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Introduction

In recent years, the designers of long girder bridges in seismic areas have frequently

opted for a continuous structural scheme, in which the abutments are called to carry

large seismic forces engaging the dynamic response of the soil-abutment system. In

view of this, the abutment response assumes a central role in evaluating the seismic

performance of a bridge as an effect of its strong interaction with both the soil and

the superstructure. This consideration introduces the cardinal question pursued

in the present research: how and to what extent can the dynamic response of the

abutments alter the global behaviour of a bridge and vice versa?

The dynamic soil-abutment-superstructure interaction is a complex problem in-

volving expertise in different fields, with a challenging physical and numerical mod-

elling. From a numerical point of view, a direct approach to account for the soil-

abutment-superstructure interaction would require the implementation of coupled

soil-bridge models, including the structural model, the abutment and the founda-

tion soils down to the bedrock. Dynamic simulations of such large models imply

a hardly manageable computation and a not immediate interpretation of the re-

sults, that confine their use only to an advanced verification stage of the design

process. Hence, there is the need to limit the computational demand of the nu-

merical models, without however renouncing to a clear representation of the salient

aspects of the soil-abutment-superstructure interaction. This usually constitutes a

limitation either in evaluating the performance of the structure or in studying the
6



Introduction 7

local dynamic response of the abutments because of the difficulties associated with

the identification of suited mechanical systems able to represent the global effects

of the missing part of the domain. The global structural model should include a

reasonable representation of the abutment structure and also of the volume of soil

interacting with the latter, while the geotechnical analysis of the abutment should

incorporate a simplified description of the dynamic response of the bridge into a

finite-element model of the soil-abutment system.

The present research proposes a method of analysis based on macro-elements,

whose main objective is to incorporate the salient aspects of the soil-structure in-

teraction occurring at the abutment locations in the structural and geotechnical

analyses of the bridge, preserving a manageable computational demand and creat-

ing a link between the response of the two sub-systems identified. A macro-element

is a generalised force-displacement relationship that simulates the mechanical re-

sponse of a sub-domain. Therefore the whole soil-bridge domain is divided into two

problems through the introduction of two macro-elements, conceived to reproduce,

in a complementary manner, the soil-abutment-superstructure interaction effects: a

macro-element of the soil-abutment system, developed as a useful tool for the struc-

tural analysis, and a macro-element of the superstructure to be included in the local

model of the abutment instead.

This study starts with a literature review of the existing methods usually used

to represent the interaction between the abutments and the superstructure of the

bridge, trying to give a complementary overview of the problem. In Chapter 1, the

main features of the soil-structure interaction for bridge abutments are described,

giving evidence of the current analysis methods.

The proposed methodology is presented in its essential characteristics in Chapter

2, with description of the integrated approach with macro-elements. Then, the

numerical platform employed to carry out the nonlinear dynamic analyses on the
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soil-structure interaction models is introduced.

A fully coupled soil-bridge model was developed, inspired by a real case study

in Italy, as the reference system for validating the macro-element method. It con-

stituted an interesting case study for the problem under examination, in virtue of

the high seismicity of the site of the bridge and for the numerous experimental data

available for the foundation soils. Chapter 3 is therefore devoted to the description

of the case study, from the geotechnical characterisation and the structural identifi-

cation to the numerical modelling. In this regard, two advanced constitutive models

are employed to get an accurate description of the soil behaviour under cyclic load-

ing conditions. The sub-systems identified by the macro-element method are also

illustrated, showing the solution procedure adopted in the numerical analyses and

giving some insight into the computational demand associated with the different

numerical representations implemented.

In Chapter 4, a study on the nonlinear dominant responses of the soil-abutment

system is presented with the aim to evaluate the inertial effects arising from the

dynamic excitation of the embankment, considering the multi-directionality of the

ground motion and the nonlinear behaviour of soil. This study is developed fol-

lowing two approaches: a numerical investigation of the dynamic response of soil-

abutment interaction models and an analytical evaluation of the modal character-

istics of the system. The former is accomplished through the implementation of

numerical models in the analysis framework OpenSees, using non-linear advanced

constitutive models to describe the soil behaviour. In this way, the dominant re-

sponses of the soil-abutment system are identified, framing them in a conceptual

scheme useful to interpret the dynamic response of the abutments. Taking the nu-

merical results as an element of comparison, the analytical procedure is aimed to

provide a rigorous method for an immediate evaluation of the vibration modes of

bridge abutments at small strain levels. As a result, closed-form solutions for the
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modal characteristics are provided.

Focusing on the dynamic response of the whole structure, in Chapter 5 the for-

mulation of the macro-element of the soil-abutment system is exposed in detail. The

force-displacement relationship for the model is elastic-plastic and is derived from

a rigorous thermodynamic approach. In the model, the ultimate capacity of bridge

abutments under multi-axial loading conditions is described by a limit surface in the

force space. The surface of ultimate loads is determined with the aid of numerically-

evaluated limit analysis solutions and verified a posteriori through advanced elasto-

plastic analyses. As a result, a general formulation is proposed to describe the

ultimate conditions of bridge abutments, applicable in the case of abutments with

both shallow and deep foundations. The formulation takes also explicitly into ac-

count the inertial effects developing in the soil interacting with the abutment, which

are simulated by introducing appropriate participating masses in the model formula-

tion. A straightforward calibration procedure of the macro-model is devised, making

use of a limited number of constitutive parameters. The mathematical formulation

was coded in the OpenSees library for a prompt use in engineering applications.

In Chapter 6, the focus moves towards the local behaviour of the soil-abutment

system. In this regard, the macro-element of the bridge structure represents a novel

approach to the study of the seismic behaviour of bridge abutments. The proposed

method incorporates a simplified description of the dynamic response of the bridge

into a finite-element model of the soil-abutment system. Specifically, the dynamic be-

haviour of the bridge structure is described by an expressly conceived elastic-plastic

macro-element, that simulates the complex loading pattern transferred to the abut-

ment during the seismic event. The general, nonlinear version of the macro-element

presents a simple formulation, easily identifiable by a few constitutive parameters.

This approach allows to take into account both the seismic sources perturbing an

abutment: the propagation of seismic waves through the foundation soils and the
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inertial forces coming from the superstructure. The response of the macro-element

is tested against the results of nonlinear dynamic analyses on idealised soil-bridge

systems. As a result, a general calibration procedure is delineated, providing useful

information about the use of the macro-element in finite element codes.

In Chapter 7, the entire methodology is implemented in nonlinear dynamic anal-

yses carried out in the analysis framework OpenSees and it is validated against

the response of fully coupled dynamic analyses of the reference soil-bridge model.

The results of a preliminary study of the site response highlight some interesting

characteristics of the multi-directional dynamic response of the two advanced con-

stitutive models used for soil. From the full soil-bridge model, several insight into

the soil-abutment-superstructure interaction are given with particular focus on the

relationship between the responses of the two complementary macro-elements. It is

this relationship that defines a link between the soil-abutment system and the su-

perstructure, representing a step forward to a semi-direct approach of the dynamic

soil-structure interaction, in which the response of the missing part of the domain

is explicitly included in the computation for a more reliable sub-structuring, leading

to an unique overview of the problem.



Chapter 1

Soil-abutment-superstructure

interaction

The abutment is a crucial component of a bridge for its significant mass and because

it is characterised by a strong interaction with the soil. The dynamic behaviour of

an abutment depends on its interaction with a large volume of soil involved in the

dynamic response of the bridge and, moreover, it is influenced by its interaction

with the superstructure, producing a reciprocal time-dependent exchange of inertial

forces at the deck-abutment contact under seismic conditions. Accordingly, the local

dynamic response of the abutment might alter significantly the global response of

the bridge and vice versa.

An accurate evaluation of the seismic performance of a bridge cannot neglect

the inertial forces and the effective behaviour of the deck-abutment contact result-

ing from the dynamic response of the abutments, which instead are often mod-

elled as fixed or deformable constraints subjected to the free field ground motion.

Similarly, the geotechnical analysis of an abutment usually neglects completely the

deck-abutment interaction, or at most includes a very rough representation of the

dynamic response of the remaining structure of the bridge. The objective of the
11
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present research is to provide a macro-element approach to account for the soil-

abutment-superstructure interaction effects in both the structural and geotechnical

analyses. A literature review of the most classical approaches used in this field is

provided in the following, that constituted the starting point for the present study.

1.1 Existing approaches

The main features associated with the soil-abutment-superstructure interaction un-

der dynamic conditions may be summarised as follows: a frequency-dependent re-

sponse, the arise of considerable inertial forces and a marked nonlinear behaviour.

The several models developed in time have aimed to reproduce these features fol-

lowing different approaches that are recounted in the following.

Probably the most basic model to account for the soil-abutment interaction in

the structural analysis consists in the insertion of a simple linear spring element

at the end of the deck, usually along the longitudinal and transverse directions of

the bridge. This model neglects all the fundamental features reported above, in

favour of an extreme simplicity. Its excessive essentiality, in fact, leads to a difficult

identification of the elastic properties of the springs, that instead depend on the

level of strain attained in the soil and varies with the frequency of the external

perturbation. On the geotechnical side, this translates in applying a linear elastic

spring to the top of the abutment wall in the local model of the abutment. Also in

this case, the model does not take into account the inertial effects induced by the

oscillations of the bridge, as well as the possibility to admit a nonlinear structural

response.

The first linear frequency-dependent model for soil-structure interaction is repre-

sented by the dynamic impedance functions, initially proposed by Luco and West-

man (1971) and Veletsos and Wei (1971) in the early seventies. There is a bound-
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less literature concerning frequency-dependent solutions for the dynamic impedance

functions and their applications in soil-foundation interaction problems. The use of

an impedance function in seismic engineering has the aim to represent the frequency-

dependent stiffness and damping characteristics of soil-foundation interaction. Clas-

sical solutions for the complex-valued impedance function k∗j can be written as

k∗j (ω) = kj + i · ω · cj (1.1)

where j is an index denoting modes of translational displacement or rotation, kj

and cj denote the frequency-dependent foundation stiffness and damping coefficient,

respectively, and ω is the circular frequency (rad/s). Many solutions are available

for rigid circular or rectangular foundations located on the surface of, or embedded

within, a uniform elastic, or visco-elastic half-space. In the case of a rigid rectangu-

lar foundation, Pais and Kausel (1988), Gazetas (1991), and Mylonakis et al. (2006)

reviewed impedance solutions in the literature and presented equations for comput-

ing the stiffness and damping of the soil-foundation system. The generic term kj of

the dynamic stiffness matrix is obtained as follows

kj = Kj · αj · ηj (1.2)

in which Kj is the static elastic stiffness of the soil-foundation system, function of

the geometry of the foundation and of the elastic properties of the soil; αj is denoted

as the dynamic stiffness modifier including the frequency-dependence, and ηj is the

embedment correction factor that applies in the case of embedded foundations. Eq.

1.1 represents the properties of a Kelvin-Voight rheological system, composed of

the parallel connection of an elastic spring and a viscous dashpot. In principle, the

concept of dynamic impedance could be extended to the soil-abutment interaction

in order to reproduce the desired frequency-dependent features, but the main issue
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is associated with a proper identification of the relative stiffness and damping. In

first approximation, the solutions for shallow foundations might be used, regarding

the abutment as an equivalent embedded foundation. This is a strong assumption

that leads to a very rough approximation of the abutment response, not verified nei-

ther experimentally nor numerically, and a more appropriate characterisation of the

soil-abutment system would be necessary when using this method. The definition of

an equivalent damping representing the dissipative mechanisms occurring in the soil

interacting with the abutment is still an open question, while some steps forward

have been made in the identification of the frequency-dependent stiffness of the soil-

abutment system at small strains. Kotsoglou and Pantazopoulou (2007) provided

closed-form solutions for the modal characteristics of bridge embankments oscillat-

ing in the transverse direction of the bridge, evaluating not only the modal stiffness

but also the mass participation factors of the embankment according to a rigorous

analytical development, under the assumption of elastic behaviour of the soil. Hence,

in this study a more complete characterisation of the embankment-abutment system

is provided, in which the importance of the inertial effects developing in the large

volume of soil interacting with the abutment is highlighted. The solutions proposed

by Kotsoglou and Pantazopoulou (2007) were employed in the integrated approach

proposed by Stefanidou et al. (2017) to include the soil-structure interaction effects

in the seismic response of the superstructure. In this approach, every element of

the model was assumed as a linear elastic body and soil-structure interaction at the

pier foundation and at the abutment locations was reproduced through a dynamic

impedance function placed in the transverse direction of the bridge. The impedance

function at the deck-abutment contact was also provided with a mass representing

the first vibration mode of the embankment.

In a specular manner, Price and Eberhard (2005) used two single degree of free-

dom systems with visco-elastic behaviour, placed on the abutment top in the longi-



CHAPTER 1. SOIL-ABUTMENT-SUPERSTRUCTURE INTERACTION 15

tudinal and vertical direction of the bridge, to reproduce the inertial effects coming

from the superstructure in the soil-abutment model. The oscillators are calibrated

to yield the same force transfer function as the first global mode of the structure.

The stiffness keq, damping ξeq and mass meq of the idealised structure are given by

keq = (−ej ·Ksf · φ1) · (φ1 ·Kss · 1) (1.3)

ξeq = ξ1 (1.4)

meq =
keq
ω2
1

(1.5)

where φ1, ω1 and ξ1 are the mass-normalised mode shape, circular frequency and

damping ratio for the fundamental structural mode, respectively; ej is the row of

the identity matrix corresponding to the support degree of freedom considered and

1 is the vector whose entries are equal to 1. This procedure allows to determine

the dynamic characteristics of the simplified equivalent system of the superstructure

based on the assumption that the first global mode of the bridge represents the main

contribution to the transmission of the inertial forces at the deck-abutment contact.

Hence, the use of dynamic impedance functions has been partially extended to the

case of bridge abutments with a more appropriate identification of the equivalent me-

chanical systems. Nonetheless, although its remarkable computational efficiency, the

impedance-based approach presents two intrinsic limitations: it is a linear represen-

tation of the soil-structure interaction and it does not present any form of directional

coupling of the response yet. The equivalent Kelvin-Voight model imposes, in fact,

a linear force-displacement law and therefore it is not able to reproduce the marked

nonlinear behaviour of soil, nor the eventual attainment of the structural strength,
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likewise situation for abutments with deep foundations under severe seismic condi-

tions for instance. This implies that the method might be applied only to reproduce

in an equivalent linear manner material nonlinearities, with all the uncertainties

associated with the calibration of the equivalent elastic parameters. A significant

directional coupling of the displacement field might be instead caused by the pecu-

liar geometry and the partially or totally embedded structure of the abutment so

that a generic perturbation applied to the abutment, intended as seismic excitation

coming from the soil or the static and dynamic loads transmitted by the deck, may

produce the development of a displacement field in a different direction with respect

to the direction of loading. This would translate in introducing off-diagonal terms

of the impedance functions in the dynamic stiffness matrix, as already proposed for

shallow foundations (Pais and Kausel 1988, Gazetas 1991, Mylonakis et al. 2006).

The two limitations above associated with linear frequency-dependent models

opened the way to a more recent conception of bridge abutments, in which the highly

nonlinear behaviour of soil becomes an integral part of the abutment response for a

better understanding and control of the seismic response of the whole structure.

1.2 Towards the plastic response of the abutment

In 1934, Terzaghi performed the well-known experiment on a retaining wall sup-

porting a sandy backfill, schematically illustrated in Figure 1.1. The equilibrium of

the system at rest is guaranteed by a longitudinal force Q1,0 applied on top of the

wall pushing the latter towards the backfill. From this condition, an increase of the

force provokes a rotation of the wall towards the backfill but not in a proportional

manner. In fact, starting from very low horizontal displacements of the wall top, the

response becomes nonlinear with a stiffness Q1/q1 that reduces progressively until

the attainment of the maximum force Q1,p that can be transferred to the backfill,
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Figure 1.1: Qualitative representation of the force-displacement relationship for a retaining wall.

associated with the mobilisation of the passive resistance in the latter. When the

force Q1,0 reduces, the wall displaces downstream showing again a marked nonlinear

behaviour, with stiffness that decreases more than linearly until becoming null in

correspondence of the limit force Q1,a that mobilises the active resistance in the

backfill. Hence, Q1,a and Q1,p identify the domain of the admissible states for a re-

taining wall. This experiment demonstrated that the nonlinear response of the wall,

in terms of force-displacement relationship at the wall top, is highly nonlinear also

far from the attainment of the ultimate conditions. These considerations are still

valid in the case of a bridge abutment, for which a homothetic force-displacement

relationship can be assumed (dashed line in Figure 1.1), this time passing through

the axes origin since the stability of the system must be verified also without any

force applied to the top.

In recent years, the nonlinear behaviour of the soil-abutment system was analysed

in some experimental load tests (Maroney et al. 1990, Fang et al. 1994, Romstad et
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al. 1995, Gadre and Dobry 1998, Stewart et al. 2007) and by some analytical studies

(Martin et al. 1996, Siddharthan et al. 1997, Shamsabadi et al. 2005, Shamsabadi

et al. 2007), as discussed in the following section.

1.2.1 Full-scale testing of abutments

The main scope of the experimental investigations was to study the progressive

mobilisation of the passive resistance in the backfill induced by a purely longitudinal

force impressed to the top of the abutment. In particular, two tests performed on full

scale specimens are reviewed in the following. Conducted at UC-Davis (Romstad et

al. 1995) and at UCLA (Stewart et al. 2007), these two tests were aimed to quantify

passive response of cohesive (UCD test) and granular backfills (UCLA test). One

of the first large-scale tests of passive earth pressures was the aforementioned cyclic

tests of abutments by Romstad et al. (1995), that involed a 3.05 m (width) by 1.67

m (height) wall specimen that was displaced both into the backfill and along the

backfill, simulating longitudinal and transverse deck excitation, respectively. The

failure surface was observed to plunge down into the backfill from the base of the

wall and then rise towards the surface at increasing distance from the wall. The

ultimate passive pressure of the abutment was measured to be approximately 265

kPa, which was reached at a lateral displacement of 16.8 cm (10 % of the abutment

height). The failure was two-dimensional in geometry because of a rigid connection

of concrete wingwalls to the backwall. Those tests form the basis of current Caltrans

seismic design criteria.

Stewart et al. (2007) tested a 4.6 m wide, 1.67 m m tall seat-type abutment

wall with a silty sand backfill under one-way cyclic loading. The backfill was com-

pacted to over 95 % Modified Proctor relative compaction. The backwall was pushed

horizontally without any vertical movement. The one-way cyclic loading involved

pushing the wall into the backfill by prescribed amounts, followed by unloading and
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Figure 1.2: Measured longitudinal backbone curves of the cyclic tests conducted by Stewart et al.
(2007).

further pushing. The wingwalls were constructed using smooth plywood with plas-

tic sheeting on the interior face to minimise friction and, therefore, to impose plane

strain conditions. The resulting force-displacement relationship at the abutment top

is illustrated in Figure 1.2. The capacity of the abutment, intended as the maximum

value of the lateral force, was measured to be approximately 2150 kN reached at a

lateral displacement of about 5 cm, that is 3 % of the abutment height. After the

maximum value, the lateral force shows a slight softening up to the residual capacity

of approximately 2000 kN, which was mobilised for a displacement of about 8.5 cm

(5 % of the abutment height). The initial tangent stiffness of the backbone curve

resulted equal to 1.58 · 105 kN/m. These tests provided also information about the

surface cracking patterns, showing systematically a log-spiral-shaped sliding surface

developing in the backfill when the horizontal abutment capacity is attained, as

depicted in Figure 1.3.
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Figure 1.3: Log-spiral-shaped sliding surface associated with the backfill failure, obtained from the
UCLA tests (reproduced from Stewart et al. 2007).

1.2.2 Numerical simulations of the mobilisation of the passive resistance

of bridge abutments

After the experimental tests illustrated in the previous paragraph, several numerical

simulations have been carried out to reproduce the observed progressive mobilisa-

tion of the passive resistance in the backfill. Shamsabadi et al. (2010) carried out

two- and three-dimensional finite element simulations on soil-abutment models of

the UCLA and the UCD tests, using the software package PLAXIS (Vermeer and

Brinkgreve 1998). The hardening soil model (Schanz et al. 1999) was used to re-

produce the behaviour of the backfill soil. Each simulation comprised two analysis

steps: a first stage in witch gravity was applied and a subsequent step in which the

wall was pushed into the backfill with prescribed displacements until passive failure

occurred. The backfill failure obtained by the three-dimensional plane strain anal-

yses is displayed in Figure 1.4, revealing the formation of a passive wedge within

the abutment backfill. The shape of the ultimate band of localized shear strain is

consistent with that of a logarithmic spiral curve and the cracking patterns observed
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Figure 1.4: Three-dimensional plain-strain backfill failure obtained in finite element simulations of
the UCLA tests (reproduced from Shamsabadi et al. 2010).

by Stewart et al. (2007). The resulting lateral force-displacement backbone curves

are shown in Figure 1.5, which are in quite a good agreement with the experimental

data from the UCLA test. The upper bound and lower bound curves refer to a dif-

ferent calibration of the strength parameters of the soil model. Similarly, numerical

simulations of the UCD tests, represented in Figure 1.6, gave a good comparison

between the experimental data and the numerical evaluations (Shamsabadi et al.

2010).

The two validated numerical models described above were then used to carry

out a parametric study on the effect of the backwall height that finally led to the

definition of empirical models to predict systematically the progressive mobilisation

of the passive resistance in the backfill.

1.2.3 Empirical relationships for lateral pressure and displacement

Shamsabadi et al. (2005, 2007) proposed a model to predict the longitudinal re-



CHAPTER 1. SOIL-ABUTMENT-SUPERSTRUCTURE INTERACTION 22

17 /22

Figure 1.5: Lateral force-displacement backbone curves from three-dimensional FE simulations
versus data from the UCLA test (reproduced from Shamsabadi et al. 2010).

17 /22

Figure 1.6: Lateral force-displacement backbone curves from two- and three-dimensional FE sim-
ulations versus backbone data from the UCD abutment test. (reproduced from Shamsabadi et al.
2010).
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Figure 1.7: Hyperbolic force-displacement formulation proposed by Shamsabadi et al. (2005).

sponse of seat-type bridge abutments, from small strain levels up to the mobilisa-

tion of the passive resistance in the backfill, considering a longitudinal external force

pushing the backwall into the backfill. They employed limit-equilibrium methods

using logarithmic-spiral failure surfaces coupled with a modified hyperbolic law to

estimate the nonlinear force-displacement relationship at the abutment top, shown

in Figure 1.7. The model was initially validated against the experimental data from

the UCD and UCLA tests, compared in Figures 1.8 and 1.9 respectively, and against

the data measured by Fang et al. (1994) obtained from a small-scale laboratory test,

in Figure 1.10.

The hyperbolic model was generalised to the case of a generic height of the

backwall by introducing some height adjustment factors in the expression of the

backbone curve, which therefore assumes the following form

F (y) =
ar · y

H + br · y
·Hn

(1.6)

H = H/Hr (1.7)

in which Hr is the reference abutment height and H is the effective abutment

height of the problem under examination; ar and br are instead empirical coefficients

that specialise according to the specific mechanical properties of the backfill.
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Figure 1.8: Comparison between the model proposed by Shamsabadi et al. (2005) and the data
from the UCD abutment tests (reproduced from Shamsabadhi et al. 2007).

17 /22

Figure 1.9: Comparison between the model proposed by Shamsabadi et al. (2005) and the data
from the UCLA abutment tests (reproduced from Shamsabadhi et al. 2007).
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Figure 1.10: Comparison between the model proposed by Shamsabadi et al. (2005) and the exper-
imental results on the passive capacity of Fang’s wall in loose sand (Fang et al. 1994) (reproduced
from Shamsabadhi et al. 2007).

From a numerical point of view, the authors introduced the hyperbolic formu-

lation in the seismic analysis of the bridge structure as a nonlinear spring element

connected to the end of the deck. This model provides a unilateral deformable

constraint for the deck that is activated only when the deck moves towards the

backfill, under the assumption that the deck-abutment interaction is only due to the

pounding of the deck against the backwall. This behaviour was reproduced in the

numerical model of the structure through a gap element connected in series with the

nonlinear spring.

The model above represented a relevant step forward in accounting for soil-

abutment-superstructure interaction in the structural analysis, for its pronounced

nonlinear behaviour and its simple application in numerical simulations. Its em-

ployment in dynamic simulations is however limited to the longitudinal response

of bridge abutments towards the attainment of the passive resistance in the backfill

and therefore it does not take into account the different plastic mechanisms that can

occur for different load directions. It does not have a loading-unloading law nor a

frequency-dependent response, that are essential features to simulate the behaviour

under dynamic conditions.
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Nowadays, this displacement-performance philosophy is beginning to be accepted

also in engineering practice, for example in the current criteria for seismic design

of bridges in the US (Caltrans 2010) the complete horizontal load-displacement

backbone curve of the abutment backwall is required. A better understanding of

the nonlinear behaviour of the soil-abutment system has also led to explore the

dissipative capabilities of bridge abutments under earthquake loading as a means

for a higher anti-seismic control of the bridge. The solutions proposed in this regard

can be grouped into studies on local dissipative mechanisms, usually localised in

the structural members of the abutment, and on global mechanisms, that instead

intervene on the mechanical properties of the backfill.

The studies of the local dissipative mechanisms aim to dissipate seismic energy

through the local yielding in the backwall (Mitoulis and Tegos 2005, Mitoulis and

Tegos 2010, Wang and Brennan 2015) or through the sliding of the deck on the

shear keys placed on the abutment top (Vasseghi 2008). Looking at the global

mechanisms, instead, in 2005 Ling et al. presented an experimental study of the

earthquake performance of modular-block reinforced soil retaining walls, based on

large-scale shaking table tests. The reinforcement in the backfill consisted of geogrids

frictionally connected to the facing blocks of the wall. It was shown that the geogrids

can improve the performance of the abutment, in terms of displacement field and

stress concentration in the backfill induced by the earthquake. In a subsequent

research (Ling et al. 2005), the optimal reinforcement length and spacing were

analysed through a parametric study on finite element models of the soil-abutment

system.

A relevant source of energy dissipation for an abutment can be represented by

the full-strength mobilisation in the soil and in the foundation piles during the

earthquake (Callisto and Rampello 2013). Foundation piles are usually employed

to carry large vertical loads, minimising the settlements of the abutment structure
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and, consequently, of the approaching slab. However, under severe ground shak-

ing, the flexural behaviour of the piles comes into play and the foundation tends

to exhibit a limited capacity. Flexural yielding is a favourable mechanism for an

abutment because of its ductility and can result in reasonable internal forces in the

superstructure. A typical plastic mechanism activated when the full strength of the

system is mobilised is illustrated in Figure 1.11. The piles attain their strength ac-

cording to a long pile mechanism, with depth of the second plastic hinge depending

on the row considered because the yielding moment is a function of the axial load

acting in the pile. The sum of the horizontal forces carried by each pile when the

plastic mechanism is activated provides an upper bound of the seismic forces that

can be transmitted to the superstructure. Hence, an appropriate design of a piled

foundation may constitute a valid base isolation technique for the abutment. This

methodology imposes a performance-based design of the abutment in which the

adequacy of the foundation is related to the predicted seismic displacements and

the corresponding damage undergone by the energy-dissipating structural elements,

which in turn can be expressed by the curvature ductility demand.

The above discussion demonstrated that the three central points of the dynamic

soil-abutment-superstructure interaction (frequency-dependence, inertial effects and

nonlinear behaviour) are often analysed for different purposes. The frequency-

dependent response of the soil-abutment system and the relative inertial effects are

of primary interest in the structural analysis. Accordingly, their evaluation is based

on simplified representations of the soil-abutment system, under the assumption of

visco-elastic behaviour of soil. On the other hand, the investigations of the local

abutment behaviour provide an advanced description of the mechanical behaviour

of soil but a very rough, and often absent, representation of the abutment-deck in-

teraction. Returning to the central point of the matter, in order to have manageable

numerical models with a limited computational demand, the local response of the
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Figure 1.11: Plastic mechanism activated when the full strength of the system is mobilized (repro-
duced from Callisto and Rampello 2013).

abutment is usually disconnected to the behaviour of the entire bridge structure,

without the possibility to quantify these effects on the global seismic performance of

the bridge. In the following, a brief review of the two main analysis approaches that

can be employed to analyse soil-structure interaction is presented, as an introductory

stage to the semi-direct methodology proposed in the present research.

1.3 Direct approach and substructuring in soil-structure interaction

In principle, either the direct method or the substructure approaches may be used

to analyse soil-structure interaction (Kramer 1996). The direct approach entails

the use of coupled analyses on a numerical model of the entire soil-bridge system,

simulating the propagation of seismic waves from the bedrock up into the struc-

tural members. Hence, the soil-structure interaction effects are implicitly taken into
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account in a direct approach. Even though this approach allows to explore the dy-

namics with high nonlinear features in the geometry or in the mechanical behaviour,

it requires extremely large computational efforts, becoming practically unfeasible for

large structures such as bridges, especially at the design stage. Moreover, a full nu-

merical model, including a global representation of the structure and the soil domain

from the foundation level down to the bedrock, is hardly manageable either in its

implementation or in the interpretation of the results.

Following a substructure approach, instead, the propagation of seismic waves

through the foundation soils is studied separately from the dynamic response of the

structure and the seismic actions obtained at the foundation level are then applied

to a modified global model of the structure to account for soil-structure interaction.

Hence, this approach would appear as a useful tool to limit the computational effort

but, as commented in the previous paragraph, the challenging point for a proper use

of the method consists in finding an adequate representation of the interacting be-

haviour of the abutment with the soil. To this end, an attracting method to account

for the multiaxial, nonlinear interaction between soil and structure in the structural

analysis consists in defining a macro-element representation of the geotechnical sys-

tem able to describe its response from small strain levels up to failure (Roscoe and

Schofield 1956, Roscoe and Schofield 1957, Nova and Montrasio 1991).

1.4 Macro-element representations in geotechnical engineering

A macro-element is a constitutive model in which the stress and deformation tensors

are replaced by the resultant vectors of forces and corresponding displacements, with

respect to which a suitable chosen elastic-plastic law is formulated. In this view,

several formulations are available to describe the multi-axial response of shallow

foundations (Paolucci 1997, Crémer et al. 2001, di Prisco et al. 2003, di Prisco et
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al. 2006, Rha and Taciroglu 2007, Salciarini and Tamagnini 2009, Chatzigogos et al.

2011, Venanzi et al. 2014, Li et al. 2015) and some studies have been proposed for

deep foundations (Gerolymos and Gazetas 2005, Rha and Taciroglu 2007, Correia

2011, Correia et al. 2012, Gerolymos et al. 2015, Houslby et al. 2017, Di Laora et

al. 2018).

The nonlinear response of a macro-element can be regarded as a transition phase

towards the limit conditions of the soil-structure system, which can be represented

by a failure surface in the space of the generalised forces exchanged between the

structure and the soil (Nova and Montrasio 1991, Butterfield and Gottardi 1994).

The bearing capacity of shallow foundations under combined loads has been widely

studied (Gottardi and Butterfield 1995, Houslby et al. 1993, Gottardi et al. 1999,

Martin 1994, Martin and Houlsby 2000, Martin and Houlsby 2001, Houlsby and Cas-

sidy 2002, Cassidy et al. 2004, Bienen et al. 2006, Chatzigogos et al. 2011) and, for

a three degrees of freedom rigid foundation, it can be represented by the well-known

rugby ball-shaped surface of ultimate loads illustrated in Figure 1.12. The ultimate

locus is conveniently represented in a normalised space of the generalised forces, in

which QN and QV are the normalised vertical and horizontal forces, respectively,

and QM is the normalised moment. The surface is symmetric with respect to the

planes {QN , QV } and {QN , QM}, reflecting the symmetry of the problem, and it is

entirely contained in the half-space of the positive values of the vertical force QN .

A zero vertical force, in fact, is associated with the uplift of the foundation with

respect to the underlying soil. The ellipsoidal shape of the ultimate surface is the

result of several non-linear mechanisms representing the ultimate conditions of the

foundation. An interesting modelling of these mechanisms was presented by Chatzi-

gogos et al. (2011), who modelled the surface of ultimate loads as the combined

result of all active mechanisms, as shown in Figure 1.13. The external ellipsoidal

bounding surface fBS(Q) = 0 represents the ultimate conditions of a foundation
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corresponding to the global mobilisation of the soil strength, when the foundation

is not allowed to slide. As observed experimentally, however, this condition can be

reached only when the vertical force is much greater than both the moment and the

horizontal force. If a rough soil-foundation interface is considered in fact, with a

friction angle φint, the admissible domain in the {QN , QV } plane reduces, because

it is further bounded by the surface fint(Q) = 0 associated with the attainment

of the shear strength along the soil-foundation interface. The moment can cause

the uplift of the foundation, identifying a region of the admissible domain, starting

from the uplift initiation up to the toppling limit, in which the behaviour of the

soil-foundation system is strongly nonlinear because of the partial contact between

soil and foundation.

The irreversible displacements of a shallow foundation follow the normality rule

only when the bearing capacity of the foundation is reached, thus for high values of

the vertical force compared to the other components, as demonstrated by Gottardi

and Butterfield (1995) through an experimental study of the nonlinear behaviour

of shallow foundations. In this regard, Figure 1.14 shows the trajectories of the

displacements in the plane of the forces acting on the foundation, obtained along

different loading paths. Along radial loading paths it can be observed that, when

the horizontal force V and the equivalent force M/B are comparable with the ver-

tical force N , the increment of the horizontal displacement is limited compared to

that in the vertical direction, resulting in a plastic flow mainly oriented towards

the vertical direction. Along “right-angled” loading paths (Figure 1.14(b)), instead,

the displacement increment can be reasonably assumed purely horizontal when the

horizontal force is greater than the vertical one.

The behaviour at failure described above was also extended to the case of a six

degrees of freedom foundation by several authors (Martin 1994, Martin and Houlsby

2000, Martin and Houlsby 2001, Houlsby and Cassidy 2002, Cassidy et al. 2006,
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Figure 1.12: Ultimate surface for a 3 degrees of freedom shallow foundation on sand. Reproduced
from Gottardi and Butterfield (1995).

(a)

(b)

Figure 1.13: Modelling of the failure mechanisms of shallow foundations on cohesive soil in the
QN −QM plane (a) and QN −QV plane (b) (reproduced from Chatzigogos et al. 2011).
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Figure 1.14: Hardening yield surfaces and displacement increment vectors along radial (a) and
“right-angled” (b) loading paths (dotted lines) (reproduced from Gottardi and Butterfield 1995).

Grange et al. 2009). In his PhD thesis, Martin (1994) proposed a general expression

to model failure of shallow foundations according to the following empirical equation

y(ult) =

(
V1
h0

)2

+

(
V2
h0

)2

+

(
Mr1

l0

)2

+

(
Mr2

l0

)2

+

(
Mr3

x0

)2

−

− 2 · a
h0 · l0

· (V2 ·Mr1 − V1 ·Mr2)−

−N2·β1 ·
(
1− N

Nmax

)2·β2

·Nmax(2−2·β1) = 0 (1.8)

where h0, l0, x0, a, β1 and β2 are model constants; the reader can refer to Mar-

tin (1994) for explanation on their physical meaning. Eq. 1.8 degenerates in the

ellipsoidal ultimate surface illustrated in Figure 1.12 in the case of a bi-dimensional

problem.
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(b)

Figure 1.15: Interaction diagram for a row of 4 identical, equally spaced piles loaded by an eccentric
vertical force. Reproduced from Di Laora et al. (2018).

Figure 1.16: Interaction diagram in the {Qu,Mux,Muy} space. Reproduced from Di Laora et al.
(2018).
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Some formulations of the ultimate surface are also available for deep founda-

tions (Gerolymos and Gazetas 2005, Correia 2011, Correia et al. 2012, Gerolymos

et al. 2015, Di Laora et al. 2018). Di Laora et al. (2018) proposed interaction

diagrams representing the bearing capacity of pile groups under vertical eccentric

loads, obtained through the application of the theorems of limit analysis. The two-

dimensional vertical force-moment diagram for a row of 4 identical, equally spaced

piles is shown in Figure 1.15, in which the pile group fails by a cap rotation about the

head of the pile with a full attainment of their ultimate axial strength, with except

of the pile corresponding to the center of rotation. A more general representation of

the ultimate locus is provided by the same authors in Figure 1.16, considering both

moments in the horizontal plane. Under horizontal loads, Gerolymos and Gazetas

(2005) and Gerolymos et al. (2015) provided a further version of the ultimate sur-

face for a pile group, shown in Figure 1.17, that testifies again the important role

played by the inelastic response of the piles. In fact, the main difference between

the surfaces of shallow and deep foundations is that failure of a shallow foundation

is essentially due to the activation of a global plastic mechanism in which the soil

strength is mobilised, along the soil-foundation contact or in the volume of soil in-

teracting with the footing, but the structural elements behave essentially as a rigid

body with infinite strength; for a group of piles, instead, a global plastic mechanism

generally involves the attainment of the bending or shear strength in the piles. This

leads to a different shape of the surface and a different normalization scheme: the

surface for shallow foundations is commonly normalised with respect to the verti-

cal limit load while the ultimate loads for a soil-piles system are more conveniently

divided by the yield threshold of the pile.

The elastic-plastic response of a macro-element is conceptually able to repro-

duce the essential features of the dynamic behaviour of a soil-structure system, such

as a marked nonlinear response, with a relevant dynamic amplification due to the
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Figure 1.17: Ultimate surface for deep foundations. Reproduced from Gerolymos et al. (2015).

frequency-dependent effects, and the more or less pronounced directional properties

of the system, according to its geometry. In this regard, several approaches have

been employed to reproduce the dynamic characteristics of shallow foundations, de-

veloped according to different frameworks. The central point in defining the internal

constitutive law of a macro-element consists in defining the tangent stiffness matrix

of the global system. Without going into the details of the various models proposed

in the past, some formulations used empirical relations for the terms of the stiffness

matrix (Cremer et al. 2001, Chatzigogos et al. 2009, Chatzigogos et al. 2011),

easily implemented in dynamic simulations, while some others were developed fol-

lowing rigorous analytical approaches, such as the hypoplastic models proposed by

Salciarini and Tamagnini (2009), Buscarnera et al. (2010) and Venanzi et al. (2014).

Also a thermodynamic model was developed for shallow foundations by Le Pape and

Sieffert (2001), that represents the first attempt to derive a macro-element consis-

tent with the dictates of Thermodynamics. The model was formulated considering

a parabolic surface to represent the ultimate conditions of shallow foundations with

an associative plastic flow.

For deep foundations, the model proposed by Correia (2011) represents a first

formulation aimed to describe the nonlinear behaviour of a soil-pile system far from
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failure. This is a bounding surface plasticity model for the pile-head resultant gener-

alised forces and corresponding displacements, coupled with initial elastic impedance

functions, that reproduces the elastic-plastic behaviour from small strains up to the

ultimate conditions of the system.

For bridge abutments, only some models have been proposed (Shamsabadi et al.

2005, Shamsabadi et al. 2007), already discussed in Section 1.2.3, which focus on

the one-dimensional mobilisation of the passive resistance in the backfill. A more

recent study proposed by Nojoumi (2016) represents the first model simulating the

combined translational and rotational behaviour of bridge abutments, particularly

relevant for skew bridges. The method accounts for the nonlinear contact-gapping

between the backwall and the backfill responses along three degrees of freedom of

the deck-abutment contact, the transverse and the longitudinal translations and

the skew moment along the vertical axis, according to a purely phenomenological

formulation.

The literature review has briefly recalled the main advancements in the study

of the soil-abutment-superstructure interaction, mentioning the results and meth-

ods that have been fundamental for developing the complementary macro-element

methodology proposed in the present thesis.



Capitolo 2

A complementary macro-element

approach

2.1 A step forward: two complementary macro-elements

A step forward is proposed in this thesis to link the abutment response and the bridge

response in a semi-direct manner, to confer a high computational efficiency to the

analysis method. The term semi-direct indicates that the methodology presents

the essential characters of a sub-structure approach, in which the entire soil-bridge

domain is divided into two sub-systems but with the introduction in the latter of

two macro-elements that incorporate the response of the missing part of the model.

This is a macro-element method that accounts for the salient aspects of the soil-

abutment-superstructure interaction in a complementary way, in order to have a

structural analysis and a geotechnical analysis that communicate by means of the

internal responses of the macro-elements. The two models consist of a macro-element

of the soil-abutment system, conceived as a part of the global structural model of

the bridge to simulate the salient aspects of the soil-abutment interaction, and a

macro-element of the bridge structure, included in the local soil-abutment model,

38
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that simulates the global effects of the multi-directional dynamic response of the

superstructure. The methodology has been coded in Matlab and in the analysis

framework OpenSees (McKenna 1997, McKenna et al. 2000) and validated in non-

linear dynamic analyses, taking as reference a full soil-bridge model inspired by a

real case study in Italy.

2.2 The analysis framework OpenSees

The system modelling and response computations was performed by using the open

source finite element analysis framework OpenSees (McKenna 1997, McKenna et al.

2000) (Open System for Earthquake Engineering Simulation) while the mesh of the

models was generated and visualised through the pre/postprocessor software GID

(Diaz and Amat 1999). OpenSees is a software framework for developing sequential,

parallel and grid-enabled finite element applications in the field of civil engineering

and it offers a high potentiality to reach an accurate modelling of the behaviour of

both soil and structures. The continuous development of OpenSees is due to the

participation to this project of a wide international scientific community that works

to develop the code according to the new challenges in computational engineering.

Though it was created for structural analysis, several constitutive models and finite

elements have been added during the last decade to carry out dynamic simulations

of geotechnical systems. Nowadays, OpenSees represents a powerful numerical tool

to investigate the dynamic behaviour of soil-structure systems, considering a variety

of natural hazards. Several methods of analysis can be used to solve the governing

equations according to the specific problem examined.

OpenSees is an object-oriented framework for finite element analysis. The Tcl

scripting language has been chosen to support the OpenSees commands, which are

used to define the problem and its solution. Each of these commands is associated
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Figure 2.1: Flow chart illustrating the common structure of an OpenSees input file.

with a C++ procedure that is provided by a source code included in the OpenSees

library. The common structure of an input script in OpenSees can be represented by

the flow chart in Figure 2.1. As mentioned above, the scripts of very large models,

such as those involved in the present research, require the use of a pre/post processor

software to generate the mesh. The nodal and element information is then imported

in the main Tcl script. After defining the boundary conditions, the appropriate

typologies of finite elements for the problem at hand are assigned to the mesh and

the relative output is set up. As a conclusive step, a model of analysis is assembled

by setting the most appropriate features needed to optimise the computation.

Parallel computing can be obtained through the OpenSeesSP (Single Parallel

Interpreter application) and OpenSeesMP (Multi Parallel Interpreter application)
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applications (McKenna and Fenves 2008) that can be built from the OpenSees source

code distribution. This was an essential feature to optimize the computation time for

the non-linear time domain analyses of this research. The OpenSeesSP interpreter

is conceived for the analysis of very large models with input files that take too

long to run on a sequential machine (single processor). The interpreter will process

the same script that the OpenSees interpreter running on a sequential machine will

process, except for some additional options when it comes to choosing solvers. When

running on a parallel machine, a single processor P0, called master processor, is

running the main interpreter and processing commands from the main input script.

The other processors are running ActorSubdomain objects (McKenna 1997). On

the first issuance of the analyze() command in the script the model is partitioned,

that is the elements are split and distributed by the master processor to the other

machines. After this, the state and solving of the system of equations is done in

parallel, depending on the choice of equation solver. When running as a job on a

parallel computer with this interpreter, each process is running a slightly modified

version of the basic OpenSees interpreter. This interpreter is particularly suitable for

wide parametric studies, composed of numerous analyses running together, because

able to partition the number of analyses to be run and the number of processors to

be assigned to each analysis. Hence the OpenSeesSP interpreter solves a system of

equations following a highly hierarchical structure: the master processor executes

the commands of the main input script and partitions automatically the solving

process among the other processors, for then reassembling the whole solution. The

Multi Parallel interpreter, instead, allows to prescribe a specific partition of the

processors and to run simultaneously many simulations among different machines.

The latter interpreter results to be more efficient than OpenSeesSP but requires a

more substantial modification of the main input script.

In the present research, time domain nonlinear dynamic analyses were carried out
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implementing large soil-structure interaction models. The use of parallel computing

was therefore needed, obtained through the OpenSeesSP interpreter, in order to

optimise the computation time of the analyses. The efficiency of parallel computing

on the two workstations used to carry out the dynamic simulations (see Section

3.6.5), intended as the ratio of the execution time using all the processors of the

machine to that associated with the use of a sole processor, was of 80− 85 %.

One of the main advantages in using OpenSees consists in the possibility to

integrate continuously the existing library with the new features needed to solve the

specific problem under examination. In this regard, the mathematical formulation of

the macro-element of bridge abutment was coded in OpenSees, generating two new

source codes, written in C++, for the OpenSees library according to the procedure

described in Section 5.12. The one-dimensional model was formulated as a new

Uniaxial material class while the complete multi-axial formulation was included in

OpenSees as a new ZeroLength finite element class.



Capitolo 3

The case study of the Pantano

viaduct

3.1 Description of the case study

The Pantano viaduct was designed as the approaching structure to the Messina

Strait suspension bridge, in Italy (Brancaleoni et al. 2010). As shown in Figure 3.1,

the Pantano viaduct starts at the terminal structure of the suspension bridge and

ends on a massive abutment situated on the Messina side.

The site of the bridge is characterized by a high seismicity due to the presence of

several segmentations of active faults. The bridge was designed to transmit most of

the longitudinal seismic forces to the abutment, that consequently would be loaded

by large seismic actions. Figure 3.2 shows a global structural model of the viaduct

implemented in SAP2000 and OpenSees in a preliminary stage of this study. The

viaduct is a girder bridge composed of three curved decks, a central railway and two

lateral roadways, which are supported by five piers, by the terminal structure of the

suspension bridge and by the abutment.

The abutment, whose detailed representation is shown in Figure 3.3, is a massive

43
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Figure 3.1: View of the Messina Strait suspension bridge, reproduced from Callisto and Rampello
(2013) (upper figure), and zoomed-in view of the Pantano viaduct (lower figure).
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Figure 3.2: Global structural model of the Pantano viaduct implemented in SAP2000.



CAPITOLO 3. THE CASE STUDY OF THE PANTANO VIADUCT 45

(a)

(b)

abutment wall

backfill
embankment

foundation

diaphragm wall

Messina gravels

5

13
.4

6

17

longitudinal direction

Figure 3.3: Geometry of the abutment of the Pantano viaduct (a) and its three-dimensional mod-
elling in OpenSees (b).

reinforced concrete structure resting on a foundation slab in contact with the Messina

Gravels. The central wall has a height of 13.5 m and a thickness of 5 m, while the

dimensions of the foundation are 17 m and 65 m in the longitudinal and transverse

direction, respectively. Because of its large strength compared to the superstructure

and the soil, it is reasonable to assume that the abutment exhibits an elastic response

under seismic conditions.

From the case study of the Pantano viaduct, a simplified soil-structure system

was conceived, reflecting the main mechanical properties of the Pantano subsoil



CAPITOLO 3. THE CASE STUDY OF THE PANTANO VIADUCT 46

and including an idealised representation of the structure, which constituted the

reference model for the validation of the macro-elements of the bridge structure and

of the soil-abutment system.

3.2 The Pantano subsoil

In earlier years, an extensive geotechnical program was carried out along the entire

development of the Messina Strait suspension bridge, with laboratory testing and in

situ investigation (Crova et al. 1993, Jamiolkowski and Lo Presti 2002, Brancaleoni

et al. 2010, Fioravante et al. 2012). Most of the samples were retrieved in corre-

spondence of the foundations of the bridge, thus the locations of the two towers, the

two anchor blocks and along the Pantano viaduct. The geotechnical characteriza-

tion and the subsoil model underlying the main structure of the suspension bridge

were largely discussed in some earlier works by Callisto and Rampello (2013) and

Rampello et al. (2014), while the subsoil of the Pantano viaduct, which basically

constituted the soil domain for the soil-structure interaction models developed in

this study, is described in detail in the following.

3.2.1 Geotechnical model of the subsoil

Based on the geotechnical characterization, a subsoil model of the entire Pantano

viaduct was realised, whose stratigraphy is illustrated in Figure 3.4. The abutment

is located on top of a slope that starts in correspondence of the foundation of the pier

P3 and goes up with an average inclination of 17°. Approaching the coastline, that is

close to the terminal structure, the ground level becomes flat and can be assumed at

the same altitude as the sea level. The ground water table coincides with the sea level

in all the area of the viaduct. This implies that from the abutment foundation down

to a depth of 30 m the soil is essentially dry for then becoming completely saturated.
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Figure 3.4: Subsoil profile for the Pantano viaduct.

In the area of the abutment, the subsoil is composed of a series of horizontal layers:

a first thick layer of Messina Gravels extends down to a depth of 245 m from the

abutment foundation, followed by the Continental Deposits extending down to the

bedrock, the latter located at a depth of 445 m.

The Messina Gravels (MG) are made of gravel and sand with occasional silty

levels. Three sub-layers can be identified characterised by the same granulometry

but presenting different stiffness properties, named MG1, MG2 and MG3. The

superficial layer MG1D is identical to the underlying layer MG1 but the former is

located over the ground water table and therefore presents a reduced unit weight.

The Continental Deposits (CD) are a clayey-sandy deposit, consisting of layers of
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silt or silt and sand, with significant gravel content/Bio-calcarenite and fossiliferous

calcarenite, with thin silty layers. The Pezzo Conglomerate (PC) is instead a soft

rock, consisting of clasts of different dimensions in a silty-sandy matrix and sand-

stone. This layer was regarded as a deformable bedrock for the site of the bridge.

The general features of the subsoil profile keep almost unaltered in correspon-

dence of the pier foundations and the terminal structure. The major difference is

that, starting from the pier P2 and moving towards the sea, a superficial layer of

Coastal Deposits (SD) is encountered. The thickness of this formation increases

progressively moving inwards the sea from the coastline, following an inclination

that is approximately equal to that of the sloping ground underneath the viaduct,

varying from about 45 m at the terminal structure to about 80 m at the Sicily tower

location. The SD layer is composed of sand and gravel with little or no fine con-

tent. This layer has essentially the same mineralogy as the Messina Gravels, except

for some levels of cementation bonds, due to the modest presence of fine content,

that provides a higher stiffness compared to the MG layer. In fact, in Figure 3.5

it is evident the similarity between the Grain Size Distribution curve (GSD) of the

Messina Gravels and the curve associated with the Coastal Deposits. The statistical

parameters, mean trend and standard deviation, were determined on a number of

GSD curves deriving from reconstituted samples of MG and SD. In virtue of this

result, the experimental results obtained from a large number of tests carried out

on the Coastal Deposits were also used as additional information to characterise the

MG layer. From the GSD, an average value of 2.7 mm can be assumed for the

diameter D50, that can be used for evaluating the maximum variability of the void

ratio emax − emin = 0.23 + 0.06
D50

= 0.252 (Cubrinovsky and Ishihara, 1999) used in

the design of the embankment. The latter, in fact, was initially assumed made of

the in situ soil, since the good mechanical properties of the Messina Gravels.

The main physical-mechanical properties of the soil layers in the area of the
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Figure 3.5: Grain size distribution of the Messina Gravels and of the Coastal Deposits.

Layer Symbol γ (kN/m3) e (-) DR (%) k (m/s) K0 (-) ν (-)
Messina Gravels 1D MG1D 19.8 0.35 45 10−4 0.65 0.2
Messina Gravels 1 MG1 22.0 0.35 45 10−4 0.65 0.2
Messina Gravels 2 MG2 22.0 0.35 45 10−4 0.65 0.2
Messina Gravels 3 MG3 22.0 0.35 45 10−4 0.65 0.2

Continental Deposits CD 22.0 0.30 50 - 0.50 0.2
Pezzo Conglomerate PC 23.5 0.20 - - 0.70 −

Tabella 3.1: Physical properties of the soil layers in the area of the Pantano abutment.
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Pantano abutment are reported in Table 3.1. The symbol zl denotes the lower

boundary of the layer. The unit weight γ and in-situ void ratio e were evaluated from

cross-hole tests and laboratory tests on frozen undisturbed samples. The relative

density DR was obtained from the results of in-situ penetration tests, employing the

procedures proposed by Skempton (1986) and by Cubrinovsky and Ishihara (1999).

The permeability of the granular layers was evaluated using site measurements, such

as well pumping tests and Lefranc tests, and the empirical correlations proposed

by Breyer (ref. Odong. 2007) and by Terzaghi and Peck (1964). For normally

consolidated soils, the coefficient of earth pressure at rest K0 was estimated from

the relative density DR referring to Baldi et al. (1985) and from the angle of shearing

resistance ϕ′ (Jaky 1948). In the area of the abutment, erosion phenomena of the

Messina Gravels are less important than on the site of Sicily tower so that deviation

of K0 from its normally consolidated value is mainly due to aging effects. Therefore,

in this case the empirical relationship proposed by Mesri and Castro (1989) was used

to estimate the relative K0.

The Poisson’s ratio ν and the strength of the Messina Gravels were evaluated

through the numerous laboratory tests carried out on reconstituted samples of

Coastal Deposits and on 3 frozen undisturbed samples of Messina Gravels (Jami-

olkowski and Lo Presti 2002, Fioravante et al. 2012), the latter retrieved by using the

freezing technique. The results of 22 monotonic, isotropically consolidated triaxial

tests under drained conditions (TRIAX-CID) are depicted in Figure 3.6. The recon-

stituted samples of Coastal Deposits were prepared at relative densities of 40 %, 60

% and 80 %. The samples exhibit different behaviours, from a purely contractant

response to a pronounced dilation, due to the different initial state of the samples.

Figure 3.7 instead shows the behaviour exhibited by the undisturbed frozen samples

of Messina Gravels in three monotonic undrained triaxial tests (TRIAX-CIU), with

a decided tendency to dilate in all the three tests. The strength envelope in the
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Symbol c (kPa) ϕ′
cv (°) ϕ′

p (°)

MG1D 0 38 40
MG1 0 38 40
MG2 0 38 40
MG3 0 38 39
CD 0 39 39
PC 160 42 42

Tabella 3.2: Stength parameters of the soil layers in the area of the Pantano abutment.

q − p′ plane is shown in Figure 3.8 and the strength parameters are summarised in

Table 3.2. As expected, the effective cohesion is null for all layers above the bedrock

because the subsoil is composed by coarse-grained soils. The angle of peak shearing

resistance ϕ′
p was evaluated from the relative density DR, the in-situ stress state and

the angle of shearing resistance at constant volume ϕ′
cv according to the empirical

correlation proposed by Bolton (1984).

The Li and Wang curve (Li and Wang, 1998) was adopted to describe the Critical

State Line (CSL) in the e− p′ plane, that reads

ec = e0 − λc ·
(

p′c
patm

)ξ

(3.1)

in which the exponent ξ is taken equal to 0.7, as suggested by the authors. The

void ratio e0 at p′ = 0 and the coefficient λc were instead evaluated by determining

the exponential trendline of the points at Critical State plotted in the plane e −

(p′/p′atm), shown in Figure 3.9. Although the scatter of the experimental data is

significant, a Critical State Line CSL for the Messina Gravels may be expressed as

ec = 0.448− 0.0219 ·
(

p′c
patm

)0.7

. (3.2)

The relative position between the CSL found above and the initial states of the

samples is represented in Figure 3.10, together with the in-situ evaluation of the void

ratio (thin continuous line). The two shadow zones refer to the significant intervals
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Figure 3.6: Stress-strain relationships for Coastal Deposits reconstituted samples for three values
of the relative densityDR of 40%, 60% and 80%.
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Figure 3.7: Behaviour exhibited by undisturbed frozen samples of Messina Gravels in TRIAX-CIU
tests.
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Figure 3.8: Strength envelope for Coastal Deposits reconstituted samples and Messina Gravels
undisturbed frozen samples.
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Figure 3.9: Determination of the parameter λc of the CSL proposed by Li and Wang (1998).

of the mean effective stress for the two upper layers MG1D and MG1. It can be

observed that the void ratio of the three undisturbed samples is equal to the value

estimated through the in-situ tests. Down to a depth of about 47 m, corresponding

to p′ = 800 kPa, the soil has a negative state parameter ψ = e − ec < 0 (Been and

Jefferies, 1985), that is in agreement with the behaviour exhibited by the undisturbed

samples in the TRIAX-CIU tests. For greater depths, the soil response is expected

to become progressively more contractant. It is worth noticing that, although either

reconstituted or undisturbed samples can be considered to identify the CSL, only

the undisturbed frozen samples can be used for a reliable determination of the initial

state of the in-situ soil.

In-situ measurements of shear wave velocity VS, carried out in cross-hole tests in

the area of the Sicily anchor block close to the Pantano abutment, together with

the corresponding evaluation of the small strain shear modulus G0 = ρ · V 2
S are

illustrated in Figure 3.11. Different lines are used to identify different cross-hole
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Figure 3.10: Comparison between the state of the Messina Gravels in the e− p′ plane determined
through laboratory triaxial tests and in-situ cross-hole tests.

tests, performed at a depth of about 100 m, therefore extending throughout the

Messina Gravels. A stiffer superficial stratum is encountered in the first 20 m-depth,

starting from which the stiffness increases quasi-linearly down to about 80 m. In

this interval, the small strain shear modulus ranges between 150 ÷ 500 MPa. At

higher depths, the shear modulus G0 assumes a constant value of about 1000 MPa.

Callisto and Rampello (2013) provided the values of VS for the Continental Deposits

and the Pezzo Conglomerate, equal to 750 m/s and 1700 m/s, respectively. These

values can be considered as representative of the whole formation.

On the basis of the above results, the profile of the shear wave velocity used in

the numerical simulations is represented in Figure 3.12. Above the ground water

table, the shear wave velocity is kept constant equal to 300 m/s. In the layer MG1,

a power law is used to approximate the trend shown experimentally, whose equation

reads
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Figure 3.11: Sicily anchor block: profile of the small strain shear modulus G0 from in-situ tests.

Symbol VS,m (m/s) VP,m (m/s) G0,m (kPa)
MG1D 305 500 1.9 · 105
MG1 400 2600 3.6 · 105
MG2 505 2600 5.7 · 105
MG3 1039 2600 2.4 · 106
CD 750 2600 1.3 · 106
PC 1700 2700 6.9 · 106

Tabella 3.3: Mean stiffness parameters of the soil layers in the area of the Pantano abutment.

VS = A · p′n (3.3)

in which A and n assume the values of 21.82 and 0.44, evaluated through a list

squares fitting procedure. At greater depths, a constant value of the shear wave

velocity was assumed for each stratum, with average values summarised in Table

3.3.

The modulus decay of the superficial layers of Messina GravelsMG1D andMG1

was described by the curve proposed by Seed and Idriss (1970) for coarse-grained
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Figure 3.12: Profile of the shear wave velocity VS adopted in the subsoil model.
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D.N. GORINI, L. CALLISTO dynamic soil-abutment-superstructure interaction for bridge 
abutments

Figure 3.13: Modulus decay curve (Seed and Idriss, 1970) and damping curve adopted for the
layers MG1 and MG1D of Messina Gravels.

soils, in virtue of the similarity of this curve with the experimental results obtained

by Tanaka et al. (1987) for reconstituted gravelly soils. A more gradual modulus

decay was instead assumed for the deeper layersMG2,MG3 and for the Continental

Deposits (Callisto and Rampello 2013). These curves, together with the correspond-

ing equivalent damping ratio ξ, are plotted in Figs. 3.13 and 3.14 as a function of

the shear strain amplitude γa, and they will come into play only in the preliminary

site response analysis with linear visco-elastic medium.

On the three undisturbed frozen samples retrieved in the area of the Sicily tower

of the suspension bridge, 11 cyclic triaxial tests were carried out under undrained

conditions, with 5 tests performed on anisotropically consolidated specimens. In

virtue of the same mineralogy and very similar mechanical properties, the behaviour

of the frozen samples associated with the Sicily tower can be reasonably deemed to

be representative of the behaviour expected at the location of the Pantano abutment.

The set of the undisturbed frozen specimens with their initial properties are reported

in Table 3.4. All the unfrozen specimens have a diameter and a height of 290 mm
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D.N. GORINI, L. CALLISTO dynamic soil-abutment-superstructure interaction for bridge 
abutments

Figure 3.14: Modulus decay curve (Seed and Idriss, 1970) and damping curve adopted for the
layers MG2, MG3 and CD.

and 600 mm, respectively. The sampling depth zs ranges from 15.15 m to 22.00 m

with respect to the sea bed in correspondence of the Sicily Tower (S1− S11).

A detailed description of the specimen preparation and of the test mode was

provided by Fioravante et al. (2012). All the undisturbed specimens were reconsol-

idated to best reproduce the in-situ mean effective stress at the middle of the depth

interval where the undisturbed samples were retrieved. The state of the specimens

after consolidation is described in Table 3.5, in terms of axial effective stress σ′
a,

Specimen Soil Area Test zs (m) e (-)
S1 Messina Gravels Sicily Tower TRIAX CIU 15.15− 15.75 0.232
S2 Messina Gravels Sicily Tower TRIAX CIU 16.05− 16.75 0.271
S3 Messina Gravels Sicily Tower TRIAX CIU 17.15− 17.90 0.230
S4 Messina Gravels Sicily Tower TRIAX CIU 18.20− 19.00 0.303
S5 Messina Gravels Sicily Tower TRIAX CIU 19.00− 19.65 0.312
S6 Messina Gravels Sicily Tower TRIAX CIU 21.30− 22.20 0.299
S7 Messina Gravels Sicily Tower TRIAX CIU 15.37− 16.05 −
S8 Messina Gravels Sicily Tower TRIAX CIU 16.60− 17.28 −
S9 Messina Gravels Sicily Tower TRIAX CIU 17.60− 18.35 −
S10 Messina Gravels Sicily Tower TRIAX CIU 19.05− 19.70 −
S11 Messina Gravels Sicily Tower TRIAX CIU 20.10− 20.80 −

Tabella 3.4: Initial data of the undisturbed frozen specimens.
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Specimen σ′
a (kPa) σ′

r (kPa) εa (%) εv (%) e (-)
S1 180.0 180.0 0.40 0.50 0.196
S2 180.0 180.0 0.30 0.60 0.233
S3 177.5 177.0 0.23 0.54 0.194
S4 179.7 178.2 0.42 0.65 0.263
S5 179.3 178.2 0.30 0.68 0.271
S6 179.9 178.7 0.23 0.46 0.283
S7 181.1 84.2 0.17 0.25 −
S8 180.9 85.2 0.21 0.22 −
S9 181.9 85.1 0.17 0.58 −
S10 179.9 85.1 0.16 0.23 −
S11 182.3 85.0 0.18 0.34 −

Tabella 3.5: State of the frozen specimens after consolidation.

radial effective stress σ′
r, axial strain εa, volumetric strain εv and void ratio e. Note

that for all the specimens the state parameter ψ (Been and Jefferies, 1985) is nega-

tive, therefore a dilatant behaviour is expected during the cyclic undrained triaxial

tests described in the following, that is consistent with the monotonic behaviour

previously shown in Figure 3.7.

After the consolidation stage, the specimen is subjected to a cyclic perturbation

under undrained conditions, that is applied as a harmonic variation of the axial

stress that varies in time with a frequency of 0.25 Hz, keeping constant the radial

stress. The relative results are illustrated in Figures 3.15 to 3.25 (Fioravante et al.

2012), looking at the state of the material in the q−p′ plane and in the q−εa plane,

together with the time evolution of the axial stress in the deviatoric stage ∆σa, of

the excess pore water pressure ∆u and of the pore pressure coefficient ru = u/σ′
r.

Looking at the response of the isotropically consolidated specimens (S1 − S6),

during the test the specimen undergoes a typical response known as cyclic mobility:

as loading proceeds, the pore water pressure increases build up progressively and,

consequently, the effective stress reduces. Liquefaction condition is attained when

the pore water coefficient approaches 1 and hence the effective stress tends to zero,

leading to a drastic increase of the axial strains developed in each cycle. At very

low stress levels, the stress path reaches the Critical State Line and describes the
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well-known butterfly orbit in the q− p′ plane: the stress path starts going back and

forth, following the two branches of the CSL characterised by an inclinationM+ and

M− in compression and in extension, respectively. The resulting axial strains start

developing in a prominent manner and with a more pronounced effect in extension

loading conditions. This probably occurs for the dependence of the Critical State

parameter M on the Lode’s angle. In fact, the asymmetry ratio M+/M− ranges be-

tween 0.87 and 0.92, while the corresponding friction angle varies from 40° to 43° for

the specimens under examination. The number of cycles needed to reach liquefac-

tion decreases with the amplitude of the deviatoric stress q. The greater q the more

rapid the development of positive excess pore water pressure. Since the application

of the first cycle, an alternating dilative (p′ increases) and contractant behaviour

(p′ reduces) is observed. The boundary between these two opposite tendencies is

represented by the Phase Transformation Line (PTL) (Ishihara et al. 1975), which

is characterised by an inclination Md in the q − p′ plane estimated equal to 26° for

the Messina Gravels.

The cyclic response shown by the anisotropically consolidated specimens (S7 −

S11) is qualitatively similar to that described above under isotropic consolidation.

In this case, however, the mean effective stress does not tend to zero since the

parameter ru assumes values not greater than 0.65, attained in test S10 and S11.

The corresponding butterfly orbits are highly asymmetric and the resulting axial

strains accumulate progressively on the compression side of the q − p′ plane, due to

the non-zero deviatoric stress at the end of the consolidation stage. In the other tests,

the pore pressure coefficient does not exceed 0.4 and therefore the cyclic response

essentially depends on the level of anisotropy of the initial stress state, with a not

symmetric alternation between dilative and contractant behaviour since the shorter

distance of the initial stress state from the PTL in compression.

The experimental data shown above were used to calibrate the two advanced con-
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stitutive models chosen to reproduce the dynamic response of the Messina Gravels

in the soil-structure interaction analyses carried out in OpenSees. Even though the

pore water pressures were neglected in the full soil-bridge model (see Section 3.6.2),

the undrained response of the Messina Gravels shown above is however important,

because it allowed to calibrate the cyclic behaviour of the two constitutive models.

3.3 Constitutive models for soil

The mechanical behaviour of soil was described through two different advanced con-

stitutive models, the SANISAND model proposed by Dafalias and Manzari (2004)

and the Pressure Dependent Multi-Yield model (PDMY) developed by Yang et al.

(2003). The choice of these two models was aimed to get an accurate response of

the soil under cyclic loading conditions.

3.3.1 The SANISAND model

The Dafalias and Manzari model is formulated within the Bounding Surface Plastic-

ity framework (Dafalias, 1986) with the aim to simulate an elastic-plastic behaviour

with a mixed kinematic and isotropic hardening rule. Looking at its triaxial rep-

resentation in Figure 3.26, a cone-shaped yield surface surrounds the current stress

state, the latter characterised by a back stress ratio α, starting from which plastic

strains develop as a function of the relative distance of the current stress state from

an external surface, named bounding surface, that controls the hardening of the

material, and from a so-called dilatancy surface that instead influences the plastic

flow. These two external surfaces evolve during plastic loading, depending on the

state of the material identified through the state parameter ψ (Been and Jefferies,

1985), until becoming coincident with the Critical State locus when the ultimate

conditions of the material are attained.



CAPITOLO 3. THE CASE STUDY OF THE PANTANO VIADUCT 64

Figure 3.15: Undrained cyclic triaxial test on the isotropically consolidated undisturbed specimen
S1.
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Figure 3.16: Undrained cyclic triaxial test on the isotropically consolidated undisturbed specimen
S2.
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Figure 3.17: Undrained cyclic triaxial test on the isotropically consolidated undisturbed specimen
S3.
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Figure 3.18: Undrained cyclic triaxial test on the isotropically consolidated undisturbed specimen
S4.
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Figure 3.19: Undrained cyclic triaxial test on the isotropically consolidated undisturbed specimen
S5.
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Figure 3.20: Undrained cyclic triaxial test on the isotropically consolidated undisturbed specimen
S6.



CAPITOLO 3. THE CASE STUDY OF THE PANTANO VIADUCT 70

Figure 3.21: Undrained cyclic triaxial test on the anisotropically consolidated undisturbed specimen
S7.
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Figure 3.22: Undrained cyclic triaxial test on the anisotropically consolidated undisturbed specimen
S8.
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Figure 3.23: Undrained cyclic triaxial test on anisotropically consolidated undisturbed specimen
S9.
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Figure 3.24: Undrained cyclic triaxial test on the anisotropically consolidated undisturbed specimen
S10.
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Figure 3.25: Undrained cyclic triaxial test on the anisotropically consolidated undisturbed specimen
S11.
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Figure 3.26: Schematic of the yield, critical, dilatancy and bounding lines in the q − p′ space (a)
and of the respective surfaces in the three-dimensional principal stress space. Reproduced from
Dafalias and Manzari (2004).
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In the following, the key aspects of the formulation are described considering for

simplicity the triaxial stress space, while the the reader can refer to the original

paper for the multi-axial generalization. The incremental stress-strain relations are

given by

dεeq =
dq

3 ·G
; dεev =

dp′

K
(3.4)

dεpq =
dη

H
; dεpv = d ·

∣∣dεeq∣∣ (3.5)

in which the superscripts e and p denote the elastic and plastic parts of strain,

respectively, G and K are the shear and bulk moduli of soil, respectively, and d is

the dilatancy parameter. The moduli G and K are considered functions of the mean

effective stress p′ and the current void ratio e, according to the expressions proposed

by Richart et al. (1970) and Li and Dafalias (2000)

G = Ga · patm · (2.97− e)2

1 + e
·
(

p

patm

)0.5

; K =
2 · (1 + ν)

3 · (1− 2 · ν)
·G (3.6)

denoting as patm the atmospheric pressure and ν the Poisson’s ratio. The positive

constant Ga is determined by trial and error. From Eqs. 3.4 and 3.5, it is evident

that only changes of the stress ratio η = q/p′ can cause plastic shear and volumetric

strains. Therefore a stress-ratio defined yield surface f is assumed

f = |η − α| −m = 0 (3.7)

where α is the back-stress ratio and m defines the size of the surface. The conical

shape of f confines the elastic region of the model, starting from which plastic strains

develop modifying the orientation α and the size m of the yield surface. The stress

ratio η can increase up to the bounding stress ratioM b that varies with the material
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state according to Li and Dafalias (2000), that is

M b =M · exp(−nb · ψ) (3.8)

with nb a positive material constant. Accordingly, M b evolves in the process of

loading and becomes equal to the stress ratio M at Critical State when the state

reaches the CSL in the e − p′ space. The latter is described by the Li and Wang

curve (1998) already introduced in Section 3.2.1. In the context of Bounding Surface

Plasticity, the hardening modulus H in Eq. 3.5 depends on the difference between

the current value of η and M b, such that

H = h · (M b − η) (3.9)

where h is a positive function of the state variables {η, e, p′}

h =
b0

|η − ηin|
; b0 = G0 · h0 · (1− ch · e) ·

(
p′

patm

)−0.5

(3.10)

with h0 and ch scalar parameters and ηin the stress ratio at initiation of a loading

process. Dilatancy is controlled by the parameter d, whose expression is conceptually

identical to that used for the plastic modulus H

d = Ad · (Md − η) (3.11)

Md =M · exp(nd · ψ). (3.12)

As a result, when ψ < 0 and Md < M < M b a dilatant behaviour d < 0 occurs

for η ≥ Md. Vice versa, when ψ > 0 and M b < M < Md the behaviour is purely

contractant. The parametersM b andMd varies as a function of the current state and
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becomes equal to M when ψ = 0. The parameter Ad is a function of the state and

incorporates micro-mechanical observations on the change in sand particle normal

orientation distribution (fabric) upon monotonic shearing during the dilation phase

of deformation, key aspect to reproduce the cyclic behaviour of coarse-grained soils

at low stress levels. Hence, the dilatancy parameter d changes during dilation as a

function of a fabric-dilatancy internal variable z as follows

Ad = A0 · (1 + 〈s · z〉) (3.13)

where the MacCauley brackets operate such that 〈s · z〉 = s · z if s · z > 0 and

〈s · z〉 = 0 if s · z ≤ 0. The parameter A0 can be taken as a constant value, s = ±1

according to the direction of the stress path η = α ±m, and the evolution law for

the fabric parameter is defined as

dz = −cz · 〈−dεpv〉 · (s · zmax + z) (3.14)

whose variability is controlled by the parameters cz and zmax.

The conceptual framework described above is kept in the general multi-axial

formulation and the input parameters of the model are listed in Table 3.6. The

initial void ratio eini and the initial back-stress ratio αini play the role of internal

variables of the model: the initial void ratio is needed to determine the initial value of

the state parameter ψ, while αini defines the initial configuration of the yield surface.

In OpenSees, the latter is initially assumed coincident with the initial stress ratio of

the material. The constant c is defined as the ratio between the critical state stress

ratio in extensionM− and in compressionM+ and it is introduced in the formulation

in order to reproduce the dependence of the plastic deviatoric strain rate direction

on the Lode angle in the multi-axial generalization. More in detail, the rate of

the volumetric plastic strain is determined in terms of the dilatancy parameter d
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Constant Variable
Initial void ratio eini

Elasticity
G0

ν

Critical State

M
c
λc
e0
ξ

Yield surface m

Plastic modulus
h0
ch
nb

Dilatancy
A0

nd

Fabric-dilatancy tensor
zmax

cz

Tabella 3.6: Input parameters of the SANISAND model.

while the deviatoric non-associativity applies as a function of the constant c: if

c = 1 associated plastic flow holds, while c < 1 implies a non-associated flow whose

evolution depends on the Lode angle.

The model is available in the OpenSees library and can be combined to three-

dimensional finite elements with fully coupled hydro-mechanical behaviour.

3.3.2 The PDMY model

The PDMY model is mainly conceived to reproduce the cyclic response of coarse-

grained soils. It is formulated within the framework of Multi-Surface Plasticity (Iwan

1967, Mroz 1967, Prevost 1985): the model is composed of a series of conical yield

surfaces with circular directrix (Prevost 1985, Lacy 1986), depicted in Figure 3.27,

that evolve in the three-dimensional principal stress space with kinematic hardening.

The expression of the generic yield surface reads

f =
3

2
[s− (p′ + p′0) · α] : [s− (p′ + p′0) · α]−m2 · (p′ + p′0)

2
= 0 (3.15)
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where the symbol : denotes a doubly contracted tensor product. The quantity s

is the deviatoric stress tensor whereas α is a second-order deviatoric stress tensor

that defines the center of the yield surface in the deviatoric stress subspace (back

stress ratio); m defines the size of the yield surface and p′0 represents the distance

of the apex of the yield surface from the origin along the hydrostatic axis p′ such

that the yield size remains finite at p′ = 0. A tensile cut-off is provided in order

to confine the admissible states of the material for p′ ≥ 0. Although sandy and

gravelly materials do not have an effective cohesion, a small value of p′0 can be

particularly useful for the stability of numerical computations and because it avoids

the ambiguity in defining the normal to the yield surface at its apex. The yield

surfaces have a common apex along the p′ axis and the innermost surface represents

the boundary of the elastic region while the outermost yield surface is designated

as the ultimate surface, locus of points of attainment of the ultimate conditions of

the material. Differently from the SANISAND model, the PDMY model does not

account for the dependence of the deviatoric plastic flow on the Lode angle since Eq.

3.15 does not include the third stress invariant. This limitation of the model can be

partially overcome considering a nonzero back stress ratio α of the yield surfaces,

providing a different strength in compression and extension.

A typical response in the shear stress-strain space is shown in Figure 3.27. The

piecewise-linear curve of the model is aimed to reproduce the nonlinear shear be-

haviour of soil (Kramer 1996). More in detail, the backbone curve proposed by

Duncan and Chang (1970) is taken as reference and, for a given reference confine-

ment p′r, it reads

τ = Gr ·
γ

1 + γ/γr
(3.16)

where τ and γ are the octahedral shear stress and strain, respectively, and γr is
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Figure 3.27: (a) Piecewise-linear approximation of the hyperbolic backbone curve used to describe
the nonlinear shear stress-strain response and (b) representation of the conical yield surfaces in the
principal stress space. Reproduced from Yang et al. (2003).
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the shear strain associated with a purely elastic behaviour, defined as τmax/G0. The

analytical curve is reproduced through a progressive decay of the plastic modulus

Hn: starting from the shear modulus at small strains Gr related to the elastic

response, the plastic modulus reduces towards the ultimate surface according to

the evolution of the stress ratio between the surfaces. Each linear segment of the

backbone curve (continuous line in Figure 3.27) constitutes the domain of a yield

surface fn, characterised by a size Mn and by an elastic-plastic shear modulus Hn,

for n from 1 to the number N of the surfaces. The size of the surfaces increases

progressively according to the following expression for the n-th back stress Mn

Mn =
3 · τn√

2 · (p′r + p′0)
(3.17)

up to the ultimate surface in correspondence of which it readsMN = 6·sinϕ′/ (3−

−sinϕ′), consistent with Critical State conditions. The CSL is described by the Li

and Wang curve (1998) also used in the SANISAND model. The plastic modulus

associated with the n-th surface varies according to the following relations

Hn = 2 · (τn+1 − τn) / (γn+1 − γn) (3.18)

and it is bounded between the initial value H1 = G0 and the final value HN = 0.

Finally, the small strain shear modulus Gr, as well as all the tangent moduli Hm, is

assumed to vary with the level of confinement as proposed by Prevost (1985)

G0 (p
′) = Gr ·

[
p′ + p′0
p′r + p′0

]d
(3.19)

with the exponent d commonly taken equal to 0.5. Finally, the generic bulk mod-

ulus Kn of the soil skeleton is computed as Kn = Gn · [2 · (1 + ν)] / [3 · (1− 2 · ν)].

The accuracy in reproducing the hyperbolic backbone curve increases with the num-
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ber of yield surfaces employed in the computation. In the numerical analyses carried

out in this study, 40 surfaces were used reaching a high level of approximation of

the nonlinear behaviour.

As an important feature under dynamic conditions, a purely deviatoric kinematic

hardening rule is employed, in which the yield surface translation rule proposed by

Parra (1996) is developed to enhance computational efficiency. This is actually the

primary aim of the model: describing with a sufficient level of accuracy the salient

aspects of the soil behaviour under cyclic conditions supported by a highly stable

formulation in numerical computing. Nonassociativity of the plastic flow is restricted

to its volumetric component.

The state of the material is simply defined by the stress ratio η in the principal

stress space

η =

√
3 · (s : s)/2
p′ + p′0

(3.20)

and the contractive and dilative tendency of soil depends on the position of the

stress state with respect to the Phase Transformation Line (Ishihara et al. 1975),

the latter characterised by a stress ratio ηPTL: when the stress state is inside the

PTL (η < ηPTL) the material exhibits a contractive behaviour and vice versa. For

coarse-grained soils, it is well known that a complete description of the material

state requires the combined information on the stress and the strain levels in the

e−p′ space, concisely expressed by the state parameter ψ (Been and Jefferies 1985).

In the PDMY model, instead, only the information on the stress level η is considered

to define the tendency of the behaviour, leading to a less accurate evaluation on the

development of strains. Therefore, the ratio ηPTL of the PTL represents the only

internal variable of the model.

Let P be the outer normal to the potential surface, respectively. This tensor can
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be conveniently decomposed into its volumetric P ′′ · I and deviatoric P′ part, where

I a second-order identity matrix, such that P = P ′′ · I+P′. Different expressions for

the scalar quantity P ′′ are used to differentiate the behaviour during contraction,

dilation and neutral phase when the stress state reaches the PTL.

Shear-induced contraction occurs inside the PTL when η < ηPTL, as well as when

η > ηPTL and η̇ < 0. Experimental observations and micro-mechanical investigations

demonstrated that the rate of contraction is significantly influenced by preceding

dilation phases (Ishihara et al. 1975, Ladd et al. 1977, Nemat-Nasser and Tobita

1982, Papadimitriou et al. 2001). In order to reproduce this effect, the parameter

P ′′ is considered to be a function of the plastic volumetric strain εpv accumulated

during dilation (Papadimitriou et al. 2001)

P ′′ =

[
1− sgn (η̇) · η

ηPTL

]
· (c1 + c2 · εc) (3.21)

where c1 and c2 are positive calibration constants defining the rate of contraction

or, under undrained conditions, the increment of positive excess pore water pressure.

The non-negative scalar quantity εc is defined by the following rate equation

ε̇c =


−ε̇pv, εc > 0,−εpv > 0

0, otherwise

. (3.22)

Conversely, dilatant behaviour occurs when η > ηPTL and η̇ > 0 and it is defined

by

P ′′ =

[
1− η

ηPTL

]
· d1 · γd2d . (3.23)

with d1 and d2 positive calibration constants and γd the octahedral shear strain

accumulated during the current dilation phase. Finally, neutral phase occurs in
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Constant Variable

Elasticity
G0

ν
Reference mean pressure p′r

Pressure dependence coefficient d
Peak shear strain γd,max

Phase Transformation Line φPTL

Contraction
c1
c2

Dilatancy
d1
d2

Critical State

M
λc
e0
ξ

Number of yield surfaces N

Tabella 3.7: Input parameters of the PDMY model.

correspondence of the PTL, hence when the behaviour changes from contractant to

dilative. In this condition P ′′ is kept equal to zero (ε̇pv = 0) until the closest yield

surface is reached.

The input parameters of the model are reported in Table 3.7. The parameter d

defines the exponent in Eq. 3.19 and therefore the dependence of the tangent moduli

Hn on the effective confinement. The peak shear strain γd,max is the octahedral

shear strain at which the maximum shear strength is reached, needed to describe

completely the hyperbolic backbone curve. Finally, the stress ratio of the PTL is

computed as ηPTL = 6 · sinφPTL/ (3− sinφPTL).

In comparison with the SANISAND model, the PDMY model presents a less rig-

orous mathematical formulation in which some peculiar aspects of the soil behaviour,

such as dilation and Critical State, are encapsulated into the formulation through

some empirical expedients. By contrast, in virtue of its simpler formulation, the

PDMY model is more manageable and stable in numerical simulations, especially

under dynamic conditions. Therefore, as a result of an extended comparison with

the response of the SANISAND model, the PDMY model constituted the reference
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material in the most demanding dynamic analyses of the full soil-bridge system.

3.3.3 Calibration procedure

The parameters of the SANISAND and the PDMY models were calibrated against

the experimental data shown in Section 3.2.1, relative to monotonic and cyclic tests.

It was observed that both models can reproduce with sufficient accuracy the me-

chanical behaviour of the soil only in a specific range of strain. More in detail, it was

found that a calibration based only on monotonic laboratory tests leads to a consid-

erable overestimation of the excess pore water pressure under cyclic conditions and,

as a result, an inaccurate prediction of the mechanical response in undrained con-

ditions. To overcome this issue, the calibration was aimed to obtain a good match

with the experimental trends under cyclic conditions and, at the same time, to have

a reasonable static response in the range of strain of interest for the problem under

examination. The procedure used to identify the optimum values of the constitutive

parameters is entirely presented for the SANISAND model while only the optimised

response is presented for the PDMY model.

In light of the above, two different optimum configurations of the SANISAND

model were determined under monotonic and cyclic loading conditions, listed in

Table 3.8. The soil mass density ρsoil and the initial void ratio eini were chosen in

accordance with the experimental data in Table 3.1. The Critical State parameters

of the Li and Wang’s curve have already been evaluated in Eq. 3.2. The size

m of the elastic core is taken equal to 0.01, as a very small fraction of the external

bounding surface. The elastic region represents the behaviour of soil at small strains,

characterised by the shear modulus G0 and the Poisson’s ratio ν. A value of 0.2 was

assumed for the elastic Poisson’s ratio, that is considerably smaller than the value

of 0.35 obtained by triaxial tests, because the latter is referred to a much higher

range of strains in which the response is markedly elastic-plastic. The remaining
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Cyclic conditions
Variable Monotonic cond. “Dilatancy” “Hardening”

ρsoil (Mg/m3) 2.243 2.243 2.243
eini 0.35 0.35 0.35
Ga 90 170 170
ν 0.2 0.2 0.2
M 1.55 1.55 1.55
c 0.875 0.875 0.875
λc 0.0219 0.0219 0.0219
e0 0.4478 0.4478 0.4478
ξ 0.7 0.7 0.7
m 0.01 0.01 0.01
h0 4.75 4.5 16.25
ch 1.1 1.1 1.1
nb 1.0 9.0 3.0
A0 1.0 0.25 0.1
nd 2.0 15.0 1.0
zmax - 12.5 8.0
cz - 1100 1000

Tabella 3.8: Different calibration strategies of the SANISAND model, based on monotonic TRIAX-
CID and TRIAX-CIU tests (“monotonic” solution) and cyclic TRIAX-CIU tests (“dilatancy” and
“hardening” solution) of the saturated layers of Messina Gravels.

parameters are the effective target of the calibration since they depend on loading

conditions. The calibration based on monotonic triaxial tests, named “monotonic”

solution, follows the procedure traced by Loukidis and Salgado (2009) and Taiebat

et al. (2010) used to calibrate the Toyoura, Nevada and Sacramento sand, whereas

the two solutions based on cyclic tests, called “dilatancy” and “hardening” solutions,

were obtained by a fitting procedure.

Consider the monotonic triaxial tests illustrated in Figures 3.6 and 3.7. The

constant Ga modifies the stiffness of the material and can be evaluated through

the shear modulus G0 at small strains (Eq. 3.6). The latter was computed by

determining the initial tangent of the experimental trends in the q − εa plane. The

resulting values of Ga are plotted in Figure 3.28 as a function of the mean effective

stress p′, providing a mean value of Ga equal to 90.

The parameters nb and nd that control the evolution of the bounding and dila-

tancy surfaces, respectively, can be estimated representing the results of the TRIAX-
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Figure 3.28: Values of Ga computed by drained and undrained triaxial tests.

Figure 3.29: Evaluation of the parameters nb and nd in the plane M b,d − ψ.
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CID and TRIAX-CIU in the non-dimensional plane shown in Figure 3.29. The

exponential regressions of the experimental data read

M b = 1.59 · exp(−0.358 · ψ), R2 = 0.195 (3.24)

Md = 1.55 · exp(0.341 · ψ), R2 = 0.189 (3.25)

in which the Critical stress ratioM , equal to 1.59 and 1.55 in the equations above,

is consistent to the value obtained experimentally of 1.55. The parameters nb and

nd result to be equal to 0.358 and 0.341, respectively. However, the scatter in the

results is somewhat pronounced, as testified by the low values of the coefficient of

determination R2. In order to improve the evaluation of these parameters, in Figure

3.30 it can be observed that just some samples are representative of the in-situ

stress-strain state and therefore the calibration of the models was restricted to those

tests only. The nonlinear regressions for these data are shown in Figure 3.31 with a

considerably higher correlations of the results, R2 equal to 0.73 and 0.51 for nb and

nd, respectively. In this significant range of the state parameter ψ, nb and nd were

assumed equal to 1.0 and 2.0.

The parameters h0 and ch control the hardening of the material and were evalu-

ated by trial and error in order to have a good fitting with the experimental behaviour

in the q − εa plane. The values chosen in the TRIAX-CID tests are represented in

Figure 3.32, in which the composed parameter h0 ·(1− ch · e) is conveniently plotted

as a function of the void ratio. In this plane, the numerical results can be interpo-

lated by a linear function y = −m · e+ b from which the operative values of h0 and

ch, representative of the entire deposit of Messina Gravels, can be derived as follows

h0 = b = 4.75 (3.26)
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Figure 3.30: Identification of the reference samples of the Messina Gravels in the e− p′ plane.

Figure 3.31: Evaluation of the parameters nb and nd in the plane ψ −M b,d, considering only the
experimental data representative of the in-situ soil conditions.
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Figure 3.32: Determination of the operative values for h0 and ch.

ch =
m

b
= 1.1. (3.27)

The entity of the negative volumetric strains (dilation) in drained conditions, or

equivalently of the excess pore water pressure in undrained conditions, is strongly

controlled by the dilatancy parameter A0. Also this parameter was evaluated by

trial and error with the aim to reproduce the progressive evolution of the volumetric

response with the increase of the deviatoric component of strain. The optimum

values of A0 are shown in 3.33: in the significant range of the state parameter (black

dots), A0 can be reasonably assumed equal to 1.

The monotonic response of the model is represented in Figure 3.34 for the refer-

ence TRIAX-CID tests and in Figure 3.35 for the TRIAX-CIU tests on the undis-

turbed frozen samples.

The cyclic response of the SANISAND model calibrated on the optimum param-

eters selected for monotonic loading conditions is shown in Figures 3.36, 3.37 and

3.38, only for the test S1 for brevity. It is evident that the excess pore water pressure
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Figure 3.33: Evaluation of the parameter A0.

builds up too rapidly compared to the experimental behaviour and, consequently,

the stress path reaches the CSL after only one cycle of loading. It follows that a

unique combination of the constitutive parameters is able to reproduce the experi-

mental behaviour of soil only in the specific deformation mode considered for their

calibration.

In light of the above, the parameters were newly calibrated to reproduce the

undrained cyclic behaviour shown experimentally, leading to the two optimum so-

lutions reported in Table 3.8. The “dilatancy” solution entails a relevant increase of

the parameter nd controlling the position and the evolution of the dilatancy surface,

with a consequent decrease of the stress ratio Md associated with the latter. This

implies that the dilatancy surface is much more contracted with respect to the con-

figuration defined under monotonic loading. As a result, dilation begins much earlier

in a cyclic loading and the development of excess pore water pressure is strongly lim-

ited by the low value of A0. The “hardening” solution, instead, follows a different

strategy to control the development of excess pore water pressure: the hardening

parameter h0 is an order of magnitude higher than that adopted in the monotonic
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Figure 3.34: Response of the SANISAND model (continuous lines) in the TRIAX CID tests of the
reference samples: (a) stress-strain behaviour in the q − εa plane and (b) volumetric response in
the εv − εa plane.
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Figure 3.35: TRIAX CIU on the undisturbed frozen samples: (a) stress-strain behaviour in the
q − εa plane and (b) response in the ∆u− εa plane.
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D.N. GORINI soil-structure interaction for bridge abutments

Figure 3.36: Response of the SANISAND model in q − p′ space (a) and q − εa space (b) for the
test S1.

D.N. GORINI soil-structure interaction for bridge abutments

Figure 3.37: Comparison between the initial tangent evaluated experimentally and that computed
by the SANISAND model, for the test S1.



CAPITOLO 3. THE CASE STUDY OF THE PANTANO VIADUCT 96

D.N. GORINI soil-structure interaction for bridge abutments

Figure 3.38: Evolution of the excess pore water pressure ∆u for the test S1.

solution while the dilatancy factor A0 is drastically reduced. It follows that the

bounding surface expands significantly, characterised by a very high stress ratioM b,

while the configuration of the dilatancy surface does not essentially change between

monotonic and cyclic conditions. Finally, the fabric-dilatancy constants zmax and

ch, that control mainly the response in loading-unloading reverse after a dilatant

phase, were evaluated through trial and error: higher values are required for the

dilatancy solution in order to have a good fitting at large strains.

The response of the two configurations is shown in Figures 3.39 to 3.42, only

for the tests S1 and S2 for brevity. In the dilatancy solution, the stress-strain

path follows much more closely the experimental trend since the excess pore water

pressure accumulates more gradually as the axial strain rises. As expected, the

dilation phase begins for a much lower deviatoric stress since the low stress ratio

Md of the dilatancy surface, giving a more accurate response from medium to large

strains. In the q− εa plane, the “hardening” response, after the first cycles in which

the behaviour is somewhat stiffer than the experimental one, returns too large axial

strains and an excessive ratcheting.
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Figure 3.39: Stress paths and stress-strain response obtained with the “dilatancy” solution (a) and
the “hardening” solution (b) for the cyclic test S1.
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Figure 3.40: Development of the excess pore water pressure as a function the axial strain in the
simulation of the test S1, obtained with the “dilatancy” solution (a) and the “hardening” solution
(b).

In the first cycle, the initial stiffness is well captured in both cases because con-

trolled by the parameter Ga, but when the deviatoric stress increases, activating the

plastic response of the model, the hardening solution becomes too stiff because of

the high hardening parameter h0.

The modulus decay curves were obtained by carrying out a cyclic analysis in

which the amplitudes of the deviatoric stress increases linearly during cycles, from

small to large deviatoric strains, and the corresponding stress paths are shown in

Figure 3.43, for the dilatancy and hardening solutions. The resulting trends of

the normalised shear modulus G/G0 are compared with the Seed and Idriss’s curve

taken as reference for the Messina Gravels in Figure 3.44. It is evident that the curve

relative to the dilatancy solution follows more closely the reference curve, especially

in the transition zone where the gradient of G/G0 is maximum (γ = 3·10−5÷1·10−3).

The cyclic tests were carried out considering an initial mean effective stress of about

180 kPa, representative of the superficial layer MGD1. The corresponding small

strain modulus G0 is equal to 1.9 · 105 kPa (see Table 3.3) while the numerical
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Figure 3.41: Stress paths and stress-strain response obtained with the “dilatancy” solution (a) and
the “hardening” solution (b) for the cyclic test S2.
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Figure 3.42: Development of the excess pore water pressure as a function the axial strain in the
simulation of the test S2, obtained with the “dilatancy” solution (a) and the “hardening” solution
(b).

simulations gave a value of 1.79 · 105 kPa and 1.71 · 105 kPa for the dilatancy and

hardening solutions, respectively, with an underestimation of the initial stiffness of

about 6 % and 10 %.

The optimised calibrations of the SANISAND model under cyclic conditions lead,

however, to an underestimation of the volumetric strains produced under monotonic

loading. As an example, Figure 3.45 shows the response of the calibrations on cyclic

tests in a monotonic drained triaxial test, in which only the behaviour in the q− εa

plane can be reproduced with a good level of accuracy. Nonetheless, in the dynamic

simulations carried out in OpenSees, only the displacement field of the soil-structure

system induced by the propagation of the seismic motion is considered. In this

way, the initial static stage serves to reproduce the effective stress state in the soil

domain and the overestimation of the volumetric stiffness under monotonic loading

was therefore deemed acceptable, since it did not affect the dynamic response of the

system.

In virtue of the above results, the dilatancy solution gives a more accurate re-
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Figure 3.43: Stress paths of the undrained cyclic test carried out with an increasing amplitude of
the deviatoric stress: comparison between the calibration based on (a) the dilatancy solution and
(b) the hardening solution.

Figure 3.44: Modulus decay: comparison between the Seed and Idriss’s curve adopted for the
Messina Gravels and those obtained through numerical simulations on the SANISAND model.
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Figure 3.45: Response of the calibrations based on cyclic tests in a monotonic drained triaxial test.

production of the experimental behaviour and it was therefore taken into consid-

eration for the dynamic analyses carried out in this study. This calibration is also

deemed conceptually more valid than the hardening solution because it modifies the

dilatancy parameters, that control directly the evolution of the excess pore water

pressure, keeping the same hardening that instead should be an intrinsic property

of a material not depending on the load conditions.

As mentioned before, also the PDMY model requires a different calibration of

the input parameters under monotonic and cyclic conditions. The set of parameters

adopted in the dynamic simulations in OpenSees is reported in Table 3.9, while the

model response is illustrated in Figures 3.46 and 3.47.

The value of Gr, referring to a confinement stress p′r = 80 kPa, was determined

in order to give a small strain shear modulus G0 equal to 1.9 · 105 kPa at p′r =

180 kPa (see Eq. 3.19), as evaluated experimentally. The pressure dependence
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Variable Cyclic conditions
ρsoil (Mg/m3) 2.243

Gr 1.3 · 105
ν 0.2
p′r 80.0
d 0.5

γd,max 0.1
φPTL 17.0°
c1 0.195
c2 0.0
d1 0.6
d2 3.0
M 1.59
λc 0.0219
e0 0.4478
ξ 0.7
N 40

Tabella 3.9: Parameters used for the PDMY model.

coefficient d was assumed in accordance with the observed variation of the shear

modulus with depth described by the power law in Eq. 3.3. The peak shear strain

γd,max was determined through the results of the monotonic drained triaxial tests.

The angle φPTL of the PTL in the q − p′ plane represents the state parameter for

PDMY model, defining the transition from contractant to dilatant behaviour, and

it was evaluated by trial and error. Similarly to the SANISAND model, a more

contracted configuration of the PTL is required under cyclic conditions, compared

to the value φPTL = 25° referred to drained monotonic conditions, to have a more

gradual development of the excess pore water pressure with the number of cycles.

The contraction and dilatancy parameters c1, d1 and d2 were evaluated by trial and

error. The code available in the OpenSees library neglects the dependency of the

rate of contraction from the previous dilative phase, thus c2 = 0.

It is interesting to note that the response of the PDMY model follows quite well

the experimental stress path and is very similar to the response of the SANISAND

model, while the latter reproduces better the deformation response, especially the

progressive accumulation of permanent axial strain as the pore pressure builds up.
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Figure 3.46: Stress path and stress-strain response of the cyclic test S1 (a) and S2 (b), obtained
with the PDMY model.
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Figure 3.47: Development of the excess pore water pressure as a function the axial strain in the
test S1 (a) and S2 (b), obtained with the PDMY model.

3.4 Seismic demand

The input motion of the soil-structure interaction analyses was defined according to

the seismic demand for the site of the Pantano viaduct. The latter was evaluated

in accordance with Italian technical provisions (Norme Tecniche per le Costruzioni

2008 ), in which four limit states must be taken into account under seismic con-

ditions: two serviceability limit states and two ultimate limit states. In order to

investigate the response of the macro-elements of the soil-abutment system and of

the bridge structure when the soil exhibits a pronounced nonlinear response, the

focus of the present study is on the two ultimate limit states, namely the Safety

Evaluation Earthquake (SEE) with a return period TR = 1900 years and a No-

Collapse Earthquake (NCE) with TR = 2475 years. The relative design spectra are

shown in Figure 3.48, representing the design motion on a stiff outcrop (soil category

A) in order to evaluate then the site effects through dynamic analyses that simulate

explicitly the propagation of the seismic waves through the foundations soils.

Accordingly, four seismic records were selected as representative of the seismic
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Figure 3.48: Design spectra for the NCE and SEE limit states.

Event Record VS,30 (m/s) RJB (km) Mw

Tabas (Iran, 1978) RSN143 TABAS 767 1.8 7.35
Kobe (Japan, 1995) RSN1108 KOBE 1043 0.9 6.90

Kocaeli (Turkey, 1999) RSN1165 KOCAELI 811 3.6 7.51
Iwate (Japan, 2008) RSN5618 IWATE 826 16.3 6.90

Tabella 3.10: Properties of the seismic events that originated the seismic records selected to
represent the NCE and the SEE limit states.

demand, relative to the events reported in Table 3.10. The average shear wave

velocity Vs,30 for the upper 30 m-depth and the moment magnitude Mw are entirely

compatible with the seismo-tectonic setting of the Pantano site. The same records

were chosen for both NCE and SEE scenarios, characterised by different scale factors.

The main properties of the selected seismic records are listed in Tables 3.11 and

3.12, for the NCE and SEE scenarios, respectively. The signals were low-pass filtered

at 15 Hz for compatibility with the numerical computations and they are shown in

Figures 3.49 to 3.52. Figures 3.53, 3.54 and 3.55 represent the comparison between

the design elastic spectra and the selected spectral shapes for the three components

of the seismic motion. The Tabas record follows very well the design spectra for
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Record Component FS amax (g) IA (m/s)

RSN143 TABAS
FN

0.75
0.64 12.56

FP 0.65 10.51
V 0.48 6.46

RSN1108 KOBE
0°

1.50
0.41 2.75

90° 0.47 1.84
V 0.68 1.48

RSN1165 KOCAELI
90°

2.00
0.46 3.26

180° 0.33 2.25
V 0.29 1.40

RSN5618 IWATE
EW

2.00
0.29 5.46

NS 0.23 5.25
V 0.20 2.69

Tabella 3.11: Properties of the seismic records selected to represent the NCE design earthquakes.

Record Component FS amax (g) IA (m/s)

RSN143 TABAS
FN

0.55
0.64 9.17

FP 0.65 7.67
V 0.48 4.71

RSN1108 KOBE
0°

1.50
0.41 2.75

90° 0.47 1.84
V 0.68 1.48

RSN1165 KOCAELI
90°

1.9
0.46 3.097

180° 0.33 2.14
V 0.29 1.33

RSN5618 IWATE
EW

1.9
0.29 5.19

NS 0.23 4.99
V 0.20 2.55

Tabella 3.12: Properties of the seismic records selected to represent the SEE design earthquakes.

the entire range of periods of the seismic motion, while the other records cover the

design spectral ordinates in different period intervals. Therefore, the Tabas record

was widely employed to investigate the seismic response of the Pantano subsoil and

to test the response of the macro-elements, while the other scenarios provided a

wider validation of the methodology proposed on the full soil-bridge system.

3.5 Deconvolution of the seismic records

In the area of the Pantano abutment, the bedrock (Pezzo Conglomerate) is located

at a depth of 475 m, that would lead to an unmanageable computational demand of

the soil-structure numerical models. To deal with this, the selected seismic records
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Figure 3.49: Time histories of the Tabas record in the longitudinal (a), transverse (b) and vertical
(c) direction of the abutment.
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Figure 3.50: Time histories of the Kobe record in the longitudinal (a), transverse (b) and vertical
(c) direction of the abutment.
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Figure 3.51: Time histories of the Kocaeli record in the longitudinal (a), transverse (b) and vertical
(c) direction of the abutment.
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Figure 3.52: Time histories of the Iwate record in the longitudinal (a), transverse (b) and vertical
(c) direction of the abutment.
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Figure 3.53: 5%-damped elastic response spectra in the longitudinal direction of the bridge asso-
ciated with the records selected for the NCE and the SEE.

Figure 3.54: 5%-damped elastic response spectra in the transverse direction of the bridge associated
with the records selected for the NCE and the SEE.
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Figure 3.55: 5%-damped elastic response spectra in the vertical direction associated with the
records selected for the NCE and the SEE.

were subjected to a deconvolution procedure that allowed to reduce the vertical ex-

tension of the numerical models. The deconvolution depth zd of the seismic motion

is intended as the depth beyond which the response of the soil can be regarded as

linear. This technique, already used by Callisto and Rampello (2013) for the study

of the towers of the Messina Strait suspension bridge, is applied here to the soil

column below the Pantano abutment shown in Figure 3.56. The 1D model starts

in correspondence of the abutment foundation and extends down to the Pezzo Con-

glomerate. The procedure consisted in carrying out one-dimensional site response

analyses (1D SRA) on the entire soil column, assuming a visco-elastic behaviour of

soil, in order to determine the part of the soil domain in which nonlinearities can be

neglected. The seismic input was applied to the outcrop to consider explicitly in the

computation the alteration of the ground motion in the bedrock due to the effective

stiffness of the latter. The seismic actions obtained at the deconvolution depth were

then considered as the input motion for the coupled soil-structure models.
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Figure 3.56: Scheme of the deconvolution procedure of the selected seismic records.
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The visco-elastic analyses were carried out using the computer program MARTA

(https://sites.google.com/a/uniroma1.it/luigicallisto/). The behaviour of each layer

is completely described by the mass density ρsoil, the shear modulus G0 at small

strains and by the evolution curves of the normalised shear modulus G/G0 and the

damping ratio ξ with the level of shear strain attained. A mean value of 2.243

Mg/m3 was adopted for the mass density of the saturated layers, while a lower value

of 2.020 Mg/m3 was assumed for the unsaturated layer MG1D. The average values

of G0 for each stratum were chosen according to Table 3.3. The shear modulus decay

and the variation of the damping ratio were described by the curves in Figures 3.13

and 3.14 previously defined in the geotechnical characterisation.

The results of the 1D SRA are illustrated in Figures 3.57 to 3.59, for brevity only

for the most severe components of the seismic records corresponding to the NCE

scenario (the fault normal component of the Tabas record, the 0 ° component of

the Kobe record, the 90 ° component of the Kocaeli record and the EW component

of the Iwate record). The Kobe record presents the lowest maximum acceleration

amax at the bedrock (z = 475 m) but it produces the greatest amplification of the

ground motion at the foundation level (z = 0 m). By contrast, the Tabas record

is the most severe ground motion that however leads to a maximum acceleration

on the surface equal to 3.2 m/s2, that is absolutely comparable with the values

obtained for the other records of Kocaeli and Iwate. For all the seismic scenarios

considered, the most evident alterations of the seismic motion occur in the soil

overlying the stiff layer of Messina Gravel MG3. In fact, the greatest values of

the maximum shear strains γmax localise in the layers MG2 and MG1, for then

decreasing at lower depths z < 30 m since the visco-elastic medium provides a null

deformation for z = 0 (boundary condition). The shear strain attains values greater

than 1 % in all the scenarios, leading to a drastic reduction of the small strain

shear modulus up to 80 ÷ 90 %. Accordingly, a very high damping is mobilised
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in the upper layers, ranging between 12 ÷ 18 %. A first important observation

that can be deduced is that, for z < 112 m, the equivalent visco-elastic medium is

completely inappropriate to represent the soil behaviour under such large seismic

actions. In fact, the important shear strains occurring in the soil would lead in

reality to the development of pronounced irreversible deformations that require the

use of nonlinear constitutive models for the soil over the layer MG3. By contrast,

the mobilised shear strain at greater depths is very limited by the high stiffness

of the soil, with a maximum reduction of the normalised shear modulus between

0.1÷ 0.2.

On the basis of the above results, it was assumed a deconvolution depth zd equal

to 112 m, representing the interface between the layer MG2 and MG3. The seismic

actions obtained at z = zd constituted the input motion for the soil-structure models

and the relative spectra are shown in Figure 3.59. It can be seen that, although the

frequency content of the deonvoluted signals results very close to the original records,

a modest deamplification of the motion amplitudes occurs in the range of periods

0÷ 1.5 s, in favour of a slight amplification at larger periods.

3.6 From the real case study to a simplified structural model

A simplified soil-structure system was developed with the aim to validate the macro-

elements of the soil-abutment system and of the bridge structure against dynamic

analyses of the full soil-bridge model. The simplified model, depicted in Figure 3.60,

is composed of an idealised structural scheme, inspired by the Pantano viaduct, rest-

ing on the Pantano subsoil, that represents the upper layers of the Messina Gravels

down to the deconvolution depth. The full model is composed of 268703 elements,

with 267036 solid elements for the soil and 1667 structural elements, for a whole

extension of 262×72 m2 in plan and 125.5 m in depth. The model was implemented



CAPITOLO 3. THE CASE STUDY OF THE PANTANO VIADUCT 117

Figure 3.57: Profiles of the maximum accelerations amax and of the maximum shear strains γmax

for the four seismic records selected for the NCE earthquake obtained through visco-elastic site
response analysis.

Figure 3.58: Profiles of the normalised shear modulus G/G0 and of the damping ratio ξ for the
four seismic records selected for the NCE earthquake obtained through visco-elastic site response
analysis.
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Figure 3.59: 5 %-damped elastic response spectra for the four seismic records selected for the NCE
earthquake obtained through visco-elastic site response analysis.

in the analysis framework OpenSees while the mesh generation and the visualization

of the results was performed in the pre/post-processor software GID.

3.6.1 Bridge structure

The bridge superstructure is composed of a continuous deck supported by two cen-

tral piers and by the lateral abutments. An alternating strong and weak contact is

provided between the deck and the vertical elements, intended as a three-directional

bearing device (rigid constraint) and a bi-directional device (longitudinal displace-

ments allowed), respectively, leading to an asymmetric global behaviour of the whole

structure. In this way, the strong abutment carries most of the longitudinal inertial

forces developing into the superstructure, representing a particularly appropriate

situation for validating the macro-elements.

Each span has a length Ls of 35 m and the piers have the same height Hp equal to

13.5 m, with an aspect ratio of the bridge of Ls/Hp ' 2.5. The abutment presents
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very similar properties to the case of the Pantano viaduct: it is a massive reinforced

concrete structure with a 13.5 m-height wall, with a thickness of 4.0 m, resting on

a shallow foundation with length and thickness of 17.5 m and 5.0 m, respectively.

Because of its large strength compared to the superstructure and the soil, it is rea-

sonable to assume that the abutment exhibits an elastic response under seismic con-

ditions. Hence, all the structural members were modelled through the ShellMITC4

elements (Dvorkin and Bathe, 1984) with elastic behaviour, using constitutive pa-

rameters relative to a C32/40 strength class concrete in the European standards. A

Rayleigh damping was adopted for the elements of the abutment, calibrated in order

to consider a damping ratio not greater than 2 % for all the significant modes of

the abutment. The deck and the piers were modelled through beam elements with

visco-elastic behaviour. The elastic parameters of the deck refer to average values

of the steel box cross section of the roadways of the Pantano viaduct along a span,

whereas a homogenization procedure was used to get the equivalent parameters of

the reinforced concrete box sections of the piers of the Pantano viaduct, in terms

of axial and bending stiffness. Since the pier height of the Pantano viaduct reduces

progressively towards the abutment because of the sloping ground, average parame-

ters were finally computed for all the piers in order to consider a unique height equal

to 13.5 m. Energy dissipation was reproduced by assigning a Rayleigh damping of

2 % to all the elements of the superstructure, calibrated on the significant modes

of the bridge obtained through a dynamic identification of the structural system.

The shallow foundations that support the piers were designed by the application

of standardised procedures. The resulting dimensions are 6.0 m and 5.0 m in the

longitudinal and transverse directions of the bridge, respectively, and a thickness of

2.0 m. The elastic material assigned to the pier foundations was calibrated for a

C32/40 strength class concrete.
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Figure 3.60: Full model of the soil-bridge system.

3.6.2 Foundation soils

The foundation soil represents the superficial layers of Messina Gravels MG1D, for

the upper 30 m of depth, and MG1 −MG2 down to the depth zd = 112 m. The

mechanical behaviour of the foundation soils was described through the SANISAND

and PDMY models and the relative constitutive parameters associated with each

layer have already been discussed in Section 3.3.3. In the full soil-bridge model, the

subsoil was considered for simplicity dry, hence the presence of pore water pressure

was neglected in the strata MG1 and MG2. This is an approximation of the ef-

fective subsoil condition for the Pantano viaduct, that however is expected to not

influence significantly the performance of the structure since the ground water table

would be located a depth of 30 m from the bridge foundations. Anyway, a detailed

discussion on the effects of the excess pore water pressure in the dynamic response
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of the Pantano subsoil are provided in Section 7.1 regarding the nonlinear site re-

sponse analysis. The assumption of dry soil allowed to adopt the SSPbrick eight

node hexahedral elements (Zienkiewicz and Shiomi 1984) to discretize the entire soil

domain when the PDMY model is used for the soil. These elements use a physi-

cally stabilized single-point integration, resulting in an element which is free from

volumetric and shear locking. This leads to a significant reduction of the computa-

tional demand of the full model compared to the adoption of the SSPbrickUP eight

node hexahedral elements (Zienkiewicz and Shiomi 1984), required when using the

SANISAND model, in which instead a mixed displacement-pressure formulation is

adopted with many more degrees of freedom to be solved at each time step. Both the

constitutive models used for the soil are able to reproduce the effective energy dissi-

pation as a function of the strain level, however an additional small damping ratio

was introduced in the soil domain using the Rayleigh formulation only to attenuate

the effects of spurious high frequencies.

3.6.3 Embankment

The embankment behind the abutment wall was regarded as a partially saturated

soil, with the presence of negative pore water pressure (suction) providing non-zero

stiffness and strength at small stress levels. The mix design for the soil of the

embankment was determined to have a stiffness and a degree of compaction greater

than the corresponding limit values imposed by technical provisions, according to

the following inverse analysis procedure:

� identification of the technical requirements;

� definition of the Water Retention Curve (WRC);

� derivation of the Grain Size Distribution (GSD);

� equivalent mechanical properties.
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The technical provisions taken as reference for the embankment were the Capitolato

Ferrovie and Testo Unico currently in force in Italy. The design requirements for

bridge embankments are aimed to minimise the settlements of the embankment due

to the traffic load that might compromise the serviceability of the infrastructure.

Specifically, it is prescribed that the Young’s modulus Emin be not less than 7.2 ·104

kPa for the embankment body with a dry unit weight γd,min not less than 0.95·γd,max,

where γd,max is the maximum value of γd evaluated by a modified Proctor test. The

former requirement was used as the initial constraint for the design procedure while

the latter was checked a posteriori, based on the GSD curve determined.

Because of the good mechanical properties of the in-situ soil, the Messina Gravels

constituted the starting mixture for the mix design. Therefore, the initial profile of

the shear wave velocity with depth is described by Eq. 3.3. In this case, however,

the stiffness has to be related to the Bishop’s effective mean pressure in order to

account for the presence of suction uw in the soil matrix, such that

G(z) = A · p′(z)n = 21.82 · [p(z)− Sr · uw]0.44 (3.28)

in which p is the total mean pressure, uw (< 0) is the suction relative to the

atmospheric pressure and Sr the degree of saturation of soil. In practice, the em-

bankment is compacted in-situ to reach a state that is close to the optimum degree

of compaction. In this condition, the saturation degree Sr,opt was supposed equal

to 0.7 as a typical value in engineering applications. The minimum shear modulus

Gmin required by technical provisions was evaluated from Emin and the Poisson’s

ratio of the Messina Gravels, equal to 0.2, resulting equal to 3.0 · 104 kPa. The suc-

tion in the embankment, assumed constant with depth, was determined in order to

have a shear modulus of the soil greater than Gmin at each depth. A small value of

uw = −4 kPa was sufficient to satisfy the requirement on the stiffness, as illustrated
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Figure 3.61: Comparison between the profile of the shear modulus of the embankment with depth
and the respective minimum value Gmin imposed by technical provisions.

in Figure 3.61.

The GSD curve was retrieved from the WRC through the inverse application of

the procedure proposed by Arya and Paris (1981). The Arya and Paris model first

translates a particle-size distribution into a pore-size distribution by computing the

pore volume per unit sample mass Vv,i

Vv,i =
wi

ρp
· e, i = 1, ..., n (3.29)

in which wi is the solid mass obtained by the GSD, ρp is the particle density, e is

the void ratio and n is the number of segments into which the GSD is divided. The

volumes Vv,i are assumed filled with water. The volumetric water content ϑv,i of the

i-th segment of the GSD is instead determined by the cumulative pore volumes
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ϑv,i =
i∑

j=1

Vv,j
Vb

(3.30)

with average value ϑ∗
v,i = (ϑv,i + ϑv,i+1)/2. Spherical-shaped particles are consid-

ered and, accordingly, the relationship between the volumes Vp,i and the radii Ri of

the particles contained in the i-th range simply reads

Vp,i =
4 · π
3

· ni ·R2
i =

wi

ρp
(3.31)

for ni particles. In the case of cylindrical pores of length hi, the equation above

becomes

Vv,i = π · r2i · hi =
wi

ρp
· e (3.32)

from which the mean pore radius can be obtained as follows

ri = R2
i ·
[
4 · e · n1−α

i /6
]0.5

(3.33)

in which the coefficient α has to be determined empirically. Finally, the equation

of capillarity is used to translate the pore size into a pore pressure ui as reported

below

ui =
2 · γ · cos (ϑ)
ρw · g · ri

(3.34)

with g the acceleration of gravity.

On the basis of the above formulation, starting from the moisture characteristics

of the Messina Gravels (upper bound in Figure 3.5), the GSD was modified in order

to obtain a WRC that passed through the optimum point Popt = {uw,opt;Sr,opt}, rep-

resentative of the embankment state after compaction. The results of this procedure
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Figure 3.62: Comparison between the Water Retention Curve associated with Grain Size Distri-
bution of the mix design chosen for the embankment and curve relative to the Messina Gravels
(lower bound, upper bound and average trend).

are shown in Figures 3.62 and 3.63. The resulting mix design for the embankment

is an essentially sandy soil with a minor percentage of gravel and silt. The relevant

presence of sand allowed to move the air-entry point Pair to much greater values of

the suction in order to satisfy the passage through the optimum point Popt.

In accordance with the moisture characteristics found above, a friction angle of

35° was chosen for the mix design, neglecting the effect of the suction uopt = −4 kPa

on strength.

Finally, the compaction state was checked by determining the dry unit weight of

the embankment γd. This was evaluated through the following expression

γd =
γs

1 + emax −∆e ·Dr

= 17.3 kN/m3 (3.35)

in which the unit weight of the solid particles γs = 26.2 kN/m3, the maximum

void ratio emax = 0.626, the relative density Dr = 45% and ∆e = emax − emin =
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Figure 3.63: Comparison between the Grain Size Distribution curves of the mix design chosen for
the embankment and of the Messina Gravels (lower bound, upper bound and average trend).

0.252, were referred for simplicity to the Messina Gravels. The maximum dry unit

weight γd,max relative to a modified Proctor test was evaluated using the empirical

correlation proposed by Patra et al. (2010) and results equal to 18.08 kN/m3. The

lower bound for the dry unit weight is therefore γd,min = 0.95·γd,max = 17.18 kN/m3,

satisfying the requirement on the degree of compaction.

The embankment was modelled in the finite element analyses with OpenSees as

an equivalent single-phase body, using both the SANISAND and PDMY models

to simulate its cyclic behaviour. The properties of the mix design and the effect

of suction were implicitly taken into account by assigning appropriate parameters

to the constitutive models. More in detail, compared to the calibration defined

for the Messina Gravels, a different stress ratio at Critical State was considered

since the friction angle changed (from 38° of the Messina Gravels to 35° assumed

for the sandy embankment), and a modest increment of the stiffness parameters
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was introduced to account for the effect of suction according to the profile of the

shear modulus illustrated in Figure 3.61. As done for the foundation soils, a small

Rayleigh damping was added to these elements, calibrated on the frequency content

of the seismic input, to stabilise the dynamic time stepping.

3.6.4 Soil-structure contact

The soil-structure contact was modelled by means of thin layers of solid elements

interposed between the structure and the soil. Figure 3.64 shows an enlarged view

of the central section of the soil-abutment model, in which the interface elements

(in yellow) are placed underneath the foundation and behind the central wall and

the wing walls. The main objective of the interface elements is to describe the

strain concentration occurring in the soil in close proximity to the structural ele-

ments. The behaviour of the interface elements was reproduced through the same

configurations of the advanced constitutive models used for the soil domain. In a

preliminary stage of this study, however, a limited sensitivity analysis on the effect

of the interface strength was carried out through a pushover analysis of the soil-

abutment system, considering three different values of the friction angle ϕint of the

interface: ϕint = ϕsoil, ϕint = 0.8 · ϕsoil and ϕint = 0.67 · ϕsoil. It was found that the

variability of the friction within this range does not alter significantly the results in

terms of force-displacement relationship at the deck-abutment contact. Therefore,

the friction angle of the interface was set equal to that of the soil as a reasonable

assumption for soil-concrete contact.

3.6.5 Solution procedure

A staged analysis procedure was adopted in which, after a first stage aimed to

reproduce the lithostatic stress state in the foundation soil, the abutment structure,

the embankment and then the superstructure are built sequentially in the model.
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soil-wall interface

soil-foundation interface

Figure 3.64: Detail of the thin layers representing the soil-structure interface.

The gravity analysis is followed by the dynamic simulation, in which the use of the

parallel computing, obtained with the OpenSeesSP interpreter, was needed to get

reasonable computation times.

In the static stage, the displacements at the bottom of the grid were impeded in

both directions, while only the horizontal displacements normal to each boundary

were restrained along the lateral sides. In the subsequent dynamic phase, the re-

straints in the direction of motion were removed. The longitudinal and transverse

lateral boundaries were constrained to undergo the same motion, since the lateral

boundaries are located far enough from the bridge to ensure the free field response.

The four seismic scenarios selected in Section 3.4 were considered to validate the

macro-elements. These seismic actions were applied to the lower boundary of the

model, representing the deconvolution depth, as displacement time histories. Note

that the deconvoluted motion takes implicitly into account the deformability of the
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underlying soil layers because it was obtained from a site response analysis of the

entire soil column down to the bedrock (see Section 3.5). A considerable substepping

was needed to get convergence with respect to the initial time increment of the

records, with a maximum value of 10 for the Tabas motion and a minimum value of

4 for the Kobe and Kocaeli signals.

The Newmark time-stepping method was employed to integrate the equations of

motion, using common values of γ and β equal to 0.5 and 0.25, respectively (av-

erage acceleration method). The Newton-Raphson algorithm was adopted to treat

numerically the nonlinear response of the soil. The convergence test was based on

the norm of the incremental displacement, considering a tolerance of 10−4. The par-

allel computing was introduced in the analysis model by using the Mumps system,

leading to an optimised storage and solution of the system of equations between the

processors (CPU). Accordingly, the computation times become equal to 10 − 15 %

those associated with the largest simulations on the full soil-bridge model. Most of

the dynamic simulations were carried out using a prefabricated workstation provided

with 10 dual-core CPU working at 3.1 GHz and 48 Gbytes of RAM. Conversely, the

finite element simulations on the entire soil-bridge system necessitated the use of a

specific custom workstation that was assembled with 16 dual-core CPU, overclocked

to 3.7 GHz, and 60 Gbytes of RAM. The resulting computation times associated

with the four seismic scenarios are reported in Tables 3.13, 3.14, 3.15 and 3.16, for

the different models implemented in OpenSees, from which the high computational

efficiency of the methodology proposed appears clearly: the reduction of the compu-

tation times, compared to the full soil-bridge representation, was of about 55 % for

the local model of abutment with macro-element of the bridge structure and up to

about 98 % for the global structural model with macro-element of the soil-abutment

system.
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Scenario ∆tcomp (s) steps (-) tcomp (days)
Tabas 0.002 16450 90
Kobe 0.0025 9020 60
Kocaeli 0.00125 16056 60
Iwate 0.002 35050 180

Tabella 3.13: Full soil-bridge model: computation time interval ∆tcomp, number of steps and
duration tcomp of the dynamic simulation for the four seismic scenarios selected for the ultimate
limit state.

Scenario ∆tcomp (s) steps (-) tcomp (days)
Tabas 0.002 16450 40
Kobe 0.0025 9020 28
Kocaeli 0.00125 16056 28
Iwate 0.002 35050 80

Tabella 3.14: Local soil-abutment model with macro-element of the bridge structure: computation
time interval ∆tcomp, number of steps and duration tcomp of the dynamic simulation for the four
seismic scenarios selected for the ultimate limit state.

Scenario ∆tcomp (s) steps (-) tcomp (days)
Tabas 0.02 1645 0.17
Kobe 0.01 2030 0.18
Kocaeli 0.005 4014 0.2
Iwate 0.01 7010 0.34

Tabella 3.15: Linear global structural model (with dynamic impedance functions for soil-structure
interaction): computation time interval ∆tcomp, number of steps and duration tcomp of the dynamic
simulation for the four seismic scenarios selected for the ultimate limit state.

Scenario ∆tcomp (s) steps (-) tcomp (days)
Tabas 0.004 1645 1.0
Kobe 0.005 2030 1.0
Kocaeli 0.0025 4014 1.5
Iwate 0.005 7010 2.0

Tabella 3.16: Non-linear global structural model (with macro-elements for soil-structure inter-
action): computation time interval ∆tcomp, number of steps and duration tcomp of the dynamic
simulation for the four seismic scenarios selected for the ultimate limit state.
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3.6.6 Modal analysis of the bridge

The dynamic characteristics of the idealised bridge structure were evaluated through

a modal analysis of a global structural model with a fixed base implemented in

SAP2000. In a first stage, the model was tested in several static and dynamic

simulations in order to verify the correct implementation of the model, taking as a

reference the structural model built in OpenSees. In the following, the response of

the abutments is not included in the results in order to focus on the vibration modes

of the superstructure.

Although more than 100 vibration modes were analysed, the mass participation

concentrates mainly in just a few significant modes in virtue of the simplicity of the

structural system. The modal characteristics are listed in Table 3.17, providing the

identification number of the mode, the vibration period T and the mass participation

factors Mi, while the corresponding deformed shapes are illustrated in Figures 3.65

to 3.72. The structure is a somewhat stiff system since the significant modes occur

in the range of periods between 0.05 ÷ 0.2 s. The modes are essentially uncoupled

because of the regular geometry of the structure. Nonetheless, the vibration periods

are very close to each other, especially for the higher modes that however have a

considerable mass participation. The maximum spectral accelerations of the input

motion defined in Section 3.4 range between 0÷1 s, that might lead to a considerable

amplification of the structural response due to its high dynamic coupling with the

frequency content of the ground motion.

The first mode shape occurs in the transverse direction and implies the in-phase

deflection of all the piers with consequent important participation of the deck mass.

The global rotational mode is induced by the deflection in phase-opposition of the

piers with a change of curvature of the deck in proximity of the central axis of the

bridge. For periods lower that 0.18 s, longitudinal and vertical modes arise, that are
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Number Vibration mode T (s) Mx(%) My(%) Mz(%) Mrx(%) Mry(%) Mrz(%)
1 transverse 0.2 0.0 73.0 0.0 13.8 0.0 0.0
2 rotational 0.18 0.0 0.0 0.0 0.0 0.0 69.3
3 longitudinal 0.16 55.4 0.0 0.0 0.0 2.0 0.0
4 transverse 0.10 0.0 5.7 0.0 0.0 0.0 0.0
5 vertical 0.09 4.3 7.7 7.7 0.0 19.4 0.0
6 vertical 0.08 4.0 0.0 7.4 0.0 42.0 0.0
7 vertical 0.07 1.7 0.0 42.3 0.0 0.0 0.0
10 longitudinal 0.05 11.5 0.0 0.0 0.0 2.0 0.0

Tabella 3.17: Significant vibration modes of the idealised bridge structure.

controlled by the deflection of the strong pier and by the higher modes of the deck.

In particular, in the first longitudinal mode the strong pier deforms according to a

first modal shape and the dynamic response of the deck is activated. The higher

longitudinal modes follow a similar logic that therefore implies the transmission of

consistent inertial forces to the abutment in the longitudinal direction at the medium

to high frequencies. This consideration will constitute a crucial point to identify the

macro-element of the bridge structure and to interpret the results of the dynamic

simulations on the full soil-bridge system.
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strong abutment

weak abutment

strong pier

weak pier

Figure 3.65: Deformed shape of the first global transverse mode (number 1).

strong abutment

weak abutment strong pier

weak pier

Figure 3.66: Deformed shape of the first global rotational mode (number 2).



CAPITOLO 3. THE CASE STUDY OF THE PANTANO VIADUCT 134

strong abutment
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Figure 3.67: Deformed shape of the first global longitudinal mode (number 3).
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weak abutment

strong pier

weak pier

Figure 3.68: Deformed shape of the second global transverse mode (number 4).

strong abutment

strong pier

weak abutment

weak pier

Figure 3.69: Deformed shape of the first vertical mode of the deck (number 5).
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weak abutment

weak pier

Figure 3.70: Deformed shape of the local vertical mode of the deck (number 6).

strong abutment

strong pier

weak abutment

weak pier

Figure 3.71: Deformed shape of the local vertical mode of the deck (number 7).

strong abutment

strong pier

weak abutment

weak pier

Figure 3.72: Deformed shape of the second global longitudinal mode (number 10).



Chapter 4

Dominant responses of the

soil-abutment system

This section illustrates two methods for the evaluation of the significant vibration

periods of the soil-abutment system, based on an analytical evaluation and a nu-

merical investigation. The former method is a rigorous development that led to

closed-form solutions for the modal characteristics of the embankment subjected

to a ground motion along a generic direction, under the assumption of a linear

behaviour of the mechanical system. The numerical study consisted instead in in-

cremental dynamic analyses on soil-abutment numerical models aimed to explore

the dominant responses of the abutment from small strains up to the mobilisation of

a global plastic mechanism. Finally, the comparison between the predictions of the

two methods, for the reference embankment defined in Section 3.6.3, provided some

useful insight into the application of the analytical solutions. In addition to the

evaluation of the entity and the frequency content of the inertial forces developing

in the embankment, the dynamic identification of the soil-abutment system will also

play a key role in the calibration of the macro-element for bridge abutments.

136
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Figure 4.1: Model of embankment taken as reference for deriving the analytical formulation.

4.1 Analytical evaluation of the dominant responses

The development proposed by Kotsoglou and Pantazopoulou (2007) provides the

modal characteristics of an embankment in the transverse direction of motion. In

this work, the method was generalised to account for a multi-directional motion,

introducing different deformation mechanisms triggered by the longitudinal and ver-

tical components of the seismic shaking.

The physical model taken as reference is shown in Figure 4.1. For simplicity,

an equivalent rectangular cross section was assumed for the embankment, of width

B and height H. Kotsoglou and Pantazopoulou (2007) demonstrated through the

results of finite element simulations that this is an acceptable approximation if the

width is evaluated as the embankment crest width increased by (1/4÷1/3) of the base

of each inclined triangular-shaped segment of the initial trapezoidal cross section,

whereas the embankment height remains unaltered. The determination of the length

L of the embankment will be discussed later. Finally, the displacement field s was
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Figure 4.2: Infinitesimal soil segment considered to derive the equation of motion for embankments
in the transverse direction.

considered uniform across the embankment, thus, s(x, y, z, t) = s(y, z, t).

4.1.1 Transverse response

Equation of motion

In Kotsoglou and Pantazopoulou (2007), the differential equation describing the

seismic response of bridge embankments was established considering an infinitesi-

mal soil segment of height ∆z and depth ∆y, shown in Figure 4.2: Px(y, z) is the

distributed lateral force (per unit area), S(y, z) is the shear stress acting on the X-Z

plane and Sx,b(y, z) represents the shear stress acting on the X-Y plane. For the sake

of conciseness, an essential description of the mathematical structure is presented

below, while the reader can refer to the article by Kotsoglou and Pantazopoulou

(2007) for a detailed development.

The local balance equation in the transverse direction reads

Px(y, z, t) +
∂Sx,b(y, z, t)

∂z
+
∂S(y, z, t)

∂y
= 0 (4.1)
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with the term Px(y, z, t) that, under seismic conditions, can be regarded as the

unit inertial force acting in the transverse direction, thus

Px(y, z, t) = −ρsoil(x, y, z, t) ·
∂2u(y, z, t)

∂t2
= −ρsoil · u,tt(y, z, t) (4.2)

in which the soil density ρsoil is assumed as a constant value. An indicial notation

is used to denote derivatives, i.e. u,tt(y, z, t) stands for the second time derivative of

the transverse displacement. Under the assumption of a linear elastic behaviour of

soil, characterised by a shear modulus G, also the shear stresses can be written as a

function of the displacement u(y, z, t)

Sx,b(y, z, t) = G · ∂u(y, z, t)
∂z

= G · u,z(y, z, t) (4.3)

S(y, z, t) = G · ∂u(y, z, t)
∂y

= G · u,y(y, z, t). (4.4)

Substituting Eqs. 4.2, 4.3 and 4.4 into Eq. 4.1, the latter yields

−ρsoil · u,tt(y, z) +G · u,zz(y, z) +G · u,yy(y, z) = 0 (4.5)

which, divided by ρsoil gives the classical wave equation

u,tt(y, z)− Vs [u,zz(y, z) + u,yy(y, z)] = 0 (4.6)

with Vs =
√
G/ρsoil the shear wave velocity.

Using separation of variables u(y, z, t) = uy(y) · uz(z) · ut(t), the solution of the

homogeneous case of Eq. 4.6 (free vibrations) is
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u(y, z, t) = u(y, z, 0)·cos

(
t ·
√

−(λ+ µ)

a2

)
+
u̇(y, z, 0)√

−(λ+µ)
a2

·sin

(
t ·
√

−(λ+ µ)

a2

)
(4.7)

u(y, z, 0) = A · cos
(
z ·

√
−µ
)
· C · cos

(
y ·

√
−λ
)
· F (4.8)

u̇(y, z, 0) = A · ω · cos
(
z ·

√
−µ
)
· C · cos

(
y ·

√
−λ
)
·

· [−F · sin (ω · t) + J · cos (ω · t)]t=0 (4.9)

ω =

√
−(λ+ µ)

a2
(4.10)

where a = 1/V 2
s , while µ and λ are negative parameters that contain the order of

the modal shape (counter n) in the vertical and longitudinal direction, respectively,

and are so defined

µ = −π
2 · (1 + 2 · n)2

4 ·H2
, nεN+

0 (4.11)

λ = −π
2 · (2 · n± 1)2

4 · L2
, nεN+

0 . (4.12)

Eq. 4.7 requires the definition of the boundary conditions in order to determine

the constant values A,C, F and J . It was assumed that the relative transverse

displacement urel at the base (z = H) is zero and, similarly, shear deformation at

the top (z = 0) is taken equal to zero, therefore

urel(y, z = H) = 0 (4.13)



CHAPTER 4. DOMINANT RESPONSES OF THE SOIL-ABUTMENT SYSTEM 141

u,z(y, z = 0) = 0. (4.14)

In the longitudinal direction, instead, the condition of free embankment was

considered in correspondence of the abutment wall (y = 0) and a fixed boundary

was supposed at the other end (y = L), as follows

u,y(y = 0, z) = 0 (4.15)

u(y = L, z) = 0. (4.16)

The former equation implies that the soil directly in contact with the wall does not

undergo shear strains in the longitudinal direction while the latter is representative

of the embankment response at a sufficiently large distance from the abutment,

starting for which the response can be reasonably approximated by the shear beam

behaviour (Gazetas, 1987).

Dynamic characteristics

The dynamic characteristics of the embankment were evaluated through the follow-

ing definition of the natural shapes of vibration

Φx(y, z) =
u(y, z)

u0(0, 0)
= cos

(
z ·

√
−µ
)
· cos

(
y ·

√
−λ
)

(4.17)

with u0(0, 0) = A · C the generalised coordinate (point of reference). With ut(t)

the time-dependent coordinate and upon substitution of u(y, z) = Φx(y, z) · ut(t) in

Eq. 4.5, the latter becomes
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ρsoil · Φx(y, z) · ut,tt(t)−G · ut(t) · Φx,yy(y, z)−G · ut(t) · Φx,zz(y, z) =

= −ρsoil · ug,tt(t) (4.18)

in which ug(t) is the ground motion at the base of the embankment. Kot-

soglou and Pantazopoulou (2007) showed that the above equation can be rearranged,

through the application of the principle of virtual work and integration on the entire

significant volume of the embankment, as follows

Mn · ut,tt(t)−Kn · ut(t) = −Γn · ug,tt(t) (4.19)

giving a canonical form of the equation of motion in which the modal massMn(t),

the modal stiffness Kn(t) and the mode excitation factor Γn(t) can be identified after

some manipulation

Mn = B ·
∫ L

0

∫ H

0

ρsoil · Φ2
x(y, z) · dz · dy, nεN+

0 (4.20)

Kn = G ·B ·
(∫ L

0

∫ H

0

Φx(y, z) ·
∂2Φx(y, z)

∂z2
· dz · dy+

+

∫ L

0

∫ H

0

Φx(y, z) ·
∂2Φx(y, z)

∂y2
· dz · dy

)
, nεN+

0 (4.21)

Γn = B ·
∫ L

0

∫ H

0

ρsoil · Φx(y, z) · dz · dy, nεN+
0 . (4.22)

For the case under examination illustrated in Figure 4.1, closed-form solutions

can be obtained for the modal characteristics. The modal mass reads



CHAPTER 4. DOMINANT RESPONSES OF THE SOIL-ABUTMENT SYSTEM 143

Mn = B · ρsoil ·
∫ L

0

∫ H

0

Φ2
x(y, z) · dz · dy =

= B · ρsoil ·
∫ L

0

∫ H

0

cos2
(
z ·

√
−µ
)
· cos2

(
y ·

√
−λ
)
· dz · dy =

= B · ρsoil ·
∫ L

0

cos2
(
y ·

√
−λ
)∫ H

0

cos2
(
z ·

√
−µ
)
· dz · dy =

=
B · ρsoil

2 ·
√
−λ ·

√
−µ

·
[
y ·

√
−λ+ sin

(
y ·

√
−λ
)
· cos

(
y ·

√
−λ
)]L

0
·

·
[
z ·

√
−µ+ sin

(
z ·

√
−µ
)
· cos

(
z ·

√
−µ
)]H

0
=

=
B · ρsoil

2 ·
√
−λ ·

√
−µ

·

·
[
L ·

√
−λ+ sin

(
L ·

√
−λ
)
· cos

(
L ·

√
−λ
)]

·

·
[
H ·

√
−µ+ sin

(
H ·

√
−µ
)
· cos

(
H ·

√
−µ
)]
, nεN+

0 (4.23)

having applied integration by parts. Similarly, the modal stiffness can be com-

puted as

Kn = G ·B ·
(∫ L

0

∫ H

0

Φ(y, z) · ∂
2Φ(y, z)

∂z2
· dz · dy+

+

∫ L

0

∫ H

0

Φ(y, z) · ∂
2Φ(y, z)

∂y2
· dz · dy

)
=
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= G ·B ·
[∫ L

0

∫ H

0

cos
(
z ·

√
−µ
)
· cos

(
y ·

√
−λ
)
·

· (−µ) · cos
(
z ·

√
−µ
)
· cos

(
y ·

√
−λ
)
· dz · dy+

+

∫ L

0

∫ H

0

cos
(
z ·

√
−µ
)
· cos

(
y ·

√
−λ
)
·

· (−λ) · cos
(
z ·

√
−µ
)
· cos

(
y ·

√
−λ
)
· dz · dy

]
=

= − G ·B
2 ·

√
−λ ·

√
−µ

· (µ+ λ) ·
[
H ·

√
−µ+ sin

(
H ·

√
−µ
)
· cos

(
H ·

√
−µ
)]

·

·
[
L ·

√
−λ+ sin

(
L ·

√
−λ
)
· cos

(
L ·

√
−λ
)]
, nεN+

0 . (4.24)

Finally, the modal frequency is derived from Mn and Kn as follows

ωn =

√
Kn

Mn

=

{
− G ·B
2 ·

√
−λ ·

√
−µ

· (µ+ λ) ·

·
[
H ·

√
−µ+ sin

(
H ·

√
−µ
)
· cos

(
H ·

√
−µ
)]

·

·
[
L ·

√
−λ+ sin

(
L ·

√
−λ
)
· cos

(
L ·

√
−λ
)]

·

·2 ·
√
−λ ·

√
−µ

B · ρsoil
· 1[
L ·

√
−λ+ sin

(
L ·

√
−λ
)
· cos

(
L ·

√
−λ
)] ·



CHAPTER 4. DOMINANT RESPONSES OF THE SOIL-ABUTMENT SYSTEM 145

· 1

[H ·
√
−µ+ sin (H ·

√
−µ) · cos (H ·

√
−µ)]

}0.5

=
√

−V 2
s · (µ+ λ) =

= Vs ·

√
−
(
−π

2 · (1 + 2 · n)2
4 ·H2

− π2 · (2 · n+ 1)2

4 · L2

)
=

=
Vs · π
2

·
√

(1 + 2 · n)2
H2

+
(2 · n+ 1)2

L2
, nεN+

0 . (4.25)

The expression of ωn highlights some peculiar aspects of the transverse vibration

modes of an embankment. The frequency is directly proportional to the shear wave

velocity Vs of the soil while an increase of the dimensions of the embankment leads

to lower modal frequencies because of the increase of deformability. Note that for

very long embankments (L � H) the modal frequencies can be simply estimated,

in first approximation, as

ωn =
Vs · π
2

·
√

(1 + 2 · n)2
H2

=
Vs · π · (1 + 2 · n)

2 ·H
,nεN+

0 (4.26)

with a dynamic response governed essentially by the shear deformation of the

embankment cross section.

4.1.2 Longitudinal response

Equation of motion

Consider now the case of an embankment perturbed by a longitudinal ground motion

(Y direction). Figure 4.3 depicts the forces acting on an infinitesimal soil segment,

where Py(y, z) = −ρsoil · v,tt(y, z) is the punctual inertial force, Sy,b(y, z) is the shear

stress acting on the surface B · dy, Fy(y, z) is the normal distributed force on the

face B · dz and v(y, z) is the resulting longitudinal displacement, not dependent



CHAPTER 4. DOMINANT RESPONSES OF THE SOIL-ABUTMENT SYSTEM 146

H
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Figure 4.3: Infinitesimal soil segment considered to derive the equation of motion in the longitudinal
direction.

on x by hypothesis. Differently from the response in the transverse direction, two

different deformation mechanisms develop: a shear deformation due to the shear

stress Sy,b(y, z) and a volumetric deformation induced by the difference between the

compressional distributed forces Fy(y, z) and Fy(y +∆y, z). The latter mechanism

was not taken into account in the transverse response because, in reality, the cross

section of the embankment exhibits essentially a shear-type deformed shape only,

with no significant volumetric strains due to the limited width compared to the

common wavelengths of the seismic motion. The variability of the displacement field

in the longitudinal direction, instead, cannot be neglected and therefore a combined

shear-volumetric deformation is considered.

The boundary conditions of the problem are reported below:

� zero relative displacements at the base of the embankment (uniform ground

motion at the base)

vrel(y, z = H) = 0 (4.27)

� zero shear deformation in correspondence of the top of the embankment
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v,z(y, z = 0) = 0 (4.28)

� free embankment in correspondence of the abutment wall

v,y(y = 0, z) = 0 (4.29)

� fixed embankment at an effective longitudinal distance L from the abutment

v(y = L, z) = 0. (4.30)

The local balance equation of the elemental volume dV = B · dy · dz reads

Py(y, z, t) ·B · dy · dz + Fy(y + dy, z, t) ·B · dz − Fy(y, z, t) ·B · dz+

+Sy,b(y, z + dz, t) ·B · dy − Sy,b(y, z, t) ·B · dy = 0 (4.31)

in which the infinitesimal increment of the generic quantity g(i) can be written

as g(i+ di) = g(i) + dg(i)/di · di, leading to

−ρsoil · v,tt(y, z, t) ·B · dy · dz + ∂Fy(y, z, t)

∂y
·B · dy · dz+

+
∂Sy,b(y, z, t)

∂z
·B · dy · dz = 0 (4.32)

−ρsoil · v,tt(y, z, t) +
∂Fy(y, z, t)

∂y
+
∂Sy,b(y, z, t)

∂z
= 0. (4.33)

In the case of a linear elastic medium and under the assumption of no verti-

cal strains, the normal and shear distributed forces are related to the longitudinal

displacement by the following relations
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Fy(y, z, t) = Eoed ·
∂v(y, z, t)

∂y
= Eoed · v,y(y, z, t) (4.34)

Sy,b(y, z, t) = G · ∂v(y, z, t)
∂z

= G · v,z(y, z, t) (4.35)

which, substituted into Eq. 4.33, gives the equation of motion

−ρsoil · v,tt(y, z, t) + Eoed · v,yy(y, z, t) +G · v,zz(y, z, t) = 0 (4.36)

or equivalently

v,tt(y, z, t)− V 2
p · v,yy(y, z, t)− V 2

s · v,zz(y, z, t) = 0 (4.37)

as a function of the compressional and shear wave velocities Vp =
√
Eoed/ρsoil and

Vs =
√
G/ρsoil, respectively. Note that the punctual force Fy(y, z, t) is a function

of the oedometric modulus Eoed since it produces compression and extension of the

soil volume in the direction of motion. Eq. 4.37 represents a wave equation for a

combined volumetric-shear mechanism induced by shear waves in the longitudinal

direction Y of the embankment.

By using separation of variables, the longitudinal displacement can be decom-

posed as follows

v(y, z, t) = vy(y) · vz(z) · vt(t) (4.38)

which, substituted into Eq. 4.37, leads to

vy(y) · vz(z) · vt,tt(t)− V 2
p · vy,yy(y) · vz(z) · vt(t)−
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−V 2
s · vy(y) · vz,zz(z) · vt(t) = 0. (4.39)

Dividing both members of the above equation by vy(y) · vz(z) · vt(t), it becomes

vt,tt(t)

vt(t)
− V 2

p · vy,yy(y)
vy(y)

− V 2
s · vz,zz(z)

vz(z)
= 0 (4.40)

that is equivalent to the following system of differential equations

vz,zz(z)

vz(z)
=

µ

V 2
s

= µz (4.41)

a2 · vt,tt(y)
vt(t)

− vy,yy(y)

vy(y)
=

µ

V 2
p

= µy (4.42)

where µ is a coefficient determined from the boundary conditions and a2 = V −2
p .

Eq. 4.41 admits three possible solutions depending on the sign of µ: an expo-

nential solution if µ > 0, a linear solution if µ = 0 and a trigonometric solution

when µ < 0. The acceptable solution for the boundary conditions specified before

is µ < 0, therefore the generic solution of Eq. 4.41 reads

vz(z) = A · cos
(
z ·

√
−µz

)
+B · sin

(
z ·

√
−µz

)
. (4.43)

The coefficients A and B can be determined by invoking the relative boundary

conditions, Eqs. 4.27 and 4.28. Specifically, from Eq. 4.28 one can obtain

vz,z(0) =
[
−A ·

√
−µz · sin

(
z ·

√
−µz

)
+B ·

√
−µz · cos

(
z ·

√
−µz

)]
z=0

=

= B ·
√
−µz = 0 =⇒ B = 0 (4.44)
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and Eq. 4.27 gives

vz(z = H) = A · cos
(
H ·

√
−µz

)
= 0. (4.45)

In addition to the trivial solution A = 0 (system at rest), if A > 0 a solution of

Eq. 4.45 for µz can be obtained

cos
(
H ·

√
−µz

)
= 0 =⇒ µz = −π

2 · (1 + 2 · n)2

4 ·H2
< 0, nεN+

0 (4.46)

by which the coefficient µ is derived

µ = µz · V 2
s = −V 2

s · π
2 · (1 + 2 · n)2

4 ·H2
, nεN+

0 . (4.47)

The expression for the z-dependent function vz(z) finally reads

vz(z) = A · cos

z ·
√
π2 · (1 + 2 · n)2

4 ·H2

 . (4.48)

This implies that, similarly to what happens for the transverse response, the longi-

tudinal modes of vibration have a trigonometric distribution along the embankment

height, with an increasingly order defined by the integer n.

The remaining part of the solution is computed by means of Eq. 4.42. This can

be further decomposed into Eqs. 4.49 and 4.50 as reported below.

vy,yy(y)

vy(y)
= λ (4.49)

a2 · vt,tt(y)
vt(t)

− µy = λ (4.50)

The former equation admits a trigonometric solution for λ < 0
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vy(y) = C · cos
(
y ·

√
−λ
)
+D · sin

(
y ·

√
−λ
)

(4.51)

and, by imposing the relative boundary conditions Eqs. 4.29 and 4.30, Eq. 4.51

becomes

vy(y) = C · cos
(
y ·

√
−λ
)

(4.52)

λ = −π
2 · (±1 + 2 · n)2

4 · L2
, nεN+

0 . (4.53)

The parameter λ contains the order n of the mode and it is inversely proportional

to the length of the embankment. This implies that the greater the length, the

smaller the modal frequency since the deformability of the embankment increases.

Eq. 4.50 allows to define the time-dependent function vt(t). This equation can

be conveniently rewritten as

vt,tt(y)

vt(t)
=
λ+ µy

a2
= −ω2 < 0 (4.54)

as a function of the frequency ω = 2 · π/T . The coefficient µy can be now

computed as follows

µy =
µ

V 2
p

= −V
2
s

V 2
p

· π
2 · (1 + 2 · n)2

4 ·H2
, nεN+

0 . (4.55)

and therefore the modal frequencies assume the following form

ω =

√
−λ+ µy

a2
=

√√√√−V 2
p ·

[
−π

2 · (±1 + 2 · n)2

4 · L2
− V 2

s

V 2
p

· π
2 · (1 + 2 · n)2

4 ·H2

]
=
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=

√√√√−π
2

4
·

[
−V 2

p · (±1 + 2 · n)2

L2
− V 2

s · (1 + 2 · n)2

H2

]
=

=
π

2
·

√
V 2
p · (±1 + 2 · n)2

L2
+ V 2

s · (1 + 2 · n)2

H2
(4.56)

showing clearly how the two mechanisms, volumetric and shear deformation,

concur in defining the modal characteristics of the embankment. As done before,

the solution of Eq. 4.54 reads

vt(t) = E · cos (t · ω) + F · sin (t · ω) (4.57)

with E and F determined through the initial conditions. The total solution finally

yields

v(y, z, t) = C · cos
(
y ·

√
−λ
)
· A · cos

(
z ·

√
−µz

)
·

· [E · cos (t · ω) + F · sin (t · ω)] (4.58)

that can be also written as a function of the initial displacement v0(y, z, t) and

the initial velocity v0,t(y, z, t) as

v(y, z, t) = v0(y, z, t) · cos (t · ω) +
v0,t(y, z, t)

ω
· sin (t · ω) . (4.59)

Dynamic characteristics

Based on the definition of v0(0, 0, t) = A·C as the generalised coordinate, the natural

shapes of vibration are defined through Eq. 4.60

Φy(y, z) =
v(y, z, t)

v0(0, 0, t)
= cos

(
z ·

√
−µ
)
· cos

(
y ·

√
−λ
)

(4.60)
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so that the longitudinal displacement becomes

v(y, z, t) = Φy(y, z) · vt(t). (4.61)

Substituting Eq. 4.61 into the equation of motion, Eq. 4.37, it follows

Φy(y, z) · vt,tt(t)− V 2
p · vt(t) · Φy,yy(y, z)− V 2

s · vt(t) · Φy,zz(y, z) =

= −ρsoil · vg,tt(t) (4.62)

with vg(t) the ground motion at the base of the embankment in the longitudinal

direction. As done for the transverse direction, the principle of virtual work is now

applied to derive the global equation of motion. The virtual work produced by

the forces acting on the system when undergoing a virtual displacement Φy(y, z),

consistent with the boundary conditions, is calculated in the following

ρsoil · vt,tt(t) ·
∫ L

0

∫ H

0

Φ2
y(y, z) · dz · dy − Eoed · vt(t)·

·
∫ L

0

∫ H

0

Φy(y, z) · Φ,yy(y, z) · dz · dy −G · vt(t)·

·
∫ L

0

∫ H

0

Φy(y, z) · Φy,zz(y, z) · dz · dy =

= −ρsoil · vg,tt(t) ·
∫ L

0

∫ H

0

Φy(y, z) · dz · dy (4.63)

and the above equation of motion can be written in a more compact form by

recognising in it the modal massMn, the modal stiffnessKn and the mode excitation

factor Γn
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Mn · vt,tt(t)−Kn · vt(t) = −Γn · vg,tt(t) (4.64)

Mn = B · ρsoil ·
∫ L

0

∫ H

0

Φ2
y(y, z) · dz · dy, nεN+

0 (4.65)

Kn = B · Eoed ·
∫ L

0

∫ H

0

Φy(y, z) · Φy,yy(y, z) · dz · dy+

+B ·G ·
∫ L

0

∫ H

0

Φy(y, z) · Φy,zz(y, z) · dz · dy, nεN+
0 (4.66)

Γn = B · ρsoil ·
∫ L

0

∫ H

0

Φy(y, z) · dz · dy, nεN+
0 . (4.67)

For the schematic geometry of the embankment in Figure 4.3, the closed-form

solutions for the modal characteristics are reported below.

Mn = B · ρsoil ·
∫ L

0

∫ H

0

cos2
(
z ·

√
−µz

)
· cos2

(
y ·

√
−λ
)
· dz · dy =

=
B · ρsoil

2 ·
√
−λ ·

√
−µz

·
[
L ·

√
−λ+ sin

(
L ·

√
−λ
)
· cos

(
L ·

√
−λ
)]

·

·
[
H ·

√
−µz + sin

(
H ·

√
−µz

)
· cos

(
H ·

√
−µz

)]
, nεN+

0 (4.68)

Kn = B · Eoed ·
∫ L

0

∫ H

0

Φy(y, z) · Φy,yy(y, z) · dz · dy+

+B ·G ·
∫ L

0

∫ H

0

Φy(y, z) · Φy,zz(y, z) · dz · dy =
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= − B

2 ·
√
−λ ·

√
−µz

· (G · µz + Eoed · λ) ·

·
[
H ·

√
−µz + sin

(
H ·

√
−µz

)
· cos

(
H ·

√
−µz

)]
·

·
[
L ·

√
−λ+ sin

(
L ·

√
−λ
)
· cos

(
L ·

√
−λ
)]
, nεN+

0 . (4.69)

As a verification, the modal frequency, already evaluated in Eq. 4.56, is also

computed through the modal mass and stiffness, as described in Eq. 4.70.

ωn =

√
Kn

Mn

=
π

2
·
√
V 2
p · (±1 + 2 · n)2

L2
+ V 2

s · (1 + 2 · n)2
H2

, nεN+
0 . (4.70)

4.1.3 Vertical response

Equation of motion

Figure 4.4 depicts the forces acting on an infinitesimal soil segment induced by

a vertical motion applied to the base. In this direction, the dynamic response

of the embankment is conceptually similar to that associated with a longitudinal

ground motion. Shear deformation occurs for the variability of the displacement

along the length of the embankment, generating the shear stress Sz,b(y, z), and

it is combined with a volumetric deformation mechanism associated instead with

the pressure Fz(y, z). The unit inertial force in the vertical direction is given by

Pz(y, z) = −ρsoil · w,tt(y, z, t). By hypothesis, the cross section of the embankment

undergoes a uniform displacement at a given elevation, hence the vertical displace-

ment w(y, z, t) does not depend on x.

The local balance equation reads
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Figure 4.4: Forces acting on an infinitesimal soil segment of embankment induced by the vertical
ground motion.

ρsoil · w,tt(y, z, t)−
∂Sz,b(y, z, t)

∂y
− ∂Fz(y, z, t)

∂z
= 0 (4.71)

and considering the following constitutive laws for a linear elastic medium with

no longitudinal strains induced by the vertical motion

Sz,b(y, z, t) = G · ∂w(y, z, t)
∂y

= G · w,y(y, z, t) (4.72)

Fz(y, z, t) = Eoed ·
∂w(y, z, t)

∂z
= Eoed · w,z(y, z, t) (4.73)

the equation of motion follows

−ρsoil · w,tt(y, z) +G · w,yy(y, z) + Eoed · w,zz(y, z) = 0 (4.74)

or, equivalently, it can be rearranged as
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w,tt(y, z)− V 2
s · w,yy(y, z)− V 2

p · w,zz(y, z) = 0. (4.75)

By comparing Eq. 4.75 with Eq. 4.37, it can be observed that the two mechanisms

associated with shearing and volumetric deformation are inverted with respect to

the longitudinal dynamic response.

The solution of the equation of motion requires the definition of 6 constraints,

deriving from the initial conditions (2) and from the boundary conditions (4). The

same initial conditions adopted for the other directions can be considered in this

case, however not affecting the derivation of the modal characteristics, while the

boundary conditions are reported below:

� zero relative displacements at the base of the embankment

wrel(y, z = H) = 0 (4.76)

� zero vertical normal strain in correspondence of the top of the embankment

w,z(y, z = 0) = 0 (4.77)

� free embankment in correspondence of the abutment wall

w,y(y = 0, z) = 0 (4.78)

� fixed embankment at an effective longitudinal distance L from the abutment

w(y = L, z) = 0. (4.79)

By applying separation of variable to the vertical displacement w(y, z, t) = wy(y)·

wz(z) · wt(t), the equation of motion yields

wy(y) · wz(z) · wt,tt(y)− V 2
s · wy,yy(y) · wz(z) · wt(t)−
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−V 2
p · wy(y) · wz,zz(z) · wt(t) = 0. (4.80)

The equation above can be solved by following the same strategy described for the

longitudinal response and therefore only the most salient developments are presented

in the following. The general integral of Eq. 4.75 is

w(y, z, t) = C · cos
(
y ·

√
−λ
)
· A · cos

(
z ·

√
−µz

)
·

· [E · cos (t · ω) + F · sin (t · ω)] (4.81)

µz = −π
2 · (1 + 2 · n)2

4 ·H2
< 0, nεN+

0 (4.82)

λ = −π
2 · (±1 + 2 · n)2

4 · L2
< 0, nεN+

0 (4.83)

and the modal frequency can be computed through the coefficients µz and λ as

reported below

ω =

√
−λ+ µy

V −2
s

=

√√√√−V 2
s ·

[
−π

2 · (±1 + 2 · n)2

4 · L2
−
V 2
p

V 2
s

· π
2 · (1 + 2 · n)2

4 ·H2

]
=

=

√√√√−π
2

4
·

[
−V 2

s · (±1 + 2 · n)2

L2
− V 2

p · (1 + 2 · n)2

H2

]
=

=
π

2
·

√
V 2
s · (±1 + 2 · n)2

L2
+ V 2

p · (1 + 2 · n)2

H2
. (4.84)

It can be observed that the shear waves affect the longitudinal development of
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the vibration modes of the embankment, while the vertical response is modelled by

the compressional waves.

Dynamic characteristics

The natural shapes of vibration are defined by Φz(y, z)

Φz(y, z) =
w(y, z, t)

w0(0, 0, t)
= cos

(
z ·

√
−µz

)
· cos

(
y ·

√
−λ
)

(4.85)

so that the displacement field can be regarded as the product between a shape

function Φz(y, z) and a time-dependent function wt(t).

By applying the principle of virtual work, the global equation of motion can

be derived, that is formally identical to Eqs. 4.19 and 4.64, with the following

expressions for the modal characteristics

Mn,z = B · ρsoil ·
∫ L

0

∫ H

0

Φ2
z(y, z) · dz · dy, nεN+

0 (4.86)

Kn,z = B ·G ·
∫ L

0

∫ H

0

Φz(y, z) · Φz,zz(y, z) · dz · dy+

+B · Eoed ·
∫ L

0

∫ H

0

Φz(y, z) · Φz,yy(y, z) · dz · dy, nεN+
0 (4.87)

Γn,z = B · ρsoil ·
∫ L

0

∫ H

0

Φz(y, z) · dz · dy, nεN+
0 . (4.88)

For the case under examination (Figure 4.4), the solutions of the equations above

are reported below.

Mn,z = B · ρsoil ·
∫ L

0

∫ H

0

cos2
(
z ·

√
−µz

)
· cos2

(
y ·

√
−λ
)
· dz · dy =
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=
B · ρsoil

2 ·
√
−λ ·

√
−µz

·
[
L ·

√
−λ+ sin

(
L ·

√
−λ
)
· cos

(
L ·

√
−λ
)]

·

·
[
H ·

√
−µz + sin

(
H ·

√
−µz

)
· cos

(
H ·

√
−µz

)]
, nεN+

0 (4.89)

Kn,z = B · Eoed ·
∫ L

0

∫ H

0

Φ(y, z) · Φ,zz(y, z) · dz · dy+

+B ·G ·
∫ L

0

∫ H

0

Φ(y, z) · Φ,yy(y, z) · dz · dy =

= − B

2 ·
√
−λ ·

√
−µz

· (Eoed · µz +G · λ) ·

·
[
H ·

√
−µz + sin

(
H ·

√
−µz

)
· cos

(
H ·

√
−µz

)]
·

·
[
L ·

√
−λ+ sin

(
L ·

√
−λ
)
· cos

(
L ·

√
−λ
)]
, nεN+

0 . (4.90)

ωn,z =

√
Kn

Mn

=
π

2
·
√
V 2
s · (2 · n+ 1)2

L2
+ V 2

p · (1 + 2 · n)2
H2

=

=

√
−λ+ µy

V −2
s

, nεN+
0 . (4.91)

4.1.4 Generic direction of motion

The local equations of motion of bridge embankments in the three coordinate di-

rections and the resulting modal frequencies are summarised in Table 4.1. The

transverse motion induces only shear strains for the assumption that the displace-

ment field is uniform across the embankment, hence it does not depend on the
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Motion Local equation of motion Modal frequency

Transv. u,tt(y, z)− Vs · u,yy(y, z)− Vs · u,zz(y, z) = 0 Vs·π
2 ·

√
(1+2·n)2

H2 + (2·n+1)2

L2

Long. v,tt(y, z)− V 2
p · v,yy(y, z)− V 2

s · v,zz(y, z) = 0 π
2 ·
√
V 2
p · (2·n+1)2

L2 + V 2
s · (1+2·n)2

H2

Vert. w,tt(y, z)− V 2
s · w,yy(y, z)− V 2

p · w,zz(y, z) = 0 π
2 ·
√
V 2
s · (2·n+1)2

L2 + V 2
p · (1+2·n)2

H2

Tabella 4.1: Local equations of motion and modal frequencies of bridge embankments.

compressional wave velocity of soil. The other components of the seismic motion

provoke instead a combined volumetric-shear deformation with different expressions

of the modal frequencies. The horizontal motion is generally caused by S-waves

while, when the vertical motion is mainly induced by P-waves propagating in a

saturated soil (Vp/Vs � 1), the modal frequencies in the vertical direction are es-

sentially controlled by the compressional wave velocity and can be also evaluated,

in first approximation, as

ωn =
π

2
· Vp ·

√
(1 + 2 · n)2

H2
, vertical direction. (4.92)

The effect of the P-waves on the longitudinal motion is instead much more lim-

ited, since it is inversely proportional to the square of the effective length of the

embankment (Eq. 4.70). It is worth bearing in mind however that embankments

are generally partially saturated soils in which the P-wave velocity is therefore rel-

ative to the soil skeleton. Consequently, the ratio Vp/Vs is not much greater than 1

and, as a result, also in the vertical direction the effect of shear deformation on the

modal characteristics cannot be neglected.

Taking advantage of the assumption of linear behaviour of the embankment, the

displacement field induced by a multi-component seismic motion is obtained by

superposition

s(y, z, t) · ei = u(y, z, t) · ex + v(y, z, t) · ey + w(y, z, t) · ez (4.93)
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with ei the versor of the axis i. Analogously, the mass participation and the modal

stiffness can be obtained through the respective quantities in three orthogonal direc-

tions. This method was implemented in Matlab and will constitute a central aspect

in calibrating the dynamic properties of the macro-element for bridge abutments.

4.2 Numerical evaluation of the nonlinear dominant responses of the

soil-abutment system

The dynamic response of the soil-abutment system is now studied through a soil-

abutment interaction model implemented in OpenSees, shown in Figure 4.5. The

model constitutes a part of the global soil-bridge representation illustrated in Figure

3.60 and is composed of 99744 elements for a whole plan extension of 135.0 × 72.0

m2. It includes the abutment, the embankment and a homogeneous subsoil, repre-

senting the superficial layers of Messina Gravel MG1D and MG1. The soil domain

extends down to a depth of 60 m from the abutment foundation, for a vertical ex-

tension equal to about 3.0 times the greatest size of the foundation. The horizontal

extension of the model is equal to 3.6 and 7.7 times the transverse and longitudi-

nal dimensions of the abutment. Through preliminary dynamic pushover analyses

on such a model, it was verified the negligible interaction between the significant

soil volume involved in the abutment response and the lateral boundaries. Because

of the large amount of simulations carried out in the dynamic identification of the

abutment, the PDMY model was preferred to the SANISAND model to describe

the behaviour of the foundation soil and of the embankment, in virtue of its com-

putational efficiency. A detailed description of the constitutive parameters and the

finite element modelling is given in Section 3.3 and Section 3.6, respectively.

A staged analysis procedure was adopted with gravity loads applied first, in

which the construction of the abutment and of the embankment was simulated in
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a sequential manner, and followed by the dynamic simulation, in which the use

of the parallel computing was needed to get manageable computation times. The

dynamic perturbation consisted of a distributed force to the top of the central wall

of the abutment that varies in time as a harmonic function of period T for 10

cycles of loading. The force was applied separately for each loading direction at the

deck-abutment contact, with a constant amplitude during a single analysis. Different

amplitudes were considered and also the period T ranged between 0.05 ÷ 5.0 s,

for a total of 160 analyses for each load direction. The smallest amplitude refers

to a reversible response of the abutment, hence with no appreciable permanent

displacements developed at the deck-abutment contact during the analysis. The

highest external force was instead determined as that perturbation producing a

steady dominant response of the abutment, as described in detail later. The results

are expressed in terms of a relationship between the external force per unit length

of the wall and the corresponding average displacement computed at the top of the

central wall.

Consider for instance the abutment perturbed by a longitudinal distributed force

Q1. Focusing on the lowest external force equal to 600 kN/m (reversible behaviour),

Figure 4.6 depicts the time evolution of the longitudinal displacement v at the deck-

abutment contact for three periods of the external force. The time scale is normalised

with respect to the duration Tf of the dynamic perturbation. As expected, the am-

plitudes of the displacements are somewhat limited so that the plastic response of

the soil is not relevant, with negligible permanent displacements at the end of the

analysis.

It can be observed that the maximum displacement does not increase monoton-

ically as the period rises. In fact, if the maximum displacement for each curve is

plotted as a function of the period T of the respective external force, one can ob-

tain the dynamic amplification curve illustrated in Figure 4.7. Three peaks can be
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Figure 4.5: Soil-abutment interaction model implemented in OpenSees.

Figure 4.6: Time evolution of the displacements at the deck-abutment contact in the longitudinal
direction for Q1 equal to 600 kN/m.
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Figure 4.7: Dynamic amplification curve (reversible regime) of the soil-abutment system in the
longitudinal direction.

recognised with amplification of the response in the range between 0.4÷ 1.0 s. For

lower periods the response is progressively attenuated because the abutment and

the soil are too deformable compared to the oscillations of the external force and,

as a result, the system tends to vibrate in phase opposition. For periods beyond

1.5 s, instead, the dynamic effects become negligible and the external force acts as

a static perturbation. The maximum amplification occurs in correspondence of a

period of 0.6 s, identifying the dominant response of the soil-abutment system at

this level of deformation, while the other two minor peaks occur at 0.9 s and 0.3 s.

The structural mass of the abutment has a minor effect on the response, leading to a

modest further increase of the displacements, confined in the region of the maximum

amplification, without altering the dominant periods of the system. It follows that

the dynamic amplification of the soil-abutment system is mainly controlled by the

participating mass of the embankment, that therefore appears to be much greater

than the abutment mass.

Figure 4.8 shows the dynamic amplification curves associated with an increasing
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level of the force Q1. A higher intensity of the external force causes an increment

of deformability and a longer dominant response of the abutment. These effects can

be concisely described by two non-dimensional parameters: the period elongation

TD/TD,0, that is the ratio of the dominant period TD for a given force Q1 to the

dominant period TD,0 associated with the reversible response (Q1 < Q1,y) and the

ratio vmax/vmax,y between the corresponding maximum displacements. The relation-

ship of these two parameters with the normalised amplitude Q1/Q1,y, where Q1,y is

intended as the amplitude that produces the first shift of the dominant period, gives

the curves of the period elongation and of the maximum displacements shown in

Figure 4.9, which highlight some peculiar aspects of the dynamic response of the

soil-abutment system.

For values of Q1/Q1,y less than 1, the maximum displacement vmax/vmax,y in-

creases quasi-linearly with a modest gradient and the dominant period keeps unal-

tered, delimiting a range of the normalised amplitude in which the behaviour of the

soil-abutment system is essentially reversible governed by the elastic stiffness of the

soil. For higher intensities of the external force, the behaviour changes, leading to

an increment of deformability and a significant increase of the dominant period up

to 1.3 · TD,0. This is a transition phase in which the period elongation goes up as a

consequence of an increasingly more pronounced plastic response of the soil. In fact,

in this zone the growth of the maximum displacements is accompanied by a marked

increase of the permanent displacements as well, the latter depicted in Figure 4.10.

The latter accumulate progressively in time and are directed downstream due to the

mobilization of the active resistance in the embankment, as also demonstrated by

the time histories of the displacements produced by a level of force Q1/Q1,y = 3.0

in Figure 4.11. Moving beyond the transition zone (Q1/Q1,y > 3.0), even though

the maximum displacements keep increasing more than linearly, the dominant pe-

riod stabilises at a value of 0.78 s. This is caused by a diffused plastic response in
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Figure 4.8: Dynamic amplification curves of the soil-abutment system for an increasing amplitude
of the external force Q1 in the longitudinal direction.
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Figure 4.9: Curves of the period elongation (a) and of the maximum displacements (b).

the soil with activation of a global plastic mechanism of the soil-abutment system.

Accordingly, the participating mass of the embankment becomes bounded by the

edges of the plastic volume and cannot increase further for higher intensities of the

perturbation, leading to a steady dominant response. A non-dimensional represen-

tation of the dynamic amplification curves, including both the effects of the period

elongation and the increment of the maximum displacements, is shown in Figure

4.12.

In the vertical direction, the incremental dynamic analysis was carried out mon-

itoring the mean vertical displacement w on the top of the central wall caused by

a vertical force Q3 applied to the same nodes. The results of the dynamic identi-

fication are shown in Figures 4.13, 4.14 and 4.15. The reversible behaviour occurs

in the same interval of the external force detected for the longitudinal response.
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Figure 4.10: Permanent displacements of the abutment top plotted as a function of the normalised
load Q1/Q1,y.

Figure 4.11: Time evolution of the displacements at the deck-abutment contact in the longitudinal
direction for Q1 equal to 3600 kN/m.
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Figure 4.12: Non-dimensional representation of the dynamic amplification curves of the soil-
abutment system in the longitudinal direction.

The corresponding maximum displacements are very small, less than 2 cm, of the

same order of magnitude of those obtained in the longitudinal response. However,

the dominant period occurs at 0.4 s, resulting in a stiffer response compared to the

longitudinal one, with a ratio T vert
D,0 /T

long
D,0 = 0.67. The reversible regime holds up to

a vertical force equal to 1200 kN/m, with a slight increase of the maximum displace-

ment and negligible permanent effects in the post-shaking condition. Afterwards,

the dominant period starts rising up to a period of 0.5 s, attained in correspondence

of Q3 = 2400 kN/m, with a period elongation of TD/TD,0 = 1.25. In this transition

phase, the displacements increase markedly, as well as the permanent ones. The

dominant period keeps unaltered in the range Q3 = 2400÷4800 kN/m, in which the

maximum displacements increase more than linearly due to the progressively more

pronounced plastic response of the soil interacting with the abutment. Until this

level of force, the two curves of the period elongation in the longitudinal and vertical
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directions present a similar trend, though the respective displacement fields show

completely different amplitudes. In the vertical response, however, a new transition

phase was detected at very high levels of the perturbation (Q3 > 4800 kN/m) in

which the shape of the dynamic amplification curve modify. More specifically, the

dominant period decreases to the initial value of 0.4 s, for Q3 = 6000 kN/m, because

the displacement at 0.5 s reduces while that at 0.6 s increases progressively, leading

to the formation of a new vibration mode that becomes the dominant one for ex-

tremely severe external forces (Q3 > 8400 kN/m). This phenomenon (mode switch)

was not observed in the longitudinal direction probably because of the different de-

formation modes that develop in the soil. A much higher magnitude of the external

force is required to activate a global plastic mechanism in the vertical direction,

compared to the longitudinal limit load that mobilises the active resistance in the

embankment. As it will be described in detail in Section 5.9.1, this happens because

the bearing capacity of the abutment foundation involves a large volume of soil in

which the resistance is mobilised, with part of the soil downstream and upstream

in addition to the foundation soil. This implies a more complex response of the

abutment, with a possible alternating mobilization of the soil resistance in different

parts of the subsoil interacting with the abutment before reaching the ultimate con-

dition, that might be responsible of the multiple oscillations of the dominant period

observed above.

Looking at the transverse response, the identification of the dominant response is

shown only for the reversible regime, since this is an ongoing research. In Figure 4.16,

the dynamic amplification curve obtained by applying a transverse force Q2 = 600

kN/m is compared with the curves in the longitudinal and vertical directions. The

transverse response follows quite closely the curve relative to the longitudinal direc-

tion, with a comparable amplitude of the displacements, but it presents a slightly

larger dominant period T tran
D,0 equal to 0.7 s. The longer dynamic response might be
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Figure 4.13: Dynamic amplification curves of the soil-abutment system for an increasing amplitude
of the vertical external force Q3.

Figure 4.14: Permanent displacements of the abutment top plotted as a function of the normalised
load Q3/Q3,y.
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Figure 4.15: Curves of the period elongation (a) and of the maximum displacements at resonance
(b) in the vertical direction.
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Figure 4.16: Dynamic amplification curves of the soil-abutment system for Qi = Qi,y = 1200 kN/m
(upper bound of the reversible regime).

due to the different kinematics associated with the three directions (Figure 4.16).

Differently from the other directions, in the transverse direction there is no lateral

confinement to the abutment wall and therefore the oscillations of the abutment

are mainly controlled by the soil-foundation interaction, that might cause the slight

increment of deformability observed above. At this low level of the external force,

the static displacements are contained in a quite narrow range because the response

is primarily elastic.
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4.3 Comparison between analytical predictions and numerical evalua-

tions

The numerical results obtained above for the reference embankment are now com-

pared with the analytical predictions. Eqs. 4.26, 4.70 and 4.91 give the analytical

solutions for the vibration periods along the three coordinate directions. In these so-

lutions, the height H of the embankment was taken equal to its original value of 13.5

m while the length L was assumed equal to 3 ·H = 40.5 m, since for greater values of

L the modal frequencies become much less dependent on the aspect ratio L/H (long

embankment condition). Theoretically, the length of the embankment to be consid-

ered should be representative of the volume of soil that interacts dynamically with

the abutment, also called effective length of the embankment, whose identification

is not straightforward. In dynamic simulations, in fact, the mass of the soil involved

in the dynamic response of the abutment is referred to part of the embankment and

of the foundation soil, whose contributions are hardly distinguishable. Moreover

the mass participation varies with the frequency of the dynamic perturbation and,

consequently, also the effective length should reflect these features. A first evalua-

tion of the effective embankment length for the problem at hand will be provided in

Section 5.14.2, devoted to the calibration of the macro-element of bridge abutment,

but further investigations are needed to reach a more general understanding on it.

The compressional and shear wave velocities of the soil are equal to Vp = 407 m/s

and Vs = 220 m/s, respectively, where the former refers to the soil skeleton because

the embankment is regarded as a partially saturated soil.

Figure 4.17 shows the vibration periods of the embankment in the three coordi-

nate directions of motion. Let T long
R,1 , T tran

R,1 and T vert
R,1 be the first resonance periods

in the longitudinal, transverse and vertical direction, respectively. In all directions,

after the first resonance the vibration period decreases rapidly, tending to a horizon-
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Figure 4.17: Analytical evaluation of the vibration periods of the reference embankment in the
transverse, longitudinal and vertical directions of motion.

tal asymptote for n > 8, which is different for the vertical and the horizontal modes.

The vertical response results to be much stiffer than the horizontal one, with ratios

T vert
R,1 /T

long
R,1 and T vert

R,1 /T
tran
R,1 equal to 0.54 and 0.56. The longitudinal response is

slightly more stiffer than the transverse response because involves a combined shear

and volumetric deformation mechanism, while the transverse modes are affected only

by the shear wave velocity.

The analytical results above are now compared with the dominant responses ob-

tained through the numerical interaction models in OpenSees. The comparison is

initially referred to the dynamic amplification curves in the reversible regime (Figure

4.16). It is evident that the analytical method leads to a considerable underestima-

tion of the dominant periods in all the directions of motion, with the following ratios

between the analytical T
(ana)
R,1 and the numerical T

(num)
R,1 predictions
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T
(num)
R,1

T
(ana)
R,1

=


1.70, longitudinal direction

2.05, transverse direction

2.12, vertical direction

.

The reason of this discrepancy is deemed to be mainly due to the different physi-

cal problems considered by the two methods. The finite element models in OpenSees

give a more accurate description of the soil-abutment system, especially with a more

likely reproduction of the displacement field induced by the seismic excitation. The

analytical solutions, instead, are derived through a rigorous mathematical formu-

lation but refer to a more simplified mechanical system, as schematically shown in

Figures 4.18 and 4.19 for the longitudinal and vertical response, respectively. This

implies a different kinematics of the embankment interacting with the abutment

under dynamic excitation.

In the numerical models, in fact, the abutment undergoes a roto-translational

motion involving part of the embankment and also part of the soil underneath the

footing, while the analytical method does not take into account the deformability

of the foundation soil and the soil-abutment interaction is more simply regarded as

an appropriate boundary condition. In spite of these important simplifications, the

analytical solutions may represent a very useful tool for a prompt estimation of the

dominant responses of embankments and, to overcome the above limitations, the

following simple modification was introduced to the analytical method in order to

obtain a good match between the two methods.

As observed before, the most limiting simplification of the analytical model is that

it neglects completely the deformability of the foundation soil. Without modifying

the mathematical formulation, a greater effective heightHeff of the embankment was

introduced in the solutions of the modal characteristics. CalibratingHeff against the

numerical results by trial and error, it was found that the effective height depends on
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analytical approachnumerical approach

fixed boundary free boundary

Q1

v

Q1

v longitudinal motion

kinematics
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Figure 4.18: Longitudinal response: physical models used in the analytical and numerical methods.
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analytical approachnumerical approach

fixed boundary free boundary

w

Q3
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models

Q3
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Figure 4.19: Vertical response: physical models used in the analytical and numerical methods.

the direction of motion. In detail, the expression of the effective height was related

to the length of the abutment foundation Lf , obtaining the following relations

Heff =


H + Lf , longitudinal direction

H + 1.5 · Lf , transverse direction

H + 1.5 · Lf , vertical direction

. (4.94)

The above expressions seem to be representative of the volume of soil beneath

the foundation that is involved in the response of the abutment, according to the

different deformation mechanisms induced by the horizontal and vertical ground

motion (see Figure 4.16). In this way, the analytical solutions match very well the

numerical results, as illustrated in Figure 4.20, and can be therefore employed for

a prompt assessment of the modal characteristics of bridge embankments along a
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Figure 4.20: Comparison between the analytical prediction of the dominant periods and the dy-
namic amplification curves retrieved through the numerical soil-abutment interaction models in
the reversible regime.

generic direction of motion.

The analytical method was developed under the assumption of linear behaviour

of soil, which theoretically holds only in the reversible region of the curve of the

period elongation, thus for a very modest external perturbation. In a simplified

manner, the analytical approach might be also used to predict the dominant periods

beyond the small strain regime, regarding the progressive, nonlinear reduction of the

soil stiffness with the level of strain as an equivalent linear behaviour, referring to

appropriate values of the normalised shear modulus G/G0. As an example, consider

the dynamic amplification curves in Figures 4.8 and 4.13. It was found that the

optimum values of G/G0 to be used in the analytical method (Eqs. 4.26, 4.70 and

4.91) in order to reproduce the shift of the dominant period in the transition phase

and in the steady state are 0.75 and 0.5, respectively. The relative results are shown
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Figure 4.21: Analytical prediction of the dominant periods of the embankment, considering a
reduction of the elastic moduli of 0.75, in the transition zone identified by the numerical results.

in Figure 4.21.



Chapter 5

A macro-element for bridge

abutments

5.1 Conceptual framework

In the following, the effects of the soil-structure interaction occurring at the abut-

ment locations are taken into account by introducing in the global structural model

a macro-element representation of the soil-abutment system, leading to a drastic

limitation of the degrees of freedom of the numerical models. The macro-element

is aimed to reproduce the highly nonlinear interaction between the soil and the

abutment under general multi-axial loading conditions. The force-displacement re-

lationship of the model is elastic-plastic, derived from a rigorous thermodynamic

approach. It is conceived to relate the forces Qi exchanged at the deck-abutment

contact to the corresponding displacements qj through a second-order stiffness ma-

trix Hij:

Qi = Hij · qj. (5.1)

In the model, the capacity of the soil-abutment system is described by a limit
182
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D.N. GORINI soil-structure interaction for bridge abutments

Q1

Q3

Q2q2
q1

q3

Figure 5.1: Forces Qi and corresponding displacements qi representing the significant degrees of
freedom of the deck-abutment contact considered in the macro-element formulation.

surface in the force space, while the inertial effects are taken into account through

the introduction of appropriate participating masses.

The physical quantities of the macro-element and their positive signs are depicted

in Figure 5.1. The formulation is restricted to the significant degrees of freedom of

the deck-abutment contact, that are the three interaction forces Qi, i = 1, 2, 3, while

the moment contribution is neglected for the following reasons. The moment Qr2

along the transverse axis 2 constitutes the main source of rotation for an abutment

compared to the other components of moment. Nonetheless, the transmission of the

moment Qr2 occurs only in the case of fully integral bridges. In such cases, the su-

perstructure and the substructure are constructed monolithically, with no movement

joints between spans and abutments, and the bridge movement is accommodated at

the ends of the approach slabs. This structural solution can be used to minimise

maintenance costs of the superstructure of the bridge but it is usually adopted for

short-span bridges only, due to some issues mainly relative to soil-structure effects at
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the abutments (concrete creep and shrinkage), temperature movements and attain-

ment of the passive resistance under earthquake loads. The longitudinal moment

Qr1 is produced by the tendency of the deck to rotate around the longitudinal axis.

This leads to different forces transmitted to the bearing devices placed along the

top of the central wall. Although always present in both seat-type girder bridges

and integral bridges, this moment produces a much stiffer response compared to

the moment Qr2 because its intensity is strongly controlled by the distance between

the bearing devices that is however limited by the width of the deck. Moreover,

these forces are further limited for seat-type girder bridges because the bearing de-

vices represent unilateral constraints in the vertical direction and hence only vertical

forces directed downwards can be transferred to the abutment. Finally, the moment

around the vertical axis Qr3 is associated with the stiffest response of the abutment

since it involves the torsional stiffness of the soil-abutment system, producing ap-

preciable displacements only for very high skew angles between the deck and the

abutment.

In the following, a brief introduction to the thermodynamic framework used to

derive the macro-model is presented. Then, for the sake of clarity, the mathematical

formulation is initially described for the one-dimensional case, for then developing

the general multi-axial response. Finally, a calibration procedure of the macro-

element is presented.

5.2 The thermodynamic approach

The constitutive law of the macro-element was derived within a rigorous and con-

sistent framework based on what is often termed generalised thermomechanics , also

known in soil mechanics as hyperplasticity (Collins and Houlsby, 1997). It places

strong emphasis on the use of internal variables to describe the past history of the
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material. The First and Second Laws of Thermodynamics are enforced directly in

this formulation so that any model defined within this framework will automatically

obey these laws. The use of this framework constitutes a first step forward with

respect to the existing macro-element representations in geomechanics, leading to

a more robust mathematical formulation with consistent deformation processes. A

second advantage in using a thermodynamic approach is that the framework makes

considerable use of potential functions, that is closely related to variational and ex-

tremum principles. In this light, the constitutive behaviour of a dissipative material

can be completely defined through the specification of just two potential functions,

with the incremental response being derived by application of standardized proce-

dures. Hence the potentials are derived to obtain the dependent variables of the

problem, thus the forces Qi and the corresponding displacements qi associated with

the deck-abutment contact. In the following, the central aspects needed to develop

an energetically compatible material are presented, specialising the entire frame-

work, commonly defined for the element of volume, to the dissipative response of a

macro-system.

The first potential is the energy function, conveniently expressed in terms of the

Gibbs free energy g or the Helmholtz free energy f for a mechanical continuum,

which are interchangeable state quantities related by the Legendre transformation.

These functions derive from the First Law of Thermodynamics, which states that

the rate of the internal energy u̇ is equal to the sum of the heat flow ḣ into the system

from the surroundings and the mechanical power ẇ also from the surroundings, thus

ḣ+ ẇ = u̇. (5.2)

In applying thermodynamics to solids undergoing small strains, the rate of the

mechanical work input can be written as ẇ = Qi·q̇i and the heat supply to an element
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of volume is ḣ = −qk,k, with qk the heat flux in the k direction (recall that the comma

notation indicates a spatial differential). The internal energy can be expressed as a

function of appropriately chosen internal variables. For thermomechanical continua,

it can be convenient to consider the displacement vector qi and entropy s as internal

variables, thus u = u (qi, s). From the internal energy, other energy functions can

be derived as different forms of the Legendre transform, namely the enthalpy h, the

Helmholtz free energy f and the Gibbs free energy g. These functions are defined

as follows

h(Qi, s) = u−Qi · qi (5.3)

f(qi, ϑ) = u− s · ϑ (5.4)

g(Qi, ϑ) = h− s · ϑ (5.5)

where ϑ is the temperature. The important role of the energy functions is that

they serve as a potential from which one can determine the reversible constitutive

response of the material. In particular, from the above equations it can be noticed

that the Helmholtz and Gibbs functions are related by the following expression of

the Legendre transform

g(Qi, ϑ) + f(qi, ϑ) = Qi · qi (5.6)

which gives a clear physical interpretation of the two state quantities: the Helmholtz

free energy represents the reversible mechanical work done in a deformation process,

expressed in terms of displacements, and the Gibbs free energy is the complemen-

tary work. As an example, Figure 5.2 illustrates the two functions in a linear elastic
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Figure 5.2: Helmholtz free energy f(qi, s) and Gibbs free energy g(Qi, s) for a linear elastic medium.

behaviour.

However, the response of a dissipative material depends not only on the current

values of the state variables, such as the energy functions already introduced, but

also on the history of the material state. The latter is encapsulated within certain

internal variables αi, which are tensorial in form. The internal variables of the model

are passive variables in the transformation and, when there is no elastic-plastic

coupling, play the role of plastic displacements. It follows that the internal energy

u(qi, αi, s) is also a function of the internal variables, as well as for the other energy

functions.

The second potential is either the dissipation function d or the yield function

y, also in this case related by a specific form of the Legendre transformation. The

Second Law states that there is a property s (the entropy) such that

ṡ ≥
(qk
ϑ

)
,k

(5.7)

and, developing the gradient of the entropy flux qk/ϑ, Eq. 5.7 becomes

ϑ · ṡ+ qk,k −
qk · ϑ,k

ϑ
≥ 0 (5.8)
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in which the first two terms ϑ·ṡ+qk,k = d are named mechanical dissipation, while

the third term qk ·ϑ,k/ϑ is the thermal dissipation. The latter is always non-negative

because heat flux is always in the direction of the negative thermal gradient. This

term becomes small by comparison with the first two for slow processes, so it is

widely accepted that the two sources of dissipation must be non-negative

ϑ · ṡ+ qk,k = d ≥ 0 (5.9)

qk · ϑ,k

ϑ
≥ 0. (5.10)

For a bridge, thermal effects derive mainly from temperature gradients in the

structure, due to daily and seasonal cycles of temperature, but the thermal varia-

tions in the abutment and in the soil interacting with it do not affect sensibly the

performance of the bridge. Hence, the thermal response is not taken into account

in the formulation of the macro-element and the total dissipation coincides with

the mechanical dissipation d. From the First Law, Eq. 5.2, and the definition of

dissipation d, it follows that

u̇ = Qi · q̇i − qk,k = Qi · q̇i + ϑ · ṡ− d. (5.11)

The differential of u = (qi, αi, s) reads

u̇ =
∂u

∂qi
· q̇i +

∂u

∂αi

· α̇i +
∂u

∂s
· ṡ (5.12)

in which the quantity ∂u/∂αi represents the negative value of the so-called gen-

eralised force χ̄i, by definition. Comparing Eq. 5.11 and Eq. 5.12, it follows that

d (qi, αi, s, α̇i) = χ̄i · α̇i (5.13)
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which represents the mechanical power produced by the generalised force χ̄i in

the plastic strain αi. In general, the dissipation function results to be a function of

the state of the material and also of the rate of change of state.

Equivalently to the definition of the generalised force χ̄i, one can define a dis-

sipative generalised force χi that is instead obtained by deriving the dissipation

function. In this regard, it is worth clarifying the difference between the generalised

force χ̄i, the dissipative generalised force χi and their relation with the effective (or

true) force Qi. All these forces are obtained by deriving the potential functions as

reported below

Qi = −∂f(qi, αi)

∂qi
(5.14)

χ̄i = −∂f(qi, αi)

∂αi

= −∂g(Qi, αi)

∂αi

(5.15)

χi =
∂d (qi, αi, s, α̇i)

∂α̇i

(5.16)

and, in general, χ̄i differs from χi. In fact, for a homogeneous first-order function,

Euler’s theorem gives

∂d (qi, αi, s, α̇i)

∂α̇i

· α̇i = χi · α̇i = d (5.17)

and comparing Eq. 5.11 with Eq. 5.17 the following expression holds

(χ̄i − χi) · α̇i = 0. (5.18)

In general, the dissipative force can be a function of the rate of the internal

variables, so that one can draw from Eq. 5.18 the conclusion that (χ̄i − χi) is or-



CHAPTER 5. A MACRO-ELEMENT FOR BRIDGE ABUTMENTS 190

thogonal to α̇i; however, under the assumption that χi does not depend on α̇i,

hypothesis known as orthogonality principle (Ziegler 1977), the much stronger con-

clusion χ̄i = χi can be made. The Ziegler’s assumption was proved to provide

realistic descriptions of the behaviour of many materials, especially those involving

frictional dissipation.

As a consequence of the elastic-plastic uncoupling, Collins and Houlsby (1997)

showed that, by a suitable choice of αi, it is possible to write the Gibbs free energy

as the sum of three terms

g(Qi, αi) = g1(Qi) + g2(αi)−Qi · αi (5.19)

in which the only term that involves both Qi and αi is linear in αi. Taking this

one step further, differentiation of Eq. 5.15 gives

χ̄i = −∂g(Qi, αi)

∂αi

= −∂g2(αi)

∂αi

+Qi (5.20)

from which it can be desumed that the generalised force differs from the true

force Qi only by the term ρi = ∂g2(αi)/∂αi, known as the back stress in conven-

tional constitutive modelling. In kinematic hardening plasticity, the back stress ρi

is associated with the coordinates of the center of the yield surface in the space of

the forces. As an example, Figure 5.3 shows an elastic-plastic response (St. Venant

model) with kinematic hardening represented in true space and in generalised stress

space.

The macro-element of bridge abutments was formulated as a rate-independent

macro-material, because mainly aimed to reproduce the behaviour of the system

under seismic conditions. Under this assumption, the dissipation function must

be a homogeneous first-order function in the rates α̇i because the magnitude of

dissipated energy must be directly proportional to the magnitude of deformation.
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Figure 5.3: Cyclic stress-strain behaviour of an elastic-perfectly plastic material with linear hard-
ening in true stress space (a) and in generalised stress space (b).

The formulation was completed by the Ziegler’s orthogonality principle (1977), which

is equivalent to the assumption χ̄i = χi. In this way, the dissipation function

acts as a potential, so that the dissipative generalised force is orthogonal to level

surfaces of the dissipation. This principle can be viewed as a stronger statement

than the Second Law of Thermodynamics: the Second Law requires that energy be

dissipated whereas the orthogonality principal requires dissipation to be maximal.

The dissipative response of the macro-element was reproduced by a series of yield

surfaces with kinematic hardening that evolve in the plastic domain of the model,

bounded by a limit locus of ultimate loads and by the innermost surface of first

yield. The generic yield surface yn appears in the following form

yn = yn (αi, χi) = 0 (5.21)

with no dependence on the true force Qi in virtue of the associativity of the

plastic flow (Houlsby and Puzrin, 2006). In general, in fact, the rate of the plastic

displacement α̇i can be determined from the flow rule
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α̇i = λn ·
∂yn (Qi, αi, χi)

∂χi

(5.22)

and the plastic flow is said associated in the generalised stress space but not in the

true stress space. Under the orthogonality assumption, χ̄i = χi = −∂g(Qi, αi)/∂αi,

the yield function can be also represented in the true stress space as follows

y∗n = yn [αi, χi (Qi, αi)] = y∗n (Qi, αi) = 0. (5.23)

Differentiating y∗n, after some manipulation one can obtain

∂yn
∂Qi

· dQi +
∂yn
∂αi

· dαi +
∂yn
∂χi

· dχi =

=
∂y∗n
∂Qi

· dQi +
∂y∗n
∂αi

· dαi (5.24)

and equating terms in dQi then gives

∂yn
∂Qi

+
∂yn
∂χi

=
∂y∗n
∂Qi

. (5.25)

If ∂yn/∂Qi = 0, from Eq. 5.25 follows that ∂yn/∂χi = ∂y∗n/∂Qi and consequently

the plastic displacement increments are associated in the conventional sense, thus

both in true and generalised force spaces. The choice of an associative flow rule was

dictated by the lack of experimental evidences on the development of irreversible

displacements of bridge abutments under multi-axial loading conditions. As men-

tioned before, the yield surface can be determined from dissipation through a specific

expression of the Legendre transform and vice versa, that reads

wn = χi · α̇i − d = 0. (5.26)
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Since wn = 0, it can be determined only to within an arbitrary multiplicative

constant. Therefore, it is convenient to decompose wn as wn = λn · yn = 0, where

λn is an arbitrary non-negative multiplier, called plastic multiplier. Note that this

biunivocal relationship is valid only for a material with uncoupled elastic-plastic

response.

Once the analytical expressions for the energy and dissipation functions are de-

fined, the constitutive laws can be obtained through standardised procedures. This

has the great advantage that all the salient aspects of the response can be included

in the potentials in an energetically compatible form with constitutive relations that

follow the structure of conventional plasticity. The formal expressions for the de-

pendent variables used in the following are reported below

qi = −∂g(Qi, αi)

∂Qi

(5.27)

Qi =
∂f(qi, αi)

∂qi
(5.28)

χ̄i = −∂g(Qi, αi)

∂Qi

= −∂f(qi, αi)

∂αi

(5.29)

χi =
∂d(qi, αi)

∂α̇i

(5.30)

α̇i = λn ·
∂yn (Qi, αi, χi)

∂χi

. (5.31)

5.3 One-dimensional formulation

The macro-element was formulated within the multi-surface plasticity theory with
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constitutive relations derived according to the thermodynamic approach described

in Section 5.2. Although not strictly necessary in the one-dimensional version (1D

model), for the sake of clarity the model is presented following the same thermo-

dynamic structure used for the general multi-axial formulation, regarding the 1D

model as a degenerate case of the latter.

The one-dimensional representation of the macro-element is depicted in Figure

5.4. The model represents an extension of the well-known Iwan model (Iwan 1967)

and consists of a series connection of devices with different properties that provide

the elastic-plastic response. The elastic spring with stiffness H(0), named spring 0,

represents essentially the response of the soil-abutment system at small strain levels.

A set of sliders, each connected in parallel with a spring, gives the plastic behaviour

with kinematic hardening. The R device incorporates the ratcheting phenomenon

into the plastic response of the model, as proposed by Houlsby et al. (2017) for deep

foundations: it is conceived as a small increment of the total plastic displacement

occurring when the model undergoes loading and unloading cycles induced by a

non-symmetric external perturbation (force or displacement). In order to account

for the salient aspects of the soil-abutment interaction, two significant modifications

were introduced with respect to the original Iwan model: a dissymmetric behaviour

of the sliders and an inertial response. The former is a crucial feature to capture

the dependence of the abutment capacity on the load direction. In the longitudinal

direction, for example, the abutment exhibits a different strength in compression

and extension, which is associated with the attainment of the passive and active

resistance in the backfill, respectively. The inertial response, instead, is intended to

reproduce the inertial effects that arise in the part of the embankment interacting

dynamically with the wall and that are transferred to the superstructure of the

bridge, which have been already discussed in Chapter 4. This is achieved through the

introduction of some participating masses of the embankment that are, in principle,
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Figure 5.4: Inertial multi-surface plasticity model with kinematic hardening

associated with each plastic flow.

The model is expressed in terms of conjugate forces and displacements acting

on the top of the central wall of the abutment. Note that the displacements are

referred to an initial condition of the system at rest in which all the internal devices

are overlapped. In this way, the elongations of the devices correspond to the respec-

tive displacements. The physical quantities involved in the model and the relative

dimensions are reported here below:

� external force

[Q(ext)] = [F ] = [M · L · T−2]

� internal force in the spring 0

[Q(0)] = [F ] = [M · L · T−2]

� internal force in the n-th combined spring-slider device

[Q(n)] = [F ] = [M · L · T−2], n = 1, ..., N

� total displacement

[q] = [L]
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� elongation of the spring 0

[q(0)] = [L]

� elongation of the n-th slider (equal to the elongation of the spring in parallel)

[q(n)] = [L], n = 1, ..., N.

� elongation of the ratcheting device

[q(R)] = [L]

� mass associated with the sping 0

[m(0)] = [M ]

� mass associated with the n-th combined spring-slider device

[m(n)] = [M ], n = 1, ..., N

� stiffness of the spring 0

[H(0)] = [F · L−1] = [M · T−2]

� stiffness of the n-th spring

[H(n)] = [F · L−1] = [M · T−2], n = 1, ..., N

� strength of the n-th slider

[k(n)] = [F ] = [M · L · T−2], n = 1, ..., N.

In virtue of the elastic-plastic uncoupling, the plastic deformations q(n) play ex-

actly the role of the internal variables α(n) of the model. The ratcheting device

computes the rate of the ratcheting displacement as a function of the rate of the

plastic displacements developing in the sliders through n factors R(n) (Houslby et

al. 2017), as reported below
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α̇(R) = S
(
Q(ext)

)
·

N∑
n=1

R(n) · α̇(n) (5.32)

in which S
(
Q(ext)

)
is a modified signum function that allows to develop ratcheting

only under nonsymmetric external perturbations

S
(
Q(ext)

)
=


1, Q(ext) > 0

0, Q(ext) = 0

−1, Q(ext) < 0

. (5.33)

This is a simplified, although general, strategy to reproduce ratcheting in the

cyclic response of abutments: an additional ratcheting displacement develops during

loading and unloading cycles with a rate of accumulation that, as a first approxi-

mation, can be considered not dependent on the strain level, thus R(n) are constant

values, or that can reduce gradually as the number of cycles increases, R(n) taken

as a function of the plastic displacements α(n). For a bridge abutment, however, the

dissymmetry of the displacement field is mainly caused by the peculiar geometry of

the system rather than the ratcheting phenomenon. For this reason, in the present

formulation the parameters R(n) were assumed constant during cycles.

5.3.1 Balance and compatibility

The global balance equation reads:

Q(ext) +Q(M,0) +
N∑
1

Q(M,n) +Q(int) = 0 (5.34)

in which the external force Q(ext) and the sum of the inertial forces Q(M,n) devel-

oping in the masses are equilibrated by the internal force Q(int) acting in the fixed

node of the model. It is worth noticing that the inertial forces Q(M,n) alter the forces

Q(n) in the internal devices according to the following local balance equation of the
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Figure 5.5: Local equilibrium of the one-dimensional macro-element

n-th mass

Q(M,n) = Q(n−1) −Q(n), n = 1, .., N (5.35)

in which the force acting in the n-th device is equal to

Q(n) = k(n) +H(n) · α(n), n = 1, .., N. (5.36)

Eqs. 5.35 and 5.36 describe the internal equilibrium of the macro-element,

schematically illustrated in Figure 5.5. It is worth noticing that the strength k(n)

represents the dissipative force χ(n) while H(n) · α(n) is the back stress ratio.

This implies that, when the external perturbation is able to excite the masses in

the model, the forces acting on the two end nodes of the macro-element are different.

Compatibility is expressed by the following equation

q = q(0) +
N∑
1

q(n) + q(R) =
N∑
0

q(n) + q(R) (5.37)

with the total displacement q obtained as the sum of the elongations of the linear

and nonlinear internal devices, q(0) and
∑N

1 q
(n) + q(R) respectively.
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5.4 Energy function

The energy function represents the work done by the system, which can be expressed

in terms of displacements (Helmholtz free energy) or forces (Gibbs free energy). The

two state functions are determined initially through the definition of the mechanical

work and then, as a verification, through the application of the Legendre transform.

The elastic contribution to the total work is due to the elongation of the elastic

spring 0 and it can be computed by the following quadratic form

L(0)
(
q(0)
)
=

∫ q(0)

0

Q(0) · dq =
∫ q(0)

0

H(0) · q(0) · dq = 1

2
·H(0) ·

(
q(0)
)2

(5.38)

or expressed as a function of the generalized forces

L(0)
(
Q(0)

)
=

1

2
· C(0) ·Q(0)2 (5.39)

in which C(0) = H(0)−1.

When the strength of the n-th slider is attained, the internal force, equal to k(n),

works in the sliding α(n), giving the following plastic work

L(k,n) =

∫ α(n)

0

Q(n) · dq = Q(n) · α(n) = k(n) · α(n) (5.40)

which can be easily extended to the work done by the entire set of N sliders

N∑
n=1

L(k,n) =
N∑

n=1

k(n) · α(n). (5.41)

The work produced during the compression and elongation of the springs in par-

allel to the sliders is conceptually analogous to Eq. 5.38, thus
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L(H,n) =

∫ α(n)

0

Q(n) · dq =
∫ α(n)

0

H(n) · q(n) · dq = 1

2
·H(n) · α(n)2 (5.42)

N∑
n=1

L(H,n) =
1

2
·

N∑
n=1

H(n) · α(n)2. (5.43)

The work done by the “ratcheting” force is simply

L(R) =

∫ α(R)

0

Q(R) · dq = Q(R) · α(R). (5.44)

The inertial force Q(M,n) that develops in the n-th mass works in the respective

absolute displacement
∑N

h=n q
(h). The expression of the work reads

L(M,n) =

∫ ∑N
h=n q(h)

0

Q(M,n) · dq =
∫ ∑N

h=n q(h)

0

m(n) · q̈ · dq =

=

∫ ∑N
h=n q(h)

0

m(n) · q̇ · dq̇ = 1

2
·m(n) ·

(
N∑

h=n

q̇(h)

)2

(5.45)

which represents the kinetic energy of the n-th material point. It is important

to note that the work done by the n-th inertial force is a function of the absolute

velocity of that point
∑N

h=n q̇
(h), that is obtained as the sum of the motion of the

devices behind the mass under examination. The sum of the “inertial” works is

straightforward

N∑
n=0

L(M,n) =
1

2
·

N∑
n=0

m(n) ·

(
N∑

h=n

q̇(h)

)2

(5.46)

in which the summation starts from n = 0 because it includes the response of the

mass associated with the elastic spring 0. Separating the elastic displacements from

the plastic displacements, Eq. 5.46 reads
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N∑
n=0

L(M,n) =
1

2
·m(0) · q̇2 + 1

2
·

N∑
n=1

m(n) ·

(
N∑

h=n

α̇(h)

)2

(5.47)

and, by introducing Eq. 5.37 in the definition of the total displacement q, the

inertial work can be further developed as follows

N∑
n=0

L(M,n) =
1

2
·m(0) ·

(
q̇(0) +

N∑
n=1

α̇(n)

)2

+
1

2
·

N∑
n=1

m(n) ·

(
N∑

h=n

α̇(h)

)2

=

=
1

2
·m(0) ·

(
Q̇(0)

H0

+
N∑

n=1

α̇(n)

)2

+
1

2
·

N∑
n=1

m(n) ·

(
N∑

h=n

α̇(h)

)2

(5.48)

in which the elastic elongation was expressed as q(0) = Q(0)/H0. The convenience

of the above expression will become apparent later. This work can be used to derive

the Helmholtz free energy while the complementary work L
(M,n)
comp

(
Q(M,n)

)
, needed to

determine the Gibbs free energy, can be computed by using the Legendre transform

in Eq. 5.49.

N∑
n=0

L(M,n)
comp =

N∑
n=0

Q(M,n) ·
N∑

h=n

q(h) −
N∑

n=0

L(M,n) (5.49)

With some further development, the complementary work can be written as a

function of the elastic displacement and of the internal variables describing the

plastic deformation as follows

N∑
n=0

L(M,n)
comp =

N∑
n=0

m(n) ·
N∑

h=n

q̈(h) ·
N∑

k=n

q(k) − 1

2
·

N∑
n=0

m(n) ·

(
N∑

h=n

q̇(h)

)
=

= m(0) · q̈(0) · q(0) +
N∑

n=1

m(n) ·
N∑

h=n

α̈(h) ·
N∑

k=n

α(k)−
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−1

2
·m(0) ·

(
q̇(0)
)2 − 1

2
·

N∑
n=1

m(n) ·

(
N∑

h=n

α̇(h)

)2

. (5.50)

As done in Eq. 5.48, the reversible contribution can be further rewritten in terms

of the elastic force Q(0)

N∑
n=0

L(M,n)
comp = m(0) ·

(
Q̈(0)

H(0)
+

N∑
n=1

α̈(n)

)
·

(
Q(0)

H(0)
+

N∑
n=1

α(n)

)
+

+
N∑

n=1

m(n) ·
N∑

h=n

q̈(h) ·
N∑

k=n

q(k) − 1

2
·m(0) ·

(
q̇(0)
)2 − 1

2
·

N∑
n=1

m(n) ·

(
N∑

h=n

α̇(h)

)2

. (5.51)

5.4.1 Gibbs free energy

The Gibbs free energy can be obtained as the sum of the works determined above,

expressed in terms of internal forces Q(j) and internal variables α(n)

g(Q(j), α(n),m(j)) = −L(0)
(
Q(0)

)
−

N∑
n=1

L(k,n)(Q(n), α(n))+

+
N∑

n=1

L(H,n)(Q(n), α(n))− L(R)(Q(n), α(n))−
N∑

n=0

L(M,n)(Q(j), α(n),m(n)). (5.52)

Note that the Gibbs free energy of the macro-element is also a function of the

masses m(n) included in the inertial work L(M,n)(Q(j), α(n),m(n)). By introducing

Eqs. 5.39, 5.41, 5.43, 5.44 and 5.48 into Eq. 5.52, this becomes

g(Q(j), α(n),m(n)) = − 1

2 ·H(0)
·
(
Q(0)

)2 − N∑
n=1

Q(n) · α(n) +
1

2
·

N∑
n=1

H(n) ·
(
α(n)

)2−
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−Q(R) · α(R) −m(0) ·

(
Q̈(0)

H(0)
+

N∑
n=1

α̈(n)

)
·

(
Q(0)

H(0)
+

N∑
n=1

α(n)

)
−

−
N∑

n=1

m(n) ·
N∑

h=n

α̈(h) ·
N∑

k=n

α(k) +
1

2
·m(0) ·

(
Q̇0

H0

+
N∑
j=1

α̇(j)

)2

+

+
1

2
·

N∑
n=1

m(n) ·

(
N∑

j=n

α̇(j)

)2

(5.53)

or, equivalently, it can be written in a more compact form as follows

g(Q(j), α(n),m(n)) = − 1

2 ·H(0)
·
(
Q(0)

)2 − N∑
n=1

Q(n) · α(n)+

+
1

2
·

N∑
n=1

H(n) ·
(
α(n)

)2 −Q(R) · α(R) −
N∑

n=0

m(n) ·
N∑

h=n

q̈(h) ·
N∑

k=n

q(k)+

+
1

2
·

N∑
n=0

m(n) ·

(
N∑

j=n

q̇(j)

)2

. (5.54)

As already discussed in Section 5.2, for an uncoupled material the Gibbs free

energy can be rearranged as the sum of three terms

g(Q(j), α(n),m(n)) = g1(Q
(j), 0,m(n)) + g2(0, α

(n),m(n))−Q(n) · α(n) (5.55)

g1(Q
(j), 0,m(n)) = − 1

2 ·H(0)
·
(
Q(0)

)2
(5.56)

g2(0, α
(n),m(n)) =

1

2
·

N∑
n=1

H(n) ·
(
α(n)

)2 − N∑
n=0

m(n) ·
N∑

h=n

q̈(h) ·
N∑

k=n

q(k)+
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+
1

2
·

N∑
n=0

m(n) ·

(
N∑

j=n

q̇(j)

)2

. (5.57)

In particular, the term g2(0, α
(n),m(n)) is a function of the history of load through

the plastic displacements α(n) and therefore it confers kinematic hardening to the

plastic response of the macro-element. This decomposition will appear particularly

useful in deriving the incremental response of the model.

Moreover, the inertial terms, related to the dynamic response of the masses, can

be collected into an inertial function

gin(Q
(j), α(n),m(n)) = −

N∑
n=0

m(n) ·
N∑

h=n

q̈(h) ·
N∑

k=n

q(k)+
1

2
·

N∑
n=0

m(n) ·

(
N∑

j=n

q̇(j)

)2

(5.58)

and Eq. 5.54 simply reads

g(Q(j), α(n),m(n)) = gst(Q
(j), α(n), 0) + gin(Q

(j), α(n),m(n)) (5.59)

as the sum of the inertial function and of the so-called “static” energetic contri-

bution gst(Q
(j), α(n), 0). The latter is a frequency-independent quantity composed

of the non-inertial terms

gst(Q
(j), α(n), 0) = − 1

2 ·H(0)
·
(
Q(0)

)2 − N∑
n=1

Q(n) · α(n)+

+
1

2
·

N∑
n=1

H(n) ·
(
α(n)

)2 −Q(R) · α(R) (5.60)

which is exactly the Gibbs function of the classical Iwan model.
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5.4.2 Helmholtz free energy

The Helmholtz free energy represents the elastic mechanical work of the system

expressed in terms of displacements q(n)

f(q(j), α(n),m(n)) = Lcomp(q
(j), α(n),m(n)) =

1

2
·H(0) ·

(
q(0)
)2

+

+
1

2
·

N∑
n=1

H(n) ·
(
α(n)

)2
+

1

2
·

N∑
n=0

m(n) ·

(
N∑

h=n

q̇
(h)
j

)2

. (5.61)

In order to find and explicit expression of the Helmholtz function in the total

displacement q, Eq. 5.61 can be written as

f(q(j), α(n),m(n)) =
1

2
·H(0) ·

(
q −

N∑
n=1

α(n) − α(R)

)2

+
1

2
·

N∑
n=1

H(n) ·
(
α(n)

)2
+

+
1

2
·m(0) · q2 + 1

2
·

N∑
n=1

m(n) ·

(
N∑

h=n

α̇
(h)
j

)2

. (5.62)

As done for the Gibbs free energy, also the Helmholtz free energy is the sum of a

frequency-independent term fst(q
(j), α(n), 0) and of an inertial function fin(q

(j), α(n),m(n))

f(q(j), α(n),m(n)) = fst(q
(j), α(n), 0) + fin(q

(j), α(n),m(n)) (5.63)

with

fst(q
(j), α(n), 0) =

1

2
·H(0) ·

(
q −

N∑
n=1

α(n) − α(R)

)2

+
1

2
·

N∑
n=1

H(n) ·
(
α(n)

)2
(5.64)
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fin(q
(j), α(n),m(n)) =

1

2
·m(0) · q2 + 1

2
·

N∑
n=1

m(n) ·

(
N∑

h=n

α̇
(h)
j

)2

. (5.65)

As a verification, the Helmholtz free energy is now derived by applying the Leg-

endre transform as reported below

f(q(j), α(n),m(n)) = g(Q(j), α(n),m(n)) +Q(j) · q(j) =

= − 1

2 ·H(0)
·
(
Q(0)

)2 − N∑
n=1

Q(n) · α(n) +
1

2
·

N∑
n=1

H(n) ·
(
α(n)

)2−

−Q(R) · α(R) −
N∑

n=0

m(n) ·
N∑

h=n

q̈(h) ·
N∑

k=n

q(k) +
1

2
·

N∑
n=0

m(n) ·

(
N∑

j=n

q̇(j)

)2

+

+Q(0) · q(0) +
N∑

n=1

Q(n) · α(n)+

+Q(R) · α(R) +
N∑

n=0

Q(M,n) ·
N∑

h=n

q(h) =

=
1

2
·H(0) ·

(
q(0)
)2

+
1

2
·

N∑
n=1

H(n) ·
(
α(n)

)2−

−
N∑

n=0

m(n) ·
N∑

h=n

q̈(h) ·
N∑

k=n

q(k) +
1

2
·

N∑
n=0

m(n) ·

(
N∑

j=n

q̇(j)

)2

+

+
N∑

n=0

m(n) ·
N∑

h=n

q̈(h) ·
N∑

k=n

q(k) =
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=
1

2
·H(0) ·

(
q −

N∑
n=1

α(n) − α(R)

)2

+
1

2
·

N∑
n=1

H(n) ·
(
α(n)

)2
+

+
1

2
·

N∑
n=0

m(n) ·

(
N∑

j=n

q̇(j)

)2

(5.66)

obtaining again the expression found in Eq. 5.61.

5.5 Dissipative response

5.5.1 Yield functions

The second potential is the dissipation function or, equivalently, the yield function.

In this model, the former was derived from the specific function adopted to describe

the yield surfaces of the soil-abutment system. This procedure was particularly use-

ful to derive the dissipative response of the multi-axial macro-element but it has some

advantages also in the one-dimensional case. The macro-element is a multi-surface

plasticity model with pure kinematic hardening. In the one-dimensional problem,

the n-th yield function y(n) represents simply a plastic threshold that increases from

the first yield, n = 1, to the last yield n = N , the latter representing the ultimate

condition of the soil-abutment system.

When the sliders exhibit a symmetric behaviour, the dissipative part of the model

degenerates in the well-known Iwan model and, for this case, Houlsby et al. (2017)

determined the analytical expression for the yield functions

y(n)(Q(ext), α(n), χ(n)) =
∣∣χ(n)

∣∣−k(n)+R(n) · (
∣∣χ(R)

∣∣− ∣∣χ(n)
∣∣) = 0, n = 1, ..., N (5.67)

in which χ(n) and χ(R) are the dissipative forces in the n-th slider and in the
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ratcheting device, respectively, and R(n) is the ratcheting factor (Eq. 5.32).

In the macro-element of abutment, however, the sliders present a non-symmetric

behaviour, with strength in compression k
(n)
+ different from that in extension k

(n)
− ,

that can be expressed analytically in the following form

k(n)[S(α̇(n))] =< k
(n)
+ · S(α̇(n)) > + < −k(n)− · S(−α̇(n)) >, n = 1, .., N. (5.68)

in which the Macaulay brackets y =< x > operate such that the variable y = x if

x ≥ 0 and y = 0 if x < 0 . For instance, looking at the longitudinal direction of the

abutment this assumption allows to reproduce the different mobilization of the active

and passive resistance in the backfill, as well as the different mechanisms associated

with the attainment of the bearing capacity and the uplift of the foundation when the

abutment is loaded in the vertical direction instead. Accordingly, the final version

of the yield surfaces follows

y(n)(α(n), χ(n)) =
∣∣χ(n)

∣∣−k(n)[S(α̇n)]+R
(n)·(|

∣∣χ(R)
∣∣−∣∣χ(n)

∣∣) = 0, n = 1, ..., N. (5.69)

Note that the yield function is not dependent on the true force Q(n), since the

associativity of the plastic flow, and is not affected directly by the presence of the

masses. However, the masses influence the whole dissipative response because the

plastic multiplier contains the inertial effects induced by their motion, as it will

appear evident in the derivation of the constitutive relation.

5.5.2 Dissipation function

Under the assumption of associated flow and validity of the Ziegler’s principle (1977),

the dissipation function can be uniquely determined from the yield functions. This
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implies that the flow rule is associated in true force space and in generalised force

space. Starting from the analytical expression for the dissipation function d, ob-

tained by Houlsby et al. (2017) for the Iwan model, and considering the dependency

of the strength k(n) on the sign of α̇n (Eq. 5.68), the dissipation reads

d(α(n), α̇(n)) =
N∑

n=1

χ(n) · |α̇n|+ χ(R) · α̇(R) =

=
N∑

n=1

k(n)[S(α̇n)] · |α̇n|+Q(R) · S
(
Q(ext)

) N∑
n=1

R(n) · α̇(n) (5.70)

which expresses the power dissipated during a generic transformation.

The ratcheting displacement is introduced in the mathematical formulation as a

constraint (Houlsby et al. 2017)

c = α̇(R) − S
(
Q(ext)

)
·

N∑
n=1

R(n) · α̇(n) = 0 (5.71)

that is taken into account by using the method of Lagrangian multipliers. Instead

of using d, a new function d∗ is defined as

d∗ = d+ Λ · c =
N∑

n=1

k(n)[S(α̇n)] · |α̇n|+Q(R) · S
(
Q(ext)

) N∑
n=1

R(n) · α̇(n)+

+Λ ·

(
α̇(R) − S

(
Q(ext)

)
·

N∑
n=1

R(n) · α̇(n)

)
(5.72)

which by virtue of the condition c = 0 is numerically equal to d. The Lagrangian

multiplier Λ enforces the condition imposed by the constraint c. In this way, the

incremental response of the model can be derived through the unconstrained function

d∗. Note that, as expected, dissipation is a homogeneous function of order one of
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the plastic displacement rate α̇(n) because the assumption of rate-independency.

5.6 Incremental response

For the numerical implementation, the response needs to be expressed in an in-

cremental form. The relationship between the external force Q(ext) and the total

displacement q can be obtained by differentiating either the Gibbs free energy or

the Helmholtz free energy according to Eqs. 5.27 and 5.28, respectively.

In the present case, the constitutive law was obtained from the Helmholtz free

energy as follows

Q(ext) =
∂

∂q

1
2
·H(0) ·

(
q −

N∑
n=1

α(n) − α(R)

)2

+

+
1

2
·

N∑
n=1

H(n) ·
(
α(n)

)2
+

1

2
·m(0) · q̇2 + 1

2
·

N∑
n=1

m(n) ·

(
N∑

j=n

α̇(j)

)2
 =

= H(0) ·

(
q −

N∑
n=1

α(n) − α(R)

)
+m(0) · q̈2 (5.73)

having separated the contribution of the mass associated with the elastic spring

0 from that of the other masses, as done in Eq. 5.47. The desired incremental

response therefore reads

Q̇(ext) =
∂

∂t

[
∂f(q(j), α(n),m(n))

∂q

]
= H(0) ·

(
q̇ −

N∑
n=1

α̇(n) − α̇(R)

)
+m(0) ·

...
q 2 (5.74)

whose solution requires the definition of the flow rule, given below
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α̇(n) = λn ·
∂y(n)(α(n), χ(n))

∂χ(n)
=

= λn ·
∂

∂χ(n)

[
|χ(n)| − k(n)[S(α̇n)] +R(n) · (|χ(R)| − |χ(ext)|)

]
=

= λn · S(χ(n)), n = 1, .., N (5.75)

with S(χ(n)) is the modified signum function (Eq. 5.33) of the dissipative force in the

n-th slider and λn is the non-negative plastic multiplier associated with the n-th yield

surface. By introducing Eq. 5.75 in the definition of the ratcheting displacement

Eq. 5.32, the latter becomes

α̇(R) = S
(
Q(ext)

)
·

N∑
n=1

R(n) · |α̇(n)| =

= S
(
Q(ext)

)
·

N∑
n=1

R(n) · |λn · S(χ(n))|. (5.76)

As in conventional plasticity, in the description of the incremental response of

a thermodynamic material, two possibilities exist: the material is within the yield

surface (y(n)(α(n), χ(n)) < 0), in which case no dissipation occurs and λn = 0, or the

material point lies on the yield surface (y(n)(α(n), χ(n)) = 0), then plastic deformation

can occur provided that λn ≥ 0. The plastic multiplier is determined by invoking

the consistency condition of the yield surface

ẏ(n)(α(n), χ(n)) =
∂y(n)

∂α(n)
· α̇(n) +

∂y(n)

∂χ(n)
· χ̇(n) = 0, n = 1, .., N. (5.77)

in which the dissipative generalised force χ(n) results equal to the generalised

force χ̄(n) for the orthogonality principle of Ziegler (1977), so that
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χ(n) = χ̄(n) = −∂g(Q
(j), α(n),m(n))

∂α(n)
. (5.78)

By virtue of the elastic-plastic uncoupling, Eq. 5.78 can be rewritten by intro-

ducing the decomposition of the Gibbs free energy in Eq. 5.55

χ(n) = χ̄(n) = − ∂

∂α(n)

[
g1(Q

(j),m(n)) + g2(α
(n),m(n))−Q(n) · α(n)

]
=

= −∂g2(α
(n),m(n))

∂α(n)
+Q(n), n = 1, .., N (5.79)

and differentiation of Eq. 5.79 gives

χ̇(n) = −∂
2g2(α

(n),m(n))

∂α(n)2
· α̇(n) + Q̇(n) =

= −∂
2g2(α

(n),m(n))

∂α(n)2
· λn ·

∂y(n)(α(n), χ(n))

∂χ(n)
+ Q̇(n), n = 1, .., N. (5.80)

Substitution of Eqs. 5.76 and 5.80 into Eq. 5.77 gives the solution for the plastic

multiplier:

ẏ(n)(α(n), χ(n)) =
∂y(n)

∂α(n)
· λn ·

∂y(n)(α(n), χ(n))

∂χ(n)
+

+
∂y(n)

∂χ(n)
·
(
−∂

2g2(α
(n),m(n))

∂α(n)2
· λn ·

∂y(n)(α(n), χ(n))

∂χ(n)
+ Q̇(n)

)
= 0, n = 1, .., N. (5.81)

λn =

∂y(n)

∂χ(n) · Q̇(n)

∂y(n)

∂χ(n) · ∂2g2
∂α(n)2 · ∂y(n)

∂χ(n) − ∂y(n)

∂α(n) · ∂y(n)

∂χ(n)

, n = 1, .., N. (5.82)

In the equation above, the derivative of the yield function with respect to χ(n) is
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straightforward

∂y(n)

∂χ(n)
= S(χ(n)) =


−1 χ(n) < 0

0 0

1 χ(n) > 0

, n = 1, ..., N (5.83)

and the term ∂yn/∂αn is identically equal to zero. Some developments are instead

needed to calculate the derivative of the function g2(α
(n),m(n)). Taking advantage

of the decomposition of the Gibbs free energy into its static and inertial terms (Eq.

5.59), the sub-function g2 can be differentiated as follows

∂2g2(α
(n),m(n))

∂α(n)2
=
∂2g2,0(α

(n), 0)

∂α(n)2
+
∂2g2,in(α

(n),m(n))

∂α(n)2
(5.84)

in which the static part can be simply developed

∂2g2,0(α
(n), 0)

∂α(n)2
=

∂2

∂α(n)2

[
− 1

2 ·H(0)
·
(
Q(0)

)2 − N∑
n=1

Q(n) · α(n)+

+
1

2
·

N∑
n=1

H(n) ·
(
α(n)

)2 −Q(R) · α(R)

]
= H(n) (5.85)

so it results equal to the stiffnesses of the springs that produce kinematic harden-

ing. The differentiation of the inertial part, instead, can be achieved through some

manipulation

∂2g2,in(α
(n),m(n))

∂α(n)2
=

∂2

∂α(n)2

[
−

N∑
n=0

m(n) ·
N∑

h=n

q̈(h) ·
N∑

k=n

q(k)+

+
1

2
·

N∑
n=0

m(n) ·

(
N∑

j=n

q̇(j)

)2
 =
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=
∂2

∂α(n)2

−m(0) ·
N∑

h=0

q̈(h) ·
N∑
k=0

q(k) +
1

2
·m(0) ·

(
N∑
j=0

q̇(j)

)2
+

+
∂2

∂α(n)2

−m(n) ·
N∑

h=n

q̈(h) ·
N∑

k=n

q(k) +
1

2
·m(n) ·

(
N∑

j=n

q̇(j)

)2
 (5.86)

in which the term relative to the mass m(0) has been separated by the masses of

the sliders. For compatibility, the total displacement is q = q(0) +
∑N

n=1 α
(n) and, if

it is substituted into Eq. 5.86, the latter becomes

∂2g2,in(α
(n),m(n))

∂α(n)2
=

∂2

∂α(n)2

−m(0) ·
N∑

h=1

α̈(h) ·
N∑
k=1

α(k) +
1

2
·m(0) ·

(
N∑
j=1

α̇(j)

)2
+

+
∂2

∂α(n)2

−m(n) ·
N∑

h=n

q̈(h) ·
N∑

k=n

q(k) +
1

2
·m(n) ·

(
N∑

j=n

q̇(j)

)2
 =

= −m(0) · ∂2

∂α(n)2

[
N∑

h=1

α̈(h) ·
N∑
k=1

α(k)

]
+

1

2
·m(0) · ∂2

∂α(n)2

( N∑
j=1

α̇(j)

)2
+

−m(n) · ∂2

∂α(n)2

[
N∑

h=n

α̈(h) ·
N∑

k=n

α(k)

]
+

1

2
·m(n) · ∂2

∂α(n)2

( N∑
j=n

α̇(j)

)2
 =

= −m(0) · ∂
2A(n)

∂α(n)2
+

1

2
·m(0) · ∂

2B(n)

∂α(n)2
−m(n) · ∂

2C(n)

∂α(n)2
+

1

2
·m(n) · ∂

2D(n)

∂α(n)2
. (5.87)

The terms A(n), B(n), C(n) and D(n) include the time derivatives of the plastic

displacements α(n) and a change of variable is necessary to differentiate them, which
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can be generalised for the first and second mixed derivative of the internal variable

α as reported below

∂

∂α
· ∂

kα

∂tk
=

∂

α̇ · ∂t
· ∂

kα

∂tk
=

1

α̇
· ∂

k+1α

∂tk+1
(5.88)

∂2

∂α2
· ∂

kα

∂tk
=

∂

∂α
· ∂
∂α

· ∂
kα

∂tk
=

∂

∂α
·
[
1

α̇
· ∂

k+1α

∂tk+1

]
=

=
∂k+2α

∂tk+2
· 1

α̇2
− ∂k+1α

∂tk+1
· α̈
α̇3
. (5.89)

In light of the above, the terms A(n), B(n), C(n) and D(n) can be developed as

follows

� term A(n):

∂A(n)

∂α(n)
=

∂

∂α(n)

[
N∑

h=1

α̈(h) ·
N∑
k=1

α(k)

]
=

=
∂

∂α(n)

[
N∑

h=1

α̈(h)

]
·

N∑
k=1

α(k) +
N∑

h=1

α̈(h) · ∂

∂α(n)

[
N∑
k=1

α(k)

]
=

=
1

α̇(n)
· ∂

3
∑N

h=1 α
(h)

∂t3
·

N∑
k=1

α(k)+
N∑

h=1

α̈(h) =
1

α̇(n)
·

N∑
h=1

...
α (h) ·

N∑
k=1

α(k)+
N∑

h=1

α̈(h) (5.90)

∂2A(n)

∂α(n)2
=

∂

∂α(n)

[
1

α̇(n)
·

N∑
h=1

...
α (h) ·

N∑
k=1

α(k) +
N∑

h=1

α̈(h)

]
=

=
∂

∂α(n)

[
1

α̇(n)
·

N∑
h=1

...
α (h) ·

N∑
k=1

α(k)

]
+

∂

∂α(n)

[
N∑

h=1

α̈(h)

]
=
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=
∂

∂α(n)

[
1

α̇(n)
·

N∑
h=1

...
α (h)

]
·

N∑
k=1

α(k) +
1

α̇(n)
·

N∑
h=1

...
α (h) · ∂

∂α(n)

[
N∑
k=1

α(k)

]
+

+
1

α̇(n)
·

N∑
h=1

...
α (h) =

=

∂
∂α(n)

[∑N
h=1

...
α (h)

]
· α̇(n) −

∑N
h=1

...
α (h) · ∂α̇(n)

∂α(n)

α̇(n)2
·

N∑
k=1

α(k)+

+
1

α̇(n)
·

N∑
h=1

...
α (h) +

1

α̇(n)
·

N∑
h=1

...
α (h) =

=
1

α̇(n) ·
∑N

h=1

....
α (h) · α̇(n) −

∑N
h=1

...
α (h) · 1

α̇(n) · α̈(n)

α̇(n)2
·

N∑
k=1

α(k)+

+2 · 1

α̇(n)
·

N∑
h=1

...
α (h) =

=
1

α̇(n)2
·

N∑
h=1

....
α (h) ·

N∑
k=1

α(k)− 1

α̇(n)3
·

N∑
h=1

...
α (h) · α̈(n) ·

N∑
k=1

α(k)+2 · 1

α̇(n)
·

N∑
h=1

...
α (h). (5.91)

� term B(n):

∂B(n)

∂α(n)
=

∂

∂α(n)

( N∑
j=1

α̇(j)

)2
 = 2 ·

N∑
j=1

α̇(j) · ∂

∂α(n)

[
N∑
j=1

α̇(j)

]
=

= 2 ·
N∑
j=1

α̇(j) · 1

α̇(n)
· ∂
∂t

[
N∑
j=1

α̇(j)

]
= 2 · 1

α̇(n)
·

N∑
j=1

α̇(j) ·
N∑
j=1

α̈(j) (5.92)

∂2B(n)

∂α(n)2
=

∂

∂α(n)2

[
2 · 1

α̇(n)
·

N∑
j=1

α̇(j) ·
N∑
j=1

α̈(j)

]
=
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= 2 · ∂

∂α(n)

[
1

α̇(n)
·

N∑
j=1

α̇(j)

]
·

N∑
j=1

α̈(j) + 2 · 1

α̇(n)
·

N∑
j=1

α̇(j) · ∂

∂α(n)

[
N∑
j=1

α̈(j)

]
=

= 2 ·
∂

∂α(n)

[∑N
j=1 α̇

(j)
]
· α̇(n) −

∑N
j=1 α̇

(j) · ∂α̇(n)

∂α(n)

α̇(n)2
·

N∑
j=1

α̈(j)+

+2 · 1

α̇(n)
·

N∑
j=1

α̇(j) · 1

α̇(n)
·

N∑
j=1

...
α (j) =

= 2 ·
1

α̇(n) ·
∑N

j=1 α̈
(j) · α̇(n) −

∑N
j=1 α̇

(j) · 1
α̇(n) · α̈(n)

α̇(n)2
·

N∑
j=1

α̈(j)+

+2 · 1

α̇(n)
·

N∑
j=1

α̇(j) · 1

α̇(n)
·

N∑
j=1

...
α (j) =

= 2 · 1

α̇(n)2
·

N∑
j=1

α̈(j) ·
N∑
j=1

α̈(j) − 2 · α̈
(n)

α̇(n)3
·

N∑
j=1

α̇(j) ·
N∑
j=1

α̈(j)+

+2 · 1

α̇(n)2
·

N∑
j=1

α̇(j) ·
N∑
j=1

...
α (j) (5.93)

� term C(n) (formally identical to term A(n)):

∂C(n)

∂α(n)
=

∂

∂α(n)

[
N∑

h=n

α̈(h) ·
N∑

k=n

α(k)

]
=

1

α̇(n)
·

N∑
h=n

...
α (h) ·

N∑
k=n

α(k) +
N∑
j=1

α̈(j) (5.94)

∂2C(n)

∂α(n)2
=

∂

∂α(n)

[
1

α̇(n)
·

N∑
h=n

...
α (h) ·

N∑
k=n

α(k) +
N∑
j=1

α̈(j)

]
=

=
1

α̇(n)2
·

N∑
h=n

....
α (h) ·

N∑
k=n

α(k)− 1

α̇(n)3
·

N∑
h=n

...
α (h) · α̈(n) ·

N∑
k=n

α(k)+2 · 1

α̇(n)
·

N∑
j=n

...
α (j). (5.95)
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� term D(n) (formally identical to term B(n)):

∂D

∂α(n)
=

∂

∂α(n)

( N∑
h=n

α̇(h)

)2
 = 2 · 1

α̇(n)
·

N∑
h=n

α̇(h) ·
N∑

k=n

α̈(k) (5.96)

∂2D

∂α(n)2
=

∂

∂α(n)2

[
2 · 1

α̇(n)
·

N∑
h=n

α̇(h) ·
N∑

k=n

α̈(k)

]
=

= 2 · 1

α̇(n)2
·

N∑
h=n

α̈(h) ·
N∑

k=n

α̈(k) − 2 · α̈
(n)

α̇(n)3
·

N∑
h=n

α̇(h) ·
N∑

k=n

α̈(k)+

+2 · 1

α̇(n)2
·

N∑
h=n

α̇(h) ·
N∑

k=n

...
α (k). (5.97)

By substituting the above expressions for the terms A(n), B(n), C(n) and D(n) in

Eq. 5.87, it becomes

∂2g2,in(α
(n),m(n))

∂α(n)2
= −m(0) · ∂

2A(n)

∂α(n)2
+

1

2
·m(0) · ∂

2B(n)

∂α(n)2
−

−m(n) · ∂
2C(n)

∂α(n)2
+

1

2
·m(n) · ∂

2D(n)

∂α(n)2
=

= −m(0) ·

(
1

α̇(n)2
·

N∑
h=1

....
α (h) ·

N∑
k=1

α(k) − 1

α̇(n)3
·

N∑
h=1

...
α (h) · α̈(n) ·

N∑
k=1

α(k)+

+2 · 1

α̇(n)
·

N∑
h=1

...
α (h)

)
+

+
1

2
·m(0) · (2 · 1

α̇(n)2
·

N∑
j=1

α̈(j) ·
N∑
j=1

α̈(j) − 2 · α̈
(n)

α̇(n)3
·

N∑
j=1

α̇(j) ·
N∑
j=1

α̈(j)+
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+2 · 1

α̇(n)2
·

N∑
j=1

α̇(j) ·
N∑
j=1

...
α (j)

)
−

−m(n) ·

(
1

α̇(n)2
·

N∑
h=n

....
α (h) ·

N∑
k=n

α(k) − 1

α̇(n)3
·

N∑
h=n

...
α (h) · α̈(n) ·

N∑
k=n

α(k)+

+2 · 1

α̇(n)
·

N∑
j=n

...
α (j)

)
+

+
1

2
·m(n) · (2 · 1

α̇(n)2
·

N∑
h=n

α̈(h) ·
N∑

k=n

α̈(k) − 2 · α̈
(n)

α̇(n)3
·

N∑
h=n

α̇(h) ·
N∑

k=n

α̈(k)+

+2 · 1

α̇(n)2
·

N∑
h=n

α̇(h) ·
N∑

k=n

...
α (k)

)
=

= m(0) ·

(
− 1

α̇(n)2
·

N∑
h=1

....
α (h) ·

N∑
k=1

α(k) +
1

α̇(n)3
·

N∑
h=1

...
α (h) · α̈(n) ·

N∑
k=1

α(k)−

−2 · 1

α̇(n)
·

N∑
h=1

...
α (h) +

1

α̇(n)2
·

N∑
h=n

α̈(h) ·
N∑

k=n

α̈(k)−

− α̈(n)

α̇(n)3
·

N∑
h=n

α̇(h) ·
N∑

k=n

α̈(k) +
1

α̇(n)2
·

N∑
h=n

α̇(h) ·
N∑

k=n

...
α (k)

)
+

+m(n) ·

(
− 1

α̇(n)2
·

N∑
h=n

....
α (h) ·

N∑
k=n

α(k) +
1

α̇(n)3
·

N∑
h=n

...
α (h) · α̈(n) ·

N∑
k=n

α(k)−



CHAPTER 5. A MACRO-ELEMENT FOR BRIDGE ABUTMENTS 220

−2 · 1

α̇(n)
·

N∑
j=n

...
α (j) +

1

α̇(n)2
·

N∑
h=n

α̈(h) ·
N∑

k=n

α̈(k) − α̈(n)

α̇(n)3
·

N∑
h=n

α̇(h) ·
N∑

k=n

α̈(k)+

+
1

α̇(n)2
·

N∑
h=n

α̇(h) ·
N∑

k=n

...
α (k)

)
, n = 1, ..., N. (5.98)

having included the contribution of the mass 0 in the summations. For clarity,

the terms representing the time derivatives of the internal variables can be grouped

as

G
(4)
M,0 = − 1

α̇(n)2
·

N∑
h=1

....
α (h) ·

N∑
k=1

α(k) (5.99)

G
(3)
M,0 =

1

α̇(n)3
·

N∑
h=1

...
α (h) · α̈(n) ·

N∑
k=1

α(k) − 2 · 1

α̇(n)
·

N∑
h=1

...
α (h)+

+
1

α̇(n)2
·

N∑
h=1

α̇(h) ·
N∑
k=1

...
α (k) (5.100)

G
(2)
M,0 =

1

α̇(n)2
·

N∑
h=1

α̈(h) ·
N∑
k=1

α̈(k) − α̈(n)

α̇(n)3
·

N∑
h=1

α̇(h) ·
N∑
k=1

α̈(k) (5.101)

G
(4)
M,n = − 1

α̇(n)2
·

N∑
h=n

....
α (h) ·

N∑
k=n

α(k) (5.102)

G
(3)
M,n =

1

α̇(n)3
·

N∑
h=n

...
α (h) · α̈(n) ·

N∑
k=n

α(k) − 2 · 1

α̇(n)
·

N∑
j=n

...
α (j)+

+
1

α̇(n)2
·

N∑
h=n

α̇(h) ·
N∑

k=n

...
α (k) (5.103)

G
(2)
M,n =

1

α̇(n)2
·

N∑
h=n

α̈(h) ·
N∑

k=n

α̈(k) − α̈(n)

α̇(n)3
·

N∑
h=n

α̇(h) ·
N∑

k=n

α̈(k) (5.104)

where the superscript j indicates the highest order of the time derivatives included

in the term G
(j)
M,n, while the subscript identifies the n-th mass. Therefore
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∂2g2,in(α
(n),m(n))

∂α(n)2
= m(0) ·

(
G

(4)
M,0 +G

(3)
M,0 +G

(2)
M,0

)
+

+m(n) ·
(
G

(4)
M,n +G

(3)
M,n +G

(2)
M,n

)
, n = 1, ..., N (5.105)

and finally the second derivative of the function g2, that coincides with the plastic

modulus in the one-dimensional case, reads

∂2g2(α
(n),m(n))

∂α(n)2
= H(n) +m(0) ·

(
G

(4)
M,0 +G

(3)
M,0 +G

(2)
M,0

)
+

+m(n) ·
(
G

(4)
M,n +G

(3)
M,n +G

(2)
M,n

)
, n = 1, ..., N. (5.106)

as the sum of a frequency-independent term H(n) and an inertial term in which

the contribution of the masses is modelled by the time derivatives of the internal

variables. Though its quite articulated form, the inertial term constitutes an impor-

tant feature of the present formulation because it is a rigorous, analytical manner

to include the inertial effects arising from the soil-abutment system in the response

of the macro-constitutive law. It was shown that the inertial effects affect both the

energy and dissipation potentials through the sub-function g2(α
(n),m(n)) that has a

double effect: providing energy to the macro-element in virtue of the kinetic energy

of the masses and, at the same time, dissipating energy since the inertial forces work

in the plastic flow. From a numerical point of view, Eq. 5.106 can be integrated in

time by application of standardised methods, such as the finite difference method.

Now, the expression of the n-th plastic muliplier can be finally obtained

λn =

∂y(n)

∂χ(n) · Q̇(n)

∂y(n)

∂χ(n) · ∂2g2
∂α(n)2 · ∂y(n)

∂χ(n) − ∂y(n)

∂α(n) · ∂y(n)

∂χ(n)

=
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= S(χ(n)) · Q̇(n)

H(n) +m(0) ·
(
G

(4)
M,0 +G

(3)
M,0 +G

(2)
M,0

)
+m(n) ·

(
G

(4)
M,n +G

(3)
M,n +G

(2)
M,n

) =

= S(χ(n)) · Q̇(n)

H(n) +H
(n)
in

, n = 1, .., N. (5.107)

In some cases the plastic multiplier assumes a simpler form. For example, when

the model is subjected to a static or a pseudo-static external perturbation, the

dynamic response of the masses is not activated or can be neglected. It follows that

the plastic multiplier simplifies as

λn = S(χ(n)) · Q̇
(n)

H(n)
, n = 1, .., N (5.108)

in which the plastic response is controlled only by the stiffnesses H(n) associated

with the kinematic hardening.

In dynamic simulations, instead, the inertial response can be reproduced through

two techniques: the masses can be included implicitly in the response of the macro-

element or they can be modelled explicitly in the numerical model. The former

strategy is more elegant because the inertial formulation described so far would be

encapsulated into a unique finite element for a prompt use in numerical simulations,

at cost of a greater implementation effort. Otherwise, each mass could be associ-

ated with a separated element, the latter modelled to reproduce the n-th plastic

flow according to the frequency-independent formulation of the macro-element. In

other words, the macro-element could be also conveniently modelled as a series con-

nection of a number of sub-models, that contain the non-inertial response of the

macro-element, each combined with a mass that confers the frequency-dependent

response. This leads to a straightforward implementation of the model, at least in
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the one-dimensional case but, by contrast, the numerical modelling of the macro-

element becomes a bit more articulated, especially in the multi-axial formulation

and when the number of yield surfaces rises.

A reasonable assumption in using the macro-element consists in setting equal to

zero the mass m(0), because this is located at the same point where the external

perturbation is applied. For example, in a non-linear dynamic analysis, the pertur-

bation is represented by a history of displacements applied to the node of the mass

m(0) that therefore cannot alter the global response because its motion is imposed

by the boundary condition. This leads to the following simpler form of the plastic

multiplier, although conceptually identical to Eq. 5.107, that is

λn = S(χ(n)) · Q̇(n)

H(n) +m(n) ·
(
G

(4)
M,n +G

(3)
M,n +G

(2)
M,n

) , n = 1, .., N. (5.109)

This assumption will be kept in the calibration and validation of the macro-

element discussed in Chapter 5 and 7, respectively.

In the general case of Eq. 5.107, the evolution law for the internal variables,

previously defined in Eq. 5.75, reads

α̇(n) = λn · S(χ(n)) =
Q̇(n)

H(n) +H
(n)
dyn

, n = 1, .., N (5.110)

α̇(R) = S
(
Q(ext)

)
·

N∑
n=1

R(n) ·
∣∣α̇(n)

∣∣ = S(Q(ext)) ·
N∑

n=1

R(n) ·

∣∣∣∣∣ Q̇(n)

H(n) +H
(n)
dyn

∣∣∣∣∣ . (5.111)

The substitution of Eqs. (5.110) and (5.111) into Eq. (5.74) gives the incremental

form of the one-dimensional model, represented below
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Q̇(ext) = H(0) ·

(
q̇ −

N∑
n=1

α̇(n) − α̇(R)

)
+m(0) ·

...
q 2 =

= H(0) ·

(
q̇ −

N∑
n=1

Q̇(n)

H(n) +H
(n)
dyn

− S(Q(ext)) ·
N∑

n=1

R(n) ·

∣∣∣∣∣ Q̇(n)

H(n) +H
(n)
dyn

∣∣∣∣∣
)
+

+m(0) ·
...
q 2. (5.112)

The unknowns of the problem are the force Q(ext) (or the total displacement q),

that is the output quantity for the macro-element, and the internal forces Q(n) in

the n dissipative devices, which are related to the inertial forces Q(M,n) by the local

balance equations in Eq. 5.35. The solution of the incremental form in Eq. 5.112

requires therefore the introduction of the n local equations of motion of the masses,

represented by Eqs. 5.35 and 5.36 previously defined. The incremental form of the

local equations of motion reads

m(n) ·
N∑

j=n

...
α (j) = H(n) · α̇(n) −H(n−1) · α̇(n−1), n = 1, ..., N (5.113)

that, solved at each time step together with Eq. (5.112), make the mathematical

model well-posed because composed of N + 1 unknowns
{
Q(ext), Q(n)

}
and N + 1

equations. The considerations above are still valid when the model is perturbed by

a time history of the force Q(ext) and considering the total displacement q as the

response quantity.

5.7 Multi-axial formulation

In the tensorial form, the forces and the displacements are grouped into two first-



CHAPTER 5. A MACRO-ELEMENT FOR BRIDGE ABUTMENTS 225

order tensors in which the generic terms Q
(l)
i and q

(l)
i are the force and displacement,

respectively, acting in the i direction, while the superscript l identifies the device

which they refer to. Each mass is represented by a diagonal second-order tensorm
(l)
ij .

This implies that there is no directional coupling of the inertial effects: the effect

of a mass m
(n)
11 is only on the displacement q

(n)
11 developing in the same direction.

Under the assumption of no moment transmission at the deck-abutment contact,

this seems a reasonable hypothesis since the directional coupling of the displace-

ment field should be mainly due to the peculiar geometry of the abutment and not

caused by the inertial coupling.

5.7.1 Balance and compatibility

The derivation of the global balance equation is straightforward:

Q
(ext)
i +Q

(M,0)
i +

N∑
1

Q
(M,n)
i +Q

(int)
i = 0, i = 1, 2, 3 (5.114)

with inertial forces Q
(M,n)
i determined by the local equilibrium

Q
(M,n)
i = Q

(n−1)
i −Q

(n)
i , n = 1, .., N, i = 1, 2, 3 (5.115)

combined with the constitutive law of the so-called generalised Voight model

Q
(n)
i = k

(n)
i +H

(n)
ij · α(n)

j , n = 1, .., N, i = 1, 2, 3. (5.116)

The strength k
(n)
i associated with the activation of the n-th plastic flow depends

on the load direction, relation that will be defined later in deriving the yield surfaces

of the soil-abutment system under multi-axial loading paths. Also the stiffness H
(n)
ij

presents directional properties that are described by the generalised hardening rule

adopted for the model at hand (see Section 5.9.3). Finally, as for the one-dimensional
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model, the plastic deformations are assumed as internal variables α
(n)
j = q

(n)
j ,n =

1, ..., N , which allow to take into consideration the past history of the macro-element

on its current response.

Also compatibility is simply the multi-directional generalisation of Eq. 5.37

qj = q
(0)
j +

N∑
1

q
(n)
j + q

(R)
j =

N∑
0

q
(n)
j + q

(R)
j , j = 1, 2, 3 (5.117)

with the total displacement characterised by the norm q

q =
√
q21 + q22 + q23. (5.118)

and by the orientation obtained through the direction cosines cos (θi) = qi/q.

5.8 Energy function

As presented for the one-dimensional model (1D model), each contribution to the

mechanical work is now computed in order to evaluate the multi-axial formulation

of the energy functions:

� work associated with the elastic response (spring 0 in the one-dimensional

model)

L(0) =

∫ q
(0)
i

0

Q
(0)
i · dqi =

∫ q
(0)
i

0

H
(0)
ij · qj · dqi =

=
1

2
·H(0)

ij · q(0)j · q(0)i =
1

2
· C(0)

ji ·Q(0)
i ·Q(0)

j (5.119)

with C
(0)
ji = H

(0)−1
ji the second-order initial tangent compliance matrix.

� work associated wih the n-th plastic flow, also called plastic work (sliders in

the 1D model)
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N∑
n=1

L(k,n) =
N∑

n=1

∫ q
(n)
i

0

Q
(n)
i · dqi =

N∑
n=1

Q
(n)
i · q(n)i =

=
N∑

n=1

k
(n)
i · α(n)

i , n = 1, ..., N (5.120)

in which the n-th internal force Q
(n)
i is equal to the corresponding strength when

the n-th yield is attained.

� work done by the “hardening” forces (kinematic hardening springs in the 1D

model)

N∑
n=1

L(H,n) =
N∑

n=1

∫ q
(n)
j

0

Q
(n)
i · dqi =

N∑
n=1

∫ qn

0

H
(n)
ij · q(n)j · dqi =

=
N∑

n=1

1

2
·H(n)

ij · q(n)j · q(n)i . (5.121)

� work produced by ratcheting

L(R) =

∫ q
(R)
i

0

Q
(R)
i · dqi = Q

(R)
i · q(R)

i = Q
(R)
i · α(R)

i . (5.122)

� work done by the inertial forces (from the mass 0 to the last mass N)

N∑
n=0

L(M,n) =
N∑

n=0

∫ ∑N
h=n q

(h)
j

0

Q
(M,n)
i · dqi =

N∑
n=0

∫ ∑N
j=n q

(h)
j

0

m
(n)
ij · q̈j · dqi =

=
N∑

n=0

∫ ∑N
j=n q

(h)
j

0

m
(n)
ij · q̇j · dq̇i =

1

2
·

N∑
n=0

m
(n)
ij ·

(
N∑

h=n

q̇
(h)
j

)
·

(
N∑

h=n

q̇
(h)
i

)
. (5.123)

By separating the elastic and the plastic displacements, Eq. 5.123 reads

N∑
n=0

L(M,n) =
1

2
·

N∑
n=0

m
(n)
ij ·

(
N∑

h=n

q̇
(h)
j

)
·

(
N∑

h=n

q̇
(h)
i

)
=

1

2
·m(0)

ij · q̇(0)j · q̇(0)i +
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+
1

2
·

N∑
n=1

m
(n)
ij ·

(
N∑

h=n

q̇
(h)
j

)
·

(
N∑

h=n

q̇
(h)
i

)
(5.124)

and recognising that the absolute velocity
∑N

h=n q̇
(h)
j can be written as q̇

(0)
j +∑N

n=1 α̇
(n)
j = C

(0)
ji · Q̇(0)

i +
∑N

n=1 α̇
(n)
j for compatibility, Eq. 5.124 becomes

N∑
n=0

L(M,n) =
1

2
·m(0)

ij ·

(
C

(0)
ji · Q̇(0)

i +
N∑

n=1

α̇
(n)
j

)
·

·

(
C

(0)
ij · Q̇(0)

j +
N∑

n=1

α̇
(n)
i

)
+

1

2
·

N∑
n=1

m
(n)
ij ·

(
N∑

h=n

α̇
(h)
j

)
·

(
N∑

h=n

α̇
(h)
i

)
. (5.125)

The complementary work can be computed by using the Legendre transform and

assumes the following form

N∑
n=0

L(M,n)
comp =

N∑
n=0

Q
(M,n)
i ·

N∑
h=n

q
(h)
i −

N∑
n=0

L(M,n) =

= m
(0)
ij · q̈(0)j · q(0)i +

N∑
n=1

m
(n)
ij ·

N∑
h=n

q̈
(h)
j ·

N∑
k=n

q
(k)
i −

−1

2
·m(0)

ij · α̇(0)
j · α̇(0)

i − 1

2
·

N∑
n=1

m
(n)
ij ·

(
N∑

h=n

α̇
(h)
j

)
·

(
N∑

h=n

α̇
(h)
i

)
=

= m
(0)
ij ·

(
C

(0)
ji · Q̈(0)

i +
N∑

n=1

α̈
(n)
j

)
·

(
C

(0)
ij ·Q(0)

j +
N∑

n=1

α
(n)
i

)
+

+
N∑

n=1

m
(n)
ij ·

N∑
h=n

q̈
(h)
j ·

N∑
k=n

q
(k)
i − 1

2
·m(0)

ij · α̇(0)
j · α̇(0)

i −
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−1

2
·

N∑
n=1

m
(n)
ij ·

(
N∑

h=n

α̇
(h)
j

)
·

(
N∑

h=n

α̇
(h)
i

)
. (5.126)

5.8.1 Gibbs free energy

Based on the above expressions, the Gibbs free energy is given below

g(Q
(n)
i , α

(n)
i ,m

(n)
ij ) = −L(Q(n)

i , α
(n)
i ,m

(n)
ij ) =

= −L(0)
(
Q

(0)
i

)
−

N∑
n=1

L(k,n)(Q
(n)
i , α

(n)
i ) +

N∑
n=1

L(H,n)(Q
(n)
i , α

(n)
i )−

−L(R)(Q
(n)
i , α

(n)
i )−

N∑
n=1

L(M,n)(Q
(n)
i , α

(n)
i ,m

(n)
ij ) =

= −1

2
· C(0)

ji ·Q(0)
i ·Q(0)

j −
N∑

n=1

Q
(n)
i · α(n)

i +

+
1

2
·

N∑
n=1

H
(n)
ij · α(n)

j · α(n)
i −Q

(R)
i · α(R)

i −m
(0)
ij ·

N∑
h=0

q̈
(h)
j ·

N∑
k=0

q
(k)
i +

−
N∑

n=1

m
(n)
ij ·

N∑
h=n

α̈
(h)
j ·

N∑
k=n

α
(k)
i +

1

2
·m(0)

ij ·

(
N∑

h=0

α̇
(h)
j

)
·

(
N∑

h=0

α̇
(h)
i

)
+

+
1

2
·

N∑
n=1

m
(n)
ij ·

(
N∑

h=n

α̇
(h)
j

)
·

(
N∑

h=n

α̇
(h)
i

)
. (5.127)

In virtue of the elastic-plastic uncoupling, the Gibbs free energy can be rewritten

as the sum of the three separated terms in Eq. 5.55 and, in particular, the function
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g2(0, α
(n)
i ,m

(n)
ij ), important for deriving the plastic multiplier, reads

g2(0, α
(n)
i ,m

(n)
ij ) =

1

2
·

N∑
n=1

H
(n)
ij · α(n)

j · α(n)
i −m

(0)
ij ·

N∑
h=0

q̈
(h)
j ·

N∑
k=0

q
(k)
i −

−
N∑

n=1

m
(n)
ij ·

N∑
h=n

α̈
(h)
j ·

N∑
k=n

α
(k)
i +

1

2
·m(0)

ij ·

(
N∑

h=0

α̇
(h)
j

)
·

(
N∑

h=0

α̇
(h)
i

)
+

+
1

2
·

N∑
n=1

m
(n)
ij ·

(
N∑

h=n

α̇
(h)
j

)
·

(
N∑

h=n

α̇
(h)
i

)
. (5.128)

As for the 1D model, the inertial addenda can be grouped into the inertial function

gin(m
(n)
ij )

gin(m
(n)
ij ) = −

N∑
n=0

m
(n)
ij ·

N∑
h=n

q̈
(h)
j ·

N∑
k=n

q
(k)
i +

+
1

2
·

N∑
n=0

m
(n)
ij ·

(
N∑

h=n

α̇
(h)
j

)
·

(
N∑

h=n

α̇
(h)
i

)
(5.129)

and the Gibbs free energy results to be the sum of the so-called “static” function

gst, not dependent on the mass tensors m
(n)
ij , and the inertial function gin, that

confers a frequency-dependent response to the model, thus

g(Q
(n)
i , α

(n)
i ,m

(n)
ij ) = gst(Q

(n)
i , α

(n)
i , 0) + gin(Q

(n)
i , α

(n)
i ,m

(n)
ij ). (5.130)

5.8.2 Helmholtz free energy

The generalization of the Helmholtz free energy is given by the following equation

f(q
(n)
i , α

(n)
i ,m

(n)
ij ) = Lcomp(q

(n)
i , α

(n)
i ,m

(n)
ij ) =
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=
1

2
·H(0)

ij · q(0)j · q(0)i +
1

2
·

N∑
n=1

H
(n)
ij · α(n)

j · α(n)
i +

+
1

2
·

N∑
n=0

m
(n)
ij ·

(
N∑

h=n

q̇
(h)
j

)
·

(
N∑

h=n

q̇
(h)
i

)
=

1

2
·H(0)

ij · q(0)j · q(0)i +

+
1

2
·

N∑
n=1

H
(n)
ij · α(n)

j · α(n)
i +

1

2
·m(0)

ij · q̇j · q̇i+

+
1

2
·

N∑
n=1

m
(n)
ij ·

(
N∑

h=n

q̇
(h)
j

)
·

(
N∑

h=n

q̇
(h)
i

)
=

= fst(q
(n)
i , α

(n)
i , 0ij) + fin(q

(n)
i , α

(n)
i ,m

(n)
ij ) (5.131)

in which the static and inertial functions read

fst(q
(n)
i , α

(n)
i , 0ij) =

1

2
·H(0)

ij · q(0)j · q(0)i +
1

2
·

N∑
n=1

H
(n)
ij · α(n)

j · α(n)
i (5.132)

fin(q
(n)
i , α

(n)
i ,m

(n)
ij ) =

1

2
·

N∑
n=0

m
(n)
ij ·

(
N∑

h=n

q̇
(h)
j

)
·

(
N∑

h=n

q̇
(h)
i

)
=

=
1

2
·m(0)

ij · q̇j · q̇i +
1

2
·

N∑
n=1

m
(n)
ij ·

(
N∑

h=n

q̇
(h)
j

)
·

(
N∑

h=n

q̇
(h)
i

)
. (5.133)

5.9 Yield functions

The plastic domain is confined by two important loci: the surface of first yield and

the surface of ultimate conditions. The former refers to the locus from which the

nonlinear response of the system is no longer negligible, while the latter represents

the locus of activation of global plastic mechanisms of the soil-abutment system.
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The entire configuration of the yield surfaces of the macro-element is based on the

identification of these two boundary surfaces, that are therefore initially presented

for then defining the inner surfaces and their evolution.

5.9.1 Ultimate conditions of the soil-abutment system

Under the large forces transmitted by a bridge structure during an earthquake, a

bridge abutment may undergo significant displacements deriving from the mobilisa-

tion of both the soil and the structural strength. The potential plastic mechanisms

that can occur under complex loading patterns are here examined to derive a general

framework for the ultimate conditions of the soil-abutment system. On the basis

of the results presented in the following, the concept of dissipative abutment, with

possibility to have a plastic response of the abutment structure and introduction to

a new anti-seismic technology for the abutment system, is explored in Appendix 1.

Due to its asymmetry, the capacity of the abutment is expected to be highly

dependent on the load direction. In this study, the capacity of bridge abutments

under general loading paths was analysed through the application of the theorems of

limit analysis in finite element simulations (Sloan 1988, 1989) by using the software

Optum G2 and Optum G3 (OptumCE 2016), related to bi- and three-dimensional

modelling, respectively. Limit analysis allows for a rapid assessment of the stabil-

ity or bearing capacity of geostructures without having to perform an exhaustive

step-by-step elastoplastic analysis. The theorems of limit analysis can be proved for

material that conform to perfect plasticity with a convex yield criterion and with

deformation governed by the normality rule.

5.9.1.1 Limit analysis and numerical modelling

Figure 5.6 shows the geometry of the abutment taken as reference in this study,

inspired by the abutment of the Pantano viaduct (Gorini and Callisto 2017) already
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vertical direction (3)

longitudinal direction (1)

H = 13.5 m

Llong = 17.5 m

Qlong

Qvert

Figure 5.6: Reference configuration of the abutment: two-dimensional model implemented in Op-
tum G2.

described in Section 3.6. As mentioned before, the main objective pursued in this

section is to define a general model describing the ultimate conditions of bridge

abutments. Hence, starting from the geometry of the abutment above, employed in

the reference global soil-bridge model, several generic configurations of the abutment

were analysed, considering more typical values of the strength parameters of soil and

also varying the geometry of the system.

The soil domain is composed of a homogeneous foundation soil and the embank-

ment behind the wall. The fixed boundaries of the model are located far enough

from the abutment in order to guarantee that the response of the latter is not af-

fected by the boundary conditions. All the elements in the numerical models were

represented by solid elements with rigid-perfectly plastic behaviour described by the

Mohr-Coulomb failure criterion with associated flow rule. The interface between soil

and structure was modelled as a frictional connection (shear joint in Optum) in the

two-dimensional models and through a thin layer meshed by solid elements in the

three-dimensional models, with appropriate strength properties.

The external perturbation for the abutment is represented by a set of forces
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applied to the top of the central wall (distributed forces in the three-dimensional

representations), representative of the load coming from the deck. The positive signs

of the forces are those shown in Figure 5.6. The numerical simulations consist in

determining the value of the so-called collapse multiplier, intended as the intensity of

the external force that causes the failure of the system. Each analysis is composed of

several iterations with mesh adaptivity in order to concentrate the discretization of

the domain where plastic strains occur. The calculation stops when the two limit so-

lutions (provided by the lower-bound and upper-bound plasticity solutions) stabilise

at a constant value, identifying a sufficiently narrow range for a good approximation

of the exact solution. The results shown in the following are related to upper bound

solutions to also analyse the kinematics associated with the plastic modes. In order

to compare the response of the three-dimensional models with that obtained by the

two-dimensional models, the failure loads are expressed in terms of forces per unit

length of the central wall.

5.9.1.2 Non-dimensional formulation

The variability of the ultimate surface in different configurations of the soil-abutment

system was studied through the definition of a rigorous non-dimensional formulation

of the problem. In this way, the main factors that control the shape and the size of

the ultimate locus were highlighted ensuring the general validity of the results. In

accordance with Buckingham theorem, from the 18 physical quantities that describe

the problem (Table 5.1), one can derive the 16 non-dimensional groups, listed in

Table 5.2, that characterise completely the mechanical model.

Some reasonable assumptions were made to reduce the quantities of the system

and accordingly the number of groups. The backfill and the embankment were

assumed to be composed of the same frictional material (µback = µemb, cback =

cemb = 0) but, in general, with different properties from the foundation soil (µsoil,
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Symbol Dimension Description
µsoil - Friction coefficient of the foundation soil
µemb - Friction coefficient of the embankment
µint - Friction coefficient of the soil-structure interface
H L Height of the abutment

Llong L Foundation length in the longitudinal direction
Ltr L Foundation length in the transverse direction
µabut - Friction coefficient of the abutment structure
cabut M·L−1·T−2 Cohesion of the abutment structure
ilong L Distance between piles in the longitudinal direction
itr L Distance between piles in the transverse direction
Lp L Length of piles
Dp L Diameter of piles
µp - Friction coefficient of piles
cp M·L−1·T−2 Cohesion of piles
Q1 M·L·T−2 External force in the longitudinal direction
Q2 M·L·T−2 External force in the transverse direction
Q3 M·L·T−2 External force in the vertical direction
Qr2 M·L2·T−2 External moment around the transverse axis

Tabella 5.1: Physical quantities characterising the soil-abutment system.

Number Group Definition
1 µsoil Friction coefficient of the foundation soil
2 µemb Friction coefficient of the embankment
3 µint Friction coefficient of the soil-structure interface
4 µabut Friction coefficient of the abutment
5 cabut ·H2/Q1 Dimensionless abutment cohesion
6 H/Llong Longitudinal aspect ratio of the abutment
7 H/Ltr Transverse aspect ratio of the abutment
8 Q2/Q1 Skew load
9 Q3/(γsoil ·H · Llong) Dimensionless vertical external force
10 Qr2/(Q1 ·H) Dimensionless transverse moment
11 ilong/Dp Normalised longitudinal interax of piles
12 itr/Dp Normalised transverse interax of piles
13 µp Friction coefficient of piles
14 cp ·D2

p/Q1 Strength factor of piles
15 Lp/Dp Slenderness of piles
16 Lp/H Abutment-pile length ratio

Tabella 5.2: Non-dimensional groups of the soil-abutment system.
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csoil = 0). A unit weight of 20 kN/m3 was considered for the entire soil domain,

while the abutment and the piles were designed as reinforced concrete elements with

unit weight equal to 25 kN/m3 (Appendix 1 devoted to dissipative abutments). For

soil-concrete contact, the friction coefficient along the interface can be reasonably

taken equal to that of the soil. With all these assumptions, the behaviour of an

abutment resting on a shallow foundation is controlled by 10 non-dimensional groups

(n. 1 to n. 10 in Table 5.2) while the remaining groups link the properties of the pile

group beneath the raft to the characteristics of the abutment and the load pattern.

Some groups are a function of the geometry of the abutment, n. 5 and 6, and of the

pile group, n. 14 and 15, while there are several linking groups that combine the

strength parameters of the system with the external forces, n. 8, 9 and 13, and with

the geometric quantities, n. 4 and 13.

5.9.1.3 Bi-axial load

Consider the two-dimensional model of the reference abutment described above (Fig-

ure 5.6) loaded by a combined longitudinal-vertical force (L-V plane) on the top of

the central wall. The structure is assumed to have infinite strength, in order to

focus on failure of soil, while the foundation soil and the embankment present the

same friction coefficient equal to 0.577 (friction angle ϕsoil = ϕemb = 30°). Figure

5.7 shows, in the space of the forces {Q1, Q3}, the points representing the activation

of global plastic mechanisms of the system for different ratios Q3/Q1 of the vertical

to the longitudinal force.

It is evident that the failure points can be well described by an ellipse, charac-

terised by a specific orientation δ with respect to the vertical axis Q3, that identifies

the ratio Q3/Q1 correspondent to the maximum capacity Qmax. In the longitudinal

direction (Q3 = 0), the positive and negative limit forces are associated with the

attainment of the passive and active resistance in the soil behind the wall, respec-
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D.N. GORINI soil-structure interaction for bridge abutments

Figure 5.7: Failure points for the combined longitudinal-vertical load and their fitting with an
ellipse-shaped model.

tively. In the vertical direction instead (Q1 = 0), the positive limit value represents

the bearing capacity of the foundation while the negative limit value is the force di-

rected upwards that produces the uplift of the abutment and part of the soil sitting

on the footing.

The ellipse is almost entirely located in the first quadrant of the positive forces,

reflecting the highly asymmetric response of the abutment: the simultaneous appli-

cation of the two components of the load leads to a noticeable increase of the capacity

when the forces are directed downwards and towards the backfill while it causes a

drastic reduction of the resistance when they push away the abutment from the soil,

as highlighted in the zoomed-in graph in Figure 5.7(b). The orientation δ of the el-

lipse is strongly controlled by the friction coefficient at the soil-abutment interface,

as it will be better described later. The maximum capacity is instead dependent on
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the soil strength and the abutment geometry. The failure mode associated with the

maximum capacity is illustrated in Figure 5.8(a) in which the strength is attained

largely in the soil behind the wall, with a logarithmic spiral-shaped sliding surface

that extends downstream beyond the footing. This failure mode can be therefore

regarded as the combined mobilization of the passive resistance of the embankment

and the bearing capacity of the foundation soil. In correspondence with the mini-

mum capacity instead, the failure mechanism, shown in Figure 5.8(b), reveals that

the abutment and part of the backfill tend to rotate as a rigid body around the

downstream end of the footing.

5.9.1.4 Moment transmission at the deck-abutment contact

For integral abutments, the deck-abutment joint allows the transmission of moment

between them. As already described in detail in Section 5.1, the bending moment

Qr2 acting in the L-V plane is often the most relevant source of rotation for an abut-

ment, compared to the longitudinal and vertical moments, and therefore it is the

only component taken into consideration in the following. The effect of a clockwise

moment Qr2 on failure is shown in Figure 5.9, for different levels of Qr2 with respect

to the limit value Qr2,lim, the latter referred to the case in which the moment is the

only external force acting on the abutment. It can be observed that the presence

of moment essentially causes a rotation of the ellipse around a point close to the

maximum capacity, without altering the shape of the ultimate locus. It follows that

the greatest effect occurs on the limit values of the longitudinal force, as highlighted

in the magnified representation in Figure 5.9(b). More in detail, the effect of a

clockwise moment Qr2 depends on how it combines with the longitudinal force Q1:

it reduces the positive limit value of Q1 (longitudinal force pushing the abutment to-

wards the backfill) and increases the negative value of Q1. This happens because the

moment favours the activation of the mechanism produced by the longitudinal force
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Figure 5.8: Failure mechanisms of the abutment in correspondence of the maximum (a) and mini-
mum (b) capacity.
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Figure 5.9: Failure surfaces in theQ1−Q3 plane for different levels of the clockwise external moment
Qr2 (Qr2,max = 3.7�105 kN�m/m) acting in the longitudinal-vertical plane of the abutment.

in the first case while it contrasts the counter-clockwise rotation of the abutment

due to a negative longitudinal force. The opposite situation occurs when a counter-

clockwise moment is considered and the relative results are not shown herein for the

sake of conciseness.

Moreover, in Figure 5.10 it is shown that the mechanisms produced by the longitu-

dinal force are very similar to those caused by the bending moment: the abutment

undergoes a roto-translation in both cases, with nearly identical sliding surfaces,

around a centre of rotation C placed underneath the foundation. In light of the

above results, the effect of the external moment Qr2 can be regarded to a pair of

identical couple of longitudinal forces Q1,eq applied to the top of the abutment wall

and at a depth hr proportional to the height of the wall through an equivalent factor

a. The latter is a function of the soil strength and the abutment geometry and it
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Figure 5.10: Comparison between the failure modes produced by the longitudinal external force Q1,
(a) and (c), and those related to the external moment Qr2, (b) and (d); (e) physical interpretation
of failure due to Qr2 as an equivalent couple of horizontal forces Q1,eq.

results equal to 3.9 and 7.3 for the cases (b) and (d), respectively. This manner

to account for the presence of moments through couples of forces is in line with

the normalisation schemes usually used in the macro-elements for shallow founda-

tions (Nova and Montrasio 1991, Martin 1994, Chazichogos et al 2001, Venanzi et al.

2014). This is an important assumption because it allows to work with homogeneous

physical quantities and, accordingly, also the surface of ultimate loads is defined in

a homogeneous space.

Nonetheless, it is worth noticing that the deck-abutment moment can constitute

a relevant source of reduction of the capacity only at very high levels of moment

(Figure 5.9), hardly reachable due to the effective resistance of the deck-abutment

joint. Hence, even for integral abutments, moments transmitted to the abutment

seem not to affect considerably the failure of the soil-abutment system, which sup-

ports the assumption of having neglected the rotational degrees of freedom in the

macro-element formulation.
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5.9.1.5 Inertial effects

Under seismic conditions, the inertial effects that develop in the soil and the abut-

ment can alter the activation of the plastic mechanisms of the system. A simplified

method to study this phenomenon consists in representing the effects induced by the

seismic excitation through pseudo-static forces Fe (Mononobe-Okabe theory 1924)

defined as

Fe = m · kh · g (5.134)

where m is the mass of the volume which the force is applied to, while kh is the hori-

zontal seismic coefficient representing an acceleration normalised to the acceleration

of gravity g. These forces were reproduced in the software Optum as a uniform field

of acceleration, considered purely horizontal, applied to the entire domain through

the seismic coefficient (kh > 0 when the inertial forces are directed towards the

backfill).

From the results illustrated in Figure 5.11 it is evident that the inertial forces

provoke a contraction and a rotation of the limit surface, without altering its shape.

More in detail, the dimension of the admissible domain always reduces as the seismic

coefficient rises but more evidently when the inertial forces are directed upstream,

because they favour the activation of the plastic mechanism associated with the

maximum capacity.

The corresponding sliding surfaces are depicted in Figure 5.12, limiting the lat-

eral extension of the soil domain for the sake of a better graphical representation:

the surfaces move progressively upstream with the normalised pseudo-static accel-

eration while the opposite situation occurs when the inertial forces are directed

downstream. Moreover, the effect on the orientation of the ellipse is emisymmet-

ric and slightly more pronounced when the inertial forces are directed downstream,
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Figure 5.11: Inertial effects: comparison between the ultimate surface retrieved under static condi-
tions (kh = 0) and those obtained for different values of the seismic coefficient (kh > 0 if directed
towards the backfill).
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Figure 5.12: Effect of the seismic coefficient on the global plastic mechanisms correspondent to the
maximum capacity of the soil-abutment system.

leading especially to a relevant reduction of the longitudinal force associated with

the attainment of the active resistance in the backfill. More in detail, the failure sur-

face undergoes a counter-clockwise rotation up to −5.6° (−0.098 rad) when kh > 0,

reducing the positive limit force in longitudinal direction, while a clockwise rotation

occurs, up to 7.3° (0.124 rad), for negative seismic coefficients.

Figure 5.13 also shows two dimensionless parameters, dd(kh)/H and du(kh)/H

describing concisely the extension of the failure modes occurring in correspondence

of the maximum capacity, which reflect the considerations made above. Up to an

absolute value of kh equal to 0.3, that is usually the upper bound for the seismic

motion, a unique gradient can be recognised for the dimensionless parameters, while

for higher levels of kh the extension of the mechanism increases remarkably.
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Figure 5.13: Parameters describing the geometry of the mechanisms under pseudo-static conditions.

5.9.1.6 General formulation of the ultimate surface

The results shown in the previous paragraph are referred to plane strain conditions.

An effective width of the foundation is now considered to analyse the influence of the

three-dimensional response of the abutment on failure. A full model of abutment is

illustrated in Figure 5.14, in which the backfill is retained by the central wall and

the wing walls of the abutment, that in turn are supported by a raft foundation.

Laterally to the wing walls, rigid diaphragms are placed to guarantee the stability

of the sides of the embankment in the longitudinal direction, resting on two slabs

connected to the raft.

Simulations on such models were carried out in Optum G3, considering a trans-

verse aspect ratio H/Ltr of 0.7, and the relative results are shown in Figure 5.15.

The failure locus in the L-V plane retrieved in absence of the transverse force, con-

tinuous line with Q2/Q1 = 0, is larger than the respective locus under plane strain
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Figure 5.14: Three-dimensional model implemented in Optum G3 and positive signs of the forces
applied to the abutment.

conditions (2D model), with maximum increase of the limit load in the region where

the capacity attains the maximum values. This is due to a different mobilization of

the soil strength and, in fact, focusing on failure in correspondence of the maximum

capacity, Figure 5.16 shows the lines of equal work dissipated by the stresses in the

domain: the mechanism is nearly identical to the 2D failure along the central section

of the abutment, in terms of mobilization of strength and deformed shape, but in

plan the sliding surface surrounds the abutment structure for then involving part of

the embankment that leads to the increment of the capacity observed above.

When also a transverse force Q2 is applied to the central wall, the size of the

limit locus reduces progressively as the ratio Q2/Q1 rises but the ellipse keeps the

same orientation, as illustrated in Figure 5.15(a). Moreover, looking at the effect

of the transverse force in the transverse-vertical plane (Figure 5.15(b)), it is evident

that every ultimate locus can be again represented by an ellipse with different size.

More in detail, from the plane Q1 = 0 MN/m, the size of the ellipse increases up

to a limit value, close to Q1 = 10 MN/m, for then reducing towards the maximum
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Figure 5.15: (a) Traces of the failure surface in the plane {Q1, Q3} obtained through three-
dimensional simulations for different values of the skew load Q2/Q1; (b) traces of the surface
in the plane {Q2, Q3}.
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Figure 5.16: Three-dimensional failure mode correspondent to the maximum capacity: contours of
the shear dissipation from 0 kJ (blue) up to 1 kJ (red).

capacity.

Accordingly, the ultimate surface of an abutment can be described by an ellip-

soid, almost entirely located in the first quadrant and inclined with respect to the

coordinate axes, whose analytical expression reads

[(Q3 − c3) · cos (δ) + (Q1 − c1) · sin (δ)]2

a2M
+
Q2

2

a2i
+

+
[− (Q3 − c3) · sin (δ) + (Q1 − c1) · cos (δ)]2

a2m
− 1 = 0. (5.135)

The ellipsoid is centred at C = {c1, 0, c3} and is rotated of an angle δ = arctg (Q1/Q3)

in the plane {Q1, Q3}. It is symmetric with respect to the Q2-axis for the symmetry
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of the problem. The major semi-axis is denoted as aM , the minor one am while ai

indicates the intermediate value.

In Section 5.9.1.4, it was seen how the moment transmission at the deck-abutment

contact can be introduced in the formulation of the ultimate surface as an equivalent

couple of longitudinal forces Q1,eq = Qr2/h2,eq. Hence, the total longitudinal force

applied on top of the wall results equal to

Q1,tot = Q1 +Q1,eq = Q1 +Qr2/h2,eq (5.136)

and Eq. 5.135 can be easily extended to the case of 4 degrees of freedom of the

deck-abutment contact {Q1, Q2, Q3, Qr2} as follows

[(Q3 − c3) · cos (δ) + (Q1 +Qr2/h2,eq − c1) · sin (δ)]2

a2M
+
Q2

2

a2i
+

+
[− (Q3 − c3) · sin (δ) + (Q1 +Qr2/h2,eq − c1) · cos (δ)]2

a2m
− 1 = 0. (5.137)

Following the same logic above, a 5 degrees of freedom ultimate surface {Q1, Q2, Q3, Qr1, Qr2}

might be theoretically written in the following form

[(Q3 − c3) · cos (δ) + (Q1 +Qr2/h2,eq − c1) · sin (δ)]2

a2M
+

+
(Q2 +Qr1/h1,eq)

2

a2i
+

+
[− (Q3 − c3) · sin (δ) + (Q1 +Qr2/h2,eq − c1) · cos (δ)]2

a2m
− 1 = 0. (5.138)
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Group Config. 1 Config. 2 Config. 3 Config. 4 Config. 5
µsoil 0.577 0.577 0.466 0.577 0.466
µemb 0.577 0.577 0.466 0.577 0.577
µint 0.577 0.0 0.466 0.577 0.577

H/Llong 0.77 0.77 0.77 0.9 0.77
Q3/(γsoil ·H · Llong) 2.1 · 10−4 2.1 · 10−4 2.1 · 10−4 1.8 · 10−4 2.1 · 10−4

Tabella 5.3: Non-dimensional groups associated with different configurations of the soil-abutment
system.

in which the term h1,eq is the equivalent height associated with the longitudinal

moment Qr1, that alters the transverse response of the abutment. The moment Qr3

along the z-axis, instead, would affect both the longitudinal and transverse response

and further investigations on the skew effects would be needed in order to include

these effects in the formulation of the ultimate surface of bridge abutments. Anyway,

as already discussed in Section 5.1, taking into account moment transmission in the

equation of the ultimate surface would lead to a greater completeness of the math-

ematical formulation of the macro-element but their effects are probably negligible

for the behaviour of bridge abutments, except for rare cases characterised by highly

irregular structures such as very high skew angle at the deck-abutment contact.

5.9.1.7 Normalised representation and calibration

The results of a limited parametric study are now shown in order to analyse the

applicability of the capacity model proposed above in different configurations of

the soil-abutment system. Specifically, in addition to the reference configuration

considered so far, other three models are taken into account, characterised by the

non-dimensional groups listed in Table 5.3.

In Config. 2, a smooth interface between soil and structure is considered while a

perfectly rough interface (µint = µsoil) is assumed for the other configurations. Con-

fig. 3 accounts for a lower strength of the soil compared to the reference configuration

n. 1. Two geometries of the abutment are examined relative to a longitudinal aspect
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Figure 5.17: Ellipse-shaped failure surfaces in the plane {Q1, Q3} for the configurations of the
soil-abutment system listed in Table 5.3.

ratio H/Llong of 0.77 (Config. 1, 2, 3 and 5) and 0.9 (Config. 4). A lower strength

of the foundation soil µsoil = 0.466 compared to that of the reference embankment

µemb = 0.577 is considered in Config. 5. Figure 9 shows the ultimate surfaces

obtained as an interpolation of the failure points associated with the models above.

The first evidence is that, in each configuration, failure can be still represented

by an elliptic locus. The orientation δ of the ellipse is essentially controlled by

the friction along the soil-structure interface, which ranges from 11° for a smooth

interface to 18° for a perfectly rough interface, hence when the vertical force is 5 and 3

times the longitudinal force, respectively. A smooth interface also causes a noticeable

decrement of the maximum capacity and an almost null limit value of the negative

force Q1. However, the friction coefficient along the interface is a function of the

properties of the materials in contact and, for soil-concrete contact, it can be assumed
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approximately equal to the strength parameter of soil. Soil strength and the aspect

ratio modify the size of the ellipse: the capacity rises with the soil strength and with

the longitudinal aspect ratio of the abutment structure. The latter consideration

can be explained as an increment of the whole resistance of the backfill for taller

abutments, keeping the same length of the footing, due to a larger volume of soil

interacting with the wall. Keeping the strength of the embankment in the reference

Config. 1, a decrease of the strength in the foundation soil causes a contraction of

the ultimate surface. The resulting ultimate locus is almost overlapped to that of

Config. 3, in which µsoil = µemb = 0.466, and therefore the capacity of the system is

mainly controlled by the strength of the soil underneath the abutment foundation.

In the zone of the maximum capacity, in fact, occurring for ratios Q3/Q1 = 1÷5, the

global plastic mechanisms are conceptually similar to that already shown in Figure

5.8: there is an important mobilisation of the soil strength surrounding the footing

and, at the same time, the attainment of the passive resistance in the embankment.

The strength of the foundation soil is mobilised in a much larger volume compared

to the plastic volume behind the wall and, as a result, the capacity of the system

depends essentially on the properties of the foundation soil.

It can be convenient to represent the failure points in a normalised space in which

the external forces are divided by the maximum capacityQmax = max
{√

Q2
1 +Q2

3

}
.

By plotting the results above in this space, shown in Figure 5.18, only two failure

loci can be distinguished relative to different friction angles along the soil-structure

contact. All the surfaces present the same size with orientation δa defined by the

properties of the soil-structure interface, as observed before. It follows that the

failure surface can be completely defined by evaluating its maximum capacity Qmax

and by assuming the friction angle of the interface between soil and structure. The

quantity Qmax can be determined either by carrying out a sole failure analysis on a

soil-abutment model in correspondence of the maximum capacity or by correlating it
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Figure 5.18: Representation of the failure surfaces in the normalised plane {Q1/Qmax, Q3/Qmax}.

to the vertical limit load Q3,max representing the bearing capacity of the foundation.

In fact, the ratio Qmax/Q3,max ranges between 3.0 and 3.5 for all the configurations

examined above. The three-dimensional ultimate surfaces of these systems follow the

considerations made in Section 5.9.1.6, regarding the effects of the three-dimensional

geometry of the abutment, and the relative results are therefore omitted for the sake

of conciseness.

As a result, the following ratios can be assumed for the ellipsoid of ultimate loads:

� coordinate of the centre:

c3 = 0.9 · aM (5.139)

c3/c1 = 3.0 (5.140)
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� shape factors:

aM/am = 5.0 (5.141)

aM/ai = 2.3 (5.142)

2 · aM = 0.95 ·Qmax. (5.143)

Hence, once the maximum capacity of the abutment is evaluated, or equivalently

the vertical limit value, the ultimate surface can be completely defined by using Eqs.

5.135 to 5.143.

Using the normalization scheme introduced before, it is now possible to define a

normalised version of the ellipsoid as follows

[(Q3/Qmax − c3,a) · cos (δa) + (Q1/Qmax − c1,a) · sin (δa)]2

a2M,a

+
Q2

2,a

a2i,a
+

+
[− (Q3/Qmax − c3,a) · sin (δa) + (Q1/Qmax − c1,a) · cos (δa)]2

a2m,a

− 1 = 0 (5.144)

with ci,a = ci/Qmax and aM,a = 1 for the normalization scheme adopted. Note

that the orientation δa of the ultimate surface in the normalised space coincides with

the orientation δ in the true force space

δa = arctg

(
Q1

Qmax

· Qmax

Q3

)
= arctg

(
Q1

Q3

)
= δ. (5.145)

5.9.2 Identification of the elastic domain

The ultimate surface found above represents the outermost yield surface of the

macro-element, while the boundary of the elastic domain was determined looking

at the results of pushover analyses on a local model of the abutment developed
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Figure 5.19: (a) Central section of the soil-abutment interaction model implemented in OpenSees
and (b) detail of the soil-structure interface.

in OpenSees, shown in Figure 5.19. In this case, the numerical representation in

OpenSees is equivalent to the Optum 3D model discussed in the previous section,

in terms of geometry and strength parameters.

A brief argumentation of the peculiar aspects of the model is discussed in the fol-

lowing. The model is composed of a uniform layer of foundation soil, the approaching

embankment and the abutment structure. The former reflects the properties the su-

perficial layer of Messina Gravel MG1, except for a different friction angle of 30°,

that extends down to a depth of 70 m from the ground level because the focus is on

the local behaviour of the abutment perturbed by dynamic forces on top and not by

seismic waves coming from the foundation soil. The extension of the model in plan
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was instead defined in order to ensure that the lateral boundaries are distant enough

so that the response of the abutment not being altered by the model dimensions.

To this end, the following ratios were used

Llong

Blong

= 4.0 (5.146)

Ltran

Btran

= 3.0 (5.147)

where the geometric quantities above are illustrated in Figure 5.20. The boundary

conditions consisted in fixed constraints at the base of the model, while only the

horizontal displacements were impeded along the vertical boundaries, allowing the

soil to settle under gravity loads.

The subsoil was assumed to be dry and, therefore, all the soil domain was dis-

cretised through the SSPbrick eight node hexahedral elements (Zienkiewick et al.

1984), coupled with the PDMY model (Yang et al. 2003) to reproduce the mechan-

ical behaviour of the foundation soil and of the embankment. Identical parameters

were used for the interface layers interposed between the abutment and the soil ex-

cept for the friction angle. In fact, two values of the latter were considered in the

computation: a friction angle of the interface ϕint equal to that of the soil ϕsoil and

ϕint = 2/3 ·ϕsoil. It was seen that the variability of the friction angle of the interface

within this range does not alter significantly the results in terms of pushover curves,

hence just the case of a perfectly rough interface is discussed in the following. The

behaviour of the structure is represented by a visco-elastic material with parameters

relative to a C32/40 strength class concrete in European standard.

A staged analysis procedure was adopted, with gravity loads applied first followed

by the pushover analysis. The static phase consisted in a first stage aimed to initialise

the lithostatic stress state in the foundation soil and then the abutment structure and
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Figure 5.20: Representation of the boundary conditions in the longitudinal (a) and transverse (b)
plane.
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D.N. GORINI soil-structure interaction for bridge abutments

Figure 5.21: Pushover curves for different directions of the load on top of the wall.

the embankment were built sequentially into the model. In the subsequent pushover

analysis, a distributed force was applied to the top of the central wall, whose intensity

was progressively amplified until reaching the ultimate load of the soil-abutment

system, corresponding to the activation of a global plastic mechanism. Within the

context of the macro-element of bridge abutment, the response of the numerical

models was quantified by monitoring the displacements of the nodes on the top of

the wall. In this way, it was possible to compute the pushover curves in Figure 5.21,

referred to different ratios Q1/Q3 of the external force in the longitudinal-vertical

plane of the abutment. The curves relate the force per unit length of the wall to the

resulting average displacement of the wall top in the same direction.
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For each curve in Figure 5.21, the point corresponding to the first variation of

the stiffness with respect to the initial value was identified (first yield). Figure 5.22

plots the points of first yield along different loading paths and it is evident that they

can be very well interpolated by an ellipse. The configuration of the ellipse of first

yield can be obtained by correlating its size and orientation to the characteristics of

the ultimate surface, the latter obtained by the limit analysis solutions in 5.9.1.3, as

reported below

a(1)

a(N)
= 0.1 (5.148)

c
(1)
3

c
(1)
1

=
c
(N)
3

c
(N)
1

= tg (δ) (5.149)

a(1)

b(1)
=
a(N)

b(N)
. (5.150)

Hence, the first surface have the same shape and orientation as the ultimate

surface but presents a much smaller dimension.

If also a transverse force is introduced, the resulting elastic domain is shown in

Figure 5.23: it can be still represented by an ellipse with ratio atranel /atranult = 0.15

between the size of the elastic domain atranel and that associated with the ultimate

locus atranult .

The two extreme boundaries of the plastic domain are finally illustrated in the

three-dimensional space of the interaction forces in Figure 5.24.

5.9.3 Generalised hardening rule

The plastic domain is now entirely bounded by the two fundamental surfaces of

first yield and ultimate loads. Taking this one step further, the inner yield surfaces
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Figure 5.22: Boundary of the plastic domain: the surfaces of ultimate loads and first yield.
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Figure 5.23: Trace of the surface of first yield in the {Q2, Q3}plane.

are conceived to be homothetic to the boundary surfaces. In the thermodynamic

approach, however, the yield surfaces are a function of the dissipative forces χ
(n)
i ,

related to the true forces Q
(n)
i by Eq. 5.20. Therefore a change of variable is needed

and the generic yield surface is described by the following equation

y(n)(χ
(n)
i ) =

[(
χ
(n)
3 − c

(n)
3

)
· cos (δ) +

(
χ
(n)
1 − c

(n)
1

)
· sin (δ)

]2
a
(n)2
M

+

+
χ
(n)2
2

a
(n)2
i

+

[
−
(
χ
(n)
3 − c

(n)
3

)
· sin (δ) +

(
χ
(n)
1 − c

(n)
1

)
· cos (δ)

]2
a
(n)2
m

−

−1 = 0, n = 1, ..., N. (5.151)

Note that, when the n-th plastic flow is activated, the surfaces contained within

the n-th surface follow the force state in virtue of the kinematic hardening. This is

an essential feature for the response of the model under cyclic conditions because, in
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Figure 5.24: Representation of the first and ultimate yield surface in the space of the interaction
forces at the deck-abutment contact.
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δ

Figure 5.25: Configuration of the yield surfaces.

this way, during plastic loading the elastic region and the lower order surfaces move

in the space of the interaction forces, together with the point representative of the

state of the macro-element, and when a load reversal occurs plastic displacements

start developing again for a different plastic threshold. The configuration of the

yield surfaces of the macro-element is represented in Figure 5.25.

All the surfaces respect the following conditions

c
(1)
3

c
(1)
1

=
c
(N)
3

c
(N)
1

= tg (δ) , n = 1, ..., N (5.152)
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Figure 5.26: Variation of the centers of the yield surfaces in the initial configuration of the macro-
element.

a(n)

b(n)
= const, n = 1, ..., N (5.153)

and with centre of the n-th surface that moves linearly from the first locus to the

ultimate locus, as described in Figure 5.26. Therefore, the plastic domain is com-

posed of a series of homothetic yield surfaces that, starting from the small elastic

region, evolve with kinematic hardening until reaching the ultimate surface, keeping

the same shape ratio a(n)/b(n) and orientation tg (δ). Kinematic hardening is con-

trolled by the stiffness tensors H
(n)
ij associated with each plastic flow. The evaluation

of the kinematic hardening terms H
(n)
ij will be described later in the calibration of

the macro-element.

Differently from a nested surface plasticity model in which the non-intersection

condition must be satisfied, in the present multiple surface plasticity model the yield
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surfaces can intersect with each other, likely situation along general loading paths

(variable load ratio Q
(n)
i /Q

(n)
j ), such as those induced by the seismic motion. It

follows that the increment of the plastic displacement is computed as the vector

sum of the plastic increments associated with the surfaces for which the plastic flow

is activated (plastic multiplier λ(n) > 0); when λ(n) = 0, instead, the response is

purely elastic and, finally, the increment of the total displacement q̇ derives from

Eq. 5.117. Plastic hardening is obtained by Eq. 5.80, in which the term

ċ
(n)
i =

∂2g2(α
(n)
i )

∂α
(n)2
i

· α̇(n)
i (5.154)

represents the translation of the center c
(n)
i of the n-th surface. This is conceptu-

ally identical to the Prager’s translation rule (1949), in which the center of the yield

surface moves in the direction of the rate of the plastic displacement.

5.10 Dissipation function

The dissipation function represents the plastic power of the system, hence the rate

of the work done by the dissipative forces only. It reflects the directional properties

introduced in the model by the peculiar shape of the yield surfaces found before

and, moreover, is altered by the inertial effects that appear in the expression of the

plastic multiplier (see Eq. 5.107 in the one-dimensional formulation). By definition,

the dissipation function d is given by the following inequality

d(α
(n)
i , α̇

(n)
i ) = χ

(n)
i · α̇(n)

i ≥ 0 (5.155)

which must be verified for every transformation in accordance with the Second

Law of Thermodynamics. As done for the one-dimensional model, the contribu-

tion of the ratcheting displacement was introduced in the dissipation function as a
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constraint c, leading to a new function d∗ that reads

d∗ = d+ Λ · c =
∣∣∣χ(n)

i · α̇(n)
i

∣∣∣+

+Λ ·

(
α̇(R) − S

(
Q(ext)

)
·

N∑
n=1

R(n) · α̇(n)

)
(5.156)

with Λ the Lagrange multiplier. In this way, the incremental response of the

model can be derived through the unconstrained function d∗.

The expression above requires to develop the flow rule for the internal variables

α̇
(n)
i , especially for the plastic multiplier λ(n) that will be defined later to write the

constitutive law in incremental form. The complete derivation of each term of the

dissipation function is therefore shown in the next paragraph, obtaining directly the

response of the macro-element. Starting from the analytical expressions of the yield

surfaces in Eq. 5.151, the initial function d can be also derived through the following

form of the Legendre transformation

λ(n) · y(n)(α(n)
i , χ

(n)
i ) = χ

(n)
i · α̇(n)

i − d(α
(n)
i , α̇

(n)
i ) = 0 (5.157)

which can be conveniently rearranged as

d(α
(n)
i , α̇

(n)
i ) = λ(n) ·

[
χ
(n)
i · ∂y

(n)(α
(n)
i , χ

(n)
i )

∂χ
(n)
i

− y(n)(α
(n)
i , χ

(n)
i )

]
= χ

(n)
i · α̇(n)

i . (5.158)

5.11 Incremental response

Analogously to the one-dimension model, the incremental response of the multi-axial

macro-element was obtained by differentiating the Helmholtz free energy as follows
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Q̇
(ext)
i =

∂

∂t

[
∂f(q

(n)
j , α

(n)
j ,m

(n)
ij )

∂qj

]
= H

(0)
ij · q̇(0)j (qj) +m

(0)
ij · ∂

∂t
[q̈j] =

= H
(0)
ij ·

(
q̇j −

N∑
n=1

α̇
(n)
j − α̇

(R)
j

)
+m

(0)
ij ·

...
q j. (5.159)

Keeping the assumption made for the one-dimensional model that m
(0)
ij = 0ij

because it is associated with the node which the external perturbation is applied to,

the second addendum in the equation above vanishes. Eq. 5.159 can be developed

by introducing the evolution law for the internal variables (Eq. 5.75)

Q̇
(ext)
i = H

(0)
ij ·

[
q̇j −

N∑
n=1

λn ·
∂ygn(χ

(n)
j , α

(n)
j , χ

(n)
j )

∂χ
(n)
j

−

−S
(
Q

(ext)
i

)
·

N∑
n=1

R(n) · λn ·
∂ygn(χ

(n)
j , α

(n)
j , χ

(n)
j )

∂χ
(n)
j

]
. (5.160)

Eq. 5.160, together with n · i equations of the flow rule and with n · i local

balance equations of the masses m
(n)
ij , constitutes a system of (2 ·n+1) · i equations

in (2 · n + 1) · i unknowns
{
Q

(ext)
i (or qi), α

(n)
i , Q

(n)
i

}
. The local balance equations

read

Q
(n)
i = Q

(n−1)
i −Q

(M,n)
i = Q

(n−2)
i −Q

(M,n−1)
i −Q

(M,n)
i =

= Q
(n−3)
i −Q

(M,n−2)
i −Q

(M,n−1)
i −Q

(M,n)
i = Q

(ext)
i −

n∑
k=1

Q
(M,k)
i , n = 1, .., N. (5.161)

while the flow rule requires the solution for the plastic multiplier (Eq. 5.107),

that is generalised here below to multi-axial conditions
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λn =

∂y(n)

∂χ
(n)
i

· Q̇i
(n)

∂y(n)

∂χ
(n)
i

· ∂2g2

∂α
(n)2
i

· ∂y(n)

∂χ
(n)
i

− ∂y(n)

∂α
(n)
i

· ∂y(n)

∂χ
(n)
i

, n = 1, .., N. (5.162)

The term ∂y(n)/∂α
(n)
i is identically equal to zero because the yield functions do

not depend on the internal variables. Therefore the n-th plastic multiplier reads

λn =

∂y(n)

∂χ
(n)
i

· Q̇i
(n)

∂y(n)

∂χ
(n)
i

· ∂2g2

∂α
(n)2
i

· ∂y(n)

∂χ
(n)
i

=

=

∂y(n)

∂χ
(n)
1

· Q̇1
(n)

+ ∂y(n)

∂χ
(n)
2

· Q̇2
(n)

+ ∂y(n)

∂χ
(n)
3

· Q̇3
(n)

∂y(n)

∂χ
(n)
1

· ∂2g2

∂α
(n)2
1

· ∂y(n)

∂χ
(n)
1

+ ∂y(n)

∂χ
(n)
2

· ∂2g2

∂α
(n)2
2

· ∂y(n)

∂χ
(n)
2

+ ∂y(n)

∂χ
(n)
3

· ∂2g2

∂α
(n)2
3

· ∂y(n)

∂χ
(n)
3

. (5.163)

The derivative of the yield functions ∂y(n)/∂χ
(n)
i are developed below:

� derivative of the yield functions with respect to χ
(n)
1

∂y(n)
(
χ
(n)
i

)
∂χ

(n)
1

=
∂

∂χ
(n)
1


[(
χ
(n)
3 − c

(n)
3

)
· cos (δ) +

(
χ
(n)
1 − c

(n)
1

)
· sin (δ)

]2
a
(n)2
M

+

+
χ
(n)2
2

a
(n)2
i

+

[
−
(
χ
(n)
3 − c

(n)
3

)
· sin (δ) +

(
χ
(n)
1 − c

(n)
1

)
· cos (δ)

]2
a
(n)2
m

− 1

 =

=
2

a
(n)2
M

·
[(
χ
(n)
3 − c

(n)
3

)
· cos (δ) +

(
χ
(n)
1 − c

(n)
1

)
· sin (δ)

]
· sin (δ) · S(χ(n)

1 )+

+
2

a
(n)2
m

·
[
−
(
χ
(n)
3 − c

(n)
3

)
· sin (δ) +

(
χ
(n)
1 − c

(n)
1

)
· cos (δ)

]
·cos (δ) ·S(χ(n)

1 ); (5.164)



CHAPTER 5. A MACRO-ELEMENT FOR BRIDGE ABUTMENTS 269

� derivative of the yield functions with respect to χ
(n)
2

∂y(n)
(
χ
(n)
i

)
∂χ

(n)
2

=
2·
a
(n)2
i

· χ(n)
2 · S(χ(n)

2 ); (5.165)

� derivative of the yield functions with respect to χ
(n)
3

∂y(n)
(
χ
(n)
i

)
∂χ

(n)
3

=
2

a
(n)2
M

·
[(
χ
(n)
3 − c

(n)
3

)
· cos (δ) +

(
χ
(n)
1 − c

(n)
1

)
· sin (δ)

]
·

·cos (δ) · S(χ(n)
3 )− 2

a
(n)2
m

·
[
−
(
χ
(n)
3 − c

(n)
3

)
· sin (δ) +

(
χ
(n)
1 − c

(n)
1

)
· cos (δ)

]
·

·sin (δ) · S(χ(n)
3 ). (5.166)

The second derivative of the sub-function g2(0, α
(n)
i ,m

(n)
ij ) of the Gibbs free energy

reads

∂2g2

(
0, α

(n)
i ,m

(n)
ij

)
∂α

(n)2
i

=
∂2g2,st

(
0, α

(n)
i , 0ij

)
∂α

(n)2
i

+
∂2g2,in

(
0, α

(n)
i ,m

(n)
ij

)
∂α

(n)2
i

(5.167)

having decomposed the function g2 into its static and inertial part, thus

g2,st(α
(n)
i , 0) =

1

2
·H(n)

ij · α(n)
j · α(n)

i (5.168)

g2,in(α
(n)
i ,m

(n)
ij ) = g2(α

(n)
i ,m

(n)
ij ) = −m(n)

ij ·
N∑

h=n

q̈
(h)
j ·

N∑
k=n

q
(k)
i +

+
1

2
·m(n)

ij ·

(
N∑

h=n

α̇
(h)
j

)
·

(
N∑

h=n

α̇
(h)
i

)
. (5.169)

The derivation of the term g2,st(α
(n)
i ) reads
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∂2g2,0(α
(n)
i )

∂α
(n)2
i

=
∂2

∂α
(n)2
i

[
1

2
·H(n)

ij · α(n)
j · α(n)

i

]
= H

(n)
ij (5.170)

which is equal to the stiffness tensors that provide kinematic hardening. Some

further developments are needed for the inertial term

∂2g2,in(α
(n)
i ,m

(n)
ij )

∂α
(n)2
i

=
∂2

∂α
(n)2
i

[
−m(n)

ij ·
N∑

h=n

α̈
(h)
j ·

N∑
k=n

α
(k)
i +

+
1

2
·m(n)

ij ·

(
N∑

h=n

α̇
(h)
j

)
·

(
N∑

k=n

α̇
(k)
j

)]
=

= −m(n)
ij · ∂2

∂α
(n)2
i

[
N∑

h=n

α̈
(h)
j ·

N∑
k=n

α
(k)
i

]
+

+
1

2
·m(n)

ij · ∂2

∂α
(n)2
i

[(
N∑

h=n

α̇
(h)
j

)
·

(
N∑

k=n

α̇
(k)
j

)]
=

= −m(n)
ij · ∂2C(n)

∂α
(n)
i · ∂α(n)

j

+
1

2
·m(n)

ij · ∂2D(n)

∂α
(n)
i · ∂α(n)

j

. (5.171)

By using the change of variable introduced in Eqs. 5.88 and 5.89, the terms C(n)

and D(n) can be derived as follows:

� term C(n):

∂C(n)

∂α
(n)
i

=
∂

∂α
(n)
i

[
N∑

h=n

α̈
(h)
j ·

N∑
k=n

α
(k)
i

]
=

=
∂

∂α
(n)
i

[
N∑

h=n

α̈
(h)
j

]
·

N∑
k=n

α
(k)
i +

N∑
h=n

α̈
(h)
j · ∂

∂α
(n)
i

[
N∑

k=n

α
(k)
i

]
=

=
[
α
(n)
i

]−1

· ∂
3
∑N

h=n α
(h)
i

∂t3
·

N∑
k=n

α
(k)
i +

N∑
h=n

α̈
(h)
j =
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=
[
α
(n)
i

]−1

·
N∑

h=n

...
α (h)

i ·
N∑

k=n

α
(k)
i +

N∑
h=n

α̈h (5.172)

∂2C(n)

∂α
(n)2
i

=
∂

∂α
(n)
i

[[
α
(n)
i

]−1

·
N∑

h=n

...
α (h)

i ·
N∑

k=n

α
(k)
i +

N∑
h=n

α̈(h)

]
=

=
∂

∂α
(n)
i

[[
α
(n)
i

]−1

·
N∑

h=n

...
α (h)

i ·
N∑

k=n

α
(k)
i

]
+

∂

∂α
(n)
i

[
N∑

h=n

α̈(h)

]
=

=
[
α̇
(n)
i

]−2

·
N∑

h=n

....
α (h)

i ·
N∑

k=n

α
(k)
i −

[
α̇
(n)
i

]−3

·
N∑

h=n

...
α (h)

i · α̈(n)
i ·

N∑
k=n

α
(k)
i +

+2 ·
[
α̇
(n)
i

]
·

N∑
h=n

...
α (h)

i . (5.173)

� term D(n):

∂D(n)

∂α
(n)
i

=
∂

∂α
(n)
i

[(
N∑

h=n

α̇
(h)
j

)
·

(
N∑

k=n

α̇
(k)
j

)]
= 2 ·

[
α̇
(n)
i

]−1

·
N∑

h=n

α̇
(h)
i ·

N∑
k=n

α̈
(k)
i (5.174)

∂2D(n)

∂α
(n)2
i

=
∂

∂α
(n)
i

[
2 ·
[
α̇
(n)
i

]−1

·
N∑

h=1

α̇
(h)
i ·

N∑
k=1

α̈
(k)
i

]
=

= 2 ·
[
α̇
(n)
i

]−2

·
N∑

h=1

α̈
(h)
i ·

N∑
k=1

α̈
(k)
i − 2 ·

[
α̇
(n)
i

]−3

· α̈(n)
i ·

N∑
h=1

α̇
(h)
i ·

N∑
k=1

α̈
(k)
i +

+2 ·
[
α̇
(n)
i

]−2

·
N∑

h=1

α̇
(h)
i ·

N∑
k=1

...
α (k)

i . (5.175)

By substituting the expressions for the terms C(n) and D(n) in Eq. 5.171, the

latter becomes
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∂2g2,in(α
(n)
i ,m

(n)
ij )

∂α
(n)2
i

= −m(n)
ij · ∂2C(n)

∂α
(n)
i · ∂α(n)

j

+
1

2
·m(n)

ij · ∂2D(n)

∂α
(n)
i · ∂α(n)

j

=

= −m(n)
ij ·

{[
α̇
(n)
i

]−2

·
N∑

h=n

....
α (h)

i ·
N∑

k=n

α
(k)
i −

[
α̇
(n)
i

]−3

·
N∑

h=n

...
α (h)

i · α̈(n)
i ·

N∑
k=n

α
(k)
i +

+2 ·
[
α̇
(n)
i

]
·

N∑
h=n

...
α (h)

i

}
+

1

2
·m(n)

ij ·

{
2 ·
[
α̇
(n)
i

]−2

·
N∑

h=n

α̈
(h)
i ·

N∑
k=n

α̈
(k)
i −

−2 ·
[
α̇
(n)
i

]−3

· α̈(n)
i ·

N∑
h=n

α̇
(h)
i ·

N∑
k=n

α̈
(k)
i + 2 ·

[
α̇
(n)
i

]−2

·
N∑

h=n

α̇
(h)
i ·

N∑
k=n

...
α (k)

i

}
=

+m
(n)
ij ·

{[
α̇
(n)
i

]−2

·
N∑

h=n

....
α (h)

i ·
N∑

k=n

α
(k)
i −

[
α̇
(n)
i

]−3

·
N∑

h=n

...
α (h)

i · α̈(n)
i ·

N∑
k=n

α
(k)
i +

+
[
α̇
(n)
i

]
·

N∑
h=n

...
α (h)

i +
[
α̇
(n)
i

]−2

·
N∑

h=n

α̈
(h)
i ·

N∑
k=n

α̈
(k)
i −

−
[
α̇
(n)
i

]−3

· α̈(n)
i ·

N∑
h=n

α̇
(h)
i ·

N∑
k=n

α̈
(k)
i +

[
α̇
(n)
i

]−2

·
N∑

h=n

α̇
(h)
i ·

N∑
k=n

...
α (k)

i

}
. (5.176)

Following the notation used for the one-dimensional case, the time derivatives

of the internal variables are collected into the terms G
(j)
M,n, where the superscript j

indicates the order of the maximum time derivative, as reported below
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G
(4)
M,n,i = − 1

α̇
(n)2
i

·
N∑

h=n

....
α (h)

i ·
N∑

k=n

α
(k)
i (5.177)

G
(3)
M,n,i =

1

α̇
(n)3
i

·
N∑

h=n

...
α (h)

i · α̈(n)
i ·

N∑
k=n

α
(k)
i − 1

α̇(n)
·

N∑
h=n

...
α (h)

i +

+
1

α̇
(n)2
i

·
N∑

h=n

α̇
(h)
i ·

N∑
k=n

...
α (k)

i (5.178)

G
(2)
M,n,i =

1

α̇
(n)2
i

·
N∑

h=n

α̈
(h)
i ·

N∑
k=n

α̈
(k)
i − α̈

(n)
i

α̇
(n)3
i

·
N∑

h=n

α̇
(h)
i ·

N∑
k=n

α̈
(k)
i (5.179)

so that Eq. 5.176 can be written in the following more compact form

∂2g2,in(α
(n)
i ,m

(n)
ij )

∂α
(n)2
i

= m
(n)
ij ·

(
G

(4)
M,n,j +G

(3)
M,n,j +G

(2)
M,n,j

)
, n = 1, ..., N. (5.180)

The second derivative of the function g2(α
(n)
i ,m

(n)
ij ) is finally reported below and

constitutes the generalization of Eq. 5.106 obtained for the one-dimensional model

∂2g2(α
(n)
i ,m

(n)
ij )

∂α
(n)2
i

= H
(n)
ij +m

(n)
ij ·

(
G

(4)
M,n,j +G

(3)
M,n,j +G

(2)
M,n,j

)
, n = 1, ..., N. (5.181)

Substituting the above results in Eq. 5.162 of the plastic multiplier, the latter

can be developed as

λn =

∂y(n)

∂χ
(n)
1

· Q̇1
(n)

+ ∂y(n)

∂χ
(n)
2

· Q̇2
(n)

+ ∂y(n)

∂χ
(n)
3

· Q̇3
(n)

∂y(n)

∂χ
(n)
1

· ∂2g2

∂α
(n)2
1

· ∂y(n)

∂χ
(n)
1

+ ∂y(n)

∂χ
(n)
2

· ∂2g2

∂α
(n)2
2

· ∂y(n)

∂χ
(n)
2

+ ∂y(n)

∂χ
(n)
3
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=
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N

(n)
1 +N

(n)
2 +N

(n)
3

D
(n)
1 +D

(n)
2 +D

(n)
3

, n = 1, .., N (5.182)

in which each term reads
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N
(n)
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∂y(n)
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=
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2 · sin (δ) · S(χ(n)

1 )

a
(n)2
M

·
[(
χ
(n)
3 − c
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+
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a
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(n)
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)
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N
(n)
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∂χ
(n)
2
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=
1

a
(n)2
i

· 2 · χ(n)
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2 ) · Q̇2
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1 − c

(n)
1

)
· sin (δ)
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a
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·
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+
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a
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2 ) (5.187)
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(5.188)

The constant ratios found for the ellipsoid in Eq. 5.152 and 5.153 can be intro-

duced in the equations above to give the final version of the plastic multiplier in the

general formulation of the macro-element

N
(n)
1 =

2 · S(χ(n)
1 ) · Q̇1

(n)

a
(n)2
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·
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[(
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1 − c
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(n)
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(n)
1
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· cos (δ)
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(5.189)

N
(n)
2 =

1

a
(n)2
i

· 2 · χ(n)
2 · S(χ(n)

2 ) · Q̇2
(n)

(5.190)
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The result above shows that the inertial effects, produced by the motion of the

masses, affect the plastic response of the macro-element. Based on the above ex-

pressions, the evolution laws for the internal variables can be derived through Eq.

5.75, as well as the dissipation function, here omitted for brevity. The complete

derivation of the incremental response for the three-dimensional macro-element is

provided in Appendix 2.

The general formulation degenerates into the one-dimensional case when the

model is perturbed by a mono-component external force (or displacement). Con-

sider for example the macro-element composed of n masses and n yield surfaces,

perturbed by a longitudinal force Q1. According to Eq. 5.160, the incremental

response of the model reads

Q̇
(ext)
1 = H

(0)
11 ·

[
q̇1 −

N∑
n=1

λn ·
∂ygn(Q

(n)
1 , α

(n)
1 , χ

(n)
1 )

∂χ
(n)
1

]
. (5.195)

The yield functions in Eq. 5.137 just becomes
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− 1 =
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[(
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)]2
a
(n)2
m

= 0 (5.196)

from which n dissymmetric plastic thresholds can be obtained

χ
(n)
1 = k

(n)
1 = ±a(n)m + c

(n)
1

identical to the yield functions of the 1D model. The values a
(n)
m +c

(n)
1 and −a(n)m +
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c
(n)
1 would represent the passive and active resistance of the backfill, respectively.

The plastic multiplier (Eq. 5.163) is given by
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∂y(n)
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1

· Q̇1
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D
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, n = 1, .., N (5.197)
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λn =
S(χ

(n)
1 ) · a(n)2m ·

(
χ
(n)
1 − c

(n)
1

)
· Q̇1

(n)

2 ·
(
χ
(n)
1 − c

(n)
1

)2
·
[
H

(n)
11 +m

(n)
11 ·

(
G

(4)
M,n,1 +G

(3)
M,n,1 +G

(2)
M,n,1

)] , n = 1, .., N

(5.200)

and the evolution law for the internal variables is reported below
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=
Q̇1

(n)[
H

(n)
11 +m

(n)
11 ·

(
G

(4)
M,n,1 +G

(3)
M,n,1 +G

(2)
M,n,1

)] , n = 1, .., N. (5.201)

that leads to the incremental form of the 1D model reported here below

Q̇
(ext)
1 = H

(0)
11 ·

q̇1 − N∑
n=1

Q̇1
(n)[

H
(n)
11 +m

(n)
11 ·

(
G

(4)
M,n,1 +G

(3)
M,n,1 +G

(2)
M,n,1
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Finally, if the masses are set equal to zero, Eq. 5.202 simplifies in the incremental

form of a generalised Iwan model with dissymmetric behaviour

Q̇
(ext)
1 = H

(0)
11 ·

[
q̇1 −

N∑
n=1

Q̇1
(n)

H
(n)
11

]
. (5.203)

5.12 Implementation

The macro-element for bridge abutments was coded in Matlab and OpenSees. These

environments are based on two different programming languages, requiring a dis-

tinct structuring of the source code. Matlab is a programming platform designed

for numerical computations and statistical analysis written mainly in the homonym

programming language created by MathWorks but including also the syntax of the

language C. As already described in Section 2.2, OpenSees is instead a software

framework built according to the logic of object-oriented programming and written

in C and C++. Therefore, although the mathematical relationships of the macro-

element be the same, they are differently structured in the two codes. In Matlab,

the macro-element constitutes a single, independent routine, while in OpenSees the

model was coded as a new sub-class and inserted in a large object-oriented environ-

ment.

In the following, the finite difference approximation of the incremental form of
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the macro-element is developed, that represents the basic structure implemented

in Matlab. Afterwards, the implementation of the macro-element in the OpenSees

environment is presented: the one-dimensional formulation was coded as a new

material while the multi-axial formulation constituted a new finite element for the

OpenSees library. In its present form, the new finite element does not include the

inertial effects produced by the masses, that hence need to be modelled explicitly in

the numerical soil-structure model. The introduction of the masses in the multi-axial

formulation will constitute a forthcoming development of the present research.

5.12.1 Numerical integration of the equations of motion

Eqs. 5.112 and 5.113 can be integrated numerically in time through, for example, the

finite difference method. Since the mathematical structure of the three-dimensional

macro-element is conceptually identical to that in one-dimension, for the sake of con-

ciseness the integration of the equations of motion is shown for the one-dimensional

model only.

The finite difference approximation of the incremental response reads

Q(ext)(t+∆t)−Q(ext)(t)

∆t
= H(0) ·

(
q(t+∆t)− q(t)

∆t
−

−
N∑

n=1

Q(n)(t+∆t)−Q(n)(t)

∆t
· 1

Hn +m(n) ·
(
∂G

(4)
M,n + ∂G

(3)
M,n + ∂G

(2)
M,n

)−

−S(Q(ext)) ·
N∑

n=1

Rn ·
∣∣∣∣Q(n)(t+∆t)−Q(n)(t)

∆t
·

· 1

Hn +m(n) ·
(
∂G

(4)
M,n + ∂G

(3)
M,n + ∂G

(2)
M,n

)
∣∣∣∣∣∣
 (5.204)
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and, multiplying both members by ∆t, it gives

Q(ext)(t+∆t)−Q(ext)(t) = H(0) · (q(t+∆t)− q(t)−

−
N∑

n=1

Q(n)(t+∆t)−Q(n)(t)
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(
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in which the mass m(0) is set equal to zero. The n-th internal force Q(n)(t)

is obtained by the local balance equation in Eq. 5.35, that can be rewritten in

incremental form for the mass m(1) of the first slider as

Q̇(1)(t) = Q̇(ext)(t)− Q̇(M,1)(t) = Q̇(ext)(t)−m(1) ·
N∑

n=1

...
α (n)(t) =

= Q̇(ext)(t)−m(1) ·
[...
q (t)−

...
q (0)(t)

]
(5.206)

and for the other masses

Q̇(n)(t) = Q̇(n−1)(t)− Q̇(M,n)(t) = Q̇(n−2)(t)− Q̇(M,n−1)(t)− Q̇(M,n)(t) =

= Q̇(n−3)(t)− Q̇(M,n−2)(t)− Q̇(M,n−1)(t)− Q̇(M,n)(t) =
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= Q̇(ext)(t)−
n∑

h=1

Q̇(M,h)(t) = Q̇(ext)(t)−
n∑

h=1

m(h) · ...α (n)(t), n > 1. (5.207)

which can be easily integrated numerically. The finite difference approximations

of the inertial terms ∂G
(4)
M,n, ∂G

(3)
M,n and ∂G

(2)
M,n are developed here below:

∂G
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]
·
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α(k) (5.208)
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−2 · ∆t

α(n)(t+∆t)− α(n)(t)
·

·
N∑

j=n

−0.5 · α(j)(t− 2 ·∆t) + α(j)(t−∆t)− α(j)(t+∆t) + 0.5 · α(j)(t+ 2 ·∆t)
∆t3

+

+

(
∆t

α(n)(t+∆t)− α(n)(t)

)2

·
N∑

h=n

α(h)(t+∆t)− α(h)(t)

∆t
·

·
N∑

k=n

−0.5 · α(k)(t− 2 ·∆t) + α(k)(t−∆t)− α(k)(t+∆t) + 0.5 · α(k)(t+ 2 ·∆t)
∆t3

=

=
N∑

h=n

{
−0.5 · α(h)(t− 2 ·∆t) + α(h)(t−∆t)− α(h)(t+∆t) + 0.5 · α(h)(t+ 2 ·∆t)

[α(n)(t+∆t)− α(n)(t)]
3

}
·

·α
(n)(t)(t+∆t)− 2 · α(n)(t)(t0) + α(n)(t)(t−∆t)

∆t2
·

N∑
k=n

α(k)−

− 2

∆t2
·

N∑
j=n

−0.5 · α(j)(t− 2 ·∆t) + α(j)(t−∆t)− α(j)(t+∆t) + 0.5 · α(j)(t+ 2 ·∆t)
α(n)(t+∆t)− α(n)(t)

+

+
N∑

h=n

α(h)(t+∆t)− α(h)(t)

α(n)(t+∆t)− α(n)(t)
·
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·
N∑

k=n

−0.5 · α(k)(t− 2 ·∆t) + α(k)(t−∆t)− α(k)(t+∆t) + 0.5 · α(k)(t+ 2 ·∆t)
∆t2

(5.209)

G
(2)
M,n =

1

α̇(n)2
·

N∑
h=n

α̈(h) ·
N∑

k=n

α̈(k) − α̈(n)

α̇(n)3
·

N∑
h=n

α̇(h) ·
N∑

k=n

α̈(k) =

=

(
∆t

α(n)(t+∆t)− α(n)(t)

)2

·
N∑

h=n

α(h)(t−∆t)− 2 · α(h)(t+∆t) + α(h)(t+ 2 ·∆t)
∆t2

·

·
N∑

k=n

α(k)(t−∆t)− 2 · α(k)(t+∆t) + α(k)(t+ 2 ·∆t)
∆t2

−

−α
(n)(t−∆t)− 2 · α(n)(t+∆t) + α(n)(t+ 2 ·∆t)

∆t2
·

·
(

∆t

α(n)(t+∆t)− α(n)(t)

)3

·
N∑

h=n

α(h)(t+∆t)− α(h)(t)

∆t
·

·
N∑

k=n

α(k)(t−∆t)− 2 · α(k)(t+∆t) + α(k)(t+ 2 ·∆t)
∆t2

=

=
N∑

h=n

α(h)(t−∆t)− 2 · α(h)(t+∆t) + α(h)(t+ 2 ·∆t)
[α(n)(t+∆t)− α(n)(t)]

2 ·

·
N∑

k=n

α(k)(t−∆t)− 2 · α(k)(t+∆t) + α(k)(t+ 2 ·∆t)
∆t2

−

−
[
α(n)(t−∆t)− 2 · α(n)(t+∆t) + α(n)(t+ 2 ·∆t)

]
·
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·
N∑

h=n

α(h)(t+∆t)− α(h)(t)

[α(n)(t+∆t)− α(n)(t)]
3 ·

·
N∑

k=n

α(k)(t−∆t)− 2 · α(k)(t+∆t) + α(k)(t+ 2 ·∆t)
∆t2

. (5.210)

Eqs. 5.205, 5.207 and 5.208, with the aid of Eqs. 5.208, 5.209 and 5.210, can be

integrated in time to give the response of the macro-element in terms of the total

displacement q(t+∆t) or the force in the free node Q(ext)(t+∆t), according to the

method of analysis used. In this regard, with some further manipulation, the explicit

expressions for the total displacement and the force in the free node are given below

q(t+∆t) =

1 + 0.5 · m(1)[
H(n) +H

(n)
dyn

]
·∆t2

−1

·

·

{
q(t) ·

[
1 +

m(1)

∆t2
·

N∑
n=1

1

H(n) +H
(n)
dyn

]
− q(t− 2 ·∆t)·

·

[
m(1)

∆t2
·

N∑
n=1

1

H(n) +H
(n)
dyn

]
+ q(t− 3 ·∆t) ·

[
0.5 · m

(1)

∆t2
·

N∑
n=1

1

H(n) +H
(n)
dyn

]
+

+Q(ext)(t+∆t) ·

[
1

H(0)
+

N∑
n=1

1

H(n) +H
(n)
dyn

+ 0.5 · m(1)

H(0) ·∆t2
·

N∑
n=1

1

H(n) +H
(n)
dyn

]
−

−Q(ext)(t) ·

[
1

H(0)
+

N∑
n=1

1

H(n) +H
(n)
dyn

+
m(1)

H(0) ·∆t2
·

N∑
n=1

1

H(n) +H
(n)
dyn

]
+
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+Q(ext)(t− 2 ·∆t) ·

[
m(1)

H(0) ·∆t2
·

N∑
n=1

1

H(n) +H
(n)
dyn

]
−

−Q(ext)(t− 3 ·∆t) ·

[
0.5 · m(1)

H(0) ·∆t2
·

N∑
n=1

1

H(n) +H
(n)
dyn

]
−

−
N∑

n=1

m(n)

H(n) ·∆t2
·
[
−0.5 · q(n)(t− 4 ·∆t) + q(n)(t− 3 ·∆t) −

−q(n)(t−∆t) + 0.5 · q(n)(t)
]}

(5.211)

Q(ext)(t+∆t) =

[
1

H(0)
+

N∑
n=1

1

H(n) +H
(n)
dyn

+ 0.5 · m(1)

H(0) ·∆t2
·

N∑
n=1

1

H(n) +H
(n)
dyn

]−1

·

·

{
q(t+∆t) ·

[
1 + 0.5 · m

(1)

∆t2
·

N∑
n=1

1

H(n) +H
(n)
dyn

]
−

−q(t) ·

[
1 +

m(1)

∆t2
·

N∑
n=1

1

H(n) +H
(n)
dyn

]
+

+q(t− 2 ·∆t) ·

[
m(1)

∆t2
·

N∑
n=1

1

H(n) +H
(n)
dyn

]
− q(t− 3 ·∆t)·

·

[
0.5 · m

(1)

∆t2
·

N∑
n=1

1

H(n) +H
(n)
dyn

]
+Q(ext)(t)·

·

[
1

H(0)
+

N∑
n=1

1

H(n) +H
(n)
dyn

+
m(1)

H(0) ·∆t2
·

N∑
n=1

1

H(n) +H
(n)
dyn

]
−
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−Q(ext)(t− 2 ·∆t) ·

[
m(1)

H(0) ·∆t2
·

N∑
n=1

1

H(n) +H
(n)
dyn

]
+

+Q(ext)(t− 3 ·∆t) ·

[
0.5 · m(1)

H(0) ·∆t2
·

N∑
n=1

1

H(n) +H
(n)
dyn

]
+

+
N∑

n=1

m(n)

H(n) ·∆t2
·
[
−0.5 · q(n)(t− 4 ·∆t) + q(n)(t− 3 ·∆t) −

−q(n)(t−∆t) + 0.5 · q(n)(t)
]}
. (5.212)

The explicit time-integration algorithm above is not unconditionally stable and,

therefore, it requires an appropriate choice of the time step. However, convergence

can be obtained with a limited sub-stepping that is a function of the level of mobilised

strength of the macro-element. The maximum reduction of the time step of the input

motion needed for the dynamic simulations carried out in the present thesis was

of about 10, that was comparable with the sub-stepping adopted for the dynamic

analyses of the full soil-bridge system.

When the dynamic response of the masses is negligible, the above equations

simplify as follows

q(t+∆t) = q(t) +
[
Q(ext)(t+∆t)−Q(ext)(t)

]
·

(
1

H(0)
+

N∑
n=1

1

H(n)

)
(5.213)

Q(ext)(t+∆t) = Q(ext)(t) + [q(t+∆t)− q(t)] ·

(
H(0) +

N∑
n=1

H(n)

)
(5.214)

leading to the incremental response of the classical Iwan model.
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5.12.2 A new material in OpenSees: one-dimensional macro-element

The macro-element of bridge abutment is a method for the structural analysis: it

is conceived to represent the behaviour of bridge abutments, under both static and

dynamic conditions, in the global model of the structure, according to the scheme

illustrated in Figure 5.27(a). The one-dimensional formulation was introduced in

the OpenSees environment as a new Uniaxial material that reproduces the response

of the fundamental device shown in Figure 5.27(b). In fact, taking advantage of the

rheological representation of the one-dimensional macro-element, it can be regarded

as the assembly of a certain number N of elemental devices, each representing a

generalised version of the Voight model with a dissymmetric behaviour of the slider

and the introduction of a mass. Hence, the elemental device can have a different

strength and stiffness in compression and extension, which is an essential feature

for simulating the behaviour of abutments. The model was written with the aim to

carry out either force- or displacement-controlled analyses.

In Figure 5.28, the cyclic response of the macro-element with only one dissipative

device, in addition to the elastic spring 0, is presented in which the bias parameters

for strength Ak = k
(1)
− /k

(1)
+ and stiffness AH = H

(1)
− /H

(1)
+ are less than one. Figure

5.29 shows instead a qualitative cyclic response of the macro-element composed

of 10 dissipative devices in a displacement-controlled analysis. At the end of the

first cycle, the model develops a permanent internal force that moves the following

cycles upwards. The plastic thresholds evolve during the first cycle according to

the kinematic hardening prescribed, leading to the overlapped response of the next

cycles.

5.12.3 A new finite element in OpenSees: multi-axial formulation

The three-dimensional formulation was coded as a new ZeroLength-class finite el-
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Figure 5.27: Representation of the 1D macro-element as a part of the global structural model (a)
and of the new material coded in the OpenSees library (b).

D.N. GORINI soil-structure interaction for bridge abutments

Figure 5.28: Qualitative responses of the one-dimensional macro-element considering a dissymmet-
ric behaviour on the strength and stiffness of the elemental devices.



CHAPTER 5. A MACRO-ELEMENT FOR BRIDGE ABUTMENTS 292

D.N. GORINI soil-structure interaction for bridge abutments

Figure 5.29: Cyclic response of the 1D macro-element considering 10 cycles of loading.

ement in the OpenSees library. The code was written in C++ based on the logic

of object-oriented programming: the source code was included into the OpenSees

framework as a sub-class opportunely linked to the other objects according to the

typical hierarchical structure of this method of programming. The source code is

composed of two files: a header file (.h), containing the general setting of the model,

and a main file (.cpp), in which the model formulation is developed. Currently, the

inertial effects are not included into the formulation of the finite element, therefore

the masses have to be modelled explicitly in the numerical model, associating each

of them with a specific yield surface. This can be accomplished by representing each

plastic flow through a separated finite element combined with a mass. Nonethe-

less, as it will be shown in Section 5.14, only a few masses are needed to reproduce

with a good level of accuracy the frequency-dependent response of the soil-abutment

system. In first approximation, the finite element including the multi-surface elastic-

plastic response of the macro-element can be coupled with the sole diagonal mass
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tensor m
(1)
ii associated with the first yield, with an acceptable reproduction of the

dynamic response of the abutment.

In the header file, all the attributes needed and linked to the new source code

are recalled. The public and private methods used to compute the response of the

finite element are stated and linked to the relative source codes. In the general

constructor all the variables are declared, specifying their dimensions and precision.

All the stiffness H
(n)
1 and strength parameters k

(n)
1 in a specific coordinate direction

associated with the N plastic flows can be defined as input quantities, in order to

choose the more appropriate configuration of the yield surface and the kinematic

hardening rule for the problem under examination. Based on this information, the

ellipsoidal yield function, that is implemented in the main file, generates the entire

plastic domain.

In the main file, the finite element is completely defined, starting from its geom-

etry: it is composed of two coincident nodes, with three degrees of freedom each,

that interact according to the general formulation of the model. The main construc-

tor initialises the variables previously defined in the header file and contains some

derived quantities, such as the equivalent stiffnesses associated with activation of

the plastic flows. The constitutive relations are implemented in incremental form

according to the following procedure. The code takes the nodal displacements as the

input quantities for the main routine of the constitutive relationships. The relative

displacement between the two nodes is therefore computed, projecting it along the

local axes of the finite element through the definition of an appropriate coordinate-

transformation object. A trial elastic force vector is therefore determined as the

inner product between the relative displacement and the initial elastic stiffness of

the model H
(0)
ii . An iterative check on the distance between the trial force and the

yield surfaces follows, in order to specialise the constitutive relations according to
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the resistance mobilised. In case of plastic flow, the tangent stiffness matrix (Ap-

pendix 2) is assembled and the effective force vector is finally computed. The model

can be employed in both force- or displacement-controlled analyses. At present, the

source code of the model is available as a dynamic-link library (DLL file) with the

intention to submit it for review to the scientific committee of OpenSees in order to

make it available in the OpenSees library.

5.13 Application in numerical analysis

The conceptual structure of the macro-element is illustrated in Figure 5.30. The soil

domain is divided in two parts, namely the far field and the near field (Cremer et al.

2002). The macro-element is conceived to reproduce the response of the abutment

and the soil interacting with it, which constitute the near field where all material

and geometric nonlinearities are lumped. The far field refers instead to the area

of soil not affected by soil-structure interaction, in which seismic waves propagate

under free field conditions as in the absence of the abutment.

A first distinction is needed when using the macro-element in static or dynamic

analyses. In a gravity analysis, the loads coming from the superstructure of the

bridge are transmitted to the macro-element which in turn deforms. Hence a simple

force-based approach would be envisaged to analyse the static configuration of the

bridge. In this case, the mechanical properties of the soil volume to be considered

for calibrating the macro-element would be those of the embankment and of the

foundation soil. For the latter, a vertical extension equal to the effective height of

the embankment (see Section 3.3) can be assumed as representative of the mechanical

properties of the soil interacting with the footing.

However, the principal domain of application of the macro-element consists in car-

rying out efficient nonlinear dynamic soil-structure analyses, in virtue of the drastic
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Figure 5.30: Analysis procedure of the macro-element approach.
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reduction of the degrees of freedom of the global structural models accounting for

soil-structure interaction. Under seismic conditions, the ground motion coming up

from the far field is transferred to the superstructure through the macro-element,

which in turn is also perturbed by the seismic actions generated by the dynamic

response of the superstructure. In this condition, the input motion for the macro-

element needs to be characterised by means of time histories of the seismic motion.

In this view, the propagation of the seismic waves from the bedrock up to the

lower boundary of the near field can be studied through a free field site response

analysis. The free field seismic motion is then applied to the free node of the macro-

element and a nonlinear time domain analysis can be performed, as shown in Figure

5.31. After evaluating the static or dynamic response of the global structural model

accounting for soil-structure interaction, the macro-element response, in terms of

force-displacement relationships, can be also used for a prompt evaluation of the

stability of the soil-abutment system. Under static conditions, the stability of the

system is guaranteed by a sufficient distant of the state of the abutment, in terms

of interaction forces exchanged at the deck-abutment contact, from the ultimate

surface of the soil-abutment system. This distance represents a safety factor against

failure and it is provided by technical provisions. Under dynamic conditions, in-

stead, the ultimate conditions of the abutment might be theoretically attained in

order to limit the seismic actions transferred to the superstructure, at the cost of a

certain amount of permanent displacements of the geotechnical system that must be

compatible with the performance levels prescribed for the entire bridge structure.

It is worth noticing that the soil-structure interaction effects occurring at different

locations of a bridge should be modelled with a comparable level of accuracy in order

to have consistent results. This implies that, in a plasticity-based macro-element

approach, appropriate macro-element representations for the pier foundations should

be adopted in conjunction with the macro-elements of the abutments.
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Figure 5.31: Schematic representation of the macro-element in the global structural model.

In the following section, a straightforward strategy to calibrate the input pa-

rameters of the macro-element of bridge abutment is proposed, starting from the

so-called static configuration of the model, with no mass, that can be employed in

static simulations, for then assigning dynamic properties to the model with the aim

to carry out non-linear dynamic analyses. In Chapter 7, a complete application of

the macro-element will be presented for the girder bridge taken as reference in this

study.

5.14 Calibration

The macro-element is completely defined through the specification of the following

constitutive parameters

� capacity of the soil-abutment system in a reference direction;
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� initial stiffness of the soil-abutment system in a reference direction;

� mass of the macro-element.

The first two points refer to the so-called static parameters of the model, while

the latter focuses on the calibration of the masses that play the role of dynamic

parameters in the sense that confer frequency-dependent features to the response

of the macro-element. The calibration procedure consists in defining first the static

parameters for then identifying the additional masses. For the sake of clarity, in

the following the macro-element is initially calibrated for the one-dimensional case,

describing step by step the strategy used to set the parameters, for then generalising

the calibration to the three-dimensional model. All the parameters were calibrated

against the results of static and dynamic simulations on the soil-abutment interaction

model taken as reference in this study, previously shown in Figure 4.5.

The macro-element for bridge abutments can be employed in the numerical eval-

uation of the structural behaviour according to two different modelling techniques:

one can use the general three-dimensional formulation (Section 5.7) or, in a simpli-

fied manner, three uncoupled one-dimensional macro-elements (Section 5.3). It is

obvious that the former represents the rigorous way to reproduce the soil-abutment

interaction effects under multi-axial loading conditions but the latter can however

constitute a useful tool for a prompt application in numerical simulations in virtue

of its simplified formulation, especially when the multi-directional coupling of the

deck-abutment response is not so important (e. g. mono-directional bearing devices

at the deck-abutment contact). The calibration procedure presented in the following

looks at the fundamental physical quantities characterising a soil-abutment system

and therefore it can be used in both the representation strategies above.
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D.N. GORINI soil-structure interaction for bridge abutments
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Figure 5.32: Pushover curves in the three coordinate directions obtained through the soil-structure
interaction model in OpenSees.

5.14.1 Static parameters

The force-displacement relations on the abutment top obtained by pushover analyses

on the soil-abutment model described in Section 4.2, that is part of the reference

global soil-bridge model, were considered to calibrate the macro-element. Several

directions of the force on top of the wall were considered and the backbone curves

along the three coordinate directions of the deck-abutment contact are illustrated in

Figure 5.32. Note that the ultimate capacity shown by these curves is in agreement

with the results of the limit analysis in Section 5.9.1.

The first evident result is that the longitudinal and vertical curves show a marked

dissymmetric behaviour, with a strength bias parameter Q
(ult)
− /Q

(ult)
+ (i. e. positive

capacity over negative capacity) of 0.35 and 0.18 in the longitudinal and vertical

direction, respectively, while as expected Q
(ult)
− /Q

(ult)
+ is equal to 1 for the transverse

response. More in detail, the extreme values of the capacity are associated with the
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vertical response: the highest strength is attained for a vertical load directed down-

wards (bearing capacity of the foundation) while the minimum capacity is associated

with the uplift of the system (vertical force directed upwards). In the longitudinal

direction, the passive Q
(ult)
+ and active Q

(ult)
− resistance of the embankment constitute

the upper and lower bounds for the backbone curve, respectively. The behaviour in

the transverse direction does not show particular features reflecting the symmetry

of the abutment with respect to the central section of the system.

For the sake of clarity, the longitudinal response of the abutment is initially

analysed. From the relative backbone curve, the ultimate strength towards the

backfill (passive resistance) results to be Q
(ult)
+ = 70 MN, with a bias parameter

Q
(ult)
− /Q

(ult)
+ = 0.35, and the initial stiffness is H(0) = 103 MN/m. Moreover, the

behaviour of the soil-abutment system can be regarded as linear for positive forces

lower than Q(1) = 9 MN, that is about 0.13 · Q(ult)
+ , and negative values of about

3.4 MN. These parameters are represented on the longitudinal backbone curve in

Figure 5.33 and the remaining parameters can be derived according to the following

procedure.

The 1D macro-element (Figure 5.2) is composed of an initial spring with stiffness

H(0), connected in series with N dissipative devices, each characterised by a stiff-

ness H(n) and a plastic threshold k(n). The strength parameters range between the

ultimate strength k(N) = Q(ult) and the first yield k(1) = Q(1) = ζ · Q(ult). Accord-

ingly, the stiffness varies from the initial value H(1) = H(0) at first field to H(N) = 0

MN/m at failure. The size of the elastic region reflects the properties of the specific

constitutive model used in the analyses, that is the PDMY model in this case, but,

more in general, it seems a reasonable assumption to choose as an elastic domain

the fraction of the ultimate domain ζ between 0.05÷ 0.15.

The plastic domain is now well bounded by the first and last yield. In between, the

plastic flow evolves according to the specific set of stiffness and strength parameters
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Figure 5.33: Force-displacement relationship at the deck-abutment contact in the longitudinal
direction, obtained through a pushover analysis on the reference soil-abutment interaction model.
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Figure 5.34: Representation of the normalised tangent stiffness H/Q of the force-displacement
relationship at the deck-abutment contact plotted as a function of the mobilised strength Q/Qult.

assigned to the internal devices. The generic dissipative device (mass set equal

to zero) is a generalization of the classical Voight model, made up of a parallel

connection of a slider and a spring that exhibit a dissymmetric behaviour. The

stiffness of the n-th spring, that confers kinematic hardening to the plastic response,

activates when the strength of the respective slider is mobilised. Hence the termH(n)

has to be associated with a specific interval of the internal force in the macro-element.

To this end, in Figure 5.34 the normalised tangent stiffness H/Q of the longitudinal

backbone curve is plotted as a function of the mobilised strength Q/Q(ult).

It is evident that the trend obtained can be very well described by a hyperbole

of equation

H

Q
= α +

β
Q

Qult

(5.215)
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with α and β positive constants. The hyperbole’s equation must satisfy the

following boundary conditions

H

Q
=

[
H

Q

]
in

,
Q

Qult

= 0.13 (5.216)

H

Q
=

[
H

Q

]
fin

,
Q

Qult

= 1 (5.217)

that are related to the first yield and the ultimate strength of the macro-element,

respectively. Introducing Eqs. 5.216 and 5.217 in Eq. 5.215, after some manipulation

the latter can be rearranged in the following form

H

Q
=

[
H

Q

]
in

−

{[
H

Q

]
in

−
[
H

Q

]
fin

}
·

 1

0.9
− 1(

9 · Q
Qult

)
 . (5.218)

For the case at hand, [H/Q]in = 300 1/m whereas [H/Q]fin is close to zero

(set equal to H(N) = 0.01 MN/m for numerical stability). Accordingly, once an

interpolation law for the strength parameters is chosen (linear or hyperbolic), the

hyperbolic formula in Eq. 5.218 gives the corresponding stiffness parameters to be

assigned to each spring of the dissipative devices.

The resulting backbone curve is shown in Figure 5.35, for different values of N .

It can be seen that for a number of devices greater than 5 the piecewise linear curve

of the macro-element gives a good approximation of the backbone curve obtained

through the interaction model. Hence, the macro-element composed of an elastic

spring on top and 5 dissipative devices was assumed as the reference configuration

for the case under examination, with relative properties summarised in Table 5.4.

The above procedure was then used to calibrate the 1D macro-elements along

the other two coordinate directions, transverse and vertical. The resulting backbone

curves are depicted in Figure 5.36, considering 5 dissipative devices in each direction.
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Figure 5.35: Comparison between the longitudinal pushover curve obtained by the soil-abutment
model in OpenSees and that reproduced by means of the macro-element.

Device H(n) (MN/m) k
(n)
+ (MN) k

(n)
− (MN)

0 103 − −
1 103 9.7 3.4
2 5 · 102 24.8 8.7
3 3 · 102 39.8 13.9
4 1.5 · 102 54.9 19.2
5 10−2 70.0 24.5

Tabella 5.4: Stiffness H(n) and strength k(n) parameters assigned to the macro-element.
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In light of the above, the calibration of the macro-element is primarily based on

the definition of the force-displacement relation at the deck-abutment contact. More

specifically, the ultimate resistance of the system and the relative bias parameter can

be also evaluated through basic approaches such as Earth Pressure Theory, but the

initial stiffness of the whole system necessitates the determination of the backbone

curve of the geotechnical system. Without performing an advanced elastoplastic

analysis on soil-abutment interaction models, in the longitudinal direction one can

also refer to some experimental and numerical studies, carried out with the specific

aim of quantifying the passive backfill response for seat-type abutments. In this

regard, a fairly detailed review of the literature is provided in the report by Stewart

et al. (2007): two relevant experimental tests on full-scale specimens were conducted

at UC-Davis (Romstad et al. 1995) and at UCLA (Stewart et al. 2007) and also

significant modelling efforts were devoted to the generalisation of the experimental

results above (Martin et al. 1996, Siddharthan et al. 1997, Shamsabadi et al. 2005,

Shamsabadi et al. 2007, Shamsabadi et al. 2010).

Taking this one step further, the sole backbone curve in the longitudinal direc-

tion can be sufficient to determine the static configuration of the general three-

dimensional macro-element and, accordingly, also of the three uncoupled 1D macro-

elements. In fact, the dependence of the ultimate capacity of the soil-abutment

system on the load direction is described by the ellipsoidal yield function in Eq.

5.135. This surface can be in turn identified by the only information on the max-

imum capacity or, equivalently, the bearing capacity of the abutment foundation,

giving a correlation between the plastic thresholds k
(n)
i acting in different directions.

The initial stiffness matrix H
(0)
ii is a diagonal matrix by definition and, in accordance

with the results shown in Section 5.9.2, the same ellipsoidal relationship used for

the capacity can be assumed also for the initial stiffness as a first approximation.

It is worth noticing that, despite being a strong assumption because not verified
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D.N. GORINI soil-structure interaction for bridge abutments

Figure 5.36: Pushover curves in the three coordinate directions: comparison between the results
of the soil-abutment interaction model and the macro-element response.

for different configurations of the abutment, the effect of the initial stiffness on the

response is somewhat limited because the elastic response is bounded by the small-

sized first yield surface, starting from which the plastic flow governs essentially the

response of the macro-element.

5.14.2 Mass of the macro-element

The abutment and the volume of soil that interacts dynamically with it has a

significant mass which, under seismic excitation, can produce relevant frequency-

dependent inertial effects. In order to account for this phenomenon, some partici-

pating masses were introduced into the macro-element with the aim to reproduce

the desired dynamic properties of the soil-abutment system. More specifically, the

masses were calibrated to replicate the dominant responses of the system from small

to large strain levels, in terms of dominant periods and amplification of the dis-
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Figure 5.37: (a) Relation between the levels of the external force Q
(ext)
1 and the activation of the

sliders of the macro-element; (b) time history of the external force.

placement field, previously evaluated in the numerical investigation in Chapter 4.

It will be shown that the definition of the first mass is the most crucial point in

the calibration because it centers the dynamic response of the macro-element on

the dominant response of the system at small strains. The role of the other masses

consists instead of reproducing the progressive shift of the dominant period as the

level of strain rises, having however a minor effect on the whole dynamic response

of the macro-element.

Consider the static configuration of the macro-element defined in the previous

paragraph. A first mass m(1) was introduced in the model associated with the first

slider. In this case, the free node of the macro-element does not have mass because

it is the point of application of the external perturbation, hence it would not pro-

duce any inertial effects if perturbed by a displacement time history. Nonetheless,
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as mentioned before, the first yield occurs for low internal forces, k(1) = 9.7 MN, and

therefore the response of the elastic spring on top is quite immediately combined

with the plastic response for activation of the first slider. A preliminary parametric

study on the effect of the first mass is shown, varying the mass m(1) and the inten-

sity of the external force applied to the macro-element. The analysis procedure is

schematically illustrated in Figure 5.37. In order to replicate the dynamic amplifica-

tion curves obtained with the soil-abutment models in OpenSees, the macro-element

was perturbed by a harmonic force, for 10 loading-unloading cycles and in the range

of periods between T = 0.2 ÷ 4.0 s. Four values of the external force were consid-

ered equal to 4000 kN, 12000 kN, 18000 kN and 24000 kN, which correspond to the

activation of the first, second, third and the fourth slider, respectively. Figures 5.38

to 5.43 show the dynamic amplification curves of the macro-element, considering

a variability of the mass of seven orders of magnitude. Up to m(1) = 1 Mg, the

system is too rigid and the amplification curves show a flat trend of the maximum

displacements on the abutment top q1,max not dependent on the period T , hence

with negligible inertial effects.

A moderate dynamic amplification of the displacement field begins for a value of

the mass equal to 100 Mg. At this point, the dominant response occurs at a period of

0.3 s with an increase of the maximum displacement qmax/qmax,st of 1.4 with respect

of the displacement qmax,st at large periods (static response). For greater values of

the mass, the dynamic amplification becomes increasingly more pronounced and the

dominant response moves progressively to larger periods.

Note that, for a given mass, the dominant period tends to increase with the in-

tensity of the force, that is particularly evident in Figures 5.41, 5.42 and 5.43. The

amplitude-dependence of the dominant period is produced by the increment of de-

formability associated with the activation of the sliders at higher levels of the internal

force. In fact, when the strength of a slider is attained, the spring associated with
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Figure 5.38: Dynamic amplification curves of the macro-element with mass m(1) = 0.01 Mg.

Figure 5.39: Dynamic amplification curves of the macro-element with mass m(1) = 1.0 Mg.
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Figure 5.40: Dynamic amplification curves of the macro-element with mass m(1) = 102 Mg.

it begins loading up, modifying the whole stiffness of the system (kinematic harden-

ing). As a result, the deformability of the macro-element reduces progressively with

the number of sliders activated, leading to an increasingly longer dynamic response.

Based on the results above, the value of the first mass for the case under ex-

amination should be of the order of 104 Mg. Without the necessity to perform a

parametric study to identify the optimum value of m(1), an expeditious strategy

is described below based on some basic considerations. Consider the response of

the macro-element in which only the first slider is activated. In this condition, the

macro-element behaves as a single degree of freedom system and the first mass can

be estimated by the following basic equation

m(1) =
T 2
0

4 · π2
·H(1) =

(0.6s)2

4 · π2
· 106kN/m = 9.1 · 103Mg (5.219)

giving a value that is very close to the that obtained through the parametric study.

The dominant period at small strains T0 can be evaluated through the analytical
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Figure 5.41: Dynamic amplification curves of the macro-element with mass m(1) = 103 Mg.

Figure 5.42: Dynamic amplification curves of the macro-element with mass m(1) = 104 Mg.
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Figure 5.43: Dynamic amplification curves of the macro-element with mass m(1) = 105 Mg.

or the numerical method used to identify the soil-abutment system (see Chapter 4),

while the stiffness H(1) associated with the first slider derives from the calibration

of the static parameters of the model. The following physical interpretation can be

given to the mass m(1). The masses of the abutment mabut and the backfill mback,

the latter intended as the volume of soil contained between the central wall and the

wing walls, are equal to 3.6 · 103 Mg and 3.4 · 103 Mg, respectively. It follows that

the participating mass m(1) is equal to 1.29 · (mabut +mback). This proves that part

of the soil behind and beneath the abutment contributes to the dynamic response of

the latter, with important inertial effects for the relevant mass involved. Assuming

for simplicity that the inertial effects would be essentially induced by the dynamic

response of the soil behind the wall, a participating mass of the embankment me,e

can be computed as

me,e = m(1) − (ma +mb) = 2.0 · 103Mg (5.220)



CHAPTER 5. A MACRO-ELEMENT FOR BRIDGE ABUTMENTS 313

that is relative to a volume of the embankment Ve,e equal to

Ve,e =
me,e

ρsoil
=

2.0 · 103

2.039
= 2.0 · 103m3. (5.221)

In light of the above, an effective length of the embankment Leff interacting

dynamically with the abutment can be defined as follows

Leff = Lback +
Ve,e
H ·B

=
2.0 · 103

13.5 · 20.0
= 12.5 + 7.4 = 19.9m. (5.222)

Hence, in this case, the ratio Leff/H between the effective length and the height

of the abutment is equal to 1.5.

Figure 5.44 represents the response of the macro-element with the massm(1) com-

puted above. The dynamic amplification is quite well captured by the macro-element

up to Q1 = 12 MN, corresponding to the transition phase in the period elongation

curve of the soil-abutment system (see Section 4.2), but the dominant response

occurs at slightly lower periods. For higher intensities of the external force, the

underestimation of the maximum displacements rises, even if the significant range

of periods for the dynamic amplification is well centred on the maximum response

of the interaction models. For Q1 = 24 MN, corresponding to a steady dominant

response of the system, the dynamic amplification curve of the macro-element re-

produces quite well the response of the interaction model but, after the dominant

period at 0.8 s, it presents a slower decrease of the maximum displacement.

In order to improve the response of the macro-element, especially for Q1 between

12 ÷ 18 MN, a second mass m(2) was introduced in the model, associated with

the second dissipative device. As a result of a parametric study aimed to find the

optimum value for the mass m(2), the latter was set equal to the first mass. The

new amplification curves are shown in Figure 5.45. The first curve, obtained for a

force of 4 MN, keeps unaltered because the response of the mass m(2) begins when
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Figure 5.44: Comparison between the dynamic amplification curves of the macro-element with
mass m(1) = 9.1 · 103 Mg and that obtained with the numerical models (OpenSees) from the
reversible regime (activation of the first slider) to the steady behaviour (activation of the fourth
slider).
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the strength of the second slider k
(2)
− = 8.7 MN is attained. The effect of the second

mass becomes evident in the transition phase, leading to a better matching with the

response of the interaction models.

The response of the macro-element could be further improved by adding other

masses to the other sliders but, as it was shown, a limited number of masses op-

portunely calibrated can be sufficient to reproduce the response of the entire soil-

abutment system from small to large strain levels. In this way, in fact, the calibration

of the macro-element is based on general principles that allow to identify the first

masses in a simple and immediate manner. It was shown that a proper identifica-

tion of the first mass leads to a good reproduction of the dynamic response of the

abutment system and it can be evaluated with good approximation by referring to

the dynamic characteristics of a single degree of freedom system. The second mass

is able to improve the response of the macro-element, with a better reproduction

of the period elongation, and it appears of the same order of magnitude of the first

mass, at least for the case study under examination. In any case, a very low com-

putational demanding sensitivity analysis on the effect of each mass introduced into

the macro-element can be easily carried out to have an accurate evaluation of their

optimum values in any configurations of the soil-abutment system.

5.15 An energetically compatible macro-element for shallow

foundations

The thermodynamic formulation of the macro-element for bridge abutments was

specialised to the case of shallow foundations, in order to reach a representation

of the soil-foundation system promptly applicable in the global structural model

of the bridge, together with the macro-element of bridge abutment. This model

constitutes a first step in the derivation of an equivalent 6 degrees of freedom system



CHAPTER 5. A MACRO-ELEMENT FOR BRIDGE ABUTMENTS 316

Figure 5.45: Comparison between the dynamic amplification curves of the macro-element with
mass m(1) = m(2) = 9.1 · 103 Mg and that obtained with the numerical models (OpenSees) from
the reversible regime (activation of the first slider) to the steady behaviour (activation of the fourth
slider).
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for shallow foundations consistent with the dictates of Thermodynamics. This is

an ongoing research that aims to reinterpret the main features of the multi-axial

response of the foundations, already included in several existing models, according

to an energetically compatible framework.

5.15.1 Mathematical formulation

The model is formally identical to the macro-element for bridge abutments, com-

posed of multiple yield surfaces that evolve in the space of the generalised forces

according to a prescribed kinematic hardening rule, but it is bounded by a more ap-

propriate version of the ultimate surface for shallow foundations that, consequently,

modifies also the shape of the internal yield surfaces. Another relevant difference

between the two representations is that the inertial effects of the soil underneath

the foundation can be reasonably neglected. Therefore the only mass needed in this

case is the mass of the footing whose contribution can be modelled explicitly in the

finite element model without being included in the constitutive response.

The foundation is regarded as a body with infinite stiffness and strength. The

present formulation is aimed at describing the translational and rotational motion

of a shallow foundation along the three-coordinate directions illustrated in Figure

5.46: the generalised forces (3 forces and 3 moments) are denoted as Qi,0 and the

corresponding generalised displacements as qi,0.

The generalised forces Qi,0 and displacements qi,0 are grouped into two first-order

tensors composed of non-homogeneous quantities

Qi,0 = {Q1,0, Q2,0, Q3,0, Qr1,0, Qr2,0, Qr3,0} (5.223)

qi,0 = {q1,0, q2,0, q3,0, qr1,0, qr2,0, qr3,0} . (5.224)
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Figure 5.46: Notation adopted for the generalised forces Qi,0 and the generalised displacements
qi,0.

In order to consider consistent forces and displacements, two vectors composed

of homogeneous quantities are defined as

Qi =
{
Q1,0, Q2,0, Q3,0, Qr1,0/By, Qr2,0/Bx, Qr3,0/

√
Bx ·By

}
(5.225)

qi =
{
q1,0, q2,0, q3,0, qr1,0/By, qr2,0/Bx, qr3,0/

√
Bx ·By

}
(5.226)

in which the dimension of the generic terms Qi and qi are a force and a length,

respectively. It can be also convenient to express the generalised forces Qi in the

following normalised form (Venanzi et al. 2014)

Qi =
{
Q1,0/Q

max
3,0 , Q2,0/Q

max
3,0 , Q3,0/Q

max
3,0 , Qr1,0/

(
By ·Qmax

3,0

)
,
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, Qr2,0/
(
Bx ·Qmax

3,0

)
, Qr3,0/

(√
Bx ·By ·Qmax

3,0

)}
(5.227)

where Qmax
3,0 represents the bearing capacity of the foundation.

The balance equation simply reads

Q
(ext)
i = Q

(int)
i = Q

(n)
i , i = 1, 2, 3 (5.228)

hence the internal force Q
(n)
i associated with the n-th plastic flow is equal to the

external one Q
(ext)
i . Compatibility is instead described by Eq. 5.117 written for the

case of bridge abutments, in which the plastic deformations are assumed as internal

variables.

For this mechanical system, the Gibbs free energy and the Helmholtz free energy

are reported below

g(Q
(n)
i , α

(n)
i ) = −1

2
· C(0)

ji ·Q(0)
i ·Q(0)

j −
N∑

n=1

Q
(n)
i · α(n)

i −

−1

2
·

N∑
n=1

H
(n)
ij · α(n)

j · α(n)
i −Q

(R)
i · α(R)

i (5.229)

f(q
(n)
i , α

(n)
i ) =

1

2
·H(0)

ij ·

(
qj −

N∑
n=1

α
(n)
j − α

(R)
j

)
·

(
qi −

N∑
n=1

α
(n)
i − α

(R)
i

)
+

+
1

2
·

N∑
n=1

H
(n)
ij · α(n)

j · α(n)
i (5.230)

which represent the energy functions of the classical Iwan model with six degrees

of freedom (Houlsby and Puzrin 2006), in the case of no elastic-plastic coupling.

Note that the true force Q
(n)
i is related to the generalised force χ̄

(n)
i , that is equal to



CHAPTER 5. A MACRO-ELEMENT FOR BRIDGE ABUTMENTS 320

the dissipative force χ
(n)
i for the Ziegler’s principle, by the following equation

χ̄
(n)
i = −∂g(α

(l)
i )

∂α
(n)
i

= −∂g2(α
(l)
i )

∂α
(n)
i

+Q
(n)
i = −H(n)

i · α(n)
i +Q

(n)
i (5.231)

while the dissipative ratcheting force reads

χ̄
(R)
i = −∂f(α

(l)
i )

∂α
(R)
i

=
1

2
·H(0)

ij ·

(
qj −

N∑
n=1

α
(n)
j − α

(R)
j

)
=

= H
(0)
ij · q(0)j = Q

(0)
j = Q

(n)
j = Q

(ext)
j (5.232)

having considered the global balance equation (Eq. 5.228).

By comparing Eq. 5.231 with Eq. 5.116, the latter describing the local behaviour

of the n-th dissipative device, it follows that χ̄i = χi = k
(n)
i during plastic loading.

The plastic domain of the macro-element is confined between the surface of first

yield and the surface of ultimate conditions, within which the other surfaces are

placed in accordance with Eqs. 5.152 and 5.153. Except for the ultimate locus, the

other surfaces evolve in the space of the forces with kinematic hardening defined by

the second-order tensors H
(n)
ij associated with each plastic flow. As for the dissi-

pative response of the abutments, all the yield loci are assumed to have the same

shape, hence the configuration of the plastic domain can be completely defined by

the specification of the surface of ultimate loads. In the present model, the ulti-

mate surface for a 6-DoF shallow foundation proposed by Martin (1994) is used.

Accordingly, the generic yield surface reads

y(n)(χ
(n)
i ) =

(
χ
(n)
1

h
(n)
0

)2

+

(
χ
(n)
2

h
(n)
0

)2

+

(
χ
(n)
r1

l
(n)
0

)2

+

(
χ
(n)
r2

l
(n)
0

)2

+

(
χ
(n)
r3

x
(n)
0

)2

−
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Figure 5.47: Configuration of the yield surfaces.

− 2 · a(n)

h
(n)
0 · l(n)0

·
(
χ
(n)
2 · χ(n)

r1 − χ
(n)
1 · χ(n)

r2

)
−

−χ(n)2·β(n)
1

3 ·

(
1− χ

(n)
3

Qmax
3,0

)2·β(n)
2

·Qmax
3,0

(2−2·β(n)
1 ) = 0, n = 1, ..., N. (5.233)

where h
(n)
0 , l

(n)
0 , x

(n)
0 , a(n), β

(n)
1 and β

(n)
2 are model constants; see Martin (1994) and

Bienen et al. (2006) for explanation on their physical meaning. The configuration

of the yield surfaces in the Q1 −Q3 plane is represented in Figure 5.47.

The maximum capacity of the foundation is represented by the vertical limit load

Qmax
3,0 , when only the vertical force is applied on the footing. From the ultimate

surface, the size of the inner surfaces reduces linearly to the surface of first yield.

Similarly to the macro-element of bridge abutment, the size of the first yield was

assumed to be equal to 0.1 · aN , hence as a small fraction of the size aN of the

ultimate surface.

The dissipation function is obtained from the specific expression used to describe

the yield functions of the model. By definition, dissipation reads
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d(α
(n)
i , α̇

(n)
i ) = χ

(n)
i · α̇(n)

i ≥ 0 (5.234)

that must be positive in accordance with the Second Law of Thermodynamics.

The rates of the plastic strains α̇
(n)
i and α̇

(R)
i are computed through the flow rule as

follows

α̇
(n)
i = λn ·

∂ygn(χ
(n)
i )

∂χ
(n)
i

(5.235)

α̇
(R)
i = S

(
Q̇i

(ext)
)
·

N∑
n=1

Rn · λn ·
∂ygn(χ

(n)
i )

∂χ
(n)
i

(5.236)

in which the plastic multiplier is given below

λn =

∂y(n)

∂χ
(n)
i

· Q̇i
(n)

∂y(n)

∂χ
(n)
i

· ∂2g2

∂α
(n)2
i

· ∂y(n)

∂χ
(n)
i

− ∂y(n)

∂α
(n)
i

· ∂y(n)

∂χ
(n)
i

, n = 1, .., N. (5.237)

The terms ∂y(n)/∂α
(n)
i are identically equal to zero because the yield surfaces are

only a function of the dissipative forces. Hence, Eq. 5.237 can be written in the

following form

λn =

∂y(n)

∂χ
(n)
i

· Q̇i
(n)

∂y(n)

∂χ
(n)
i

· ∂2g2

∂α
(n)2
i

· ∂y(n)

∂χ
(n)
i

=
N

(n)
i

D
(n)
i

, n = 1, .., N. (5.238)

The derivatives of the yield functions ∂y(n)

∂χ
(n)
i

are developed here below
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The second derivative of the sub-function g2(0, α
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i ) of the Gibbs freee energy

reads
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Based on the above results, each addendum in Eq. 5.238 can be derived
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The kinematic hardening matrix H
(n)
ij associated with the n-th plastic flow is

assumed to be diagonal. This is the primary assumption that differentiates the

macro-response of a shallow foundation from that of an embedded foundation.

In light of the above, in the case of a complete six-dimensional loading pattern,

the plastic multiplier assumes a quite articulated expression, in which all the terms

N
(n)
i and D

(n)
i are different from zero. Nonetheless, each contribution to λn has

a simple form that can be easily integrated through the application of standard-

ised procedures, such as the finite difference method. The solution of the plastic

multiplier allows to determine the flow rule, which in turn can be substituted in

Eq. 5.234 to give the general expression of the dissipation function. When also

an additional ratcheting displacement is considered, following the procedure already

described in Section 5.5.2, a modified dissipation function d∗ = d + Λ · c is in-

troduced in the formulation that includes the ratcheting effect in the constraint

c = α̇(R) − S
(
Q(ext)

)
·
∑N

n=1R
(n) · α̇(n) through the Lagrangian multiplier Λ > 0.

There are some cases, however, in which dissipation assumes a much easier form.

Consider, for example, the macro-element subjected to a purely horizontal load

Q
(ext)
1 . For simplicity, no ratcheting displacement develops during plastic flow. In

this case, the N yield surfaces degenerate in n-th plastic thresholds k
(n)
1 with an

eventual dissymmetric behaviour (Eq. 5.68). In this case, the plastic multiplier

simply reads
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and the flow rule yields
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The dissipation function assumes the following compact form
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having recognised that, during plastic flow, the dissipative force is equal to the

plastic threshold k
(n)
1 = χ

(n)
1 .

The incremental response of the model can be obtained by differentiating the

Helmholtz free energy
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that can be easily integrated through the finite difference method for instance.

Hence, the one-dimensional response of the model is formally identical to that of the

macro-element of bridge abutments with no mass, except for a different calibration

of the plastic thresholds, or better of the ultimate capacity of the foundation. This

allows to use the new Uniaxial material implemented in OpenSees in Section 5.12.2
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for a prompt use of the 1D macro-element in the structural analysis of the reference

bridge, while the implementation of the multi-axial formulation will constitute a

forthcoming development of the present research.

5.15.2 Application to the case study

The macro-element of shallow foundations was used, together with the macro-

element of bridge abutments, in the global structural model of the reference bridge

in order to develop a complete nonlinear representation of the soil-structure interac-

tion. For simplicity, a one-dimensional macro-element was applied to the foundation

of the strong pier, aligned with the direction of motion, with the primary aim to

reproduce the permanent displacements developing in the foundation soil.

Following the calibration procedure described in Section 5.14.1, the macro-element

is completely defined by the specification of the initial stiffness H(1) and the ulti-

mate strength k(N). The former was evaluated by the elastic solutions for the static

stiffness of rigid footings at the ground surface proposed by Gazetas (1991), reported

here below

H(1) =
2 ·G · l
2− ν

·

[
2 + 2.5 ·

(
b

l

)0.85
]
− 0.2 ·G · l

0.75− ν
·
(
1− b

l

)
. (5.262)

In this case, the shear modulus of soil G is referred to the behaviour at small

strains because it was used to calculate the initial stiffness of the macro-element. It

was assumed to be equal to 9.5 ·104 kPa, representing the average value of the elastic

modulus adopted in the superficial layer MG1D. The Poisson’s ratio was set equal

to 0.2, associated with the small-strain response of the soil. The semi-length of the

foundation in the longitudinal and transverse directions of the bridge are 3 m and

2.5 m, respectively. Accordingly, the initial stiffness of the macro-element results to

be equal to 1.3 · 106 kN/m, that is comparable with the initial stiffness assigned to
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the macro-element of the soil-abutment system in the same direction, equal to 106

kN/m, in spite of the completely different geometry of the two geotechnical systems.

This result can be due to the elastic response of the soil exhibited at small strains,

that controls the response with no significant dependence on the load conditions.

The capacity of the soil-foundation system in the longitudinal direction, thus

the external force that produces the attainment of the ultimate strength of the

macro-element k(N), was instead determined as the minimum value between the limit

force associated with the attainment of the bearing capacity and the mobilisation

of the sliding capacity at the soil-foundation contact. The former was obtained by

simply applying the Brinch-Hansen formula. More specifically, it was determined

the limit value of the longitudinal force Qb
1,lim that mobilises the ultimate strength of

the geotechnical system. The foundation is initially considered loaded by the static

actions transmitted by the superstructure, evaluated through the gravity analysis

of the full soil-bridge system. Focusing on the foundation of the strong pier, the

resulting load pattern is shown in Figure 5.48: in addition to the important vertical

loadQ3 = 2331 kN, a modest longitudinal loadQ1 = 34 kN and a significant moment

Qr2 = 290 kNm are transferred to the foundation. Starting from this configuration,

the Brinch-Hansen formula was applied, increasing the longitudinal force until the

attainment of the bearing capacity. In order to account for the increase of moment

associated with the increment of the shear force at the base of the column, the

moment Qr2 was increased as the product between the the longitudinal force acting

on the foundation and the height of the pier. The resulting limit value Qb
1,lim is

equal to 335 kN (oriented towards the weak abutment), corresponding to a vertical

force Q3 = 2331 kN and a moment Qr2 = 4522 kNm, that is equal to about 1 %

the limit force on the abutment top corresponding to the attainment of the active

resistance in the backfill. The limit value in the opposite direction results equal to

Qb
1,lim = 381 kN (oriented towards the strong abutment), associated with a moment
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Figure 5.48: Load pattern of the foundation of the strong pier under gravity loads.

Qr2 = 4394 kNm, giving a bias parameter on strength of 0.88.

The limit force that produces the sliding at the soil-foundation contact was com-

puted, in first approximation, as

Qshear
1,lim = Q3,st · tg (ϕ′) = 2331 · tg (ϕ′) = 1821 kN (5.263)

as the foundation was placed on the ground surface. Therefore the ultimate

condition of the foundation is controlled by the attainment of the bearing capacity

of the foundation and the ultimate strength of the macro-element was set as a equal

to k
(N)
− = 335 kN, towards the weak abutment, and k

(N)
+ = 381 kN, towards the

strong abutment.

The 1D macro-element was supposed to be composed of 5 dissipative devices,

each characterised by a stiffness H(n) and a plastic threshold k(n) ranging between

the ultimate strength k(N) and the first yield k(1). The latter was assumed as a small

fraction of the ultimate strength, thus k(1) = 0.15 · k(N). The entire set of stiffness

and strength parameters is listed in Table 5.5, having considered a linear variation

of the parameters from the first yield up to the ultimate conditions.

The resulting backbone curve is depicted in Figure 5.49, showing the comparison

with the force-displacement law obtained for a number of devices equal to 10.
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Device H(n) (kN/m) k
(n)
+ (kN) k

(n)
− (kN)

0 1.3 · 106 − −
1 105 57 49
2 104 143 126
3 4.3 · 103 228 201
4 2.1 · 103 315 278
5 10−1 381 335

Tabella 5.5: Stiffness H(n) and strength k(n) parameters assigned to the macro-element of shallow
foundation.

17 /22

Figure 5.49: Force-displacement relation in the longitudinal direction obtained through the macro-
element of shallow foundation.



Chapter 6

A macro-element of the bridge

structure

6.1 Conceptual framework

The cardinal point of the present thesis consists in analysing the soil-abutment-

superstructure interaction, looking for a better understanding of this phenomenon

and providing a methodology to predict the relative effects on the entire soil-bridge

system. In this view, in the previous chapter an advanced representation of the

soil-abutment system has been proposed to incorporate into the global structural

response the nonlinear and multi-axial interaction occurring at the abutment loca-

tions. A complementary view of this problem would be to study the influence of the

dynamic behaviour of the bridge structure on the seismic performance of the abut-

ments. The response of a bridge abutment, in fact, is affected by its interaction with

the superstructure, with a reciprocal frequency-dependent exchange of inertial forces

at the deck-abutment contact under seismic conditions. These forces can become

important in the case of strong shaking and therefore can modify significantly the

stress-strain state in the abutment structure and in the soil interacting with it. In

332
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order to account for this phenomenon, an original approach is proposed to the study

of the seismic behaviour of bridge abutments, in which a simplified description of

the dynamic response of the bridge is introduced into a finite-element model of the

soil-abutment system. Specifically, the dynamic behaviour of the bridge structure

is described by an expressly conceived elastic-plastic macro-element, that simulates

the complex loading pattern transferred to the abutment during the seismic event.

This approach improves the current analysis methods based on sub-structuring, lim-

iting at the same time the computational demand needed for an otherwise complete

study of the soil-structure interaction for this type of problems. The validity of the

procedure is demonstrated on a simple structural scheme, comparing the results of

the simplified approach with the results obtained from dynamic analyses of the full

soil-structure system. Based on these results, a strategy is devised for the calibration

of the bridge macro-element, making use of a limited number of input parameters.

In Chapter 7, the method will be applied to the reference soil-bridge system (Section

3.6), carrying out full three-dimensional dynamic analyses.

Figure 6.1 depicts the conceptual scheme of the macro-element of the bridge struc-

ture. While the structural elements of the abutment are represented explicitly in the

soil-abutment model, the response of the bridge structure is simulated through the

introduction of an equivalent macro-element. This system is formally described by

a second-order transfer tensor TTij which expresses a frequency-dependent relation-

ship between the vector of the generalised displacements at the foundation level uj

and the resulting vector of the generalised forces Qi at the deck-abutment contact,

that can be written as:

Qi = TTij · uj. (6.1)

For a linear structural system, the transfer tensor is an intrinsic property of the
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Figure 6.1: Conceptual scheme of the method of the transfer tensor.

structure: it is not affected by the presence of the soil and depends only on the me-

chanical properties of the bridge. In other words, it describes the filtering effect of

the bridge structure on the interaction forces exchanged between the abutment and

the superstructure, taking explicitly into consideration their effective connection.

The generic term of the tensor TTij is a transfer function, whose calibration proce-

dure will be described in the following. The mathematical formulation of a transfer

function specialises according to the expected level of nonlinearity of the structural

response. When the dynamic response of the structure can be regarded as linear,

the transfer functions is not dependent on the amplitude of the external excitation

and the macro-element is also called elastic transfer tensor. When the nonlinearities

of the bridge structure become important, instead, the transfer functions are repre-

sented by nonlinear relationships reproducing the amplitude-dependent response of

the whole structure. The nonlinear macro-element represents the generalisation of

the elastic transfer tensor and it is calibrated starting from the structural parameters
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in the elastic regime.

In spite of its general formulation, the transfer tensor is mainly devoted to rep-

resent the significant degrees of freedom of the deck-abutment contact (see Section

5.1), hence the validation is focused on the translational motion of the deck-abutment

joint, neglecting the transmission of moment.

6.2 Calibration of the elastic transfer tensor

The elastic transfer tensor is conceived as a simplified structural system able to

reproduce the global effects of the multi-directional dynamic response of the bridge,

in terms of inertial forces transferred to the geotechnical system. As mentioned in

the previous paragraph, it is an intrinsic property of a structure not affected by the

soil characteristics, assumption that will be demonstrated later. Figure 6.2 shows

the identification procedure of a generic transfer function: a global numerical model

of the structure, including the structural members and the abutments, is perturbed

by a frequency sweep at the base of the piers and at the abutments foundations,

and for each frequency the maximum value of the interaction forces produced at

the deck-abutment contact is determined; the transfer function is evaluated at each

frequency as the ratio of the interaction force to the amplitude of the input motion.

Generally, the transfer functions present a multi-modal distribution in the frequency

domain that can be easily reproduced in numerical modelling through some masses

connected by simple rheological systems. This modelling technique is conceptually

identical to the procedure used to include the inertial effects in the macro-element

of the soil-abutment system: in that case the masses were calibrated to reproduce

the dominant responses of the soil-abutment system representing the fundamental

vibration modes.

The masses of the macro-element of the bridge structure are aimed to repro-
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Figure 6.2: Identification procedure of the generic transfer function thh.
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duce the peaks of the transfer functions, which depend on the dynamic response

of the superstructure. More specifically, the peaks can be associated with the sig-

nificant vibration modes of the bridge structure for the degree of freedom of the

deck-abutment contact considered and, consequently, the transfer functions can be

obtained starting from the modal information of the bridge.

6.3 Validation

The response of the macro-element was initially tested in a simple, idealised soil-

bridge system with the aim to have a robust and clear understanding on its appli-

cability. This allowed to carry out a number of nonlinear dynamic analyses of the

full soil-structure system, considering the multi-directionality of the ground motion

and different seismic scenarios. The structural behaviour varied from linear elas-

tic to highly nonlinear, employing appropriate finite-element representations of the

structural members.

6.3.1 Uni-axial elastic macro-element

Consider the three-dimensional model of the idealised soil-structure system depicted

in Figure 6.3, including a framed structure in contact with the soil through the pier

foundation and the abutment. The analysis of this system was performed by using

the analysis framework OpenSees, adopting appropriate formulations for the finite

elements and assuming a visco-elastic behaviour for both the soil and the structural

elements. The numerical model is composed of 3689 finite elements, of which 92

relative to the structure. The model was built with a three-dimensional mesh, with

a unit length in the direction out of plane. Hence, the response of the soil domain

and the abutment is under plane strain conditions while the effective geometry of
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Figure 6.3: Mesh of the full soil-abutment-superstructure interaction model implemented in
OpenSees.

the superstructure was reproduced in the model.

The structure is made up of a deck connected by a hinge to the abutment and

by a rigid constraint to the pier. The vertical elements are in turn in contact with

the foundation soil through the respective foundations. Thinking about multi-span

girder bridges with a discontinuous deck, this simplified structural configuration is

aimed at representing the part of the structure that interacts with the abutment.

The abutment presents a very similar geometry to that of the Pantano viaduct: it

has 13.5 m-height wall, with a thickness of 4 m, resting on a shallow foundation

with length and thickness of 17.5 m and 5 m, respectively. A visco-elastic behaviour

was assigned to every finite element of the structure, with elastic moduli relative to

a C32/40 strength class concrete in European standards; a Rayleigh damping was

used in order to have a damping ratio not greater than 5 % for all the significant

modes of the structure, the latter evaluated through a preliminary modal analysis of

the structural model with fixed base. The entire soil domain was initially assumed

to be dry and, accordingly, every element was discretised through the SSPbrick
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finite elements available in OpenSees. The backfill, placed behind the abutment

wall, extends to the entire length of the foundation, followed by the embankment

representing the approaching structure to the bridge. The backfill has a Young’s

modulus and a Poisson’s ratio equal to 106 kPa and 0.3, respectively, while the values

of 2.75 ·105 kPa and 0.2 were assigned to the embankment, reflecting common values

prescribed by technical provisions. The unit weight was assumed equal to 20 kN/m3

for both materials. The foundation soil consists of a uniform layer starting from the

structure foundations down to the bedrock placed at 88 m from the foundation level;

the soil considered is characterised by a unit weight of 22 kN/m3 and a shear wave

velocity of 205 m/s. The soil elements were provided with a proportional viscous

damping, defined to have a damping ratio not greater than 2 % for frequencies

between 0.05÷15 Hz, representative of the frequency content of the ground motion.

Consider the identification of a simplified structural system equivalent to the deck,

the pier and its foundation, in the longitudinal direction only. Figure 6.4 shows the

transfer function of the structure (dotted line) for the longitudinal interaction force

Q1 at the deck-abutment contact, obtained by applying the procedure described in

Section 6.2. Note that the maximum amplitude of the harmonic input motion for the

structural model is taken equal to 1 m, therefore the transfer function coincides with

the trend in the frequency domain of the maximum interaction force produced at

the deck-abutment contact. The transfer function presents the largest amplitudes at

high frequencies, because the interaction force Q1 is mainly governed by the dynamic

axial response of the deck. Specifically, the dynamic response of the deck is activated

by the second vibration mode of the abutment wall occurring at a period T of 0.01

s, leading to the maximum amplification of the interaction force. The second peak,

occurring at T = 0.2 s, is instead related to the first global mode of the structure

involving both the vertical elements but not able to excite the deck in its axial

direction. The transfer function of the deck (dashed line), in fact, shows a sole peak
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at 0.05 s with a noticeable increase of the maximum interaction force with respect to

the response of the whole structure. This means that calibrating the macro-element

on the mechanical properties of the deck, i. e. based on the mass and the axial

stiffness of the deck, would lead to a considerable overestimation of the inertial

forces transferred to the abutment and also to an incorrect determination of the

dominant period. Therefore, the vertical elements must be included in the evaluation

of the transfer function because they lead to the desired increase of deformability

of the system necessary to attenuate partially the axial vibrations of the deck. The

dominant period, however, moves to lower values since, for the structure under

examination, the axial mode of the deck combines with the higher modes of the

vertical elements.

The transfer function can be approximated by the mono-modal curve in Figure 6.4

(continuous line). This simple shape can be modelled inserting in the soil-abutment

interaction model a single degree of freedom (SDOF) system, calibrating its mass

m(1), stiffness h(1) and damping ξ(1) in order to follow the transfer function of the

structure. As a result of a trial and error procedure, the optimum mass and stiffness

of the macro-element results to be m(1) = 0.15 · m(deck) and h(1) = 3.9 · h(deck), in

whichm(deck) and h(deck) are the mass and the axial stiffness of the deck, respectively.

A viscous damping ratio of 2 % was assigned to the macro-element, evaluated on

the effective Rayleigh damping of the structure. By comparing the results of the

identification procedure with the modal information of the structure, it was found

that the mass of the macro-element can be set equal to the mass associated with the

second mode of the deck that occurs at 0.05 s. Note that this is not the fundamental

axial mode of the deck but it refers to the higher mode of the vertical elements

(abutment in this case) that activates the second vibration mode of the deck. The

stiffness required to localise the response of the macro-element at 0.05 s was instead

found to be much higher than the axial stiffness of the deck. This is a further
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macro-
element

frequency sweep

Figure 6.4: Frequency-dependent trends of the maximum longitudinal interaction force at the
abutment-deck contact obtained for a maximum amplitude of the input motion equal to 1 m:
comparison between the response of the full soil-structure model (dots), that obtained applying
the equivalent mechanical system to the abutment (continuous line) and the sole deck (dashed
line).

evidence that the characteristics of the macro-elements differ considerably from the

static properties of the deck, in a way that depends on the specific structural scheme

under examination.

In order to test the effectiveness of the macro-element, time-domain dynamic

analyses were carried out applying to the base of the soil domain the longitudinal

component of the wideband seismic record of Tabas (Figure 3.49). The response

of the local model of abutment including the macro-element is compared with that

obtained by the full soil-structure interaction model. Figure 6.5 compares the time-

histories of the interaction force Q1 and the corresponding Fourier spectra. It is

evident that for this simple one-dimensional case the macro-element is able to repro-
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duce quite correctly the inertial effects of the pier-deck system. Looking at Figures

6.6 and 6.7, representing the longitudinal displacement of the top of the wall and

of the center of gravity of the foundation, respectively, it can be seen that also the

kinematics of the abutment is not altered by the presence of the macro-element. The

elastic response spectra at the foundation level show a very good agreement between

the response of the full soil-structure model and the local model of the abutment.

Hence, in this simple soil-structure system, the macro-element of the bridge struc-

ture can be used to evaluate the local dynamic response of the abutment, taking

efficiently into account the interaction with the superstructure of the bridge, but it

also allows a good prediction of the seismic actions acting on the bottom and on the

top of the wall that can be used in the structural analysis of the entire bridge.

The response of the abutment with application of the macro-element is now com-

pared in Figures 6.8, 6.9 and 6.10 with other classical strategies to represent the

abutment-superstructure connection in the geotechnical analysis. The results are

restricted to the significant time interval (5 ÷ 25 s) and to the frequency content

(T = 0÷ 6 s) of the Tabas record in order to highlight the differences between these

techniques. For the same reason, only the interaction force Q1 induced by the seismic

shaking is represented. The first evident result is that the use of a macro-element

calibrated on the mechanical properties of the deck leads to a marked overestima-

tion of the inertial forces transferred to the soil-abutment system, in a completely

different range of frequencies associated with the axial mode of the deck. It follows

that the displacement on the abutment top is amplified and consequently also the

foundation motion changes sensibly: the foundation undergoes a greater longitudinal

displacement induced by the amplified oscillations of the wall top and the maximum

spectral accelerations at the base move to longer periods. This implies that also the

stress-strain state in the soil surrounding the abutment is altered with an erroneous

evaluation of the abutment stability, especially the eventual attainment of the re-
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Figure 6.5: Time evolution of the interaction force Q1 (a) and relative Fourier spectrum (b) in
the longitudinal direction recorded at the abutment-deck contact: comparison between the full
soil-structure model and the local soil-abutment model with macro-element.
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Figure 6.6: Time evolution of the displacement on top q1 (a) and Fourier spectrum of the relative
accelerogram (b) in the longitudinal direction recorded at the abutment-deck contact: comparison
between the full soil-structure model and the local soil-abutment model with macro-element.
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Figure 6.7: Time evolution of the displacement of the barycenter of the foundation q1,found (a)
and 5 %-damped elastic response spectrum of the relative accelerogram (b) in the longitudinal
direction: comparison between the full soil-structure model and the local soil-abutment model
with macro-element.
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sistance in the backfill with development of permanent settlements of the transition

slab.

Another standard technique of modelling the dynamic interaction between the

abutment and the bridge structure consists in applying an equivalent static force

(thin continuous line) at the top of the abutment, intended as the inertial force

associated with the first significant vibration mode of the bridge for the degree of

freedom considered at the deck-abutment contact. Hence, the longitudinal pseudo-

static force refers to the dominant period of the transfer function of the whole

structure at 0.01 s. The resulting time-independent interaction force Q1 presents a

magnitude of about 750 kN, with some minor oscillations due to the variation of the

internal force in the finite element placed on the abutment top. It is evident that,

despite giving a rough estimation of the maximum interaction force transferred to

the abutment with an underestimation of about 38 %, this technique neglects com-

pletely the time-dependent effects at the deck-abutment contact. Nonetheless, the

displacement field of the abutment is quite similar to that of the full model with a

maximum increase of q1 and q1,found of about 10 %.

In the simplest case, the interaction with the superstructure can be completely

neglected in the local model of the abutment by simply assuming no constraints at

the abutment top (thin dotted lines). This leads to a response of the system that is

conceptually identical to that described above using the equivalent static force, with

the only difference that the interaction force Q1 is approximately equal to zero.

Hence it seems that the dynamic response of the superstructure influences mainly

the stress state in the soil-abutment system and only to a more limited extent the

displacement field. This might be due to the fact that also the structure moves

together with the abutment under seismic excitation, not altering considerably the

abutment motion but generating however relevant inertial forces transmitted to the

abutment according to its dynamic characteristics.
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Figure 6.8: Time evolution of the interaction force Q1 (a) and relative Fourier spectrum (b)
in the longitudinal direction. Comparison between different representations of the abutment-
superstructure interaction: full soil-structure model, macro-element of the structure, macro-
element of the sole deck, free wall top and equivalent pseudo-static force.
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Figure 6.9: Time evolution of the displacement on the abutment top q1 (a) and Fourier spectrum
of the relative accelerogram (b) in the longitudinal direction. Comparison between different repre-
sentations of the abutment-superstructure interaction: full soil-structure model, macro-element of
the structure, macro-element of the sole deck, free wall top and equivalent pseudo-static force.
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Figure 6.10: Time evolution of the displacement of the barycenter of the foundation q1,found (a)
and 5 %-damped elastic response spectrum of the relative accelerogram (b) in the longitudinal di-
rection. Comparison between different representations of the abutment-superstructure interaction:
full soil-structure model, macro-element of the structure, macro-element of the sole deck, free wall
top and equivalent pseudo-static force.
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In principle, the proposed calibration procedure is of general validity, at least for

a linear system, and can be easily extended to the remaining horizontal and vertical

components of the earthquake motion, monitoring the resulting forces and moments

at the deck-abutment joint.

6.3.2 Bi-axial elastic macro-element

The reference soil-structure system illustrated before is now perturbed by a bi-

component seismic motion composed of the longitudinal and the vertical components

of the Tabas record (Figure 3.49), as illustrated in Figure 6.11. The deck-abutment

joint was regarded as a multi-directional device with no transmission of moments.

In this case, the macro-element is composed of two transfer functions as follows

 Q1

Q3

 =

 TT11 TT13

TT31 TT33

 ·

 q1

q3

 =

 TT11 0

0 TT33

 ·

 u1

u3

 . (6.2)

The coupled terms TT13 and TT31 were set equal to zero, neglecting for simplicity

the directional coupling of the response. Otherwise, these transfer functions should

have determined by following the general identification procedure described before,

retrieving the force Q3 produced by the displacement field u1 at the foundation level

and the force Q1 induced by u3.

The longitudinal transfer function determined in Section 6.3.1 is therefore com-

bined with the vertical transfer function TT33, the latter obtained by following the

general identification procedure. Figure 6.12 compares the transfer functions of the

structure in the two coordinate directions, together with the respective functions

associated with the deck. The vertical response presents a bi-modal trend with a

dominant peak at 0.07 s and a second peak at 0.5 s. The former is a global mode

in which the second vibration mode of the deck, in the vertical direction, combines
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Figure 6.11: Bi-component seismic motion: from the full soil-structure model to the local model
with macro-element.

with the higher vertical modes of the abutment and the pier, leading to a very stiff

response with a high value of the interaction force Q3. The second peak is instead

associated with the first vertical mode of the deck without involving the vertical ele-

ments, leading to a longer but more deformable response; as a result, the maximum

value of the interaction force is much lower. This second mode does not appear in

the function TT11 because the longitudinal response is strongly controlled by the

axial modes of the deck while the vertical response involves mainly its bending stiff-

ness. In fact, looking at the dynamic amplification of the deck in the two directions

(dashed lines in Figure 6.12), the corresponding peaks are close to those of the

transfer functions of the structure, with amplitudes attenuated by the response of

the vertical elements.

From a numerical point of view, the vertical transfer function was modelled by

either a SDoF system or by a two degrees of freedom (2DoF) system. In both cases,

the modal mass and damping associated with the peaks in the transfer functions

were used in the two representations of the macro-element. The SDoF system was

aimed to reproduce the dominant response of the structural system and presents
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Figure 6.12: Comparison between the transfer functions of the structure (dotted lines) and of the
deck (dashed lines), in the longitudinal TT11 and vertical TT33 directions.

a mass equal to 0.6 · md, with md the deck mass, which is combined in the 2DoF

system with a second mass equal to 0.9 ·md that is the first mass participation of

the deck in the vertical direction (peak at 0.5 s). The stiffness was instead defined

by trial and error, modifying the deck stiffness in order to have a good reproduction

of the maximum amplitudes. The resulting transfer functions are shown in Figure

6.13.

The vertical responses of the abutment considering the two vertical equivalent

systems are compared in Figure 6.14, in terms of spectral accelerations in corre-

spondence of the top and the foundation of the abutment. In order to focus on

the vertical response, the soil domain is perturbed by the vertical component of

the Tabas record. It is evident that the 2DoF system is able to follow much more

closely the response of the full soil-structure system. The SDoF system is very stiff,

because it is aimed to reproduce only the dominant vertical mode of the structure,

and this leads to a remarkable overestimation of the spectral amplitudes up to a
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Figure 6.13: Transfer functions in the vertical direction: full structure (dotted line), abutment
with SDoF macro-element (thin continuous line) and abutment with 2DoF macro-element (thick
continuous line).

period of about 1.2 s. Because of the high stiffness of the structure under exami-

nation, the response of the abutment is mainly controlled by the deformability of

the surrounding soil. Based on the above results, the bi-modal representation of the

macro-element was taken as a reference in the following simulations with a combined

longitudinal-vertical input motion.

Figure 6.15 shows the time histories of the longitudinal interaction force and the

relative Fourier amplitudes in the case of a bi-component seismic motion applied

to the base of the soil domain. The bi-directionality of the seismic motion leads

to a decrease of the maximum interaction force, compared to the mono-directional

propagation of the seismic motion (Figure 6.5), caused by the directional coupling

of the displacement field for the non-symmetric geometry of the abutment. The

macro-element reproduces pretty well the frequency content of the force Q1 but

underestimates its maximum amplitudes. Similar considerations can be inferred for

the vertical interaction force Q3, shown in Figure 6.16, but with a more detailed
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Sa,top

Sa,found

Figure 6.14: Comparison between the vertical response of the abutment with a mono-modal macro-
element and a bi-modal macro-element: 5%-damped elastic response spectra at the abutment top
(a) and at the foundation level (b) in the vertical direction.
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Figure 6.15: Time evolution of the interaction force Q1 (a) and relative Fourier spectrum (b) in
the longitudinal direction recorded at the abutment-deck contact: comparison between the full
soil-structure model and the model with macro-element.

reproduction of the maximum inertial effects.

Figures 6.17 and 6.18 depict the elastic response spectra at the deck-abutment

contact in the longitudinal and vertical direction, respectively. The spectral accel-

erations of the full model in the case of a bi-component motion decrease and, more

evidently in the vertical direction, the dominant peaks of the spectra move to larger

periods for the higher deformability of soil induced by the multi-directionality of the

seismic motion.
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Figure 6.16: Time evolution of the interaction force Q3 (a) and relative Fourier spectrum (b) in the
vertical direction recorded at the abutment-deck contact: comparison between the full soil-structure
model and the model with macro-element.
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Figure 6.17: 5%-damped elastic response spectra at the abutment top in the longitudinal direction:
comparison between the full soil-structure model and the model with macro-element.

Figure 6.18: 5%-damped elastic response spectra at the abutment top in the vertical direction:
comparison between the full soil-structure model and the model with macro-element.
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6.4 Effect of the dynamic response of the embankment

The identification procedure of the transfer tensor takes for granted that the macro-

element is an intrinsic property of a structure, not depending on the behaviour of

the soil-abutment system. In order to verify this assumption, a parametric study

on the stiffness of the embankment was carried out, varying the shear modulus of

soil of two orders of magnitude with respect to the reference case exposed so far,

while the mechanical properties of the foundation soil were kept constant. For the

sake of clarity, the longitudinal component of the Tabas record was assumed as

the input motion for all the configurations analysed. Hence, only the longitudinal

transfer function of the macro-element is considered, with the properties determined

in Section 6.3. The behaviour of the macro-element was quantified looking at its

internal force Q1, in its time evolution and frequency content, and at the spectral

accelerations of the abutment top Sa,top. Four values of the shear modulus ratio

Gemb/Gemb,ref = 0.1, 0.5, 2.0, 10.0 were analysed, with Gemb,ref the modulus of the

embankment in the reference case (Section 6.1).

From the time histories of the interaction force obtained by the full soil-structure

model, shown in Figure 6.19, it can be observed that the maximum amplitudes

increase with the stiffness of the embankment up to a factor of roughly 1.5 for

Gemb ≥ 2 · Gemb,ref . The macro-element reproduces quite well the inertial effects

transmitted to the abutment in all the configurations, even if for very stiff embank-

ments, Gemb = 10 · Gemb,ref , the equivalent system leads to an underestimation the

maximum interaction force of about 30 %. This behaviour in the time domain is

accompanied by a redistribution of the frequencies when the soil stiffness changes, as

it appears apparent in Figure 6.20: the stiffest embankment leads to a slight deam-

plification of the interaction force for frequencies lower than about 2.5 Hz, compared

to the case Gemb = 0.1 ·Gemb,ref , in favour of a sensible amplification of the inertial
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Figure 6.19: Time histories of the longitudinal interaction force at the deck-abutment contact for
different values of the embankment stiffness Gemb.
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Figure 6.20: Fourier spectra of the interaction force Q1 for a stiffness of the embankment of
Gemb = 0.1 ·Gemb,ref and Gemb = 10 ·Gemb,ref .

effects for higher frequencies.

Finally, Figure 6.21 shows the response spectra at the abutment top. There

is a good agreement between the full model and local model with macro-element,

although the model with the macro-element appears to be less sensitive to variations

of the embankment stiffness. In the full model, the dominant peak of the spectrum,

occurring at about 0.5 s, tends to disappear as the soil stiffness goes up while the

amplitudes at high frequencies increase progressively. The response of the local

model of the abutment presents the same tendency but especially the dominant

peak reduces more slowly.

In light of the above results, it can be inferred that, for common values of the

embankment stiffness, the definition of the macro-element does not depend on the

response of the soil-abutment system. Only for extremely stiff embankments the

macro-element response starts being affected by the dynamic behaviour of the em-

bankment because the deformability of the abutment becomes comparable with the

stiffness of the embankment. In these cases, the determination of the transfer func-
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Figure 6.21: 5%-damped elastic response spectra at the deck-abutment contact for different values
of the embankment stiffness.
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tions based on a global structural model only would lead to a too deformable macro-

element with moderate underestimation of the seismic actions exchanged at the deck-

abutment contact. It is worth noticing, however, that the stiffness of the reference

embankment reflects common values used in practice and therefore these extreme

cases in which sub-structuring would partially lose its effectiveness are hardly ob-

tainable.

6.5 Effect of the elastic-plastic behaviour of the foundation soil

The main concern about the assumption of a visco-elastic behaviour for the soil is

that it is completely reversible and, consequently, the post-earthquake configuration

of the structure coincides with the initial state. This is a strong assumption that

is now removed to investigate the performance of the macro-element of the bridge

structure when the soil develops permanent displacements. In the reference soil-

structure system (Section 6.3), the PDMY model (Yang et al. 2003) was adopted to

reproduce the elastic-plastic behaviour of soil, calibrated in order to have the same

initial tangent of the elastic material used so far. After the first yield, the stiffness

of the PDMY model decreases progressively until reaching the ultimate strength.

The input parameters of the PDMY model chosen for the foundation soil and the

embankment are listed in Table 6.1. The embankment presents a lower mass density

and a slightly higher stiffness because it is regarded as a partially saturated soil. For

the same reason, different parameters that control the rate of contraction and dila-

tion were assigned to the two soils, while a unique projection of the Critical State

Line on the compressibility plane was considered for both materials. The Critical

stress ratio M is instead the variable quantity in the parametric study since it is

a primary factor controlling the development of permanent strains due to shearing

in the soil, with a friction angle ranged between 30 ÷ 39 °. The structure is still
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Variable Foundation soil Embankment
ρsoil (Mg/m3) 2.243 2.039

Gr 9.5 · 104 1.15 · 105
ν 0.2 0.2
p′r 80.0 80.0
d 0.5 0.5

γd,max 0.1 0.1
φPTL 26° 26°
c1 0.045 0.013
c2 5.0 5.0
d1 0.06 0.3
d2 3.0 3.0
M 1.2÷ 1.59 1.2÷ 1.59
λc 0.02 0.02
e0 0.9 0.9
ξ 0.7 0.7
N 40 40

Tabella 6.1: Parameters of the PDMY model adopted for the foundation soil and the embankment.

assumed as a linear visco-elastic body, represented by the macro-element previously

defined (Section 6.2). For simplicity, the sole longitudinal component of the Tabas

record was employed in this study.

As a first result, consider the entire soil domain characterised by a Critical stress

ratio of 1.55 (ϕ′ = 38 °). The response of the soil-abutment model with macro-

element is compared with that of the full soil-structure system in Figures 6.22, 6.23

and 6.24. It can be observed that the displacement field of the abutment keeps being

well reproduced by the macro-element of the bridge structure, while the latter is not

able to reproduce the progressive development of the permanent internal force at

the deck-abutment contact due to the attainment of the soil strength underneath

the abutment and the pier. In fact, the plastic strains developing in the soil lead to

a different behaviour of the two foundations and, as a result, to a deformed perma-

nent configuration of the entire structure after the shaking: the relative displacement

q1,rel between the abutment and the pier foundations (Figure 6.22(b)) show that the

distance between the two element increases progressively in time from about 5 s to

15 s, in which the Tabas record attains the maximum amplitudes. These relative
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displacements are accommodated by the structure, resulting in a very similar de-

velopment of the offset in the interaction force. Note that the plastic response of

the soil has a minor effect on the frequency content of the interaction force, that

is still well reproduced by the macro-element. In the following, the development of

this permanent effect at the deck-abutment contact is analysed in detail in order to

reach a clear understanding on its relevance in the local behaviour of the abutment.

6.5.1 Soil plasticity curves of the transfer tensor

The results of the parametric study on the soil strength are concisely expressed in

terms of three output quantities of the structural system: the permanent displace-

ments of the pier and the abutment foundations, qp1,found and qa1,found respectively,

and the permanent interaction force Q1 on the abutment top in the longitudinal

direction. A normalised version of these quantities, divided by the respective maxi-

mum values, is plotted as a function of the soil strength tg(ϕ′) in Figure 6.25, from

which one can deduce some general information about the permanent effects asso-

ciated with the abutment-superstructure interaction. The trend of the permanent

interaction force with the soil strength is named soil plasticity curve of the transfer

tensor since it shows the effect of the soil plasticity on the deck-abutment interac-

tion. In other words, this curve gives a direct evaluation of the permanent effect

that should be added to the response of the macro-element. The other two curves

show the progressive increase of the permanent effects at the foundations level giving

information about the variability of the relative pier-abutment displacement after

the earthquake.

In high-strength soils, in spite of the development of important permanent forces

induced by the relative motion between pier and abutment, the absolute permanent

displacements at the foundation level are very small. The lower the soil strength,

the higher the permanent interaction force since the relative displacement increases,
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Figure 6.22: (a) Time histories of the longitudinal interaction force Q1 at the deck-abutment
contact; (b) time history of the relative displacement q1,rel between the abutment and the pier; (c)
Fourier spectra of the interaction force Q1.
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Figure 6.23: Time histories of the longitudinal displacement of the top of the abutment.

Figure 6.24: 5%-damped elastic response spectra of the longitudinal acceleration of the abutment
foundation.
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Figure 6.25: Soil plasticity curve of the macro-element.

but not in a monotonic manner because when the irreversible displacements of the

foundation soil start increasing more than linearly, tg(ϕ′) < 0.7, the interaction force

reduces with a similar gradient. This leads to assume that in the case of low-strength

soils, the plastic deformation processes occur mainly in depth, in the far field where

there is no appreciable interaction between soil and structure. Accordingly, the

seismic action that reaches the foundations result to be somewhat uniform because

limited by the soil strength, giving a modest permanent interaction force. By con-

trast, in presence of high-strength soils, the plastic displacements localise mainly

in the volume of soil that interacts with the foundations. This leads to a different

response between the pier and the abutment and, accordingly, relevant permanent

interaction forces.

By entering the soil plasticity curve with the specific friction coefficient of the

foundation soil, one can include the effect of the plastic response of soil in the re-



CHAPTER 6. A MACRO-ELEMENT OF THE BRIDGE STRUCTURE 368

sponse of the macro-element of the bridge structure. For a generic soil-structure

system, the following procedure can be utilised to determine the soil plasticity curve

without performing an exhaustive parametric study on complex soil-structure nu-

merical models. The basic hypothesis is that the shape of the soil plasticity curve and

the displacement curves does not vary in the normalised space. The identification of

these curves is based on the definition of some cardinal points illustrated in Figure

6.26. Considering a unique trend for both the foundation displacements, qa1,found and

qp1,found, and recognising that appreciable irreversible displacements of soil develop

only when the soil strength is lower than a critical value tg(ϕ′)cr, the displacement

curve can be determined by carrying out nonlinear free field site response analyses of

the soil domain (soil column) varying the soil strength. As a result, one can obtain

an estimation of tg(ϕ′)cr, starting from which the plastic response of soil becomes

much more pronounced with development of significant permanent displacements,

and of the permanent displacement associated with the lowest strength. The critical

value qadim,cr of the soil displacement can be taken in first approximation equal to

0.1÷ 0.15, consistent with the value obtained for the system under examination. In

this way, the displacement curve is completely defined. Finally, the effective value of

the permanent interaction force at the critical strength, representing the scale factor

of the soil plasticity curve, can be obtained by a sole elastoplastic analysis on the

entire soil-structure system or, in a simplified manner, it can be related to the shear

strength of the foundation soil.

6.5.2 Relevance in engineering applications

The permanent effects arising in the deck-abutment interaction can occur when

there is a coupled behaviour between the abutment and the pier foundations. The

resulting permanent forces on the abutment top are therefore proportional to the

stiffness of the structural system. The structure considered in this study is a very
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Figure 6.26: Cardinal points of the soil plasticity curve.

stiff system and consequently the permanent effects are not negligible. Hence, it

is interesting to explore the actual significance of the permanent interaction forces

in common girder bridges. In order to give a first answer, a sensitivity analysis on

the stiffness of the structure at hand was performed. In Figure 6.27, the permanent

force is plotted as a function of the stiffness of the structure, both normalised to

the respective values Q
(ref)
1,perm and h

(ref)
d,p relative to the reference configuration of

the structure. The axial stiffness of the deck hd and the bending stiffness of the

pier hp were changed separately giving the two curves shown in Figure 6.27. These

curves present a very similar trend and, as expected, the idealised system taken

as reference in this study maximises the permanent interaction force because of its

very high stiffness. For hd,p/h
(ref)
d,p < 0.6, the permanent forces start decreasing very

rapidly.

In order to make this result comparable with real girder bridges, Figure 6.28

plots the normalised permanent force as a function of the fundamental period of the

structure Tst,d. The two curves are associated with the variation of the stiffness in

the deck and in the pier, in which for each configuration the dominant period in the
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Figure 6.27: Permanent interaction force Q1 at the deck-abutment contact plotted as a function
of the normalised stiffness of the structure hd,p/h

max
d,p .

direction of the ground motion was determined, i. e. the global mode that maximise

the interaction force on the abutment top. Also in this plane, these curves show a

very similar trend in which, after a first narrow range at very low periods where the

permanent force assumes essentially a constant value, approximatively equal to that

in the reference case, the permanent effect starts decreasing more than linearly as

the period rises. In particular, focusing on the representative interval of periods for

girder bridges (shadow zone), the permanent force reduces of about 30 % at Tst,d = 1

s and 75 % at Tst,d = 3 s, making this effect much less important.

To sum up, the permanent forces at the deck-abutment contact are caused by the

development of irreversible differential displacements in the respective foundation

soils. It was found that the permanent forces cannot be reproduced by the macro-

element of the bridge structure but they can be relevant only in the case of very stiff

structural systems.
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Figure 6.28: Permanent interaction force Q1 at the deck-abutment contact plotted as a function
of the fundamental structural period Tst,d.

6.6 Different seismic scenarios

In addition to the Tabas record, the macro-element was tested in other two seis-

mic scenarios, namely Ducze (Turkey, 1999) and Denaly (Alaska, 2002) (Record

references: NGA 8165DUZCE and NGA 2114DENALY in the PEER Ground Mo-

tion Database, Section NGA-West2, https://ngawest2.berkeley.edu), chosen with a

completely different frequency content. With reference to the longitudinal motion,

the respective records were scaled in order to keep the same Arias intensity (Arias,

1970) as that of the Tabas record used in the reference analyses, equal to 12.56

m/s, and the resulting elastic response spectra are shown in Figure 6.29. The Duzce

record is characterised by a short duration and spectral accelerations localised at

high frequencies compared to the Denaly record that is instead a long motion with

a predominant period at about 1.0 s.

The time histories of the longitudinal interaction force Q1 are depicted in Figure

6.30. The Denaly scenario generates much higher interaction forces than the high
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Figure 6.29: 5%-damped elastic response spectra in the longitudinal direction of the Tabas, Duzce
and Denaly records.

frequency signal of Ducze, whose trends are in both cases well reproduced by the

macro-element placed on the abutment top. Nonetheless, the post-earthquake in-

teraction forces are of the same order of magnitude: they result equal to 421 kN

and 445 kN for the Denaly and Duzce record, respectively, and a value of 501 kN

was instead recorded for the Tabas scenario. Therefore, the permanent force on the

abutment appears mainly linked to the energy content of the seismic motion rather

than to its frequency content. In effect, the results of a sensitivity analysis varying

the Arias intensity of the three seismic records considered, not shown for brevity,

showed that the permanent deck-abutment force for the structural system at hand

increases with the square of the Arias intensity.

The displacement of the abutment top, illustrated in Figure 6.31, is much more

pronounced for the low-frequency seismic signal of Denaly, giving a permanent dis-

placement of about 0.074 m compared to 0.045 m and 0.035 m developed in the

case of the Duzce and Tabas records, respectively. In this regard, a satisfying agree-
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Figure 6.30: Time evolution of the interaction force Q1 in the longitudinal direction recorded at
the deck-abutment contact.
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Figure 6.31: Time histories of the longitudinal displacements of the abutment top.

ment can be observed between the response of the abutment in the full soil-structure

model and in the local model with macro-element, as well as in terms of spectral

accelerations acting on the deck-abutment joint, represented in Figure 6.32, and at

the foundation level, Figure 6.33. By comparing the foundation input motion with

the motion at the abutment top, it can be noticed an opposite tendency: the spectral

accelerations of Denaly are significantly amplified by the abutment response while

the motion attenuates in the case of Duzce. This might be due to the fact that the

volume of soil interacting dynamically with the abutment filters the seismic motion

according to its own dynamic characteristics and, as a result, tends to attenuate the

amplitudes at medium-high frequencies.
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Figure 6.32: 5%-damped elastic response spectra of the longitudinal accelerograms recorded at the
deck-abutment contact.

Figure 6.33: 5%-damped elastic response spectra of the longitudinal accelerograms recorded at the
abutment foundation.



CHAPTER 6. A MACRO-ELEMENT OF THE BRIDGE STRUCTURE 376

6.7 Effect of pore water pressure

Pore water pressures alter the stiffness and strength of soil and, accordingly, the

abutment response. Nonetheless, in Section 6.4 it has been demonstrated that the

macro-element can be reasonably regarded as an intrinsic property of the structure

and therefore its formulation does not depend on the degree of saturation of soil.

As an example, consider the reference configuration of the soil-structure sys-

tem shown in Section 6.3, in which now the foundation soil is assumed saturated.

The embankment was instead kept dry since, in reality, it is a partially saturated

medium. The elastic-plastic behaviour of soil was reproduced through the PDMY

model as described in detail in Section 6.5. The longitudinal component of the seis-

mic motion of Tabas was considered in the computation and the macro-element of

the structure was composed of a sole equivalent mechanical system, placed on the

abutment top in the longitudinal direction, with the mechanical properties defined

in Section 6.3.1. The efficiency of the macro-element is quantified in Figure 6.34

looking at the interaction force and the elastic response spectrum at the abutment

top. In the full soil-structure model, the presence of pore water pressures in the

foundation soil leads to a decrease of the maximum seismic actions exchanged at the

deck-abutment contact, either in terms of interaction forces or spectral accelerations.

This is mainly due to the reduction of the soil strength beneath the foundation that

limits the maximum amplitudes of the seismic motion in the soil domain, without

however an appreciable variation of its frequency content. Apart from neglecting

the development of the permanent offset of the interaction force, the response of the

local model of the abutment with macro-element reproduces with a good level of ac-

curacy of the effects above, providing a further confirmation that the macro-element

of the bridge structure is mainly dependent on the structural features only.
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Figure 6.34: Effect of the pore water pressure in soil: representation of (a) the time evolution of
the interaction force Q1, (b) the relative Fourier spectrum and (c) the 5 %-damped elastic response
spectrum in the longitudinal direction recorded at the deck-abutment contact.
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6.8 Nonlinear structural behaviour

The transfer functions composing the linear macro-element are amplitude-independent

because they are conceived to reproduce a visco-elastic response of the bridge struc-

ture. Under severe ground shaking, however, the structural response can become

markedly nonlinear and the transfer tensor needs to be modified to catch the progres-

sive modification of the dynamic characteristics of the structure with the intensity

of the ground motion. The amplitude-dependent features can be taken into ac-

count in the macro-element representation according to two approaches: the global

nonlinear behaviour of the structure can be regarded as an equivalent linear elastic

behaviour or the macro-element should be reformulated according to an appropriate

nonlinear force-displacement relationship. The former option would simply imply

that the transfer functions be reduced, keeping the same shape, as a function of

the level of mobilisation of the overall resistance of the superstructure. This can be

a useful expeditious for a prompt application of the elastic transfer tensor, keeping

the same mathematical formulation and with an immediate application in numerical

computations. However, this is an approximate manner to account for material non-

linearities, hardly applicable in case of a highly nonlinear behaviour or in presence

of lumped dissipative sources in the structural scheme, such as anti-seismic devices.

Therefore, the latter option was exploited, in which, starting from the definition of

the elastic transfer tensor, shape functions were introduced in the transfer tensor in

order to incorporate the amplitude-dependent effects.

Let us consider the reference idealised structural scheme (Section 6.3), in which

the nonlinear behaviour of the structure was introduced by using the 3D fiber-section

force-based beam-column elements with an elastic-perfectly plastic fiber material

available in the OpenSees library. An appropriate discretization of about one fiber

every 0.1 m was adopted for the cross sections of the structural members, determined
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through a sensitivity analysis varying the number of fibers in the sections. The

elastic properties of the fibers were chosen to have the same behaviour of the elastic

reference structure. A unique yield force was considered for all the fibers, equal

to 104 kN, that however gives a different global strength for the sections of the

abutment, the deck and the pier because the latter are characterised by a different

area. In detail, the abutment foundation has a cross section per unit length of 1× 5

m2, discretised in 320 fibers; the abutment wall cross section, per unit length, is

1×4 m2, with 256 fibers; the deck section presents 264 fibers placed in 1×4 m2; the

pier cross section measures 1× 5.4 m2, with 352 fibers; the 1× 5 m2 cross section of

the pier foundation per unit length has 320 fibers.

An incremental dynamic analysis was carried out perturbing the structure through

a harmonic excitation represented by imposed displacements applied to the abut-

ment and pier foundations in the longitudinal direction. The periods of the harmonic

signal ranged between 0.005 and 1.0 s, including the peaks of the elastic transfer

function. The minimum amplitude u1,el of the input motion was of 0.01 m, corre-

sponding to a linear response of the structure, while the maximum amplitude u1,max

refers to the attainment of the ultimate capacity of the system. The resulting trans-

fer functions are shown in Figure 6.35, delimiting the range in which the structural

response is elastic-plastic. The dominant peak of the elastic transfer function, at 0.01

s, rises up rapidly to an ultimate interaction force of about 1.7 · 106 kN. This value

represents the ultimate condition of the structure, associated with the activation of

a global plastic mechanism. It results to be the limit value for all the significant

peaks of the function, as demonstrated by the trends of the maximum values of the

interaction force Q1 with the amplitude u1 in Figure 6.36. All the curves tend to the

same limit value Q1,ult because it depends on the whole resistance of the structure,

that in turn is defined by the strength parameters of the structural members.
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T=T*

Figure 6.35: Nonlinear structural response: dependence of transfer function TT11 on the intensity
of the input motion.
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Figure 6.36: Nonlinear structural response: maximum interaction force Q1 plotted as a function
of the amplitude of the input motion.

6.8.1 Nonlinear macro-element

The curves shown in Figure 6.36 constitute the so-called nonlinear shape functions

of the transfer tensor that account for the amplitude-dependent effects of the in-

teraction forces at the deck-abutment contact. It can be convenient to represent

these trends in the normalised plane in Figure 6.37: the normalised interaction force

Q1,ad = Q1/Q1,ult is related to the normalised input displacement u1,ad = u1/u1,ult,

where u1,ult is the maximum amplitude of the input associated with the attainment

of Q1,ult. In this modified metric, all the curves follow a similar trend, thus a similar

way to reach failure. As a result, a unique trend can be recognised as a descriptor

of the shape function of the transfer tensor, that can be well approximated by the

hyperbole-shaped function illustrated in Figure 6.38, whose general equation reads

Q1,ad =
hTT,in · u1,ad
1 + u1,ad/a

. (6.3)
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Figure 6.37: Normalised maximum interaction force Q1,ad plotted as a function of the intensity
factor u1,ad, considering a yield internal force of 104 kN.

The coefficient a was found by imposing the passage of the curve for the point

{1, 1}, giving the following relationship

Q1,ad =
hTT,in · u1,ad

1 + u1,ad · (hTT,in − 1)
(6.4)

in which hTT,in represents the initial stiffness of the model. The effective rela-

tionship of the shape function therefore reads

Q1 =
Q1,ult

uult
· hTT,in · u1
1 + u1 · (hTT,in − 1) /u1,ult

(6.5)

that is completely defined by the specification of the initial tangent hTT,in and

the ultimate condition of the system, intended as ultimate interaction force and

corresponding input displacement.

The initial stiffness of the nonlinear macro-element can be obtained from the
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𝑄 , =
ℎ , ∙ 𝑢 ,

1 + 𝑢 , ∙ (ℎ , − 1)

Figure 6.38: Hyperbolic law of the nonlinear macro-element.

elastic transfer function as hTT,in = Q1/u1. The failure point, instead, requires the

determination of the ultimate capacity of the structure, in terms of interaction force

exchanged between the deck and the abutment, in the direction of motion. This can

be evaluated through a simple static pushover analysis of the bridge structure or by

means of an incremental dynamic analysis describing the entire development of the

shape function.

The nonlinear macro-element presents a quite versatile formulation and an easy

calibration, conceptually valid for all the degrees of freedom of the deck-abutment

contact. In the case of the reference idealised structural system, an analytical ex-

pression was found to model the amplitude-dependent effects of the inertial forces

transferred to the abutment. However, considering a generic bridge structure, a sin-

gle incremental dynamic analysis in correspondence of the dominant period of the

elastic transfer function seems to be sufficient to generate a unique nonlinear shape
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function to be combined with the elastic properties of the transfer tensor.

6.8.2 Bi-linear representation

Although its simple mathematical formulation, the hyperbolic macro-element cannot

be introduced in a finite element model of abutment as an assembly of rheological

systems but it requires the implementation of an ad hoc finite element, incorporat-

ing the transfer tensor and the nonlinear shape functions. In a simplified manner,

the macro-element could also be approximated by a bi-linear trend, shown in Figure

6.39, that is instead susceptible of a rheological representation useful in numeri-

cal modelling: the elastic transfer tensor, usually modelled as the assembly of basic

rheological systems, is combined with a fuse calibrated to reproduce the ultimate ca-

pacity of the structural system. Hence, this simplified bi-linear version is completely

defined by following the procedure described in Section 6.8.1 for the hyperbolic for-

mulation, recalled in Figure 6.40, and can be promptly employed in finite element

analyses. This solution can be particularly representative of all those cases in which

the structure is provided with devices that limit the maximum internal forces, such

as in presence of isolated-base anti-seismic devices or fuses. This alternative rep-

resentation is used in the following to validate the non-linear macro-element of the

bridge structure.

6.8.3 Validation

As a last step, the macro-element of the bridge structure is now tested in time

domain dynamic analyses on the idealised reference system in which both the soil

and the structure exhibit a nonlinear behaviour. The seismic record of Tabas, in

its longitudinal component, was taken as the reference scenario for the validation,

in virtue of its wideband frequency spectrum and extremely high energetic content.

The full soil-structure model and the local model of abutment with macro-element
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Figure 6.39: Bi-linear representation of the hyperbolic macro-element.

are compared. The performance of the abutment is quantified by the time evolution

of the interaction force at the top of the wall in Figure 6.41, that is the internal force

in the deck in contact with the abutment wall in the full model and the internal force

in the macro-element in the local model, and by the elastic response spectra at the

abutment top in Figure 6.42.

The combined nonlinear response of the soil and the structure leads to a visible

reduction of the maximum interaction forces at the deck-abutment contact of about

40 % with respect to the forces produced by a linear elastic structural system. Also

the permanent force Q1,perm undergoes a reduction of 48 % due to the full nonlinear

response that increases the global deformability of the system accommodating more

easily the differential displacements between the foundations of the pier and of the

abutment. The bi-linear macro-element provides a good reproduction of the effects

above, except for the permanent force that is however attenuated by nonlinearity.
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transfer 
tensor
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Figure 6.40: Physical representation of the bi-linear macro-element and calibration procedure.
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Figure 6.41: Time evolution of the interaction force Q1 (a) and relative Fourier spectrum (b) in
the longitudinal direction recorded at the deck-abutment contact: comparison between the fully
nonlinear soil-structure model and the model with bi-linear macro-element.
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Figure 6.42: 5%-damped elastic response spectrum of the relative accelerogram in the longitu-
dinal direction recorded at the deck-abutment contact: comparison between the fully nonlinear
soil-structure model and the model with bi-linear macro-element.
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The spectral accelerations on the abutment top, not altered by the presence of the

macro-element, are limited at a value of about 1.2 g, instead of about 1.6 g obtained

in the case of linear structural behaviour. The nonlinear structural response does not

alter the frequency content of the seismic actions exchanged at the deck-abutment

contact.

On the whole, the macro-element seems to be able to study with a good level of

accuracy the local seismic performance of a bridge abutment, considering also the

inertial effects deriving from the superstructure, with a significant gain in computa-

tional efficiency: the execution time of the nonlinear dynamic analyses on the full

soil-structure models under plain strain conditions was about 7 days each, while the

local model of abutment with macro-element run in not more than 2 days.

6.9 Macro-element for the reference multi-span girder bridge

A uni-axial elastic macro-element is here computed for the multi-span girder bridge

in Section 3.6, that constitutes the soil-structure system used for validating the

macro-elements of the soil-abutment system and of the structure. A longitudinal

seismic input was used to test the model, hence the macro-element is composed of

the sole longitudinal transfer function according to the following relationship

Q1 = TT11 · u1. (6.6)

The function TT11 was obtained carrying out dynamic simulations on the global

structural model represented in Figure 6.43. The model was implemented in OpenSees

and in SAP2000, verifying the identical response of the two representations. The

foundations of the piers and of the abutments were perturbed by a harmonic exci-

tation in a range of periods between 0.01÷ 1.5 s, in order to contain the significant

modes of the system. The resulting transfer function, provided in Figure 6.44 (dot-
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Figure 6.43: Mesh of the global structural model used to determine the transfer function TT11.

ted line), is characterised by a peculiar bi-modal response. As it was found for the

simple structural scheme in Section 6.3, the dominant peak is associated with a

combined global response, in which the higher modes of the vertical elements trigger

the dynamic axial response of the deck. The associated mass participation factor is

equal to 11.5 %, that corresponds approximately to the mass of the deck. A second

peak with lower amplitude occurs at about 0.15 s, produced by the first global mode

in the longitudinal direction. In this mode, the strong pier bends according to a first

mode shape, carrying a lower amount of the deck mass. Although the greater mass

participation, equal to 55.4 %, this mode produces a more limited effect in terms

of inertial forces transferred to the abutment, compared to the dominant peak, be-

cause the bending of the strong pier occurs at too long periods and therefore the

axial response of the deck is not activated.

These global inertial effects were reproduced in the numerical model of the abut-

ment through an equivalent two degrees of freedom system calibrated on the peaks
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Figure 6.44: Transfer function TT11 in terms of longitudinal interaction force at the deck-abutment
contact.

Figure 6.45: Mode shape of the structure at 0.05 s.
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Figure 6.46: Mode shape of the structure at 0.15 s.

of the function TT11 of the structure, with relative transfer function given in Figure

6.44 (continuous line). The masses of the equivalent model represent the modal

masses, whereas the optimum values of the stiffness were found by trial and error.



Chapter 7

Seismic performance of the

soil-bridge system

The validation of the proposed macro-element method is now presented, assuming

the response of the full soil-bridge model taken as reference in this study (Section

3.6) as the target behaviour to be reproduced.

7.1 Site response analysis

As a first evaluation of the dynamic response of the subsoil, site response analysis

of the Pantano subsoil is presented in the following. For brevity, the focus is on the

seismic record of Tabas, that is the most severe seismic scenario among the records

selected as representative of the seismic demand for the Pantano subsoil (see Se.

3.4). A three-dimensional soil column was implemented in OpenSees, representing

the soil layers in the area of the Pantano abutment located above the deconvolution

depth. Hence, the model reproduces the superficial layer of Messina GravelsMG1D

and the layers MG1 and MG2 down to a depth of 112 m. The SANISAND and

PDMY models were used to model the soil behaviour, according to the calibration

393
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described in Section 3.3.3. The ground water table is located at a depth of 30 m

from the abutment foundation, thus at the interface between the strata MG1D and

MG1. The soil domain was discretised through the SSPbrickUP elements available

in the OpenSees library to account for the coupled hydro-mechanical behaviour of

the original configuration of the Pantano subsoil.

A first gravity analysis recreated the lithostatic stress state in the soil, which

is allowed to settle under its self weight. In a second stage, periodic constraints

were assigned to the nodes at the same depth in the direction of motion. The

deconvoluted time histories of the Tabas record, shown in Section 3.5, were applied

to the nodes on the lower boundary of the column as imposed displacements. The

Joyner and Chen procedure (1975) was not employed in the application of the input

motion because the deconvoluted time histories take already implicitly into account

the deformability of the soil at greater depths.

The original configuration of the Pantano subsoil is initially taken into consider-

ation, analysing the one-dimensional propagation of seismic waves with adoption of

the SANISAND and of the PDMY constitutive models. Some insight into the multi-

directional site response of the Pantano subsoil is instead provided in Appendix 3.

7.1.1 One-dimensional site response

The longitudinal component of Tabas (fault normal) produces the displacement

time histories shown in Figure 7.1. In the first 30 m-depth, the longitudinal soil

displacements are markedly magnified compared to the base of the model, with no

significant modification of the ground motion above the ground water table. The

corresponding displacements of the ground surface after the earthquake, equal to 0.26

m, demonstrate the important role of the plastic response of the soil. By contrast,

the displacements for z > 85 m follow closely the input motion with no appreciable

permanent displacements. Therefore, the primary irreversible deformations of the
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Figure 7.1: Time histories of the longitudinal displacements at significant depths of the soil column
using the SANISAND model.

soil column localise in the layer MG1.

The above response, obtained by using the SANISAND material for the soil

elements, is compared in Figure 7.2 with the behaviour obtained with the PDMY

model. The discrepancy on the maximum displacements, occurring in the time

interval between 12÷ 15 s, is around of 10÷ 13 % for the two highest peaks. In the

second part of the signal, for t > 15 s, the response of the PDMY model presents a

moderate reduction of the displacements, especially at the ground level. The stiffer

response of the PDMY model leads to a permanent displacement equal to 0.21 m

at z = 0 m, thus equal to 80 % that computed with the SANISAND model.

The development of excess pore water pressures is concisely described by the

time evolution of the pore pressure coefficient ru = uw/σz, shown in Figure 7.3, with

uw the pore water pressure and σz the total vertical stress, recorded at the base of

the layer MG1 undergoing the highest plastic distorsions. The rise of the excess

pore water pressure is rather similar between the two models, with the greatest

gradient of the coefficient ru between 6 s and 17.5 s, corresponding to the significant
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Figure 7.2: Comparison between the responses of the SANISAND model and of the PDMY model:
time histories of the longitudinal displacements at z = 0 m (foundation level) and z = 85 m.

duration (Bommer and Martinez-Pereira 1999) of the Tabas record. In this zone,

the increase of the pore water pressure is slightly more rapid in the case of the

SANISAND model, resulting in a final value of the pore pressure coefficient equal

to 0.81 instead of 0.70 computed with the PDMY model. Hence, the effective stress

in depth reduces significantly in both cases with a consequent relevant reduction of

the shear strength of soil in the lower part of the layer MG1, that is the main cause

of the large permanent displacements recorded at the ground level.

The spectral shapes at the ground level, illustrated in Figure 7.4, reflect the

considerations above. The maximum amplitudes of the deconvoluted seismic input

(dashed line) are localised in the range of periods between 0 s and 0.8 s for the

high stiffness of the deposits below the deconvolution depth. For both models,

instead, the seismic actions at z = 0 m increase markedly for periods greater than

about 0.9 s due to the higher deformability of the upper layers. More in detail,

the PDMY model leads to a marked increment of the spectral ordinates in the

range of periods associated with the main dynamic amplification of the superficial
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Figure 7.3: Comparison between the responses of the SANISAND model and of the PDMY model:
time evolution of the pore pressure coefficient ru at z = 85 m.

deposits, between 1.3 ÷ 2.4 s. The response of the SANISAND model is slightly

longer, with a less pronounced amplification between 1.3 ÷ 2.4 s in favour of a

slightly more exalted response for larger periods. For periods lower that 0.9 s, the

PDMY model returns a moderately amplified response between 0.4 ÷ 0.7 s against

the deamplified response provided by the SANISAND model, especially at medium

to high frequencies (T < 0.5 s), hence in the spectral region where the dynamic

responses of the soil and the structure are coupled. In fact, the significant range of

periods for the superstructure is 0÷0.2 s (see Section 3.6.6) and that associated with

the vibration modes of the soil-abutment system is 0.6÷0.8 s (see Section 4.3) in the

longitudinal direction. Therefore, the PDMY model is expected to produce a more

amplified dynamic response of the structural system. These differences between the

two models of soil are however not particularly pronounced and, moreover, tend to

attenuate with depth, as demonstrated by the response spectra at the ground water

table.

The site response examined so far is relative to the effective configuration of
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Figure 7.4: Comparison between the responses of the SANISAND model and of the PDMY model:
5 %-damped elastic response spectra at (a) z = 0 m (foundation level) and (b) z = 30 m (ground
water table).

the Pantano subsoil. In the reference soil-structure system used to validate the

methodology proposed, the soil domain differs from the Pantano subsoil for the

absence of pore water pressures. This simplification was introduced to reduce the

extremely high computation times of the numerical simulations and to focus on the

dynamic response of the two macro-elements. The resulting ground motion at the

foundation level is shown in Figure 7.5. The main difference consists in a reduction of

the permanent displacement after the earthquake of about 46 %, due to the higher

shear strength of the dry soil, while the time evolution and the maximum values

of the longitudinal displacement are not particularly influenced by the presence of

pore water pressures in the soil. Accordingly, the spectral accelerations of the dry

soil, represented in Figure 7.6, result moderately magnified, especially for periods

lower than 2.4 s, with no significant alteration of the relative frequency content. It

follows that the dry subsoil in the reference soil-bridge model is expected to give a
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Figure 7.5: Comparison between the time histories of the longitudinal displacements at z = 0 m
(foundation level) of the original soil column and the dry soil domain used in the soil-structure
interaction analyses.

moderate, although not excessive, overestimation of the seismic actions that reach

the foundation level, without modifying the dynamic coupling between soil and

structure.

7.2 Different representations of the soil-abutment interaction

The validation of the macro-elements refers to the case of a mono-directional seismic

motion. In the global structural model, in addition to the macro-element of the

soil-abutment system, some other existing strategies are employed as an element of

comparison. Also the soil-foundation interaction is modelled according to different

methods, with an increasing level of complexity, from a dynamic impedance function

to the macro-element formulation proposed in the present work (see Section 5.15).

In a complementary manner, the local dynamic behaviour of the abutment is

studied by including the macro-element of the bridge structure into the soil-abutment

model. In this regard, several comparisons against existing methods have already
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Figure 7.6: Comparison between the 5 %-damped elastic response spectra at z = 0 m (foundation
level) of the original soil column and the dry soil domain used in the soil-structure interaction
analyses.

been shown in detail in Section 6.6, thus in this case the purpose of the following

application is twofold: testing the accuracy of the solution of the simplified model

with respect to the results of the full soil-bridge representation and analysing in

depth the relationship between the internal responses of the two macro-elements,

representing the core of the soil-abutment-superstructure interaction.

7.2.1 Structural model with dynamic impedance functions

The validation of the macro-elements is presented in the one-dimensional case, there-

fore a single dynamic impedance function was applied to the end node of the deck

in contact with the strong abutment. A classical Kelvin-Voight model was used to

represent the impedance function in the finite element model of the bridge structure,

depicted in Figure 7.7. Because of the lack of specific solutions for bridge abutments,

the stiffness habut of the impedance function was set equal to 50 % the modulus H(0)

of the initial elastic spring of the macro-element of bridge abutment (see Section

5.14.1), representing an effective stiffness according to the profiles of the normalised
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Figure 7.7: Global structural model with dynamic impedance functions for the soil-abutment and
the soil-foundation interaction.

shear modulus of soil obtained in Section 3.5 (the average value of G/G0 is about

0.5 in the significant depth interval for the soil-abutment interaction); the damping

coefficient cabut was instead evaluated through the solutions proposed by Gazetas

(1991) for shallow foundations, considering the same reduction of the small strain

shear modulus of soil. The model was provided with a mass equal to the first mass

of the macro-element of bridge abutment, in order to include the inertial effects

developing in the soil-abutment system at small strains (see Section 4.14.2).

In order to have a comparable level of accuracy, a longitudinal dynamic impedance

was used to reproduce the soil-structure interaction effects occurring at the founda-

tion of the strong pier as well. The latter is represented by a translational Kelvin-

Voight model placed in the longitudinal direction. The mechanical properties of the

model were evaluated by using the classical solutions proposed by Gazetas (1991)

for shallow foundations, calibrating the stiffness and damping on the fundamental

period of the superstructure in the direction of motion (longitudinal), that is equal

to 0.16 s (see Section 3.6.6). The foundation mass is assigned to the node connecting

the base of the pier to the dynamic impedance model.

The seismic input for the structural model derives from the site response analysis



CHAPTER 7. SEISMIC PERFORMANCE OF THE SOIL-BRIDGE SYSTEM 402

strong abutment

strong pier

mabut

MG1D

zint

mf

si
te

 r
e

sp
o

n
s

e

ME

ME

Figure 7.8: Global structural model with thermodynamic macro-elements for the soil-abutment
and the soil-foundation interaction.

described in Section 7.1, carried out on the Pantano subsoil in the absence of pore

water pressures. More in detail, the time histories applied to the free nodes of the

impedance models refer to the depth zint of the base of the volume of soil that

interacts with the structure. At the abutment location, the interaction depth was

set equal to the effective height of the soil-abutment system (see Section 4.3), that is

equal to zint = H + Lfound = 31 m in the longitudinal direction, with H and Lfound

the height of the wall and the length of the foundation. The interaction depth for

the pier foundation was instead assumed equal to the foundation length lfound = 6

m.

7.2.2 Structural model with macro-elements

The conceptual scheme of the nonlinear dynamic analysis of the global structural

model with macro-elements is illustrated in Figure 7.8. It follows the same pre-

scriptions on the input motion defined in the case of the application of dynamic

impedance functions. The two one-dimensional macro-elements are placed in the

direction of motion. The configurations of the two macro-elements have already

been defined in Section 5.14 and Section 5.15.
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7.3 Seismic performance of the structure

7.3.1 Foundation input motion

Consider the dynamic response of the soil-bridge model subjected to the longitudinal

component of the Tabas record. As a first result, in Figure 7.9 the seismic motion

at the level of the pier foundations obtained from the full soil-structure interaction

analysis is compared with the free field motion at the ground level; in the same

figure it is also shown the displacement time history of a node placed on the lateral

boundary of the soil domain (grey dotted line), representative of the ground motion

far from the structure. Starting from the latter, it can be observed that the seismic

response of the soil along the boundary of the soil-structure model reproduces quite

well the free field conditions (black dotted line), both in its time evolution and in the

permanent displacement after the seismic event. This response is however substan-

tially different from the seismic motion of the foundations of the strong abutment

and of the piers. Despite being of a comparable order of magnitude, the motion

of the foundations tends to accumulate irreversible displacements in the opposite

direction of that involved in the free field response. This is mainly caused by the

response of the strong abutment that, in virtue of its considerable mass partici-

pating to the dynamic response of the bridge, tends to control the displacements.

The foundation of the strong abutment undergoes a permanent displacement of 0.37

m against the value of 0.18 m recorded at the pier foundations, since the pier can

accommodate partially the displacements of the abutment with its flexural deforma-

bility. This appears evident looking at the qualitative deformed shape of the bridge

in the post-earthquake condition, illustrated in Figure 7.10. It is evident that the

two abutments move inwards, pushed by the inertial effects developing in the vol-

ume of embankment interacting with the walls. More in detail, the strong abutment

undergoes a more pronounced permanent displacement and rotation, compared to
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Figure 7.9: Foundation input motion for the abutments and the piers.

the weak abutment, for its interaction with the superstructure of the bridge. The

inertial effects arising from the dynamic response of the superstructure, in fact, are

transferred to the soil-abutment system producing an increment of the stress state in

the soil and, hence, facilitating the attainment of the soil strength. This leads to the

more marked permanent displacement of the strong abutment in Figure 7.10, that is

only in part absorbed by the strong pier. This is a crucial result because it highlights

the effect of the soil-abutment-superstructure interaction on the seismic demand of

the bridge, in terms of residual displacements. The soil-structure interaction at the

strong abutment location is therefore the result of the reciprocal exchange of inertial

forces between the superstructure and the soil interacting with the bridge that, on

one hand, increases the irreversible deformation processes in the embankment and,

on the other hand, affects the internal forces in the superstructure.

Analysing more in detail the last concept, Figures 7.11 and 7.12 show how the

spectral accelerations of the strong abutment change for its interaction with the

remaining part of the bridge structure and with the embankment. The free field



CHAPTER 7. SEISMIC PERFORMANCE OF THE SOIL-BRIDGE SYSTEM 405

Figure 7.10: Time histories of the longitudinal displacements of the pier foundations and of the
abutments top.
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response (Figure 7.11(a)) follows quite closely the amplitudes of the input motion

up to a period of 0.8 s, while a consistent amplification of the ordinates occurs

between 1.1 s and 2.5 s, that is therefore associated with the dynamic excitation of

the soil deposit. In correspondence of the pier foundations (dashed lines), a much

stiffer response is observed: a marked amplification of the spectral accelerations

happens for periods lower than about 1.0 s. The foundations of both the piers

present the greatest amplification at 0.75 s but the weak pier differs for a dominant

peak at about 0.25 s. This change in the frequency content of the foundation input

motion is caused by the interaction of the soil with the structure. A similar result

can be observed in Figure 7.11(b) referred to the foundations of the abutments, in

which however a unique well-defined range of amplification periods can be localised

between 0.5 ÷ 1.0 s. In this range, for both the abutments, the increment of the

maximum amplification is of about 17 % with respect to the pier foundations and,

consequently, it can only be due to the resonance of the embankment-abutment

system. In effect, this range has been recognised in Chapter 4 as the significant

range including the dominant responses of the soil-abutment system for small to

large strain levels.

Moving on to the top of the strong abutment, shown in Figure 7.12, the spectral

shape differs from the motion at the base only at low periods, 0.2 ÷ 0.7 s, with a

considerable increment of the spectral accelerations. The dominant period keeps

unaltered and presents a modest increase of the associated peak of about 7 %.

The noticeable increment between 0.2 ÷ 0.7 s can be directly associated with the

presence of the structural members of the central and wing walls, that are very stiff

elements emphasising the dynamic behaviour at high frequencies. The fundamental

contribution of the dynamic response of the embankment, instead, can be seen in

the spectrum computed in a node at the top of the embankment but placed in

close vicinity to the lateral boundary of the model (dashed line in Figure 7.12).
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Figure 7.11: 5 %-damped elastic response spectra at the foundation level of the piers (a) and of
the abutments (b).
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Figure 7.12: 5 %-damped elastic response spectra of the strong abutment and of the embankment.

Despite keeping the same dominant period, the corresponding spectral acceleration

increases by about 60 % with respect to the maximum spectral acceleration at the

abutment top, whereas the other regions of the spectrum shows a similar trend. This

discrepancy can be directly associated with the resonance of the embankment far

from the abutment. When the embankment starts interacting with the abutment

structure, instead, the high stiffness of the latter attenuates partially the dominant

peak, leading to a slight amplification at higher frequencies.

7.3.2 Seismic performance of the bridge

The seismic performance of the whole structure is concisely quantified looking at the

output quantities depicted in Figure 7.13. For the peculiar structural layout consid-

ered, the longitudinal seismic loading is transferred to the superstructure through the

strong abutment and the strong pier. Hence, the relative longitudinal displacement

between the top of the abutment and the top of the strong pier can be regarded as

an indicator of how the relative position between the two resistant vertical elements
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Figure 7.13: Output quantities used to quantify the effect of soil-structure interaction on the seismic
performance of the bridge.

changes during ground motion. The base of the strong pier is the other scrutiny

point of the dynamic response of the bridge, monitoring the relative internal forces,

that are the normal force Npier, the shear force Tpier and the moment Mpier along

the axis out of plane.

Referring to the propagation of the longitudinal seismic motion of the Tabas

record, Figure 7.14 shows the time evolution of the output quantities obtained with

the full soil-bridge model. In the significant time interval of the input motion,

between about 5÷ 15 s, the superstructure shows the maximum dynamic amplifica-

tion. The maximum amplitudes of the relative abutment-pier displacement in the

direction of motion are lower than 0.1 m but an irreversible contribution develops

progressively in time, giving an offset of about 0.18 m at the end of the earthquake.

As observed in Section 7.3.1, this means that the strong abutment moves inwards

the bridge, pushed by the dynamic response of the embankment, but is partially

constrained by the flexural stiffness of the strong pier, generating a permanent axial

force in the deck. The latter translates in permanent interaction forces at the deck-

abutment contact due to the nonlinear behaviour of the soil, phenomenon already

analysed in detail in Section 6.5. The flexural forces Tpier and Mpier in the strong

pier (Figure 7.14(c)) show a noticeable variation in time, with a more pronounced

permanent value after the earthquake in the case of the moment. The axial force in
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the pier instead, that is the vertical load for the foundation, undergoes minor varia-

tions with respect to the initial condition at rest: the maximum amplitudes induced

by the ground motion are somewhat limited, leading however to a moderate perma-

nent increase of Npier after the earthquake of about 37 %. For all quantities, the

maximum and permanent effects localise in the critical time interval of the Tabas

record between 5 s and 15 s.

The above results are now compared with the response of the global structural

model in which different representations are employed for the soil-abutment interac-

tion. As a first comparison, consider three structural models so defined: the global

structural model with fixed base, the model with a non-inertial impedance function

at the deck-abutment contact and with the non-inertial macro-element of bridge

abutment, both applied in the direction of motion. None of these representations

considers the participating mass of the soil-abutment system, thus no mass was

assigned to the deck-abutment contact. The corresponding relative abutment-pier

displacements urel are illustrated in Figure 7.15. It is evident that all these represen-

tations lead to an important underestimation of the relative displacements caused

by a too stiff behaviour of the deck-abutment contact. The nonlinear response of

the macro-element of abutment produces the greatest attenuation of the amplitudes

of urel without being able however to produce appreciable permanent displacements

because of the very limited plastic response at those amplitudes of the internal

force. Moreover, it is apparent that the response of the full soil-bridge model is

characterised by much longer periods compared to the response of the sub-system of

the structure, that is instead characterised by very high frequencies in the all cases

examined.

When the masses of the macro-element are activated, however, the response

changes drastically. Figure 7.16 shows the response of the macro-element of abut-

ment provided with the two masses m1 = m2 identified in Section 5.14.2, limiting
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Figure 7.14: Full soil-bridge model: (a) acceleration time history of the input motion, time histories
of the relative displacement between the strong abutment and the strong pier (b) and of the internal
forces at the base of the strong pier (c) .



CHAPTER 7. SEISMIC PERFORMANCE OF THE SOIL-BRIDGE SYSTEM 412

17 /22

Figure 7.15: Time evolution of the relative displacement between the strong abutment and the
strong pier evaluated through different representation strategies of soil-abutment interaction: struc-
ture with fixed-base, structure with non-inertial impedance function (mi = 0) and structure with
non-inertial macro-element (mi = 0) at the abutment location.

the representation to 20 s in order to focus on the critical time interval. The ampli-

tudes of the relative displacement increase considerably, becoming comparable with

the response exhibited by the full soil-bridge model. The oscillations of the relative

displacement are a bit too slow in the first part of the signal, for then following quite

well the response of the full model when the amplitudes increase. In the critical time

interval, permanent effects develop gradually in time, giving a final offset of about

0.146 m, that is equal to 67 % the final relative displacement computed on the soil-

bridge model. This discrepancy could be in part overcome through a more accurate

calibration of the mass of the macro-element, especially the second mass retrieved by

trial and error, but it can be also due to the coupled behaviour between the strong

abutment and the strong pier. For the latter, the soil-foundation interaction has

been completely neglected, with direct application of the input motion to the base

node of the pier, that could limit the permanent effects in the structural system due
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Figure 7.16: Effect of the inertial response of the macro-element of bridge abutment on the relative
displacements between the strong abutment and the strong pier.

to the soil behaviour. Some insight into this aspect will be given later, including the

macro-element of shallow foundation in the structural model. Anyway, the intro-

duction of the masses into the macro-element have noticeably improved the global

response of the structural model, confirming again the important role of the inertial

effects coming from the embankment. A much minor effect was instead observed

including the mass to the dynamic impedance function placed at the deck-abutment

contact (see Section 7.2.1), not shown herein for brevity.

The internal shear force and moment at the base of the pier obtained by applying

the inertial macro-element of abutment are shown in Figures 7.17 and 7.18, respec-

tively. It can be seen quite a good agreement with the results of the full model,

though the macro-element leads to a moderate overestimation of the internal forces

in the pier when permanent effects start arising, that could be a consequence of ne-

glecting the soil-foundation interaction. As noted for the relative displacements, the

oscillations of the internal forces associated with the use of the macro-element are

slightly longer than the actual ones and this could indicate that the mass introduced

into the macro-element is somewhat too large.
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Figure 7.17: Effect of the inertial response of the macro-element of bridge abutment on the internal
shear force at the base of the strong pier.

17 /22

Figure 7.18: Effect of the inertial response of the macro-element of bridge abutment on the internal
moment at the base of the strong pier.
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Figure 7.19: Internal force in the macro-element with and without inertial effects.

In light of the above results, the structural response is strongly influenced by the

force-displacement response of the deck-abutment contact. The relative displace-

ments of the deck, in fact, are profoundly affected by the interaction forces exchanged

between the soil-abutment system and the superstructure. The abutment-deck in-

teraction force, representing the internal force of the macro-element, is shown in

Figure 7.19. The comparison between the macro-element and the interaction force

evaluated on the full model reflects the considerations made above regarding the

alteration of the seismic performance of the structure, with a completely inappro-

priate response of the macro-element when the relative mass is set equal to zero.

The response of the inertial macro-element, instead, is magnified by its mass, leading

to a much more pronounced plastic response with development of irreversible forces

and displacements at the deck-abutment contact.

A more complete view of the soil-abutment-superstructure interaction effects can

be inferred looking at the results in Figure 7.20. The maximum values of the three

output quantities of the structure were computed for all the methods employed to
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simulate the soil-abutment interaction, that are:

� model A: full soil-bridge model (reference model);

� model B: global structural model with fixed-base;

� model C: global structural model with inertial impedance functions for the

strong abutment and the strong pier foundation;

� model D: global structural model with non-inertial macro-element of the strong

abutment;

� model E: global structural model with inertial macro-element of the strong

abutment;

� model F: global structural model with inertial macro-elements of strong abut-

ment and of the strong pier foundation.

The use of linear models (model B and C) for the soil-abutment interaction leads

to a substantial overestimation of the flexural internal forces in the strong pier

and, at the same time, to an important underestimation of the axial force in the

deck, proportional to the relative abutment-pier displacement urel, because of the

very low longitudinal forces transferred by the equivalent soil-abutment model. The

nonlinear behaviour of the non-inertial macro-element of the soil-abutment system

(model D) on the one hand reduces further the axial forces in the deck, proportional

to urel, leading to an erroneous evaluation of the final configuration of the bridge,

but on the other hand returns a significant attenuation of the internal forces in

the strong pier. The inertial macro-element of the soil-abutment system (model E)

gives a much better comparison with the response of the full model (model A) with

a net increase of the relative displacements between abutment and pier, due to the

inertial effects that magnify the soil-abutment interaction. The internal forces in the
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strong pier are still moderately overestimated, in part caused by having neglected the

soil-foundation interaction for the pier. In fact, model F, relative to a fully nonlinear

representation of soil-structure interaction in the global structural model, shows a

further decrement of the maximum forces in the pier and a moderate increase of the

relative abutment-pier maximum displacements.

The macro-element of the soil-abutment system was tested in the other three

seismic scenarios selected as representative of the No-Collapse Earthquake for the

Pantano viaduct (see Section 3.4 and 3.5). The results are shortly shown in Figures

7.21 and 7.22, as the comparison between the full soil-bridge model and the global

structural model with inertial macro-element of the strong abutment, in terms of

maximum values of the reference output quantities plotted as a function of the mean

square period Tm (Rathje et al. 1998) associated with the four seismic records. In all

cases, the structural performance is moderately emphasised by the macro-element

response, in a manner that does not seem to depend on the frequency content of the

input motion. The dynamic response of the bridge shows instead evident frequency-

dependent effects. As expected, the Tabas record is the most severe seismic scenario

for the bridge, because of its extremely high intensity and wide frequency content.

Moreover, the Tabas record leads to a higher dynamic coupling with the superstruc-

ture (first mode in the longitudinal direction at 0.16 s), but especially with the

soil-abutment system since the relative dominant responses occur between 0.6 s and

0.8 s, that can constitute another factor of amplification of the structural response.

To sum up, the macro-element of the soil-abutment system has shown good ca-

pabilities to incorporate the dynamic response of the soil-abutment system in the

global dynamic behaviour of the structure, especially compared to existing methods.

The inertial effects developing into the embankment and the nonlinear behaviour of

the soil interacting with the abutment represent a central factor in the response of

the latter, with a consequent relevant impact on the seismic performance of the su-
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Figure 7.20: Histogram of the maximum relative displacements of the deck and the maximum
internal shear force and moment in the strong pier, using different approaches for soil-structure
interaction.



CHAPTER 7. SEISMIC PERFORMANCE OF THE SOIL-BRIDGE SYSTEM 419

17 /22

Figure 7.21: Maximum relative displacements of the deck, between the strong abutment and the
strong pier, obtained for different seismic scenarios.

17 /22

Figure 7.22: Maximum internal forces at the base of the strong pier obtained for different seismic
scenarios.
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perstructure. It has been pointed out that a more accurate calibration of the mass

of the macro-element associated with higher order plastic flows might lead to more

accurate results and this will constitute a forthcoming development of the present

research.

7.3.3 Local performance of the abutment

The local performance of the strong abutment was evaluated by including the macro-

element of the bridge structure (see Section 6.9) in the local model of the soil-

abutment system. This paragraph focuses on the relationship existing between the

two complementary representations of the soil-structure interaction. The two macro-

elements of bridge abutment and of bridge structure represent two sides of the same

coin, connecting the response of the two sub-systems identified by sub-structuring,

i. e. the superstructure and the soil-abutment system. The connecting element is

right the internal response of the two macro-elements that reproduce the behaviour

of the missing part of the domain.

Considering the soil-structure models perturbed by the longitudinal component

of the Tabas record, Figure 7.23(a) shows the time evolution of the longitudinal in-

ternal force in the two macro-elements, obtained by the global structural model and

by the local soil-abutment model. The macro-element of the bridge structure (thick

continuous line) reproduces quite well the interaction force at the deck-abutment

contact, in terms of maximum amplitudes and frequency content, but, differently

from the macro-element of the soil-abutment system (dotted line), it cannot ac-

count for the progressive development of the permanent interaction forces at the

deck-abutment contact (offset with respect to the axis Q1 = 0). This limitation of

the macro-element of the bridge structure has already been pointed out in Section

6.5, showing that this effect can be relevant for very stiff structures such as that one

under examination. This effect arises from the permanent differential displacements
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Figure 7.23: Comparison between the response of the top of the abutment in the global structural
model with macro-element of the bridge abutment and in the local model of abutment with macro-
element of the bridge structure: (a) time evolution of the internal force in the two macro-elements
and (b) of the longitudinal displacement.
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Figure 7.24: 5%-damped elastic response spectra at the deck-abutment contact, evaluated through
the full soil-bridge model, the structural model with macro-element of the soil-abutment system
and the local soil-abutment model with macro-element of the bridge structure.

developing between the abutment and pier foundations, caused by the nonlinear

behaviour of soil, resulting in a deformed configuration of the structure after the

earthquake. This effect on the interaction force Q1 can be estimated, in first ap-

proximation, through the soil plasticity curve of the transfer tensor (see Section

6.5.1).

The displacement field of the abutment in the local model is well reproduced by

the macro-element of the bridge structure, concisely represented in Figure 7.23(b)

looking at the longitudinal displacement of the abutment top in the critical time

interval of the Tabas record. In the global structural model, the macro-element

of the soil-abutment system gives a modest amplification of the maximum displace-

ments, probably associated with a slightly excessive mass introduced into the macro-

element. This amplification of the displacement field leads to a longer spectral re-

sponse at the deck-abutment contact compared to the spectra obtained from the full

soil-bridge model and the local model with macro-element of the bridge structure,

depicted in Figure 7.24. As already observed before, this alteration of the significant

frequency content could be improved through an appropriate reduction of the second



CHAPTER 7. SEISMIC PERFORMANCE OF THE SOIL-BRIDGE SYSTEM 423

17 /22

Figure 7.25: Foundation input motion at the base of the abutment, evaluated through the full soil-
bridge model and in the local model of the abutment with macro-element of the bridge structure.

mass m2 of the macro-element of abutment.

As a final result, Figure 7.25 compares the foundation input motion for the strong

abutment obtained through the local soil-abutment model and that of the full soil-

bridge model, in terms of elastic response spectra. In both models, the response

spectra at the abutment foundation takes explicitly into account in the computation

the propagation of seismic waves through the foundation soils and the soil-structure

interaction. The spectral accelerations of the abutment in the local model follows

very well the spectral shape deriving from the fully coupled analysis. Only at large

periods, greater than about 4 s, the local model of the abutment presents a moderate

amplification of the spectral ordinates, that might be due to a limited overestimation

of the inertial forces in the macro-element of the structure in this range of periods,

that is completely decoupled with respect to the dominant peaks of the respective

transfer function.



Conclusions

The seismic design of a bridge requires a check of the performance of the super-

structure and of the structural elements directly in contact with the soil, in terms

of internal forces and displacements. Focusing on the soil-abutment-superstructure

interaction, a semi-direct method of analysis has been developed to this end, which

consists in the introduction of two complementary macro-elements in the two struc-

tural and geotechnical sub-systems that, through their internal response, define a

link between the superstructure and the abutment. The macro-elements are aimed

to reproduce the main features of this interaction, that are: the inertial effects, as-

sociated with a strongly frequency-dependent response, and the marked nonlinear

behaviour of the system. The procedure developed in this work leads to a drastic

reduction of the computational demand of the numerical soil-structure interaction

models.

More specifically, the two models consist of a macro-element of the soil-abutment

system, for a global analysis of the bridge structure, and a macro-element of the

bridge structure used in a local numerical model of the soil-abutment system. The

former has been developed according to a rigorous thermodynamic formulation in

which the plastic response of the model is regarded as a transition phase towards

the ultimate capacity of the system, plastic response that is modelled by the inertial

effects reflecting the dynamic characteristics of the interaction between the abutment

and the soil from small to large strain levels. Conversely, the macro-element of
424
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the bridge structure is developed using a phenomenological approach for a prompt

implementation in numerical simulations. The methodology has been implemented

in the analysis framework OpenSees. In particular, the macro-element of bridge

abutment can be used in the OpenSees framework as a new uni-axial material for

the one-dimensional problem, and as a new zero-length finite element for the general

multi-axial response.

A fully coupled soil-bridge system was used as a reference for validating the pro-

posed methodology. It showed that the soil-abutment-superstructure interaction

alters remarkably the global response of the reference bridge. The abutment, in-

cluding the soil interacting dynamically with it, generates significant inertial effects

that are transferred to the superstructure, leading to a considerably amplified re-

sponse of the latter. These large inertial forces mobilise the nonlinear behaviour

of the soil interacting with the abutment developing irreversible displacements and,

consequently, significant internal forces in the crucial components of the superstruc-

ture after severe ground shaking. On the other hand, the inertial forces transferred

by the structure to the abutment alter the stress-strain state in the soil, especially

in the backfill, favouring further the attainment of the soil strength.

At the same time, the nonlinear dynamic analyses on the entire system have

highlighted the complications associated with the use of the direct approach, that

requires very large computation times and a non-trivial control of the model imple-

mentation and interpretation of the results. In this light, the macro-elements have

represented not only an efficient analysis tool but also a method to clearly identify

the factors that affect the reciprocal interaction between the superstructure and the

abutments, leading to the definition of a calibration procedure of the two models

based on a limited number of parameters.

The amplitude and the frequency content of the inertial effects have been intro-

duced in the formulations of the two macro-elements as additional masses related



Conclusions 426

to the significant vibration periods of the sub-system considered. The study of the

dominant responses of the soil-abutment system have shown that the dynamic re-

sponse of the abutment is mainly controlled by the behaviour of the large volume

of soil interacting with it. It has been demonstrated that the closed-form analytical

solutions for the modal characteristics of the soil-abutment system allows to identify

the first mass of the macro-element, associated with the surface of first yield, that

is the most crucial component to reproduce the dominant response of the system.

Through the numerical study on the effect of the nonlinear behaviour of soil, it

has been found that the dominant periods, starting from the reversible behaviour

at small strains, increase with the intensity of the perturbation, reaching a steady

dynamic response corresponding to the activation of a global plastic mechanism. As

a result, in addition to the first mass, it has been found that a very limited number

of masses associated with the other plastic flows can be sufficient to improve the

dynamic response of the macro-element at medium and large strain levels. For the

reference case study, a sole mass has been associated with the second yield surface,

resulting of the same order of magnitude of the first mass. On the other hand, the

transfer functions of the macro-element of bridge structure can be easily calibrated

with reference to the modal analysis on a global structural model. It has been shown,

at least for the specific structural configurations examined, that the longitudinal in-

teraction forces transmitted to the abutment top are mainly controlled by the axial

dynamic response of the deck triggered by the activation of the higher modes of the

abutments and of the piers, with maximum interaction forces localised at high fre-

quencies. The vertical transfer function is instead characterised by several dominant

peaks because of the significant contribution of the flexural modes of the deck in the

vertical plane.

The nonlinear response of the macro-elements is confined by the conditions of first

yield and ultimate capacity. The latter is represented in the macro-element of the
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soil-abutment system by an ellipsoidal surface in the space of the forces exchanged at

the deck-abutment contact. The ellipsoid is highly decentralised and rotated in the

space of forces, reflecting the highly asymmetric response of the abutment. It has

been shown, through the aid of elastoplastic analyses, that the shape of the ultimate

surface can be also used to describe the first yield of the soil-abutment system under

multi-axial loading conditions. Accordingly, the entire plastic domain of the macro-

element has been conceived as a series of homothetic yield surfaces that evolve in the

space of the generalised forces according to a prescribed kinematic hardening law.

Looking at the structural response, in the case of a pronounced nonlinear behaviour

of the superstructure, the nonlinear behaviour of the macro-element has been in-

troduced in the formulation through the capacity curves of the structure, which

modify the frequency-dependent inertial forces transmitted by the superstructure as

a function of the intensity of the seismic motion. A simplified bi-linear trend for

the shape functions can be adopted for a prompt use in numerical simulations, by

simply introducing an upper bound to the internal forces developing in the elastic

macro-element. This expedient can be particularly efficient in those cases in which

the structure is provided with anti-seismic devices that limit the maximum seismic

actions in the superstructure, such as fuses and isolators.

In light of the results obtained in this work, bridge abutments seem to be less

rigid than expected. The amplified behaviour of the abutment associated with its

dominant responses and its interaction with the superstructure indicates a marked

effect of the plastic behaviour of soil on the overall response. This concept is leading

to explore the intrinsic dissipative capabilities of the soil-abutment system, regard-

less the adoption of specific anti-seismic devices. In this view, the abutment would

be guided towards the activation of some favourable dissipative mechanisms that

can represent an efficient solution to limit the seismic actions in the superstructure,

at cost of a certain amount of irreversible displacements. The integrated macro-
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element approach proposed appears as an efficient means for testing new solutions

for bridge abutments, allowing a clear definition and interpretation of the numer-

ical models. The clear identification of the plastic domain of an abutment and of

its nonlinear response points to an extension of the current principles of capacity

design of bridges, in which the dissipative behaviour of the soil-abutment system

could play a key role in controlling the seismic performance of the bridge.



Bibliography

Arya, L., and Paris, J. (1981). “A physicoempirical model to predict the soil moisture

characteristic from particle-size distribution and bulk density data.” Soil Sci. Soc.

Am. J., 45, 1023-1030.

Baldi, G., Bellotti, R., Ghionna, V., Jamiolkovski, M., and Pasqualini, E. (1985).

“Penetration Resistance and Liquefaction of Sands.” Proc. XI ICSMFE , San Fran-

cisco, 4, 1891-1896.

Been, K., and Jefferies, M. G. (1985). “A state parameter for sands.” Geotechnique,

35(2), 99-112.

Bienen, B., Byrne, B. W., Houlsby, G. T., and Cassidy, M. J. (2006). “Investigating

six-degree-of-freedom loading of shallow foundations on sand.”Geotechnique, 56(6),

367-379.

Bolton M.D. (1986). “The strength and Dilatancy of Sands.” Géotechnique, 36(1),
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Chapter 8

Appendix 1: dissipative abutments

Dissipative abutments can constitute an important source of energy dissipation for

a bridge. In Chapter 2 it has been seen that local and global mechanisms have been

analysed in recent years, in order to mitigate the displacement field induced by a

seismic event or to dissipate energy. Focusing on the latter purpose, the anti-seismic

expedients usually aim to localise dissipation in the backfill or in the abutment

structure. Friction geogrids have been vastly studied as fiber-reinforcements for the

backfill while an ad hoc design of the backwall, with a limited yielding compared

to the other structural elements of the abutment and the soil, and the adoption of

dissipative shear keys can be regarded as a fuse that activates under large seismic

forces transmitted by the deck. All these design solutions are conceived to em-

phasise the effects associated with a sole plastic mechanism occurring in a specific

direction of loading, typically that induced by the longitudinal force coming from

the deck and pushing the abutment against the backfill. In Section 5.9.1 it was

demonstrated, however, that the three-dimensionality of the deck load can involve a

much higher capacity of the soil-abutment system with a possible loss of efficiency

of the anti-seismic technology adopted. Without the use of specific anti-seismic de-

sign solutions, in the following the intrinsic dissipative features of the soil-abutment
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system are investigated, interpreting them in the light of the framework established

for the capacity of bridge abutments under multi-axial loading conditions.

In some cases a controlled yielding of the abutment structure may produce

favourable effects, dissipating seismic energy and limiting the seismic actions into

the superstructure. In fact, the abutment could be designed by taking expressly

into account its dissipative features, guiding the yielding towards ductile plastic

mechanisms, at the cost of accepting a certain amount of irreversible displacements

compatibly with the performance levels prescribed for the bridge. In this view, the

entire soil-abutment system would be conceived as a dissipative part of a bridge,

with a potential relevant impact on the seismic performance of the structure since

the strong interaction of the abutment with both the soil and the superstructure.

Combined soil-abutment failure

The preliminary results of a study on the dissipative capabilities of bridge abut-

ments and their influence on the structural performance are presented, focusing on

the potential combined soil-structure mechanisms obtained through limit analysis

solutions using the software Optum G2 and Optum G3. The combined mechanisms

are initially investigated for abutments with shallow foundations for then analysing

the effect of the plastic behaviour of deep foundations. Afterwards, a topology op-

timisation of the plastic volume of soil is presented, intended as a global isolation

technique for the soil-abutment system.

Abutments with shallow foundations

In order to explore the possibility to have a combined soil-structure failure, a rigid-

perfectly plastic behaviour was assumed for the abutment. Each structural member

was designed by application of limit state design, allowing the structure to yield un-
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Group Config. 5 Config. 6 Config. 7
C32/40 C45/55 C20/25

cabut (MPa) 8.0 11.0 5.0
µabut 1.428 1.428 1.428

Tabella 8.1: Constitutive parameters of the equivalent Mohr-Coulomb failure criterion associated
with the abutment.

der severe ground shaking. The Mohr-Coulomb failure criterion was assigned to all

the elements of the abutment and the piles, as a linear approximation of the failure

criterion due to shearing for reinforced concrete members proposed by Pujol et al.

(2016). This is a further development of the classical linear criterion used to estimate

the shear strength of concrete cylinders proposed by Richart et al. (1929). In the

Pujol’s method, the effects of the longitudinal and transverse reinforcement are esti-

mated through a simplified formulation based on the interpretation of Mohr circles

at failure due to shearing. The resulting nonlinear criterion was approximated by a

linear relationship in the significant range of stress for the problem at hand in order

to get the equivalent properties to be assigned in Optum. Three different mechan-

ical properties of the abutment section were taken into consideration, reported in

Table 8.1, referred to different classes of concrete, expressed in European standards.

The strength parameters of soil are µsoil = 0.577 and csoil = 0 kPa for all the cases

above. In Optum, the walls and the foundation were modelled as solid elements in

order to account for the effective geometry of the abutment and, therefore, for the

local attainment of strength in the structure. The contact surfaces between soil and

abutment were modelled as shear joints in Optum G2 and through thin layers of

solid elements in Optum G3, with appropriate strength parameters.

Referring to two-dimensional modelling, Figure 8.1 compares the surface of ulti-

mate loads of the rigid abutment taken as reference in Section 5.9.1.1 (µsoil = 0.577)

with that computed for the plastic abutment of Config. 5 (Table 8.1), for a bi-axial

load coming from the deck. It can be observed that the failure surface corresponding
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to a plastic behaviour of the abutment follows the ellipse relative to a rigid abut-

ment on the left side of the graph (Q1<0) while it shows lower values on the right

side (Q1>0), where the capacity becomes maximum. This reduction is due to the

mobilization of the abutment strength according to two different mechanisms, whose

activation in turn depends on the ratio of the external load Q3/Q1, as highlighted

by the deformed shapes in Figure 8.1. When the external force is nearly vertical,

for ratios Q3/Q1 greater than 3, the structural strength is attained in the footing

close to the joint with the stem. Starting from this point, the sliding surface divides

into two branches, directed downstream and upstream, for a global mechanism rep-

resenting a combined failure of bearing capacity of the footing and mobilization of

the passive resistance in the embankment, conceptually similar to that shown for a

rigid abutment (Figure 5.8). When the longitudinal component of the external force

is dominant compared to the vertical force, instead, a plastic hinge forms at the

base of the abutment wall, with rotation of the stem and mobilization of the passive

resistance in the backfill. The sliding surface starts in correspondence of the plastic

hinge for then extending into the embankment, without involving the response of the

soil underneath the foundation. Hence, the plastic response of the abutment seems

to play a relevant role on the capacity for high external forces directed downwards

and towards the backfill, leading to a significant contraction of the ultimate surface.

This result is valid also for different strength properties of the abutment, as

illustrated in Figure 8.2(a). The failure points can be still described by an ellipse

whose maximum capacity increases with the abutment strength, the latter occurring

for the same ratio of the bi-axial load (Q3/Q1 = 3). As done for the case of a rigid

abutment, a convenient strategy to calibrate the ellipse is to represent the loci in a

normalised plane, shown in Figure 8.2(b). In this plane, a unique locus describes the

combined soil-structure failure and the two constitutive parameters, the maximum

capacity Qmax and the orientation of the ellipse δ, can be calibrated as follows. The



Appendix 1 445

Figure 8.1: Combined soil-abutment failure: ultimate locus in the Q1 − Q3 plane considering a
rigid-perfectly plastic abutment (µsoil = µint = 0.577; cabut = 8000 kPa; µabut = 1.428).

 

Figure 8.2: (a) Coupled soil-structure failure for different values of the abutment strength and (b)
normalised representation of the failure loci.
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change in orientation ∆δ with respect to the locus for rigid abutment can be taken

equal to 4°, at least for the systems under examination, while Qmax is a function

of the abutment strength. More specifically, a combined failure occurs when the

bending moment acting in the section at the base of the abutment wall ME is at

least equal to the moment of resistance MR. The former can be simply evaluated

through the following expression

ME = Q1,max ·H − Sp · hp (8.1)

in which Q1,max is the longitudinal component of Qmax when the abutment is

considered as a rigid body and Sp is the longitudinal force produced by the earth

pressure, considering the passive resistance in the backfill fully mobilised and applied

at a distance hp = 0.3·H from the base of the wall. In the range of the ratioMR/ME

explored in this study, from 1 down to a value of 0.3, the results showed that the

maximum capacity Qmax/Q
rigid
max , normalised to the value Qrigid

max obtained for rigid

abutment, varies with the ratio MR/ME according to the following expression

Qmax/Q
rigid
max = 0.7906 ·MR/ME + 0.2, 0.3 ≤MR/ME ≤ 1.0 (8.2)

that defines the size reduction of the admissible domain.

The effective three-dimensional geometry of the abutment however mitigates the

reduction of the capacity observed above, as shown by the ultimate surface related

to three-dimensional conditions in Figure 8.3. The structural failure is attained in

the same region identified for the 2D case but the compact shape of the abutment,

transverse aspect ratio H/Ltr equal to 0.77, confers a higher strength to the whole

structure. This consideration is confirmed by the mechanism shown in Figure 8.4 in

correspondence of the maximum capacity: conversely to the 2D failure with forma-

tion of a plastic hinge at the base of the stem, the 3D failure happens for formation
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Figure 8.3: Comparison between the soil-abutment failure surface obtained through two-
dimensional models (dashed lines) and the surface relative to three-dimensional models (continuous
lines).

of two cylindrical plastic hinges along the central wall, that are lateral hinges curved

by the presence of the wing walls. The abutment under examination is however a

very compact structure and the transition from this case to plain strain conditions,

obtained for a high value of the transverse aspect ratio, would lead to a gradual

decrease of the capacity.

Abutments with deep foundations

As done for the abutment structure, the plastic behaviour of piles was described by

means of an equivalent Mohr-Coulomb criterion (Pujol et al. 2016). The piles are

made up of reinforced concrete and were modelled as solid elements in Optum G3,

in order to reproduce the effective plastic flow of the soil between the piles and to

detect the local mobilisation of the structural strength along the shaft. The class

of the conglomerate is C20/25, as typically adopted for deep foundations, and the
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Figure 8.4: Three-dimensional soil-abutment mechanism in correspondence of the maximum ca-
pacity: three-dimensional (a) and plan (b) view of the deformed shape.

reinforcement is designed by application of standardised procedures. The equivalent

cohesion and angle of shearing resistance are equal to 5000 kPa and 55°, respectively.

The soil-pile interface was modelled through thin layers interposed between soil and

structure: the piles were surrounded by interface layers whose thickness was set

equal to 5 times the median diameter D50 of soil (Tehrani et al. 2016).

Figure 8.5 shows how the ultimate surface of an abutment with deep foundation

can be still determined through the model proposed: the capacity of the reference

rigid abutment with shallow foundation (Section 5.9.1.1) is compared with that

relative to the same abutment but with the presence of a pile group, for two different

slenderness ratios Lp/Dp of the pile, equal to 18.5 and 5.0. The normalised interaxes

of the pile group in the longitudinal and transverse direction are ilong/Dp = 3.5 and

itr/Dp = 3.3, respectively. It is evident that the piles do not change the shape of the

ultimate surface but they confer a higher capacity to the abutment. The capacity
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increases with the slenderness ratio, especially in the region where the abutment

exhibits the maximum capacity, and also a slight rotation of the ellipse occurs with

respect to the case of shallow foundation. Looking at the plastic mechanisms in

correspondence of the maximum capacity (Figure 8.5), for the long pile mechanism

the strength of the piles is completely attained in proximity of the joint with the raft,

while the depth of the second plastic hinge depends on the row considered, because

the yielding moment of the pile is a function of the axial load acting in it. The higher

the axial load in the pile, the deeper the plastic hinge, which is in accordance with

the results obtained by Callisto and Rampello (2013). For stubby piles (Lp/Dp = 5)

instead, an intermediate mechanism occurs in which the raft and the piles behave

as a more massive shallow foundation: the sliding surface passes through the first

two rows for then extending into the soil. Because of its ductility, flexural yielding

in the piles can be regarded as a favourable dissipative mechanism with respect to

the shear mechanism observed for an abutment with shallow foundation subjected

to high load ratios Q3/Q1 > 3.

The presence of the transverse force Q2, in addition to the other two components

of the deck load, leads to a contraction of the ultimate locus in the plane Q1−Q3, as

illustrated in Figure 8.6. Although the reduction of capacity is more pronounced in

the case of long piles, the percentage reduction is nearly identical between the two

cases. This behaviour is conceptually identical to that observed for an abutment

with shallow foundation, that confirms the validity of the formulation proposed to

describe stability of bridge abutments.

The results shown in this paragraph are aimed at taking into consideration the

possibility to admit a plastic response of the structural members, as an additional

source of energy dissipation under earthquake loading. In fact, an appropriate cal-

ibration of the abutment resistance, compared to that of the soil, can lead to a

favourable contraction of the ultimate surface in order to control the maximum
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Figure 8.5: Three-dimensional failure of an abutment with deep foundation: surface of ultimate
loads for a rigid abutment founded on a shallow raft (continuous line), a group of short piles with
Lpile/Dpile = 6.0, Lpile/H = 1.4 (dotted line) and a group of long piles with Lpile/Dpile = 18.5
and Lpile/H = 3.4 (dashed line).
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Lp / Dp = 18.5

Lp / H = 4.0

Lp / Dp = 5.0

Lp / H = 1.4

Figure 8.6: Comparison between the abutment founded on short piles and on long piles: traces
of the surface of ultimate loads in the Q1 − Q3 plane, for different levels of the transverse force
applied to the abutment top.
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seismic actions transmitted to the deck. The mobilization of a global mechanism

under dynamic conditions is temporary and therefore it does not necessarily lead

the abutment to failure but it implies a progressive accumulation of displacements

that have to be compatible with the performance levels prescribed for the bridge. It

has been demonstrated that all the mechanisms examined so far can be described

by the ellipsoidal ultimate surface defined for a rigid abutment, in which in this

case the dimension of the ultimate locus depends also on the structural strength.

Accordingly, the macro-element of bridge abutment can represent a useful tool for

a prompt evaluation of these dissipative effects on the global performance of the

bridge, that will constitute one of the next steps of the present research.

Piles detached from the raft

In the case of abutments with deep foundations, the seismic actions transmitted to

the superstructure can be limited by inserting a frictional device into a piled foun-

dation, at the contact of the piles with the connecting cap. This allows a controlled

sliding when the seismic forces reach a given critical value, that should be chosen to

provide a desired seismic performance of the structure. This type of dissipative foun-

dation has recently been adopted for the towers of two long-span bridges, namely the

Rion Antirion cable stayed bridge in Greece (Pecker 2003) and the Izmit Bay sus-

pension bridge in Turkey (Zhang et al. 2013). For the specific case of the Izmit Bay

suspension bridge, the dynamic behaviour of the frictional foundations were evalu-

ated with a series of coupled dynamic analyses of a three-dimensional soil-structure

numerical model carried out by Gorini and Callisto (2015) and Callisto and Gorini

(2017). Afterwards, a more general conceptual framework was found by Gorini and

Callisto (2016, 2018) for the seismic performance of this type of friction dissipative

foundation. It was shown that the adoption of a frictional contact between the

foundation and the underlying soil can lead to an efficient seismic control of the
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Figure 8.7: Influence of the friction angle ϕint,diss of the dissipative soil-pile interface on the
capacity of the soil-abutment system, for two values of the slenderness ratio of the piles Lp/Dp

equal to 5.0 (short piles) and 18.5 (long piles).

structure, limiting the maximum accelerations transmitted to the superstructure,

provided that the properties of the frictional contact are appropriately calibrated

considering the dynamic characteristics of the entire soil-structure system.

This solution might be conceptually employed also in the case of a bridge abut-

ment as a base isolation system for the foundation. In this view, consider a frictional

interface interposed between the piles and the raft, characterised by a friction angle

ϕint,diss. Figure 8.7 shows the envelopes of the ultimate surfaces of the abutment,

evaluated by the limit analysis solutions in Optum G2, for the two reference slender-

ness ratios of the piles of 5.0 (short piles) and 18.5 (long piles) and considering dif-

ferent values of the friction angle of the dissipative interface ϕint,diss = 30°, 20°, 10°.

The most evident result is that, for a given friction angle of the dissipative interface,

the corresponding limit surface does not depend significantly on the slenderness ratio
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Qmax

Figure 8.8: Deformed shape of the central section of the soil-abutment model obtained for a
friction angle along the soil-pile interface of 10° and in correspondence of the maximum capacity
Q3/Q1 = 3.

of the piles. This can be explained looking at the deformed shape, in correspondence

of the maximum capacity Qmax and for a friction angle ϕint,diss = 10°, represented

in Figure 8.8: the strength is mobilised along the frictional interface and the piled

foundation is not involved in the plastic mechanism. When the friction angle of the

soil-pile interface is equal to that of the soil, ϕint,diss = ϕsoil = 30°, the ultimate

surface in the case of long piles is essentially identical to that obtained for the short

piles, which in turn exhibits the same capacity as the abutment with fully connected

piles. In this case, for the short piles, the angle of friction at the pile-base contact

is too large to modify substantially the global plastic mechanisms. Hence, if the use

of a dissipative interface is aimed to reduce the seismic forces transmitted to the

structure, it appears more effective in the case of long piles. Moreover, the effect of

the friction interface is confined to values of the load ratio Q3/Q1 close to the max-

imum capacity and, even for very low friction angles, the gain in terms of reduction

of the capacity is however limited, as shown in Figure 8.9. This happens because,

differently from a foundation, the global mechanisms of a bridge abutment, such as

that in Figure 8.8, involve a large volume of soil upstream and downstream the abut-

ment. It follows that the capacity associated with the attainment of a global plastic
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Figure 8.9: Maximum capacity of the soil-abutment system plotted as a function of the friction
coefficient of the soil-pile interface.

mechanism is only to a lesser extent influenced by the soil-foundation contact.

On the basis the above results, a new technique was developed for a better seismic

isolation of the abutment system, as recounted in the following paragraph.

Technique of the isolated volume of soil

The previous experience have given evidence that a sole dissipative interface placed

underneath the foundation has an appreciable, although not relevant, effect only for

load ratios close to the maximum capacity. As noted before, this is due to the partic-

ipation of a large volume of soil upstream and downstream the abutment in a global

plastic mechanism whose contribution on the overall resistance is much higher than

that associated with the weak interface between soil and foundation. This result

constituted the starting point for a new anti-seismic solution based on the concept

of base isolation. The idea is to limit the seismic actions transferred to the super-

structure through the isolation of the significant volume of soil that interacts with

the abutment under multi-axial loading conditions. The isolation is accomplished
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by a series of weak interfaces introduced opportunely into the soil, characterised by

a sufficient low angle of shearing resistance, that activate the desired plastic mecha-

nisms under seismic conditions. The full attainment of the strength in the soil can

be deemed as a favourable dissipating energy mechanism for a structure for its high

ductility and because it prevents damage in the structural members. The prelim-

inary results of this development, obtained with the aid of numerically-evaluated

limit analysis solutions, are presented focusing on the capability of the solution to

control the capacity of the soil-abutment system.

Consider the reference two-dimensional soil-abutment system in Section 5.9.1.3.

The global plastic mechanisms of this system are shown in Figure 8.10, for different

load ratios Q3/Q1 belonging to the zone of the ultimate surface of major interest for

this study. Two regions of the ultimate surface can be identified as characterised by a

different mobilisation of the whole resistance. The demarcation point is represented

by the maximum capacity Qmax, obtained for a load ratio equal to 3, at which a

combined mechanism occurs with the concomitant attainment of the bearing capac-

ity of the foundation soil and the passive resistance in the embankment. For lower

load ratios the capacity of the soil-abutment system is essentially controlled by the

passive resistance in the embankment, whereas for greater load ratios the embank-

ment is marginally involved in the mechanism, because the relevant contribution to

the whole resistance is given by the passive resistance of the soil downstream due to

the attainment of the bearing capacity of the foundation.

As a result of a study of topology optimisation of the isolated volume of soil,

here omitted for the sake of conciseness, the best solution is represented by the

configuration illustrated in Figure 8.11. The goodness of the solution was judged

in terms of reduction of the capacity of the system in a wide range of load ratios,

preserving at the same time a reasonable implementation in real structures. The

geometry of the isolated volume is composed of two shear interfaces placed behind
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Q3/Q1=1

Q3/Q1=2

Q3/Q1=3

Q3/Q1=8-10

Q3/Q1=4

Q3/Q1=5

Q3/Q1=6

Figure 8.10: Global plastic mechanisms for the reference rigid abutment varying the load ratio
Q3/Q1.
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Qmax

𝛽pass

𝛽pass

𝛽pass

zm
𝛽pass

dmax

sliding surface at the maximum capacity

proposed isolation technique (int,diss< soil)

Q3/Q1>3

Q3/Q1=3

Q3/Q1<3

Figure 8.11: Geometry of the optimised isolation-based solution proposed for the soil-abutment
system.

the abutment wall and a shear interface downstream. These weak interfaces act as

sliding surfaces, characterised by a friction angle lower than that of the soil. Their

inclination is equal to the inclination of the sliding surfaces of the soil in passive limit

conditions. This is due to control the activation of the plastic mechanisms occurring

in all the range of the load ratio where the abutment capacity shows the maximum

values. More specifically, the outermost weak interface behind the wall is aimed to

control the mechanisms in close proximity of the maximum capacity, while the second

weak interface placed on the soil-foundation contact and extending behind the wall

should activate for lower load ratios Q3/Q1 < 3 in which the plastic mechanism

is closer to the abutment structure. The weak interface placed downstream the

footing serves instead to limit the capacity for high vertical forces compared to the

longitudinal one.

For an angle of shearing resistance equal to ϕint,diss = 0.5·ϕsoil = 15°, the resulting

envelope of the ultimate surface is shown in Figure 8.12. It can be noticed a relevant

reduction of the capacity in a very wide range of the load ratio, as demonstrated by

the variability of the capacity with the angle ψ of the resultant external force depicted
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in Figure 8.13. The maximum reduction of the capacity is more than 60 %, kept

in the interval of ψ between 70° and 225°. As expected, the corresponding plastic

mechanisms (Figure 8.12) consist in a combined sliding between the three weak

surfaces, depending on the load ratio. In correspondence of the maximum capacity,

the two outermost weak interfaces activate, while the strength of internal one is

mobilised for lower values of the load ratio. For Q3/Q1 > 3, only the downstream

shear interface is needed to control the capacity. The isolated volume preserves

however a moderate safety factor associated with the abutment stability under static

conditions since, in the Q1−Q3 plane, the origin of the axes is well contained in the

ultimate surface.

To sum up, this is just a preliminary result of an ongoing research, showing the

capability of the proposed global isolation technique to reduce the capacity of the

soil-abutment system and, accordingly, the seismic actions that can be transmitted

to the superstructure of the bridge. Moreover, the isolated volume preserves the

abutment itself from structural damage, at cost of greater permanent displacements

developing along the weak interfaces that require the adoption of a performance-

based design for the abutment. Therefore, the forthcoming developments of this

study will consider the three-dimensional geometry of the abutment system and the

definition of a calibration procedure of the strength parameters of the weak inter-

faces, as a function of the soil strength. It has been demonstrated that the ultimate

conditions of the abutment with isolated volume of soil can be still predicted by

the general formulation defined in Section 5.9.1.6, and therefore further investiga-

tions will be performed to examine the response of the system far from failure. In

this view, the macro-element of bridge abutments would represent the fundamen-

tal method to test this technique in the global structural behaviour, for a proper

quantification of its effects on the seismic performance of the whole structure.
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Q3/Q1=2

Q3/Q1=3

Q3/Q1=4

Q3/Q1=5

Q3/Q1=6

Q3/Q1=8-10

Q3/Q1=1

Figure 8.12: Global plastic mechanisms for the base isolated soil-abutment system varying the load
ratio Q3/Q1.
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Figure 8.13: Comparison between the capacity of the reference soil-abutment system and that of
the base isolated soil-abutment system: capacity of the abutment (a) and capacity reduction factor
(b) plotted as a function of the angle ψ = arctg(Q3/Q1) of the resultant external force on top.



Chapter 9

Appendix 2: incremental response

of the macro-element for bridge

abutments

As mentioned before, the macro-element can be modelled in a numerical model of

the bridge structure as an intrinsically inertial finite element, considering the inertial

effects of the masses in its incremental response, or as a non-inertial finite element

with masses modelled explicitly in the global model of the bridge. Following the

latter option, the incremental response of the 3 degrees of freedom macro-element

would read

Q̇
(ext)
i = H

(0)
ij ·

[
q̇j −

N∑
n=1

λn ·
∂ygn

∂χ
(n)
i

−S
(
Q

(ext)
i

)
·

N∑
n=1

R(n) · λn ·
∂ygn

∂χ
(n)
i

]
. (9.1)

Neglecting the contribution of ratcheting (R(n) = 0) and substituting Eqs. 5.183,

5.184, 5.185, 5.186, 5.187 and 5.188 into Eq. 9.1, the latter becomes

462
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(9.2)

in which the general expression of the n-th plastic multiplier is developed as

follows
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The expressions of the plastic multiplier (Eq. 9.3) and of the gradient associated

with the n-th yield surface give the incremental response of the 3 degrees of freedom

macro-element. The gradient of the n-th yield surface is recalled here below
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·sin (δ) · S(χ(n)
3 ). (9.6)

From Eq. 5.114 (global balance equation), it derives that the external forces Q̇i

are exactly equal to the internal forces Q̇
(n)
i when the masses are set equal to zero.

Accordingly, the rate of the three interaction forces Q̇i at the deck-abutment contact

read

� rate of the longitudinal force Q̇1

Q̇1 = function(q̇j) = H
(0)
11 · q̇1 −H

(0)
11 ·

N∑
n=1

λn ·
∂ygn

∂χ
(n)
1

= H
(0)
11 · q̇1−

−H(0)
11 ·

N∑
n=1

{
Q̇1 ·

[
S(χ

(n)
1 ) ·

(
χ
(n)
3 − c

(n)
3

)
·

(
1

a
(n)2
M

− 1

a
(n)2
m

)
· cos (δ) · sin (δ)+

+S(χ
(n)
1 ) ·

(
χ
(n)
1 − c

(n)
1

)
·

(
sin2 (δ)

a
(n)2
M

+
cos2 (δ)

a
(n)2
m

)]
+

+Q̇2 ·
S(χ

(n)
2 )

a
(n)2
i

· χ(n)
2 +

+Q̇3 ·

[
S(χ

(n)
3 ) ·

(
χ
(n)
1 − c

(n)
1

)
·

(
1

a
(n)2
M

− 1

a
(n)2
m

)
· cos (δ) · sin (δ)+

+S(χ
(n)
3 ) ·

(
χ
(n)
3 − c

(n)
3

)
·

(
cos2 (δ)

a
(n)2
M

+
sen2 (δ)

a
(n)2
m

)]}
/

/

{
2 ·

(
1

a
(n)4
M

+
1

a
(n)4
m

− 2

a
(n)2
m · a(n)2M

)
· cos2 (δ) · sen2 (δ) ·
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·
[
H

(n)
11 ·

(
χ
(n)
3 − c

(n)
3

)2
+H

(n)
33 ·

(
χ
(n)
1 − c

(n)
1

)2]
+

+4 ·
(
χ
(n)
3 − c

(n)
3

)
·
(
χ
(n)
1 − c

(n)
1

)
· cos (δ) · sen3 (δ) ·

(
H

(n)
11

a
(n)4
M

− H
(n)
33

a
(n)4
m

)
+

+4 ·
(
χ
(n)
3 − c

(n)
3

)
·
(
χ
(n)
1 − c

(n)
1

)
· cos3 (δ) · sen (δ) ·

(
−H

(n)
11

a
(n)4
m

+
H

(n)
33

a
(n)4
M

)
+

+
4

a
(n)2
m · a(n)2M

·
(
χ
(n)
3 − c

(n)
3

)
·
(
χ
(n)
1 − c

(n)
1

)
·
(
H

(n)
11 −H

(n)
33

)
· cos3 (δ) · sen (δ)+

+
4

a
(n)2
m · a(n)2M

·
(
χ
(n)
3 − c

(n)
3

)
·
(
χ
(n)
1 − c

(n)
1

)
·
(
−H(n)

11 +H
(n)
33

)
· cos (δ) · sen3 (δ)+

+2 · H
(n)
22

a
(n)4
i

· χ(n)2
2 +

+2 ·H(n)
11 ·

(
χ
(n)
1 − c

(n)
1

)2
·

[
sen2 (δ)

a
(n)2
M

+
cos2 (δ)

a
(n)2
m

]2
+

+2 ·H(n)
33 ·

(
χ
(n)
3 − c

(n)
3

)2
·

[
cos2 (δ)

a
(n)2
M

+
sen2 (δ)

a
(n)2
m

]2 ·

·

{[(
χ
(n)
3 − c

(n)
3

)
· cos (δ) +

(
χ
(n)
1 − c

(n)
1

)
· sin (δ)

]
· 2

a
(n)2
M

· sin (δ) ·
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·S(χ(n)
1 ) +

[
−
(
χ
(n)
3 − c

(n)
3

)
· sin (δ) +

(
χ
(n)
1 − c

(n)
1

)
· cos (δ)

]
·

· 2

a
(n)2
m

· cos (δ) · S(χ(n)
1 )

}
(9.7)

� rate of the transverse force Q̇2

Q̇2 = function(q̇j) = H
(0)
22 · q̇2 −H

(0)
22 ·

N∑
n=1

λn ·
∂ygn

∂χ
(n)
2

= H
(0)
22 · q̇2−

−H(0)
22 ·

N∑
n=1

{
Q̇1 ·

[
S(χ

(n)
1 ) ·

(
χ
(n)
3 − c

(n)
3

)
·

(
1

a
(n)2
M

− 1

a
(n)2
m

)
· cos (δ) · sin (δ)+

+S(χ
(n)
1 ) ·

(
χ
(n)
1 − c

(n)
1

)
·

(
sin2 (δ)

a
(n)2
M

+
cos2 (δ)

a
(n)2
m

)]
+

+Q̇2 ·
S(χ

(n)
2 )

a
(n)2
i

· χ(n)
2 +

+Q̇3 ·

[
S(χ

(n)
3 ) ·

(
χ
(n)
1 − c

(n)
1

)
·

(
1

a
(n)2
M

− 1

a
(n)2
m

)
· cos (δ) · sin (δ)+

+S(χ
(n)
3 ) ·

(
χ
(n)
3 − c

(n)
3

)
·

(
cos2 (δ)

a
(n)2
M

+
sen2 (δ)

a
(n)2
m

)]}
/

/

{
2 ·

(
1

a
(n)4
M

+
1

a
(n)4
m

− 2

a
(n)2
m · a(n)2M

)
· cos2 (δ) · sen2 (δ) ·

·
[
H

(n)
11 ·

(
χ
(n)
3 − c

(n)
3

)2
+H

(n)
33 ·

(
χ
(n)
1 − c

(n)
1

)2]
+
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+4 ·
(
χ
(n)
3 − c

(n)
3

)
·
(
χ
(n)
1 − c

(n)
1

)
· cos (δ) · sen3 (δ) ·

(
H

(n)
11

a
(n)4
M

− H
(n)
33

a
(n)4
m

)
+

+4 ·
(
χ
(n)
3 − c

(n)
3

)
·
(
χ
(n)
1 − c

(n)
1

)
· cos3 (δ) · sen (δ) ·

(
−H

(n)
11

a
(n)4
m

+
H

(n)
33

a
(n)4
M

)
+

+
4

a
(n)2
m · a(n)2M

·
(
χ
(n)
3 − c

(n)
3

)
·
(
χ
(n)
1 − c

(n)
1

)
·
(
H

(n)
11 −H

(n)
33

)
· cos3 (δ) · sen (δ)+

+
4

a
(n)2
m · a(n)2M

·
(
χ
(n)
3 − c

(n)
3

)
·
(
χ
(n)
1 − c

(n)
1

)
·
(
−H(n)

11 +H
(n)
33

)
· cos (δ) · sen3 (δ)+

+2 · H
(n)
22

a
(n)4
i

· χ(n)2
2 +

+2 ·H(n)
11 ·

(
χ
(n)
1 − c

(n)
1

)2
·

[
sen2 (δ)

a
(n)2
M

+
cos2 (δ)

a
(n)2
m

]2
+

+2 ·H(n)
33 ·

(
χ
(n)
3 − c

(n)
3

)2
·

[
cos2 (δ)

a
(n)2
M

+
sen2 (δ)

a
(n)2
m

]2 ·

· 2

a
(n)2
i

· χ(n)
2 · S(χ(n)

2 ) (9.8)

� rate of the longitudinal force Q̇3

Q̇3 = function(q̇j) = H
(0)
33 · q̇3 −H

(0)
33 ·

N∑
n=1

λn ·
∂ygn

∂χ
(n)
3

= H
(0)
33 · q̇3−
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−H(0)
33 ·

N∑
n=1

{
Q̇1 ·

[
S(χ

(n)
1 ) ·

(
χ
(n)
3 − c

(n)
3

)
·

(
1

a
(n)2
M

− 1

a
(n)2
m

)
· cos (δ) · sin (δ)+

+S(χ
(n)
1 ) ·

(
χ
(n)
1 − c

(n)
1

)
·

(
sin2 (δ)

a
(n)2
M

+
cos2 (δ)

a
(n)2
m

)]
+

+Q̇2 ·
S(χ

(n)
2 )

a
(n)2
i

· χ(n)
2 +

+Q̇3 ·

[
S(χ

(n)
3 ) ·

(
χ
(n)
1 − c

(n)
1

)
·

(
1

a
(n)2
M

− 1

a
(n)2
m

)
· cos (δ) · sin (δ)+

+S(χ
(n)
3 ) ·

(
χ
(n)
3 − c

(n)
3

)
·

(
cos2 (δ)

a
(n)2
M

+
sen2 (δ)

a
(n)2
m

)]}
/

/
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2 ·

(
1

a
(n)4
M

+
1
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(n)4
m

− 2

a
(n)2
m · a(n)2M

)
· cos2 (δ) · sen2 (δ) ·

·
[
H

(n)
11 ·

(
χ
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3 − c

(n)
3

)2
+H

(n)
33 ·

(
χ
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1 − c

(n)
1

)2]
+

+4 ·
(
χ
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3 − c

(n)
3

)
·
(
χ
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1 − c

(n)
1

)
· cos (δ) · sen3 (δ) ·

(
H

(n)
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a
(n)4
M

− H
(n)
33

a
(n)4
m

)
+

+4 ·
(
χ
(n)
3 − c

(n)
3

)
·
(
χ
(n)
1 − c

(n)
1

)
· cos3 (δ) · sen (δ) ·

(
−H

(n)
11

a
(n)4
m

+
H

(n)
33

a
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+
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+
4

a
(n)2
m · a(n)2M

·
(
χ
(n)
3 − c

(n)
3

)
·
(
χ
(n)
1 − c

(n)
1

)
·
(
H

(n)
11 −H

(n)
33

)
· cos3 (δ) · sen (δ)+

+
4

a
(n)2
m · a(n)2M

·
(
χ
(n)
3 − c

(n)
3

)
·
(
χ
(n)
1 − c

(n)
1

)
·
(
−H(n)

11 +H
(n)
33

)
· cos (δ) · sen3 (δ)+

+2 · H
(n)
22

a
(n)4
i

· χ(n)2
2 +

+2 ·H(n)
11 ·

(
χ
(n)
1 − c

(n)
1

)2
·

[
sen2 (δ)

a
(n)2
M

+
cos2 (δ)

a
(n)2
m

]2
+

+2 ·H(n)
33 ·

(
χ
(n)
3 − c

(n)
3

)2
·

[
cos2 (δ)

a
(n)2
M

+
sen2 (δ)

a
(n)2
m

]2 ·

·

{
2

a
(n)2
M

·
[(
χ
(n)
3 − c

(n)
3

)
· cos (δ) +

(
χ
(n)
1 − c

(n)
1

)
· sin (δ)

]
· cos (δ) ·

·S(χ(n)
3 )− 2

a
(n)2
m

·
[
−
(
χ
(n)
3 − c

(n)
3

)
· sin (δ) +

(
χ
(n)
1 − c

(n)
1

)
· cos (δ)

]
·

·sin (δ) · S(χ(n)
3 )
}
. (9.9)

In the equations above, the “incremental” variables are the rates of the displace-

ments q̇i and of the resulting interaction forces Q̇i at the deck-abutment contact,

while the other quantities refer to the current time step. In fact, the generic dissipa-

tive force χ
(n)
i = −∂g2(αi)/∂αi + Qi represents the distance of the generic point in

the force space (internal forces in the macro-element) from the center c
(n)
i of the n-th
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yield surface. The latter evolves during plastic loading according to the kinematic

hardening rule defined in Section 5.9.3. Since there is no isotropic hardening, the

distances χ
(n)
i − ci do not not vary during loading. It follows that χ

(n)
i − ci is a

constant value in the incremental response. The parameters a
(n)
M , a

(n)
i , a

(n)
m and δ

characterise completely the yield functions and can be evaluated through Eqs. 5.135

to 5.143. The stiffness matrices H
(0)
ii and H

(n)
ii are constant in time. Accordingly,

despite their apparently complex form, Eqs. 9.7, 9.8 and 9.9 can be written in a

much more compact form

Q̇1 = H
(0)
11 · q̇1 −H

(0)
11 ·

N∑
n=1

{
Q̇1 · S(χ(n)

1 ) · (FN1 + FN2)+

+Q̇2 ·
S(χ

(n)
2 )

a
(n)2
i

· χ(n)
2 + Q̇3 · S(χ(n)

3 ) · (FN3 + FN4)

}
/FD·

·S(χ(n)
1 ) · (FY 1 + FY 2) (9.10)

Q̇2 = H
(0)
22 · q̇2 −H

(0)
22 ·

N∑
n=1

{
Q̇1 · S(χ(n)

1 ) · (FN1 + FN2)+

+Q̇2 ·
S(χ

(n)
2 )

a
(n)2
i

· χ(n)
2 + Q̇3 · S(χ(n)

3 ) · (FN3 + FN4)

}
/FD·

· 2

a
(n)2
i

· χ(n)
2 · S(χ(n)

2 ) (9.11)

Q̇3 = H
(0)
33 · q̇3 −H

(0)
33 ·

N∑
n=1

{
Q̇1 · S(χ(n)

1 ) · (FN1 + FN2)+
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+Q̇2 ·
S(χ

(n)
2 )

a
(n)2
i

· χ(n)
2 + Q̇3 · S(χ(n)

3 ) · (FN3 + FN4)

}
/FD·

·S(χ(n)
3 ) · (FY 3 − FY 4) (9.12)

in which the factors FN1, FN2, FN3, FN4 and FD are constant variable in the

incremental response and are defined as follows

FN1 =
(
χ
(n)
3 − c

(n)
3

)
·

(
1

a
(n)2
M

− 1

a
(n)2
m

)
· cos (δ) · sin (δ) (9.13)

FN2 =
(
χ
(n)
1 − c

(n)
1

)
·

(
sin2 (δ)

a
(n)2
M

+
cos2 (δ)

a
(n)2
m

)
(9.14)

FN3 =
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χ
(n)
1 − c

(n)
1

)
·
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1
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(n)2
M
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m

)
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·
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3
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+
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M
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+
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+
4
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(n)2
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)
·
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1

)
·
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H
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33
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+
4

a
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·
(
χ
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(n)
3

)
·
(
χ
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(n)
1

)
·
(
−H(n)

11 +H
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11 ·

(
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1
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·
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+2 ·H(n)
33 ·
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·

[
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M
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a
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FY 1 =
[(
χ
(n)
3 − c

(n)
3

)
· cos (δ) +

(
χ
(n)
1 − c

(n)
1

)
· sin (δ)

]
· 2

a
(n)2
M

· sin (δ) (9.18)

FY 2 =
[
−
(
χ
(n)
3 − c

(n)
3

)
· sin (δ) +

(
χ
(n)
1 − c

(n)
1

)
· cos (δ)

]
· 2

a
(n)2
m

· cos (δ) (9.19)

FY 3 =
[(
χ
(n)
3 − c

(n)
3

)
· cos (δ) +

(
χ
(n)
1 − c

(n)
1

)
· sin (δ)

]
· 2

a
(n)2
M

· cos (δ) (9.20)
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FY 4 =
[
−
(
χ
(n)
3 − c

(n)
3

)
· sin (δ) +

(
χ
(n)
1 − c

(n)
1

)
· cos (δ)

]
· 2

a
(n)2
m

· sin (δ) . (9.21)

Eqs. 9.10, 9.11 and 9.12 can be also expressed taking the forces Q
(n)
i as the input

variable and the displacements q
(n)
i the output variable as follows

q̇1 = H
(0)−1
11 · Q̇1+

+
N∑

n=1

(FN1 + FN2) · (FY 1 + FY 2)

FD

· Q̇1+

+
N∑

n=1

S(χ
(n)
2 ) · S(χ(n)

1 ) · χ
(n)
2 · (FY 1 + FY 2)

a
(n)2
i · FD

· Q̇2+

+
N∑

n=1

S(χ
(n)
3 ) · S(χ(n)

1 ) · (FN3 + FN4) · (FY 1 + FY 2)

FD

· Q̇3 (9.22)

q̇2 = H
(0)−1
22 · Q̇2+

+
N∑

n=1

S(χ
(n)
2 ) · S(χ(n)

1 ) · (FN1 + FN2) · 2 · χ(n)
2

FD · a(n)2i

· Q̇1+

+
N∑

n=1

χ
(n)2
2 · 2

a
(n)4
i · FD

· Q̇2+

+
N∑

n=1

S(χ
(n)
3 ) · S(χ(n)

2 ) · (FN3 + FN4) · 2 · χ(n)
2

FD · a(n)2i

· Q̇3 (9.23)

q̇3 = H
(0)−1
33 · Q̇3+
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+
N∑

n=1

S(χ
(n)
3 ) · S(χ(n)

1 ) · (FN1 + FN2) · (FY 3 − FY 4)

FD

· Q̇1+

+
N∑

n=1

S(χ
(n)
3 ) · S(χ(n)

2 ) · χ
(n)
2 · (FY 3 − FY 4)

a
(n)2
i · FD

· Q̇2+

+
N∑

n=1

(FN3 + FN4) · (FY 3 − FY 4)

FD

· Q̇3 (9.24)

In the equations above, some further constant factors can be identified in the

response at the time step j + 1

Fq11 =
(FN1 + FN2) · (FY 1 + FY 2)

FD

(9.25)

Fq12 = S(χ
(n)
2 ) · S(χ(n)

1 ) · χ
(n)
2 · (FY 1 + FY 2)

a
(n)2
i · FD

(9.26)

Fq13 = S(χ
(n)
3 ) · S(χ(n)

1 ) · (FN3 + FN4) · (FY 1 + FY 2)

FD

(9.27)

Fq21 = S(χ
(n)
2 ) · S(χ(n)

1 ) · (FN1 + FN2) · 2 · χ(n)
2

FD · a(n)2i

(9.28)

Fq22 =
χ
(n)2
2 · 2

a
(n)4
i · FD

(9.29)

Fq23 = S(χ
(n)
3 ) · S(χ(n)

2 ) · (FN3 + FN4) · 2 · χ(n)
2

FD · a(n)2i

(9.30)

Fq31 = S(χ
(n)
3 ) · S(χ(n)

1 ) · (FN1 + FN2) · (FY 3 − FY 4)

FD

(9.31)
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Fq32 = S(χ
(n)
3 ) · S(χ(n)

2 ) · χ
(n)
2 · (FY 3 − FY 4)

a
(n)2
i · FD

(9.32)

Fq33 =
(FN3 + FN4) · (FY 3 − FY 4)

FD

(9.33)

and finally a more compact form of the incremental equations can be given below

q̇1 =

(
H

(0)−1
11 +

N∑
n=1

Fq11

)
· Q̇1 +

N∑
n=1

Fq12 · Q̇2 +
N∑

n=1

Fq13 · Q̇3 (9.34)

q̇2 =
N∑

n=1

Fq21 · Q̇1 +

(
H

(0)−1
22 +

N∑
n=1

Fq22

)
· Q̇2 +

N∑
n=1

Fq23 · Q̇3 (9.35)

q̇3 =
N∑

n=1

Fq31 · Q̇1 +
N∑

n=1

Fq32 · Q̇2 +

(
H

(0)−1
33 +

N∑
n=1

Fq33

)
· Q̇3 (9.36)

in which it appears evident the contribution of the plastic response of the macro-

element in the terms
∑N

n=1 Fqij. A matrix notation can be used for Eqs. 9.34, 9.35

and 9.36, where the vector of the displacement rate q̇
(n)
j is related to the vector of

the force rate Q̇
(n)
i by a tangent compliant matrix Cji

q̇
(n)
j = Cji · Q̇i =

(
H

(0)−1
ij · δji +

N∑
n=1

Fqji

)
· Q̇i (9.37)

with the compliant matrix composed as follows


C11 C12 C13

C21 C22 C23

C31 C23 C33

 =


H

(0)−1
11 +

∑N
n=1 Fq11

∑N
n=1 Fq12

∑N
n=1 Fq13∑N

n=1 Fq21 H
(0)−1
22 +

∑N
n=1 Fq22

∑N
n=1 Fq23∑N

n=1 Fq31

∑N
n=1 Fq32 H

(0)−1
33 +

∑N
n=1 Fq33

 .
(9.38)

that is non-symmetric. The tangent stiffness matrix Kij = C−1
ji is therefore
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computed as follows

� term K11

K11 =

[
H

(0)
11 ·

(
N∑

n=1

Fq22 ·H(0)
22 +

N∑
n=1

Fq33 ·H(0)
33 +

+
N∑

n=1

Fq22 ·
N∑

n=1

Fq33 ·H(0)
22 ·H(0)

33 −
N∑

n=1

Fq23 ·
N∑

n=1

Fq32 ·H(0)
22 ·H(0)

33 + 1

)]
/

/

(
N∑

n=1

Fq11 ·H(0)
11 +

N∑
n=1

Fq22 ·H(0)
22 +

N∑
n=1

Fq33 ·H(0)
33 −

−
N∑

n=1

F 2
q21 ·H

(0)
11 ·H(0)

22 −
N∑

n=1

F 2
q31 ·H

(0)
11 ·H(0)

33 +
N∑

n=1

Fq11 ·
N∑

n=1

Fq22 ·H(0)
11 ·H(0)

22 +

+
N∑

n=1

Fq11·
N∑

n=1

Fq33·H(0)
11 ·H

(0)
33 +

N∑
n=1

Fq22·
N∑

n=1

Fq33·H(0)
22 ·H

(0)
33 −

N∑
n=1

Fq23·
N∑

n=1

Fq32·H(0)
22 ·H

(0)
33 −

−
N∑

n=1

Fq22 ·
N∑

n=1

F 2
q31 ·H

(0)
11 ·H(0)

22 ·H(0)
33 −

N∑
n=1

F 2
q21 ·

N∑
n=1

Fq33H
(0)
11 ·H(0)

22 ·H(0)
33 +

+
N∑

n=1

Fq11·
N∑

n=1

Fq22·
N∑

n=1

Fq33·H(0)
11 ·H

(0)
22 ·H

(0)
33 −

N∑
n=1

Fq11·
N∑

n=1

Fq23·
N∑

n=1

Fq32·H(0)
11 ·H

(0)
22 ·H

(0)
33 +

+
N∑

n=1

Fq21 ·
N∑

n=1

Fq23 ·
N∑

n=1

Fq31 ·H(0)
11 ·H(0)

22 ·H(0)
33 +
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+
N∑

n=1

Fq21 ·
N∑

n=1

Fq31 ·
N∑

n=1

Fq32 ·H(0)
11 ·H(0)

22 ·H(0)
33 + 1

)
(9.39)

� term K12

K12 = −

[
H

(0)
11 ·H(0)

22 ·

(
N∑

n=1

Fq21 +
N∑

n=1

Fq21 ·
N∑

n=1

Fq33 ·H(0)
33 −

−
N∑

n=1

Fq31 ·
N∑

n=1

Fq32 ·H(0)
33

)]
/

(
N∑

n=1

Fq11 ·H(0)
11 +

N∑
n=1

Fq22 ·H(0)
22 +

N∑
n=1

Fq33 ·H(0)
33 −

−
N∑

n=1

F 2
q21 ·H

(0)
11 ·H(0)

22 −
N∑

n=1

F 2
q31 ·H

(0)
11 ·H(0)

33 +
N∑

n=1

Fq11 ·
N∑

n=1

Fq22 ·H(0)
11 ·H(0)

22 +

+
N∑

n=1

Fq11·
N∑

n=1

Fq33·H(0)
11 ·H

(0)
33 +

N∑
n=1

Fq22·
N∑

n=1

Fq33·H(0)
22 ·H

(0)
33 −

N∑
n=1

Fq23·
N∑

n=1

Fq32·H(0)
22 ·H

(0)
33 −

−
N∑

n=1

Fq22 ·
N∑

n=1

F 2
q31 ·H

(0)
11 ·H(0)

22 ·H(0)
33 −

N∑
n=1

F 2
q21 ·

N∑
n=1

Fq33 ·H(0)
11 ·H(0)

22 ·H(0)
33 +

+
N∑

n=1

Fq11·
N∑

n=1

Fq22·
N∑

n=1

Fq33·H(0)
11 ·H

(0)
22 ·H

(0)
33 −

N∑
n=1

Fq11·
N∑

n=1

Fq23·
N∑

n=1

Fq32·H(0)
11 ·H

(0)
22 ·H

(0)
33 +

+
N∑

n=1

Fq21 ·
N∑

n=1

Fq23 ·
N∑

n=1

Fq31 ·H(0)
11 ·H(0)

22 ·H(0)
33 +

+
N∑

n=1

Fq21 ·
N∑

n=1

Fq31 ·
N∑

n=1

Fq32 ·H(0)
11 ·H(0)

22 ·H(0)
33 + 1

)
(9.40)

� term K13

K13 = −

[
H

(0)
11 ·H(0)

33 ·

(
N∑

n=1

Fq31 −
N∑

n=1

Fq21 ·
N∑

n=1

Fq23 ·H(0)
22 +

+
N∑

n=1

Fq22 ·
N∑

n=1

Fq31 ·H(0)
22

)]
/

(
N∑

n=1

Fq11 ·H(0)
11 +

N∑
n=1

Fq22 ·H(0)
22 +

N∑
n=1

Fq33 ·H(0)
33 −
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−
N∑

n=1

F 2
q21 ·H

(0)
11 ·H(0)

22 −
N∑

n=1

F 2
q31 ·H

(0)
11 ·H(0)

33 +
N∑

n=1

Fq11 ·
N∑

n=1

Fq22 ·H(0)
11 ·H(0)

22 +

+
N∑

n=1

Fq11·
N∑

n=1

Fq33·H(0)
11 ·H

(0)
33 +

N∑
n=1

Fq22·
N∑

n=1

Fq33·H(0)
22 ·H

(0)
33 −

N∑
n=1

Fq23·
N∑

n=1

Fq32·H(0)
22 ·H

(0)
33 −

−
N∑

n=1

Fq22 ·
N∑

n=1

F 2
q31 ·H

(0)
11 ·H(0)

22 ·H(0)
33 −

N∑
n=1

F 2
q21 ·

N∑
n=1

Fq33 ·H(0)
11 ·H(0)

22 ·H(0)
33 +

+
N∑

n=1

Fq11·
N∑

n=1

Fq22·
N∑

n=1

Fq33·H(0)
11 ·H

(0)
22 ·H

(0)
33 −

N∑
n=1

Fq11·
N∑

n=1

Fq23·
N∑

n=1

Fq32·H(0)
11 ·H

(0)
22 ·H

(0)
33 +

+
N∑

n=1

Fq21 ·
N∑

n=1

Fq23 ·
N∑

n=1

Fq31 ·H(0)
11 ·H(0)

22 ·H(0)
33 +

+
N∑

n=1

Fq21 ·
N∑

n=1

Fq31 ·
N∑

n=1

Fq32 ·H(0)
11 ·H(0)

22 ·H(0)
33 + 1

)
(9.41)

� term K21

K21 = −

[
H

(0)
11 ·H(0)

22 ·

(
N∑

n=1

Fq21 +
N∑

n=1

Fq21 ·
N∑

n=1

Fq33 ·H(0)
33 −

−
N∑

n=1

Fq23 ·
N∑

n=1

Fq31 ·H(0)
33

)]
/

(
N∑

n=1

Fq11 ·H(0)
11 +

N∑
n=1

Fq22 ·H(0)
22 +

N∑
n=1

Fq33 ·H(0)
33 −

−
N∑

n=1

F 2
q21 ·H

(0)
11 ·H(0)

22 −
N∑

n=1

F 2
q31 ·H

(0)
11 ·H(0)

33 +
N∑

n=1

Fq11 ·
N∑

n=1

Fq22 ·H(0)
11 ·H(0)

22 +

+
N∑

n=1

Fq11·
N∑

n=1

Fq33·H(0)
11 ·H

(0)
33 +

N∑
n=1

Fq22·
N∑

n=1

Fq33·H(0)
22 ·H

(0)
33 −

N∑
n=1

Fq23·
N∑

n=1

Fq32·H(0)
22 ·H

(0)
33 −

−
N∑

n=1

Fq22 ·
N∑

n=1

F 2
q31 ·H

(0)
11 ·H(0)

22 ·H(0)
33 −

N∑
n=1

F 2
q21 ·

N∑
n=1

Fq33 ·H(0)
11 ·H(0)

22 ·H(0)
33 +

+
N∑

n=1

Fq11·
N∑

n=1

Fq22·
N∑

n=1

Fq33·H(0)
11 ·H

(0)
22 ·H

(0)
33 −

N∑
n=1

Fq11·
N∑

n=1

Fq23·
N∑

n=1

Fq32·H(0)
11 ·H

(0)
22 ·H

(0)
33 +
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+
N∑

n=1

Fq21 ·
N∑

n=1

Fq23 ·
N∑

n=1

Fq31 ·H(0)
11 ·H(0)

22 ·H(0)
33 +

+
N∑

n=1

Fq21 ·
N∑

n=1

Fq31 ·
N∑

n=1

Fq32 ·H(0)
11 ·H(0)

22 ·H(0)
33 + 1

)
(9.42)

� term K22

K22 =

[
H

(0)
22 ·

(
N∑

n=1

Fq11 ·H(0)
11 +

N∑
n=1

Fq33 ·H(0)
33 +

+
N∑

n=1

Fq11 ·
N∑

n=1

Fq33 ·H(0)
11 ·H(0)

33 −
N∑

n=1

F 2
q31 ·H

(0)
11 ·H(0)

33 + 1

)]
/

/

(
N∑

n=1

Fq11 ·H(0)
11 +

N∑
n=1

Fq22 ·H(0)
22 +

N∑
n=1

Fq33 ·H(0)
33 −

−
N∑

n=1

F 2
q21 ·H

(0)
11 ·H(0)

22 −
N∑

n=1

F 2
q31 ·H

(0)
11 ·H(0)

33 +
N∑

n=1

Fq11 ·
N∑

n=1

Fq22 ·H(0)
11 ·H(0)

22 +

+
N∑

n=1

Fq11·
N∑

n=1

Fq33·H(0)
11 ·H

(0)
33 +

N∑
n=1

Fq22·
N∑

n=1

Fq33·H(0)
22 ·H

(0)
33 −

N∑
n=1

Fq23·
N∑

n=1

Fq32·H(0)
22 ·H

(0)
33 −

−
N∑

n=1

Fq22 ·
N∑

n=1

F 2
q31 ·H

(0)
11 ·H(0)

22 ·H(0)
33 −

N∑
n=1

F 2
q21 ·

N∑
n=1

Fq33H
(0)
11 ·H(0)

22 ·H(0)
33 +

+
N∑

n=1

Fq11·
N∑

n=1

Fq22·
N∑

n=1

Fq33·H(0)
11 ·H

(0)
22 ·H

(0)
33 −

N∑
n=1

Fq11·
N∑

n=1

Fq23·
N∑

n=1

Fq32·H(0)
11 ·H

(0)
22 ·H

(0)
33 +
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+
N∑

n=1

Fq21 ·
N∑

n=1

Fq23 ·
N∑

n=1

Fq31 ·H(0)
11 ·H(0)

22 ·H(0)
33 +

+
N∑

n=1

Fq21 ·
N∑

n=1

Fq31 ·
N∑

n=1

Fq32 ·H(0)
11 ·H(0)

22 ·H(0)
33 + 1

)
(9.43)

� term K23

K23 = −

[
H

(0)
22 ·H(0)

33 ·

(
N∑

n=1

Fq23 +
N∑

n=1

Fq11 ·
N∑

n=1

Fq23 ·H(0)
11 −

−
N∑

n=1

Fq21 ·
N∑

n=1

Fq31 ·H(0)
11

)]
/

(
N∑

n=1

Fq11 ·H(0)
11 +

N∑
n=1

Fq22 ·H(0)
22 +

N∑
n=1

Fq33 ·H(0)
33 −

−
N∑

n=1

F 2
q21 ·H

(0)
11 ·H(0)

22 −
N∑

n=1

F 2
q31 ·H

(0)
11 ·H(0)

33 +
N∑

n=1

Fq11 ·
N∑

n=1

Fq22 ·H(0)
11 ·H(0)

22 +

+
N∑

n=1

Fq11·
N∑

n=1

Fq33·H(0)
11 ·H

(0)
33 +

N∑
n=1

Fq22·
N∑

n=1

Fq33·H(0)
22 ·H

(0)
33 −

N∑
n=1

Fq23·
N∑

n=1

Fq32·H(0)
22 ·H

(0)
33 −

−
N∑

n=1

Fq22 ·
N∑

n=1

F 2
q31 ·H

(0)
11 ·H(0)

22 ·H(0)
33 −

N∑
n=1

F 2
q21 ·

N∑
n=1

Fq33 ·H(0)
11 ·H(0)

22 ·H(0)
33 +

+
N∑

n=1

Fq11·
N∑

n=1

Fq22·
N∑

n=1

Fq33·H(0)
11 ·H

(0)
22 ·H

(0)
33 −

N∑
n=1

Fq11·
N∑

n=1

Fq23·
N∑

n=1

Fq32·H(0)
11 ·H

(0)
22 ·H

(0)
33 +

+
N∑

n=1

Fq21 ·
N∑

n=1

Fq23 ·
N∑

n=1

Fq31 ·H(0)
11 ·H(0)

22 ·H(0)
33 +

+
N∑

n=1

Fq21 ·
N∑

n=1

Fq31 ·
N∑

n=1

Fq32 ·H(0)
11 ·H(0)

22 ·H(0)
33 + 1

)
(9.44)

� term K31

K31 = −

[
H

(0)
11 ·H(0)

33 ·

(
N∑

n=1

Fq31 −
N∑

n=1

Fq21 ·
N∑

n=1

Fq32 ·H(0)
22 +

+
N∑

n=1

Fq22 ·
N∑

n=1

Fq31 ·H(0)
22

)]
/

(
N∑

n=1

Fq11 ·H(0)
11 +

N∑
n=1

Fq22 ·H(0)
22 +

N∑
n=1

Fq33 ·H(0)
33 −
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−
N∑

n=1

F 2
q21 ·H

(0)
11 ·H(0)

22 −
N∑

n=1

F 2
q31 ·H

(0)
11 ·H(0)

33 +
N∑

n=1

Fq11 ·
N∑

n=1

Fq22 ·H(0)
11 ·H(0)

22 +

+
N∑

n=1

Fq11·
N∑

n=1

Fq33·H(0)
11 ·H

(0)
33 +

N∑
n=1

Fq22·
N∑

n=1

Fq33·H(0)
22 ·H

(0)
33 −

N∑
n=1

Fq23·
N∑

n=1

Fq32·H(0)
22 ·H

(0)
33 −

−
N∑

n=1

Fq22 ·
N∑

n=1

F 2
q31 ·H

(0)
11 ·H(0)

22 ·H(0)
33 −

N∑
n=1

F 2
q21 ·

N∑
n=1

Fq33 ·H(0)
11 ·H(0)

22 ·H(0)
33 +

+
N∑

n=1

Fq11·
N∑

n=1

Fq22·
N∑

n=1

Fq33·H(0)
11 ·H

(0)
22 ·H

(0)
33 −

N∑
n=1

Fq11·
N∑

n=1

Fq23·
N∑

n=1

Fq32·H(0)
11 ·H

(0)
22 ·H

(0)
33 +

+
N∑

n=1

Fq21 ·
N∑

n=1

Fq23 ·
N∑

n=1

Fq31 ·H(0)
11 ·H(0)

22 ·H(0)
33 +

+
N∑

n=1

Fq21 ·
N∑

n=1

Fq31 ·
N∑

n=1

Fq32 ·H(0)
11 ·H(0)

22 ·H(0)
33 + 1

)
(9.45)

� term K32

K32 = −

[
H

(0)
22 ·H(0)

33 ·

(
N∑

n=1

Fq32 +
N∑

n=1

Fq11 ·
N∑

n=1

Fq32 ·H(0)
11 −

−
N∑

n=1

Fq21 ·
N∑

n=1

Fq31 ·H(0)
11

)]
/

(
N∑

n=1

Fq11 ·H(0)
11 +

N∑
n=1

Fq22 ·H(0)
22 +

N∑
n=1

Fq33 ·H(0)
33 −

−
N∑

n=1

F 2
q21 ·H

(0)
11 ·H(0)

22 −
N∑

n=1

F 2
q31 ·H

(0)
11 ·H(0)

33 +
N∑

n=1

Fq11 ·
N∑

n=1

Fq22 ·H(0)
11 ·H(0)

22 +

+
N∑

n=1

Fq11·
N∑

n=1

Fq33·H(0)
11 ·H

(0)
33 +

N∑
n=1

Fq22·
N∑

n=1

Fq33·H(0)
22 ·H

(0)
33 −

N∑
n=1

Fq23·
N∑

n=1

Fq32·H(0)
22 ·H

(0)
33 −

−
N∑

n=1

Fq22 ·
N∑

n=1

F 2
q31 ·H

(0)
11 ·H(0)

22 ·H(0)
33 −

N∑
n=1

F 2
q21 ·

N∑
n=1

Fq33 ·H(0)
11 ·H(0)

22 ·H(0)
33 +

+
N∑

n=1

Fq11·
N∑

n=1

Fq22·
N∑

n=1

Fq33·H(0)
11 ·H

(0)
22 ·H

(0)
33 −

N∑
n=1

Fq11·
N∑

n=1

Fq23·
N∑

n=1

Fq32·H(0)
11 ·H

(0)
22 ·H

(0)
33 +
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+
N∑

n=1

Fq21 ·
N∑

n=1

Fq23 ·
N∑

n=1

Fq31 ·H(0)
11 ·H(0)

22 ·H(0)
33 +

+
N∑

n=1

Fq21 ·
N∑

n=1

Fq31 ·
N∑

n=1

Fq32 ·H(0)
11 ·H(0)

22 ·H(0)
33 + 1

)
(9.46)

� term K33

K33 =

[
H

(0)
33 ·

(
N∑

n=1

Fq11 ·H(0)
11 +

N∑
n=1

Fq22 ·H(0)
22 +

+
N∑

n=1

Fq11 ·
N∑

n=1

Fq22 ·H(0)
11 ·H(0)

22 −
N∑

n=1

F 2
q21 ·H

(0)
11 ·H(0)

22 + 1

)]
/

/

(
N∑

n=1

Fq11 ·H(0)
11 +

N∑
n=1

Fq22 ·H(0)
22 +

N∑
n=1

Fq33 ·H(0)
33 −

−
N∑

n=1

F 2
q21 ·H

(0)
11 ·H(0)

22 −
N∑

n=1

F 2
q31 ·H

(0)
11 ·H(0)

33 +
N∑

n=1

Fq11 ·
N∑

n=1

Fq22 ·H(0)
11 ·H(0)

22 +

+
N∑

n=1

Fq11·
N∑

n=1

Fq33·H(0)
11 ·H

(0)
33 +

N∑
n=1

Fq22·
N∑

n=1

Fq33·H(0)
22 ·H

(0)
33 −

N∑
n=1

Fq23·
N∑

n=1

Fq32·H(0)
22 ·H

(0)
33 −

−
N∑

n=1

Fq22 ·
N∑

n=1

F 2
q31 ·H

(0)
11 ·H(0)

22 ·H(0)
33 −

N∑
n=1

F 2
q21 ·

N∑
n=1

Fq33H
(0)
11 ·H(0)

22 ·H(0)
33 +

+
N∑

n=1

Fq11·
N∑

n=1

Fq22·
N∑

n=1

Fq33·H(0)
11 ·H

(0)
22 ·H

(0)
33 −

N∑
n=1

Fq11·
N∑

n=1

Fq23·
N∑

n=1

Fq32·H(0)
11 ·H

(0)
22 ·H

(0)
33 +
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+
N∑

n=1

Fq21 ·
N∑

n=1

Fq23 ·
N∑

n=1

Fq31 ·H(0)
11 ·H(0)

22 ·H(0)
33 +

+
N∑

n=1

Fq21 ·
N∑

n=1

Fq31 ·
N∑

n=1

Fq32 ·H(0)
11 ·H(0)

22 ·H(0)
33 + 1

)
. (9.47)

The terms Kij have a common denominator, termed DK , and they can be there-

fore written in a more compact form

� term K11

K11 =

[
H

(0)
11 ·

(
N∑

n=1

Fq22 ·H(0)
22 +

N∑
n=1

Fq33 ·H(0)
33 +

+
N∑

n=1

Fq22 ·
N∑

n=1

Fq33 ·H(0)
22 ·H(0)

33 −

−
N∑

n=1

Fq23 ·
N∑

n=1

Fq32 ·H(0)
22 ·H(0)

33 + 1

)]
/DK (9.48)

� term K12

K12 = −

[
H

(0)
11 ·H(0)

22 ·

(
N∑

n=1

Fq21 +
N∑

n=1

Fq21 ·
N∑

n=1

Fq33 ·H(0)
33 −

−
N∑

n=1

Fq31 ·
N∑

n=1

Fq32 ·H(0)
33

)]
/DK (9.49)

� term K13

K13 = −

[
H

(0)
11 ·H(0)

33 ·

(
N∑

n=1

Fq31 −
N∑

n=1

Fq21 ·
N∑

n=1

Fq23 ·H(0)
22 +

+
N∑

n=1

Fq22 ·
N∑

n=1

Fq31 ·H(0)
22

)]
/DK (9.50)

� term K21
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K21 = −

[
H

(0)
11 ·H(0)

22 ·

(
N∑

n=1

Fq21 +
N∑

n=1

Fq21 ·
N∑

n=1

Fq33 ·H(0)
33 −

−
N∑

n=1

Fq23 ·
N∑

n=1

Fq31 ·H(0)
33

)]
/DK (9.51)

� term K22

K22 =

[
H

(0)
22 ·

(
N∑

n=1

Fq11 ·H(0)
11 +

N∑
n=1

Fq33 ·H(0)
33 +

+
N∑

n=1

Fq11 ·
N∑

n=1

Fq33 ·H(0)
11 ·H(0)

33 −
N∑

n=1

F 2
q31 ·H

(0)
11 ·H(0)

33 + 1

)]
/DK (9.52)

� term K23

K23 = −

[
H

(0)
22 ·H(0)

33 ·

(
N∑

n=1

Fq23 +
N∑

n=1

Fq11 ·
N∑

n=1

Fq23 ·H(0)
11 −

−
N∑

n=1

Fq21 ·
N∑

n=1

Fq31 ·H(0)
11

)]
/DK (9.53)

� term K31

K31 = −

[
H

(0)
11 ·H(0)

33 ·

(
N∑

n=1

Fq31 −
N∑

n=1

Fq21 ·
N∑

n=1

Fq32 ·H(0)
22 +

+
N∑

n=1

Fq22 ·
N∑

n=1

Fq31 ·H(0)
22

)]
/DK (9.54)

� term K32

K32 = −

[
H

(0)
22 ·H(0)

33 ·

(
N∑

n=1

Fq32 +
N∑

n=1

Fq11 ·
N∑

n=1

Fq32 ·H(0)
11 −

−
N∑

n=1

Fq21 ·
N∑

n=1

Fq31 ·H(0)
11

)]
/DK (9.55)
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� term K33

K33 =

[
H

(0)
33 ·

(
N∑

n=1

Fq11 ·H(0)
11 +

N∑
n=1

Fq22 ·H(0)
22 +

+
N∑

n=1

Fq11 ·
N∑

n=1

Fq22 ·H(0)
11 ·H(0)

22 −
N∑

n=1

F 2
q21 ·H

(0)
11 ·H(0)

22 + 1

)]
/DK (9.56)

The tangent stiffness matrix above was coded in the finite element representing

the response of the 3 degrees of freedom macro-element included in the OpenSees

library.



Chapter 10

Appendix 3: three-dimensional

site response analysis

The SANISAND and the PDMY models used for soil are tested in three-dimensional

site response analyses of the soil column representing the Pantano subsoil (see Sec-

tion 7.1.1), considering the full three-component seismic record of Tabas.

Considering the response of the soil column with the SANISAND model, a plan

view of the two components of the horizontal displacement induced by a three-

dimensional seismic motion is shown in Figure 10.1. It can be seen that relevant

displacements occur at the foundation level, in terms of maximum (umax) and fi-

nal (uperm) values, and they are essentially constant over the ground water table,

indicating that the soil strength is attained at greater depths. The displacements

associated with the fault normal component of the seismic motion (FN), aligned

to the longitudinal direction of the bridge, are approximately twice those produced

by the transverse motion (FP ), because the former is sharply more severe than

the latter. This leads to a response in the horizontal plane (FN − FP ) strongly

oriented towards the longitudinal direction, as confirmed by the deformed shape of

the soil column in the post-earthquake condition depicted in Figure 10.2. As ob-
494
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Figure 10.1: Effect of the multi-directionality of the seismic motion on the horizontal displacements
evaluated at the foundation level (circles) and a depth of 30 m (squares), either in absence (void
symbols) or in presence (filled symbols) of the vertical motion.

served in the one-dimensional site response, the maximum shear strains develop in

depth, in between the strata MG1 and MG2, for the progressive development of

important excess pore water pressures at those depths. This represents the main

difference between the behaviour of the Pantano subsoil and the simplified version

of the soil domain used in the reference soil-bridge system, leading to an amplified

displacement field due to the lower effective strength of the saturated soil and, as a

result, to reduced seismic actions transferred to the superstructure. The co-presence

of the two components of the horizontal motion has an ever-amplifying effect of

the displacement field with respect to the mono-dimensional propagation, whereas

the effect of the vertical motion on the horizontal displacements is definitely more

limited.

The above effects of multi-directionality of the ground motion on the displace-

ment field can be read in a dual manner in the spectral shapes evaluated at the

foundation level of the abutment, represented in Figure 10.3. Also in this case, in
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Figure 10.2: Post-earthquake deformed shape of the soil column.

fact, the bi-directionality of the seismic motion in the horizontal plane leads to a soil

response essentially overlapped to that associated with a three-component seismic

motion. This happens because the combined shear stress state in the horizontal

plane is the main reason for the development of plastic mechanisms in the soil. In

addition to this, compared to the input motion, the spectral shapes at the founda-

tion level show a noticeable amplification for periods greater than about 1 s, due

to the deformability of the foundation soils, while for lower periods the spectral

accelerations are practically unchanged.

Focusing on the response at the ground level, Figure 10.4 shows the time evo-

lution of the displacements computed through the two constitutive models. The

discrepancy on the longitudinal displacements follows the same logic exposed for

the mono-dimensional propagation of the ground motion, with greater maximum

displacements in the critical interval between 12 s and 17.5 s and a consequent

more displaced permanent configuration of the soil domain associated with the use

of the SANISAND model. This result is accompanied by the comparison between
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Figure 10.3: 5%-damped elastic response spectra at the foundation level in the longitudinal direc-
tion.

the response spectra in Figure 10.5, in which the moderately stiffer behaviour of

the PDMY model leads to higher amplitudes between T = 1.4 ÷ 2.3 s and a more

attenuated response at larger periods.

The vertical displacements, instead, are the result of a combined deformation

mechanism. In addition to the vertical oscillations caused by the vertical seismic

motion, the top of the column undergoes a progressive settlement induced by the

combined volumetric-deviatoric behaviour of the soil models. When the soil exhibits

an elastic-plastic response, in fact, the development of plastic shear strains implies

the arise of plastic volumetric strains as well, according to Eqs. 3.4 and 3.5 for the

SANISAND model and to Eqs. 3.21 and 3.23 for the PDMY model. More in detail,

the rate of volumetric strain is controlled by the dilatancy parameters A0, for the

SANISAND model, and by the parameters d1 and d2, for the PDMY model. Based

on the optimised constitutive parameters adopted, the response of the PDMY model

presents a higher rate of contraction induced by the plastic shear behaviour. The

resulting vertical response spectra at the ground level show a pronounced amplifi-

cation compared to the spectra shapes in correspondence of the ground water table,
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Figure 10.4: Comparison between the response of the SANISAND model and of the PDMY model:
time histories of the displacements at z = 0 m (foundation level) in the longitudinal and vertical
directions.

Figure 10.5: Comparison between the response of the SANISAND model and of the PDMY model:
5 %-damped elastic response spectra at (a) z = 0 m (foundation level) in the longitudinal and
vertical directions.
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which instead are nearly identical to the spectrum of the vertical input motion.

This happens because the propagation of the vertical motion is controlled by the

bulk modulus of water in the saturated zone, while it is amplified by the volumetric

behaviour of soil above the ground water table, with amplification well confined at

high frequencies for the high bulk modulus of the Messina Gravels.




