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Abstract

I accept the principles of the theory of concordance into the domain of sub-
jective probability in order to construct an original, geometric and well-organized
theory of multiple random quantities. This acceptance is well-founded because the
definition of concordance is implicit as well as the one of prevision of a random
quantity and in particular of probability of an event. I limit myself to consider-
ing no more than two random quantities in this paper. A coherent prevision of a
bivariate random quantity coincides with the notion of α-product. Metric proper-
ties of the notion of α-product mathematically characterize the notion of coherent
prevision of a bivariate random quantity.

1 Introduction
Each random quantity justifies itself “a priori”. Every finite partition of incompati-
ble and exhaustive events representing a random quantity shows the possible ways in
which a certain reality may be expressed. A multiplicity of possible values for every
random quantity is only a formal construction that precedes the empirical observation
by means of which a single value is realized among the ones of the set of the possible
alternatives ([11]). Each event is a specific random quantity because it admits only two
possible values. It does not admit more than two possible values like a random quan-
tity. The same symbol P denotes both prevision of a random quantity and probability
of an event ([14]). An event is conceptually a mental separation between sensations:
it is actually a statement such that, by betting on it, we can establish in an unmistak-
able fashion whether it is true or false, that is to say, whether it has occurred or not
and so whether the bet has been won or lost ([5]). Random quantities are studied by
the logic of certainty as well as by the logic of the probable. It is methodologically
fundamental to distinguish the logic of certainty from the logic of the probable ([6]).
The logic of certainty does not use the notion of probability ([8]). It is called so for this
reason. What is objectively possible belongs to the logic of certainty and it is differ-
ent from what is subjectively probable. It makes sense to express one’s subjective and
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non-predetermined opinion in terms of probability only in respect of what is possible
or uncertain at a given instant. One always means uncertainty as a simple ignorance:
it ceases only when one receives certain information. The logic of certainty is always
characterized by two different and extreme aspects. The first aspect is negative because
it deals with situations of non-knowledge or ignorance or uncertainty from which one
determines the set of the possible alternatives of a random quantity: when a given
numerical value is not either certain or impossible it is possible and it consequently
belongs to such a set. The second aspect is positive because it deals with the defini-
tive certainty expressed in the form of what is certainly true or certainly false. Every
possible numerical value of a random quantity definitively becomes 0 or 1 when an
empirical observation, referring to it, is made. Therefore, into the logic of certainty
exist certain and impossible and possible regarding to the first aspect, true = 1 and false
= 0 as final answers regarding to the second aspect. Hence, it is possible to observe
that every set of the possible numerical values of each random quantity definitively be-
comes a smaller numerical set which is a Boolean algebra whose two elements are two
idempotent numbers, 0 and 1. Conversely, the notion of probability is of interest to an
intermediate aspect which is included between the two extreme aspects characterizing
the logic of certainty ([7], [9]). Indeed, the probability is distributed as a mass by a
given individual over the domain of the possible alternatives before knowing which is
the true alternative to be verified. This aspect is positive but it is weak and temporary
because he is awaiting information which would give him the definitive certainty. In
any case, what is logical is exact but it says nothing, so one has to consider the impor-
tance of what is extralogical: probability is exactly an extralogical notion in the sense
that it is outside of the logic of certainty ([12], [13]). The value of the notion of proba-
bility does not transcend the psychological value that such a notion has with regard to
each individual. Moreover, the value of the notion of probability is not independent of
such a psychological value. Therefore, a living, elastic and psychological logic is con-
sidered: it is exactly the logic of the probable. Probability calculus has a very special
character in this conceptual context because common sense plays the most essential
role and it is analytically expressed as objective conditions of coherence ([15]).

2 Univariate random quantities and their geometric rep-
resentation

A univariate quantity X is really random for a given individual when he does not know
its true numerical value. Therefore, he is in doubt between two or more than two pos-
sible values. These values belong to the set I(X) = {x1, . . . ,xm}. Only one possible
numerical value of I(X) will occur “a posteriori”. It is possible to denote by (1)S a set
of univariate random quantities. Every random quantity belonging to the set (1)S can be
represented by a vector x∈Em, where Em is a vector space m-dimensional over the field
R of real numbers having a Euclidean structure. The different possible values of every
random quantity of (1)S are m in number. It turns out to be (1)S ⊂ Em. The different
possible values of X belonging to the set I(X) coincide with the different components
of x and they can indifferently be denoted by a covariant or contravariant notation af-
ter choosing an orthonormal basis of Em. I should exactly speak of components of x
having upper indices or lower indices because I deal with an orthonormal basis of Em.
Indeed, the usage of the terms covariant and contravariant is geometrically meaningless
because the covariant components of x coincide with the contravariant ones. Neverthe-
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less, it is appropriate the usage of this notation referring to them because a specific
meaning regarding to them will be introduced. Having said that I will continue to use
these terms. Thus, I choose a contravariant notation with respect to the components of
x so it is possible to write x = (xi) while I choose a covariant notation with respect to
the components of p so it is possible to write p = (pi), where pi represents a subjective
probability assigned to xi, i = 1, . . . ,m, by a given individual. Hence, different indi-
viduals whose state of knowledge is hypothetically identical may choose different pi
because each of them may subjectively give greater attention to certain circumstances
than to others ([10]). A given individual is into the domain of the logic of certainty
when he considers only x ∈ Em while he is into the domain of the logic of the probable
when he considers an ordered pair of vectors. Thus, a prevision of X is given by

P(X) = X̄ = xi pi, (1)

where I imply the Einstein summation convention. This prevision is coherent when one
has 0 ≤ pi ≤ 1, i = 1, . . . ,m, as well as ∑

m
i=1 pi = 1 ([1]). This implies that a coherent

prevision of X always satisfies the inequality in f I(X)≤ P(X)≤ supI(X) and it is also
linear, that is to say, one has P(aX +bY +cZ+ . . .) = aP(X)+bP(Y )+cP(Z)+ . . . for
any finite number of univariate random quantities, with a, b, c, . . . any real numbers.
In particular, from P(X +Y ) = P(X)+P(Y ) follows an additivity property of P. A
coherent prevision of X can be expressed by means of the vector x̄ = (x̄i) that allows
to define the transformed random quantity X t : it is represented by the vector xt = x− x̄
whose contravariant components are given by

xt i = xi− x̄i. (2)

This linear transformation of X is a change of origin. A coherent prevision of the
transformed random quantity X t is necessarily given by

P(X t ) = (xi− x̄i)pi = 0. (3)

The α-norm of the vector x is expressed by

‖x‖2
α = (xi)2 pi. (4)

It is the square of the quadratic mean of X . It turns out to be ‖x‖2
α ≥ 0. In particular,

one writes ‖x‖2
α = 0 when the possible values of X are all null: this is a degenerate

case. Hence, one says that the α-norm of the vector x is strictly positive. The α-norm
of the vector representing X t is given by

‖xt‖2
α = (xt i)2 pi = σ

2
X . (5)

It represents the variance of X in a vectorial fashion. I will later explain why I use the
term α-norm.

3 Bivariate random quantities and their geometric rep-
resentation

It is possible to denote by (2)S
(2) a set of bivariate random quantities and by X12 ≡

{1X ,2X} a generic bivariate random quantity of this set. A pair of univariate random
quantities (1X ,2X ) evidently represents an ordered pair of univariate random quantities
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which are the components of X12. Each element of (2)S
(2) can be represented by an

affine tensor of order 2 denoted by T ∈ (2)S
(2). It turns out to be (2)S

(2) ⊂ E(2)
m =

Em⊗Em. Therefore, the possible values of X12 coincide with the numerical values of
the components of T . The dimension of Em as well as the number of the different
possible values of every univariate random quantity of X12 is expressed by m. Thus,
T is an element of a vector space m2-dimensional. I choose an orthonormal basis of
Em in order to represent the possible values of X12. These values coincide with the
contravariant components of T so it is possible to write

T = (1)x⊗ (2)x = (1)x
i1
(2)x

i2ei1 ⊗ ei2 . (6)

The tensor representation of X12 expressed by (6) depends on (1X ,2X ). Indeed, if one
considers a different ordered pair (2X ,1X ) of univariate random quantities one obtains
a different tensor representation of X12 expressed by

T = (2)x⊗ (1)x = (2)x
i2
(1)x

i1ei2 ⊗ ei1 (7)

because the tensor product is not commutative ([22]). Therefore, the components of T
expressed by (7) are not the same of the ones expressed by (6). Both these formulas
express an affine tensor of order 2 whose components are different. I could consider
two vectors of E3

(1)x = (1)x
1e1 + (1)x

2e2 + (1)x
3e3

and
(2)x = (2)x

1e1 + (2)x
2e2 + (2)x

3e3

in order to realize that it turns out to be (1)x⊗ (2)x 6= (2)x⊗ (1)x by summing over all
the values of the indices. Then, I must consider (6) and (7) at the same time in order
to release a tensor representation of X12 from any ordered pair of univariate random
quantities which can be considered, (1X ,2X ) or (2X ,1X ). In fact, when m = 3 and I
express T by means of (6) and (7) I observe that three of nine summands are equal,
so it is possible to say that the possible values of a bivariate random quantity must be
expressed by the components of an antisymmetric tensor of order 2. It is expressed by

T = ∑
i1<i2

((1)x
i1
(2)x

i2 − (1)x
i2
(2)x

i1)ei1 ⊗ ei2 . (8)

The number of the components of an antisymmetric tensor of order 2 is evidently dif-
ferent from the one of the components of an affine tensor of the same order. Thus,
a tensor representation based on an antisymmetric tensor of order 2 does not depend
either on (1X ,2X ) or (2X ,1X ). I choose it in order to represent a generic bivariate
random quantity X12. Therefore, 12 f is an antisymmetric tensor of order 2 called the
tensor of the possible values of X12. The contravariant components of 12 f expressed
by

12 f (i1i2) =

∣∣∣∣∣(1)xi1
(1)x

i2

(2)x
i1

(2)x
i2

∣∣∣∣∣ (9)

represent the possible values of X12 in a tensorial fashion. These components are equal
to 0 when they have equal indices. It is evident that the vector space of the antisym-
metric tensors of order 2 does not have a dimension equal to m2 but it has a dimension
equal to

(m
2

)
. Now, I must introduce the probabilities into this geometric representation

of X12. It is possible to say that the tensor of the joint probabilities p = (pi1i2) is an
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affine tensor of order 2 whose covariant components represent those probabilities re-
lated to the ordered pairs of components of vectors representing the marginal univariate
random quantities 1X and 2X of X12. Then, a coherent prevision of X12 is expressed by

P(X12) = X̄12 = (1)x
i1
(2)x

i2 pi1i2 , (10)

so it is also possible to consider the affine tensor of order 2 denoted by 12x̄ whose
contravariant components are expressed by 12x̄i1i2 . They are all equal. In order to
define the covariant components of 12 f I must consider those vector homographies
that allow me to pass from the contravariant components of a type of vector to the
covariant components of another type of vector by means of the tensor of the joint
probabilities under consideration. Indeed, the covariant components of 12 f represent
those probabilities related to the possible values of each marginal univariate random
quantity of X12. These components are obtained by summing the probabilities related
to the ordered pairs of components of (1)x and (2)x: putting the joint probabilities into
a two-way table I consider the totals of each row and the totals of each column of the
table as covariant components of 12 f . In analytic terms one has (1)x

i1 pi1i2 = (1)xi2 and

(2)x
i2 pi1i2 = (2)xi1 by virtue of a specific convention that I introduce: when the covariant

indices to right-hand side vary over all their possible values I obtain two sequences of
values representing those probabilities related to the possible values of each marginal
univariate random quantity of X12. They are the covariant components of 12 f . It turns
out to be

12 f(i1i2)
=

∣∣∣∣∣(1)xi1 (1)xi2

(2)xi1 (2)xi2

∣∣∣∣∣=
∣∣∣∣∣(1)xi2 pi2i1 (1)x

i1 pi1i2

(2)x
i2 pi2i1 (2)x

i1 pi1i2

∣∣∣∣∣ . (11)

The covariant indices of the tensor p can be interchanged when it is necessary so one
has, for instance, (1)x

i1 pi1i2 = (1)x
i1 pi2i1 . Each ordered pair of vectors ((1)x, (2)x) math-

ematically determines an affine tensor of order 2 when a given individual is into the
subjective domain of the logic of the probable. Each ordered pair of vectors ((1)x, (2)x)
represents two univariate random quantities, 1X and 2X , into Em ([23]). Both these
univariate random quantities belong to the set denoted by (2)S

(1) so it turns out to be

(2)S
(1) ⊂ Em. On the other hand it is possible to write (2)S

(1)⊗ (2)S
(1) = (2)S

(2), so I
reach the vector space of the antisymmetric tensors of order 2 by anti-symmetrization.
It is denoted by (2)S

(2)∧. One has evidently (2)S
(2)∧ ⊂ E(2)∧

m . I will show that a metric

defined on (2)S
(2)∧ is the consequence of a metric defined on (2)S

(1).

4 Metric aspects related to univariate random quanti-
ties

The vector space of univariate random quantities which are the components of bivariate
random quantities is denoted by (2)S

(1) ⊂ Em. These univariate random quantities are
represented by two vectors, (1)x and (2)x, belonging to Em. I deal with two ordered m-
tuples of real numbers when I am into the objective domain of the possible alternatives.
An affine tensor p of order 2 must be added to the two vectors under consideration
when I pass from the domain of the possible alternatives to the one of the evaluation of
probabilities. Therefore, I always consider a triple of elements. I transform the vector

(2)x into the vector (2)x
′ by means of the tensor p. Hence, it is possible to write the
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following dot product

(1)x · (2)x
′ = (1)x

i1
(2)x

i2 pi1i2 = (1)x
i1
(2)xi1 . (12)

I note that
(2)xi1 = (2)x

i2 pi1i2 = (2)x
′ (13)

is a vector homography whose expressions are obtained by applying the Einstein sum-
mation convention. Then, the α-product of two vectors, (1)x and (2)x, is defined as a
dot product of two vectors, (1)x and (2)x

′, so I write

(1)x� (2)x = (1)x · (2)x
′. (14)

In particular, the α-norm of the vector (1)x is given by

‖(1)x‖
2
α = (1)x

i1
(1)x

i1 pi1i1 = (1)x
i1
(1)xi1 . (15)

Now, I can explain why I use this term: I use it because I refer to the α-criterion of
concordance introduced by Gini ([24], [25]). There actually exist different criteria of
concordance shown by Gini in addition to the α-criterion. Nevertheless, by consider-
ing quadratic measures of concordance it always suffices to use the α-criterion. When
I pass from the notion of α-product to the one of α-norm I say that the corresponding
possible values of the two univariate random quantities under consideration are equal.
I also say that the corresponding probabilities are equal. Therefore, the covariant com-
ponents of the tensor p = (pi1i2) having different numerical values as indices are null.
Thus, I say that the absolute maximum of concordance is realized. Given the vector
y = (1)x +λ (2)x, its α-norm is expressed by

‖y‖2
α = ‖(1)x‖

2
α +2λ ((1)x� (2)x)+λ

2‖(2)x‖
2
α . (16)

It is always possible to write ‖y‖2
α ≥ 0. Moreover, the right-hand side of (16) is a

quadratic trinomial whose variable is λ ∈R, so I must consider a quadratic inequation.
All real numbers fulfill the condition stated in the form ‖y‖2

α ≥ 0. This means that the
discriminant of the associated quadratic equation is non-positive. I write

∆λ = 4[((1)x� (2)x)
2−‖(1)x‖

2
α‖(2)x‖

2
α ].

Given ∆λ ≤ 0, it turns out to be

((1)x� (2)x)
2 ≤ ‖(1)x‖

2
α‖(2)x‖

2
α ,

so I obtain
|(1)x� (2)x| ≤ ‖(1)x‖α‖(2)x‖α . (17)

The expression (17) is called the Schwarz’s α-generalized inequality. When λ = 1 one
has y = (1)x + (2)x. By replacing ((1)x� (2)x) into (16) with ‖(1)x‖α‖(2)x‖α one has
the square of a binomial given by

‖(1)x + (2)x‖
2
α = ‖(1)x‖

2
α +2‖(1)x‖α‖(2)x‖α +‖(2)x‖

2
α ,

so one obtains
‖(1)x + (2)x‖α ≤ ‖(1)x‖α +‖(2)x‖α . (18)
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The expression (18) is called the α-triangle inequality. Dividing by ‖(1)x‖α‖(2)x‖α

both sides of (17) one has ∣∣∣∣∣ (1)x� (2)x
‖
(1)x‖α‖(2)x‖α

∣∣∣∣∣≤ 1,

that is to say,

−1≤ (1)x� (2)x
‖
(1)x‖α‖(2)x‖α

≤ 1,

so there exists a unique angle γ such that 0≤ γ ≤ π and such that

cosγ =
(1)x� (2)x

‖
(1)x‖α‖(2)x‖α

. (19)

It is possible to define this angle to be the angle between the two vectors (1)x and

(2)x. By considering the expression (14) it is also possible to define it to be the angle
between (1)x and (2)x

′. The two vectors (1)t and (2)t represent the two transformed
random quantities

1X t and
2X t defined on 1X and 2X . Then, their α-product is given by

(1)t� (2)t = (1)t
i1
(2)ti1 = (1)t

i1
(2)t

i2 pi2i1 . (20)

It represents the covariance of 1X and 2X in a vectorial fashion. When one considers
the expression (19) referring to the vectors (1)t and (2)t it becomes

cosγ =
(1)t� (2)t

‖
(1)t‖α‖(2)t‖α

. (21)

It expresses the Pearson α-generalized correlation coefficient.

5 Metric aspects related to bivariate random quantities

I deal with the vector space denoted by (2)S
(2)∧ whose elements are antisymmetric ten-

sors of order 2. Nevertheless, by introducing the notion of α-product of two antisym-
metric tensors of order 2 I must underline a very important point: it is not necessary
to refer to the bivariate random quantity X12 in order to introduce that antisymmet-
ric tensor whose covariant components are represented like into the expression (11).
Therefore, it is also possible to consider a bivariate random quantity denoted by X34 as
well as an antisymmetric tensor of order 2 denoted by 34 f whose covariant components
are expressed by

34 f(i1i2)
=

∣∣∣∣∣(3)xi1 (3)xi2

(4)xi1 (4)xi2

∣∣∣∣∣=
∣∣∣∣∣(3)xi2 pi2i1 (3)x

i1 pi1i2

(4)x
i2 pi2i1 (4)x

i1 pi1i2

∣∣∣∣∣ . (22)

Thus, it is possible to extend to the antisymmetric tensors 12 f and 34 f the notion of
α-product. This means that one can examine the domain of the possible alternatives in
a more complete fashion ([16]). Then, one has

12 f (i1i2)� 34 f(i1i2)
=

1
2

∣∣∣∣∣(1)xi1
(1)x

i2

(2)x
i1

(2)x
i2

∣∣∣∣∣
∣∣∣∣∣(3)xi1 (3)xi2

(4)xi1 (4)xi2

∣∣∣∣∣ , (23)
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where it appears 1
2 because one has always two permutations into the two determi-

nants: one of these permutations is “good” when it turns out to be i1 < i2 regarding
to (1)x

i1
(2)x

i2 and (3)xi1 (4)xi2 while the other is “no good” because it turns out to be
i2 > i1 regarding to (1)x

i2
(2)x

i1 and (3)xi2 (4)xi1 . Hence, I am in need of returning to

normality by means of 1
2 . Such a normality is evidently represented by i1 < i2. I need

different affine tensors of order 2 in order to make a calculation given by the expression
(23). These tensors of the joint probabilities allow me of defining the bivariate random
quantities X13, X14, X23 and X24. Thus, one has

12 f � 34 f =

∣∣∣∣∣(1)xi1
(3)x

i2 p(13)
i2i1 (1)x

i2
(4)x

i1 p(14)
i1i2

(2)x
i1
(3)x

i2 p(23)
i2i1 (2)x

i2
(4)x

i1 p(24)
i1i2

∣∣∣∣∣ . (24)

In particular, the α-norm of the tensor 12 f is given by

‖12 f ‖2
α = 12 f � 12 f = 12 f (i1i2)

12 f(i1i2)
, (25)

so it turns out to be

‖12 f ‖2
α =

1
2

∣∣∣∣∣(1)xi1
(1)x

i2

(2)x
i1

(2)x
i2

∣∣∣∣∣
∣∣∣∣∣(1)xi1 (1)xi2

(2)xi1 (2)xi2

∣∣∣∣∣=
∣∣∣∣∣(1)xi1

(1)x
i1 p(11)

i1i1 (1)x
i2
(2)x

i1 p(12)
i1i2

(2)x
i1
(1)x

i2 p(21)
i2i1 (2)x

i2
(2)x

i2 p(22)
i2i2

∣∣∣∣∣ . (26)

Anyway, it is always possible to write

12 f � 34 f =

∣∣∣∣∣(1)x� (3)x (1)x� (4)x

(2)x� (3)x (2)x� (4)x

∣∣∣∣∣ (27)

as well as

‖12 f ‖2
α =

∣∣∣∣∣ ‖(1)x‖2
α (1)x� (2)x

(2)x� (1)x ‖(2)x‖
2
α

∣∣∣∣∣ . (28)

The α-norm of the tensor 12 f is again strictly positive. It is equal to 0 when the compo-
nents of 12 f are null. Nevertheless, this does not mean that the components of the two
vectors founding the tensor are null. Indeed, it suffices that one writes (1)x = λ (2)x,
with λ ∈ R, in order to obtain

‖12 f
λ
‖2

α =
1
2

∣∣∣∣∣λ (2)x
i1 λ (2)x

i2

(2)x
i1

(2)x
i2

∣∣∣∣∣
∣∣∣∣∣λ (2)xi1 λ (2)xi2

(2)xi1 (2)xi2

∣∣∣∣∣=
∣∣∣∣∣λ 2‖(2)x‖

2
α λ‖(2)x‖

2
α

λ‖(2)x‖
2
α ‖(2)x‖

2
α

∣∣∣∣∣= 0.

(29)
I define the tensor f as a linear combination of 12 f and 34 f such that I can write
f = 12 f +λ 34 f , with λ ∈ R. Then, the Schwarz’s α-generalized inequality becomes

|12 f � 34 f | ≤ ‖12 f ‖α‖34 f ‖α , (30)

the α-triangle inequality becomes

‖12 f + 34 f ‖α ≤ ‖12 f ‖α +‖34 f ‖α , (31)

while the cosine of the angle γ becomes

cosγ = 12 f � 34 f
‖12 f ‖α‖34 f ‖α

. (32)
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It is possible to consider two transformed univariate random quantities which are re-
spectively

1X t and
2X t . They are represented by the vectors (1)t and (2)t whose con-

travariant components are given by (1)t
i = (1)x

i− (1)x̄
i and (2)t

i = (2)x
i− (2)x̄

i. There-
fore, it is possible to introduce an antisymmetric tensor of order 2 denoted by 12t which
characterizes the transformed bivariate random quantity denoted by X12

t . Then, the
contravariant components of this tensor are given by

12t(i1i2) =

∣∣∣∣∣(1)t i1
(1)t

i2

(2)t
i1

(2)t
i2

∣∣∣∣∣ . (33)

Its covariant components are given by

12t(i1i2)
=

∣∣∣∣∣(1)ti1 (1)ti2
(2)ti1 (2)ti2

∣∣∣∣∣=
∣∣∣∣∣(1)t i2 pi2i1 (1)t

i1 pi1i2

(2)t
i2 pi2i1 (2)t

i1 pi1i2

∣∣∣∣∣ . (34)

The α-product of the two tensors 12t and 34t is given by

12t � 34t =

∣∣∣∣∣(1)t� (3)t (1)t� (4)t

(2)t� (3)t (2)t� (4)t

∣∣∣∣∣ . (35)

The α-norm of the tensor 12t is given by

‖12t‖2
α =

∣∣∣∣∣ ‖(1)t‖2
α (1)t� (2)t

(2)t� (1)t ‖(2)t‖
2
α

∣∣∣∣∣ . (36)

The cosine of the angle γ is given by

cosγ = 12t � 34t
‖12t‖α‖34t‖α

. (37)

It will be possible to realize completely in due time that all these expressions are at
the base of meaningful quantitative relationships between multiple random quantities
characterizing an original, well-organized and extensive theory that I want to introduce
into the domain of subjective probability.

6 Metric properties of the prevision of a generic bivari-
ate random quantity

The notion of α-product depends on three elements which are two vectors of Em, (1)x

and (2)x, and one affine tensor p = (pi1i2) of order 2 belonging to E(2)
m = Em⊗Em.

Given any ordered pair of vectors, p is uniquely determined as a geometric object.
This implies that each covariant component of p is always a subjective probability in-
trinsically coherent ([4]). With regard to some problem that may be considered it is
possible that all reasonable people share each covariant component of p. Nevertheless,
an opinion in terms of probability shared by many people always remains a subjective
opinion. It is meaningless to say that it is objectively exact. Indeed, a sum of many
subjective opinions in terms of probability can never lead to an objectively correct con-
clusion ([3]). Thus, given a bivariate random quantity X12 ≡ {1X ,2X}, its coherent
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prevision P(X12) is an α-product whose metric properties remain unchanged by ex-
tending them to P. Therefore, P is an α-commutative prevision because it is possible
to write

P(1X2X) = P(2X1X), (38)

P is an α-associative prevision because it is possible to write

P[(λ1X)2X ] = P[1X(λ2X)] = λP(1X2X),∀λ ∈ R, (39)

P is an α-distributive prevision because it is possible to write

P[(1X+2X)3X ] = P(1X3X)+P(2X3X). (40)

Moreover, when one writes

P(1X2X) = P(2X1X) = 0, (41)

and all possible values of 1X and 2X are not null, one says that 1X and 2X are α-
orthogonal univariate random quantities. In particular, one observes that the α-distributive
property of prevision implies that the covariant components of the affine tensor p(13)

are equal to the ones of the affine tensor p(23). Moreover, the covariant components of
the affine tensor related to the two univariate random quantities 1X+2X and 3X are the
same of the ones of p(13) and p(23). By considering a bivariate random quantity one
finally says that its prevision P is bilinear. If the possible values of the two univari-
ate random quantities of X12 ≡ {1X ,2X} are correspondingly equal and the covariant
components of the tensor p = (pi1i2) having different numerical values as indices are
null, then P(X12) = P(1X2X) = P(2X1X) coincides with the α-norm of (1)x = (2)x. If
P(X12) is a coherent prevision of X12 ≡ {1X ,2X}, then its univariate random quanti-
ties, 1X and 2X , represent two separate and finite partitions of incompatible and ex-
haustive events whose non-negative probabilities sum to 1. These are objective con-
ditions of coherence ([2], [19], [20]). It is evident that each covariant component of
p = (pi1i2) represents a probability of the joint of two events which includes a con-
ditional probability of an event given the other. Hence, by denoting by A one of the
possible values of 1X and by B one of the possible values of 2X it turns out to be
P(A∧B) = P(A)P(B|A) = P(B)P(A|B), with A∧B = B∧A, as regards each covariant
component of p ([17], [18], [21]). I denoted by A∧B = B∧A the logical product of
two events while I considered P(A∧B) as a probability of their joint. In general, from
the notion of conditional probability denoted by P(E|H) it is always possible to deduce
that the notion of subjective probability is relative to the current state of information
of a given individual represented by H. This operationally means that P(E|H) is the
price to be paid for a conditional bet which is annulled if H does not occur. Conversely,
this conditional bet is won if H and E occur while it is lost if H occurs and E does not
occur. I evidently considered a tri-event denoted by E|H with values 1|1 = 1, 0|1 = 0,
0|0 = 1|0 = /0. It represents only a formal variation with respect to the starting delimi-
tation because /0 = void is added to the two starting values 1 = true and 0 = false. Any
tri-event can always be expressed by means of two events from a conceptual point of
view. This means that all tri-events are only formally meaningful. Given a transformed
bivariate random quantity X12

t ≡ {
1X t ,

2X t}, its coherent prevision P(X12
t ) is again an

α-product whose metric properties remain unchanged by extending them to P. In par-
ticular, when it turns out to be pi1i2 = pi1 pi2 , ∀i1, i2 ∈ Im, with Im ≡ {1,2, . . . ,m}, one
observes that a stochastic independence exists. Hence, one obtains P(X12

t ) = 0, that
is to say, the vectors (1)t and (2)t are α-orthogonal. One equivalently says that the
covariance of 1X and 2X is equal to 0.
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7 Rewriting of some fundamental metric expressions
Now, it is possible to rewrite some fundamental metric expressions by using prop-
erly the notion of coherent prevision of bivariate random quantities that I introduced.
Therefore, when one rewrites (27) and (28) it is possible to obtain

12 f � 34 f =

∣∣∣∣P(1X3X) P(1X4X)
P(2X3X) P(2X4X)

∣∣∣∣ (42)

and

‖12 f ‖2
α =

∣∣∣∣P(1X1X) P(1X2X)
P(2X1X) P(2X2X)

∣∣∣∣ . (43)

On the other hand, it is known that any vector viewed as an element of a given vec-
tor space can always be expressed as a linear combination of the vectors representing
a basis of the vector space under consideration. Hence, each linear combination is a
division of a vector into those vectors representing a basis of the vector space under
consideration. An analogous thing goes by considering (42) as well as (43), where
one observes that coherent previsions of separate bivariate random quantities are ba-
sic elements of the metric expressions under consideration. I evidently accept into the
domain of subjective probability a very meaningful principle borrowed from geometry
according to which it is possible to divide a more complicated mathematical object into
simpler mathematical objects represented by coherent previsions of bivariate random
quantities. Thus, it is possible to realize that a new and fruitful notion of coherent
prevision of a generic bivariate random quantity is introduced. Moreover, it is also
useful when one jointly considers more than two random quantities. Indeed, one will
be able to realize in due time that the notion of coherent prevision of a generic bivari-
ate random quantity is always at the base of fundamental metric expressions related
to multiple random quantities when one deals with quadratic expressions as needful
metric expressions. A very important point must be stressed: the notion of coherent
prevision of a univariate or bivariate random quantity is an indirect mathematical notion
because its foundation is the notion of prevision of the same random quantity which
is always a psychological notion in the first instance. The same thing obviously goes
by considering the notion of probability of a single event. I show an approach which
does not introduce arbitrary mathematical conventions but it makes more evident the
distinction between an extralogical or psychological notion and a logic or mathematical
notion which is nevertheless intrinsically connected to the former. According to such
mathematical conventions it would be possible to give a uniquely determined answer
to an indeterminate problem because of its data which are only able to establish certain
limits or boundaries. These conventions must not be accepted for this reason.

8 Conclusions
I began to elaborate a geometric, original and extensive theory of multiple random
quantities by accepting the principles of the theory of concordance into the domain of
subjective probability. This acceptance is well-founded because the definition of con-
cordance shown by Gini is implicit as well as the one of prevision of a random quantity
and in particular of probability of an event. Indeed, these definitions are based on cri-
teria which permit to measure them. I represented a generic bivariate random quantity
in a tensorial fashion. I observed that metric properties of the notion of α-product
mathematically fulfill the ones of a coherent prevision of a bivariate random quantity.
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This geometric approach that I shown is useful because I am able to examine in a more
complete fashion the domain of the possible alternatives by extending the notion of α-
product to two different antisymmetric tensors. Indeed, with regard to any problem that
one has to consider, there always exists an enormous number of possible alternatives.
If information and knowledge of a given individual do not permit to exclude some of
them as impossible then all alternatives which can logically be considered remain pos-
sible for him in the sense that they are not either certainly true or certainly false. In
particular, this means that he is able to consider different bivariate random quantities in
addition to the starting one. This tensorial approach allows of representing a bivariate
random quantity regardless of any ordered pair of univariate random quantities which
are the components of the bivariate random quantity under consideration. The number
of the components of an antisymmetric tensor of order 2 decreases by passing from an
affine tensor of order 2 to an antisymmetric tensor of the same order and this is use-
ful in order to satisfy simplification and compression needs. I introduced fundamental
metric expressions referring to transformed random quantities representing changes of
origin obtained by using a conceptually and operationally complete notion of coherent
prevision of univariate random quantities. The notion of α-norm obtained from the no-
tion of α-product allowed to connect vector spaces having a Euclidean structure with
random quantities.
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