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REVIEW

How RNAi machinery enters the world of telomerase
Ilaria Laudadio , Claudia Carissimi, and Valerio Fulci

Department of Molecular Medicine, “Sapienza” University of Rome, Rome, Italy

ABSTRACT
Human telomerase holoenzyme consists of the catalytic component TERT and the template RNA
TERC. However, a network of accessory proteins plays key roles in its assembly, localization and
stability. Defects in genes involved in telomerase biology affect the renewal of critical stem cell
populations and cause disorders such as telomeropathies. Moreover, activation of telomerase in
somatic cells allows neoplastic cells to proliferate indefinitely, thus contributing to tumorigenesis.
For these reasons, identification of new players involved in telomerase regulation is crucial for the
determination of novel therapeutic targets and biomarkers. In the very last years, increasing
evidence describes components of the RNAi machinery as a new layer of complexity in human
telomerase activity. In this review, we will discuss how AGO2 and other proteins which collaborate
with AGO2 in RNAi pathway play a pivotal role in TERC stability and function.
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Introduction

Linear eukaryotic chromosomes, unlike prokaryotic
circular DNA molecules, pose two main threats to
genome stability: on the one hand DNA polymerases
are intrinsically unable to replicate the last region of
the laggingDNA strand, resulting in progressive chro-
mosome shortening; on the other hand free DNA
endsmight be recognized asDNAbreaks thus trigger-
ing recruitment of the DNA repair machinery [1]. In
the vast majority of eukaryotes, these issues have been
solved by the telomerase enzyme [2], which adds
repetitive DNA sequences at chromosome ends [3].

Telomerase activity results in telomeric DNA
containing repeats of the hexanucleotide sequence
5’-(TTAGGG)n-3’, called telomeres, which span
several kilobases at the end of each eukaryotic
chromosome [4]. A specialized set of proteins is
recruited on telomeric DNA sequences thus pre-
venting the engagement of the DNA repair
machinery on chromosome ends and protecting
them from exonuclease attack [5–8]. Relevant
exceptions are represented by diptera which have
lost the genes encoding for telomerase compo-
nents and rely on different classes of retrotranspo-
sons for the maintenance of telomeres [9].

Human telomerase enzyme consists of two core
components, which in vitro are sufficient for

minimally reconstituting telomerase activity:
a protein component (Telomerase Reverse
Transcriptase, TERT) and a non-coding RNA
(Telomerase RNA Component, TERC) [10]
(Figure 1(a)).

TERT has an intrinsic reverse transcriptase activity
and uses the associated TERC molecule as a template
to synthesize highly repetitive telomeric DNA
sequences. TERT displays a high conservation across
all eukaryotes with a clear organization into well-
defined functional domains [11,12].

Despite the poor overall sequence conservation
of TERC and the great size variability across
eukaryotic cells (ranging from 147 nt to more
than 2 kb), several functional domains of this non-
coding RNA have been retained across evolution
[13]. This is in line with the proposed pattern of
evolutionary conservation of long non-coding
RNAs (lncRNAs), which generally are character-
ized by highly conserved functional domains
embedded into a less conserved RNA transcript
[14]. TERC is transcribed by RNA polymerase II
and polyAdenylated. However, it is worth men-
tioning that unlike most lncRNAs, TERC does
not seem to contain any intron in any eukaryotic
species with the notable exception to some fungi
which rely on a non-canonical splicing event to
process 3’ end of TERC [15].
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Notably, telomere maintenance requires not only
a proper assembly of TERT and TERC but also
several accessory proteins needed for maturation,
stability, and subcellular localization of telomerase.

Controlling telomere lengthening and telomer-
ase activity is crucial for normal human develop-
ment. Telomerase activity is undetectable in most
human somatic cells but needs to be maintained in
highly proliferating cell populations such as germ
cells, stem cells, and expanding lymphocytes. On
the other hand, telomerase production is up-
regulated in many cancers, enabling neoplastic
cells to proliferate indefinitely [16] and its function
is impaired in telomeropathies, causing progres-
sive telomere shortening and subsequent prolifera-
tive blocks, such as dyskeratosis congenita, aplastic
anemia and idiopathic pulmonary fibrosis [17].

Interestingly, in the very last years, increasing evi-
dence links components of the RNA interference
(RNAi) pathway to telomerase activity (Figure 1
(b, c)). RNAi is an evolutionarily conservedmolecular
mechanism which controls expression of target genes
at post-transcriptional level taking advantage of base
complementarity between small non-coding RNAs
(22–24 nt long, sRNAs) such as microRNA
(miRNAs) [18–20], small interfering RNAs
(siRNAs) [21,22] and piwi-RNAs (piRNAs) [23],
and target RNAs. Most of the sRNAs are enzymati-
cally processed by several endoribonucleases such as
DROSHA and DICER and are loaded onto an RNA

binding protein belonging to the Argonaute family
which recruits downstream effectors [24,25]. Besides
its well-known function in post-transcriptional regu-
lation, components of human RNAi machinery have
been involved in a number of other pathways, such as
transcriptional regulation [26–28], RNA splicing [29–
31], and DNA damage [32–35].

Here, we will discuss this emerging aspect of
telomerase biology, by focusing on newly identi-
fied sRNAs originating from TERC and on pri-
mary or accessory RNAi proteins involved in
TERC processing and activity.

Human telomerase RNA structure

Human TERC is organized into several domains.
Starting from the 5’ end of the mature RNA mole-
cule, the following domains have been identified:
the Template Boundary Element (TBE), the tem-
plate region, the Pseudoknot Domain, the CR4/
CR5 domain and the H/ACA box (Figure 1(a)).

Human TBE is required to pause DNA synthesis
after incorporation of the GGTTAG sequence and
thus allowing dissociation of the enzyme from DNA
and its subsequent re-association to synthesize
a further hexanucleotide [36]. The P1-b helix formed
by pairing of the TBE with a downstream region of
TERC itself has been proven fundamental to define
the last nucleotide incorporated [37]. It is worth high-
lighting that appropriate pausing not only affects the

Figure 1. RNAi machinery as a new player in TERC stability and function. A. TERC (Telomerase RNA Component) contains three
structural domains (TBE, CR4/CR5 and H/ACA box) which mediate interactions with TERT (Telomerase Reverse Transcriptase) and two
sets of H/ACA proteins, thus forming the human telomerase holoenzyme. B. Schematic representation of the interactions between
TERC and several components of the RNAi machinery . AGO2, FXR1, RHAU and HuR have been shown to associate with regions
inside and surrounding the TBE at the 5’ end of TERC. AGO2 has a second binding site overlapping the CR4/C5 domain. DROSHA,
TRBP2 and DGCR8 bind to the H/ACA box at the 3’end of TERC. C. Network representing functional interactions between RNAi
components involved in TERC processing, assembly and function, as assessed by https://string-db.org [132].
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sequence of telomere repeats but is essential to pre-
serve correct annealing of TERC to telomeric DNA
for the addition of further telomeric repeats. In fact,
mutations affecting the TBE also impact on telomer-
ase processivity [37].

The template region is a short stretch of nucleo-
tides consisting of two sequences: the alignment
region pairs with telomeric DNA, while the tem-
plating region acts as a template during DNA
synthesis. Human TERC relies on a 5 nt alignment
region, considerably longer than the one found in
rodents (2 nt) and in other vertebrates [38]. It has
been shown that an alignment sequence shorter
than 3 nt impairs human telomerase activity [39].
The templating region may vary slightly in differ-
ent species as several different permutations of the
ancestral CCCUAA template all result into
(TTAGGG)n telomeric sequence. In fact, the tem-
plating region of human telomerase is CUAACC.

The pseudoknot domain is required in mammals
for TERC binding to TERT, as it directly interacts
with TERT protein [40]. This notion is corroborated
by the finding that an engineered TERC consisting
only of the pseudoknot domain is able to bind TERT
yielding a functional reverse transcriptase enzyme
able to extend RNA/DNA hybrid molecules [41].

The CR4/5 domain is also required for proper
association of human TERC with TERT. CR4/5
and pseudoknot domains appear to interact with
TERT independently of each other [42]. Direct
interactions between CR4/5 domain and TERT
have been characterized by UV-crosslinking. It
has been suggested that binding of the CR4/5
domain contributes to the proper folding of
TERT, thus explaining its requirement for telo-
merase activity [43].

In different phyla, the 3’ terminal region of
TERC RNA has extremely diverse structures.
However, in most cases, despite the wide differ-
ences in sequence and conformation, this region
of TERC RNA seems to play a crucial role in
TERC processing [44–47]. In vertebrates, the 3’
terminal region of TERC contains a structural
domain common to scaRNAs (small Cajal body-
specific RNAs), consisting of a pair of H/ACA
box required to mediate interaction with the H/
ACA proteins and TERC processing [48].

TERC processing beyond maturation:
generation of small non-coding RNAs

TERC processing at 3’ end is crucial for its
maturation and accumulation. Indeed, TERC is
initially a 3’ extended product which is post-
transcriptionally processed into the 451-nt
mature form. These long forms are predomi-
nantly degraded by the nuclear exosome target-
ing complex (NEXT), and the exosome [49,50].
Moreover, TERC undergoes a cycle of oligo-
adenylation mediated by PAPD5 (poly(A) poly-
merase PAP-associated domain-containing 5),
a non-canonical poly-A polymerase that is
a component of the nuclear polyadenylation
complex TRAMP [51,52]. Since TERC oligo-
adenylated isoforms are degraded by the exo-
some, the Poly(A)-specific ribonuclease (PARN)
antagonizes degradation by removing oligo (A)
tails from TERC [53–55]. Recently, it was shown
that processing of TERC oligoA tails occurs in
two steps with longer forms first being trimmed
by the exosome-associated exonuclease RRP6
and shorter forms then being processed by
PARN [56].

Involvement of the double-stranded RNA-
binding protein DiGeorge critical region 8
(DGCR8) in TERC 3’end processing was recently
shown [57] (Figure 1(b)). DGCR8 is known to con-
trol miRNA biogenesis. In the nuclear compartment,
DGCR8 associates to the RNase III enzyme Drosha
forming the Microprocessor complex which pro-
cesses the primary miRNAs (pri-miRNAs) in ∼70
nucleotide (nt) stem–loop precursor miRNAs,
termed pre-miRNAs [58,59]. Pre-miRNAs are then
exported in the cytoplasm and processed by another
RNase type III enzyme, DICER, to give rise to
miRNA duplexes [60,61]. Interestingly, DGCR8
interacts with the 3’end region of TERC and is
required to recruit RRP6 onto TERC, allowing the
exosome-mediated control of TERC matura-
tion [57].

Notably, recent evidence suggests that besides
the canonical processing of 3’ end of TERC aimed
at producing mature TERC, TERC RNA also
enters an alternative pathway for the biogenesis
of smaller RNA products originating from TERC
3’end sequence.
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Recently, we identify a sRNA arising from posi-
tions 425–447 of TERC, lying in the right arm of
the terminal hairpin of the H/ACA box (terc-
sRNA; [62]), which belongs to the class of
Transcription Termination Site-associated sRNAs
(TTSa-RNAs) [63]. Terc-sRNA has been detected
in both human cell lines and primary tissues, such
as lung, colon, kidney, breast, uterus and adrenal
cortex. Interestingly, terc-sRNA is upregulated in
different tumors as compared to healthy tissues.
The pattern of expression of terc-sRNA recapitu-
lates what previously seen for TERC, which is
ubiquitously expressed [64,65] and up-regulated
in human tumor cells [66], suggesting that during
tumorigenesis higher levels of TERC might pro-
mote the biogenesis of terc-sRNA. Terc-sRNA
derives from a stem-loop structure, reminiscent
of miRNA precursors. However, our data suggest
that its processing is not dependent upon the
RNase III endonuclease DICER or the sRNA bind-
ing protein ARGONAUTE2 (AGO2), which are
both involved in miRNA processing and/or stabi-
lity [67]. Notably, terc-sRNA overexpression is
able to increase telomerase activity, suggesting
that increasing level of terc-sRNA might confer
a selective advantage to TERT-expressing tumor
cells. The mechanism of action of terc-sRNA is
described below.

Interestingly, in a recent paper Fish and col-
leagues demonstrate that a 45nt-long noncoding
RNA (T3p) arises from an endonucleolytic pro-
cessing of the 3′ end of the TERC [68]. T3p was
described as a negative regulator of miRNA
function, by acting as a miRNA sponge and
promoting metastasis in breast cancer. The
nucleolytic biogenesis of T3p from TERC is con-
trolled by the endoribonuclease DROSHA and
the double-stranded RNA binding protein
TARBP2 (RISC Loading Complex RNA Binding
Subunit) (Figure 1(b)), two factors involved in
miRNA processing [69]. Since T3p embeds terc-
sRNA sequence, we can speculate that this RNA
molecule might be terc-sRNA precursor.
However, the role of T3p in telomere lengthen-
ing and telomerase activity was not investigated
by the authors and further experimental evi-
dence is required to link T3p to terc-sRNA
biogenesis.

TERC-interacting proteins: the usual and
unusual suspects

Even though for in vitro activity the essential
components of the telomerase are TERT and
TERC [10], the composition and assembly of the
telomerase holoenzyme are more complex in vivo.
Other RNA-binding proteins associate to TERC
and contribute to the stability, activity and locali-
zation of telomerase holoenzyme.

In human cells, the H/ACA box at TERC 3’end
fosters interactions with the same mature H/ACA
proteins and chaperones as the intron-encoded
small nucleolar (sno) or small Cajal body (sca)
RNAs that catalyze processing and pseudouridyla-
tion of ribosomal and small nuclear RNAs [70]. H/
ACA RNPs consist of four evolutionarily con-
served proteins: Dyskerin [encoded by the gene
DKC1 (Dyskerin Pseudouridine Synthase 1)],
NHP2 (NHP2 ribonucleoprotein), NOP10 (NP10
ribonucleoprotein), and GAR1 (GAR1 ribonucleo-
protein). TERC binds co-transcriptionally with
two sets of core H/ACA proteins [42,48] (Figure
1(a)). Dyskerin and NOP10 directly interact with
TERC H/ACA motif, while GAR1 and NHP2 are
recruited through protein–protein interactions
with dyskerin and NOP10, respectively [71,72].
Association of H/ACA protein to TERC is
required for TERC stability and accumulation via
protection from degradation [55,56] and enhances
endogenous TERC-TERT interaction [73]. Indeed,
defects in genes involved in H/ACA RNP forma-
tion reduce levels of TERC and telomerase activity,
thus impairing stem cell population renewal and
causing a spectrum of disorders such as dyskera-
tosis congenita [17]. Assembly and function of H/
ACA proteins were detailed elsewhere [74,75].

The 3’-apical loop in the human TERC H/ACA
domain contains a Cajal body box (CAB box)
which is necessary for the binding of TERC to
the WD40 repeat domain-containing protein
TCAB1 (telomerase Cajal body protein 1). This
binding is required for telomerase trafficking to
Cajal bodies, a nuclear compartment rich in RNA
splicing and post-transcriptional modification
machineries [70,76–78]. However, even though
depletion of TCAB1 causes telomeres to shorten
[79], Localization of TERC in Cajal bodies is not
essential to maintain stable telomere length
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homeostasis [73]. Indeed, recent evidence demon-
strates that the tethering of TCAB1 to CAB box of
TERC is required for the catalytic activity of telo-
merase by facilitating proper folding of TERC
CR4/5 domain and optimal engagement with
TERT [80].

Recently, we described members of the Argonaute
subfamily AGO as novel TERC-binding proteins [62]
(Figure 1(b)). AGO proteins are highly conserved and
are found in nearly every life form, from humans to
Archaea [81–84]. In humans, there are 4 AGO
members (AGO1-4), among them only AGO2 has
been demonstrated to have slicer activity when
sRNAs and target RNAs display perfect base pairing.
Also, AGO3 possesses the characteristic aspartate-
aspartate-histidine catalytic triad [24,85] but requires
peculiar sRNA-target complementary rules for target
cleavage [86].

AGO proteins are key mediators of canonical
RNAi. They mainly interact with miRNAs or
siRNAs and are involved in cytoplasmic post-
transcriptional gene-silencing processes [25,87].
However, recent evidence involves AGO proteins
in nuclear processes such as transcriptional gene
silencing [27,28], DNA damage [34,35], chromatin
remodeling [88] and splicing [30,31], in associa-
tion with novel classes of sRNAs [35,63,89,90].

In this scenario, we recently described an unex-
pected role for AGO2 in the control of human
telomerase activity. Notably, AGO2 depletion in
human cells decreases telomerase activity, thus
resulting in shorter telomeres, lower proliferation
rate in vitro and tumor growth in vivo.

We identified AGO2 as a novel TERC-binding
protein. AGO2 interacts with the newly identified
terc-sRNA, which not only originates from the
3’end of TERC but also by base complementarity
targets positions 313–340 of TERC, in the CR4/
CR5 domain of TERC and positions 12–31 of
TERC, localized in the TBE at the 5’end of TERC
[62]. We showed that disruption of TERC regions
complementary to terc-sRNA impaired association
between AGO2 and TERC. In line with our data, it
was recently shown that TERC can interact with
different RNA molecules by direct RNA-RNA base
pairing and predicted interaction sites fall mostly
within regions spanning terc-sRNA target sites in
CR4/CR5 and in the TBE domains, suggesting that

these regions are prone to form RNA duplexes
[91]. Therefore, we hypothesize that terc-sRNA
might recognize TERC by base complementarity
and recruit AGO2 to TERC.

Terc-sRNA is not perfectly complementary to
TERC RNA. On the contrary, terc-sRNA binding
sites harbor some regions of complementarity with
the 5’ and the 3’ end of the sRNA, like non-
canonical miRNA target sites [92]. Therefore, we
hypothesize that this newly identified sRNA might
recognize TERC and recruit AGO proteins and
additional factors to TERC RNA. This mechanism
would mirror what happens for mammalian
miRNAs, which are usually not fully complemen-
tary to their targets. In this context, miRNA targets
are not cleaved, but AGO proteins recruit addi-
tional partners to mediate silencing via transla-
tional repression, mRNA deadenylation and
decapping [93]. As an example, the GW182 pro-
teins function as scaffolds to bridge the interaction
between AGO proteins and downstream effectors
[94]. Therefore, further investigations will disclose
if AGO/terc-sRNA complexes require GW182 pro-
teins to control of telomerase activity.

AGO2-TERC interaction is unlikely to control
TERC stability. Indeed, depletion of AGO2 in
human cells does not impact TERC expression
levels but stimulates assembly of the active telomer-
ase enzyme, by promoting the association between
the telomerase core components TERT and TERC.
Coherently, one of terc-sRNA target site spans posi-
tions 313–340 of TERC. This sequence partially
overlaps the CR4/CR5 domain. In human cells
when TERC residues 225–348 are depleted, TERC
still accumulates but its association with TERT is
greatly reduced [95]. Recently, it was reported that
a mutation of TERC (G319A), mapping inside terc-
sRNA binding site, is sufficient to cause telomere
disease in a heterozygous state in humans.
Interestingly, this mutation does not alter TERC
overall levels but compromises telomerase function
via decreasing binding of TERC to TERT in vivo
[96]. Therefore, AGO-TERC interaction mediated
by terc-sRNA might facilitate efficient interaction
between TERC and TERT. The identification of
additional cofactors will clarify the molecular
mechanisms driving AGO effects on TERC-TERT
association.
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Recently it was shown that proper folding of the
TERC CR4/5 domain is required for association
with the TERT [80] and that reconstitution in vitro
of human telomerase is highly dependent on the
folding state of TERC [97,98], strongly suggesting
that TERC folding is a limiting factor in vertebrate
telomerase. Interaction between AGO2 and posi-
tions 313–340 of TERC might drive the folding of
CR4/CR4 domain, thus recapitulating what pre-
viously seen in ciliate telomerase biogenesis.
Indeed, the interaction between the Stem
Terminus Element (corresponding to vertebrate
CR4/CR5) telomerase RNA and a La-motif RNA
binding protein in Tetrahymena thermophila con-
trols structural changes in telomerase RNA, which
are required to promote the association with the
ciliate TERT [99].

Terc-sRNA has a second target site on TERC
RNA (positions 12–31), spanning the TBE region
located at the 5’ of the template region. In verte-
brates, TBE consists of a long-range base-paired
region known as P1 helix [36,100], which physi-
cally prevents TERT from reverse transcribing
flanking non-template regions. Otherwise, non-
telomeric DNA is synthetized at chromosome
ends, inhibiting the binding of telomeric protein
and resulting in detrimental effects for telomerase
function [101]. The 41 5′-most nucleotides of
human TERC form an unusual secondary struc-
ture called guanine quadruplex (G4), which hin-
ders the formation of P1 helix [102].

Resolution of TERC G4 structure is mediated by
RHAU (RNA associated with AU-rich element
alias DHX36 or G4R1), a member of the human
DEAH-box family of RNA helicases [103–105].
Indeed, RHAU directly interacts with the first 43
nucleotides of TERC (Figure 1(b)) and unwinds
the G4 structure thus promoting P1 helix assembly
and telomere lengthening [103]. Interestingly,
Booy and colleagues also demonstrate that TERC
nucleotides 11–28, which are included into terc-
sRNA binding site (TERC 12–31) are folded into
an internal G quadruplex which is responsible for
P1 helix inhibition. Since it was shown that G4
RNA folding can be inhibited by using antisense
oligonucleotide targeting the guanines involved in
the G4 folding [106,107], we can speculate that
binding of terc-sRNA and recruitment of AGO2
to TERC 5’ region might act in collaboration with

RHAU and prevent the formation of G4s, thereby
favoring P1 helix formation. This hypothesis is
also supported by the evidence that RHAU is
also implicated in direct interactions with human
AGO proteins [108,109].

The 5’ end of TERC physically interacts with
FXR1 (Fragile X-Related protein 1) [110] (Figure 1
(b)). FXR1 is a member of the Fragile X-related
family of RNA-binding proteins (FXRs), which also
includes Fragile XMental Retardation 1 (FMR1) and
FXR2. FXRs can affect RNA stability, transport, or
translational efficiency [111], by binding to RNA
structures such as AU-rich elements (AREs) [112]
and G4s [113]. FXR1 is overexpressed in different
tumors [114–117], playing an essential role in cell
cycle progressions and senescence bypassing.
Majumder and colleagues showed that in oral cancer
cells FXR1 binds and stabilized TERC thus influen-
cing telomerase activity [110]. The G4-RNA struc-
ture at the 5’end of TERC seems to be the binding
site of FXR1 since deletion of nucleotide 1–28 of
TERC impairs FXR1 binding. This target site over-
laps terc-sRNA target site on TERC positions 12–31
which can drive AGO2 recruitment on TERC.
Notably, FXR1 is also associated with microRNAs
and the RNAi machinery in Drosophila [118], in
Xenopus laevis [119] and in human cells [112,120].
Indeed, members of the FXR family interacts with
AGO proteins [118,120,121]. In particular, evidence
demonstrates that in human cells AGO2 and FXR1
are physically associated [112], and that this interac-
tion is mainly nuclear [122]. AGO2 and FXR1 are
both recruited to the ARE sequence at the 3’end of
TNFα mRNA or of a synthetic reporter RNA and
are required to activate their translation [112].
Interestingly, the association of AGO2 and FXR1
to their common RNA targets is mediated by
miRNAs [123,124]. Overall these data suggest that
AGO2 and FXR1 recognize the same sequences on
RNA targets guided by base complementarity the
target RNA and a sRNA. We can speculate that
this model which has been demonstrated for ARE-
containing RNAs can also be applied to TERC: terc-
sRNA targets TERC 5’end thus recruiting AGO2
and FXR1.

Recently, a role for HuR (Hu-Antigen R) has been
highlighted in the maturation of TERC [125]. HuR is
an RNA binding protein which is recruited onto
AREs. It has been reported to stabilize mRNAs
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through several different mechanisms [126]. Tang
and colleagues have shown that HuR protein directly
interacts with TERC RNA through two binding sites
mapping at positions 38–42 and 98–103 of TERC
(Figure 1(b)). Furthermore, the authors highlighted
that the C residue at position 106 of TERC is
a 5-methylcytosine (m5C) site whose methylation is
promoted by HuR binding to TERC. Finally, by
mutagenesis, the authors show that the two HuR
binding sites, as well as the C at position 106 of
TERC, are required for the assembly of a functional
telomerase holoenzyme [125]. Interestingly, C106 lies
immediately next to a GC to AG mutation (nt
107–108 of TERC) resulting in telomerase activity
impairment [127]. These data suggest that, by pro-
moting C106methylation, HuR facilitates the binding
of TERC with TERT. Indeed, the methyltransferase
enzyme catalyzing C106 methylation awaits to be
discovered, as well as the reader of this modification.

The complex interaction between AGO proteins
and HuR has been widely investigated. HuR was
first reported to counteract miRNA-mediated
repression of CAT1 mRNA [128]. Nevertheless,
a few years later Kim and colleagues reported
that HuR synergized with RISC in the inhibition
of MYC mRNA [129]. An extensive, genome-wide
analysis of HuR and AGO2 binding sites on 3’
UTRs of human mRNAs revealed that these two
factors share several binding sites. Furthermore,
experiments aiming at unraveling their functional
interplay confirmed that, depending on the speci-
fic mRNA, AGO2 and HuR can either coopera-
tively bind or compete for binding [130].

Interestingly, one of the two HuR binding site
recently reported by Tang et al. on TERC lies in
close proximity to one of the two AGO2 binding
sites we reported [62]. Since both loss of HuR and
loss of AGO2 impair TERC/TERT association, an
intriguing hypothesis would be that AGO2 and
HuR might cooperatively promote TERC loading
on TERT. Further investigation will be required to
unravel the putative cooperation of these two fac-
tors in the telomerase holoenzyme assembly.

Concluding remarks

In order to attain appropriate telomerase activity,
both TERT and TERC expression are required.
Furthermore, assembly of the telomerase

holoenzyme requires a plethora of enzymes and
RNA-binding proteins that finely controlled proces-
sing, stability and activity of TERC. Fulfillment of
these requirements provides several opportunities to
fine-tune telomerase activity in the cell. Indeed,
great strides have been made in recent years to
increase our knowledge of how telomerase is
assembled and to identify new players in telomerase
regulation. Interestingly, rapidly emerging scientific
findings suggest an unexpected function of compo-
nents of the RNAi machinery in TERC processing
and activity (Figure 1(b, c)). In this scenario, new
sRNAs originating from TERC and novel TERC-
binding proteins (AGO2, FXR1, RHAU and HuR)
have been described. Since abnormal expression of
other well-known telomerase accessory proteins (i.e.
DCK1, NOP10, TCAB1, PARN) is linked to tumor-
igenesis and telomere disease, the possible deregula-
tion of RNAi machinery in these pathological
contexts deserves further investigations. These
efforts will contribute not only to our understanding
of natural cellular processes but also offer new pos-
sibilities for the development of novel therapeutic
targets and biomarkers in a wide range of patholo-
gies. Notably, in light of the recent advent of “RNA
therapeutics” [131], the precise characterization at
nucleotide resolution of interactions between TERC
and several RNA binding proteins involved in telo-
merase biology might lay the foundation for the
development of RNA-based drugs to treat telomero-
pathies and cancer.
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