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Abstract—Widespread adoption of indoor positioning systems based on WiFi fingerprinting is at present hindered by the large efforts

required for measurements collection during the offline phase. Two approaches were recently proposed to address such issue:

crowdsourcing and RSS radiomap prediction, based on either interpolation or propagation channel model fitting from a small set of

measurements. RSS prediction promises better positioning accuracy when compared to crowdsourcing, but no systematic analysis of

the impact of system parameters on positioning accuracy is available.

This paper fills this gap by introducing ViFi, an indoor positioning system that relies on RSS prediction based on Multi-Wall

Multi-Floor (MWMF) propagation model to generate a discrete RSS radiomap (virtual fingerprints). Extensive experimental results,

obtained in multiple independent testbeds, show that ViFi outperforms virtual fingerprinting systems adopting simpler propagation

models in terms of accuracy, and allows a sevenfold reduction in the number of measurements to be collected, while achieving the

same accuracy of a traditional fingerprinting system deployed in the same environment. Finally, a set of guidelines for the

implementation of ViFi in a generic environment, that saves the effort of collecting additional measurements for system testing and

fine tuning, is proposed.

Index Terms—Indoor Positioning, WiFi Fingerprinting, Indoor Propagation Modeling, Multi-Wall Multi-Floor Model, Crowdsourcing.

F

1 Introduction

INDOOR positioning and navigation is a market with
expected size of USD 4 billions in 2019 [1], and both

research community and industry are currently investing
huge efforts in the search for a simple and yet reliable
solution to determine the position of a mobile device in an
indoor environment. Received Signal Strength (RSS) finger-
printing based on WiFi technology emerged as one of the
most popular approaches for the implementation of Indoor
Positioning Systems (IPSs) [2], [3], for two main reasons: 1)
it allows to leverage existing communications infrastructure;
2) it can support almost any user device by simply installing
an application, making it much easier to deploy than other
proposals, that may achieve submeter accuracy but require
specific hardware/software modifications to devices [4], [5].
WiFi fingerprinting traditionally operates in two phases.
During the so-called offline phase, RSS values (fingerprints)
from WiFi Access Points (APs) detected in the environment
are collected at selected positions, referred to as Reference
Points (RPs), in order to create a discrete RSS radiomap
of the area of interest. Within the subsequent online phase,
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the location of target devices is estimated as a function
of the positions of the RPs, that best match the RSS val-
ues measured by the devices. Accuracy and complexity
of fingerprinting mainly depend on two issues: 1) proper
definition of similarity metrics and estimation algorithms
for selecting the best matching RPs to be used during the
online phase, and 2) careful planning of the offline phase,
particularly in terms of cardinality and positions of the RPs,
and number of measurements collected at each RP [6], [7].
Regarding the online phase, deterministic and probabilistic
k-Nearest Neighbors (kNN) and Weighted kNN (WkNN)
algorithms are by far the most widely proposed and in-
vestigated: on the one hand, deterministic algorithms are
appealing and relatively easy to implement, because they
take advantage of easily computable deterministic similarity
metrics [8], [9]; on the other hand, probabilistic algorithms
may improve the deterministic accuracy at the price of
higher computational complexity and measurement efforts,
due to the need of reliably estimating the RSS probability
distributions in each RP from each WiFi AP [10], [11], [12].
The offline phase poses however major issues in large
scale deployment of WiFi fingerprinting: the collection of
measurements is increasingly time consuming with the area
covered by the IPS, and requires on site measurement
campaigns that potentially interfere with the activities that
are usually carried out in the area. WiFi fingerprinting may
therefore be difficult to deploy in cases such as:

security-sensitive facilities, characterized by restricted ac-
cess areas, where measurements cannot be collected;
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emergency and diagnostic rooms in hospitals, where ac-
tivities cannot be interrupted by measurement collection;
large shopping malls and skyscrapers spanning over tens
or even hundreds of floors, where the sheer size and exten-
sion make the collection efforts nonviable due to costs or
time considerations.
Incidentally however, the above environments are some of
the most appealing targets for an IPS system [13], [14],
[15]. As a consequence, methods for either eliminating or
reducing the offline phase were proposed.
As regards the elimination of the offline phase, most of
the works in the literature proposed strategies to model a
direct relation between RSS values and spatial coordinates,
in order to infer the distances between APs and target de-
vice, and in turn target position. Simple radio propagation
modeling and regression [16], [17], along with either modifi-
cations of off-the-shelf devices [16], or additional hardware
[18], [19], [20], were proposed. However, the increase of
positioning error [16], [17], and the need for enhanced
system components [18], [19], [20], challenge the adoption
of such approaches in place of traditional fingerprinting.
Considering the reduction of the offline phase, two main
solutions emerged:
Crowdsourcing – In this approach, devices that make use
of the IPS contribute to the collection of location-dependent
RSS samples [21], in either a voluntary or involuntary
way [22]. Application of crowdsourcing entails further chal-
lenges, in terms of uncertainty of location of RPs and
corresponding RSS values, caused by lack of control on
the mobile device, and heterogeneity of devices used for
collection [23], [24], [25].
Virtual Fingerprinting – In this approach, the generation
of so-called virtual RPs1 is carried out in the area of interest,
by adopting RSS prediction methods based on either prop-
agation modeling, in which an empirical radio propagation
model is trained with an initial set of measurements, or
by interpolation, in which adjacent real RPs are interpolated.
In both cases, virtual RPs, along with real RPs, whose
amount is hopefully smaller when compared to traditional
fingerprinting, are then jointly used in the online phase.
In this paper, a WiFi IPS based on virtual fingerprinting by
propagation modeling, referred to as ViFi, is proposed and
analyzed. The system adopts RSS propagation modeling
for the offline phase reduction, and combines it with a
deterministic position estimation algorithm.
Design strategies adopted for ViFi were principally driven
by the following considerations:

1) Differently from offline phase elimination schemes dis-
cussed above, virtual fingerprinting does not directly
infer distances. This in turn allows the use of advanced
propagation models, embedded with multiple propa-
gation and topological parameters, that may lead to
improved prediction of RSS values, accurate generation
of virtual RPs, and thus enhanced positioning accuracy.

2) In contrast to offline phase reduction schemes by either
crowdsourcing or virtual fingerprinting by interpola-

1. real RPs indicate real fingerprints collected at the corresponding RP
locations, while virtual RPs indicate virtual fingerprints generated as a
function of the selected RSS prediction method and the corresponding
RP locations.

tion, virtual fingerprinting by propagation modeling
allows the deployment of IPSs in scenarios where an
extensive and spatially regular data collection during
the offline phase is prohibitive or even impossible. RSS
prediction by advanced propagation models can be in
fact obtained even in areas where no measurements
are collected, if measurements in environments with
similar characteristics, e.g. different floors in the same
building, are available, as analyzed in [26], [27].

Overall, ViFi offline and online phases were designed aim-
ing to limit the complexity and avoid device modifications
and additional hardware. In particular, 1) the Multi-Wall
Multi-Floor (MWMF) was selected among several empirical
models, since it provides advanced propagation modeling
at a reasonable degree of complexity [26], [28], [29], [30],
[31], and 2) a traditional, low-complex WkNN algorithm
was adopted for the fingerprinting online phase.
ViFi was implemented and tested in two testbeds with dif-
ferent AP topology and signal coverage, in order to obtain
consolidated data supporting the proposed approach, and
explore the possibility of introducing a set of guidelines for
its seamless deployment in other testbeds. The validity of
the proposed guidelines was then corroborated by deploy-
ing ViFi in a third testbed, with results presented in [32].
The paper is organized as follows: Section 2 reviews related
work in the field of RSS prediction, and identifies open
issues and contributions of this work beyond the current
state of the art. Section 3 contains the analytic foundations
of the MWMF indoor propagation model, adopted for the
generation of virtual RPs. The ViFi system is described
in Section 4, where design choices related to both offline
and online phases are discussed. The testbeds used for
the experimental analysis are presented and compared in
Section 5, with results being discussed in Section 6. Section
7 proposes the system implementation guidelines. Finally,
Section 8 compares ViFi with traditional fingerprinting in
terms of design requirements, positioning accuracy, com-
plexity, and vulnerability, while Section 9 concludes the
paper and highlights possible future research lines.

2 Virtual fingerprinting by RSS prediction

2.1 RSS Prediction by Interpolation

Virtual fingerprinting with Inverse Distance Weighting
(IDW) and Universal Kriging (UK) interpolation schemes
was proposed in [8], while a linear regression approach
was analyzed in [33]. Experimental results showed, in
both cases, a positioning error decrease when compared
with fingerprinting systems using a low amount of real
RPs. Moreover, virtual fingerprinting via Support Vector
Regression (SVR) and Gaussian Processes (GP) was recently
proposed in [34] and [35], respectively. In the first case,
a slightly better accuracy with respect to a traditional
kNN estimator was obtained; in the second case, a 30%
accuracy improvement, with respect to the Horus system
[11], was achieved. As already discussed, a spatially
regular collection of real RPs is in general required for the
application of interpolation techniques.
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2.2 RSS Prediction by Indoor Propagation Modeling

An empirical propagation model taking into account
the effect of obstructing walls on the perceived RSS
was preliminary proposed in the seminal work on WiFi
fingerprinting [6]. The so-called Wall Attenuation Factor
(WAF) was derived by averaging the differences between
Line of Sight (LoS) and Non LoS (NLoS) measurements,
with a known and variable amount of obstructing walls
in the latter case. Once the WAF was evaluated, other
propagation model parameters (path loss at a reference
distance and path loss exponent) were computed via linear
regression, and RSS values were predicted by using the
resulting model. Experimental results showed an increase of
the median positioning error in the order of 46% when such
model was used in place of real measurements, calling for
the definition of a more accurate propagation model. In [28]
the impact of using virtual fingerprinting on the achievable
positioning accuracy was comparatively analyzed: two
empirical propagation models (log-distance and MWMF)
and a semi-deterministic model (Motif) were used in
the RSS prediction and virtual fingerprints generation.
Positioning accuracy was then tested for deterministic
NN and probabilistic Bayesian estimators, showing an
increase of about 30% in terms of average positioning
error for the log-distance model, and a decrease of about
10% for MWMF and Motif ones, with respect to the NN
algorithm adopting real measurements. No analysis on the
impact of the amount of real and virtual RPs was however
provided and, in addition, little detail was given on the
set of propagation parameters used in the MWMF model.
Recently, the possibility of generating reliable virtual
RPs, through empirical fitting of a simple propagation
model, was confirmed in [36], where a log-distance
model was adopted, limiting the optimization to the path
loss exponent. A more complex model was proposed
in [37], foreseeing the sum of two exponentials, with a
total set of four parameters to be estimated, but the model
was not used to reduce the number of offline measurements.

2.3 Open issues and proposed contribution

The focal issue emerging from the analysis of previous work
is related to the difficulty in achieving a satisfactory trade off
between complexity and accuracy of fingerprinting systems.
On the one hand, as observed in Section 1, the elimination
of the offline phase either leads to accuracy decrease or
requires enhanced components, while crowdsourcing intro-
duces further challenges. One the other hand, virtual finger-
printing may provide reasonable solutions to significantly
reduce the offline phase, but strong experimental evidence is
still missing. As a matter of fact, given a propagation model
or an interpolation technique, the impact of number and
positions of a) real RPs on the RSS prediction accuracy, and
b) virtual RPs on the positioning accuracy is still unclear.
As a second issue, it can be observed that, in general, no
guidelines are provided for setting up a virtual fingerprint-
ing system in different environments, given that further in-
vestigations are required in order to uncover the relation be-
tween offline and online system parameters. This limitation
leads to a case by case choice rather than systematic settings,

e.g. in terms of number, position and spatial distribution of
collected real RPs, generated virtual RPs, and the value to
assign to k in case a kNN/WkNN estimator is adopted.
A third issue regards the need for sets of measurements
acquired in a controlled and reliable fashion, common to
all proposals reviewed in Sections 2.1 and 2.2. This is in
contrast with recent proposals that allow for data collection
in an uncontrolled fashion, such as crowdsourcing. The joint
use of crowdsourcing with virtual fingerprinting is indeed
all but unexplored in the literature, and its impact on RSS
prediction and positioning accuracy is unknown.
As regards the first issue, the contribution of this paper is the
definition of a novel virtual fingerprinting system, ViFi, that
provides an accuracy comparable to real fingerprinting sys-
tems based on exaustive RSS collections, while significantly
reducing the amount of data to be collected. This is obtained
by adopting the MWMF model to generate virtual RPs, that
has a complexity lower than the techniques in [34], [35],
and comparable to the models proposed in [6], [36], while
leading to better RSS prediction. With respect to [8], [28],
[33], this paper proposes an in-depth experimental analysis
on both adopted propagation model and proposed system,
focusing on the impact of densities and positions of real and
virtual RPs on RSS prediction and positioning accuracy.
As regards the second issue, the relation between system
parameters is analyzed, and an empirical and effective rule
for the selection of the value of k to be used in the WkNN
estimator, adopted in ViFi for the online phase, is derived
and experimentally validated. Altogether, thanks to an ex-
tensive experimental analysis, this paper proposes a full set
of guidelines for the implementation and setup of ViFi in
different environments, indicating: a) the required densities
of both real and virtual RPs, b) the strategies to select
and place such RPs, and c) the value of k, guaranteeing
satisfactory performance without requiring a training phase.
With respect to the last issue, this paper provides prelim-
inary results on the combination of virtual fingerprinting
and crowdsourcing techniques for offline phase reduction,
focusing in particular on the aspect of uncertainty of RSS
values, inherent to crowdsourcing, and thus offering a
framework for further research activities.

3 Multi-Wall Multi-Floor Propagation Models

Multi-Wall Multi-Floor models [29] emerged among em-
pirical narrow-band models as an appealing solution for
indoor propagation modeling, due to the good trade off they
provide between analytic simplicity and path loss modeling
accuracy [30]. MWMF models take into account objects,
that obstruct signal propagation in an indoor wireless link,
leading to the following path loss model [29]:

PLMWMF = PLOS +AMWMF [dB], (1)

where the PLOS term models the path loss over the Tx-Rx
distance d, while AMWMF models the additional loss due to
obstructing obstacles. The PLOS term is defined according
to the One Slope (OS) model, as follows [29]:

PLOS(d, γ) = l0 + 10γ log(d) [dB], (2)
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with l0 modeling the d = 1 m reference path loss, while γ is
the path loss exponent (for free space conditions, γ = 2 and
l0 ≈ 40.22 dB @ 2.45 GHz [30]). When, in the most general
case, Tx and Rx are located on different floors, AMWMF is
given by [29]:

AMWMF = lc +

Nobj∑
n=1

In∑
i=1

Nn,iln,i +N

[
Nf+2

Nf+1−b
]

f lf [dB], (3)

the parameters of which are described in TABLE 1.

TABLE 1: AMWMF parameters description.

Parameter Description

lc Constant Loss

Nobj Number of different families of 2D objects

In Number of types of 2D objects considered for family n

Nn,i Number of 2D obstructing objects of family n and type i

Nf Number of obstructing floors

ln,i Loss due to 2D objects of family n and type i

lf Loss due to obstructing floors

b Empirical 3D propagation parameter

The use of MWMF requires an initial set of M measure-
ments, and for each measurement (m = 1, 2, . . . ,M ) the
information regarding cardinality, type and positions of ob-
jects obstructing the m-th Tx-Rx direct path, indicated as the
set of topological parameters {Tm}. The measurements are
used in order to estimate the set of propagation parameters
{S} characterizing the model. In this paper, a least square
fitting procedure that minimizes the difference between RSS
measurements and predictions was adopted to estimate
{S}. The optimal {S}opt is thus obtained as follows:

{S}opt = argmin
{S}

{ M∑
m=1

|RSSm − ˆRSSm|2
}
, (4)

where, for the m-th available measurement, RSSm and
ˆRSSm are the actual vs. the predicted RSS values at Rx,

when considering a Tx emitting a known Effective Isotropic
Radiated Power (EIRP) WEIRP

TX at distance dm. ˆRSSm is
computed as follows:

ˆRSSm = WEIRP
TX − PLMWMF(dm, {Tm}, {S}). (5)

The propagation parameters included in {S} may differ
from one MWMF model to the other, and can include
parameters characterizing both PLOS and AMWMF; the set
adopted in this work is defined in Section 5.3.

4 ViFi System Model

4.1 Offline Phase

ViFi uses the MWMF model for the generation of virtual
RP fingerprints. Given a set of L WiFi APs in known
positions, measurements in a set of N r real RPs are first
collected, so that a L × 1 RSS fingerprint sn1 is associated
with the n1-th RP. The generic sn1 component, denoted
by sl,n1 , contains the RSS received at the n1-th RP from
the l-th AP, obtained by averaging q > 1 measurements
in order to counteract channel variability. The selection of

q is a compromise between accuracy vs. time and effort
devoted to measurements. Since only a subset of the L APs
may be detected at the generic RP, the sn1

components of
undetected APs are set to a predefined value reflecting lack
of detection.
The MWMF model is then calibrated on the set of real
fingerprints, and used for the generation of N v virtual fin-
gerprints associated with virtual RPs. The component ŝl,n2

of the generic L × 1 fingerprint ŝn2
contains the predicted

RSS at the n2-th virtual RP from the l-th AP.

4.2 Online Phase

ViFi adopts a deterministic WkNN estimator using combi-
nation of real vs. virtual RPs, to infer target location.
Denoting by N = N r + N v the number of RPs in the
area A, sn (n = 1, 2, . . . , N) the RSS fingerprint of n-th
RP, and si the RSS fingerprint collected during the i-th
positioning request by a target device in unknown position
pi = (xi, yi, zi), position estimation relies on the computa-
tion of a similarity metric simn,i = sim(sn, si). The WkNN
algorithm selects the k RPs that present the highest simn,i

values and provides an estimate of pi defined as:

p̂i =

∑k
n=1(simn,i)pn∑k
n=1 simn,i

, (6)

where pn = (xn, yn, zn) is the position of the n-th RP in a
3D coordinate system, and p̂i = (x̂i, ŷi, ẑi) is the estimated
position of the target device.
simn,i can be any deterministic metric computable in the
RSS space between vectors sn and si. A popular choice
is the inverse Minkowski distance of order o, defined as
follows:

simn,i = [Don,i]−1 =

( L∑
l=1

|sl,i − sl,n|o
)1

o

−1 , o ≥ 1.

(7)
Typical orders are o = 1 (inverse Manhattan distance)

and o = 2 (inverse Euclidean distance, used in ViFi). Simi-
larity metrics using modified versions of the inner product
between RSS vectors have also been proposed [38], [39].

4.3 Offline Phase Implementation Options

The ViFi offline phase must address two main issues: a) how
to use the real RPs, and b) how to determine the number and
positions of virtual RPs, as discussed below.

4.3.1 Handling real RPs

Both cardinality and positions of real RPs are expected to
affect the generation of virtual RPs and the resulting ViFi
positioning accuracy. Given N r real RPs regularly spaced
over a grid in A with area |A|, the spatial RP density is:

dr =
N r

|A|
. (8)

In [26], [31], several strategies were proposed for deriv-
ing the MWMF propagation parameters; among them, the
following two strategies were adopted in this paper:
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Strategy I: Environment Fitting – The set of measurements
from all APs to all RPs is used in a global optimization pro-
cedure, leading to a common set of propagation parameters
for all APs in A. The underlying assumption is that one set
of parameters can globally characterize the environment.
Strategy II: Specific AP Fitting – The set of measurements
from a specific AP to all RPs is used to estimate propagation
parameters for that AP. The procedure leads thus to a
different set of propagation parameters for each AP.

4.3.2 Handling virtual RPs

In analogy to Equation (8), denoting with N v the number of
virtual RPs to be generated, the virtual RPs spatial density
is defined as follows:

dv =
N v

|A|
. (9)

Moreover, positions of virtual RPs in the area can be
freely defined: possible options include placement on a grid,
as a natural extension of the grid scheme widely adopted for
real RPs, and random placement.

4.4 Online Phase Implementation Options

The WkNN algorithm foresees the selection of two parame-
ters: k and weighting function simn,i. In ViFi the weighting
function simn,i is set to the inverse Euclidean distance while
parameter k is selected according to a new procedure. Previ-
ous work addressed the impact of k on positioning accuracy
of deterministic WkNN algorithms in real fingerprinting
systems, and two approaches emerged: a) a dynamic k
selection i.e. that, however, increases complexity without
guaranteeing the optimal performance in all cases [39],
[40], and b) a static k selection, that minimizes the average
positioning error over a set of Test Points. The parameter k
that minimizes the average error is referred to as kopt. As
shown in [3], [6], [7], [8], [38], [40], in real fingerprinting
systems kopt typically lies in the range between 2 and 10.
This paper investigates the determination of kopt on the
basis of system parameters, moving from the assumption
that kopt depends in particular on the density of real and
virtual RPs, and can be thus determined as kopt = f(dr, dv).
In this work a linear law is proposed for f(., .), leading to an
approximate kopt value, kest, as follows:

kopt ≈ kest = dα(dr + dv)|A|e, α� 1. (10)

Equation (10) assumes the same linear dependency of
kopt on both dr and dv, although virtual fingerprints are
different from real ones, since they show a high spatial
correlation, with RSS variation between two fingerprints
directly related to the physical distance between the cor-
responding RPs, without the abrupt changes introduced in
real fingerprints by measurement errors and channel fading.
Two reasons justify this choice: first, there is no model in
the literature providing the value of kopt as a function of dr;
second, virtual fingerprinting only makes sense if dr is much
smaller than dv, thus leading to a low impact of dr on kopt.
In general, the values of α, dr and dv to be used in Equation
(10) will be environment-specific, and will still require a
testing phase to determine their exact values. If however

a set of values for these parameters valid across different
environments can be determined, this will allow to put the
system in operation without the need for a testing phase.
This possibility is investigated later in this work, first by
assessing the validity of Equation (10) with the procedure
described in Section 5.5, and then by determining and
comparing the values of α, dr and dv that lead to the best
approximation of kopt in the adopted testbeds.

5 Experimental Analysis Setup

This section describes the SPinV and TWIST testbeds, im-
plemented at Sapienza University of Rome and Technical
University of Berlin, respectively. These two environments
were adopted in the initial testing of the ViFi system2. In the
present section, the procedures defined for the experimental
analysis of ViFi are also introduced.

5.1 SPinV

Supporting People indoor: a navigation Venture (SPinV) is
the indoor positioning testbed implemented at the DIET
Department of Sapienza University of Rome. SPinV is de-
ployed in an office environment and covers two floors with
an area of approximately 42 × 12 m2 each. L1 = 6 APs
working @ 2.4 and 5 GHz, and L2 = 7 APs working @ 2.4
GHz, with a beacon transmission period of Tb = 100 ms and
a transmit power WEIRP

TX = 20 dBm, are placed at known
positions at the 1-st and 2-nd floor, respectively. In this
work, the SPinV 2-nd floor has been adopted as evaluation
area A, and the APs on this floor have been considered in
the fingerprinting measurement campaign, so that L = L2.
Two different measurement campaigns were carried out,
each corresponding to a different application scenario:

Controlled scenario – In this scenario, during the offline
phase, N r,tot = 72 RPs were selected for fingerprints col-
lection on a regular grid within A; fingerprints were also
collected in a set of N t = 31 Test Points (TPs) randomly
distributed over A. All measurements were carried out
during weekend afternoons, in order to mitigate the effect
of radio interference due to possible mobile and temporary
connection points. No particular mitigation strategy was
instead applied as regards the interference with other APs
available in the area. Weekend campaigns also allowed to
minimize the variation of propagation conditions due to hu-
man presence, considering that no other person than the sin-
gle human surveyor was present during the RSS collection.
A MacBook Pro equipped with an AirPort Extreme Network
Interface Card was used, placed on a wooden platform in
order to rule out the impact of the human body presence on
measured RSS. Both RPs and TPs fingerprints were obtained
as the average of q = 50 scans at each location, in order
to remove as much as possible fluctuations due to channel
and measurement variability. The RSS collection required
approximately 6 minutes for each RP location.

2. Description of the w-iLab.t I testbed [27], [41], implemented at
iMinds in Ghent, Belgium, and used to further assess the ViFi per-
formance, is reported in [32], together with the obtained results.
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Crowdsourcing-like scenario – In this scenario, N r,tot = 69
RPs and N t = 26 TPs were collected in the area3. All mea-
surements were performed during weekdays, by a single
human surveyor equipped with an Android-based Samsung
tablet. In this case, no radio and human interference mitiga-
tion strategies were adopted, in order to mimic a realistic
crowdsourcing scenario. Normal human office activity (sev-
eral static and walking persons randomly distributed in the
environment) was observed during the RSS collection. RPs
fingerprints were obtained by averaging q = 5 measure-
ments, while TPs fingerprints include a single measurement.
A specific characteristic of the SPinV testbed is the location
of APs. On both floors, APs are placed in the false ceiling of
the central corridor, as shown in Figure 1. Furthermore, not
all APs cover the entire floor. SPinV can be thus considered
an example of sub-optimal environment in terms of signal
coverage and APs topology, leading to low spatial diversity.

5.2 TWIST

The TKN Wireless Indoor Sensor network Testbed (TWIST)
is the indoor positioning testbed implemented at the TKN
headquarter at TUB, in the context of the EVARILOS Project
[41], [42]. TWIST is deployed in an office environment and
covers one floor with an area of about 30 × 15 m2. Within
this environment, L = 4 dedicated WiFi were placed at
known positions and configured to operate @ 2.4 GHz with
a beacon transmission period of Tb = 100 ms and a transmit
power WEIRP

TX = 20 dBm. The entire floor was adopted as
evaluation environment A, and all the L APs were included
in the fingerprinting measurement campaign. During the
fingerprinting offline phase, N r,tot = 41 RPs were identified
on a regular grid and measured within A; an additional set
of N t = 80 uniformly distributed TPs was collected.
In the case of TWIST, all measurements were taken with the
same settings defined for the Controlled scenario in SPinV,
and no Crowdsourcing-like scenario was considered4.
Oppositely to SPinV, APs in TWIST are approximately
placed at the four corners of the area, as shown in Figure
2. TWIST can be thus considered as an optimal environment
in terms of APs topology, characterized by high signal
coverage and spatial diversity.

5.3 Procedure for the Analysis of the MWMF Accu-
racy in Virtual RPs Generation

In agreement with the approach proposed in [26], [31], the
following procedure was adopted for the analysis of the
reliability of the MWMF model in generating virtual RPs:

1) A parameter ρ was defined, in order to determine the
number of RPs, N r, used for the model fitting reported
in Equation (4) of Section 3, out of the total number
of RPs, N r,tot, so that N r = dρN r,tote. The accuracy in
estimating the propagation parameters and generating
virtual RPs was then evaluated as a function of ρ.
Figure 1 shows the positions of the N r,tot RPs, of the

3. Crowdsourced RPs/TPs have the same positions of Controlled
scenario RPs/TPs; a few measurements are missing due to practical
constraints encountered during the collection campaigns.

4. RSS data collected in SPinV and TWIST testbeds, as well as in w-
iLab.t I analyzed in [32], are available for download at http://newyork.
ing.uniroma1.it/ViFi - Supplemental Material - Datasets.zip.

APs and of the N r RPs selected for model fitting as a
function of ρ in SPinV, while Figure 2 provides the same
information for TWIST.

Fig. 1: Position of real RPs (blue squares) and APs (black
diamonds) in the SPinV testbed. Areas of different colors
highlight selected RPs when ρ = 0.1 (light grey), ρ = 0.2
(dark green), ρ = 0.5 (light blue), ρ = 1 (white + all colors).

Fig. 2: Position of real RPs (blue squares) and APs (black
diamonds) in the TWIST testbed. Areas of different colors
highlight selected RPs when ρ = 0.1 (light grey), ρ = 0.2
(dark green), ρ = 0.5 (light blue), ρ = 1 (white + all colors).

2) The model fitting procedure defined by Equation (4),
was carried out to evaluate propagation parameters
to be used in the MWMF model for each of the two
selection strategies introduced in Section 4.3.1. TABLE 2
defines the set {S} of propagation parameters included
in the MWMF model fitting procedure, and the settings
for the remaining parameters in Equation (4).

TABLE 2: Model parameters setting.

Parameter Setting

Nobj 2 (walls, doors)

Iwalls 1

Idoors 1

Nf 0

{S} {γ, lc, lwall, ldoor}

3) For each selection strategy, RSS values were predicted,
using the MWMF model, in the same locations where
the N r,tot RPs were originally collected. Next, the ac-
curacy of the model was evaluated by defining the
prediction error as follows:

δl,n(ρ) = |sl,n − ŝl,n(ρ)|, (11)

where ŝl,n(ρ) is the predicted RSS for the generic (APl,
RPn) pair, obtained by using a set of N r = dρN r,tote

http://newyork.ing.uniroma1.it/ViFi_-_Supplemental_Material_-_Datasets.zip
http://newyork.ing.uniroma1.it/ViFi_-_Supplemental_Material_-_Datasets.zip


SUBMITTED TO IEEE TRANSACTIONS ON MOBILE COMPUTING, SEPT. 2018 7

RPs in the model fitting procedure, while sl,n is the
measured RSS for the same pair. Assuming the generic
δl,n(ρ) value as a sample of a random variable δl(ρ)
related to the l-th AP, the cumulative distribution func-
tion (CDF) of δl(ρ) and the average error δ̄l(ρ) =∑N r,tot

n=1 δl,n(ρ)
N r,tot were also evaluated.

Results of the analysis are reported in Section 6.1 and 6.3 for
Controlled and Crowdsourcing-like scenarios, respectively.

5.4 Procedure for the Analysis of the Impact of Virtual
RPs on Positioning Accuracy

The performance of ViFi was evaluated as a function of:
a) the density dr and the selection strategy of real RPs, b)
the density dv and placement of virtual RPs, and c) the k
parameter in the WkNN algorithm. The analysis was carried
out by computing the positioning error εi(dr, dv, k) for each
TP i (i = 1, 2, . . . , N t) as follows:

εi(d
r, dv, k) =

√
(xi − x̂i)2 + (yi − ŷi)2 + (zi − ẑi)2, (12)

where (xi, yi, zi) = pi and (x̂i, ŷi, ẑi) = p̂i are the actual
and the estimated positions of the i-th target device, re-
spectively. Note that dependence of p̂i components on the
{dr, dv, k} set was omitted in Equation (12) for the sake
of readability. As in the case of the prediction error δl(ρ),
the CDF of positioning error ε(dr, dv, k) and the average

positioning error ε̄(dr, dv, k) =
∑Nt

i=1 εi(d
r,dv,k)

N t were evalu-
ated. Furthermore, a performance indicator, referred to as
virtualization gain G(dr, dv, k), was introduced to measure
the gain in accuracy achieved when using a density of
virtual RPs dv > 0. The virtualization gain G(dr, dv, k) is
defined as follows:

G(dr, dv, k) =
ε̄(dr, 0, k)

ε̄(dr, dv, k)
, dv > 0. (13)

Results of the analysis are reported in Section 6.2 and 6.3 for
Controlled and Crowdsourcing-like scenarios, respectively.

5.5 Procedure for testing the validity of the kest model

The following procedure was applied in order to assess the
validity of Equation (10) in both SPinV and TWIST testbeds:

1) Given a generic (dr, dv) combination, kopt and in turn
ε̄(dr, dv, kopt) were evaluated;

2) For each α ∈ [αmin : αmax], kest(α) was evaluated
following Equation (10), and the corresponding average
positioning error ε̄(dr, dv, kest(α)) was determined;

3) The difference between ε̄(dr, dv, kest(α)) and
ε̄(dr, dv, kopt) was evaluated and denoted with
β(dr, dv, α):

β(dr, dv, α) = ε̄(dr, dv, kest(α))− ε̄(dr, dv, kopt) (14)

Numerical results of the above procedure for both SPinV
and TWIST testbeds are reported in Section 6.2.4.
TABLE 3 presents the values for the parameters introduced
in the procedures defined in the current section, as well as
in Sections 5.3 and 5.4.

TABLE 3: Experimental parameters setting.

Parameter SPinV TWIST

{ρ} {0.1, 0.2, 0.5, 1}

{dr} {0.02, 0.03, 0.07, 0.14} {0.01, 0.02, 0.05, 0.09}

{N r} {8, 15, 36, 72} {5, 9, 21, 41}

{dv} {0.01, 0.05, 0.1, 0.5, 1, 5, 10}

{Nv} {6, 26, 51, 252, 504, 2520, 5040} {5, 23, 45, 225, 450, 2250, 4500}

{αmin, αmax} {0.01, 0.25}

6 Experimental Results and Discussion

6.1 Controlled Scenario: Accuracy in Generation of
Virtual RPs

The MWMF model adopted in ViFi for the generation of
virtual RPs was analyzed and compared against the OS
model proposed in [28], [36].
Figures 3 and 4 show the CDFs of the prediction error δl(ρ)
for selection Strategy I (Figures 3a and 4a) and Strategy II
(Figures 3b and 4b) for a reference AP within the SPinV
and TWIST testbeds. Results show that, for both strategies
and testbeds, slightly different δl(ρ) errors are obtained
as ρ increases from 0.1 to 1. Strategies perform similarly
for the reference AP in the SPinV environment, with a
slight performance improvement given by Strategy II, while,
within the TWIST environment, Strategy I allows a faster
convergence to low δl(ρ) values with respect to Strategy II.
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Fig. 3: Cumulative Distribution Function of prediction error
δl(ρ) for a reference AP in SPinV. Strategy I (a) vs. Strategy
II (b).

Results suggest that, when a relatively large value of ρ
(and in turn of N r and dr) is used, Strategy II outperforms
Strategy I. Oppositely, when a relatively low ρ value is
used, Strategy I achieves slightly better performance than
Strategy II, since it combines measurements from different
APs, taking advantage of environment homogeneity. This is
confirmed by Figure 5, showing the average prediction error
δ̄(ρ), obtained by averaging all the δ̄l(ρ) values over the L
APs, as a function of ρ (in addition to the ρ values in TABLE
3, values of δ̄(ρ) obtained for ρ = 0.05 are also shown),
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in SPinV and TWIST, respectively. The Figure also presents
results obtained using the OS model. Results show that
Strategy II is the optimal selection strategy in SPinV, since
the initial amount of real RPs is large enough to guarantee a
better RSS prediction when specific propagation parameters
are associated to different APs. Oppositely, Strategy I pro-
vides a better RSS prediction in the TWIST testbed for low
values of ρ, taking advantage in particular of the symmetry
in the AP placement in TWIST. Figure 5 also shows that the
proposed MWMF model outperforms the OS model, with
a decrease in the average prediction error of up to 4 dBs
in SPinV and 2 dBs in TWIST. Results presented so far
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Fig. 4: Cumulative Distribution Function of prediction error
δl(ρ) for a reference AP in TWIST. Strategy I (a) vs. Strategy
II (b).

highlight that few, uniformly distributed, measurements are
in most cases sufficient to obtain a reliable estimation of
the propagation parameters and generation of virtual RPs,
supporting the approach proposed in ViFi.
One might ask: are measurements required at all? The ques-
tion is answered by results shown in Figure 6, presenting the
statistics of δl(ρ) for a reference AP and ρ = 1 for MWMF
vs. OS models. Each model was fitted according to Strategy
I, Strategy II and to a baseline No Fit strategy in which
no fitting is carried out. For the No Fit strategy, the RSS
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Fig. 5: Average prediction error δ̄(ρ) as a function of ρ for
Strategies I and II in SPinV (a) vs. TWIST (b) (Continuous
lines: proposed MWMF model; dashed-dotted lines: OS
model proposed in [28], [36].)
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Fig. 6: Statistics of δl(ρ) for a reference AP and ρ = 1
in SPinV (a) vs. TWIST (b) (1: MWMF-No Fit; 2: MWMF-
Strategy I; 3: MWMF-Strategy II; 4: OS-No Fit; 5: OS-Strategy
I; 6: OS-Strategy II).

predictions were obtained in MWMF by using propagation
parameters estimated for a totally different areaA′

, reported
in [30]; in the OS model the settings γ = 2, l0 = 20 were
adopted. Note that in Figure 6, and following ones, error
statistics are summarized in the form of boxplot diagrams
showing minimum, maximum and median values, 25-th
and 75-th percentiles, and possible outliers. Results show
that the prediction error significantly increases for both
MWMF and OS models, and in both testbeds, when no site-
specific model fitting is carried out: measurements can be
thus significantly reduced but not totally avoided, because
of the empirical nature of the models.

6.2 Controlled Scenario: Positioning Accuracy

In this section, experimental results on the positioning accu-
racy of ViFi are presented for both testbeds in the Controlled
scenario. Next, results of the application of the empirical
procedure presented in Section 5.5 for estimating the value
of kopt in the ViFi online phase are reported.

6.2.1 Impact of dr

Figures 7 and 8 show the impact of the density of real RPs
on the average positioning accuracy, when no virtual RPs
are introduced, for SPinV vs. TWIST testbeds.
Figures 7a and 8a report the average positioning error
ε̄(dr, 0, k) as a function of k in SPinV vs. TWIST. Results
show that the positioning error decreases as dr increases.
The decrease of ε̄(dr, 0, k) is less and less significant as
dr increases, suggesting the presence of a lower bound, in
agreement with [6] and others, possibly due to the inherent
measurement error in the collection of real RPs. Results also
show that a different lower bound for the error is reached
in the two testbeds, about 3 m for SPinV vs. 2 m for TWIST,
and indicate that optimal AP placement positively affects
the system performance, in agreement with [43].
Figures 7b and 8b present the boxplot of the positioning
error ε(dr, 0, kopt) as a function of dr, and confirm that in
real fingerprinting systems the value of kopt spans in the
[2, 10] range, as observed in [3], [6], [7], [8], [38], [40].

6.2.2 Impact of real RPs selection strategies and virtual RPs
placement

Figure 9 reports the average positioning error
ε̄(dr, dv

max, kopt) for Strategy I and II, and dr as in TABLE



SUBMITTED TO IEEE TRANSACTIONS ON MOBILE COMPUTING, SEPT. 2018 9

k

0 20 40 60 80
2

3

4

5

6

7

8

9
Average Positioning Error ε [m]

d
r
= 0.02

d
r
= 0.03

d
r
= 0.07

d
r
= 0.14

(a)

[d
r
,k

opt
]

[0.02,2] [0.03,3] [0.07,2] [0.14,2]

0

5

10

15

20

25

30

Statistics of Error ε [m]

(b)

Fig. 7: Average positioning error ε̄(dr, 0, k) as a function of
k, for dr as in TABLE 3 (a) and statistics of ε(dr, 0, kopt) (b)
in SPinV.
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Fig. 8: Average positioning error ε̄(dr, 0, k) as a function of
k, for dr as in TABLE 3 (a), and statistics of ε(dr, 0, kopt) (b)
in TWIST.

3. Results are in agreement with Figure 5: within the
SPinV environment, Strategy II outperforms Strategy I, and
strategies performance approach when dr = dr

min; on the
contrary, within the TWIST environment, Strategy I leads
to better positioning accuracy, and strategies performance
approach when dr = dr

max. In conclusion one can observe
that: 1) the selection of the optimal strategy depends on
the number of real RPs, and 2) a direct relationship exists
between the average prediction error δ̄(ρ) and the average
positioning error ε̄(dr, dv, k): the strategy minimizing the
average prediction error δ̄(ρ) also minimizes the average
positioning error, and should thus be selected.
As for the placement of virtual RPs, both grid and random
placements were investigated, according to the discussion in
Section 4.3.2, with results showing no significant difference
between the two placements. As a consequence, a grid
placement was adopted in all experimental results shown
throughout the paper.
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Fig. 9: Average positioning error ε̄(dr, dv
max, kopt), for dr as in

TABLE 3, and for selection Strategy I and II, in SPinV (a) vs.
TWIST (b) (Blue bars: Strategy I; yellow bars: Strategy II).

6.2.3 Impact of dv

In analogy with Figures 7 and 8 presented in Section
6.2.1, Figures 10 and 11 show the average positioning error
ε̄(dr

min, d
v, k) as a function of k (Figures 10a and 11a) and the

boxplot of the positioning error ε(dr
min, d

v, kopt) (Figures 10b
and 11b) in SPinV and TWIST testbeds, respectively. Results
show that, when dr

min is used, the introduction of virtual RPs
significantly reduces the positioning error with respect to
case of dv = 0. Results are generalized in Figure 12, showing
the virtualization gain G(dr, dv, kopt), as defined in Equation
(13), for both testbeds, and confirm that the introduction of
virtual RPs significantly improves positioning accuracy for
low dr as dv increases, while the advantage of introducing
virtual RPs becomes negligible when a relatively large num-
ber of real RPs is available (high dr).
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Fig. 10: Average positioning error ε̄(dr
min, d

v, k) as a function
of k, for dv as in TABLE 3 (a), and statistics of ε(dr

min, d
v, kopt)

(b) in SPinV.

Low dr values were thus selected for further investigation,
with results presented in Figure 13 and Figure 14, showing
the average positioning error ε̄(dr, dv, kopt) as a function of
dv for the two lowest values of dr in SPinV vs. TWIST.
Results are presented for both the MWMF model used in
ViFi and the OS model of [28], [36], as well as for a real
fingerprinting system, with dr = dr

min and dr = dr
max as

upper and lower bounds for positioning error, respectively.
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Fig. 12: Virtualization gain G(dr, dv, k) as a function of dr

and dv, for k = kopt, in SPinV (a) vs. TWIST (b).

Results indicate that in both testbeds the minimum av-
erage positioning error is obtained for dv = dv

max, with
the MWMF model adopted in ViFi leading to consistently
better accuracy with respect to the OS model. Interestingly,
results also show that the error measured with the MWMF
model converges in all cases to ε̄(dr

max, 0, kopt) (with the only
exception of ε̄(dr

min, d
v
max, kopt) in the SPinV testbed, about 60

cm above ε̄(dr
max, 0, kopt)).

The results lead therefore to the conclusions that 1) the
introduction of virtual fingerprints in ViFi effectively com-
pensates the reduction of real ones with negligible effects on
positioning accuracy, allowing to significantly reduce time
required for the offline phase, and 2) the adoption of the
MWMF model is instrumental in achieving this result.

6.2.4 Empirical Derivation of kest

The value of α guaranteeing a reliable estimation of kopt was
determined, for both environments, through the application
of the procedure introduced in Section 5.5. Based on the
analysis of the impact of dv on the positioning error of
Section 6.2.3, the procedure was applied for dv = dv

max.
Figure 15 presents β(dr, dv

max, α) as a function of α for dr

as in TABLE 3. Results show that α between 0.01 and
0.05 leads to values of β(dr, dv

max, α) consistently close to
its minimum, for all dr values and in both SPinV and
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Fig. 16: Comparison of average positioning errors
ε̄(dr, dv, kopt) vs. ε̄(dr, dv, kest) as a function of dr and dv, for
α = 0.05, in SPinV (a) vs. TWIST (b).

TWIST testbeds; this suggests that kest = 0.05 (N r +N v)
is a suitable approximation of kopt. The finding is supported
by results shown in Figure 16, comparing the average po-
sitioning error ε̄(dr, dv, kest) vs. ε̄(dr, dv, kopt) in the SPinV
vs. TWIST testbeds. The small difference between the av-
erage positioning errors corroborates the reliability of the
proposed kopt estimator and its applicability, with α set to
0.05, to different environments.

6.3 Crowdsourcing-like Scenario

Figure 17 reports the MWMF average prediction error δ̄(ρ)
for the SPinV testbed in the Crowdsourcing-like scenario,
in comparison with the error obtained in the Controlled
scenario, already presented in Figure 5. Figure highlights
that the use of less stable measurements, inherent to crowd-
sourcing, leads to a degradation in prediction accuracy.
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Fig. 17: Average prediction error δ̄(ρ) as a function of ρ for
selection Strategy I vs. II in the Crowdsourcing-like scenario.

The same holds true for the average positioning error
ε̄(dr, dv, kopt) presented in Figure 18. Comparison against
Figure 13 confirms that the use of crowdsourced measure-
ments decreases the positioning accuracy, with an increase
of the error lower bound ε̄(dr

max, 0, kopt) of about 90 cm.
ViFi, however, still reaches the new lower bound, confirm-
ing its capability to compensate the lack of an exhaustive
offline measurement phase with the introduction of virtual
fingerprints. The virtualization gain G(dr, dv, kopt), reported

in Figure 19a, shows similar trends with respect to the Con-
trolled scenario seen in Figure 12, with higher virtualization
gains for low dr, high dv values.

dv
10-2 10-1 100 101

A
v
e
ra
g
e
P
o
s
it
io
n
in
g
E
rr
o
r
ε
[m
]

3.5

4

4.5

5

5.5

6

6.5

dr = 0.02 (dv = 0)

dr = 0.02

dr = 0.03

dr = 0.07

dr = 0.14

dr = 0.14 (dv = 0)

Fig. 18: Average positioning error ε̄(dr, dv, kopt) as a function
of dv, for dr as in TABLE 3, in the Crowdsourcing-like
scenario; upper and lower bounds on positioning error
observed for a real fingerprinting system with dr = dr

min
vs. dr = dr

max are also shown.

Finally, Figure 19b compares, in analogy with Figure 16, the
average positioning errors ε̄(dr, dv, kopt) and ε̄(dr, dv, kest),
with kest evaluated with α = 0.05: results confirm that
the selection of 5% of the total amount of RPs as value of
k leads to an average positioning error within 5% of the
positioning error obtained for kopt. In light of the above
results, it is possible to conclude that ViFi is applicable
to both controlled and crowdsourcing scenarios, and that
crowdsourcing might prove a valuable option to further
reduce the offline phase. Given the significant losses in
terms of positioning accuracy caused by the introduction
of unreliable measurements, further studies are however
required to determine the full extent of the impact of crowd-
sourced data on virtual fingerprinting systems.

6.4 Summary of key experimental results

Key results of the analysis presented in the previous subsec-
tions can be summarized as follows:
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Fig. 19: Virtualization gain G(dr, dv, k) as a function of dr and
dv, for k = kopt (a), and comparison of average positioning
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function of dr, dv in the Crowdsourcing-like scenario.
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• positioning error decreases as dv increases, but values of
dv > 10 RPs/m2 do not provide significant additional
improvement (Figures 10 and 11);

• positioning error decreases as dr increases, but values of
dr > 0.03 RPs/m2 do not provide additional improve-
ment if virtual fingerprinting is used (Figures 13 and 14);

• kopt is directly proportional to dr + dv, supporting the
validity of Equation (10) (Figures 10b and 11b), and α =
0.05 consistently leads to a good approximation of kopt

across different values of dr and dv (Figure 16).
Such results led to the implementation guidelines detailed
in Section 7.

7 Implementation Guidelines

The consistency in the ViFi behavior across two different
environments suggests the following set of implementation
guidelines in a generic environment of area |A|:

1) A density of real RPs of dr = 0.03 RPs/m2 is sufficient
to obtain a reliable RSS prediction using the MWMF
model, and the corresponding generation of virtual
RPs. Repeated measurements for each RP should be
collected and averaged, in order to mitigate the impact
of unstable measurements on positioning error.

2) The average RSS prediction error δ̄ is a reliable indi-
cator for choosing the selection strategy leading to the
minimization of the average positioning error ε̄.

3) A density of virtual RPs from 1 to 10 RPs/m2 is suf-
ficient to achieve a positioning accuracy comparable
with a real fingerprinting system operating in the same
environment with dr = dr

max.
4) The selection of kest = d0.05(dr + dv)|A|e in the

WkNN estimator guarantees an average positioning
error within 5% of the error achieved with k = kopt.

The above guidelines were heuristically derived, and their
validity cannot be proved for all testbeds and all envi-
ronments; however, the following observations support the
claim of applicability across different testbeds:

1) SPinV and TWIST do not share any hardware or soft-
ware component, barring the possibility that the results
are depending on a specific combination of infrastruc-
ture, devices, or software used during data collection.

2) SPinV and TWIST are deployed in different environ-
ments, with different topological characteristics, and
different number and positions of APs. These differ-
ences are clearly reflected by the different accuracy
achievable in the two testbeds, with TWIST consistently
leading to better accuracy compared to SPinV: nonethe-
less, the above guidelines, when applied to the two
testbeds, lead to an average positioning error very close
(within 5.5%) to the achievable minimum.

3) As mentioned above, the guidelines were applied to a
third testbed, w-iLab.t I, and experimental results fully
corroborate the proposed guidelines [32].

8 ViFi vs. traditional fingerprinting

Information requirements – ViFi requires two additional
information pieces when compared to traditional finger-
printing: 1) the position of the APs and 2) the transmit
power of the APs. As of 1), the adoption of Simultaneous

Location And Mapping (SLAM) techniques might be con-
sidered in scenarios where the position of the APs is not
known in advance, with a possible loss in accuracy [44].
Regarding 2), the transmit power may be included in the set
{S} in the optimization procedure defined by Equation (4),
but Strategy II is preferable in this case, unless one assumes
that W EIRP

TX , although unknown, is the same for all APs.
Positioning accuracy – The positioning accuracy in WiFi
fingerprinting depends on the characteristics of the en-
vironment, as shown in [27], [45]. Although an average
positioning error of about 1 m was achieved in an indoor
area of roughly 10×10 m2 [46], positioning error increases as
the environment size increases: in large and complex indoor
environments, such as those considered in this work, an
average positioning error in the order of 2 m is in line with
current state of the art. Indeed, similar positioning errors
have been recently demonstrated for several localization
solutions in TWIST [47] and other environments [35].
Complexity and Scalability – The complexity of the offline
phase in ViFi is determined by the least square fitting
procedure (Equation (4)), and by the generation of virtual
RPs (Equations (1)-(3)). Following [48], the single fitting pro-
cedure of Strategy I has complexity O(|S|(N rL)2), while the
L different fitting procedures of Strategy II have complexity
O(|S|(N r)2) each. As for the generation of virtual RPs,
given the total number N vL of RSS values to be predicted,
and denoted with NMAX

2D and NMAX
f the maximum number

of 2D objects and floors obstructing the N vL links, the
complexity of the virtual RPs generation is O(NMAX

2D N vL)
in terms of multiplications (assuming NMAX

2D > NMAX
f ). The

complexity of the ViFi offline phase is, by definition, larger
than in traditional fingerprinting, where no computations
are required to fill the database. This increase in complexity
is however largely compensated by the dramatic reduction
in time and efforts required for RSS collection. As a refer-
ence, the offline phase of ViFi in the SPinV testbed would
require about 45 minutes instead of about 7 hours. As a
conclusion, ViFi outperforms traditional fingerprinting in
terms of system implementation scalability. A better scal-
ability enables an efficient deployment of ViFi in scenarios
where traditional fingerprinting would be unpractical due
to the size of the area or to the need for frequent radiomap
updates to cope with a variable environment.
Regarding the online phase, according to the analysis pre-
sented in [49], the complexity of the WkNN algorithm is
determined by a) the computation of the Euclidean dis-
tances between the target RSS fingerprint and the RPs (NL
multiplications), b) the selection of the k nearest neighbors,
(Nk comparisons), and c) the application of the weights
to the k neighbors (k multiplications). Since in this work
a linear dependency on N is proposed for k, the online
complexity is O(NL) multiplications and O(N2) compar-
isons. The complexity of the ViFi online phase is exactly
the same as of traditional fingerprinting adopting a WkNN
algorithm, but ViFi may require a slightly longer execution
time due to the larger set of real + virtual RPs. However,
several optimization mechanisms can be easily applied to
ViFi, aiming to improve its usage scalability. For example,
in so-called two-step WkNN schemes [39], the complexity
can be significantly reduced by performing a clustering of
RPs via Affinity Propagation algorithm, and adopting coarse
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and fine positioning steps for the online phase.
Vulnerability – A plethora of works investigate the vulner-
abilities of fingerprinting systems [2]. Two vulnerabilities
particularly relevant to ViFi can be identified: environment
variations over time and device heterogeneity. Environmental
changes over time may impact positioning accuracy by inval-
idating the RSS data, requiring thus a radiomap update.
In this respect, ViFi provides two major improvements.
First, if the environment change is restricted to a specific
topological variation (e.g. a single wall being removed),
the underlying MWMF model allows to update the ViFi
radiomap by simply regenerating the set of virtual RPs
using the new topology, without the need for a new channel
training. Second, even if major changes occur, calling for
a new channel training, ViFi requires a significantly lower
number of real RPs to operate, thus reducing the time and
effort required to collect data and update the radiomap, so
to restore the system to its best performance. Measurement
mismatch due to device heterogeneity may also negatively
impact accuracy. Solutions proposed to address this issue
in real fingerprinting systems, such as using the difference
between RSS values so to erase biases introduced by specific
hardware [50], or removing from each RSS value the average
RSS received from all APs at the same location [51] might be
easily applied to ViFi as well. Moreover, the low number
of measurements to be collected in ViFi enables a new
solution, unpractical in traditional fingerprinting: multiple
sets of measurements with different devices can be collected
during the offline phase while still saving significant time
and effort with respect to the extensive data collection cam-
paign of a real fingerprinting system. In the online phase,
the database that best fits the target device can be then
adopted to mitigate the impact of device heterogeneity.

9 Conclusion

In this work a virtual fingerprinting indoor positioning
system, referred to as ViFi, has been proposed. ViFi uses
the empirical MWMF indoor propagation model for the
generation of virtual RPs and a deterministic Euclidean
WkNN algorithm to infer the target location.
The performance of ViFi was experimentally evaluated in
multiple independent testbeds, and compared with pre-
vious proposals in the literature. Results show that ViFi
outperforms virtual fingerprinting systems using simpler
propagation models, and provides the same accuracy of
a real fingerprinting system while guaranteeing up to a
sevenfold reduction in time and efforts for measurements.
A set of guidelines for the selection of offline and online
ViFi parameters was also proposed, that saves the additional
efforts related to the testing phase typically required for
tuning a WiFi fingerprinting system.
This work opens the way for further research on several
topics, including: a) adoption of other online estimation
algorithms in place of the WkNN algorithm, providing
better accuracy and/or lower complexity, and verification
of the guidelines in Section 7; b) improved propagation
modeling, taking into account device heterogeneity and ori-
entation, particularly relevant in a crowdsourced scenario; c)
derivation of enhanced models for the design and analysis
of WiFi fingerprinting systems.

References

[1] Markets and Markets, “Indoor Location Market by Component
(Technology, Software Tools, and Services), Application, End User
(Transportation, Hospitality, Entertainment, Shopping, and Public
Buildings), and Region - Global Forecast to 2021,” Oct. 2016.

[2] S. He and S.-.H G. Chan, “Wi-Fi Fingerprint-Based Indoor Position-
ing: Recent Advances and Comparisons,” in IEEE Commun. Surveys
& Tutorials, vol. 18, no. 1, pp. 466–490, Firstquarter 2016.

[3] V. Honkavirta et al., “Comparative Survey of WLAN Location
Fingerprinting Methods,” in Proc. of IEEE WPNC, pp. 243–251, Mar.
2009.

[4] M. Kotaru et al., “SpotFi: Decimeter Level Localization Using WiFi,”
in Proc. of ACM SIGCOMM, pp. 269–282, Aug. 2015.

[5] D. Vasisht, S. Kumar, and D. Katabi, “Decimeter-Level Localization
with a Single WiFi Access Point,” in Proc. of Usenix NSDI, pp. 165–
178, Mar. 2016.

[6] P. Bahl and V. N. Padmanabhan, “RADAR: An in-building RF-
based User Location and Tracking System,” in Proc. of IEEE IN-
FOCOM, vol. 2, pp. 775–784, Mar. 2000.

[7] M. Kessel and M. Werner, “SMARTPOS: Accurate and Precise
Indoor Positioning on Mobile Phones,” in Proc. of IARIA MOBILITY,
pp. 158–163, Oct. 2011.

[8] B. Li et al., “Indoor Positioning Techniques based on Wireless LAN,”
in Proc. of IEEE AusWireless, pp. 13–16, Mar. 2006.

[9] F. Yu et al., “5G WiFi Signal-Based Indoor Localization System
Using Cluster-Nearest Neighbor Algorithm,” in Int’l J. Distrib. Sens.
Netw., vol. 2014, Article ID 247525, 12 pages, Dec. 2014.

[10] T. Roos et al., “A Probabilistic Approach to WLAN User Location
Estimation,” in Int’l J. Wireless Inf. Networks, vol. 9, no. 3, pp. 155–
164, July 2002.

[11] M. A. Youssef and A. Agrawala, “The Horus WLAN location
determination system,” in Proc. of ACM MobiSys, pp. 205–218, Jun.
2005.

[12] N. Le Dortz, F. Gain, and P. Zetterberg, “WiFi Fingerprint Indoor
Positioning System using Probability Distribution Comparison,” in
Proc. of IEEE ICASSP, pp. 2301–2304, Mar. 2012.

[13] M. J. Du and J. Hua, “The design of RFID dual frequency inte-
grated technology based on prison application,” in Proc. of IEEE
ITNEC, pp. 860–863, May 2016.

[14] A. Mathisen et al., “A comparative analysis of Indoor WiFi Posi-
tioning at a large building complex,” in Proc. of IEEE/GRSS IPIN,
pp. 1–8, Oct. 2016.

[15] R. Yasmine and L. Pei, “Indoor fingerprinting algorithm for room
level accuracy with dynamic database,” in Proc. of IEEE/GNSS
UPINLBS, pp. 113–121, Nov. 2016.

[16] Y. Gwon and R. Jain, “Error characteristics and calibration-free
techniques for wireless LAN-based location estimation,” in Proc. of
ACM MOBIWAC, pp. 2–9, Oct. 2004.

[17] K. Chintalapudi, A. P. Iyer, and V. N. Padmanabhan, “Indoor
localization without the pain,” in Proc. of ACM MobiCom, pp. 173–
184, Sept. 2010.

[18] H. Lim et al., “Zero-Configuration, Robust Indoor Localization:
Theory and Experimentation,” in Proc. of IEEE INFOCOM, pp. 1–
12, Apr. 2006.

[19] Y. Ji et al., “ARIADNE: a dynamic indoor signal map construction
and localization system,” in Proc. of ACM MobiSys, pp. 151–164,
June 2006.

[20] C. Wu et al., “WILL: Wireless Indoor Localization without Site
Survey,” in IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 4, pp. 839–
848, Apr. 2013.

[21] P. Bolliger, “Redpin - adaptive, zero-configuration indoor localiza-
tion through user collaboration,” in Proc. of ACM MELT, pp. 55–60,
Sept. 2008.

[22] A. Rai et al.. “Zee: zero-effort crowdsourcing for indoor localiza-
tion,” in Proc. of ACM MobiCom, pp. 293–304, Aug. 2012.

[23] G. Chatzimilioudis et al., “Crowdsourcing with Smartphones,” in
IEEE Internet Comput., vol. 16, no. 5, pp. 36–44, Sept.-Oct. 2012.

[24] S. Yang et al., “FreeLoc: Calibration-free crowdsourced indoor
localization,” in Proc. of IEEE INFOCOM, pp. 2481–2489, Apr. 2013.

[25] C. Laoudias, D. Zeinalipour-Yazti, and C. G. Panayiotou, “Crowd-
sourced indoor localization for diverse devices through radiomap
fusion,” in Proc. of IEEE/GRSS IPIN, pp. 1–7, Oct. 2013.

[26] G. Caso and L. De Nardis, “Virtual and Oriented WiFi Fin-
gerprinting Indoor Positioning based on Multi-Wall Multi-Floor
Propagation Models,” in Mob. Netw. Appl. (MONET), vol. 22, no.
5, pp. 825–833, 2017.



SUBMITTED TO IEEE TRANSACTIONS ON MOBILE COMPUTING, SEPT. 2018 14

[27] F. Lemic et al., “Toward Extrapolation of WiFi Fingerprinting
Performance Across Environments,” in Proc. of AMC HotMobile, pp.
69–74, Feb. 2016.

[28] Widyawan, M. Klepal, and D. Pesch, “Influence of Predicted
and Measured Fingerprint on the Accuracy of RSSI-based Indoor
Location Systems,” in Proc. of IEEE WPNC, pp. 145–151, Mar. 2007.

[29] E. Damosso et al., “COST Action 231: Digital Mobile Radio To-
wards Future Generation Systems: Final Report,” European Com-
mission, 1999.

[30] A. Borrelli et al., “Channel models for IEEE 802.11b indoor system
design,” in Proc. of IEEE ICC, pp. 3701–3705, June 2004.

[31] G. Caso and L. De Nardis, “On the Applicability of Multi-wall
Multi-floor Propagation Models to WiFi Fingerprinting Indoor Po-
sitioning,” in Proc. of EAI FABULOUS, LNICST vol. 159, pp. 166–
172, Sept. 2015.

[32] G. Caso et al., “ViFi: Virtual Fingerprinting WiFi-based Indoor
Positioning via Multi-Wall Multi-Floor Propagation Model – Sup-
plemental Material”, 2018.

[33] A. K. M. M. Hossain et al., “Indoor Localization Using Multiple
Wireless Technologies,” in Proc. of IEEE MASS, pp. 1–8. Oct. 2007.

[34] N. Hernández et al., “WiFi-based Indoor Localization Using a
Continuous Space Estimator From Topological Information,” in
Proc. of IEEE/GRSS IPIN, pp. 148899-1-148899-4, Oct. 2015.

[35] S. Kumar, R Hegde, and N. Trigoni, “Gaussian Process Regression
for Fingerprinting based Localization,” in Ad Hoc Netw., vol. 51, pp.
1–10, Nov. 2016.

[36] T. Pulkkinen, J. Verwijnen, and P. Nurmi, “WiFi positioning with
propagation-based calibration,” in Proc. of ACM IPSN, pp. 366–367,
Apr. 2015.

[37] S. Kumar and R. Hegde, “An Efficient Compartmental Model
for Real-Time Node Tracking Over Cognitive Wireless Sensor Net-
works,” in IEEE Trans. Signal Process., vol.63, no.7, pp.1712–1725,
Sept. 2015.

[38] J. Torres-Sospedra et al., “Comprehensive analysis of distance and
similarity measures for Wi-Fi fingerprinting indoor positioning
systems,” in Expert Syst. Appl., vol. 42, no. 23, pp. 9263–9278, Dec.
2015.

[39] G. Caso, L. De Nardis, and M.-G. Di Benedetto, “A Mixed Ap-
proach to Similarity Metric Selection in Affinity Propagation-Based
WiFi Fingerprinting Indoor Positioning,” in Sensors, vol. 15, no. 11,
pp. 27692–27720, Oct. 2015.

[40] G. Caso, L. De Nardis, and M.-G. Di Benedetto, “Frequentist
inference for WiFi fingerprinting 3D indoor positioning,” in Proc.
of IEEE ICC Workshops, pp. 809–814, June 2015.

[41] T. Van Haute et al., “Platform for benchmarking of RF-based
indoor localization solutions,” in IEEE Commun. Mag., vol. 53, no.
9, pp. 126–133, Sept. 2015.

[42] F. Lemic et al., “Infrastructure for Benchmarking RF-based In-
door Localization under Controlled Interference,” in Proc. of IEEE
UPINLBS, pp. 26–35, Nov. 2014.

[43] O. Baala, Y. Zheng, and A. Caminada, “The Impact of AP Place-
ment in WLAN-Based Indoor Positioning System,” in Proc. of IEEE
ICN, pp. 12–17, Mar. 2009.

[44] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and
mapping (slam): Part ii,” in IEEE Robot. Autom. Mag., vol. 13, no. 3,
pp. 108-117, Sept. 2006.

[45] T. Van Haute et al., “Comparability of RF-based Indoor Localiza-
tion Solutions in Heterogeneous Environments: An Experimental
Study,” in Int’l J. Ad Hoc Ubiquitous Comput., vol. 23, no. 1/2, pp.
92–114, Jan. 2016.

[46] D. Lymberopoulos et al., “A Realistic Evaluation and Compar-
ison of Indoor Location Technologies: Experiences and Lessons
Learned,” in Proc. of IEEE/ACM IPSN, pp. 178–189, Apr. 2015.

[47] F. Lemic et al., “Experimental Evaluation of RF-based Indoor
Localization Algorithms Under RF Interference,” in Proc. of IEEE
ICL-GNSS, pp. 1–8, June 2015.

[48] G. Simon et al., “An Efficient Nonlinear Least Square Multisine
Fitting Algorithm,” in IEEE Trans. Instrum. Meas., vol. 51, no. 4, pp.
750–755, Aug. 2002.

[49] W. Zuo, D. Zhang, and K. Wang, “On kernel difference-weighted
k-nearest neighbor classification,” in Pattern Anal. Applic., vol. 11,
no. 3/4, pp. 247–257, Sept. 2008.

[50] A. K. M. M. Hossain et al., “SSD: a Robust RF Location Fingerprint
Addressing Mobile Devices’ Heterogeneity,” in IEEE Trans. Mobile
Comput., vol. 12, no. 1, pp. 65–77, Nov. 2011.

[51] C.-H. Wang et al., “Robust Wi-Fi location fingerprinting against
device diversity based on spatial mean normalization,” in Proc. of
IEEE APSIPA, pp. 1–4, Jan. 2013.

Giuseppe Caso received the M.Sc and Ph.D.
degrees from Sapienza University of Rome in
2012 and 2016. He is a Post-Doctoral Fellow
at the DIET Department, Sapienza University
of Rome. From 2012 to 2015, he has held visit-
ing positions at Leibniz University of Hannover,
King’s College London, and Technical University
of Berlin. His research interests include WiFi and
UWB indoor positioning, cognitive radio, and
context-aware, distributed communications. He
is an IEEE Member.

Luca De Nardis (M’98) is an Assistant Professor
with the DIET Department, Sapienza University
of Rome. He received the Laurea and Ph.D. de-
grees from Sapienza University of Rome in 2001
and 2005. In 2007, he was a Post-Doctoral Fellow
with the EECS Department, University of Cali-
fornia, Berkeley. He authored or co-authored over
100 publications in international peer-reviewed
journals and conferences. His research interests
focus on UWB radio technology, medium access
control, routing and positioning protocols for

wireless networks, and on the design of cognitive wireless networks.

Filip Lemic is a research assistant and Ph.D.
candidate at the Telecommunication Networks
Group, Technical University of Berlin. He re-
ceived the B.Sc. and M.Sc. degrees from the
University of Zagreb. In 2015 and 2016, he
was a visiting research assistant at the Berkeley
Wireless Research Center and the Qualcomm
SWARMLab, University of California, Berkeley.
His research interests include location and con-
text awareness, Internet of Things, and mmWave
communication. He is IEEE and ACM member.

Vlado Handziski received the M.Sc. degree from
Ss. Cyril and Methodius University in Skopje, and
Ph.D. degree from Technical University of Berlin,
in 2002 and 2011. He is a Senior Researcher in
the Telecommunication Networks Group, Techni-
cal University of Berlin, where he coordinates the
activities in the areas of sensor networks, cyber-
physical systems, and the Internet of Things. He
is also serving as Interim Professor at the chair
for Embedded Systems at Technical University of
Dresden. He is an IEEE Member.

Adam Wolisz received his degrees (Diploma
1972, Ph.D. 1976, Habil. 1983) from Silesian
University of Technology, Gliwice. He joined
Technical University of Berlin in 1993, where he
is a Chaired Professor in telecommunication net-
works and Executive Director of the Institute for
Telecommunication Systems. He is also an Ad-
junct Professor at the Department of Electrical
Engineering and Computer Science, University
of California, Berkeley. His research interests are
in architectures and protocols of communication

networks. He is an IEEE Senior Member.

Maria-Gabriella Di Benedetto obtained her
Ph.D. degree in 1987 from Sapienza Univer-
sity of Rome. In 1991, she joined the Faculty
of Engineering of Sapienza University of Rome,
where she is a Full Professor of telecommunica-
tions. She has held visiting positions at the Mas-
sachusetts Institute of Technology, the University
of California, Berkeley, and the University of Paris
XI. In 1994, she received the Mac Kay Profes-
sorship award from the University of California,
Berkeley. Her research interests include wireless

communication systems, in particular impulse radio communications,
and speech. She is an IEEE Fellow.


	Introduction
	Virtual fingerprinting by RSS prediction
	RSS Prediction by Interpolation
	RSS Prediction by Indoor Propagation Modeling
	Open issues and proposed contribution

	Multi-Wall Multi-Floor Propagation Models
	ViFi System Model
	Offline Phase
	Online Phase
	Offline Phase Implementation Options
	Handling real RPs
	Handling virtual RPs

	Online Phase Implementation Options

	Experimental Analysis Setup
	SPinV
	TWIST
	Procedure for the Analysis of the MWMF Accuracy in Virtual RPs Generation
	Procedure for the Analysis of the Impact of Virtual RPs on Positioning Accuracy
	Procedure for testing the validity of the kest model

	Experimental Results and Discussion
	Controlled Scenario: Accuracy in Generation of Virtual RPs
	Controlled Scenario: Positioning Accuracy
	Impact of dr
	Impact of real RPs selection strategies and virtual RPs placement
	Impact of dv
	Empirical Derivation of kest

	Crowdsourcing-like Scenario
	Summary of key experimental results

	Implementation Guidelines
	ViFi vs. traditional fingerprinting
	Conclusion
	References
	Biographies
	Giuseppe Caso
	Luca De Nardis
	Filip Lemic
	Vlado Handziski
	Adam Wolisz
	Maria-Gabriella Di Benedetto


