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Abstract: Pollution derived from transportation systems is a worldwide, timelier issue than ever.
The abatement actions of harmful substances in the air are on the agenda and they are necessary
today to safeguard our welfare and that of the planet. Environmental pollution in large cities
is approximately 20% due to the transportation system. In addition, private traffic contributes
greatly to city pollution. Further, “vehicle operating life” is most often exceeded and vehicle
emissions do not comply with European antipollution standards. It becomes mandatory to find
a solution that respects the environment and, realize an appropriate transportation service to the
customers. New technologies related to hybrid–electric engines are making great strides in reducing
emissions, and the funds allocated by public authorities should be addressed. In addition, the use
(implementation) of new technologies is also convenient from an economic point of view. In fact,
by implementing the use of hybrid vehicles, fuel consumption can be reduced. The different hybrid
configurations presented refer to such a series architecture, developed by the researchers and Research
and Development groups. Regarding energy flows, different strategy logic or vehicle management
units have been illustrated. Various configurations and vehicles were studied by simulating different
driving cycles, both European approval and homologation and customer ones (typically municipal
and university). The simulations have provided guidance on the optimal proposed configuration and
information on the component to be used.

Keywords: hybrid electric vehicle; series and parallel configuration; energy management; control
strategies; electronic controller unit; braking energy regeneration; hybridization degree; powertrain
configurations; battery package; ultracapacitor; electric motors; thermal engines; ultra-micro gas
turbine; driving cycles simulations; hybrid vehicle feasibility

1. Introduction

Public and private transport play a key role in the economic and social development of each
country. An efficient transport system allows the possibility to reach new markets and strengthen
existing ones. Consequently, it allows and promotes a strong economic growth which is globally
productive and competitive. An inefficient or low-efficient system produces an increase in traffic
congestion, economic and social losses, and loss of working hours, productivity, and social relations.
World Transportation absorbs 1975 million tons of oil equivalent (Mtoe) [1] per year, that is, 26% of
energy consumption. However, if average energy consumption for transport is 0.32 toe/inhabitant
(tons of oil equivalent per capita), consumption varies considerably from one continent to another:
A European citizen consumes 0.88, a North American an average of about 2.21, and an African one
0.07 toe. Now, motorized mobility, as it is practiced in “developed” countries, is becoming increasingly
unsustainable. Indiscriminate use of motorized transport has three main consequences:
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• It is dangerous. In 2014, the World Health Organization (WHO) defined transport as “a first class
medical drama” that causes over 3000 deaths per day and affects 90% of the world’s poorest
countries (those with a lower degree of motorized transport);

• Motorized transport excludes other modes of transport. It has difficulties tolerating pedestrians,
cyclists, and public transport and forces them to protect themselves (construction of sidewalks,
bike paths, green areas) or to retreat underground (subway).

• Motorized transport model space in favor of sparsely populated cities is very scattered. The most
obvious example is that of West Coast American cities (with a population density lower than
25 people per hectare and a consumption for transport which is more than 1.5 toe/inhabitant).
On the other extreme are Asian cities, exemplified by Hong Kong (with a density of almost
350 inhabitants per hectare and a consumption of 0.1 toe/inhabitant).

In addition, the greenhouse gas emissions of motorized transport are estimated at 6301 MtCO2,
or 26% of global CO2 emissions [1]. Transportation systems are the biggest polluters in the world due
to the use of fossil fuel in public and private vehicles. For this reason, after Kyoto, the EU is promoting
more and more innovative transport systems with limited environmental impact. There is currently a
new momentum in the study and implementation of efficient vehicles, such as electric vehicles, hybrids,
and gas. In medium/long term, global trends will lead to a further increase in demand for transport,
which will exceed the current capacity of existing systems. It can be remembered that pollution is
concentrated mainly in large urban areas, where the high presence of population and related activities
cause a high concentration and emission in the air. The main causes are the increasing territory
anthropization with an increasing demand for energy sources, mobility, and industrial development.
Secondly, system emissions consist of carbon monoxide CO, carbon dioxide CO2, nitrogen oxide NOx,
and other compounds, such as lead Pb, benzene C6H6, and particulate matter (PM). Pollution not only
damages the environment, but also damages human health. For these reasons, in recent years, the EU,
through a series of regulations, has gradually limited concentrations of pollutants (particulate matter,
SO2, Pb, NOx, CO, and benzene). Across Europe, these substances are released by several factors.
In detail [1], for PM10:

1. Transport 36% (2/3 due to wheeled transportation);
2. Industry 26%;
3. Civil industry 17%;
4. Agriculture 11%.

As can be noticed, transport is the main factor “responsible” for air pollution, especially in large
urban areas, where population density and transportation reach high levels, causing 70% of total
emissions. There is a growing demand for vehicles by the world’s population (2.8% average per year),
but fortunately there is no longer a high content of benzene and lead in fuel. Most deliveries of goods
are done by truck (61.5%), whereas 21.7% are done by rail and 11.5% by ships. Finally, thin particles and,
in particular, ozone continue to present serious health risks: Safety limits for these substances are
regularly exceeded because in many regions and cities, EU air quality objectives and regulations are
not met. The poor air quality has a high impact on the quality of life, as well as causing asthma and
respiratory problems. To control vehicle emissions, the EU has created regulations which classify
vehicles (Table 1) according to their production of pollutants. Let us consider a briefly economic
survey—for example, the case of the city of Rome. From an economic point of view, the traffic,
produced by the intensive use of private vehicles and the high offer of parking (76,048 paid parking
and 18,204 free parking spots, with a limit of 3 h for non-residents), generates congestion levels that
are expressed through 135 million hours lost per year, for daily transportation.
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Table 1. EURO Limit Percentages of Gaseous Emissions [g/km] [1].

Normative/Directive Carbon Oxide CO Hydrocarbons HC Nitrogen Oxide NOx Combined HC + NOx Particulate Matter PM

Gasoline Diesel Gasoline Diesel Gasoline Diesel Gasoline Diesel Diesel

91/441-1992
(EURO 1) 2.72 2.72 - - - - 0.97 0.97 0.14

94/12-1996
(EURO 2) 2.20 1.00 - - - - 0.50 0.70 0.08

98/69A-2000
(EURO 3) 2.30 0.64 0.20 - 0.15 0.50 - 0.56 0.05

98/69B-2005
(EURO 4) 1.00 0.50 0.10 - 0.8 0.25 - 0.30 0.025

715/2007-2011
(EURO 5) 1.00 0.50 0.10 - 0.6 0.18 - 0.23 0.005

715/2007-2015
(EURO 6) 1.00 0.50 0.10 - 0.6 08 - 0.17 0.005

In economic terms, this is a loss of about €1.5 billion/year. Added to this value should be the social
costs for road accidents (approximately 1.3 billion euros per year) and the environment [2]. According
to UN (United Nations) reports, the current global scenario is characterized by the following situation:

• Transport inefficiencies costing, globally, between 1 and 2 trillion $ per year;
• That congestion is responsible for, approximately, 1% (100 billion) of GDP in developed economies.

2. Electric Vehicles (EVs) & Hybrid Vehicles (HVs) Definition

First of all, a distinction is needed between “traction” and “propulsion”. Traction is supplied by
the electric motor, while propulsion can be electrical or thermal, or by coupling the two engines. If the
electric motor receives the required energy from a battery package, the vehicle is considered all-electric
vehicle [2–4]. This vehicle needs recharging stations, consistent with the operational battery package
autonomy, which affect the vehicle range. If the electric motor is fed by the battery package and by a
thermal engine, the vehicle is called “hybrid”. In fact, this vehicle is a thermal–electric vehicle. Despite
the fact that electric vehicles (EVs), either all-electric or hybrid, represent an effective solution for
reducing “local” emissions (city, extra urban agglomerations), they cannot affirm the same concepts,
considering the whole production chain. A compromise solution has to be found.

2.1. Briefly Electric Vehicle Description

In an electric vehicle, the engine that supplies power to the wheels is an electric motor powered
by a battery pack. The battery package is rechargeable and a vehicle management unit (VMU)
manages and distributes the energy flows to and from the electric motor. The electric motor can
be an AC or DC one. The DC motor is cheaper and easier to maintain/build. These motors can
also work, for a limited time, under “overdrive” conditions, absorbing more energy than the rated one.
This aspect is very beneficial during acceleration. The use of the overdrive is limited by the risk of
overheating. The AC motor (typical three-phase) is more expensive. In addition, a kinetic energy
recover system (KERS) is expected to be present on a vehicle. This device is able to recover 15%
regenerative braking [5]. The last important aspect is the battery package. For eliminating lead acid
batteries, which are pollutant, bulky, heavy, expensive, and characterized by an excessive charge time,
researchers’ attention has settled on lithium-ion batteries (Li-ion) or nickel (NiMH). This latter type
of batteries has a long service life. However, the cost of these battery packs is very high. Finally,
there is the charging system, which is necessary for a vehicle’s operation. In all the aforementioned
aspects, electric vehicle technology is constantly evolving, responding to continuous and variable
market demand. A comparison between Electric Vehicle and Hybrid Vehicle is reported in Table 2.
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Table 2. Electric Vehicle (EV) and Hybrid Electric Vehicle (HEV) Comparison [2–4].

Systems Characteristics/Type
of Vehicle EV HEV

Propulsion Electric motors Electric motor
Thermal engine

Energy storage Battery package
Ultracapacitors

Battery package
Ultracapacitors

Fuel tank

Energy source infrastructure Electric grid Electric grid
Commercial gas station

Characteristics

Zero emissions
High efficiency

Relatively short range
Fuel independence

High cost
Commercial availability

Low emissions
Relatively high fuel economy

Extended range
High cost

Commercial availability
Partial fossil fuel independence

Issues

Battery package overall dimensions
and weight

Battery MBTF
Charging stationsCost

Battery package overall dimensions, weight,
and management

Energy fluxes control, management,
and optimization

2.2. Hybrid Vehicles

A hybrid vehicle, more properly a hybrid powered vehicle, is a vehicle equipped with a propulsion
system composed of two or more components, such as an electric motor with a thermal engine, which
work in synergy with each other [6–12]. It must not to be confused with bimodal vehicles, which are
vehicles that can operate with energy supplied from the outside or with a battery on board, such as
trolleybuses with batteries. There are three possible configurations:

1 Series
2 Parallel
3 Combined

2.2.1. Series Hybrid

This technology, also called a “range extender” (Figure 1a), is very similar to that used in
diesel–electric locomotives. The internal combustion engine (ICE) is not directly connected to the
wheels, and has two functions:

(a) Generate the electricity to power the electric motor;
(b) Recharge the batteries.
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In some configurations, it is possible that the heat engine carries out both functions. If a large
amount of energy is required, it is drawn from both the heat engine and the battery package. Because
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electric motors are able to operate on a wide range of engine speeds, this structure allows to remove or
simplify the mechanical transmission device. The efficiency of ICE changes with speed control, so the
heat engine rpms (revolution per minute) in a series hybrid system are set to get maximum efficiency
(the engine does not suffer either acceleration or deceleration). Thanks to this condition, it can use a heat
engine (generator), which has a very narrow range of exploitation/operation compared to common
heat engines, with a higher efficiency in that “limited” range. In some prototypes, small electric motors
can be installed for each wheel (Electric Motor-wheel). The advantage of this arrangement is that the
power delivered to each wheel can be controlled and managed separately. On the other hand, a complex
vehicle management (that has to operate as a mechanical differential) is required. The drawback of
series hybrid vehicles is the reduction of efficiency in conditions of high and constant speed (typically
on the highway, with a “constant” speed of 130 km/h). In this configuration, part of the energy is
lost, which does not happen in classical vehicle configuration. Series hybrid [10,12,13] is the most
recommended configuration for vehicles that require continuous braking and restarts, such as for
buses and taxis and some heavy operating ones. In Table 3 the main HV characteristics.

Table 3. Series Hybrid Specifications [4,5].

Features

Optimized power plant
Modular power plant possibilities

Long operational life
Excellent transient response

Engine down sizing
Advantageous packaging

Possibility of Zero Emissions Operation Mode
System complexity

Drawbacks

Larger traction drive system
Multiple Energy conversions

Optimized design of algorithms
High investment cost

Larger traction drive system

Applications City cars/passenger sedan/urban and extra urban bus

2.2.2. Parallel Hybrid

Parallel hybrid (Figure 1b) is the most widely used architecture [6–15]. Both motors (electric
and thermal) provide power to the wheels. The ICE is also used to recharge the battery package,
when required. The position of the mechanical coupling within the system identifies three possibilities:
(a) A pre-transmission (the electric motor is upstream the gearbox), (b) post-transmission (the electric
motor is downstream), and (c) post-wheels (wheels have two independent motors).

There is a further classification, connected to the relationship between the rated powers. In most
cases, the ICE is dominant, and the electric motor provides (when requested) a surplus of power. Often,
the electric motor and the electric generator are combined into a single device. This allows to eliminate
the “low gears”, characterized by higher fuel consumption. In addition, the ICE displacement can be
lower, as the electric motor provides the surplus. This makes these vehicles suitable for urban driving
cycles rather than extra urban cycles (Table 4).

Table 4. Parallel Hybrid Configuration [4–6].

Features
Drawbacks

Economic gain at high cost
Possibility of Zero Emissions Operation Mode

System complexity
Expensive system

Complexity of control system
Complex volume packaging

Optimized design of algorithms
High voltage required to improve efficiency

Applications Bus/heavy truck
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2.2.3. Combined Hybrid

These hybrid vehicles are characterized by a mechanical coupling (typical for parallel hybrid) and
hybrid electrical connections (typical series hybrid). Two electric motors are used. A relatively simple
example is provided by the architecture of the Toyota Prius. The mechanical coupling between the
internal combustion engine and the final drive shaft has been realized through the combination of a
planetary gear train and a gearbox.

2.2.4. Hybrid Electric Vehicles: Passenger Sedans, Sports Cars, City Cars

There are actually several commercial hybrid vehicles available on the market. In the following
paragraph, several models are reported, with a brief description. It is only a “picture” of the existing
vehicles and possible future research and applications:

1. Toyota Prius (parallel hybrid)

The Toyota Prius was the first commercially mass-produced and marketed HEV. The Lexus model
RX400h and RX450h, also produced by Toyota, have been characterized by a planetary gear technology
with a third motor added to the rear wheel to increase the vehicle’s performance. In 2014, about nine
million hybrid electric vehicles have been sold. Seven million of these are Toyota/Lexus models [16].

2. Honda Civic (parallel hybrid)

In the Honda Civic hybrid the electric motor is located between the ICE and the transmission.
A 12-kW PM motor either provides assistance to the engine in high vehicle power demand or splits
the power of the engine during low vehicle power demand. The hybrid vehicle report a 66% and 34%
fuel economy, respectively.

3. Ford Escape (combined)

This was the first hybrid SUV. The model, as well as the Lexus ones, adopts the planetary gear
concept as power splitting device. With significantly reduced engine dimensions, the hybrid SUV
can be compared with standard combustion engine ones, in terms of performance. The continuous
research and development has generated a second generation hybrid SUV: the Mercury Mariner,
with improved power that allows to achieve an exceptional drivability and dynamic performance.
Ford Motor Company reported sales of over o 375,000 hybrid vehicles in the US in 2015 [17].

4. Honda FCX (parallel)

This commercially available HEV uses fuel cell technology, thanks to the continuous improvement
of this technology. In 2002, Honda’s FCX was certified by the US Environmental Protection Agency
(EPA) and the California Air Resources Board (CARB). It was the only fuel cell car to be approved for
commercial use. CARB and the EPA have also certified the FCX as a Zero-Emission Vehicle (ZEV),
Tier-2 Bin 1 [6].

5. Saturn VUE

The Saturn VUE is a very simple and “on the field” solution. A 4-kW electric motor has added,
through a belt, to the existing power train. The small electric motor is powered by 36 V 10 kW.
The motor is configured in generating operational mode, either from the engine during opportunity
charging or from the vehicle KERS system. An interesting 20% fuel economy improvement justifies the
small investment into the hybrid. The drawback is that due to the small size motor, the engine cannot
shut off at low vehicle speed.

2.2.5. Electric/Hybrid Buses in the Public Transport

Here below a list of major studies on electric buses are presented [18] and showed in Figure 2:

1. The UTAH STATE electric bus (Aggie Bus)
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The electric bus stops at a sort of “pit-stop”, where a grid re-charges the vehicle batteries.
The recharging system is wireless.

2. E-Bus BYD C9

The development of this bus is funded by the Malaysian and Australian governments. The BYD
C9 is 12 meters long and can carry up to 47 people, traveling at an average highway speed, with a
range of 305 km. It is a 100% electric bus.

3. Terra Volt XR Extended Range bus

The Terra Volt XR has a 131 kWh battery package. In road tests the vehicle has shown a range of
1126 km, travelled in 24 h.

4. The CCS Byberg & Nordin Bus

The re-charging module is called Heliox CCS and it precisely meets the EU standard protocol for
recharging with direct current (DC).

5. Staples & Siemens Fuel-cells bus

This is a thermo-electric vehicle with electric traction. The fuel cell is a device where hydrogen
and oxygen chemically react producing electricity. If the fuel cell is mounted on a vehicle equipped
with an electric motor (or motors), the hydrogen becomes a fuel that can replace fossil fuels.
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At present, several programs are under development in some countries, such as Switzerland,
England, the United States, Italy and others, to improve and realize an electric bus [18]. A first analysis
of the various systems highlights a common criticism. At the present, all the prototypes are strongly
affected by the “limited” operational range of batteries or battery packages, and require long recharge
times. In some projects, to mitigate this aspect, the manufacturers have “oversized” the battery
packages (see BYD systems and Terra Volt that use battery packages of 100 and 130 kWh respectively).
This “oversizing” has, inevitably, an impact on the installation, operation and maintenance costs.

2.2.6. Other Hybrid Electric Vehicles

1. Trucks

In 2003, GM presented a hybrid diesel-electric military (light) truck, equipped with an AC
combination of a diesel electric and a fuel cell auxiliary power unit. In 2004 other light trucks were
presented by Mercedes Benz (Sprinter) and Micro-Vett SPA (Daily Bimodal). In 2005 the Isuzu
Company realized the Elf Diesel Hybrid Truck for the Japanese Market. The company claimed sales
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of 300 vehicles [19,20]. Regarding the vehicles’ specific issues, two braking torque control strategies
for the parallel power trains of hybrid duty trucks have been introduced [21]. Other research groups
have presented a heavy duty truck equipped with two similar electric drive trains acting in parallel
mode [22]. About the VMU, several groups [23,24] have studied and analyzed the optimal control
strategies, especially for hybrid electric trucks and the control strategy and energy fluxes management
have been presented [25].

2. Hybrid trains

Railroad transportation is a possible candidate for the implementation of hybrid systems. In some
previous work, different configurations are presented. An Italian research group presented a gas
turbine hybrid configuration (series hybrid) as a range extender for a passenger train [26]. Other
researchers have presented a fuel cell hybrid locomotive [27,28]. In the different configurations
presented, in one a fuel cell is the energy source, in the other a diesel engine is the power source. Other
teams have investigated the advantages and drawbacks of the electric energy storage systems, using a
combination of batteries and ultracapacitors [29,30].

3. Aircraft and UAVs

The Boeing concept is a manned full electrical aircraft that has a PEM fuel cell for cruising and a
Li-ion battery for take-off and climbing [31]. Two different configurations are presented, unregulated
and regulated. The unregulated architecture realizes a natural balance between energy/power sources.
The regulated architecture controls the power supplied by each source. The converter output voltage is
levered by a control loop that maximizes the fuel cell power. Several research groups have investigated
the technical differences between More Electric Aircraft (MEA) and Hybrid Electric Vehicles (HEVs) [32].
The same previous Italian group has presented a UAV, in hybrid configuration [33]. The series hybrid
is used, and the thermal source is again a gas turbine device. In this case the GT device acts as a
“range extender”.

4. Electric boats

The electrification of ships is important for the reduction of oil use and pollution. In some papers
the required design criteria and procedures were presented [34]. Actually the main configuration
foresees a fuel cell stack (proton exchange membrane—PEM) and battery packages. The attention is
focused on passenger boats. Finally, a plug-in boat (PHEB) was presented [35].

5. Helicopters

Following research on wheeled vehicles, helicopters have also been considered for implementing
a hybrid power pack. In this vehicle, the minimization of the mass, the fuel consumption and the
fulfilling of the instantaneous load power demand are mandatory. Secondary electric sources can be
added to avoid over-sizing the main source and to optimize the management of the transient energy.
a model based on Energetic Macroscopic Representation (EMR) has been used to realize a control
structure [36].

6. Scooters (motorcycles)

for farm works and an Internal Combustion Engine Tractor (ICET) for European Undoubtedly,
the development of hybrid electric motorcycles has much feasibility. A new hybrid motorcycle,
that meets the EU standards, has been designed [37]. Researchers have then investigated the possibility
of inserting a low cost KERS [38]. In this case, the energy storage is provided by ultra-capacitors.
The configuration is parallel hybrid, where the innovative drive train is coupled with a conventional
ICE [39,40].
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7. Tractors

A research group has presented the life cycle analysis of a solar PV-based electric vehicle
standards [41]. The lifecycle assessment of a Solar Assist Plug-in Hybrid electric Tractor (SAPHT) and
its comparison with an ICET has been presented and analyzed [42].

8. Military vehicles

The United States Army Manned Ground Vehicles of the Future Combat System is focused on the
use of hybrid electric vehicles. The system consists of a diesel engine to generate electrical power for
mobility and all other vehicle subsystems. Eventually, development of all FCS land vehicles has ceased,
due to the funds being blocked by the US Government. Recently, the control scheme of a military
vehicle has been presented. The vehicle configuration has been based on an inversion of energetic
macroscopic representation (EMR) [43,44].

2.3. Degree of Hybridization

The power in an HV is typically supplied by one electric motor (EM). The choice of the EM is
a direct function of the required performance. On the contrary, the installed electric power sources
may depend on different considerations. It is possible to identify two opposite solutions: the first
configuration is a “single electric” source, with an overdesigned battery package generating all required
electric power [4,9,10,12,18]. Such a vehicle is named a “Full Hybrid Vehicle”.

The second solution is defined as “Minimal Electric” or “Minimal Hybrid” source. Here a battery
package and TE simultaneously provide all electric power to the EM. If one of these power fluxes
is missing, the vehicle performance is significantly compromised (without the battery package the
vehicle does not have sufficient power for traction, and without the ICE the vehicle is not able to
supply energy to complete the typical homologation mission).

There are many other possible solutions, like “Plug-in Hybrid” and “Mild” or “Micro Hybrid”.
In the first configuration, a plug-in hybrid electric vehicle (PHEV) is a vehicle with a rechargeable battery
package that can be recharged by connecting a plug to an external electric grid. A PHEV shows the
characteristics of both previous solutions [4,9,10,45–47]. Regarding Mild Hybrids, normally, the power
levels are within 3 to 5 kW, but can increase to 7 ÷ 12 kW. In the common solution, the EM is located in
the vehicle transmission at the engine crankshaft [11,12,48]. Therefore, some researchers have proposed
a formula to define the degree of hybridization. In fact, once the vehicle class has been identified,
the maximum required electric power is fixed. Then, the ICE total power source (if any) and battery
package nominal specification, are computed. Finally it evaluates the hybridization degree (HD—the
design target), as the correct ratio between the ICE power (if any) and the total installed power:

HD = PTHERMAL ENGINE/(PTHERMAL ENGINE + BP) (1)

3. Hybrid Vehicles: Operative Description

The adoption of separate motors which can be used separately or simultaneously in hybrid
vehicles offers great flexibility of power management, apart from operational reliability, concerning
the high currents generated and delivered, the key issue concerns the overall dimensions and
electrical characteristics of battery package, subjected to frequent and rapid charging and discharging
cycles [4,9–12,45–48]. Therefore, only by focusing on the study of performance and cost of the vehicle,
as well as on the cost and the actual battery life, the market can be stimulated to welcome the
introduction of hybrid vehicles. The most sensitive parameter is the cost, and in the short term,
the most interesting solution is the thermal-electric configuration, which ensures the reduction of
fuel consumption and emissions, and preserves the current infrastructure network for refueling,
without an abrupt disruption of the existing distribution system, as would be necessary in the case of
widespread introduction of pure electric vehicles. The high technological level reached in electronics
makes presumably easy to complete a control logical unit for managing position signals of pedals,
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instantaneous power demand, wheel speed, engines speed, emissions, fuel flow, temperature, pressure,
voltage, current and battery State of Charge (SOC). The vehicle and the control system shall exchange
continuous information: the processor processes the signals according to an established schedule
(“mission control”) and sends commands to the actuators, achieving a balance between performance,
consumption, mechanical problems and driving comfort. The electronics are thus crucial for a hybrid
vehicle; In light of the need to connect different components to set up an intelligent system, a hybrid
vehicle has multiple functional units, such as batteries, electric motors, generating set and charging
converters, which must be coordinated through “intelligent devices”, to monitor and process data
simultaneously from various elements. To avoid a complex central control module, it can be convenient
to utilize a modular system, which provides for each unit its own processor, all connected via a bus,
for the information exchange and coordination, namely a Vehicle Management Unit (VMU). There
are currently four possible configurations of hybrid propulsion, using different internal combustion
heat engines, or gas turbine, and different electric motors, AC or DC, synchronous and asynchronous,
with different solutions in relation to the mission for which is primarily designed [45]. The choice
between the different existing configurations of hybrid system, i.e., dual power, series, parallel, parallel
with the combustion engine in a fixed nominal point, with various types of thermal and electrical
motors, depends on the requirements of the vehicle type: today the most common features are:

1. A small heat engine that delivers a small power with low pollutant emissions, but delivers very
uninteresting performance during extra-urban missions.

2. A larger internal combustion engine suitable for extra-urban and highway missions, but certainly
not economically advantageous in urban cycles, with high consumption and emissions.

3.1. HV Powertrain Control and Management

The most critical aspect in a HEV project is the flow control and energy conversion for the thruster.
Therefore, the realization and the choice of the control logic of the HEV is the key point. In This section
it will try to give an overview of the various strategies of control powertrain for HEV and review the
latest methods of these strategies. It can be remembered that the aim of the control strategies is to meet
a set of objectives/targets/constraints [7,49–52]:

• Fuel consumption minimization;
• Fuel economy;
• Emissions minimization;
• Good drivability;
• Minimum system cost.

To achieve these goals, hardware configurations and powertrain control strategies are usually
designed together [32].

3.2. Energy Management

The electric motors are powered by battery packs throughout electronic devices. The battery is
recharged by an on-board TE, in addition to regenerative braking. The range of electric drive mode is
very limited according to battery package rated power. A more powerful battery package increases the
range and improves the overall fuel economy. Considering the abovementioned recharging solution,
it is important to highlight that the current systems are not able and sufficient to fully recharge the
battery packages. The typical operation modes are illustrated in Figure 3. In electric drive mode,
at start up, the electric motor is fed by the batteries. The available power is determined by the SOC.
Depending on the configuration chosen, during cruising, the TE can be recharging the batteries or split
its power between the power train and batteries. In accelerating/passing maneuvering, the thermal
engine and the battery packages supply energy to the powertrain. Eventually, a KERS regenerative
braking system is considered. It converts the braking energy into electricity and stores it in the
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battery package. Besides, when the vehicle is stopped, all motors are shut down, because no idling is
considered. At same time, the battery continues to supply energy for all on-board auxiliary systems
(air conditioning, check panel lights, audio, etc.). The operational modes are determined by the energy
management strategies. They can divided into two main topics [5,9–12,53]:

1. Rule-Based (RB)
2. Optimization-Based (OB)
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3.3. The Rule-Based Control Strategy

Its effectiveness in real time supervisory control of power flows in a hybrid powertrain is its
main favorable characteristic. The rules are based on heuristics, intuition, human expertise and
mathematical models (Figure 4). Generally, “a priori” knowledge of a predefined driving cycle is not
required, for compiling the rules. These rule-based approaches can be classified into deterministic and
fuzzy- based methods. The rule strategy is based on the concept of “load leveling” [9–12,53]. Such a
rule is normally adopted in “IC-dominated hybrids”. The ICE operates close to a pre-determined
value, during every instant of the mission drive. Depending on the strategy target, the ICE can operate
close to an optimal efficiency point or an optimal fuel economy one, respectively. In this case, the HD
is higher, the ICE dominates and the EM and BP is usually downsized with lower efficiency compared
to the thermal engine. Besides, this concept can be used in Not-ICE dominated hybrids. In fact,
the thermal engine can operate at a fixed point [48], recharging the batteries and supply extra power
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only in “critical situations”, depending on the SOC. In this case, the TE acts as a “range extender”.
In this configuration, the battery package and the electric motors are dominant compared to the engine,
that can be downsized.
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3.3.1. Deterministic Approach

Heuristic rule-based approaches are usually used to analyze the power/energy fluxes in
a hybrid power train. To design the rules, thermal engine efficiency, fuel consumption maps
and emissions charts are used, as well as, the other components maps/charts (batteries, electric
motor, etc.). In addition, human experience is utilized to implement the rules. The methods consist of
“on/off” strategy [4,6,9–12,54], “load following” control strategy [48,55], “modified power follower”
strategy [56] and “state machine”-based strategy [57].

3.3.2. Fuzzy Rule Method

The hybrid powertrain can be considered a non-linear and time varying system. Fuzzy logic can
be a possible method to solve the problem. In fact, instead the deterministic rules, the decision making
properties of fuzzy logic can be implemented to realize a real time and suboptimal power flux control.
The advantages of this choice are:

1. Robustness: the logic is tolerant of imprecise measurements and component variation
2. Adaptation: since the fuzzy rules can be easily adjusted [53]

Fuzzy rule-based methods are defined as conventional fuzzy strategy [58], fuzzy adaptive
strategy [59] and fuzzy predictive strategy [59]

3.3.3. Optimization-Based Control Strategy

This strategy optimizes powertrain efficiency and minimizes the system losses [60].
The objective-cost function is generally represented by the fuel consumption or emissions.
Consequently, all system components are designed minimizing the cost function. If this optimization
is carried out over a pre-determined driving cycle, a global optimum solution can be found. In fact,
the solution is non-casual. The strategy tries to find the minimum fuel consumption, once the power
demand is knows. Actually this method can be considered the basis of designing rules for online
implementation or comparison for other control strategies [53].

3.3.4. Global Optimization

A specific HV global optimization algorithm has been deigned on the basis of the Bellman
optimality principle and applied to fuel cell HEVs. The aim of the strategy is to minimize the energy
losses throughout the cycle [61]. The cost function represents the drive cycle efficiency and emissions,
yielding to global optimal operating points. Global optimization control strategies are divided into
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linear programming [62], control theory approach [63], dynamic programming [64], stochastic DP [65],
game theory [66] and genetic algorithm [67] approaches.

3.3.5. Real Time Optimization

The global optimization techniques cannot be directly applied in real time, considering that casual
solutions are generated. To define an objective function for instantaneous optimization, in addition to
fuel consumption, the stored electrical energy fluctuations could be considered, to guarantee electrical
self-sustainability. Real time optimization strategies include real time control based on equivalent fuel
consumption [68,69], decoupling control [70], robust control approach [71] and optimal predictive
control [72].

3.4. Controller Units

The HV electronic controller units (Figure 5) are composed by a battery management unit (BMU),
ultra-capacitor control unit (UCU), electronic vehicle control unit (EVCU), engine control unit (ECU),
electronic braking system control unit (EBSCU/KERS) and drive system control unit (DSCU).
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The battery package control is a fundamental and integral part of HVs. It protects the battery from
damage, predicts battery life, range and controls the operational conditions. It carries out the tasks of
controlling the charging/discharging operation, determining the SOC, monitoring and storing data [73].
The EVCU is usually installed in the engine compartment to reduce costs by decreasing the system
complexity and reducing the noise effect on other electric equipment [74]. In HEVs, VCU control is
achieved by computing the energy and power flows from accelerator, BMU, UCU and ECU.

The ECU is a system for controlling the coupling between the thermal engine (ICE or others)
with an EVCU. The electronic module includes an electronic memory unit, a computing unit, an unit
for signal acquisition and an energy storage device, for storing electrical energy and powering the
electronic module during the operation of the engine. The electronic brake system for road vehicles
uses a delocalized electronic device and only one central module. The central module includes a
microprocessor [75]. The DSCU is an electric motor system for reducing drive wheel torque on a HV
that uses an ICE/TE, an electric motor, a transmission and a controller. In the parallel configuration
the TE is coupled to the electric motor.

Both the engine and motor are coupled to the transmission that uses the combined torque from
both the engine and motor to generate the drive wheel torque on a drive wheel. The vehicle system
controller is coupled to the electric motor and senses any traction control events. When a traction control
event occurs, the controller reduces the drive wheel torque by reducing the electric motor torque [76].
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3.5. Regenerative Braking Control Strategy

Regenerative braking is a method to extend the hybrid vehicle range, and becomes fundamental
in urban cycles. In fact, the continuous “stop and go” are very favorable to the use of this device.
Some authors [77] have developed a control strategy using the rear motor control strategy, through
the use of fuzzy rules. Once the vehicle characteristics have been defined (motor/engine rated power,
electric motor rated power, battery package capacity, dynamics characteristics of the vehicle, etc.),
a block diagram of the braking system has been proposed [77]. Finally, through a mathematical model
that analyzes and controls the distribution of braking forces, the energy performance of the device
have been simulated. In detail, the fuzzy logic controls the distribution of the brake friction torque and
the regenerative brake torque. The last step was the compliance with the government standards, using
different driving cycles.

Other authors [78] have created a regenerative braking control system for the case of a vehicle with
a 4-wheeled motor. In this case, the proposed model consists of various modules (engine, battery pack,
tire model and vehicle dynamic model). The system calculates the brake torque, and distributes
the braking energy between the four wheels. The safety aspect is mandatory and the brake torque
module is the main module presented and studied. In the implementation of the control system,
an MPC was designed. The control model is based on the dynamic characteristics of the vehicle
(Figure 6). The function objective is the safety issue during braking and the optimization of energy
fluxes. The constraints are represented by the maximum torque values applied to the wheels. Also in
this case, the simulations have led to a positive validation of the control strategy. It is useful to
remember that the study was focused on various aspects, namely maintaining the wheel-ground
contact during braking, on the distribution of the loads on the four wheels, and on the optimization of
the braking energy. In all described cases, such as energy reservoir, ultracapacitors were considered.
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4. System Components

Regardless of the configuration used (series or parallel or combined) the various components that
make up the system are reported and analyzed. A fairly detailed overview of the state of the art of the
various components and of the various types used or studied is provided next.

4.1. Battery Packages

The most suitable batteries [79] for electric traction must have a high specific energy density,
durability, speed, reliability, compactness, low maintenance and cost. Analyzing the data in Table 5,
it can be noticed that LiFePO4 batteries present greater benefits than the others. Several experimental
studies carried out by the Energy & Environment National Agency (ENEA) [80], suggest the use of the
LiFePO4 batteries, as storage devices. The battery packages can be recharged:
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1. By the thermal engine;
2. By a plug-in charging station;
3. By KERS.

Table 5. Battery Package Comparison [80].

Chemistry Nominal Operative
Voltage [V] N.O.V

Energy Density
[Wh/kg] Cycle Life Self-Discharge

Rate [%/Month]

Lead-Acid 2 30–40 500–200 3–20
Ni-Mh 1.2 65–70 500–800 30
Li-ion 3.7 100–150 1000–1200 8
LiPo 3.7 130–200 800–1200 5

LiFePO4 3.2 90–160 1500–3000 <3
LiTi 2.3 70–100 ≥4000 <3

Experimental data is reported in Table 6.

Table 6. LiFePO4 Specifications [80].

Module Mass mmod 19.1 kg
Module Voltage Vmod 12.8 V

Cell Voltage Vcel 3.2 V
Specific Power Psp 201 W/kg
Specific Energy Esp 67 Wh/kg
Battery Capacity C 100 Ah

Maximum Current Cmax 450 A

To define the performance of the package the following formulae can be used [9,10,18,79–83]:

• The battery cell voltage:
E = 3.2 + 0.3 SOC in charging (2)

E = 3.2 + 0.3 SOC in charging (3)

• Maximum current for battery package fast charging:

Imax,in = C1 (1 − SOC) (4)

(the manufacturers propose operating with a current equal to the battery capacity (C)).
• Battery power.

PBP,max,in = V·Imax,in (5)

with:
V = ncell (3.2 + 0.3 SOC) (6)

so:
PBP,max,in = ncell (3.2 + 0.3 SOC) C1 (1 − SOC) (7)

Since Equation (7) shows that power is a function of SOC, manufacturers suggest limiting the
range of SOC between 0.4 (to avoid deterioration) and 0.85 (for lengthening the battery life).

4.2. Ultracapacitors

The electrochemical double layer condenser (electrochemical double-layer capacitor, EDLC),
better known as supercapacitor or ultracapacitor (UC), is predominantly used as a high energy density
electric energy accumulator, compared with conventional capacitors. The difference is typically on the
order of thousands of times higher than a high capacity electrolytic capacitor. For example, a common
electrolytic capacitor has a capacity in the tens of mF, while an ultracapacitor of the same size may have
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a capacity of several F. Supercapacitors have very fast charging times, from 1 to 10 s. The devices are
characterized by power and lifetimes up to 10 times higher than those of batteries (Table 7). They do not
require maintenance and operate reliably even under extreme temperatures. They are toxic/poisonous
chemicals free, unlike lead or NiCd batteries.

Their advantages are:

• High/low temperature utilization
• Long life
• Low weight
• PB free/ecofriendly
• Low recharge times
• Endless number of cycles
• Limited overall dimensions

They can be charged using different methods, including constant current, constant power, constant
voltage or parallel to different sources (batteries, DC converters, etc.) If an ultracapacitor is configured
in parallel with a battery, adding a low-value resistance in series, the charge current to the UC can be
reduced and the battery package life increased. If a resistances series is used, the UC output voltage has
to be directly connected to the application. Many battery systems show a component life decrease due
to continuous charge/discharge cycles. The maximum recommended charging current I is: I = V/5R,
where V is the charging voltage and R is the impedance of the capacitor.

Table 7. Ultracapacitor Characteristics.

Charging Time [s] 0.3–30
Discharging Time [s] 0.3–30

Energy Density [Wh/kg] 1–10
Power Density [W/kg] <10,000

MTBF >500,000
Efficiency [%] 85–97

A further development of ultracapacitors is their use in the battery hybridization process.
In this manner, the characteristics of the two systems are exploited. In fact, the system divides
the power demand into a low-frequency component (supplied by the batteries) and a high frequency,
provided by the ultracapacitors. The sum of the two supplied powers is equal to the required power.
The implemented control logic [83] is based on fuzzy logic. The computational cost is relatively low.
A key feature is that the system behaves like a low pass filter, so the RMS current of the batteries
is reduced and a high storage efficiency is expected. The low discharge rates, finally, increase the
batteries’ lifetime.

Other authors [83] have presented a hybrid package, with batteries and ultracapacitors.
The system, through two inverters, is connected to a DC motor. Three (3) different control strategies
are considered. In the first strategy, at high loads, the battery is discharged first. When a threshold
is reached, the ultracapacitors begin to discharge. Battery pack and ultracapacitors are recharged
together. In the second, both systems provide the energy required simultaneously. The battery is
recharged first and then the capacitors. In the third and last strategy, similar to the first one, the battery
is recharged first. The various strategies all lead to positive effects, but the authors underline how the
parameter set should be chosen from time to time with accuracy.

4.3. Flywheels

1. Mechanical Flywheels

A flywheel is a device for storing rotational energy. It tends to oppose any attempt to change its
angular velocity, stabilizing the rotation of a shaft when a periodic motor torque is applied, as in ICEs,
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or when the applied load is intermittent, as in volumetric pumps. The flywheel is so used to accumulate
the mechanical energy, produced by a low power motor during a long period, to release it at high
power in a short period of time. The amount of energy stored in a flywheel is proportional to the
square of its rotational speed, while the mass is linearly proportional. The adjustment is made by
changing the rotational speed. They are used for:

• Adjusting the output power (as in ICEs)
• Accumulate energy
• Delivering energy (in the HV the braking energy can be collected by a flywheel, which uses it to

recharge the battery package)

Flywheels are typically made of steel and require conventional bearings. This aspect limits their
maximum velocity to a few thousand rpm. High energy density flywheels can be made of carbon fiber
composites and use magnetic bearings, and can reach speeds of up to 60,000 rpm (Table 8).

Table 8. Flywheel Uses and Specifications [5].

Flywheel
Purpose, Type

Geometric Shape
Factor [k] Mass [kg] Diameter [m] Angular

Velocity [rpm]
Energy

Store [MJ]
Energy Stored

[kWh]
Energy Density

[kWh/kg]

Small battery 0.5 100 0.6 20,000 9.8 2.7 0.027
Regenerative

braking (trains) 0.5 3000 0.5 8000 33 9.1 0.003

Electric power
backup 0.5 600 0.5 30,000 92 26 0.043

2. Electric Flywheels

In terms of the exact technologies applied to hybrid systems, it is necessary to make some
considerations. On the one hand, there are electric hybrid systems, of the type used on existing
production hybrid passenger cars. In such a system, current generated by a motor under braking is
used to charge a battery which, when discharged, flows current back through the motor, generating
torque and adding to the performance of the powertrain. In the other side, there are mechanical
systems, where energy ‘harvested’ under braking is stored as kinetic energy in a flywheel. Flywheel
energy storage is not new, but flywheel hybrids have not yet reached production in passenger cars,
although according to various press reports their introduction cannot be far away. There is a ‘middle
way’ between the pure electric hybrid system and the pure mechanical systems, and this is the
electro-mechanical hybrid, as proposed by Porsche in recent years. The basis of the system is a flywheel,
similar in appearance and concept to those used in mechanical hybrid systems. The difference is that
the flywheel in the electro-mechanical system is ‘loaded’ or ‘doped’ with magnetic particles that can
be magnetized in certain directions, so a large conventional electric motor rotor is obtained, although
one in which the magnets are not continuous solids but rather are dispersed within a composite
matrix. This has higher inertia than a conventional magnetic rotor, but this part of the system does not
act as a propulsion motor; it is merely an energy storage device, so its high inertia is an advantage.
The housing of the flywheel also contains a fairly conventional electric motor stator. The magnetically
doped composite is a filament-wound glass fiber ‘ring’, which is shrouded with a filament-wound
carbon fiber composite. The carbon not only provides containment for the glass fiber, it ensures it
remains in compression. It also provides a very useful degree of inertia. High-strength carbon is an
ideal material for this owing to its strength. Conventional flywheel materials are not strong enough
to prevent bursting at the speeds required to store sufficient energy. Rather than using a mechanical
continuously variable transmission as a way to transfer power, the system uses conventional power
electronics to transfer energy between the propulsion motor (mounted somewhere in the driveline)
and the flywheel. This means the energy storage and propulsion motor can be mounted remotely from
each other.
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4.4. Fuel Cells

A fuel cell is similar to an electrochemical battery (Figure 7). In fact, both devices are able to
directly convert chemical energy into electricity, combining a negative electrode, or anode (hydrogen
in the fuel cell and lead into the accumulator), with a positive or cathode (oxygen in fuel cell and lead
dioxide in the accumulator) in contact with an appropriate ion or electrolyte conduction (a series of
proton or alkali systems in the fuel cell, sulphuric acid solution in the accumulator). There is, however,
a difference between the two devices because, in that while a battery is a closed system that operates by
consuming the active components to the electrodes, the fuel cell works thanks to a stream of gaseous
reagents supplied from the outside. It follows that the battery is limited in its duration by the amount
of reagents it has inside and requires a charging process to restore its initial conditions, while a fuel
cell can guarantees a continuous operating life while it is supplied with gaseous reagents. Fuel cells
are classified by the type of electrolyte used [84–87] (data are presented in Table 9):

Table 9. Fuel Cell Specifications [84].

Characteristic PEMFC AFC PAFC MCFC SOFC

Electrolyte Perfluorosulfonic
acid

Phosphoric
acid

Phosphoric
acid Molten carbonate Solid oxide

Design and structure Simple Simple Simpler Complex Complex
Temperature range [◦C] 50 ÷ 100 80 ÷ 100 150 ÷ 200 600 ÷ 700 700 ÷ 1000

Starting up time Lower Low Low High Higher

Stack size [kW] <1 ÷ 100 10 ÷ 100 100 ÷ 400 300 kW ÷ 3 MW
<300 MW 1 ÷ 2 MW

Sensitivity More Low Low Lower Lower
Efficiency [%] 40 ÷ 60 50 ÷ 60 40 ÷ 50 45 ÷ 60 50 ÷ 65

Cell-life 2 ÷ 10 µV/h 0 ÷ 6 µV/h 2 ÷ 4 µV/h 5 µV/h 0 ÷ 8 µV/h

1. Alkaline Fuel Cells (AFC)

This cell uses an electrolyte consisting of a concentrated solution of potassium hydroxide (KOH).
One of the problems of this type of cell is related to the intolerance of the alkaline electrolyte to
acidic impurities, like carbon dioxide (CO2), which in an alkaline system can form carbonates which
precipitate in the pores of the electrodes, blocking their activity. For this reason, their correct functioning
requires the use of high purity (hydrogen and oxygen) supply gases. The advantage of an AFC is the
capacity to operate at low temperatures, with high potential and long operative life.

2. Phosphoric Acid Fuel Cells (PAFCs)

These are based on carbon electrodes with a high surface, with dispersed particles of Pt as a
catalyst, held together by a PTFE-based binder in contact with an electrolytic solution of concentrated
phosphoric acid. This solution is immobilized in a porous layer of silicon carbide placed between the
electrodes. The global electrochemical process involves the reduction of oxygen at the cathode,
the oxidation of hydrogen at the anode and the transport of H + ions through the electrolyte.
The operating temperature is around 200 ◦C and the water is produced as steam. This ensures some
advantages, such as operation with air at atmospheric pressure and a good tolerance to impurities,
thus allowing the use as fuel of mixtures of natural gases obtained by the methane reforming process.

3. Proton Exchange Membrane Fuel Cells (PEM fuel cells, or PEMFCs)

The distinctive element is the electrolyte, that consists of a proton-conducing polymeric membrane.
The most widely used membrane is a polymer of perfluoro sulfonic acid, and PEMFCs were initially
developed for space programs. Due to the evolution of their structure and the consequent performance
improvements, polymeric membrane cells are occupying a key role in the development of electric
vehicles. In fact, PEMFCs offer the most suitable characteristics for applications in wheeled vehicles,
such as a low operating temperature and the use of a chemically inert electrolyte.



Energies 2018, 11, 2924 19 of 38

4. Molten Carbonate Fuel Cells (MCFCs)

Modern MCFC technology uses porous anodes of Ni-10% Cr, porous NiO cathodes and a fused
electrolyte mixture of Li2CO3-K2CO3 (or, alternatively, Li2CO3-Na2CO3) supported by a ceramic matrix
of γ-LiAlO2. Hydrogen is produced by coal gasification. The anodic process generates CO2, while CO2

is always consumed at the cathode. It is therefore advisable to transfer carbon dioxide from the anode
to the cathode in order to keep the electrolyte composition constant. The MCFC operation is influenced
by pressure and temperature and its durability, especially in its module structure, is conditioned by the
corrosion phenomena associated with the aggressive environment of the molten carbonate electrolyte.

5. Solid Oxide Fuel Cells (SOFCs)

These are solid-state devices that operate at high temperatures, i.e., around 1000 ◦C. The key
element of a SOFC is the electrolyte consisting of a ceramic material based on zirconium oxide (ZrO2),
doped with 8–10% yttrium oxide (Y2O3), indicated by the initials YSZ (for yttrium-stabilized-zirconia).
Following doping, some Y3+ ions replace the Zr4+ ions in the fluorspar-type structure of zirconium
oxide, generating a number of oxygen-vacant sites through which the O2

− ions can move thus ensuring
ionic transport.
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Figure 7. Typical Fuel Cell Operative Mode.

The conductivity is low at room temperature and requires heating up to about 1000 ◦C to achieve
acceptable values. One of the problems of the SOFC, linked to the high operating temperature, is found
in the low compatibility of the components due to their different thermal expansion coefficients.
Moreover, the high temperature influences the choice of the supporting materials, as well as the cell
geometry. Finally, in Table 10, all storage systems specifications are presented.

Table 10. Energy Storage System Specifications.

Characteristics Battery Ultracapacitor Fuel Cell Flywheel

Physics Chemical Electrostatic Chemical Mechanical
Technology Proven Promising Promising Proven

Energy density High Low Very high Low
Power density Low Very high Medium High
Charging time Hours Seconds n.a. Minutes

Discharging time Hours Seconds n.a. Minutes
MTBF 3–5 years > 10 years 10,000–20,000 h >20 years

Efficiency [%] 75–85 85–95 40–60 80–90
Environmental issue Disposal Low Very low Very low

4.5. Electric Motors

Electric motors are one of the most developed technologies during in the years for use in EVs
and HVs. The use of these devices is facilitated by high torque at low speeds that develop during



Energies 2018, 11, 2924 20 of 38

starting (Figure 8). The most used is the one-phase asynchronous (induction) motor because it has
more benefits than DC motors. Among the advantages are the smaller size, increased operating
temperature, the fact it does not require maintenance, lower moment of inertia, excellent mechanical
strength, high speeds, no power limit, higher efficiency, etc. Usually, during the simulations, it is
assumed that the electric motor has a constant efficiency, i.e., independent of the operating range.

The instant power that the electric motor must deliver is calculated using the formula:

PMOT = Pwheels/ηtransmηmot (8)

where PWHEELS is the power to the wheels, having considered a transmission efficiency ηtransm =
0.9 and electric motor efficiency ηmot = 0.9. During deceleration, the motor acts as a brake, using a
power of:

PMOT = Pwheels/ηtransmηmotηbrake (9)

with braking recovery performance ηbrake = 0.8.
Precisely, the EMs used in HVs should be able to satisfy the following basic characteristic for

efficient operation:

• high torque for starting operation;
• low speed hill climbing operation;
• high power density for acceleration;
• high speed cruising for highway;
• high efficiency over wide torque and speed range;
• suitability for regenerative braking;
• over load capability during certain period of time;
• controllability;
• high reliability;
• robustness;
• affordable costs;
• fault tolerant capability;
• minimum torque ripple;
• temperature management;
• low acoustic noise.

The choice of electric motor is the key factor in HEV design. An EM classification is given in
Table 11.

The electric motors used for HVs include DC motors, induction motors, permanent magnet (PM)
motors and switched reluctance (SR) motors. Cage rotor and PM motors could also be optimal suitable
options. In recent times, SR motors have increased in popularity and become a reliable alternative for
HV applications.
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Table 11. Electric Motors Classification.

Commutator No Commutator

Self ExcitedDC Motors Separately Excited DC Motors Induction Motors Synchronous Motors

Series PM excited Cage rotor PM motors
Shunt Field excited Wound rotor SR motors

4.5.1. DC Motors

The DC motor is normally used for EVs due to its high starting torque and simple speed control.
The DC torque-speed map shows good compliance for propulsion application. Its disadvantages
are the bulky construction, low efficiency and the presence of mechanical commutators and brushes.
Its use is limited to light, high speed and maintenance-free vehicle applications [60–63]. Thanks to the
simplicity of speed control, DC motors are widely used in low power HEVs, such as city cars. Finally,
the continuous improvements at the electronic level are leading manufacturers to replace these engines
with PM and SR motors

4.5.2. Induction Motors

Induction motors (IMs) are, nowadays an interesting candidate for EVs. The interesting features
of IMs are [88–93]:

• simplicity;
• high reliability;
• robustness;
• wide speed range;
• low maintenance;
• low torque ripple/noise;
• low cost;
• established power electronic converters;
• the ability to operate in hostile environments.

Induction motors can achieve the same performance and characteristics of DC motors, by means
of a field-oriented control (UFC). This allows the decoupling of the torque control from the field
control [94]. In addition, by applying a vector control or direct torque control (DTC) [95,96],
performance increases. In the wide range of possibilities, it can be noticed how the high-speed
operation and the constant power range are limited by its pull-out torque. Using an inverter, the initial
torque can be modulated, keeping the starting current low. The disadvantages are [88,94]:

• high losses;
• poor power factor;
• low efficiency;
• low inverter usage;
• greater weight and volume.

Efforts are focused on resolving these issues at the design level or by proposing new control
schemes and/or converter systems.

4.5.3. Permanent Magnet Motors

In recent times, PM motors have been widely used in HEVs. Such motors present numerous
advantages [84–89]:

• highly efficient operation;
• compact packaging;
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• reliability;
• maintenance free operation;
• effective heat dissipation.

The limitations of these motors are the short region of constant power due to the limited ability of
field weakening. In addition, it should be added that high-speed control and management increases
the engine size. This makes it necessary to study with accuracy the fault tolerance capability [91,97].
The speed range can be extended up to 3–4 times the base speed. The PM efficiency is improved by
applying appropriate control algorithms [98]. The design considerations, using a PM motor, are:

• torque density;
• flux weakening capability;
• over load capability;
• stator iron losses;
• rotor eddy current losses;
• demagnetization withstanding capability.

PM motors are classified according to the magnet position. Normally, these are positioned on the
rotor, internally or superficially. The solution with the magnets mounted on the rotor surface is the
most used one (fewer magnets are needed). The internal motors (IPM) use more magnets and offer an
air gap flux density with a higher degree of ruggedness [99,100]. Moreover, IPMs are preferred to others
for their wide range of operating speeds and constant power operation. The compromise would be to
find an engine with a low-speed torque capability and high-speed power capacity. For these reasons,
hybrid PMs and the field excitation technique could be a reasonable solution [90,91,100]. This engine
is a combination of PM motor and reluctance motor or inclusion of additional field winding, limiting
air gap field. The hybrid PM motors’ characteristics are:

• overall operational efficiency
• wide speed,
• constant power operation.

On the other hand, their more complex structures and the availability, cost and supply of rare-earth
PMs limit their wider application.

4.5.4. Switched Reluctance Motors

The SR motor presents interesting potential for vehicular applications [101,102]. The main
technical specifications are [87–93,100,101]:

• no magnet rotor
• robust construction
• excellent torque–speed characteristics
• fault tolerant capability,
• constant power region can be extended up to 3–7 times,
• smooth operation mode
• hazard free operation.

Limitations:

• high acoustic noise,
• vibrations,
• high torque ripple,
• complex control mechanism
• requirement of special converter topology.
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Different considerations have to be made on the cost, relatively high, but their mass production
should make them more interesting as induction motors. Finally a comparison between different EMs
is presented in Table 12. The suitability is rated on a scale of 1–5, where 5 points indicates the optimal
suitability whereas 1 point means a poor response. The evaluation is based on the existing enterprises
and literature data [100].

Table 12. EM Comparison.

Characteristics Commutator Motors
No Commutator Motors

Induction Motor PM Motor SR Motor

Controllability 5 5 4 3
Size and weight 3 4 4.5 4
Robustness 3.5 5 4 4.5
Reliability 3 5 4 4.5
Power density 3 4 5 3.5
Efficiency 3 4 5 4.5
Speed range 2.5 4 5 5
Life time 3.5 5 4 4.5
Torque density 3 3.5 5 4
Technical maturity 5 4.5 4 3.5
Cost 3.5 5 3 4
Over load capability 3 4 4.5 4
Torque ripple/noise 3.5 4.5 4 3
Manufacturability 3 5 3 4
Potential for improvements 2.5 3 4.5 5

4.6. Thermal Engines

It should be remembered that in the various existing configurations, an HV can be operated
completely or partially by the electric power system. The fundamental problem for TEs, and specifically,
for ICEs, is their low efficiency (about 30%) and their emissions, that have a harmful impact on the
environment. To minimize or overcome these drawbacks, EV and HVs have been studied and proposed.
The next paragraphs will describe the possible thermal motors that could be used. For the diesel
engine only a brief short description is provided, as such a motor is well known all around world.

4.6.1. ICE Engines

In hybrid vehicle applications, the diesel engine is the most used one. This is thanks to its
high thermal efficiency, a function of the high expansion ratio and of the combustion (lean mixture).
In addition, in this motor unburned fuel is not present at the valve overlap, so fuel leakage is avoided
(the fuel does not migrate directly from the injector to the exhaust pipe). Low speed motors have
higher efficiency, while those operating at medium speed (the HV case) have a good efficiency close
to 35%. Just as a reminder, a typical engine diagram is provided in Figure 9.Energies 2018, 11, x FOR PEER REVIEW  24 of 38 
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4.6.2. GT Devices

Several studies [9,10,12,18,103] have verified the possibility of using a gas turbine group, getting
a significantly reduction of the fuel consumption, with respect to standard configurations, and with
a device cycle efficiency equal to 40% [104–110]. GT rotating parts are assembled on the same shaft,
which is placed on innovative bearings. The power generator, mounted on the same shaft, is a
three-phase induction motor with permanent magnets; the generator is cooled by air drawn in by a
compressor, eliminating the usual liquid cooling system. Electric output is typical AC. Downstream
of the device, an inverter will convert the AC into DC current, for battery package recharging and
for the traction motor supply. A constructive scheme may adopt a Capstone turbines [111,112] or
the one suggested in a previous paper by the research group [104–110], where the regenerator is
separated from the main GT body, achieving a greater freedom in the arrangement of the components
in the vehicle. It should be mentioned that in all simulations presented, it was assumed that the gas
turbine provides power between 70% and 110% of its rated power, because in that range has no overall
drastically performance drops. It is also assumed that the turbo-generator provides power only when
the request falls within these operative conditions, while outside this range it is kept under conditions
of self-sustenance (idling), without providing useful output. Gas ignition is handled by the control
logic and in particular will be linked to the battery SOC. When the SOC decreases to a predetermined
level (minimum), the generator is switched on. Note that the minimum value is equal to 40%, then,
to ensure that the GT is switched on before descending below the minimum SOC, in the control logic,
the command to ignite the GT is activated when the SOC is equal to 42%. It is also assumed that the
GT operates at constant speed, so the inertial effects, related to the change in velocity of the rotating
masses, can be neglected.

To compute the GT device sfc, it is possible to proceed as follows (Figure 10). It has been chosen to
operate in off-design conditions [18,110], in an operative range between 70% and 110% of its nominal
power. It was possible to obtain a function that links the variation of performance to the variation
of power:

ηOFF−DESIGN
ηnom

= −1.333 ·
(

PGT
Pnom

)4
+ 2.497 ·

(
PGT

Pnom

)3
− 1.768 ·

(
PGT

Pnom

)2
+ 1.646 · PGT

Pnom
− 0.777 (10)

Methane (CH4), characterized by a lower heating value LHV (CH4) = 51,000 KJ/kg =
14.16 kWh/kg and density δCH4 = 0.585 kg/L, can be adopted as fuel. By establishing a GT efficiency
ηGT= 0.4, the fuel consumption for a specific mission is calculated.Energies 2018, 11, x FOR PEER REVIEW  25 of 38 
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Thus:
cs,nom = 1/(ηcycle · LHV) (11)

then, all other specific values can be computed:

• Specific consumption (Off-Design) [kg/kWh]:

cs, OD = cs,nom

(
ηOD
ηnom

)
(12)
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• Instant ct consumption [kg/s]:

ct = cs,OD
PGT

3600
where PGT = PGEN/ηGEN (ηGEN = 0.95) (13)

• Total consumption [kg/mission]:

ctot =
∫ mission end

mission start
ct (14)

or in discrete form:
ctot = ∑

mission
ct (15)

• Total consumption [kg/km]:

ctot[kg/km] =
ctot[kg/mission]

kmtot
(16)

• Total consumption [km/L]:

ctot[kg/l] =
1

ctot[kg/km]
·δCH4 (17)

• Total specific consumption [g/kWh]:

cs,tot [g/kWh] =
ctot[kg/mission]·1000·3600∫

Ecycle
(18)

with
∫

Ecycle = total energy needed to complete the mission

5. Selection of the Optimal Configuration

For the selection, several simulations has to be carried out. Normally universities and corporate
researchers both use a customer code (internally developed) and commercial tools (Advisor) [113,114].
Once the typical vehicle physical characteristics are known, the simulations start. Each vehicle
configuration is identified by its specific parameters set, representing its “attributes.” Several
representative missions (e.g., urban routes for a city car or bus, extra-urban for passenger sedans)
are selected to serve as benchmarks. The numerical simulations provide instantaneous values of the
overall vehicle energy demand, the energy recovered by the KERS, the energy supplied by the thermal
engine and the battery SOC. The first step into the design the hybrid powertrain components is the
definition of the force need for driving. This force is the thrust that the vehicle must generate to move.
This force is higher (at last equal) to the sum of all the resistance forces. These forces depend on various
factors and can be summarized in four general formulae:

1. Rolling Resistance.

This is the resistance that includes the forces acting on the wheel during rolling. It is opposite to
the circumferential force Fu parallel to the road surface as shown in Figure 11. It is possible to define a
rolling resistance coefficient CR:

CR =
e

rdyn
(19)

The resistance force GR is obtained as the decomposition of the reaction to the weight force RT
with respect to the road inclination. Finally:

RT = m·g·Cr· cos αst (20)
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2. Aerodynamic resistance.

This is the resistance due to the air flow around and through the vehicle in motion.
The aerodynamic drag is proportional to the square of the flow rate, obtained as the sum of the
vehicle speed and the longitudinal component of the wind speed. This last part is often negligible.
Multiplying the square of the speed for the air density ηair and dividing by two, the dynamic pressure
is so obtained. This pressure multiplied by the vehicle frontal area AF and by the drag coefficient CD
supplies the RA

RA =
1
2
·ρair ·CD ·AF ·V2

m (21)

3. Inertial Resistance.

This is the resistance due to the inertial forces during acceleration and braking. Its value depends
directly on the acceleration and the vehicle mass, including the rotating parts. To consider the rotating
inertias, this resistance is multiplied by a proportionality coefficient, Ci, called rotational inertia
coefficient (see Figure 12). The inertial resistance can then expressed by the following formula:

Ri = m·a·Ci (22)

4. Gradient Resistance.

This is the resistance due to the road slope. It is defined as the product of the weight force times
the sine of the road inclination (see Figure 11). For a flat straight path, this resistance is zero:

Rg = m·g·sinαst (23)

In the simulation, the instantaneous balance equation becomes:

Pwheels = RTOT ·ω·r = 0 (24)

The simulation codes calculate Equation (30) at 1 s intervals for the entire duration of an assigned
mission. The calculation is repeated for different values of the thermal engine (if any) nominal power
rating. The result is a diagram that displays the instantaneous values of each term in the energy balance
as a function of time for the selected values of the installed GT power. By repeating this calculation for
a predetermined set of missions, it is possible to select the battery package modules and the electric
and thermal engine set. The codes calculate for any assigned mission and vehicle configuration, second
by second, the power required for traction, the total recoverable from braking and that available to
the KERS. The procedure evaluates first the power needed for acceleration, inertia, rolling resistance
and aerodynamic resistance and that recoverable from deceleration. This operation is repeated for



Energies 2018, 11, 2924 27 of 38

every different vehicle configuration and for all selected missions. Moreover, the calculation software
simulates the vehicle behavior, calculating fuel consumption and emissions [19]. The output that the
programs can provide are very different and depend on the type of simulated vehicle and on the
necessary information to the analysis.
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5.1. Simulation Details

Simulations are necessary to evaluate the interesting operative parameters. In fact, once the
driving cycle and vehicle characteristics have been fixed, the simulations provide the necessary data.
Thus for each vehicle, it is possible to know the battery package rated power/energy, the thermal
engine rated power, the specific consumption and the consequent emission. The other aspect is the
choice of the control logic. Once the “operating mode” is selected, the quasi-optimal configuration for
the considered vehicle is provided as output. These data will then be used in the preliminary design of
the various components.

5.2. Driving Cycles and Vehicle Characteristics

To be able to simulate the different vehicles and choose their optimal configuration, we need some
information. First of all, you need to know the type of vehicle, i.e., its aerodynamic characteristics
and dimensions. Then it is necessary to know the type of mission. Several types of missions were
simulated, the European and US driving cycles for approval and homologation (ECE, EUDC, OCC,
UDDS, SC03), and other available ones (WVU). These various missions were also combined, to assess
more thoroughly the behavior of the vehicle. Here follow the vehicles’ suggested characteristics
(Table 13). The aim, as repeated, is to identify the optimal components size and characteristics, to meet
the mission requirements by choosing, i.e., the battery package, electric motors, the GT, and, finally,
the logic to adopt, In the case of passenger sedans and city cars, several different simulations can be
performed (ECE, UDDS, SC03 etc., simulated under different control logic protocols, each with two
different battery recharge limits, BRLs).

It is important to note that the BRL does not exceed 2C. Higher values could be used, but the
manufacturers report that this practice inevitably leads to a reduction of the battery package MTBF.
Finally, the optimal configuration results from a comparison of all the configurations that guarantee
the instantaneous coverage of the total power of the vehicle demand at any time “t”.
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Table 13. Suggested Vehicles Specifications [4–6].

City CAR Specifications

Rolling radius r = 0.25 m
Shape coefficient f = 0.82

Actual frontal section Sf = 1.152 m2

Drag coefficient cx = 0.27
Rolling coefficient f = 0.015

Vehicle mass m = 980 kg
Equivalent vehicle mass me = 1210 kg

Gravity g = 9.81 m/s2

Air density ρ = 1.180 kg/m3

Minimum SOC 0.4
Maximum SOC 0.8

SEDAN CAR Specifications

Rolling radius r = 0.25 m
Shape coefficient f = 0.9

Actual frontal section Sf = 2.142 m2

Drag coefficient cx = 0.25
Rolling coefficient f = 0.015

Vehicle mass m = 1200 kg
Equivalent vehicle mass me = 1240 kg

Gravity g = 9.81 m/s2

Air density ρ = 1.180 kg/m3

Minimum SOC 0.6 (safety 0.4)
Maximum SOC 0.8

BUS Specifications

Rolling radius r = 0.46 m
Shape coefficient f = 0.87

Actual frontal section Sf = 6.9 m2

Drag coefficient cx = 0.6
Rolling coefficient f = 0.018

Vehicle mass m = 7500 kg
Equivalent vehicle mass me = 13300 kg

Gravity g = 9.81 m/s2

Air density ρ = 1.180 kg/m3

Minimum SOC 0.42
Maximum SOC 0.8

5.3. Simulations Results

Once the simulations have been carried, the outputs, provided by the program, are variable and
depend on the simulated vehicle type and on the boundary conditions. The programs, usually based
on a computer code that exploits the Matlab/Simulink environment, define the vehicle powertrain in
every component and links between them. Once the components have selected, the program adds a
script that represents the block diagram in Simulink representative of the whole system. In the program
database various driving cycles are considered, for every type of vehicle (the input of the system).
The program then does follow the path to the selected vehicle, point by point, generating the required
outputs (see Figure 13). Some available researchers’ codes are based on equality to zero between
the energy required by the wheels (for traction) and the energy supplied by the system [9,10,12,18].
The inputs are the aerodynamic and operating characteristics of the vehicle, path performed and the
degree of hybridization. The program eventually provides guidance only on the configuration to adopt
to achieve the driving cycles. The emissions calculation is always carried out using a commercial code.
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5.4. Component Packaging

Once all simulations have been carried out, the subsequent design step covers the “component
packaging”. For each studied or proposed vehicle, the available frames can be implemented in
commercial codes, capable of studying the behavior of the vehicle and its balancing. Several different
versions of the vehicles has to be studied, keeping the previous drive (front-wheel drive or rear wheel
drive). To reduce/avoid the roll and yaw, the thermal motor (i.e., the GT) and all its rotating parts
are positioned with a rotation axis parallel to the Y axis of the wheel. In addition, the effects of the
resulting pitch can be cancelled by an appropriate suspension assessment. The arrangement of the
various components must be carried out trying to maintain the center gravity on the vehicle plane
centerline (Figures 14–16). In the installation of the components must be considered also the various
dimensions of the pipes and the air intakes. In the arrangement of the components, the safety issues are
mandatory. For example, the battery package should be placed on the main chassis under the rear seats
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to meet the requirements of “crash protection” and be easily accessible for inspection, maintenance
and replacement. The hybridization procedure is relatively simple. It does not substantially modify
the conventional vehicle chassis. Several examples are provided in Figures 14–16.
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6. Final Remarks and Future Trends

Regarding HVs, they present several advantages and drawbacks. In details:

1. Advantages

• Minimization of fuel consumption: thanks to its structure, in pure electro-traction mode the
HV can be considered a “zero emission vehicle”. In the hybrid operation (both series and
parallel) it significantly reduces the energy and fuel consumption.
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• Financial benefits: Actually, in some countries, many incentives are promoted for the
purchase of an EHV.

• KERS regenerative braking system: during vehicle braking, the KERS device helps to
recharge the battery. An internal mechanism is capable of capturing the released energy and
uses it to charge the battery. A significant aspect is the reduction of recharging time.

• Lighter materials: hybrid electric vehicles are made of lighter materials that means lower
required energy. The engine/motor is also smaller, lighter, and cheaper.

2. Drawbacks

• Lower Power: In the HV two engines are considered, and depending on the configuration,
the thermal engine (which can be the prime mover in parallel hybrids or a range extender
in series ones) is smaller than standard commercial ones. Sometimes, for the “city/urban
driving”, the combined power available is lower than that of a commercial vehicle.

• Cost: at present, HVs cost is up to 15,000/18,000 €, more than a standard commercial version.
However, in time that extra amount can be reduced with lower running cost and restrictions.

• Higher Maintenance Costs: the components used are high tech devices, consequently, expert
and skilled “mechanics” and dedicated spare parts are required.

• Safety Issues: In case of a crash, the high voltage present inside the batteries can be dangerous
or even lethal for the driver (as F1 driver Alonso can confirm).

Regarding the future trends, the prerogative of HV [44] is the reduction of emissions and fuel
consumption. This is why all the various R&D groups have focused on optimizing the power electronics
conversion. On the other hand, the integrated starter generator (ISG) provides low-cost, high efficiency
and easy implementation. Another aspect concerns the energy storage. In fact, the hybrid vehicle
is a set of more energy sources (such as fuel for the heat engine) and energy storage systems, etc.
The development of the technology makes ultracapacitors very promising (they last about 10 years
more than normal batteries, they have a power density about 100 times higher, but less energy density.
Today’s design is focused on:

• Assisting batteries during transient hard states;
• Increasing battery life;
• Decreasing the size of the battery packs;
• Offering performance independent of battery status;
• Increasing the power availability, and, consequently, the autonomy of the vehicle;
• Improving the energy efficiency through regenerative braking.

In terms of capital costs, up to 2016 HVs are still much more expensive than conventional ICEs.
However, according to some studies, capital costs could be significantly lower in 2030. However,
the exact prediction of future costs is not possible. The ICE-based HV are affected by the cost of
fuel per km (or miles), but have a lower consumption compared with both hydrogen and gasoline
vehicles. As for a total cycle lasting over 100,000 miles, hybrid fuel cell vehicles (FCHEVs) appear to be
slightly cheaper than common HVs with battery packs (BHVs) but present a great general sensitivity
to combined (capital and running) costs, as well as a lower overall efficiency. Both ICEs and fuel cell
vehicles (FCEVs) have much longer life-cycle costs than FCHVs and BHVs, about 1.5 times higher.

7. Conclusions

In this paper an overview of the state of art of HVs has been presented, analyzing the general
hybrid configurations, energy management strategies, electronic control units, electric motors and
thermal engine, for common typical ICE-based HV. Moreover, the different strategies and future trends
have been critically discussed.
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From the technical analysis of all the data collected, it is possible to affirm that hybrid
vehicles represent a short/medium-term solution for the transport system. In fact, the reduced fuel
consumption make them a very interesting solution. Considering the reduction of the European and
government limits on pollutant emissions (a trend that will lead, perhaps, to a limitation or a reduction
in diesel-engine manufacturing), the hybrid presents itself as an immediate applicable solution.

Implementing a hybrid vehicle does not distort/destroy, from an engineering point of view,
any existing vehicle. In contrast, electronics will become increasingly important and delicate.
All studies, regardless of the type of vehicle chosen, are directed, in the city, toward the realization
of smart transportation grids, where vehicles can be remotely controlled which will involve cyber
security issues.

However, returning to hybrid vehicles, the solution that can be suggested for the urban transport
system is a series hybrid vehicle with regenerative braking, where the thermal engine operates as a
range extender as well as the use of non-conventional fuels (CNG, LPG, methane). The control logic
that can be adopted will depend on the design philosophy. Those presenting simplicity, immediate
application and correspondence of the results are the deterministic logic, global optimization and real
time optimization.

For the sub/extra-urban transportation system (<50 km from the city/town) it is possible to still
consider the series hybrid vehicle, especially at the public/private transport level, due the possibility
of driving at an almost constant speed, and the possible stops during the path.
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Nomenclature

AC Alternate Current
AFC Alkaline Fuel Cell
b Vehicle width
BMU Battery Management Unit
BP Battery package
cx Drag coefficient
C Coefficient
C Torque [N·m]
DC Direct Current
DSCU Drive System Control Unit
DTC Drive Torque Control
EBSCU Electronic Braking System Control Unit
E Energy [J]
ECE European Cycle Evaluation
EDLC Electrostatic Double Layer Capacitor
EM Electric Motor
EMR Energetic Macroscopic Representative
EUDC Extra Urban Drive Cycle
EV Electric Vehicle
EVCU Electric Vehicle Control Unit
FCEV Fuel Cell Electric Vehicle
FCV Fuel Cell Vehicle
FOC Field Orientated Control
GT Gas Turbine set
GTHV Gas Turbine Hybrid Vehicle
H Vehicle height
HD Hybridization Degree
HEV Hybrid Electric Vehicle
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HPP Hybrid power pack
HV Hybrid vehicle
ICE Internal Combustion Engine
ISG Integrated Starter Generator
KERS Kinetic Energy Recover System
LHV Low Heating Value [J/kg]
m Mass [kg/s]
MCFC Molten Carbonate Fuel Cell
MTBF Mean Time Before Failure
OB Optimization Based
P Power [W]
Pb Lead
PAFC Phosphoric Acid Fuel Cell
PEM Proton Exchange Membrane
PEMFC Proton Exchange Membrane Fuel Cell
PHEB Plug-in Hybrid Electric Boat
PHEV Plug-in Hybrid Electric Vehicle
PM Permanent Magnet
r Radius [m]
R Resistance
RB Rule Based
R&D Research and Development
SAPHT Solar Assist Plug-in Hybrid Electric Tractor
SOC State of Charge
SOFC Solid Oxide Fuel Cell
T Temperature [K]
UCU Ultra capacitor Control Unit
UDDS Urban Dynamometer Driving Schedule
V Voltage [V]
VCU Vehicle Control Unit
VMU Vehicle Management Unit
WVU West Virginia University
ZEV Zero emission Electric Vehicle
Subscripts
GT Gas Turbine
nom nominal
Greek Symbol
α area ratio
δ density [kg/m3]
ω angular velocity [rad/s]
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