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Abstract

We consider an ensemble of Ornstein–Uhlenbeck processes featuring a
population of relaxation times and a population of noise amplitudes that
characterize the heterogeneity of the ensemble. We show that the centre-of-
mass like variable corresponding to this ensemble is statistically equivalent
to a process driven by a non-autonomous stochastic differential equation
with time-dependent drift and a white noise. In particular, the time scaling
and the density function of such variable are driven by the population of
timescales and of noise amplitudes, respectively. Moreover, we show that
this variable is equivalent in distribution to a randomly-scaled Gaussian
process, i.e., a process built by the product of a Gaussian process times a
non-negative independent random variable. This last result establishes a
connection with the so-called generalized grey Brownian motion and sug-
gests application to model fractional anomalous diffusion in biological sys-
tems.
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1. Introduction

Let W κ
t , κ ∈ {1, 2, . . . , N} be a sequence of Wiener processes W κ

t :
[0,∞) → R with Ex[W κ

t ] = 0 and Ex[W κ
t W

κ
s ] = min(t, s). As usual, we

denote by Ex the expectation with respect to Px where x is the starting
point for the process under consideration.

In this paper we consider the ensemble {Xκ
t }κ of the Ornstein–Uhlenbeck

(OU) processes Xκ
t : [0,∞)→ R satisfying the stochastic differential equa-

tions (SDE)

dXκ
t = −X

κ
t

τκ
dt+

√
2σκ dW κ

t , Xκ
0 = x , (1.1)

where, ∀κ, τκ > 0 and σκ > 0. We call τκ relaxation times and σκ noise
amplitudes. In particular, the following equivalence in law holds true

Xκ
t = e−

t
τκ (x+W κ

ϕ(t)), κ = 1, 2, . . . , N , (1.2)

where

ϕ(t) = σκτκ
(
e2t/τκ − 1

)
. (1.3)

Hence, each Xκ
t is a real-valued Gaussian process with Ex(Xκ

t ) = xe−t/τ
κ
.

Since
Ex[Xκ

t X
κ
s ] = x2e−

t+s
τκ + e−

t+s
τκ min(ϕ(t), ϕ(s)) , (1.4)

we obtain the covariance function

C(t, s) = e−(t+s)/τκ min(ϕ(t), ϕ(s)) = σκτκ
(
e−|t−s|/τ

κ − e−(t+s)/τκ
)
(1.5)

and the correlation function

c(t, s) =
C(t, s)√

C(t, t)C(s, s)
.

Without loss of generality we assume that x = 0 and therefore

c(t, s) =
(ϕ(t) ∧ ϕ(s))√

ϕ(t)ϕ(s)
.

For a given κ, the infinitesimal generator A of Xκ
t is therefore

Au = − x

τκ
du

dx
+ σκ

d2u

dx2
, u ∈ Cc(R,R) , (1.6)

where Cc is the set of smooth and compactly supported functions on R. In
view of the applications in diffusion problems, in analogy with the Langevin
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1422 M. D’Ovidio et al.

equation (for γ,m > 0) we introduce the mass-like variable mκ > 0 such
that

1

τκ
=

γκ

mκ
,
√
σκ =

√
σ0

mκ
, (1.7)

where σ0 > 0 is a fixed parameter independent of κ, and, ∀κ, the pair of
independent parameters (τκ, σκ) in the SDE (1.1) is now replaced by the
pair (γκ,mκ).

In the following, we study the centre-of-mass like process

Zt =
∑
κ

mκ

M
Xκ
t , (1.8)

with M =
∑

κm
κ.

We highlight that, because of the center-of-mass like formulation, the
process Zt here considered differs from the superposition of OU processes
considered for example in Refs. [4, 14] or from the superposition of OU-type
processes considered in Refs. [13, 1, 7], and also the type of provided results
is different. In particular, in this paper we derive the non-autonomous
SDE satisfied by a process equivalent in distribution to the process Zt and
more we show also that the process Zt is equivalent in distribution to a
randomly-scaled Guassian process, i.e., a process built by the product of a
non-negative random variable times a Gaussian process. This last result can
be understood in the framework of the so-called generalized grey Brownian
motion (ggBm), which can be recovered when the Gaussian process is the
fractional Brownian motion. The ggBm is a generalization of the theory of
the white noise analysis by introducing non-Gaussian measures of Mittag–
Leffler type [21, 23, 22, 8, 9]. In this respect, we remark that the considered
OU processes (1.1) are driven by a Wiener process and not by a fractional
Brownian motion as for example in Refs. [3, 31].

Under the physical point of view, the considered system can be under-
stood as a heterogeneous ensemble of Brownian particles, i.e., a system com-
posed of non-identical Brownian particles that differ in their density (mass
devided by volume). The study of the centre of mass allows for estimating
the average concentration and the momentum of inertia of the ensemble by
computing the mean and the mean square displacement, respectively. Such
a system can be related to the so-called anomalous diffusion which refers
to diffusion processes that, in opposition to Brownian motion, do not show
a Gaussian density function of particle displacements and neither a linear
growth in time of the mean square displacement. Anomalous diffusion is a
widespread phenomenon [12, 11] that requires specific statistical tools [18],
that is sometimes related to fractional diffusion [19], and that can be gen-
erated by the polydispersity when classical thermodynamics holds [6], i.e.,
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CENTRE-OF-MASS LIKE SUPERPOSITION OF . . . 1423

with Gaussian noise as in the present case, or by noises with long-range spa-
tiotemporal correlations with even “anomalous” thermodynamics [6], i.e.,
with non-Gaussian noise. In this respect, the derived link between the pro-
cess Zt and randomly-scaled Guassian processes, in general, and the ggBm,
in particular, allows for perspective applications of the present results to
model fractional diffusion in biological systems in view of the promising ap-
plication in these systems of randomly-scaled Guassian processes [30] and
and the ggBm [20, 29].

In the next Section 2, the main theorems are stated and their proofs
are given in Section 3. In Section 4, the numerical simulations related to
the main results of Section 2 are shown. In Section 5 the conclusions are
reported and the application to model anomalous diffusion in biological
systems is discussed.

2. Main results

In this section we present the two main results, i.e., Theorem 2.1 and
Theorem 2.2, that we obtain for the process Zt defined in (1.8). The first
concerns the determination of the non-autonomous SDE satisfied by a pro-
cess Z∗t that is equivalent in distribution to Zt, and the second concerns
the equivalence in distribution of the process Zt with a randomly-scaled
Gaussian process, i.e., a process defined by the product of a non-negative
random variable and a Gaussian process.

We introduce the scaled process

Y κ
t =

Xκ
t√
σκ

, (2.1)

for which

P0(Y κ
t ∈ dy) =

∫
Ωτ

pκ(y; t|τ)q(dτ)dy , (2.2)

where the Gaussian density pκ is conditioned to τκ and

P(τκ ∈ Ωτ ) =

∫
Ωτ

q(dτ) = 1. (2.3)

We assume that q(dτ) = q(τ)dτ , that is τκ has population density q : R+ ⊇
Ωτ 7→ R+. We notice that τκ

d
= τ , ∀κ, where τ is distributed according

with q. We denote by “
d
=” the equality in distribution for random variables.

We maintain the superscript κ in (2.2) although the sequence Xκ
t (and

therefore the sequence (2.1)) are identically distributed. Indeed, we have

that Xκ
t

d
= Xt and pκ(y; t|τ) =

√
σκv(

√
σκy; t|τ) where v(x; t|τ)dx =

P0(Xt ∈ dx).
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1424 M. D’Ovidio et al.

Theorem 2.1. Let Zt : [0,∞) → R be the center-of-mass like sto-

chastic process in (1.8). Then, Zt
d
= Z∗t where Z∗t satisfies the following

non-autonomous SDE

dZ∗t = − Z∗t
τeff(t)

dt+

√
2σ0

M
dW eff

t , Z∗0 = z , (2.4)

with
√
σ0 = mκ

√
σκ, dW eff

t =
∑

κ dW
κ
t such that E[(dW eff

t )2] = NE[(dW κ
t )2],

and where τeff(t) is defined as

τeff(t) =


∫ +∞

−∞

∫
Ωτ

y2pκ(y; t|τ)q(τ) dτdy∫ +∞

−∞

∫
Ωτ

y2

τ2
pκ(y; t|τ)q(τ) dτdy


1/2

. (2.5)

We observe that the SDE (2.4) is non-autonomous because of the de-
pendence on t of the drift coefficient through the function τeff(t), and that
the noise amplitude

√
2σ0/M is not a process but a non-negative random

variable. The opposite situation with a drift independent of t and the noise
amplitude given in terms of a stochastic process has been recently stud-
ied in Ref. [2]. By setting Λ = σ0/M

2, from (1.7) we have that Λ is an
independent non-negative random variable.

Theorem 2.2. Let {Xκ
t }κ be the ensemble defined in (1.1) and (1.7).

Let Zt : [0,∞) → R be the center-of-mass like process defined in (1.8).
Let Y κ

t be the scaled process in (2.1). Denote by BH
t : [0,∞) → R the

Gaussian process BH
t

d
=
√

E0[(Y κ
t )2]W1, ∀κ. Then we have that , ∀ t > 0,

as N →∞,
1√
N
Zt

d→
√

ΛBH
t . (2.6)

Lemma 2.1. The stochastic process Zt has a non-exponential correla-
tion controlled by the population of τκ distributed according to the density
q(τ). The exponential correlation is recovered in the case q(τ) = δ(τ − τ0).

P r o o f. Consider the scaled process

Y κ
t =

Xκ
t√
σκ

, (2.7)

which satisfies the SDE

dY κ
t = −Y

κ
t

τκ
dt+

√
2 dW κ

t , (2.8)

then it holds
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CENTRE-OF-MASS LIKE SUPERPOSITION OF . . . 1425

Zt =

√
σ0

M

∑
κ

Y κ
t . (2.9)

Each stochastic process Y κ
t is an OU process with exponential covari-

ance (1.5), i.e., E[Y κ
t Y

κ
s |τκ] = τκ

(
e−|t−s|/τ

κ − e−(t+s)/τκ
)

, ∀κ, according

to (2.8). The covariance of the process Zt is

E[ZtZs] = E

[
σ0

M2
E

[∑
κ

Y κ
t

∑
κ

Y κ
s

∣∣∣∣τκ
]]

= E

[
σ0

M2

∑
κ

E
[
Y κ
t Y

κ
s

∣∣τκ]]

= E

[
σ0

M2

∑
κ

τκ
(

e−|t−s|/τ
κ − e−(t+s)/τκ

)]
= E

[ σ0

M2

]∑
κ

E
[
τκ
(

e−|t−s|/τ
κ − e−(t+s)/τκ

)]
= N E

[ σ0

M2

] ∫
Ωτ

τ
(

e−|t−s|/τ − e−(t+s)/τ
)
q(dτ), (2.10)

where, we recall that Λ = σ0/M
2 is an independent random variable and τκ

are independent and identically distributed. The distribution q(τ) modifies
the classical covariance displayed, ∀κ, by E[Y κ

t Y
κ
s

∣∣τ ]. When q(τ) = δ(τ −
τ0), the exponential covariance follows. 2

We define now the following process

ZHt =
√
NΛBH

t , (2.11)

such that

E[ZHt Z
H
s ] = NE[Λ]E[BH

t B
H
s ] = NE[Λ]R(t, s) . (2.12)

We observe that since Λ is a random variable that is different for any
realization of the process BH

t and it is independent of t, the process ZHt is
not the same process studied in Ref. [5].

Then, after re-scaling NΛ→ Λ, the following holds.

Lemma 2.2. Let f(λ), λ ∈ Ωλ ⊆ R+, be the density of the non-negative
random variable Λ, then the n-dimensional density of ZHt is

P(z;R) =
1√

(2πλ)n detR

∫
Ωλ

exp

{
− 1

2λ
zTR−1z

}
f(λ) dλ , (2.13)

where z = (z1, . . . , zn) and R = R(ti, tj), i, j = 1, 2, . . . , n, is the covariance
matrix of BH

t .
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1426 M. D’Ovidio et al.

Corollary 2.1. Let R(t, t) = t2H , with 0 < H < 1, and Λ ∼ f(λ),
then the one-point one-time density function of ZHt is

P(z; t) =
1√

4πλ t2H

∫
Ωλ

exp

{
− z2

4λ t2H

}
f(λ) dλ . (2.14)

Remark 2.1. If f(λ) is the density function of Λ, then from the
relation Λ = σ0/M

2 we have that the density function of M is

g(M) =
2

M

σ0

M2
f
( σ0

M2

)
.

Remark 2.2. If mκ, κ ∈ N, are independent identically distributed
variables according to the distribution ρ(m), with ρ(m) closed under convo-
lution, then M =

∑
mκ follows the same distribution, i.e., g(M) ≡ ρ(m).

Corollary 2.2 (See Theorem 2.1 and Corollary 2.1 in Ref. [27]). Let

R(t, t) = t2β/α and f(λ) = K
−α/2
α/2,β(λ), with [15]

K−θα,β(λ) =
1

2π

∫ +∞

−∞
e−iωλ

{
1

2πi

∫ c+i∞

c−i∞
ept

pβ−1

pβ + Ψθ
α(ω)

dp

}
dω , (2.15)

where 0 < β < 1, 0 < α < 2, θ = min{α, 2−α} and Ψθ
α(ω) = |ω|αei(sgnω)θπ/2,

then the one-point one-time density function of ZHt is [27]

P(z; t) =
1√

4πλ t2β/α

∫ +∞

0
exp

{
− z2

4λ t2β/α

}
K
−α/2
α/2,β(λ) dλ

=
1

tβ/α
K0
α,β

( |z|
tβ/α

)
. (2.16)

The density function P(z; t) defined in (2.16) is the kernel of the fol-
lowing space-time fractional diffusion equation [15, 27]{

tD
β
∗ u = zD

α
0 u , in Ω ,

u(z, 0) = u0(z) , in R , (2.17)

with (z, t) ∈ Ω = R× (0,∞), 0 < α < 2, 0 < β < 1, and where tD
β
∗ is the

Caputo time-fractional derivative of order β defined through the Laplace
transform pair∫ +∞

0
e−st{tDβ

∗u(z, t)} dt = sβ ũ(z, s)−
m−1∑
j=0

sβ−1−j u(j)(z, 0+) ,
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CENTRE-OF-MASS LIKE SUPERPOSITION OF . . . 1427

with m− 1 < β < m, m ∈ N, and zD
α
θ is the Riesz–Feller space-fractional

derivative of order α, and asymmetry parameter θ = min{α, 2−α}, defined
through the Fourier transform pair∫ +∞

−∞
e+iξz{zDα

θ u(z, t)} dz = −|ξ|α ei(sign ξ)θπ/2 û(ξ, t) .

Corollary 2.3. The density function P(z; t) in (2.16) solves the
space-time fractional diffusion equation (2.17), whose special cases are the
time-fractional diffusion (α = 2), the space-fractional diffusion (β = 1),
the neutral fractional diffusion (α = β) and the classical diffusion (α = 2,
β = 1).

The stochastic process ZHt defined in (2.11) is built with the same
constructive approach adopted by Mura [21] to build up the ggBm [21, 23,
22], i.e., a Gaussian process times a non-negative random variable, and here
we call such type of processes: randomly-scaled Gaussian processes. The
ggBm proposed by Mura is recovered from (2.11) in the case BH

t is the
fractional Brownian motion and Λ ∼ Mβ(λ) where Mβ(λ), 0 < β < 1, is

the M-Wright/Mainardi function [16, 25], i.e., Mβ(λ) = K−1
1,β(λ). Then we

have the following

Corollary 2.4. Let R(t, t) = t2H and f(λ) = Mβ(λ), with 0 < H < 1

and 0 < β < 1, then the one-point one-time density function of ZHt is [24],

P(z; t) =
1√

4πλ t2H

∫ +∞

0
exp

{
− z2

4λ t2H

}
Mβ(λ) dλ

=
1

2 tH
Mβ/2

( |z|
tH

)
. (2.18)

The density function P(z; t) defined in (2.18) is the kernel of the fol-
lowing Erdélyi–Kober fractional diffusion equation [24] ∂u

∂t
=

2H

β
t2H−1Dβ−1,1−β

2H/β

∂2u

∂x2
, in Ω ,

u(z, 0) = u0(z) , in R ,
(2.19)

with (z, t) ∈ Ω = R × (0,∞), 0 < H < 1, 0 < β < 1, where Dσ,µη is the
Erdélyi–Kober fractional derivative defined as follows. Let n− 1 < µ ≤ n,
n ∈ N, η > 0, γ ∈ R, the Erdélyi–Kober fractional derivative is defined as

Dγ,µ
η ϕ(t) =

n∏
j=1

(
γ + j +

1

η
t
d

dt

)
(Iγ+µ,n−µ
η ϕ(t)) ,

where
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1428 M. D’Ovidio et al.

Iγ,µη ϕ(t) =
η

Γ(µ)
t−η(µ+γ)

∫ t

0
τη(γ+1)−1(tη − τη)µ−1ϕ(τ) dτ .

Corollary 2.5. The density function P(z; t) in (2.18) solves a frac-
tional diffusion equation in the Erdélyi–Kober sense (2.19), whose spe-
cial cases are the time-fractional diffusion (β = 2H), the Brownian non-
Gaussian motion (2H = 1), the Gaussian non-Brownian motion (β = 1)
and the classical diffusion (β = 2H = 1).

3. Proofs of Theorems 2.1 and 2.2

3.1. Proof of Theorem 2.1. The stochastic dynamics of the process Zt
is governed by

dZt =
∑
κ

mκ

M
dXκ

t .

By remembering the definitions in (1.7), if we plug (1.1) into (1.8), we can
derive the following Langevin-type dynamics:

dZt =
1

M

∑
κ

{
−γκXκ

t dt+
√

2σ0 dW
κ
t

}
= − 1

M

{∑
κ

γκXκ
t

}
dt+

√
2σ0

M

∑
κ

dW κ
t .

We introduce now the scaled process Y κ
t = Xκ

t /
√
σκ, then we have

∑
κ

γκXκ
t =

∑
κ

γκ
√
σκ Y κ

t =
√
σ0

∑
κ

Y κ
t

τκ
d
=
√
σ0

√√√√∑
κ

E

[(
Y κ
t

τκ

)2
]
W1

=
1

τeff

√∑
κ

E[(
√
σ0Y κ

t )2]W1 =
1

τeff

√∑
κ

E[(mκXκ
t )2]W1

d
=

1

τeff

∑
κ

mκXκ
t = M

Zt
τeff

, (3.1)

where

1

τeff
=

√∑
κ E
[(

Y κt
τκ

)2
]

√∑
κ E[(Y κ

t )2]
=


∫ +∞

−∞

∫
Ωτ

y2

τ2
pκ(y; t|τ)q(τ) dτdy∫ +∞

−∞

∫
Ωτ

y2pκ(y; t|τ)q(τ) dτdy


1/2

, (3.2)
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CENTRE-OF-MASS LIKE SUPERPOSITION OF . . . 1429

which is a function of time, i.e., τeff = τeff(t), with pκ(y; t|τ) the Gaussian
densities corresponding to the SDE (2.8).

In the derivation of (3.1), the first line follows from (1.7) and the ap-
plication of the rule of the sum of Gaussian variables reminding that the
process Y κ

t is Gaussian, see (2.8). In the second line τeff is introduced,
parameter σ0 is moved below the square root and (1.7) is used. Finally, in
the third line the rule of the sum of Gaussian variables is used again in the
first equality and (1.8) is used to have the last equality.

To conclude, by setting
∑

κ dW
κ
t = dW eff

t , the stochastic process Zt
satisfies the following non-autonomous SDE

dZt = −Zt
τeff
dt+

√
2σ0

M
dW eff

t .

3.2. Proof of Theorem 2.2. By considering the scaled process Y κ
t =

Xκ
t /
√
σκ, the stochastic process Zt results to be

Zt =

√
σ0

M

∑
κ

Y κ
t .

Let us write

Y
N
t =

1

N

N∑
κ=1

Y κ
t . (3.3)

Recall that Y κ
t

d
= Y 1

t , ∀κ. For x = 0,

Ex[Y
N
t ] = xE0

[
e−t/τ√
σ

]
= 0 , (3.4)

and

V ar0[Y
N
t ] =

1

N
E0[τ(1− e−2t/τ )] =

1

N
E0[(Y 1

t )2] . (3.5)

From the Central Limit Theorem, as N →∞

Y
N
t − E0[Y

N
t ]√

V ar0[Y
N
t ]

=
√
N

Y
N
t√

E0[(Y 1
t )2]

=
1√

E0[(Y 1
t )2]

1√
N

∑
κ

Y κ
t

d→W1 ,

that is, as N →∞,

1√
N

N∑
κ=1

Y κ
t

d→
√
E0[(Y 1

t )2]W1 = BH
t , ∀ t > 0 .

Finally, by multiplying both side by
√
σ0/M , we obtain the following equiv-

alence in distribution

∀ t > 0 ,
1√
N
Zt

d→
√
σ0

M
BH
t , N →∞ . (3.6)
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1430 M. D’Ovidio et al.

Moreover, by setting
√
σ0/M =

√
Λ, the stochastic process N−

1
2Zt is statis-

tically equivalent in the sense of the Central Limit Theorem to the process√
ΛBH

t , i.e.,
1√
N
Zt →

√
ΛBH

t .

4. Numerical simulations

In this section we show by numerical simulations the equivalence in
distribution of the three processes Zt (1.8), Z∗t (2.4) and ZHt (2.11). The
results of the simulations are shown in Fig. 1 by plotting the density func-
tions of the three processes at different times. Moreover, the insets show
the corresponding variances.

The centre-of-mass like process Zt is simulated by using its defini-
tion (1.8) through the process Xκ

t , which obeys Eq. (1.1). We remind, that
in (1.1) the parameters τκ and σκ, see Eq. (1.7), follow the corresponding
distributions q(τ) and g(σ). In particular, let L−νν (τ) = K−νν,1 , 0 < ν < 1,
be the Lévy extremal density, we consider the pair of distributions

q(τ) =
ν

Γ(1/ν)

1

τ
L−νν (τ) , g(σ) = Mβ(σ) , 0 < β < 1 . (4.1)

The process ZHt is simulated by

ZHt =
√
NΛBH

t =
√
NΛ

∑
κ

Y κ
t =

√
Nσ0

M

∑
κ

Y κ
t , (4.2)

where Y κ
t obeys Eq. (2.1).

Finally, the process Z∗t is simulated by the SDE

dZ∗t = − Z∗t
τeff(t)

dt+

√
2Nσ0

M
dWt ,

where, in analogy with previous cases, we use the properties of the sum of
Gaussian variables to set dW eff

t =
∑

κ dW
κ
t =

√
NdWt. Since we already

have the trajectories Y κ
t that we simulated for the process ZHt , for numerical

convenience, the computation of τeff is performed according to definition in
terms of series given in Eq. (3.2). Moreover, we set σ0 = 1/N because in
the simulations we sum N trajectories.

Simulations support the equivalence in distribution among the three
processes, at least for the chosen distributions of the parameters.

5. Conclusions and perspectives for applications

In this paper we have considered an ensemble of OU processes char-
acterized by a population of relaxation times and of noise amplitudes. In
the framework of the Brownian motion, the OU process can be viewed as
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Figure 1. Equivalence in distribution of the processes Zt
(�), ZHt (M) and Z∗t (©) with parameter populations given
in (4.1) where ν = 1/4 and β = 3/4. Top panel shows the
evolution in time and in the inset the variance that scales
with H = 1/2 is displayed. Bottom panel shows the fit with
the expected density functions accordingly to (2.18).

a stochastic dynamical equation and is called Langevin equation. In this
sense, we have considered a heterogeneous ensemble of Brownian particles.

In particular, we have studied the stochastic dynamics of the centre-of-
mass like process of this ensemble and proved that this process is equivalent
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in distribution to a process generated by a non-autonomous SDE with time-
dependent drift term and uncorrelated white noise, i.e., no-memory effects
emerge in opposition to approaches based on the generalized Langevin equa-
tion or on Langevin equations with coloured noises, and it is equivalent in
distribution also to a randomly-scaled Gaussian process, i.e., the product
of a Gaussian process times a non-negative random variable.

Moreover we showed that anomalous diffusion emerges as a consequence
of the heterogeneity. In fact, we found that the population of the relaxation
times contributes to the emergence of an anomalous scaling in time, as
shown in (2.10), and the population of the noise amplitudes contributes to
have a non-Gaussian density function (2.13).

The present study is a further step towards the interpretation of anoma-
lous diffusion as a consequence of a complex environment [26, 20, 27] that
is here represented by the heterogeneity of the ensemble of particles. The
improvement provided with this paper lays in the fact that by using the
OU process we establish a relation between the anomalous diffusion and the
Brownian motion modelled by the Langevin equation, which is a dynamical
equation, so we put the emergence of anomalous diffusion on physical basis.
Then, future developments will concern the study of the motion and the
diffusion properties of a test-particle immersed in a complex environment
embodied by such heterogeneous ensemble. This has a direct application
for modelling anomalous diffusion [10] and collective motion [17, 30] in bio-
logical systems. In fact, anomalous diffusion in biological systems is largely
observed in experiments and it is due to macromolecular crowding in the
interior of cells and in cellular membranes, because of their densely packed
and heterogeneous structures [10, 28]. The proposed modelling approach
can be applied for modelling diffusion of meso-scopic test-particle in an
environment also composed of meso-scopic particles embodying the hetero-
geneous and crowded environment where the test-particle moves. The study
of diffusion of a test-particle in a heterogeneous and crowed environment
motivates future developments of the present research.
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[2] F.E. Benth, B. Rüdiger, A. Süss, Ornstein–Uhlenbeck processes in
Hilbert space with non-Gaussian stochastic volatility. Stoch. Process.
Appl. 128 (2018), 461–486.

[3] J.P.N. Bishwal, Minimum contrast estimation in fractional Ornstein–
Uhlenbeck process: Continuous and discrete sampling. Fract. Calc.
Appl. Anal. 14, No 3 (2011), 375–410; DOI: 10.2478/s13540-011-0024-
6; https://www.degruyter.com/view/j/fca.2011.14.issue-3/

issue-files/fca.2011.14.issue-3.xml.
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[24] G. Pagnini, Erdélyi–Kober fractional diffusion. Fract. Calc. Appl.
Anal. 15, No 1 (2012), 117–127; DOI: 10.2478/s13540-012-0008-1;
https://www.degruyter.com/view/j/fca.2012.15.issue-1/

issue-files/fca.2012.15.issue-1.xml.
[25] G. Pagnini, The M-Wright function as a generalization of the

Gaussian density for fractional diffusion processes. Fract. Calc. Appl.
Anal. 16, No 2 (2013), 436–453; DOI: 10.2478/s13540-013-0027-6;
https://www.degruyter.com/view/j/fca.2013.16.issue-2/

issue-files/fca.2013.16.issue-2.xml.
[26] G. Pagnini, Short note on the emergence of fractional kinetics. Physica

A 409 (2014), 29–34.
[27] G. Pagnini, P. Paradisi, A stochastic solution with Gaussian stationary

increments of the symmetric space-time fractional diffusion equation.

Auth
or'

s c
op

y

https://www.degruyter.com/view/j/fca.2012.15.issue-1/issue-files/fca.2012.15.issue-1.xml
https://www.degruyter.com/view/j/fca.2013.16.issue-2/issue-files/fca.2013.16.issue-2.xml


CENTRE-OF-MASS LIKE SUPERPOSITION OF . . . 1435

Fract. Calc. Appl. Anal. 19, No 2 (2016), 408–440; DOI: 10.1515/fca-
2016-0022; https://www.degruyter.com/view/j/

fca.2016.19.issue-2/issue-files/fca.2016.19.issue-2.xml.
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