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Abstract

The existence and uniqueness of solution to a one-dimensional hyperbolic integro-differential problem arising in vis-

coelasticity is here considered. The kernel, in the linear viscoelasticity equation, represents the relaxation function which

is characteristic of the considered material. Specifically, the case of a kernel, which does not satisfy the classical regularity

requirements is analysed. This choice is suggested by applications according to the literature to model a wider variety of

materials. A notable example of kernel, not satisfying the classical regularity requirements, is represented by a wedge contin-

uous function. Indeed, the linear integro-differential viscoelasticity equation, characterised by a suitable wedge continuous

relaxation function, is shown to give the classical linear wave equation via a limit procedure.

Keywords: Materials with memory; Viscoelasticity; hyperbolic integro-differential problem; Regular
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1. Introduction

1.1. General framework of the problem

The mathematical model of viscoelasticity aims to take into account the behaviour of those materials
whose mechanical behaviour is determined not only by the present but also on its past history. Those
materials whose mechanical and/or thermodynamical response depends significantly on their past history
are termed materials with memory according to the literature, see [18,19] where the physical interpretation
of the model as well as its thermodynamical admissibility are studied. Since then a wide variety of results
and applications have been obtained in many different fields. Among the many, referring to the model
of viscoelastic body, to give a feeling of the many different areas in which this model turns out to be of
interest, we mention some bio-mechanical applications. In [25] synthetic tissues which mimic human bones
are investigated. Indeed, the viscoelastic model is applied to a variety of biologically inspired tissues; as
an example, in [25] bones, while in [24] cardiological tissues are considered. A model of apples regarded
as viscoelastic bodies is studied in [23,29]. The present investigation concerns viscoelastic bodies and
their mechanical behaviour aiming to widen the range of applicative cases the theory can be applied to.
Accordingly, following the spirit of previous investigations, further generalisations of the classical model,
suggested by applicative examples, and not previously considered, are addressed to.

The present investigation is part of a research project whose interest is focussed on materials with
memory and, on one hand their mechanical or thermodynamical characterisation [1,2], on the other one
to study of assigned initial boundary value problems to answer to the question of existence and, possibly,
uniqueness of the admitted solution. Under this viewpoint, the growing applicative interest on new
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materials, both artificial, such as polymers, and/or materials of biological origin, requires to adapt and,
possibly, consider less restrictive assumptions when the mathematical model is constructed. Accordingly,
when a materials characterized by mechanical response which is modeled by a Volterra type integro-
differential equation, is studied generalized kernels need to be considered. Thus, in [7] a one-dimensional
viscoelasticity problem characterised by a singular kernel is studied and, later, extended in [8,9].

The novelty of the present investigation consists in new relaxed requirements imposed on the kernel
of the integro-differential viscoelasticity problem. Specifically, inspired by [27,28], relaxations functions
exhibiting a jump discontinuity in their first derivative are considered.

1.2. Mathematical model of the problem

The one-dimensional problem is investigated. Accordingly, the linear integro-differential equation
which models the displacement response in a one dimensional viscoelastic body, whose configuration is
denoted as Ω = (a, b) ⊂ R, can be written as

(1) utt = G(0)uxx +

∫ t

0
Ġ(t− τ)uxx(τ)dτ + f,

where u indicates the displacement while the history of the material as well as an external force, if present,
are included in the term f . The initial boundary value problem is assigned when the following initial and
boundary conditions

(2) u|t=0 = u0(x), ut|t=0 = u1(x), u|∂Ω×(0,T ) = 0 , t < T

are imposed. The classical model (see for instance [14,15]), when a one-dimensional isotropic and homo-
geneous viscoelastic body is considered, prescribes that the kernel G satisfies the conditions:

(3) Ġ ∈ L1(R+) , G(t) = G0 +

∫ t

0
Ġ(s) ds , G(∞) = lim

t→∞
G(t)

where G(∞) > 0; the fading memory property is also enjoyed, that is

∀ε > 0 ∃ ã = a (ε, Et) ∈ R+s.t. ∀a > ã,

∣∣∣∣∫ ∞
0
Ġ(s+ a)Et(s) ds

∣∣∣∣<ε ,

where Et(τ) := E(t − τ) denotes the strain past history of the material. The mild formulation of the
problem (1)- (2) reads

(4) u(t) =

∫ t

0
K(t− τ)uxx(τ)dτ + u1t+ u0 +

∫ t

0
dτ

∫ τ

0
f(ξ)dξ ,

where K is termed integrated relaxation function since it denotes the integral of the relaxation function
defined as

(5) K(ξ) :=

∫ ξ

0
G(τ)dτ .

Now, the relaxation function G(t) is assumed to satisfy the relaxed conditions

(6) ∀ t ∈ (0,∞), G(t) > 0, G is non-increasing and convex.

In particular, we impose that the relaxation function G is nonincreasing and convex since these conditions
are induced by the adopted physical model [19,20]. In the present study, the choice to adopt (4) as
the model equation to study the viscoelasticity problem allows to impose weaker requirements on the
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relaxation function G aiming to model a wider class of materials. Thus, one of the novelties is that the
function G is assumed to be

(7) G ∈ C0[0, T ] ∀T ∈ R ,

but no requirement is imposed on its time derivatives. Note that, consequently the results are referring to
convex relaxation functions, which may exhibit jump discontinuities in the time derivative Ġ, according to
an example, presented in [27], where the initial value G(0) of the relaxation function is finite. Furthermore,
the case Ġ unbounded at t = 0 may be considered.

The generalisation (7) is introduced to describe viscoelastic materials which are not included in
previous studies in [7] wherein the relaxation function is G ∈ L1(0, T ) ∩ C2(0, T ), ∀T ∈ R, but may be
unbounded at t = 0.

1.3. A notable example

A special case is considered in this Subsection to stress the interest of the case under investigation.
Let

(8) G(s) =

{ G∞ −G0

a
s+G0 0 ≤ s ≤ a

G∞ s ≥ a

as depicted in the following Fig. 1. The evolution equation (1)

Figure 1. Relaxation function

(9) utt = G(0)uxx +

∫ t

0
Ġ(t− τ)uxx(τ)dτ + f,

now, on substitution of the given relaxation function G, reads

(10) utt = G(0)uxx + [G∞ −G0]

∫ t

t̃

1

a
uxx(s)ds+ f, where t̃ := max{0, t− a}

that is, when a → 0, t − a > 0 definitely. Hence, on application of the mean value theorem, the limit
a→ 0 gives

(11) utt = G(0)uxx + [G∞ −G0]uxx + f,
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i.e.

(12) utt = G∞uxx + f,

where G0 does not appear since the two terms cancel out and, hence, the linear wave equation is obtained.
This example shows the relation between linear wave equation and the linear viscoelasticity equation.
Specifically, when we consider the wedge continuous relaxation function in the example, the linear vis-
coelasticity equation admits the linear wave equation as its limit wherein the speed is c2 = G∞.

1.4. Content outline

The outline of the article is as follows. In Section 2, a suitable mollified formulation of the relaxation
function is introduced, then corresponding approximated regular problems, which depend on a small
parameter ε ∈ R+, are considered. The two key ingredients are, on one hand, the link between the
assigned initial boundary value problem (1) - (2) and its integral mild formulation (4). On the other
hand, we prove that the limit, as ε → 0, of the sequence of solutions admitted by the approximated
regular problems coincides with the solution of the non-regular initial boundary value problem under
investigation. Suitable a priori estimates are proved: the proof of existence of the weak solution admitted
by the problem under investigation, and constructed via limit process, is based on them.

The subsequent Sections 3 and 4, are devoted, in turn, to show the existence, and its uniqueness, of
the weak solution admitted by the problem. Sections 3 is concerned about the limit of the sequence of
solutions to the approximated problems. A key role is played by the estimate in Section 2. The proof of
the uniqueness of the weak solution provided in Section 3 is given in Section 4.
Perspectives and open problems are mentioned in the closing Section 5.

2. Approximated problems

This Section opens with the introduction of a mollified relaxation function which depends on a small
parameter ε ∈ R+. Corresponding to each value of the parameter ε, a regular kernel problem is written.
Thus, a sequence of approximated regular problems is constructed. On application of a Lemma, proved
in [7], suitable a priori estimates are obtained. First of all, we introduce

(13) Gε(t) :=

∫ t+ε

t−ε
ρ

(
t− τ
ε

)
1

ε
G(ε+ τ)dτ

where ρ : R → R+ is a C∞-function with compact support in the unit intervall (-1,1), such that its
integral is equal to one, that is

(14)

∫
R
ρ

(
t− τ
ε

)
1

ε
dτ = 1;

so that (13) can be rewritten as

(15) Gε(t) :=

∫
R
ρ

(
t− τ
ε

)
1

ε
G(ε+ τ)dτ.

Note that by (13) one has also

(16) Gε(t) :=

∫ ε

−ε
ρ
(τ
ε

) 1

ε
G(ε+ t− τ)dτ,

so that if G is nonnegative, nonincreasing and convex so is Gε. Furthermore, formula (13) is a convolution
with a mollifying kernel. Since G is defined only for positive values, it is slightly extended at the left of
0 for the convolution to make sense. The chosen is the most simple natural extension.
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Now, consider the approximated problem P ε given by the following integro-differential equation

(17) uεtt = Gε(0)uεxx +

∫ t

0
Ġε(t− τ)uεxx(τ)dτ + f, 0 < ε� 1,

where Gε is given by (13) and, hence, Gε(0) as well as Ġε are well defined, together with associated initial
and boundary conditions

(18) uε|t=0 = u0, uεt |t=0 = u1(x), uε|∂Ω×(0,T ) = 0 , t < T.

Notably, the problem P ε is regular and, hence, admits a unique solution [14,15]. In addition, the corre-
sponding weak formulation is:

(19) uε(t) =

∫ t

0
Kε(t− τ)uεxx(τ)dτ + u1t+ u0 +

∫ t

0
dτ

∫ τ

0
f(ξ)dξ ,

where

(20) Kε(ξ) :=

∫ ξ

0
Gε(τ)dτ .

The next Section is devoted to consider the limit, as ε→ 0 of such an approximated integral problem to
the integral problem (4).

The next aim of this Section is to establish an estimate which allows to prove the needed convergence
of the approximated solutions as ε goes to zero.

The following Lemma 2.1 provides the needed estimates to prove the Theorem, provided in the
subsequent Section, which allows us to establish the existence result we aimed to.

As proved in [14], [15], the regular linear problem (17) - (18), where Gε is given in (13), admits a
unique solution. In particular, the following Lemma can be stated.

Lemma 2.1 Let uε denote the unique solution admitted by the problem (17)–(18), then it follows

1

2

d

dt

∫
Ω
Gε(t)|uεx|2dx−

1

2

d

dt

∫ t

0
ds

∫
Ω
Ġε(s)|uεx(t)− uεx(t− s)|2dx+

+
1

2

d

dt

∫
Ω
|uεt |2dx =

∫
Ω
f uεtdx+

1

2

∫
Ω
Ġε(t)|uεx|2dx+(21)

− 1

2

∫ t

0
ds

∫
Ω
G̈ε(s)|uεx(t)− uεx(t− s)|2dx .

Proof. The proof follows the lines of the proof of Lemma 2.1 in [7].
Specifically, when we recall the conditions (6), imposed on G, and we consider Gε, they imply Ġε < 0

and G̈ε > 0, in the integration time interval (0, t). Hence, these conditions, combined with integration
over the time interval (0, t), leads to

1

2

∫
Ω
Gε(t) |ux|2 dx+

1

2

∫
Ω
|ut|2 dx(22)

≤
∫

Ω

∫ t

0
f ut dx ds+

1

2

∫
Ω
Gε(0) |ux(0)|2 dx+

1

2

∫
Ω
|u1|2 dx .

The latter, when the initial data are taken into account, implies

(23)
1

2

∫
Ω
Gε(t) |ux|2 dx+

1

2

∫
Ω
|ut|2 dx−

∫ t

0

∫
Ω
|ut|2 dxds ≤ C(f, u1, u0, G0).

Hence, on application of Gronwall’s lemma,

(24)
1

2

∫
Ω
Gε(t) |ux|2 dx+

1

2

∫
Ω
|ut|2 dx ≤ eTC(f, u1, u0, G0).
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Since G is nonincreasing, choosing 2ε ≤ 1, t ≤ T and using (14) one has

(25) Gε(t) ≥
∫ t+ε

t−ε
ρ

(
t− τ
ε

)
1

ε
G(2ε+ t)dτ ≥ G(1 + T ).

Thus it holds

(26)
1

2

∫
Ω
|ux|2 dx+

1

2

∫
Ω
|ut|2 dx ≤ αeTC(f, u1, u0),

wherein α = max{(G(T + 1))−1, 1}. This last estimate is required later on.

3. Integral Problem. Existence of weak solutions

The aim of this Section is to prove that, when we let ε → 0, there exists a weak limit, say u, of
any sequence of solutions uε of the approximated problem, P ε (19). That is, consider any sequence of
functions uε, solutions to (19), it weakly converges to u, the solution to (1) – (2). The key fact is the
regularity of the problem P ε which implies the existence and uniqueness of its solution uε. Then, on
use of the estimate (26), it follows that there exists a subsequence {εh}, h ∈ N such that there exists a
convergent subsequence of solutions {uεh}

uεh −→ u weakly in H1(0, T,H1
0 (Ω)) as εh → 0;(27)

uεh −→ u strongly in L2(D) as εh → 0;(28)

hence,

(29) ∃ u(t) = lim
εh→0

uεh(t) in L2 ((a, b)× (0, T )) ,

where D = (a, b) × (0, T ) and uεh is solution to the problem (17) - (18). Thus, the following result can
be proved.

Theorem 3.1. The integral problem (4) admits a weak solution represented by the function
u(t) = lim

εh→0
uεh(t).

Proof.. Consider the approximated problem (17) - (18), which admits the unique solution uεh ; the
associated weak formulation reads

(30) P εh : uεh(t) =

∫ t

0
Kεh(t− τ)uεhxx(τ)dτ + u1t+ u0 +

∫ t

0
dτ

∫ τ

0
f(ξ)dξ ,

where

(31) Kεh(ξ) :=

∫ ξ

0
Gεh(τ)dτ .

Then, introduce the test functions ϕ, which depend on both the time and space variables and satisfy
homogeneous b.c.s at a and b, i.e., at the boundaries of the Ω ⊂ R domain

(32) ϕ ∈ C∞(D) , D = (a, b)× (0, T ), s.t. ϕ(a, t) = ϕ(b, t) = 0 ∀t ∈ (0, T ) .

On integration over D, after multiplication by ϕ of (30), allows to write

(33)

∫∫
D
uεh(t)ϕdx dt =

∫∫
D
ϕ

{∫ t

0
Kεh(t− τ)uεhxx(τ)dτ + u1t

+u0 +

∫ t

0
dτ

∫ τ

0
f(ξ)dξ

}
dxdt.
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First of all, note that all the terms

(34)

∫∫
D
ϕ

{
u1t+ u0 +

∫ t

0
dτ

∫ τ

0
f(ξ)dξ

}
dxdt

depend only on the initial data and/or on the history of the material with memory, supposed known.
Since all these terms are assumed regular, then the boundedness of D, implies the integral over D, in
(34) is well defined and finite. Furthermore, in (34), εh does not appear, hence, all the terms therein are
unchanged in the limit εh → 0.

Accordingly, the quantity to focuss the attention on is the following

(35)

∫∫
D
ϕdxdt

∫ t

0
Kεh(t− τ)uεhxx(τ)dτ.

On use of the homogeneous boundary conditions (32) satisfied by the test functions ϕ, integration by
parts with respect to the space variable, two times, gives :

(36)

∫∫
D
ϕdxdt

∫ t

0
Kεh(t− τ)uεhxx(τ)dτ =

∫∫
D
ϕdxdt

d

dx

∫ t

0
Kεh(t− τ)uεhx (τ)dτ.

= −
∫∫

D
ϕx dxdt

∫ t

0
Kεh(t− τ)uεhx (τ)dτ.

The weak convergence of uεhx to ux combined with the pointwise convergence of Kεh to K, proved as
follows, imply the existence of the weak solution. Indeed, by definition

(37) Kεh(t)−K(t) =

∫ t

0
Gεh(s)ds−

∫ t

0
G(s)ds =

∫ t

0
ds

{∫ s+ε

s−ε
ρ

(
s− τ
ε

)
1

ε
G(ε+ τ)dτ −G(s)

}
=

∫ t

0
ds

∫ s+ε

s−ε
dτ

{
ρ

(
s− τ
ε

)
1

ε
[G(ε+ τ)−G(s)]

}
→ 0, as ε→ 0.

since limε→0 [G(ε+ τ)−G(s)] = 0.

4. Integral Problem. Uniqueness of weak solutions

In this Section the solution uniqueness is considered.

Theorem 4.1. Given the integral problem (4), i.e.,

(38) u(t) =

∫ t

0
K(t− τ)uxx(τ)dτ + u1t+

∫ t

0
dτ

∫ τ

0
f(ξ)dξ

it admits a unique solution u ∈ L2(0, T ;H1
0 (Ω)).

Proof.. Assume (38) admits two different solutions, say v and ṽ, then the linearity implies that also any
linear combination of them is again a solution to (38). Thus, consider w := v − ṽ; it turns out to solve

(39) w(t) =

∫ t

0
K(t− τ)wxx(τ)dτ

subject to homogeneous initial and boundary conditions, by definition.
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Let us denote by wi, λi the eigenfunctions and eigenvalues for the Dirichlet problem in Ω i.e. satisfying

(40) −wixx = λiw
i in Ω, wi = 0 on ∂Ω.

(Without lost of generality we can assume the eigenfunctions normalised). From (39), multiplying by wi

and integrating on Ω one deduces

(41)

∫
Ω
w(t)wi dx = −

∫ t

0
K(t− τ)

∫
Ω
wx(τ)wix dxdτ

from which we derive by (40) and denoting the L2-scalar product by ( , )

(w(t), wi) = −λi
∫ t

0
K(t− τ)(w(τ), wi) dτ.

Taking absolute values it follows since K is nondecreasing, nonnegative

|(w(t), wi)| ≤ K(T )

∫ t

0
|(w(τ), wi)| dτ.

So that by Gronwall’s Lemma (w(t), wi) = 0 ∀i and thus w = 0.

5. Perspectives and open problems

The question which remains to answer to is whether it is possible to extend the obtained results
to the case when a magneto-viscoelastic body is considered. Indeed, the case of magneto-viscoelastic
materials is very interesting both under the applicative viewpoint as well as under the mathematical one.
Specifically, the parabolic equation that describes the evolution of the magnetisation spin is modified by
the introduction of a further term when the deformation effect is taken into account. There are many
publications on the subject, among them we quote the modelling of magneto-elastic interactions described
in [4], and the variational analysis and some aspects on the modelling and numerics considered in [17,22].
When the mechanical response also accounts of the past deformation, the mathematical problem becomes
an evolution problem with memory described by nonlinear integro-differential equations. In the framework
of the model proposed in [3], the problem, when the two effects elastic and magnetic effects are coupled is
studied in [12,13,26]. One of the aspects is the change from parabolic to hyperbolic of the system, studied
also in [16]. The case of a magneto-viscoelastic material where equations which couple the two effects of
viscoelasticity and magnetisation are given, in [5,6]. In [5] we prove the existence and uniqueness of the
solution admitted by a 1-dimensional magneto-viscoelastic problem. The existence result is generalised
to the 3-dimensional case in [6] and to the case of a singular kernel 1-dimensional magneto-viscoelastic
problem in [10]. Singular kernel problems are studied also in [8,11]. Currently under investigation is the
coupling of the magnetic effects with the viscoelasticity model considered in the present study.
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