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Abstract: The new immunotherapy targeting the programmed cell death 1 (PD-1) receptor and its
cognate ligand PD-L1 has renewed hopes of eradicating the most difficult human cancers to treat.
Among these, there are the poorly differentiated and anaplastic thyroid cancers, unresponsive to all
the therapies currently in use. In the present review we will summarize information regarding the
expression of PD-L1 in the different thyroid cancer histotypes, its correlation with clinicopathological
features, and its potential prognostic value. Then, we will evaluate the available data indicating the
PD-1/PD-L1 axis as a promising target for thyroid cancer therapy.

Keywords: thyroid cancer; programmed cell death 1; programmed cell death ligand 1; diagnosis;
prognosis; therapy

1. Thyroid Cancer: An Overview

Thyroid cancer represents the most common endocrine malignancy and the fifth most common
cancer in women in the United States [1]. Its annual incidence has tripled over the last twenty years,
with an average annual rate of 21.4% in female, and of 7.3% in male in the years 2011–2015 [1–3]. Most
thyroid neoplasms are well-differentiated thyroid cancers (WDTC) derived from epithelial follicular
cells, comprising the papillary thyroid carcinoma (PTC) and the follicular thyroid carcinoma (FTC)
histotypes, which may progress towards the poorly differentiated thyroid carcinoma (PDTC) and
the anaplastic thyroid carcinoma (ATC) [4]. Although originating from the same cell type, thyroid
cancers display different morphological features, functional behavior, and grade of differentiation as a
result of heterogeneous genetic alterations [4–7]. Among these, the most frequent are activating point
mutations of the BRAF and RAS oncogenes, and chromosomal translocations of the RET (REarranged
during Transformation) and NTRK1 (Neurotrophic Tyrosine Kinase Receptor 1) genes, which lead to
the activation of a common carcinogenic pathway, i.e., the MAPK/ERK signaling [8,9].
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Thyroid nodules are very common, affecting 19% to 67% of the adult population, but only about
5% of them harbor a malignant lesion [10]. To date, fine-needle aspiration cytology (FNAC) represents
the main diagnostic tool for the evaluation of both palpable and non-palpable thyroid nodules [10–12].
However, in the case of indeterminate atypia or follicular proliferation, FNAC fails to discriminate
adenomas from FTC or follicular variants of PTC (FVPTC), which implies the overtreatment of
many patients subjected to unnecessary thyroid resection. Different molecular diagnostic approaches
have been attempted to overcome this inherent limitation of FNAC and to refine preoperative
diagnosis [11,12]. In recent years, the improvement of knowledge concerning the molecular changes
underlying thyrocyte malignant transformation, along with remarkable progresses of high-throughput
genotyping techniques, has allowed the introduction of different molecular diagnostic tests with
increasingly satisfying performances, e.g., ThyroSeq, Afirma, Rosetta GX Reveal [12]. Molecular
markers have also been evaluated for prognostic purposes, in order to ameliorate the stratification of
patients in follow-up. Actually, the prognosis of thyroid cancer is largely favorable, with 5-year-survival
rates of close to 100% for low-stage (I and II) WDTC, 90% for stage III PTC, 70% for stage III FTC,
and 50% for stage IV [1–3,10]. However, the current TNM staging systems make a coarse prediction
of recurrence or mortality risk, including patients in the same stage with considerably different
disease-free survival and overall survival [13–15]. To this end, the European (ETA) and the American
Thyroid Associations (ATA) proposed new guidelines to estimate the risk of recurrences in which TNM
parameters are combined with additional clinical features such as histological variants, multifocality,
outcome of post-ablative whole-body scan, vascular invasion, extrathyroidal extension, and serum
thyroglobulin levels [15,16]. Despite this, patients within the same risk group still show diverse
behavior in terms of disease-free interval. Recently introduced mutational markers offer high sensitivity
and specificity in identifying high-risk thyroid cancers. Interestingly, the same multigene panels used to
detect tumor-associated genetic alterations in thyroid FNA, like ThyroSeq, are also able to categorize a
small subset of thyroid cancers with the most unfavorable outcomes, providing cancer risk stratification
even before surgery [12]. This novel approach is promising, although it needs extensive validation on
large case studies and integration with clinical parameters of prognostic relevance.

Lastly, an important issue still to be solved is the treatment of patients affected by advanced
or undifferentiated thyroid cancers, which are more prone to disease recurrences and cancer-related
deaths because refractory to adjuvant therapy with 131I [1–3,10,17–19]. In these patients, external beam
radiation and chemotherapy do not elicit effective therapeutic responses, and thus new therapeutic
strategies aimed at eradicating aggressive thyroid tumors are urgently needed [7,17,20–23].

2. Dysregulation of the Immune System in Thyroid Cancer

According to the Cancer Immunoediting Hypothesis, tumor infiltration by cells of the innate and
adaptive immune systems reflects a physiological process aimed at eliminating malignant cells, in
early as well as in advanced tumors and in metastases [24]. The ability of cancer cells to avoid the
immune damage by disabling components of the host immune system is now considered a hallmark
of cancer [25]. In particular, it has been shown that the immune response is turned off by a variety of
mechanisms, including: i) inactivation of cytotoxic T lymphocytes (CTL) and natural killer (NK) cells
by secreting immunosuppressive factors (i.e., TGF-β, indoleamine 2,3-dioxygenase, IL-10 and VEGF);
ii) recruitment of immunosuppressive cells such as myeloid-derived suppressor cells and regulatory T
cells (Treg); iii) expression of inhibitory ligands for the immune checkpoint receptors CTLA-4 (cytotoxic
T lymphocyte antigen 4) and PD-1 (programmed cell death 1), present on the surface of activated T
lymphocytes [26–32].

WDTCs are supposed to be poorly immunogenic because of their low mutational burden due
to low neoantigen expression [33]. However, they are infiltrated by several host immune cells,
including NK, tumor-associated macrophages, mast cells, dendritic cells, B and T lymphocytes [34–51].
Malignant thyrocytes are able to counteract these immune cells in different ways, for example,
by inducing T-lymphocyte anergy, recruiting Treg, stimulating formation of tolerogenic antigen
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presenting cells (APC), downregulating neoantigen recognition, and expressing immune checkpoint
molecules. The intratumoral density of immune cells, along with the expression of immunosuppressive
markers, have been correlated with the thyroid differentiation score (TDS) of tumors and the BRAF
status. Namely, low TDS and BRAFV600E mutation were found to entail enrichment of dendritic
cells, Treg, macrophages, and mast cells in PTC, together with higher expression levels of CTLA-4
and PD-L1 [36,52]. The immuno-suppressive environment of thyroid cancers is sustained also by
indoleamine 2,3-dioxygenase production by tumor cells, associated with an increased Treg infiltrate
and more aggressive clinicopathological features, such as extra-thyroidal extension or multifocality [33].
In essence, the ensemble of molecular mechanisms that modulate host immune cells within thyroid
tumor microenvironment has immune escape as the final result, whose degree was shown to correlate
with more aggressive tumor behavior [34–51].

In the present review, we’ll focus on the available data regarding the expression of PD-L1 and
PD-L2 in thyroid cancer tissues and its possible clinical implications in terms of prognosis and therapy
for the most aggressive thyroid cancers.

3. Programmed Cell Death 1 (PD-1) and Its Ligands

The PD-1, also known as cluster of differentiation 279 (CD279), is a type I transmembrane protein
member of 288 amino acids encoded by the PDCD1 gene localized on chromosome 2q37.3 (NCBI
Gene ID: 5133) [53,54]. The PD-1 is a member of the B7-CD28 immunoglobulin superfamily, and it
is expressed by T and B lymphocytes and by NK cells following activation [55]. Specifically, T cell
activation is based on the interaction of the T cell receptor (TCR) with MHC molecules presenting the
antigen, and is tightly regulated by different costimulatory molecules which can either potentiate or
inhibit T cell response, including the CD28, the cytotoxic T-lymphocyte-associated protein 4 (CTLA-4)
and the PD-1 (Figure 1) [55].
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Figure 1. Inhibitory effect of the immune checkpoint receptors CTLA4 and PD-1 on T cell activation.
T-cell activation depends on two simultaneous signals: a) interaction of the T-cell receptor with the
complex MHC-antigenic peptides; b) co-stimulation by CD28 binding to CD80/CD86. The alternative
ligation of CD80/CD86 to CTLA4, as well as the interaction between PD-1 and PD-L1/L2, lead to T-cell
exhaustion. TCR, T cell receptor; MHC-I, major histocompatibility complex class I; CTLA-4, Cytotoxic
T-Lymphocyte Antigen 4; PD-1, programmed cell death 1; PD-L1/2, PD-1 ligand 1 and 2; APC, Antigen
presenting cells.

Both CTLA-4 and PD-1 exert an inhibitory action on T cells, which is thought to prevent
autoimmunity and to reduce collateral tissue damage by restraining the immune reaction in chronic
infections, but it is also implicated in tumor-induced immunosuppression [55]. CTLA-4 shares the
same ligands of CD28, namely the B7-1 (CD80) and the B7-2 (CD86). However, upon binding to these
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molecules, CD28 triggers a strong costimulatory signal for T cell activation, while CTLA-4 behaves as
a potent inhibitor. Two different type I transmembrane proteins, structurally related to the B7 family,
bind to the PD-1 receptor, namely the PD-L1 (B7-H1 or CD274) and the PD-L2 (B7-DC or CD273) [54,55].
The PD-L1 (CD274) gene is located at the chromosome 9p24.2 and encodes a 290 aa protein of 33.3 kDa
(NCBI Gene ID: 29126), while the PD-L2 (PDCD1LG2) gene is located at the chromosome 9p24.1
and encodes a 273 aa protein of about 31 kDa (NCBI Gene ID: 80380). PD-L1 and PD-L2 have been
described in various healthy cells and organs, e.g., lung, heart, bladder, vascular endothelium, spleen,
mesenchymal stem cells, pancreatic islets, astrocytes, neurons, and keratinocytes, although with
distinct expression patterns. PD-L1 has also been detected in immune-privileged sites like the eye and
the placenta, where it increases from the fourth month of gestation [56]. Among hematopoietic cells,
PD-L1 is constitutively expressed on T and B lymphocytes, dendritic cells, macrophages, mesenchymal
stem cells and bone marrow-derived mast cells [57]. In contrast, PD-L2 expression is restricted to
activated dendritic cells, macrophages, bone marrow-derived mast cells, and the majority of peritoneal
B1 cells [57]. During infection or inflammation, PD-1 and its ligands are engaged in regulating the
extent of immune responses through inhibition of TCR-mediated lymphocyte proliferation, blockade of
cytokine secretion, and induction of naive T cell to differentiate in Treg. Furthermore, the PD-1/PD-L
pathway plays a key role in the maintenance of peripheral tolerance, hampering detrimental actions of
self-reactive T cells escaped negative selection in the thymus [56]. Actually, abnormal activation of the
PD-1/PD-L interaction appear to be of major clinical relevance in several autoimmune diseases, such as
diabetes mellitus type I, systemic lupus erythematosus, autoimmune encephalomyelitis, inflammatory
bowel disease, rheumatoid arthritis, myasthenia gravis, and autoimmune hepatitis [56]. PD-1/PD-L
pathway is also considered a fundamental player of host immune escape that induces suppression
of TCR-mediated activation and inhibits T cell cytolysis. Additionally, emerging evidence suggests
an anti-apoptotic role of cytoplasmic PD-L1, which may confer a growth advantage to cancer cells
independently from its immune suppression role. This property of PD-L1 was discovered starting from
the observation that resveratrol, a polyphenol compound endowed with anticancer effects, can induce
p53-dependent apoptosis in malignant cells by a mechanism that is jammed by PD-L1 upregulation. In
particular, resveratrol causes nuclear accumulation of cyclooxygenase-2 (COX-2), as well as activation
and nuclear translocation of mitogen-activated protein kinases (ERK1/2). COX-2 complexes with
ERK1/2 and p53, and binds to promoters of certain p53-responsive genes initiating apoptosis [58].
Cytoplasmic accumulation of PD-L1 leads to retention of COX-2 in the cytoplasm, thus preventing its
pro-apoptotic action [59].

4. Expression and Clinical Utility of PD-1 Ligands in Thyroid Cancer

Over the last few years, the expression of PD-L1 and PD-L2, mainly PD-L1, in different thyroid
cancer histotypes has been investigated by several studies [37,41–46,60–68]. As reported in Table 1,
PD-L1 protein has been assessed by means of immunohistochemistry (IHC) [37,42–46,62,65–68], while
few studies evaluated PD-L1 at the mRNA level (Table 2) [41,42,63,64]. The results obtained indicate
that routine measurement of PD-L1 expression in thyroid cancer specimens could turn useful for both
patient’s diagnosis and prognosis, as well as for the identification of patients that could benefit from
anti-PD-1/PD-L1 therapies.
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Table 1. Association of PD-L1 protein levels with clinico-pathological features and BRAF mutational status in thyroid cancer patients. ETI, extra-thyroidal invasion;
DTC, differentiated thyroid cancer; PTC, papillary thyroid cancer; ATC, anaplastic thyroid cancer; FTC, follicular thyroid cancer; PDTC, poorly differentiated thyroid
cancer; –, non-evaluated; DFS, disease-free survival; MAB, monoclonal antibody; PAB polyclonal antibody.

Correlations/Associations

Antibodies Age Gender T N M Stage Multifocality ETI DFS BRAFV600E

Ref.
No. Case Study PD-L1 Expression Host-Type Clone (Source)

[42]
407 patients,

Including 293
DTC

Increased levels in DTC vs.
benign lesions Rabbit PAB Ab82059 (Abcam) No No No No No No No No – –

[37] 33 PTC
Increased levels in

BRAFV600E vs. BRAFwt

PTC
Rabbit PAB 4059 (ProSci) – – – – – – – – – Yes

[61] 13 ATC Positive in 23% of ATC
patients Mouse MAB 5H1 (non-commercial) – – – – – – – – – –

[43]
251 patients

including 185
PTC

Increased in PTC vs.
benign lesions Rabbit MAB E1L3N (Cell Signaling) – – – – – No No No Yes –

[41]

92 DTC; 22
patients with

advanced
DTC/ATC

Positive in 64% of DTC
and 59.1% of advanced

DTC/ATC
Rabbit MAB SP142 (Spring

Bioscience) – – No Yes – – – – – No

[44] 407 thyroid
cancers

Positive in 6.1% of PTC,
7.6% of FTC, 22.2% of ATC Rabbit MAB SP142 (Spring

Bioscience) No No No No No No No No No No

[45]
260 PTC and

normal matched
tissues

Increased in 52.3% of PTC
vs. normal tissue Rabbit MAB Ab174838 (Abcam) No No No No – – Yes Yes Yes –

[62] 126 PTC Positive in 53.2% of PTC Rabbit MAB SP142 (Spring
Bioscience) No Yes No No – No No – – No

[46] 49 ATC Positive in 28.6% of ATC Rabbit MAB E1L3N (Cell Signaling) – – – – – – – – – No

[68] 16 ATC Positive in 81.3% of ATC Rabbit MAB E1L3N (Cell Signaling) No No – – – No – – No –

[66] 75 PTC Positive in 66.7% of PTC Mouse MAB 22C3 (DAKO) No No No No – No No Yes No –

[65] 28 PDTC Positive in 25% of PDTC Rabbit MAB E1L3N (Cell Signaling) No No Yes – No No Yes No No –

[67] 110 PTC Positive in 46% of PTC Rabbit MAB SP142 (Spring
Bioscience) No No No No – No No – – Yes
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Table 2. Association of PD-L1 mRNA levels with clinico-pathological features and BRAF mutational status in thyroid cancer patients. ETI, extra-thyroidal invasion;
DTC, differentiated thyroid cancer; PTC, papillary thyroid cancer; ATC, anaplastic thyroid cancer; –, non-evaluated; DFS, disease-free survival.

Correlations/Associations

Age Gender T N M Stage Multifocality ETI DFS BRAFV600E

Ref. No. Case Study PD-L1 mRNA
Expression

[42] 407 patients,
Including 293 DTC

Increased levels in DTC
vs. benign lesions Yes No No No No Yes No No – –

[63] 482 PTC and 58
normal tissues

Unvaried in PTC vs.
normal tissues No Yes No Yes No No – Yes Yes Yes

[41]
92 DTC; 22
advanced
DTC/ATC

Positivity in 64% of DTC
and 59.1% of advanced

DTC/ATC
– – No Yes – – – – – No

[64]
94 PTC and normal

matched tissues,
11 ATC

Increased in 46.8% of
PTC and 27.3% of ATC No No No No – No – – Yes Yes
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4.1. PD-L1 Expression and Thyroid Cancer Diagnosis

The majority of studies examining PD-1 ligands in thyroid cancer have been aimed at evaluation
of their prognostic relevance by correlating the expression levels with patients’ clinicopathological
features, while some studies have attempted to estimate the diagnostic value of PD-1 ligands in thyroid
cancer [42,69–71]. Cunha and colleagues, by means of IHC analysis of 293 DTC, 114 benign thyroid
lesions and 5 normal tissues, found that PD-L1 protein did not have a diagnostic utility [42]. However,
more recently, it has been reported that PD-L1 expression may help to distinguish aggressive forms
of encapsulated FVPTC (EFVPTC) from the noninvasive ones, reclassified as non-invasive follicular
thyroid neoplasm with papillary-like nuclear features (NIFTP) at low risk of malignancy [69–72]. In
particular, Fu and colleagues retrospectively analyzed the expression of PD-L1, by means of IHC, in 52
NIFTP and 45 invasive EFVPTC in comparison with 40 benign nodules [66,67]. The authors found no
significant differences in PD-L1 cytoplasmic staining between NIFTP and thyroid benign lesions, while
a considerable increase was observed between NIFTP or benign lesion and invasive FVPTC [69–71].
Since the majority of NITPF are diagnosed as indeterminate lesions in clinical practice [73,74], the
opportunity to discriminate NIFTP from invasive EFVPTC based on PD-L1 assessment should improve
the diagnostic accuracy and the clinical management of these patients, reducing the number of those
undergoing surgical overtreatment.

4.2. PD-1 Ligand Expression and Thyroid Cancer Prognosis

As mentioned above, the majority of studies evaluating the expression of PD-L1 in thyroid cancer
have been performed by IHC, using different tissue preparations, processing procedures, detection
antibodies (clone E1L3N, ab82059, Ab174838, MABC290, 22C3 and SP142), cut-off values, and control
tissues when available (i.e., benign lesions or normal matched tissues) [37,42–46,62,65–68]. Also,
interpretations of IHC results (i.e., membranous staining and/or cytoplasmic staining of tumor cells)
diverge in the different reports. In this context, it may be worth considering that in clinical trials
with anti-PD-1/PD-L1 directed therapies, membranous but not cytoplasmic staining was considered
in patient selection [44,75–77]. In fact, only the PD-L1 present on the membrane of tumor cells is
theoretically active in inhibiting PD-1 positive immune cells. As a consequence, cytoplasmic staining
should be considered as a negative result in PD-L1 immunodetection. On the whole, from the
various studies recapitulated in Tables 1 and 2, it emerges the absence of correlation between PD-L1
levels and clinicopathological parameters, while data regarding PD-L1 and disease-free survival
(DFS)/disease-free interval (DFI) are discordant.

By analyzing clinical and biochemical data of a study comprising 507 PTC patients, available
on the cBioPortal, we found a statistically significant correlation between higher levels of PD-L1
mRNA and lymph node metastasis, extrathyroidal invasion and DFS (Table 2) [8,63]. Analogously,
a significant association between PD-L1 protein and DFS was observed in two large case studies
(Table 1) [43,45]. It is also worth mentioning that in 4 out of 8 reports, a positive association between
PD-L1 expression and the presence of BRAFV600E mutation, known to induce a more aggressive
tumor behavior, was noticed [8,9,37,64,67]. In agreement, Brauner and colleagues showed that thyroid
cancer cell lines with BRAFV600E mutation have higher baseline levels of PD-L1 mRNA compared
to those harboring the BRAF wild type [78]. These findings appear to corroborate the reported
ability of BRAFV600E signaling to modulate the immune response [37]. In fact, besides inducing
PD-L1 expression, BRAFV600E has been shown in thyroid cancers to increase suppressive immune
cell infiltration (Treg) [37]. A recent meta-analysis by Aghajani and colleagues described a moderate
quality evidence from 4 studies, including 721 patients, which testified a significant association between
PD-L1 positivity and poor survival in thyroid cancer patients, with a hazard ratio (HR) of 3.73 (C.I.
2.75–5.06) [79]. From the same meta-analysis, a significant association also emerged between increased
PD-L1 and tumor recurrence [76]. These variations of PD-L1 levels do not seem to be due to increases
in gene copy number, as indicated by a genetic screening of ATC and advanced DTC that documented
co-amplification of PD-L1 and PD-L2 genes in 5 out of 196 ATC, and in none of 583 DTC analyzed [80].
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Altogether, these findings point toward the PD-L1 as a possible prognostic marker useful to identify
thyroid cancer patients with aggressive disease.

Regarding PD-L2 expression in thyroid tumors, to the best of our knowledge, only two studies
have been performed so far [64]. One reported that PD-L2 mRNA levels increased in 35.1% and
decreased 25.5% of PTC, but decreased in the majority of ATC, compared to control tissues [64]. In
addition, higher expression of PD-L2 was found to be associated with the presence of the BRAFV600E

and lymph node metastasis, but not with other clinicopathological features or DFI [64]. The same study
evidenced a positive correlation between PD-L1 and PD-L2 expression. In the second one, Bastman
and colleagues analyzed the expression of PD-L2 mRNA in a case study consisting of 92 DTC, and
found no association between PD-L2 mRNA level and tumor size or lymph node metastasis [41]. In
any case, further investigations on larger case studies and examination of protein levels are required to
clarify the role of PD-L2 in thyroid cancer progression and its clinical utility.

4.3. Anti-PD-1/PD-L1 Directed Therapies and Thyroid Cancer

Over the last decade, the considerable increase of our knowledge about mechanisms underlying
the ability of cancer cells to elude the detrimental action of the immune system has led to a renewed
interest for immune-based therapy in oncology, especially for hard-to-treat cancers, including the
poorly differentiated and frankly anaplastic thyroid cancers [74,81]. In particular, the recognition
that cancer cells express on their plasma membrane immune checkpoint molecules, such as PD-1
and CTLA-4 ligands, has headed to the generation of monoclonal antibodies capable of preventing
tumor-induced exhaustion of infiltrating lymphocytes. Several antibodies targeting the PD-1/PD-L1
pathway, reported in Table 3, have been approved by the Food and Drug Administration for the treatment
of multiple cancer types, including melanoma, non-small cell lung cancer, Hodgkin’s lymphoma, renal
cell carcinoma, gastric and urothelial bladder cancers, and Merkell cell carcinoma [82,83].

Table 3. FDA approved PD-1/PD-L1 inhibitors. HNSCC, head and neck squamous cell carcinoma;
NSCLC, non-small cell lung cancer; cHL, classical Hodgkin lymphoma; MSI-H, microsatellite
instability-high; PMBCL, primary mediastinal large B-cell lymphoma; HCC, hepatocellular carcinoma;
SCCHN, squamous cell carcinoma of the head and neck; RCC, renal cell carcinoma; SCLC, small cell
lung cancer; CSCC, cutaneous squamous cell carcinoma. Source: www.fda.gov.

Name
Commercial Name

(Company)
IgG

Isotype
Target FDA Approval

Year Cancer Type

Pembrolizumab Keytruda (Merck) IgG4 PD-1

2014 Melanoma
2016 HNSCC, NSCLC

2017
Gastric/gastroesophageal

adenocarcinoma, cHL, urothelial
carcinoma, MSI-H cancers

2018 Merkel cell carcinoma, PMBCL, HCC,
cervical cancer

Nivolumab
Opdivo

(Bristol-Myers
Squibb)

IgG4 PD-1

2014 Melanoma, NSCLC
2016 SCCHN, cHL

2017 Urothelial carcinoma, HCC, MSI-H
colorectal cancer

2018 RCC, SCLC

Cemiplimab-rwlc Libtayo (Regeneron
Pharmaceuticals) IgG4 PD-1 2018 CSCC

Atezolizumab Tecentriq (Genentech
Oncology) IgG1 PD-L1 2016 NSCLC, urothelial carcinoma

Avelumab Bavencio (EMD
Serono) IgG1 PD-L1 2017 Merkel cell carcinoma, urothelial

carcinoma

Durvalumab
Imfinzi

(AstraZeneca)
IgG1k PD-L1

2017 Urothelial carcinoma
2018 NSCLC

www.fda.gov
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The objective response rate to PD-1/PD-L1 directed therapies varies from 13 to 43% in different
tumor types [83]. The best responses are generally observed in patients with high tumor expression
of PD-L1 and high numbers of tumor-infiltrating immune cells, particularly CD8+ T cells [83–86]. In
this context, the recent observations by Kim and colleagues are of particular interest, whereby, by
means of an immune gene signature comprising the PD-L1 and CTLA-4 genes, the canonical BRAF-like
and RAS-like PTC were classified into 2 subgroups each: BRAF-IR (immunoreactive) and RAS-IR,
characterized by up-regulation of immune-related genes and tumor infiltration by several immune
cell subtypes, including T cells; and BRAF-ID (immunodeficient) and RAS-ID, characterized by low
expression of immune-related genes and low infiltration of immune cells [63,87]. Confirming the
studies mentioned above, the authors showed that BRAF-IR PTC had higher expression of CTLA-4 and
PD-L1, which renders this PTC subgroup a potential candidate for immune checkpoint therapies [87].

At present, no information from clinical trials with anti-PD-1/PD-L1 directed therapies enrolling
patients affected by aggressive thyroid cancers is available. However, different preclinical studies
demonstrated the efficacy of PD-1/PD-L1 axis blockade in restraining growth of ATC-derived cell lines
injected in mice [78,88,89]. In particular, it has been shown that simultaneous administration of an
anti PD-L1 antibody (10F.9G2) and a BRAF inhibitor (PLX4720) or lenvatinib (multitargeted tyrosine
kinase inhibitor of VEGFR1-VEGFR3, FGFR1-FGFR4, PDGFRα and RET) synergistically reduced tumor
volume in an immunocompetent murine model bearing implanted syngeneic ATC [78,88]. In these
experiments, it was also found that treatment with anti-PD-L1 antibody resulted in an increased tumor
infiltration of CD8+ T cell with augmented cytotoxic profile [78,88]. Kollipara and colleagues reported
the encouraging case of a 62-year-old male who, following ATC diagnosis, was initially treated by
thyroidectomy with lymph node dissection [90]. Subsequently, the positron emission tomography
(PET) revealed the presence of a mass in the thyroid bed, and metastases in the supraclavicular region
as well as in the upper lobes of right and left lungs. The patient was then treated with doxorubicin
and cisplatin, to which he was unresponsive, as judged by the progression of lung metastases, and a
second-line paclitaxel treatment was equally ineffective. Following the identification of the BRAFV600E

mutation and PD-L1 protein by IHC in tumor tissue, the patient was treated with vemurafenib
(BRAF inhibitor) and nivolumab. Whereupon, the patient experienced a continued reduction of
the metastatic lesions with complete radiographic and clinical remission of the disease 20 months
after the beginning of nivolumab therapy [90]. In another study, performed at the MD Anderson
Cancer Center, 12 ATC patients in treatment with different kinase inhibitors (5 of which were treated
with lenvatinib, 6 with dabrafenib plus trametinib, and 1 with trametinib alone) started to receive
pembrolizumab in combination with kinase inhibitors at the time of disease progression [91]. Of
these patients, 5 (42%) had a partial response, 4 (33%) exhibited stable disease, and 3 (25%) had
progressive disease [91]. Very recently, the results of a phase 1B clinical trial (NCT02054806) evaluating
the efficacy of pembrolizumab monotherapy in patients with PD-L1-positive advanced DTC have been
reported [92]. Twenty-two patients were enrolled in the study and treated with pembrolizumab at
the dose of 10 mg/Kg administered every two weeks up to 24 months. Eighteen patients (82%) had
low-grade treatment-related adverse effects, including diarrhea (32%), fatigue (18%) and rash (14%),
but no patient was discontinued due to deleterious side effects [92]. A partial response to treatment
was observed in 2 patients (overall response rate of 9%), 13 patients experienced a stable disease
(59%), while 7 had a progressive disease [92]. At the moment, there is much interest in the results
of an ongoing phase II clinical trial evaluating pembrolizumab on metastatic or locally advanced
ATC patients, that should be completed by October 2019 (NCT02688608) [93]. This is a multi-center,
open-label trial estimated to enroll at least 20 ATC patients, aimed at assessing the therapeutic effects
of pembrolizumab administered at 200 mg intravenously every 3 weeks for up to 18 months.

Since the activation of the MAPK signaling in thyroid cancer has been shown to negatively
modulate the immune response in the tumor microenvironment, it is likely that targeted therapies
directed against this pathway may revert the immune suppression due to abnormal kinase
activation [94]. For example, Sorafenib, a multitargeted antiangiogenic tyrosine kinase inhibitor,
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was shown to reduce Treg numbers and to inhibit their function in an orthotopic mouse model of
hepatocellular carcinoma [95]. Thus, a strategy that could be worth exploring in approaching thyroid
cancer is the combination of immune and targeted therapies [90,94]. In this regard, a phase 1b/2
clinical trial (NCT02501096) employing pembrolizumab plus lenvatinib is currently underway with
patients affected by selected solid tumors, including thyroid cancers. The study is estimated to be
completed by February 2020 [88,94–97].

5. Conclusions

The information so far available suggests that PD-L1 could represent a useful prognostic marker
for risk stratification of thyroid cancer patients, and that anti-PD-1/PD-L1 directed therapies could be
a valid option for patients affected by the most aggressive thyroid cancers, such as PDTC and ATC,
unresponsive to the currently available therapies. Some issues, however, still remain to be addressed.
In particular, the standardization of the IHC techniques, the interpretation of PD-L1 immunoreactivity
in cancer tissues, and a more reliable characterization of biomarkers capable of predicting patients’
response to anti PD-1/PD-L1 therapies.
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WDTC Well-Differentiated Thyroid Cancers
PTC Papillary Thyroid Cancer
FTC Follicular Thyroid Cancer
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CTL Cytotoxic T Lymphocytes
NK Natural Killer
PD-1 Programmed Cell Death 1
TGF-TGF-β Transforming Growth Factor β
IL-10 Interleukin 10
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DFS Disease-free survival
DFI Disease-free interval
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