huang, J.; Qian, F.; Gerber, A.; Mao, Z.M.; Sen, S.; Spatscheck, O. A close examination of performance and
power characteristics of 4G LTE networks. In Proceedings of the 10-th International Conference on Mobile
Systems, Applications, and Services, Lake District, UK, 25–29 June 2010; ACM: New York, NY, USA, 2012;
pp. 225–238. [CrossRef]

22. Xiao, Y.; Cui, Y.; Savolainen, P.; Siekkinen, M.; Wang, A.; Yang, L.; Ylä-Jääski, A.; Tarkoma, S. Modeling
energy consumption of data transmission over Wi-Fi. IEEE Trans. Mob. Comput. 2014, 13, 1760–1773.
[CrossRef]

23. Lim, Y.s.; Chen, Y.C.; Nahum, E.M.; Towsley, D.; Gibbens, R.J. Improving energy efficiency of MPTCP for
mobile devices. arXiv 2014, arXiv:1406.4463.

24. Mukherjee, A.; De, D.; Roy, D.G. A power and latency aware cloudlet selection strategy for multi-cloudlet
environment. IEEE Transa. Cloud Comput. 2016, 7, 141–154. [CrossRef]

25. Yang, S.; Kwon, D.; Yi, H.; Cho, Y.; Kwon, Y.; Paek, Y. Techniques to minimize state transfer costs for dynamic
execution offloading in mobile cloud computing. IEEE Trans. Mob. Comput. 2014, 13, 2648–2660. [CrossRef]

26. Yang, L.; Cao, J.; Yuan, Y.; Li, T.; Han, A.; Chan, A. A framework for partitioning and execution of data
stream applications in mobile cloud computing. ACM SIGMETRICS Perform. Eval. Rev. 2013, 40, 23–32.
[CrossRef]

27. De Maio, V.; Brandic, I. First hop mobile offloading of dag computations. In Proceedings of the 18th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID 2018), Washington,
DC, USA, 1–4 May2018; pp. 83–92. [CrossRef]

28. Peng, Q.; Walid, A.; Hwang, J.; Low, S.H. Multipath TCP: Analysis, design, and implementation. IEEE/ACM
Trans. Netw. 2016, 24, 596–609. [CrossRef]

29. Topcuoglu, H.; Hariri, S.; Wu, M.Y. Performance-effective and low-complexity task scheduling for
heterogeneous computing. IEEE Trans. Parallel Distrib. Syst. 2002, 13, 260–274. [CrossRef]

30. Cuervo, E.; Balasubramanian, A.; Cho, D.K.; Wolman, A.; Saroiu, S.; Chandra, R.; Bahl, P. MAUI: Making
smartphones last longer with code offload. In Proceedings of the 8th International Conference on Mobile
Systems, Applications, and Services, San Francisco, CA, USA, 5–18 June 2010; ACM: New York, NY, USA,
2010; pp. 49–62. [CrossRef]

31. Ra, M.R.; Sheth, A.; Mummert, L.; Pillai, P.; Wetherall, D.; Govindan, R. Odessa: Enabling interactive
perception applications on mobile devices. In Proceedings of the 9-th International Conference on Mobile
Systems, Applications, and Services, Bethesda, MD, USA, 28 June–1 July 2011; ACM: New York, NY, USA,
2011; pp. 43–56. [CrossRef]

32. Juve, G.; Chervenak, A.; Deelman, E.; Bharathi, S.; Mehta, G.; Vahi, K. Characterizing and profiling scientific
workflows. Future Gener. Comput. Syst. 2013, 29, 682–692. [CrossRef]

http://dx.doi.org/10.1109/AINA.2013.123
http://dx.doi.org/10.1002/ett.3493
http://dx.doi.org/10.1145/285237.285291
http://dx.doi.org/10.1109/SURV.2012.021312.00045
http://dx.doi.org/10.1109/TETC.2014.2387752
http://dx.doi.org/10.1109/TNET.2015.2419219
http://dx.doi.org/10.1145/2307636.2307658
http://dx.doi.org/10.1109/TMC.2013.51
http://dx.doi.org/10.1109/TCC.2016.2586061
http://dx.doi.org/10.1109/TMC.2014.2307293
http://dx.doi.org/10.1145/2479942.2479946
http://dx.doi.org/10.1109/CCGRID.2018.00023
http://dx.doi.org/10.1109/TNET.2014.2379698
http://dx.doi.org/10.1109/71.993206
http://dx.doi.org/10.1145/1814433.1814441
http://dx.doi.org/10.1145/1999995.2000000
http://dx.doi.org/10.1016/j.future.2012.08.015

Appl. Sci. 2019, 9, 1160 48 of 48

33. Mahmoodi, S.E.; Uma, R.; Subbalakshmi, K. Optimal joint scheduling and cloud offloading for mobile
applications. IEEE Trans. Cloud Comput. 2016. [CrossRef]

34. Sarkar, A.; Gosh, A.; Nath, A. MapReduce: A comprehensive study on applications, scope and challenges.
Int. J. Adv. Res. Comput. Sci. Manag. Stud. 2015, 3, 256–272.

35. Baccarelli, E.; Biagi, M. Performance and optimized design of space-time codes for MIMO wireless systems
with imperfect channel estimates. IEEE Trans. Signal Process. 2004, 52, 2911–2923. [CrossRef]

36. Baccarelli, E.; Biagi, M.; Pelizzoni, C. On the information throughput and optimized power allocation for
MIMO wireless systems with imperfect channel estimation. IEEE Trans. Signal Process. 2005, 53, 2335–2347.
[CrossRef]

37. Baccarelli, E.; Biagi, M. Power-allocation policy and optimized design of multiple-antenna systems with
imperfect channel estimation. IEEE Trans. Veh. Technol. 2004, 53, 136–145. [CrossRef]

38. Baccarelli, E.; Cusani, R. Recursive Kalman-type optimal estimation and detection of hidden Markov chains.
Signal Process. 1996, 51, 55–64. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TCC.2016.2560808
http://dx.doi.org/10.1109/TSP.2004.834269
http://dx.doi.org/10.1109/TSP.2005.849165
http://dx.doi.org/10.1109/TVT.2003.822025
http://dx.doi.org/10.1016/0165-1684(96)00030-8
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Multi-Tiered Networked Simulated Environment
	A Motivational Example
	Motivations, Main Contributions, and Organization of the Paper

	Related Work
	VirtFogSim: A View of the Simulated Formal Models
	Profiling the Simulated Workflows
	The Considered Throughput-Constrained Joint Task and Dynamic Resource Allocation Problem
	Simulated Computing and Networking Energy Profiles
	Simulated Profiles of the per-DAG and per-Task Execution Times
	Simulated Adaptive Resource Allocation Framework

	VirtFogSim: Supported Task Allocation Strategies and Their Parallel Execution
	General Architecture of the Developed Simulation Platform
	Supported Task Allocation Strategies and Adaptive Resource Allocation
	Implemented Auxiliary Functions
	Dynamic Performance Tracking Function

	VirtFogSim: Supported Formats of the Rendered Data
	VirtFogSim in Action: Testing Its Numerical Capabilities
	Use Cases and Related DAGs
	Comparative Tracking Performance under Intermittent WiFi Connectivity
	Comparative Task and Resource Allocation Performance
	The Performance Impact of Different Task and Resource Allocation Strategies
	Scalability of the Simulation Time of the VirtFogSim Toolbox

	Conclusions and Future Developments
	Availability of the VirtFogSim Package
	VirtFogSim: Supported Dual-Mode User Interfaces
	The VirtFogSim Interface
	The VirtFogSimGUI Interface

	Full List of the Input Parameters of VirtFogSim
	References

