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Abstract

I realized that it is possible to construct an original and well-
organized theory of multiple random quantities by accepting
the principles of the theory of concordance into the domain
of subjective probability. A very important point relevant
to such a construction is consequently treated in this paper
by showing that a coherent prevision of a bivariate random
quantity coincides with the notion of a-product of two vectors
while a coherent prevision of a quadruple random quantity
coincides with the notion of a-product of two affine tensors.
Metric properties of the notion of ¢-product mathematically
characterize both the notion of coherent prevision of a generic
bivariate random quantity and the notion of coherent prevision
of a generic quadruple random quantity. Coherent previsions
of bivariate and quadruple random quantities can be used in
order to obtain fundamental metric expressions of bivariate
and quadruple random quantities.

Keywords hyperhomography, translation, affine tensor,
antisymmetric tensor, o-product, @-norm

1 Introduction

It is necessary to distinguish logical aspects from the psy-
chological ones related to random quantities. This distinction
is methodologically fundamental ([6]). Logical aspects pertain
the logic of certainty as well as the logic of the probable. They
are dealt with by mathematics. The logic of certainty does not
use the notion of probability ([8]). It is called so for this reason.
What is objectively possible belongs to the logic of certainty
and it is different from what is subjectively probable. It makes
sense to express one’s subjective and non-predetermined opin-
ion in terms of probability only in respect of what is possible
or uncertain at a given instant. One always means uncertainty
as a simple ignorance: it ceases only when one receives cer-
tain information. The logic of certainty is always character-
ized by two different and extreme aspects. The first aspect is
negative because it deals with situations of non-knowledge or
ignorance or uncertainty from which one determines the set of
the possible alternatives of a random quantity: when a given
numerical value is not either certain or impossible it is possible
and it consequently belongs to such a set. The second aspect is
positive because it deals with the definitive certainty expressed

in the form of what is certainly true or certainly false. Every
possible numerical value of a random quantity definitively be-
comes 0 or 1 when an empirical observation, referring to it, is
made. Therefore, into the logic of certainty exist certain and
impossible and possible regarding to the first aspect, true = 1
and false = 0 as final answers regarding to the second aspect.
Conversely, the notion of probability is of interest to an inter-
mediate aspect which is included between the two extreme as-
pects characterizing the logic of certainty ([7], [9]). Indeed, the
probability is distributed as a mass by a given individual over
the domain of the possible alternatives before knowing which
is the true alternative to be verified. This aspect is positive but
it is weak and temporary because he is awaiting information
which would give him the definitive certainty. Probability is
an extralogical notion in the sense that it is outside of the logic
of certainty ([12], [13]). The value of the notion of probability
does not transcend the psychological value that such a notion
has with regard to each individual. Moreover, the value of the
notion of probability is not independent of such a psychologi-
cal value. Therefore, a living, elastic and psychological logic is
considered: it is exactly the logic of the probable. Probability
calculus has a very special character in this conceptual context
because common sense plays the most essential role and it is
mathematically expressed as objective conditions of coherence

([15D.

2 A geometric representation of uni-
variate random quantities

A univariate quantity X is really random for a given individ-
ual when he does not know its true numerical value. There-
fore, he is in doubt between two or more than two possible val-
ues. These values belong to the set /(X) = {x',...,¥"}. Only
one possible numerical value of I(X) will occur “a posteriori”.
Each random quantity justifies itself “a priori”’. Every finite
partition of incompatible and exhaustive events representing a
random quantity shows the possible ways in which a certain
reality may be expressed. A multiplicity of possible values for
every random quantity is only a formal construction that pre-
cedes the empirical observation by means of which a single
value is realized among the ones of the set of the possible alter-
natives ([11]). Each event is a specific random quantity because
it admits only two possible values. It does not admit more than
two possible values like a random quantity. The same symbol
P denotes both prevision of a random quantity and probability



of an event ([14]). An event is conceptually a mental separa-
tion between sensations: it is actually a statement such that,
by betting on it, one can establish in an unmistakable fashion
whether it is true or false, that is to say, whether it has occurred
or not and so whether the bet has been won or lost ([5]). It
is not at all a logical restriction to consider finite partitions of
incompatible and exhaustive events. If one wonders which is
the event that will occur among an infinite number of them one
can never verify if each statement representing a single event is
true or false. These statements are infinite in number, so they
do not coincide with any mental separation between sensations.
Therefore, they are conceptually meaningless. I denote by (1)S
a set of univariate random quantities. Every random quantity
belonging to the set (1)5 can be represented by a vector x € E,,,,
where E,, is a vector space m-dimensional over the field R of
real numbers. It has a Euclidean structure. The different pos-
sible values of every random quantity of (1)5 are m in number,
where m is an integer. It turns out to be (1)S C E,,. The dif-
ferent possible values of X belonging to the set I(X) coincide
with the different components of x and they can indifferently
be denoted by a covariant or contravariant notation after choos-
ing an orthonormal basis of E,,. Such a basis is given by {e;},
j=1,...,m. Ishould exactly speak of components of x having
upper or lower indices because I deal with an orthonormal basis
of E,,. Indeed, the usage of the terms covariant and contravari-
ant is geometrically meaningless because the covariant compo-
nents of x coincide with the contravariant ones. Nevertheless,
it is appropriate the usage of this notation referring to them be-
cause a specific meaning regarding to them will be introduced.
Having said that I will continue to use these terms. Thus, I
choose a contravariant notation with respect to the components
of X so it is possible to write x = (x') while I choose a covariant
notation with respect to the components of p so it is possible to
write p = (p;), where p; represents a subjective probability as-
signedtox’,i=1,...,m, by a given individual at a given instant
and with a certain set of information. Hence, different individ-
uals whose state of knowledge is hypothetically identical may
choose different p; because each of them may subjectively give
greater attention to certain circumstances than to others ([10]).
A given individual is into the domain of the logic of certainty
when he considers only x € E,,, while he is into the domain of
the logic of the probable when he considers an ordered pair of
vectors. It is expressed by (x,p). Thus, a prevision of X is
given by

P(X) =X =x'p;, (N

where I imply the Einstein summation convention. This previ-
sion is coherent when one has 0 < p; < 1,i=1,...,m, as well
as }.* | pi= 1 ([1]). This implies that a coherent prevision of X
always satisfies the inequality infI(X) < P(X) < supl(X) and
it is also linear, that is to say, one has P(aX +bY +c¢Z+...) =
aP(X)+bP(Y)+cP(Z) +... for any finite number of univari-
ate random quantities, with a, b, c, ... any real numbers. In
particular, from P(X +7Y) =P(X) +P(Y) follows an additivity
property of P. A coherent prevision of X can be expressed by
means of the vector X = (¥') that allows to define the trans-
formed random quantity y#: it is represented by the vector
«t = X—X whose contravariant components are given by

. )

This linear transformation of X is a change of origin or transla-
tion. A coherent prevision of the transformed random quantity

x! 1s necessarily given by
P(xt) = (x' —&)p; = 0. 3)
The a-norm of the vector x is expressed by
Ix[I% = () pi- @)

It is the square of the quadratic mean of X. It turns out to be
|x]|% > 0. In particular, one writes ||x||2, = 0 when the possible
values of X are all null: this is a degenerate case. Hence, one
says that the a-norm of the vector X is strictly positive. The
o-norm of the vector representing yt is given by

”xtH%x = (Xti)zpi =o}. &)

It represents the variance of X in a vectorial fashion. I will later
explain why I use the term a-norm.

3 A geometric representation of bivari-
ate random quantities

Idenote by 5§ (2) a set of bivariate random quantities and by
X2 ={,X,,X} a generic bivariate random quantity of this set.
A pair of univariate random quantities (,X,,X ) evidently rep-
resents an ordered pair of univariate random quantities which
are the components of Xj,. Each element of (2)5(2) can be rep-

resented by an affine tensor of order 2 denoted by T € (2)5 @),

where it turns out to be <2>S(2) C E,(nz) = E, ® E,,. Therefore,
the possible values of X, coincide with the numerical values
of the components of 7. The dimension of E,, as well as the
number of the different possible values of every univariate ran-
dom quantity of Xj; is expressed by m. Thus, T is an element
of a vector space m?-dimensional. I choose an orthonormal ba-
sis of E,, which is given by {e;}, j=1,...,m, withm > 2, in
order to represent the possible values of Xj,. These values co-
incide with the contravariant components of 7 so it is possible
to write ‘ ‘

T=1)X@ X=X gxe; Qe 6)

The tensor representation of X, expressed by (6) depends on
(4X,,X). Indeed, if one considers a different ordered pair
(,X,,X) of univariate random quantities one obtains a differ-
ent tensor representation of X, expressed by

T=@x@qx= <2)xi2<1>xileiz ®e; @)

because the tensor product is not commutative ([22], [23]).
Therefore, the components of T expressed by (7) are not the
same of the ones expressed by (6). Both these formulas ex-
press an affine tensor of order 2 whose components are differ-
ent. I have consequently (X ® )X #* 2)X ® )X I must at
the same time consider (6) and (7) in order to release a tensor
representation of X, from any ordered pair of univariate ran-
dom quantities which can be considered, (;X,,X) or (,X,X).
This means that the possible values of a bivariate random quan-
tity must be expressed by the components of an antisymmetric
tensor of order 2. It is expressed by

T = Z ((l)xil (z)xiz — (l)xiz (2)xi‘ )eil ®ei2. (8)

i1<ip

The number of the components of an antisymmetric tensor of
order 2 is evidently different from the one of the components of



an affine tensor of the same order. Thus, a tensor representation
based on an antisymmetric tensor of order 2 does not depend
either on (,X,,X) or (,X, X ). I choose it in order to represent
a generic bivariate random quantity Xj>. Therefore, |, f is an
antisymmetric tensor of order 2 called the tensor of the possible
values of X». The contravariant components of |, f expressed
by

m*
™

lzf(i]iZ) — (9)

x'2

@

represent the possible values of X, in a tensorial fashion.
These components are equal to 0 when they have equal indices.
It is evident that the vector space of the antisymmetric tensors
of order 2 does not have a dimension equal to m? but it has
a dimension equal to (). Now, I must introduce the proba-
bilities into this geometric representation of Xj,. It is possible
to say that the tensor of the joint probabilities p = (p;,;,) is
an affine tensor of order 2 whose covariant components repre-
sent those probabilities related to the ordered pairs of compo-
nents of vectors representing the marginal univariate random
quantities ;X and ,X of Xj». In order to define the covariant
components of |, f I must consider those vector homographies
that allow me to pass from the contravariant components of
a type of vector to the covariant components of another type
of vector by means of the tensor of the joint probabilities un-
der consideration. Indeed, the covariant components of |, f
represent those probabilities related to the possible values of
each marginal univariate random quantity of Xj>. These com-
ponents are obtained by summing the probabilities related to
the ordered pairs of components of (X and X putting the
joint probabilities into a two-way table I consider the totals of
each row and the totals of each column of the table as covariant
components of |, f. In analytic terms one has (1 >xi1 Piviy = (1Y%,
and (2)xi2 Piiy = (2%, by virtue of a specific convention that I
introduce: when the covariant indices to right-hand side vary
over all their possible values I obtain two sequences of values
representing those probabilities related to the possible values
of each marginal univariate random quantity of X;,. They are
the covariant components of |, /. It turns out to be

(l)xizpizil (l)xilpiliz

(¥ . ,
@)X Phiy X" Piriy

(2)%in

(1)¥i2
@)%

12/ (i) = (10)

The covariant indices of the tensor p can be interchanged when
it is necessary so one has, for instance, |\ X" pi;i, = (1)X"! Piyi, -

4 A metric structure related to uni-
variate random quantities which are
the components of bivariate random
quantities

The vector space of univariate random quantities which are
the components of bivariate random quantities is denoted by
(z)S () € E,,. These univariate random quantities are repre-
sented by two vectors, X and 2% belonging to E,,. 1 deal
with two ordered m-tuples of real numbers when I am into the
objective domain of the possible alternatives. An affine tensor
p of order 2 must be added to the two vectors under considera-
tion when I pass from the domain of the possible alternatives to
the one of the evaluation of probabilities. Therefore, I always
consider a triple of elements. I transform the vector @)X into

the vector ,,x' by means of the tensor p. Hence, it is possible
to write the following dot product
" (an

WX X = 1 X Piiy = (12 @)%

I note that _

@)%, = @)X Piriy = (2)X/ (12)
is a vector homography whose expressions are obtained by
applying the Einstein summation convention. Then, the o-

product of two vectors, X and 2% is defined as a dot product
of two vectors, X and (2)x’ , so | write

HXO X = X @)X (13)

In particular, the oc-norm of the vector X is given by

Xl = @™ 2 pi = ()% (1%, (14)
I use the term a-norm because I refer to the ¢-criterion of con-
cordance introduced by Gini ([24], [25]). There actually exist
different criteria of concordance shown by Gini in addition to
the a-criterion. Nevertheless, by considering quadratic mea-
sures of concordance it always suffices to use the q-criterion.
When I pass from the notion of a-product to the one of &t-norm
I say that the corresponding possible values of the two univari-
ate random quantities under consideration are equal. I also say
that the corresponding probabilities are equal. Therefore, the
covariant components of the tensor p = (p;,;,) having different
numerical values as indices are null. Thus, I say that the ab-
solute maximum of concordance is realized. Given the vector
Y= )X + l@)x, with A € R, its a-norm is expressed by

Iylle = ||(1)XH<2x +2A ()X © %) + lz”(z)"”%z- 15)
It is always possible to write ||y||% > 0. Moreover, the right-
hand side of (15) is a quadratic trinomial whose variable is A,
so I must consider a quadratic inequation. All real numbers ful-
fill the condition stated in the form ||y||2, > 0. This means that
the discriminant of the associated quadratic equation is non-
positive. I write

A =4((1)x© %) = [l x5ll 2y X 13-

Given Ay <0, it turns out to be

((1)"@(2)")2 < ||(1)XH%¢H(2)X||§,
so I obtain

)X © X < ll)Xllall o)Xl (16)
The expression (16) is called the Schwarz’s o-generalized in-
equality. When A = 1 one has y = HX T X By replacing
()% © (2)x‘) int.o (15) with [ ;)X |[a[[ 5 X[l one has the square
of a binomial given by

iy + 2%l = Xl + 20 X lall Xl + [l 2 X115

SO one obtains

lyx+ @Xlla < lgyXlla+ Xl a7)

The expression (17) is called the o-triangle inequality. Divid-
ing by ||(1)X||aH(2)X||a both sides of (16) one has

X©® X
W= |

||(1)X||aH(2)XHa



that is to say,
X©® X
1< (1) (2)

iy

so there exists a unique angle ¥ such that 0 < y < & and such
that

)

ol pxlla

XD )X
||(1)X||a||(2)

cosy = xla’
a

(18)
It is possible to define this angle to be the angle between the
two vectors ;X and X By considering the expression (13)
it is also possible to define it to be the angle between X and

(Z)X .

5 A metric structure related to bivari-
ate random quantities

I deal with the vector space denoted by <2>S(2)A whose ele-
ments are antisymmetric tensors of order 2. Nevertheless, by
introducing the notion of o-product of two antisymmetric ten-
sors of order 2 I must underline a very important point: it is not
necessary to refer to the bivariate random quantity Xj, in order
to introduce that antisymmetric tensor whose covariant compo-
nents are represented like into the expression (10). Therefore, it
is also possible to consider a bivariate random quantity denoted
by X34 as well as an antisymmetric tensor of order 2 denoted
by 5, f whose covariant components are expressed by

i
X1 piiy

(@ Pt (3% Pz |
@)* 'Pitiy

(3)%in _
(4)x12pi2i1

O

@)Yi| _

19)
(@2

34 liyin) =

Thus, it is possible to extend to the antisymmetric tensors |, f
and 5, f the notion of a-product. This means that one can ex-
amine the domain of the possible alternatives in a more com-
plete fashion ([16]). Then, one has

ii 1
) O3afiiyiy) = 3

DO e R O R e e

, (20
@rn @

i i
@ @*
where it appears % because one has always two permutations
into the two determinants: one of these permutations is “good”
when it turns out to be i; < ip regarding to <1)x"<2)x’2 and
(3)% (4)% while the other is -“no good” because it turns out

X . . ; ;

to be i, > ij regarding to (l)xZ(z)xl and (3)%ip ()% . Hence, 1
am in need of returning to normality by means of é Such a
normality is evidently represented by i; < i». I need different
affine tensors of order 2 in order to make a calculation given
by the expression (20). These tensors of the joint probabilities
allow me of defining the bivariate random quantities Xj3, Xj4,
X»3 and X»4. Thus, one has

(13) (14)

xll _lep ; _le llp
af @af = |7 07 Py 07 @8 Tl an
_pr' N ’2 ’lp
@ Puiv - @ @ Pii
In particular, the a--norm of the tensor |, f is given by
haflle = 12f © 1of = 12f(ili2>12f(i1i2)7 (22)

SO it turns out to be

i i
(1% 1 e 2
<2>x @*

H12f||oc

that is to say, one obtains

l] l] ( ) i2 i] (12>
W* Pun @ P
haf o= |, 0 T L @)
@Y W Puiv @@ Phiy
Anyway, it is always possible to write
X©® X X® X
FOauf = (1) (3) (1) 4) (24)
T T gxOax gxO X
as well as
2 || Hoc (1)X@(2X
(25)
||]2f” ‘ X@ ) H(Z)XH(X

The o-norm of the tensor |, f is again strictly positive. It is
equal to 0 when the components of |, f are all null and when
one can write HX= ),(z)x, with A € R. I define the tensor f as
a linear combination of |, f and 5, f such that I can write f =
nf +l34f, with A € R. Then, the Schwarz’s ¢-generalized
inequality becomes

l2f ©3af| < liofllallzafas (26)
the a-triangle inequality becomes
l12f +3aflla < oS lla+ 34 lles (27
while the cosine of the angle ¥ becomes
CcOS }/ — M . (28)
12/ lall34f

6 A new meaning of the notion of coher-
ent prevision of a bivariate random
quantity

The notion of a-product depends on three elements which
are two vectors of E,,, X and 2)% and one affine tensor

p = (pi,i,) of order 2 belonging to E,<,12) =E,®E,. Given
any ordered pair of vectors, p is uniquely determined as a ge-
ometric object. This implies that each covariant component
of p is always a subjective probability. It must intrinsically
be coherent ([4]). With regard to some problem that may be
considered it is possible that all reasonable people share each
covariant component of p. Nevertheless, an opinion in terms of
probability shared by many people always remains a subjective
opinion. It is meaningless to say that it is objectively exact. In-
deed, a sum of many subjective opinions in terms of probability
can never lead to an objectively correct conclusion ([3]). Thus,
given a bivariate random quantity X;» = {,X,,X}, its coher-
ent prevision P(X)3) is an o-product whose metric properties
remain unchanged by extending them to P. Therefore, P is an
a-commutative prevision because it is possible to write

P(1X:,X) = P(X|X), (29)

P is an a-associative prevision because it is possible to write

P[(l]X)zX] ZP[|X(12X)] :Z,P(|X2X),VA GR, 30)

P is an ¢-distributive prevision because it is possible to write
P[(1X+2X)3X]

=P(1X3X) +P(xX3X). (€29)



Moreover, when one writes

P(1X:X) =P(2X1X) =0, (32)
and all possible values of | X and ,X are not null, one says that
X and ,X are a-orthogonal univariate random quantities. In
particular, one observes that the a-distributive property of pre-
vision implies that the covariant components of the affine ten-
sor p(]3) are equal to the ones of the affine tensor p(23). More-
over, the covariant components of the affine tensor related to
the two univariate random quantities {X+,X and 3X are the
same of the ones of p(13) and p(23). By considering a bivariate
random quantity one finally says that its prevision P is bilinear.
If the possible values of the two univariate random quantities
of Xi» = {,X,,X} are correspondingly equal and the covariant
components of the tensor p = (p;,;,) having different numerical
values as indices are null, then P(X},) = P(;X0X) = P(X1X)
coincides with the a-norm of | x =, x. If P(X),) is a co-
herent prevision of Xj» = {,X,,X}, then its univariate ran-
dom quantities, ;X and ,X, represent two separate and finite
partitions of incompatible and exhaustive events whose non-
negative probabilities sum to 1. These are objective conditions
of coherence ([2], [19], [20]). It is evident that each covariant
component of p = (p;,;,) represents a probability of the joint
of two events which includes a conditional probability of an
event given the other. Hence, by denoting by A one of the pos-
sible values of ;X and by B one of the possible values of ,X
it turns out to be P(A A B) = P(A)P(B|A) = P(B)P(A|B), with
AANB = BAA, as regards each covariant component of p ([17],
[18], [21]). I denoted by A A B = B A A the logical product of
two events while I considered P(A A B) as a probability of their
joint. In general, from the notion of conditional probability
denoted by P(E|H) it is always possible to deduce that the no-
tion of subjective probability is relative to the current state of
information of a given individual represented by H. This oper-
ationally means that P(E|H) is the price to be paid for a con-
ditional bet which is annulled if H does not occur. Conversely,
this conditional bet is won if H and E occur while it is lost if H
occurs and E does not occur. I evidently considered a tri-event
denoted by E|H with values 1|1 =1,0[1=0,00=1[0=10
into the logic of certainty. It represents only a formal varia-
tion with respect to the starting delimitation because 0 = void
is added to the two starting values 1 = true and O = false. Any
tri-event can always be expressed by means of two events from
a conceptual point of view. This means that all tri-events are
only formally meaningful. Given a transformed bivariate ran-
dom quantity y .t = { yt,,yt}, its coherent prevision P(y ,#) is
again an ¢-product whose metric properties remain unchanged
by extending them to P. In particular, when it turns out to
be pii, = pi, Pis>» Vii,ip € I,, with I, = {1,2,. .. ,m}, one ob-
serves that a stochastic independence exists. Hence, one ob-
tains P(X]ZI) = 0, that is to say, the vectors (1)t and (z)t are
o-orthogonal. One equivalently says that the covariance of | X
and ,X is equal to 0.

7 A geometric representation of

quadruple random quantities

By a quadruple random quantity I mean a random quantity
having two marginal random quantities which are two bivariate
random quantities, 12X and 34X. Therefore, a quadruple ran-
dom quantity is denoted by X2 34 = {12X, 34X }. Each bivari-

ate random quantity consists of two univariate random quan-
tities so a quadruple random quantity can be represented by
means of an affine tensor of order 4 given by

T=mX@XEEXOgX 33)
= ¥ X e apen @ e, B B,
where {e;}, j =1,...,m, is again an orthonormal basis of E,,,
with m > 4. T am able to gather (33) in two groups so I write

T=(1X®X)®(3¥® 4X)

) ) . ) (34)

= (X" @) ()X (@)X (€, @ €iy) @ (e D€y,
Moreover, I can write 12y = (X ® ()% 34y = (3yX & @)% €y ®
e, = &,i, and e;; ®e;, = &;;, 0 (34) becomes

T = 12y ®34y = 12?34y &y, @ €3y, 35)
where I considered (12X, 34X) as an ordered pair of marginal
bivariate random quantities. By considering (34X, 12X) as an
ordered pair of marginal bivariate random quantities I obtain a
different tensorial representation of X 34 expressed by
T =34y @ 10y = 34" 100" 2 €431, @ €y - (36)

If T permute the two univariate random quantities of 12X I ob-
tain 1 X while if I permute the two univariate random quantities
of 34X I obtain 43X. It is useful to say that it is not necessary
to consider 71X and 43X in addition to X and 34X in order to
obtain different tensors in addition to (35) and (36). Hence, I
do not consider »; X and 43X for this reason. From iyi; = i3iy4 it
follows that

34)’13’412}’”[281'31'4 ® &y = 34)’1112 12y13148i1i2 & Eiziy 5 (37
so when I consider (35) and (36) in a joint fashion I obtain
an antisymmetric tensor representing X 34 and denoted by
12,34 f. This tensor is given by

12,34 = (12912345 — 12933012 ) €1yi, NEiy (38)
and it is related to the possible values of a quadruple random
quantity having two marginal bivariate random quantities. Its
contravariant components are
lzyl_llz ]2y13l4

(iviz,i3ig) _
12,34 V12BN =10 izis
EYMAREE Y

; (39)

with i1 < iy, i3 < ig as well as i} < i3, i» < i4. Each contravari-
ant component of 1234/ is a contravariant component of an
affine tensor of order 2. The tensor 13 34 f belongs to the vector
space denoted by (4)5(4)A cEWY
the vector space E, @ = E,, ® E,;, has a dimension which is equal
to 16 so the different possible values of 12X coincide with the
contravariant components of |,y and they are exactly 16. The
same thing evidently goes by considering 5,y which is again an

" For instance, if m = 4 then

affine tensor of order 2 belonging to E,(,,2 ) = E,, ® E,,. Hence,
the possible values denoted by |,y'12,,y3™ of the quadruple
random quantity under consideration are 256. When I put the
joint probabilities into a two-way table I must consequently
consider 16 rows and 16 columns. Thus, I have an affine ten-
sor p of order 4 whose generic covariant component is denoted
by pii,.iyi,- Bach covariant component of p must intrinsically
be coherent. It is evident that every joint probability related



to X12,34 derives from two events considered into 12X viewed
as one event into Xj» 34 and from two events considered into
34X viewed as one event into Xj 34. Therefore, it is abso-
lutely superfluous to repeat those considerations that I showed
into a previous section in this paper. A coherent prevision of
X12,34 = {12X, 34X } is then expressed by
P(X12,34) = 125234y iy, iy (40)

where I obviously imply the Einstein summation convention.
Now, the totals of each row and the totals of each column of
the table under consideration are obtained by means of hyper-
homographies related to the components of the affine tensors
shown into (39). I always obtain two sequences of values. In
analytic terms one has

12" Piin, iniy = 12Yisiy (41)
and N

34Y3 Pisig,iviy = 34Viyi- (42)

The covariant components of 12 34 f are then given by

12Yiyiy

12Yizi4
b
34Yiiiy

(43)
34Yisiy

12,34 iy i, i3ig) =

with i} < i, i3 < iy as well as i} < i3, ip < iy. The tensor
12,34f always satisfies simplification and compression needs
because it is an antisymmetric tensor. In particular, one can
observe that when m = 4 the vector space denoted by ( 4)S (A

is one-dimensional. Thus, I have to consider 12 34f (12,34) and

12,34f(12,34) only. The vector space (4)5(4)A is obtained by

( 4)S<4> by antisymmetrization. Moreover, 4)5(4) can always be

4)

divided so one can write ( 4>S(2) ® (4)S(2> = (4)5( , where one

has (4)S<2) cE®.

8 A metric structure related to quadru-
ple random quantities

A metric structure related to a quadruple random quantity
must be divided into two different metric structures. I must
firstly consider a metric structure of the vector space of the
affine tensors representing those marginal bivariate random
quantities which are the components of a quadruple random
quantity. I must secondly consider a metric structure of the vec-
tor space of the antisymmetric tensors representing a quadruple
random quantity. Thus, given the affine tensors 12y and 34y be-
longing to ( 4)S(2>, their a-product is expressed by

12Y © 34 = 1251234515, = 1252347 Pigig i - (44)
It evidently coincides with a coherent prevision of the quadru-
ple random quantity under consideration. Therefore, I say that
a coherent prevision of a quadruple random quantity denoted
by X34 coincides with the notion of &-product of two affine
tensors, 12y and 34y, representing the two marginal bivariate
random quantities of X1 34 = {12X, 34X }. Properties of the no-
tion of a-product of two affine tensors are the same of the ones
characterizing the notion of ¢-product of two vectors. When
the two affine tensors coincide one can introduce the notion of
a-norm so it is possible to write

2 _ i _ ii i
2y lle = 129" 12900, = 12" 2129 2 Pisig,ivip- - (45)

This means that the two marginal bivariate random quantities
of Xi2 34 are equal. Given 12y and 34y, a linear combination
of these two affine tensors is represented by the affine tensor
Yy = 1oy + A3y, with L € R. After considering the a-norm
of this tensor I am able to write the Schwarz’s ¢-generalized
inequality in the form

12y ©343] < 2yl i34y lles (46)
the o-triangle inequality in the form
12y + 349 lle < 2y lla + 347l (47)
and the cosine of the angle 7y in the form
cosy = M (48)
oYl all34¥ 1l

Now, I must define two transformed random quantities which
are obtained by considering the two bivariate random quantities
12X and 34X of Xj2 34. A coherent prevision of 12X is given by

P(12X) = ;)X )% piyiy - (49)
A coherent prevision of 34X is given by
P(34X) = (3)Xi3 (4)Xi4pi3i4. (50)

These coherent previsions must be viewed as two ¢-products.
Each of them is an a-product of two vectors. Such previsions
are represented by affine tensors: each of them has equal con-
travariant components. They are respectively denoted by |,¥
and 5,¥. I consequently obtain two transformed random quan-
tities which are represented by means of two affine tensors of
order 2. The first tensor is expressed by

120 = 12 — 1295 (51
where its contravariant components are given by
1112 = )17 — 5, (52)
The second tensor is expressed by
34l = 34Y — 349, (53)
where its contravariant components are given by
3t = 3y — 3,554, (54)
By considering
12f ©34f = 12’i1i234f51i2 = "2t i iy (55)

I am able to write the Pearson correlation coefficient by using
two affine tensors of order 2, |, and 5,¢. Indeed, I obtain

12 ©34¢

_nl®sl (56)
1ot lacll34t [

cosy =

In particular, when a stochastic independence exists because
one has pi.i, iii, = Pijiy - Pisiy it turns out to be ,t © 34 =
0. I finally consider only two essential metric expressions into
4)S (4)\. The first expression is given by

12Y © 78y
34Y © 78y

12Y © 56y

57
34Y O 56y ©7

12,34 ©s6.78f =



while the second one is given by

12)’@3421)’ _
347 l%

lh2y1l5

58
34Y © 2y 8

234 f e =

From (57) it follows that I have to use the tensors of the joint
probabilities related to X2 56, X12,78, X34,56 and X34,73. They
are evidently other quadruple random quantities in addition to
Xi2,34. I already underlined that this thing means that one can
study the domain of the possible alternatives in a more com-
plete fashion.

9 Rewriting of some fundamental met-
ric expressions and its reason

It is possible to rewrite some fundamental metric expressions
by using properly the notion of coherent prevision of bivariate
random quantities as well as the notion of coherent prevision
of quadruple random quantities that I introduced. Therefore,
when one rewrites (24) and (25) it is possible to obtain

. P(1X3X) P(1X4X)
12f ©3f = ‘P(2X3X) P(2X4X)‘ (59)
e P(XiX) P(XX)
2 |PUXiX 1X0X
||12fH06 - ‘P(zX]X) P(ZXQX)’ . (60)

By rewriting (57) and (58) it is possible to obtain

_ |P(X12,56) P(X12,78)
12,34 © 56,78 = ‘P(X34,56) P(X31,7) (61)
e (Xi12) P(Xio30)
2 |P(X12,12) P(X12,34
=2 Sadp 62
s = o) b (©)

On the other hand, it is known that any vector viewed as an
element of a given vector space can always be expressed as a
linear combination of the vectors representing a basis of the
vector space under consideration. Hence, each linear combi-
nation is a division of a vector into those vectors representing
a basis of the vector space under consideration. An analogous
thing goes by considering (59), (60), (61) and (62), where one
observes that coherent previsions of separate bivariate random
quantities as well as coherent previsions of separate quadru-
ple random quantities are basic elements of the metric expres-
sions under consideration. I evidently accept into the domain
of subjective probability a very meaningful principle borrowed
from geometry according to which it is possible to divide a
more complicated mathematical object into simpler mathemat-
ical objects represented by coherent previsions of bivariate or
quadruple random quantities in this context. Thus, it is possible
to realize that a new and fruitful notion of coherent prevision
of a generic bivariate and quadruple random quantity is intro-
duced. Moreover, the above principle is conceptually fulfilled
by considering systematically all marginal univariate random
quantities into a generic bivariate random quantity as well as
all marginal bivariate random quantities into a generic quadru-
ple random quantity. A very important point must finally be
stressed: the notion of coherent prevision of a univariate or
bivariate or quadruple random quantity is not a mathematical
convention. It is an indirect mathematical notion because its
foundation is the notion of prevision of the same random quan-
tity which is always a psychological notion in the first instance.

I show a geometric approach which does not introduce arbi-
trary mathematical conventions but it makes more important a
distinction between an extralogical or psychological notion and
a logic or mathematical notion which is nevertheless intrinsi-
cally connected to the former. According to such mathematical
conventions it would be possible to give a uniquely determined
answer to a problem even when it is an indeterminate prob-
lem because of its data which are only able to establish certain
limits or boundaries because they are clearly incomplete data.
These conventions must not be accepted for this reason.

10 Conclusions

I accepted the principles of the theory of concordance into
the domain of subjective probability in order to construct an
original and well-organized theory of multiple random quanti-
ties. This acceptance is well-founded because it is known that
the definition of concordance shown by Gini is implicit as well
as the one of prevision of a random quantity and in particular
of probability of an event. Indeed, these definitions are based
on criteria which permit to measure them. After representing
bivariate random quantities in a tensorial fashion I represented
quadruple random quantities in a tensorial fashion. I observed
that the notion of a-product of two affine tensors of order 2
coincides with the notion of a coherent prevision of a quadru-
ple random quantity. This geometric approach that I shown is
useful because it is possible to examine in a more complete
fashion the domain of the possible alternatives by extending
the notion of ¢-product to two different antisymmetric tensors
of the same order. Indeed, with regard to any problem that one
has to consider, there always exists an enormous number of
possible alternatives. If information and knowledge of a given
individual do not permit him to exclude some of them as im-
possible then all alternatives which can logically be considered
remain possible for him in the sense that they are not either
certainly true or certainly false. In particular, this means that
it is possible to consider different quadruple random quantities
in addition to the starting one. This tensorial approach allows
of representing a quadruple random quantity regardless of any
ordered pair of marginal bivariate random quantities which are
the components of the quadruple random quantity under con-
sideration. The number of the components of an antisymmet-
ric tensor of order 4 decreases by passing from an affine tensor
of order 4 to an antisymmetric tensor of the same order and
this is useful in order to satisfy simplification and compression
needs. I introduced fundamental metric expressions referring
to transformed random quantities representing changes of ori-
gin obtained by using a notion of coherent prevision of bivari-
ate random quantities coinciding with the notion of a-product
of two vectors. I realized that the notion of coherent prevision
of quadruple random quantities can be used in order to obtain
fundamental metric expressions of quadruple random quanti-
ties.
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