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ABSTRACT. This work develops the asymptotic properties (weak consistency
and Gaussianity), in the high-frequency limit, of approximate maximum likeli-
hood estimators for the spectral parameters of Gaussian and isotropic spherical
random fields. The procedure we used exploits the so-called mexican needlet
construction by Geller and Mayeli in [21]. Furthermore, we propose a plug-in
procedure to optimize the precision of the estimators in terms of asymptotic
variance.

1. Introduction

The aim of this paper is to investigate the asymptotic behaviour of a Whittle-
like approximate maximum likelihood estimates of the spectral parameters (e.g.,
the spectral index) of isotropic Gaussian random fields defined on the unit sphere
S2. We employ a procedure based on the so-called mexican needlet construction by
Geller and Mayeli in [21]. Furthermore, we develop a plug-in procedure aimed to
merge and to optimize these results with the achievements pursued in [12], [13], see
also [14], where the asymptotic behaviour of Whittle-like estimates were studied
respectively in the harmonic and standard needlet analysis frameworks.

Under the hypothesis of Gaussianity, fixing smoothness conditions on the be-
haviour of the angular power spectrum, we pursue weak consistency and central
limit theorem allowing for feasible inference. From the technical point of view, the
asymptotic framework we use here is rather different from the usual, being based
on observations collected at higher and higher frequencies on a fixed-domain (i. e.
the unit sphere). In this sense, this work can be related to the area of fixed-domain
asymptotics (see for instance [2], [34]); on the other hand, as for [12] and [13], some
of the techniques used here are close to those adopted by [46] to analyze the as-
ymptotic behaviour of the semiparametric estimates of the long memory parameter
for the covariance of stationary processes. In terms of the angular power spectrum,
we shall also focus on semiparametric models where only the high-frequency /small-
scale behaviour of the random field is constrained. In particular, we consider both
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full-band and narrow-band estimates, where the latter allow unbiased estimation
under more general assumption, by paying the price of a slower rate of convergence
if compared to the former.

This investigation, as many others regarding statistical inference on spherical
random fields, is strongly motivated by practical applications, especially in cosmol-
ogy and astrophysics (see for instance [37] and the references therein). For instance,
as described in [9] and [§], satellite missions such as WMAP and Planck are now
providing huge datasets on Cosmic Microwave Background (CMB) radiation, usu-
ally assumed to be a realization of an isotropic, Gaussian spherical random field:
the issues concerning parameter estimation have been considered by many applied
papers (see [24], [31] for a review), but in our knowledge, until now, rigorous as-
ymptotic results are still missing in literature. We however refer also to [4], [15],
[19], [43], [44], [36] for further theoretical and applied results on angular power
spectrum estimation in nonparametric settings, and to [25], [27], [26], [28], [32],
[29] and [37] for further results on statistical inference for spherical random fields
or wavelets applied to CMB radiation.

Another result we work out in this paper concerns the formulation of a plug-in
procedure which combines the application of the asymptotic results here attained
with those described in [12] and [13], where the authors proved that weak consis-
tency and central limit theorem can be achieved respectively by standard Fourier
and standard spherical needlet analysis. In [12], the authors themselves have put
in evidence that, if the asymptotic achievements are better with respect to those
obtain in needlet framework in terms of precision of the estimates (e.g. their asymp-
totic variance is smaller), in many practical circumstances the implementation of
spherical harmonics estimates may present some difficulties, due to their lack of lo-
calization in real space. The presence of unobserved regions on the sphere (common
situation in the case of Cosmological applications), can indeed make their imple-
mentation infeasible, and spherical harmonics exclude the possibility of separate
estimation on different hemispheres, as considered for instance by [5], [45]. In view
of these issues, in [13], the authors investigated the Whittle-like procedures to a
spherical wavelet framework, in order to exploit the double-localization properties
(in real and harmonic space) of such constructions, at the cost of a smaller precision
in term of convergence in law of the estimates. They focussed their attention on
spherical needlets, second-generation wavelets on the sphere, introduced in 2006 by
[40] and [41], and very extensively exploited both in the statistical literature and
for astrophysical applications in the last few years: for instance, their stochastic
properties are developed in [4], [5], [6] [29], [30] and [39]. More recently, needlets
have been generalized in different ways: we cite spin needlets (see [17]), and mixed
needlets (cfr. [I8]), which represent the natural generalization to the case of spin
fiber bundles, again developed in view of Cosmological applications such as weak
gravitational lensing and the polarization of the Cosmic Microwave Background
(CMB) radiation (see for instance [4], [8], [11], [15], [19], [16], [38], [44], [45],
[47]). On the other hand, needlets have been generalized to an unbounded support
in the frequency domain by [20], [2I] and [22], the so-called Mexican needlets.
In this case, as we will describe in details below, even if the support in frequency
domain is unbounded, the form of the weight function, depending on the scale pa-
rameter p, is such that for each wavelet there is a small numbers of frequencies
which give a contribution substantially far from zero , while in the real domain the
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same weight function allows a closer localization than the one related to standard
spherical needlets. In particular this double localization depends on the value of p
or, better, on its distance from the spectral index, allowing these estimates to be
more efficient than the ones obtained with standard needlets. Our idea, therefore,
is to build a plug-in procedure on two steps, the first step being to estimate ap-
proximately the value of the spectral index by standard needlets and the second
step providing a estimation with mexican needlets, whereas the value of the scale
parameter p will allow a more efficent estimator.

The plan of the paper is as follows: in Section 2l we will recall some background
material on mexican needlet analysis for spherical isotropic random fields; in Section
we will introduce and describe the Whittle-like minimum contrast estimators,
while in Section [] we shall establish the asymptotic results on these estimators.
In Section [{] we present results on narrow band estimates, while in Section [6] we
will describe the plug-in procedure mentioned above. Finally, the appendix collects
some analytical and statistical auxiliary results.

2. Random fields and mexican needlets

In this Section we will introduce the mexican needlet framework (for more
details, cfr. [21I]) and its application to the study of the isotropic, Gaussian ran-
dom fields on the sphere. First of all, consider the set of spherical harmonics
{Yim : 1 >0,m = —1,...,1}. As well-known, it represents an orthonormal basis for
the class of square-integrable functions on the unit sphere space L? (82): the spher-
ical harmonics are defined as the eigenfunctions of the spherical Laplacian Ag2 cor-
responding to eigenvalues —I(I + 1) (see, for more details and analytic expressions,
[1] [49], [50], [37] and, for extensions, [33], [35]). The mexican needlets are defined
in [27] as

l
(2.1) Vikep () = VN S fo (é) Y Yim (@) Yim (51)
m=—I

>1

where
(2.2) fp () = 2*P exp (—2°) .

Observe that {5 jk} is a set of cubature points on the sphere, indexed by resolution
level index j and the cardinality of the point over the fixed resolution level k, while
Aji > 0 corresponds to the weight associated to any ;). The scalar N; denotes
the number of cubature points for a given level j (cfr. [40], [41], see also e.g. [21]
and [37]), chosen to satisfy the following

(2.3) Njk ~ B™% | N; ~ B% |

where by a ~ b, we mean that there exists c1,co > 0 such that cia < b < caa.
Below, we shall assume for notational simplicity, as in [13], that there exists a
positive constant cg such that N; = cpB? for all resolution levels j. In practice,
cubature points and weights can be identified with those evaluated by common
packages such as HealPix (see for instance [4], [10], [23]).

Considering L;({z,y)) = Zin:—l?lm () Yim (y) as a projection operator, the
definition (2] corresponds to a weighted convolution with a weight function ([22)):
mexican needlets can be considered as an extension of the spherical standard
needlets, proposed in [40], [41], see also [6], [12], [37]. The main difference between
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these two kinds of wavelets concerns their dependence on frequencies. In fact while
standard needlets have a compact frequency support (see again [40], [41]), each
mexican needlet is defined on the whole frequency range. In [21], mexican needlets
are proved to form a nearly tight frame, differently from the standard needlets
which describe a tight frame and, as consequence, are characterized by an exact
reconstruction formula (see again [40]).

Consider now a zero-mean, isotropic Gaussian random fields T : S? x Q — R;
it is a well known fact that for every g € SO (3) and x € S?, a field T (-) is isotropic
if and only if

d

T(z) =T (g9z) ,
where the equality holds in the sense of processes (see [36], [37]), and that (see e.g.
[37]) the following spectral representation holds:

l
T@)=Y Y amYim(z) , am= / T (2)Y i (z) dz
1>0 m=—1 §2
Note that this equality holds in both L? (82 X Q,dr ® ]P’) and L? (P) senses for every
fixed x € S2. For an isotropic Gaussian field, the spherical harmonics coefficients
arm are Gaussian complex random variables such that

E (alm) =0,E (almallml) = 5515% Cr.

The angular power spectrum {C; , [ = 1,2,3, ...} fully characterizes the dependence
structure under Gaussianity. Properties of the spherical harmonics coefficients un-
der Gaussianity and isotropy are discussed for instance by [3], [37]; here we recall

that
l

Z |alm|2 ~ (] X X%l—i—l .

m=—1
Hence, given a realization of the random field, an estimator of the angular power
spectrum can be defined as:

l
~ 1 2
Ci=——
l 21 T 1 Z |a:lm| )
m=—I1
the empirical angular power spectrum. It is immediately observed that

l o~
A\ 1 . @) . 2
(24) E (Ol) = 2I—H m:E - Cl = Cl y Var <a> = 2I—H —0forl — +00 .

As in [13], we introduce the following regularity condition on the angular power
spectrum:

CoNDITION 1 (Regularity). The random field T (x) is Gaussian and isotropic
with angular power spectrum Cy so that for all B > 1, there exist ag > 2, ¢g > 0
such that:

(2.5) Cr=1""G()>0, forallle N,

where cgl <G() <c¢p for alll € N, and for every r € N, there exists ¢, > 0 such
that:
d'l"

G
L)

<cu™", €(0,+00) .
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This assumption is fulfilled by popular physical models, for instance in a CMB
framework the Sachs- Wolfe power spectrum, which is the leading model for fluctua-
tions of the primordial gravitational potential, takes the form (2.5), see for instance
[9].

First of all, we stress that Condition [I]implies the following Condition 2] given
n [30].

CoNDITION 2. Condition [ holds and, moreover, there exist cg > 2 and a

sequence of functions {g; (-)},_, 5 . such that:

(2.6) Cr=1"%g; ( :

BJ)>0 for all BP=Y <1< Bt j=1,2...

where cal <gj<co forallj € N , and for everyr =0,...,Q, Q € N, there exists
cr > 0 such that:
dT
su su u)| < cp.
Jp Bi— 1<ugBJ+1 durgj ( )} -

As an example, consider

_oP ()
Cl =" )
Q1)
where P (1) = >0 ¢, it and Q (1) = Y_7_, ¢4, are positive polynomials of degree

p and g respectively, so that ag = a —p+ g > 2., so that
1+Cpp11+cpp21+
p,p

C, = [Totr- app Cpop
N ¢ 1 1 C 2
¢ 1 == L ees
g 1+ Caa =+ o l2 +
N\ 2
1 Cpp-1 B B] Cpp—2 (B_J>
jotp— qCpp * B; Cp,p + B2J om \1 + o

& 1 ¢ 1 BJ c 1 (Bi
9,9 Cq,9—1 9.9=2 1 ( BJ
1+ Bj cqq 1 + BQJ q l2 l .

o l
= l Og <B]> .

Condition [M will be necessary to prove needlet coefficients ([27) to be asymp-
totically uncorrelated (see [30], [39]); as we shall show, Condition [ is sufficient
to establish consistency for estimator we are going to define but we will consider
two further nested assumptions, B (which implies and is implied by [), to obtain
asymptotic Gaussianity, and @ (which implies B]) to provide a centered limiting
distribution, see also [12], [13].

ConDITION 3. Condition [l holds and moreover
G)=Go(1+rl""+0(17?)) .
CONDITION 4. Condition [l holds and moreover
Gl)=Go(1+o(I7")) .

For any given j, k, p, we define the needlet coefficients as:

B_jk;p : = /52 T (‘T) Ejk;p (‘T) dx

l
(2.7) = VAR Iy <é> > amYim (E1)

>1 m=—1
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so that
( Jk,p = VA pr< ) Z E (aim) Yim _]k}) 0.
1>1 -

Under Condition ] the following result is given in [30] and [39].

LEMMA 2.1. If 0 < 4p+ 2 — ap < Q, then under Condition [3, there exists a
constant Cg > 0, such that

Cq
(14 BUGH /21085 G520 (€54, 50)] 70

Corr (ﬂjk;p’ ﬁj’k’;p) <

Assume now that from the observations over the random field, we are able to
build the following set of quantities

N;
Zf2 (BJ) 20+ 1)C Z ikp foreach j € [Jo,JL] ,
k=1

>1

where the last approximation is motivated by the nearly tight frame property, as
in [39].

The next result describes the asymptotic behaviour of the variance-covariance
matrix of JA\j;p in terms of j.

LEMMA 2.2. If Condition [l holds with 0 < 4p 4+ 2 — g < Q, fized Aj € Z, we
have

e

1
alggo B2(1—ao)j Var (A ,p) = JApt(1-ao) I'(p+1-ao) ;
71 75 (Aj)
I Ba—an; ¢ (Ajip Mjrajip) = QGng (4p+1—aq) ,
where
(2.8) Tp (A]) .— BAI(1-a0) oo (A] log B)—(4;D—oz0+1) .

PROOF. Simple calculations lead to:

N;
VC”"(AJ';p) = Var Zﬁikm pr( J) 21+1) Var (él)

>1

= 22#( ) (21 +1)C?

1>1
while, for Aj € Z,

Njtaj

Cov (Ajip, Ajyagp) = Cov Z /8]]91717’ Z ﬁﬁrmkz,p

kll kzl
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l N l _
= Cow > f2 (B%) 2L +1)C,, > (BTZJ (20 +1)Cy,

l1>1 la>1
l l .
>1
l l
= 2> f; <§> £ (m) 2+1)C} .
1>1

Under Condition [, by applying Lemma [A22] in view of the equation (Al with
a=4and n =1 - 2aq, we have:

163501 (g5 ) (07 or (072

1>1
B2(1—o¢0)j
2
2G044P+(1*040)
while, for the equation (A2) with a; = as = 2, n = 1 — 209 and 7, (Aj) =
Tp,2,2 (A7), we obtain:

Var (Ajp)

T (4p+1—ag) +o0; (B2(1_"‘°)j) ,

Cov (Aj;pv Aj+Aj;p)

4G3Y Iy (%) fo (Bg:lmg) 1720 + o0 (1)

1>1

7B (A]) —ag)J —ag)J
2G344p+(17a0)B2(1 0)]1—‘(4]9—1— 1 — 040) +o (32(1 0)]) ,

as claimed. O

3. Mexican Needlet Whittle-like approximation to likelihood function

In this Section, our aim is to define a mexican needlet Whittle-like approxima-
tion to the log-likelihood function of isotropic and Gaussian random fields on the
unit sphere under Condition [[] and to develop the corresponding estimators. We
will follow a strategy analogue to the one used by [13], (see also [12] and [46]). We
let

ﬁjm = (le;p’ﬁﬂ;p’ ""ﬁij;p)
where 3., is defined as in (7). Again, under the hypothesis of isotropy and
Gaussianity for T, we have

BJ;P ~ N(Ovl—‘) )
where
1 l
I = [Cov (ﬁjk;p’ﬁjk’;p)]k,k/ - N, ng (E) @U+1)C | In;
7 \i>1

in view of (Z1) and Lemma 2] (see also [12], [13]). The likelihood function is
then defined as

_N, - 1 a7
£(9:85) = (2m)~™ (detT) Wexp{_i sl lﬂ“’} '

Let
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KM (a ZfQ(BJ>(2Z+1)l

N; >1
Under Condition [Il we have:

(0‘ G; B] p) 27T N (GKM( ))7Nj/2 exp{ ;EI?MJEWD)} )

and the corresponding approximate log-likelihood is

82 B
—2log L (a,G; 3J’;p) = Z {W% —log <W§Zz6¥)>} ,

k

up to an additive constant.
By summing with respect to j, we obtain.

-1

Jr Jr
R%,JL (o, G) = Z N; Z —2log L (a, G;ﬁj;p) J
Jj=Jo j=Jo

where the choice for Jy, Jr, will be discussed later. Hence we define (cfr. [12] and
[13])

~M
(aJo,JL’GJo JL) =arg (algl)féORJo,JL (2, G)

where © = [2, +00) x (0,400) . Computing the derivative of R}’ ; with respect to
G and setting it equal to zero, we have

0= pu (o, Q) ! i
= Aty o6 G) = —5——
oG " Z;']i,]() NJ j=Jo

. Ek ﬁ?k;p + &
G?°K} (o) G

)

whence
Jr

Jr, 2
~ ~ 1 >k Bis 1 A;
G§4J :G,]JWJ (o) = 7 E: MJ,p: 7 E: MJP
o o >t Ni =3, K3 (a) >t N =3, K3 (o)

Since
82
oz . (:6) o G, (@)

>0,
Jo,JL

1
VN “Z; & <W4<>‘Nj> o=, @ *m

and R} ; (a,G) = 400 as G — 0 or oo, the second derivative test yields that

M . .. . M
Ry ;, (@, G) has a unique minimum over the domain on G ;, (a). Therefore, we
can define

R%,JL () RJO JL (a, GJMO,JL (a))

~ k,
= 1+10gGJMO7JL(a) ZZ 08 7 i p).
ZJ Jo ] j=Jo k
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REMARK 3.1. In this formula it is necessary to fix explicitly the values of L, Jy
and Jr,. Let us fix L as the highest multipole level available from the dataset. Given
L, as stressed above, differently from the standard needlet case (see for instance
[40], [41]), in the mexican needlet case the weight function does not have a compact
support. Therefore, for computational reasons, we must find a criterion to choose
the suitable extrema for the sums over j involved. Considering (see again [21]) the
behaviour of f, (-), we can fix thresholds ep 1 (L), €p,2 (L), such that:

Jozmax{j EZpr <ﬁ> > €B,1 (L)fp (%)} R

JL—min{jEZ:fp <é> <epa(L) fp (%)} .

If, for instance, we choose,

1 B-1 1

=51 (L) = 3y oxP <?> vep2(L) = gay e (B (B - 1))
we find B’ = B, B/t = L/B, similarly to the classical needlet case as described
in [13].

4. Asymptotic Properties

In this Section, we prove weak consistency for the estimators a%h and CAJ% L
and for the former also asymptotic Gaussianity. We begin with some definitions:
let

Jr M
1 Go K" (a
Gl (@) = = 3 3y
Zj:]o N; j=Jo J
Computing the first and second order derivatives of G% L (), indexed by n, we
obtain
M d*
GJ();JL,H (Oé) : = dan GJ();JL (Oé)
Jr M
G KM («
SIS o) e ML R
LN KM (a)

Zj:Jo j=Jo J
where (see Proposition [I]) in the Appendix, we have

M « 1 &
(41) Uj;l (a) = <—%> = (]10gB+ Ip, (a) —I—Oj(l)) s

J
. . L (@) Ip2 (@)
4.2 = j2log® B + 27 1o Bp’l(a)+2<p’1 ) e J +o0; (1),
(2)  =gTlg” Bt 2jlog By "V 2\ 7@ ) T Tpete) T W

Furthermore, we fix

Uj§0 (O[) = 1’ G%;JL,O (Oé) = G,]]tg;JL (a) )
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(since now, we will use either G%;Jho () or GJMo;JL (). Recalling that N; =
CpB?%. Thus by (A6), we have for s =0, 1,2,

JrL M
Go K" (ao)
Y@ = —2— S NL2U (a
w02 S N & R @
_acap g,
+1 ? a—ag)j
B GO(pZJL)iBZ’jX:B(%r Ujis (a).
j=Jo j=Jdo

The next auxiliary result is as follows:

LEMMA 4.1. Assume Condition [ holds with 0 < 4p+2 — ag < Q. We have
that

lim E (G35, (a0)) = G,

JL—>OO

1 GM . (a B2_1
li Var ( JU’JL( 0)> = 0(2) (1+7o) ,

M BT Go B2

where
2 T(p+1—ap)
2. 2 _
o5 = 0p (p, o) = 24p—ao T2 (2p _ % 4 1) ’

and T is as defined in Lemma[B1l.

ProOOF. We have
S L e E(L)
E (GJ JL, (O‘O)) = 7 M
o ZjiJo N; j=Jo KJ’ (a)

G S SR @ 500)

J M
2= Ni j=7, Kj' (o)
= Go+ oy, (1) .
On the other hand, we prove that
A Aivns 4 ,
4.3 C 7P , J+AJp — 2 ZBZJBQOA] A7) .
( ) ov (GOKJJW (Oé) GOKJI\_/{_A] (CY) CBOo TB ( j)

We can indeed observe from Theorem that

A, R
C J J+Aj
ov <G0KJ]\4 (Oé)7 (;QI(]-w (a))

J+Aj

BaAj PR
S @, @B (85 850a))

B2 9T (4p+1 — ay) N p2(1+a—ag)j
T Ro(a) 4t 75 (A)) B R

262]3 r (4p +1- 040) . alAj R2(1+a—ap)j
(44) T WAl (p— g 41) (B BED o
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@M
Var < Joéz (a))

Hence

B Do Sy
- Cov Jip _ Dty
2 M ? M
(ZjiJo Nj) j=7, GoG @) 555 GoGiag (@)
J Jr—j

_ 1 ZL: sz Cow (Zkl Bikp ks ?+Aj,k;p>
- 2 M
(ZjiJo NJ‘) J=Jo Aj=Jo—j oK' (@) GoK i (a)

JL JrL—j
1 1 I'(4 1- . ;
_ — - ( D+ O[()) § : B2(1+a7060)j E R (A]) BaAJ )
41) ap+5 T2 (2p_g+1) ; ) )
E = Jo B% 2 j=Jo Aj=Jo—j

Following Lemmas [B.1] and 2, and computing in o = g, we have

var [ Clton (@0) ) 2(1+70) T(4p+1-ag) i o
Go 29P—a0 T2 (2p— 2 +1)

Jj=Jo
B%2—-1

= —gr o0 (1+70) B2 +0(B72) .

LEMMA 4.2. Under Condition [, we have for s =0,1,2

G% Jr;s (CY)

sup
G% Jr;s (CY)

—p 0.

ProOF. Under Condition [Il we can readily obtain that

~ JL Zk ﬁgk; .

Clprns (@ 2i=a Kyrtay Uiss (@) .
M o GoKM (o

T

JJO\/_JKM%)U )<\/—Zk(Gofgﬂ]}€ao> 1))

M(Oto) )

J
> ity N KT@UJ;S ()
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so that
K (a)
S o e )
P >

J KM (ao) ¢

>t NJ'KT(;)UJ;S ()

/—K (@0)
7 Jo J KM(o?) U )
< P (JL—‘rJo—I—l) R

supj (\/— p (GOKM'an 1)>
(Jo+Jo+1)

> 0

In view of (A4 and (A5, we obtain

] JO \/ KIW ;S )

K} (a)
Z‘}IiJO NJKT@?)U ()

27: Bill+a=ao) js
Sk, Bito—ao)js
BQ@2ta—ao) _ 1 JLBJL(lJrafOco) _ JOBJo(lJrafao)fl
B (BO+a=a0) — 1) J; BIr(to—00) — Jg Blo(Ta—co)1
_ O(BfJL) ’

so that
KM (ap)
S g0 VN Ry Ui (@)
sup |(Jr + Jo + 1) !

. J KM(agp)
7 5200 Niray Uiss ()

On the other hand, we have by Chebyshev’s inequality and Lemma 1] that

< (WZ (GoKJAZ?aw ‘1>>
ﬁ&h4ih+4 <vr—§:<gﬂgéim)—1>>

)
(JL—‘rJo—I—l)

(% ()
(% ()

< +00 .

> 0. (JL + Jo+ 1)2>

whence
P sup
j=Jdo,...JL

<(J+Jo+1) sup IP’(

> 0. (JL + Jo + 1)2>

Jj=Jo,.

> 0, (JL +J0+1)2>
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fo(m)'
O

Let us focus now our attention on consistency, following a technique developed
in [7] and used in [46] for long memory processes (see also [12] and [13]).

THEOREM 4.3. Assume Condition [ holds with 0 < 4p+ 2 — ap < Q, we have,
as Jy, — oo,

~M
OéJo,JL - pOé() Y

AM
GJO,JL — pGO .

PRrOOF. Following [46] (see also [13] for the standard needlet case), we let

AR%,JL (,0) = RJO,JL() R%,JL (o)
g B @) G, (o)
G%,JL (@) Go
GM
+log JO’CJT,L( @) ZNl ( )
0 E] 50 Ni =7, 0)
= U%,JL (a)—TJo,JL (@) ,
where
Gy, (@) G, (a0)
45) TV, () = log-20lb o2 jog ol :
(4.5) JD,JL( ) g Jo,JL (@) g Go
GM «
(4.6) UMY, (o) = log JOéL( ) ZNl ( )
0 E] Jo ]] Jo O)
For any € > 0, we have
P(}aJMOJL—aohs) = P( min  ARY (a,a0)§0>
’ |a—ao|>e ’

= ]P’( min TJ07JL( )—|—U%)JL(Q)§O>.

la—ag|>e
Hence, by combining Lemmas [£.4] and 4.5 we obtain

]Llin}roo U3l 5. (0, a0) >0,

sup |T}‘;{JL (a,ao)} =0,(1) ,
as claimed. g
LEMMA 4.4. Let U}ih (v, ) be defined as in {{.0). For alle < ap —a < 2

JLli)H}r U]g 7. (@, a0)

Jr M Jr M

1 K; (ao) 1 K (ao)
— i log —— S N, _ N1
JLLH}»oo o8 EJL N Z J KJ]\/I (Oé) ZJL N Z 08 =y KM( )

Jj=Jo *'J j=Jo Jj=Jo "I j=Jo
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2 2

— B
:lOgW —l—logBﬁa—ao >0.>0.

if ag — a = 2 we have
. b 1

JLLH-il-oo log JL UJD’JL (Oé, Oéo)
and if g — o > 2 we have
. 1 g —
5503 o Tog B Vo9 (@00) = =5

ProOF. Consider first the case € < ag — a < 2. For the sake of simplicity, we
fix Jo = —Jr. We have that

-1

Jr M
1 K (o
JL Z NJ log K]M( 0)
2t Ni 2T, i (@)
1 JL _
-——— > N (log B[ (B, a— ag) + o(j))

E]:—JL NJ j=—JL

1
= (a—«ap)log B <JL ~“Fo1 1) +log (I, (B, — ) + 04, (1) .
On the other hand, we have
JL M
1 K" (ao)
log ———— N2 ——
s g 2 N

j=—JL j=—JL

Jr
I,(B,a—« C(o—onYi
;JL Bz(;‘) > BYBET 4o, (1)

j=—JL j=—JL
B%2-1

B2+(o¢—a0) -1
2 _

= log

= log Ble—eoUt) 4 og (I, (B, a — ag)) + 0y, (1)

=log + (o —ap) (Jr +1)log B +log (I, (B, — ) -

1
B2+(a—ao) — 1
As shown in [13], we have that the function

| (z) = B2-1 B?log B
T prte —q B2-1

has a unique minimum 0 at x = 0. Therefore, for any |a — ag| > € > 0, there exists
a constant d. > 0, such that

UJO)JL (04,040) > 68 .

If @« — ap < —2, we have

1
WUJO,JL (av, a0)
JL JL M

; _ (a — ap) K ()

= ———log Z BiGte—ao) | _jog B2Jr . A T Z Njlog —5—— % + o0y, (1)
2J J J M L
log B*7x j=Jo Zji]o J j=Jo Kj (@)

_ Qpg — & _q.

2
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Finally, we have for a — ag = —2

1

A ey Vot (@ a0)

_ 2Jr, 2Jr, —
im Tog 71 {—log B*'* +log Jp + Oy, (1) +1log B*’*0;, (1)} = 1.

O
LEMMA 4.5. As Jp — 400, we have
sup ’T};{JL (a,ao)‘ =o0,(1) .
PRrOOF. Because
~ J Ay,
GY (@ 1 250 K]@‘}(pa)
M T Go KM (ap)
G, (o)  Go SN _zé;w(m”))
it follows from Lemma 1] that
E Gl (@) 1) =
G%,JL ()
while
M
Var 7G']°’JL (@) —-1]=0 (B_QJL) )
G%,JL (o)
Indeed, we have
éyJ () -2 ~
Var (7611‘27 L @ = (GJMO)JL (@) “Var (G%)JL (a))
Jo,J1
24— 2 2
_ (B¢ o —1)" I,(B,« —7040)g I'(4p+1— ap) Bt 4 o, (B21)
(32(1+a—a0) _ 1) Bao—ag2p—aot+5 12 (2]? _ % + 1)
By Chebyshev’s inequality we have
G (@) 1,0
GJM07JL (@) P
and from Slutsky’s Lemma
éyJ ()
log | =52+—~—-1] —,0.
(G%7JL (@) P
On the other hand, by Lemma [4.2]
G% 5, (@)
sup - -1 —,0,
GJMO,JL (@) P
as we claimed. (I

Our purpose now is to study an asymptotic convergence of estimator a%&.
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THEOREM 4.6. Let 0 < 4p — ap < Q. Assume Condition [ holds with . Hence
we have

(4.7) B (afyf . ao) =0,(1) , as Jp — oo .
Under Condition[3, we have

Ip70 (040 + 1) 10gB o
Ip)o (040) (B + 1) ’

(4.8) Be (aJM - ao) 5y —

Under Condition[4), we have

(4.9) B (@) = a0) —a N (0,43)
where
2 3
2 2 2 - (B2-1)
S =¢5(p,B,ag) =05 (1+7 ,
0 o(p 0) o ) Bilog’ B
2 I'(dp+1— )
B = od(pa0) = oo .
20700 (T (2p+1 - a0 /2))
- 1

= = (B2 +1) Go+ o+ Foma) + 271 = 7))

with To,71 T2 as defined in Lemma[Bl

PROOF. Again we shall focus on the Taylor expansion

d ~M
0= d—aR%;JL (CY) |a:a§/{),‘,L = S%7JL (Oé) |o¢:a0 + Q%;JL (a) |Oz:E (aJmJL _ CY) )

d
S%,JL (a) = %R%,JL (a) ;
M d2 M
QJ(),JL (a) = ERJ(),JL (a) ?

where @ € [ — 0y, 00+ dy,], and 65 —, 0 as J, — oo by Lemma 3 The
equation above then leads to

~ -1
(55,0, = a0) = =S3 1, (a0) (L5, @) -
The proof is readily completed by combining Lemma [£.7] and [£.8 O

LEMMA 4.7. Assume Condition [3 holds with 0 < 4p+ 2 — g < M, we have

Io(ag+1) logB
Ip)o (Oéo) (B + 1) ’

BJLS%)JL (ag) —=p —K
if Condition [§] holds we have

_log’ B
B SY | (ap) —>DN<O,U?)(1+T) o8 ) .

B2-1
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PROOF. Note, first of all, that, as in [13], the proof of ([&38)) is totally equivalent
to the case of [@7). First of all, we can rewrite Sﬂ/f 7, (@) as follows.

d ~ d k
SJO g (@) = EIOgG%,JL( a) — daz ZZ g i p)
j=Jo JJ Jo k

G(]]‘g,JL,l( )
G%,JL () Z] Jo JJ Jo

B 1 Jr K% (o) B?/ﬁp _
LN, 2 (K?”O‘))zk: (5% (@) K} (@) 1> |

j=Jo J j=Jo

We can easily see that

Go —M
Shn . (ag) = =———5; ;, (a0) ,
' GH 5, () ™

where

5 () = 1 i K (o) Z B?k;p _ é%,JL (o)
Jo,JrL ZJL N KJJW (010) B GOKJJW (050) GO

j=Jo J j=dJo

and from Lemma we have
G
,\Mio —)p 1.
GJ(),JL,I (O[O)
Under Condition Bl we have

lim B/:E (SJo IL (ao))

]L%OO

Br i (_ K% (a0)> E (Kj;p) N; _ JZL E (KJ?P)

M M T M
JL—)OO ZJ o J = Kj (040) GOKj (040) ZjiJo i iz GOKj (Ozo)
I 1) kB K N 4 1 Jr
= fim olootl -« > log Bl B | BT = 3 B | 405, (1)
Jr—oe  Ipo (ao) Z,]O B2i =, ZJ 5, B¥ =
I 1) logB
= lm —x22 (@0 +1) log +oy, (1) ;

Jr,—00 Ip)o (Ozo) (B + 1)

while under Condition [ we find immediately
—M
E (S5, (@0)) = 05, (1) -

In order to compute the variance of ?% 7, (@), we split it into 3 terms (see again
[13]):

Var (EIZJL (ao)) =A+B+C,

where
A= ZZ 31 1 KJ]\241 (ao) Cov Elﬁ ﬂ?lklm Ekz ﬂikmp
(z (S, ) 5 VKT o) K370 )\ Gorl o GoliT o))
j=Jo
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0) KM (ap) GM . (ap)
B= > Jul J2.1 N; N, Var | —Lede 2
( Jo N-)2 Jj1 o g2 <KM ao K]W( )> e ar( GO ,
Z]

C— 3 K (a0) Ky (o) Cov Sk B N Gy, (@0)
(2, N-)2 3 R o) 1w )\ Gott oy G
j=Jo

By fixing j = j1, Aj = j2 — j1, we have:
J
N} M M
(Z;]LJ N) Jj=Jo Aj=Jo—j Kj (20) KJ+AJ (o)

2 2
% Clow Zkl jkisp Zl@ J+Aakz P
GOK_j ( ) GoK J+A] ( )

(B*-1)log’ B ) 2
= TR0 ((”TO”L - (ﬁ

2
(52%11)2 (1+ ﬂ)) +o(B?) |

by applying Lemmas and On the other hand, from Lemma [£]] we obtain

(1 +’%1)) Jr

_ M (ao) K2y (o) m
o (27 JON')2321J22<KM 0) KM( ))NJlezva < o )

0_2 Jr ) ) Jr ) ) Jr . ']ij .

= | X loaBBY || 3 logBRBY| 3 BY B BT (Aj)
o3 = N o

= —0—— Y logB/B¥ (32 — (1 +?O)B2JL> +o0(B¥)

(Z] Jo BQJ) i=Jo

(B2-1)10g’B , __,, 1\
= B (JL—BQ_J (1+70) | -

Finally, we have that

JL 2 Jr 2
—2 i Zkﬁk Zkﬁk
c = —— = Z log B Clov 1 ki Z 1 Piskisp
3 M ’ M
(ZjiJo Nj) =T Gol™ (a0)” 5=, GokGy' (@)
JrL
x| Y B*logB” | +0(B*")
Jj2=Jo

QUOWB—% (((1 +F0) Jp — (ﬁ (1+ a)))

—_1)> +o0(B**).
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Summing all these terms, we obtain

, B%log” B
" (B*-1)
We can use the Lemma [B 1] to observe that

Var (55,5, (a0)) = ﬁ (21, +01, (1)).
J=Jo

A+B+C=c0¢ (1+7)B?"r +0(B*") .

Hence we have
02 (1+7)B%log* B
(B*-1)
To prove (@9), it remains to study the behaviour the fourth order cumulants,

observing that this statistics belong to the second order Wiener chaos with respect
to a Gaussian white noise random measure (see [42], [13]). Let

1
B7:S;, (ao) = B Z (4;+B;j) ,
J

lim B*/Var (gﬁ,h (ao)) =

JL—)OO

where
. _ S Bk
4.10 A, = BYlogBi{—=kik 1%
( ) J g {NjGQKj (a0)
(4.11) B, = BYlogB’ {G(Jz;(ao) B 1} .
0

In the Appendix, Lemma proves that:

ﬁcum {Z(Ajl +Bj,), Y (Aj, +Bjy), Y (A, +Bj,), > (A, + Bj4)}

I 15 I3 ls
Ji log* B
== OJL (W .
Exactly as in [12] and [13], the Central Limit Theorem follows from results in
[42]. O

LEMMA 4.8. Assume Condition [l holds with 0 < 4p + 2 — ap < Q. Then, for
ac [O[O - 5JL,040 + 6,]L]7 we have
B2log’ B
M —
Qo5 (@) —p o1

PROOF. The procedure is totally analogue to Lemma 19 in [13]. We obtain:

QY ) (a) = :
(G%,JL (04))
| K (0) K (0) = (KM ()’
e (K (@)’
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K

SN R
i Ni '@

2
K,M [e% A a

KIW(OZ)

KM a0)>

K ()

" (a0)
(Z NJ KM(O?) <_

KIW(OZ)

(=,

N KIW ao))

J KZ\/I(a

KM

(ZJWKMM)

(o)

2
>) +Zj1NJ’zj:NjK%(a) (J]ZM

Q! ;. (@) can be rewritten as the sum of three terms:

where:

M
Jo,g (@) =

! (a0) (o
<Z NJ KM(O?) (KJMI(Q)) )

@1

Q1 («

(=,

(@) + Q2 () + Q3 (o) ,

Q™ (@)

T

(o)

K « KM
N;j KM( o?))> (Zj N; I{J]M(oz)

(55)
K M(a)

(=) (5

KM (o)
KM(a) K (@)

I(JI-W (Ot())
(525 Moy )

Q2 (a

KM ()

Q"™ (@)

)= ()

) )- () (5 (3) )

)

KM (o)

<Zj NJ KM (a)

)8

(=

Q3 («

KM («a
NUSTQO)) > Nj

)@ ()

Q4" (av)

(0) K% (a)

) K} () K}
KM(a)> - (Z‘Nﬂ') (Zj Nj KM (o) KM(a)

)

= Z N;
j

(5 N Rt ) 5N
The next step consists in showing that.

Q2 (a) + Q3 () = 05, (1) .
Using Corollary [l Q5*™ («) can be written as:

KM (a)

> Nigwr oy
j J

KM (ag)

J

2N

while Q5% (a) becomes:

(@)

3 (a)

Ip.,O (B)

1. (B ,
(10g2 Bi 4+ 2L() log BI +

(

; I,1(B) j
N; [log? BY + 222" log B/ +
; J( Ip,O (B)

37" (a)

Ip,l (B)

Ip,O (B)

)2 i oJLu))

(ﬁ—g) +oJL<1>> |
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KM (ao)

o 1p1 (B) i 1p2(B)
— 1 . 27 p,1 J p,2
>N, K (@) ;N] (logB T2y e B +os,(1)

J

Ip,l (B)

Ip72 (B)

_ , K (a0) ( 2j | oip1\5) j
ijNJ zj:N, (o) log B +21p70 ) log B +Ip70 ®) +oy,(1)
so that:
W), )

It remains to study Q4" (a); by Propositions

KM

[ and 2] we have:

. 1 ;" (ao)
nginoo RB2(2+25% )L 2N KM (a) zj:N]

P} -
J

Jp—oo  g2(2+552) L

Bz(l+‘1’“°)
= CQBI,, (B, o — ay) -

lim A1, (B,a — ap) ZBQj(lJra;ao) ZBQj
J

J

B2
0.

B?log? B
(B2-17
Corollary [Il we write the numerator Q7™ («) as:

Q" ()

Finally, we prove that Q1 (@r) —p

>
p2(1+°52) _ 1 B2 -1

Using again Proposition [1 and

p,

_ JM KJM(O‘O) i i (B) ?
- 2TV | 2V (s + 2205)

J J

2

Ip 1 (B)

KM (ao) KM (ao) ;
= 3 N N-Jilogz BJ
Z KJ]W (Oé) J ; J KJIL{ (O[)

J

2
KM (Oéo) .

(o)

7K@

Let s=2 (1 + O‘_“O); by applying Corollary 2l we have:

2

. 1 num : CQBIP
Jm prn @ (@) = lim
= log’B

B 1y

(B,a — ayp)

B2SJL ZJL (S)

3s
4C2BI(B,ao,a) .

1)

N—
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It remains to study Q%" () ; by using again (A.6)) and Proposition 2}
2

1 den C2BI sj
]}&nm BQS Jr, (Oé) = ]I]:&noo BQS Jr Z B

Bs \?
= CQBIP (B,Oé—OZO) <ﬁ> .

Hence

B2(1+557) 1002 B
lim = .
JL—00 QJU’JL (a) (B2(1+a—2a0) _ 1)2

For the consistency of ar,, for @y, € [ag — @, ap + ar], we have

B?log” B

Q(]}{LJL (aL) —>p (32 _ 1)2

5. Narrow band estimates

From Theorem 4.6 it is evident that, under Condition [B] the presence of the
bias term does not allow asymptotic inference. As in [12] and [13], we suggest
a narrow-band strategy, developed only on the higher tail of the power spectrum,
which allows us to avoid the problem due to the nuisance parameter. We start from
the following

DEFINITION 5.1. The Narrow-Band Mexican Needlet Whittle estimator for the
parameters ¥ = («, G) is provided by

Jr
~M M . Zk Jkp jkip
GM = E E lo
@i Ciion) TENE & | 0K () (GKM )> ’

or equivalently:

(5.1) @y, = agminRy (a,Gl, (a)),
R 1 Jr
RJl,JL( a) = <1OgGJM1;JL(O‘)+m Z NjIOgKJM (Oé)> )
j=Jo =" Ji=J1

where 0 < J; < Jy, is chosen such that B/ — B”t — 0o and

log (1— (/1)

2 B =B/t (1-
(5.2) (1-9(JL) , Ji=Jr+ oz B

3
2

We choose 0 < g (Jr) <1 s.t. limy, 500 ¢ (Jr) =0 and limy, o0 Jpg(Jr)2 =0 .

For notational simplicity B”t is defined as an integer (if this isn’t the case,
modified arguments taking integer parts are completely trivial). For definiteness,
we can take for instance g (Ji) = J;*

THEOREM 5.2. Let &y, .5, defined as in (5.1]). Then under Condition[3 we have
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1 21 4+ 7
900)E B @, - ao) 4 47 (0. 802

?(B):= 10g2B(1}32B—2 1)? ((324— nt? (%)) '

PROOF. The proof is very similar to the full band case, hence we provide here
just the main differences. Consider:

where

d
SJ1§JL (a) = d le Jr ( ) )
M d2 M
]1,JL ( ) = WRJLJL ( ) *
Let
Jr KM NJ 2 GM (cvo)
J1se J .
1;JL ZjiJl N] =, K et (040) Go

Simple calculations based on Proposition [2] lead to

Jr ) " B2n n
Z BZ] — - (B2JL _ B2(J1—l)) +0(B2nJL)

2 _
= (B2 —1)
= B"r +0(B*tg(J)) ,

We have:

B’"

. —M
i 7o 7y (B (00)

) Bt I,o(ag+1)
= lim K—
Jp—o0 JLg (JL) Ip70 (ao)

JrL
X ZlogBj-BQj (BJ'—BJL (%Jrg(‘m)) +oy, (1)

Jj=J1
, I,o (oo +1) logB
—  lim - 1
Jngloo v Ip.,O (Oéo) B +1 to 0T ( )

As in full band case, we collect out all the covariance terms defined in Lemma
[B1] and following Corollary 2l we have

03(1—4—?)3 (ZJl;JL (2) +oy, (1))
(Z;‘Ji,h B2j)

After some manipulations, we have:

Var (gJL;Jl (040)) =

1
BAJL Zh Jr (2)
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= (1 a _%(QJL)) ) iy =i U (1= g () (1 —logs (1— g (1))

_ (%)2 AZs,0,(9(2) +0 (9.(70)°)

(5.3F (B;f)Q((Bf_ 5t (2 ) ot 40 (B ()7)

where

2
AZp (9(Jn) = (1+M) (- 29 (1)) <1+@g<m>

(B2 —1)
(@ (- mem) Joow
Thus we have

Ziin (2) = B7@ (B) g (1) +0 (B g(JL)?).

Note that ® (B) > 0 for B > 1.
Hence we have

Var (S35, (@0)) = o3(1+7)® (B) g (J1) B+ |

Consider now Q, ., (@), which we rewrite as

QY (o) = Loem (@)

Quden (@)

Following a procedure similar to Lemma [£.8 we have
Qnum (@) = 3Gy (B, — a0) Z,3, (s)
where s = 2 (1 + 252¢). Following (B.3), we obtain
Qnum () = cEGEI (B, — ap) ® (B, s) B/t g (J1) + O (B2SJLg (JL)2) :
where
® (B, s) =log” B

Bs 25g(JL)+slogB—2
(Bs—1)> \ B*—1 logB )~
Finally, we obtain

2
Jr

Qden (o) = CQBGgI (B, — ay) Z B%
j=J1

cEG2I, (B, — ap) B?Jr 4o (BQSJL) .

Hence
QY 1, (@) = ®(B,s5) g (Ju) + O (B*/g (J1)*) |
and, for the consistency of «, we have
Qs @) =, @ (B)g(J1) -

Thus ) .
0'(2)(1‘*‘?))_5 15 S, (@0) 4
- @7 J 2B L_J1L,vL * "7 N 0,1 ,



HIGH-FREQUENCY TAIL INDEX ESTIMATION BY NEARLY TIGHT FRAMES 25

as claimed. Finally we can see that

—M
SJl ;JL (ao)

1
9(Jp)? BE —
r]]t{;JL (a)

:O(JL-g(JL)%) S0,

L— o0

6. The Plug-in procedure

In this Section, we will present a plug-in estimation procedure for the spec-
tral parameter o based on the interaction of the approach described here and the
one based upon standard needlets introduced in [13]. As already mentioned in
the Introduction, there already exist in literature Whittle-like estimators for spec-
tral parameter based on spherical harmonics and standard needlets. The former,
although characterized by a higher efficiency, can be affected by the presence of
masked regions over the sphere, common set-up in Cosmological investigations, be-
cause of the lack of localization in the spatial domain. The latter, as one here
developed, is not altered by partially observed regions, paying the price of a lower
precision. Therefore, our aim is to show that, if 4p—ag > 0, the spectral parameter
estimator aﬁ s, is more efficient with respect to the standard needlet estimator
ay, . First of all, observe that

B2 —1)°
1- BQJLV (A]W _ ) _ 2 1 ~ (
JLlﬁoo ar aJO’JL o 00( + T) B4 10g2 B ’
B2-1)°
1' BQJL‘I ~ _ — 2 ( ,
,]Llinoo ar (aJL Oéo) Fo B4 10g2 B

see again [13]. We can therefore observe that for 4p — ap > 0,

o} < pp
where 07 := 02 (1 + 7). Consider that, for any fixed p : 4p > ap, o3, which does
not depend on B, becomes, by the Stirling’s formula,

2

(m(2p - %))
We have that o2 is smaller than 1 for 4p > ap — 2, while easy calculations show
that 7 < 1. On the other hand, as described in [13], p2 = p2 (a0, B) is decreasing
on B (see also Table 1): any attempt to reduce its value will produce an increase
of the variance due to the term (B? — 1)3 /B*log’ B.

Standard Needlet-p3 Mexican Needlets - 0%
B=vV2|B=V2|B=2|p=2]p=3] p=4
ap =2 5.00 2.24 1.16 0.62 | 0.49 0.42
apg =3 5.04 2.53 1.34 0.67 | 0.51 0.43
ag =4 5.10 2.64 1.57 | 0.75 | 0.55 0.45

Table 1: Comparison among different values of the variances pg and o3.

2N
oy~

Hence, the plug-in procedure can be implemented in two steps:
e First step: compute @y, in the standard needlet framework.
e Second step: if p > &y, /4, compute aﬁf’h by the mexican needlet ap-
proach; otherwhise, accept @, .
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Appendix A. Auxiliary results: preliminaries

The results collected in this section, provided by standard analytical calcula-
tions, are here reported to explicit the structure and the behaviour of the function

fp () defined in in [22)).
LEMMA A.1. Let

Waab,s =/ t** exp (—bt?) log® () dt .
0

We have
p—(at3)
Waa,b,0 = 5 F(‘H'_) ;
p—(at3) 1 4
Waa,p,1 1 [d— — logb} T (a + )
and

p=(a+3) T g2 d 1
VVza,b,zzT [d 5 2logbd—+1og b] <a+§> .

PrROOF. Standard calculations lead to
Waapo = / 2% exp (—bt2) dt
0

—(a+3) poo _1
_ Y 5 /0 (bt*)" "2 exp (—bt?) (2btdt)

p—(at3) 1
= B) I (a + 5) 5

Similarly
Waap1 = / 2% exp (—th) log tdt
0
= = @ exp (—bt?) log (bt?) dt — —o- / t** exp (—bt?) dt
2 Jo 2 Jo
p=(a+3) N
= 1 / x*" 2 exp (—z) [logx — log b dz
b~ (a+2) d 1
= =% _logh|T 2) .
L et (o3)
Wapo = / 2% exp (—btz) (logt)2 dt
0
b—(a-l—%) [e'e) a1 5
= 3 /O (bt%)" % exp (—bt?) [(log bt2)* — 2log blog bt + log? b 2btdt
p(at3) [ 2 d 1
= 3 [d 5 2logbd—+1og b] <a—|— 5) .
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LEMMA A.2. Let f,(-) be defined as in (2.2). Then we have

W1\, BOth n+1 (.
(Al) pr (§>l = WF (ap+ 5 ) + o0 (B]( +1)) ;

1>1

Moreover, for Aj € Z, we have

ay ! as ! n
i ()5 ()"

1>1

B ir (A +1 )
(A2) = Tf’ n 2)( +{)¢ r <(a1 +ag)p+ "T> +o (B<”+1>J) ,
2(&14—0,2) a1ra2)p 2

where

BAj((al—az)P+nT+1) )

a1B27 + ay B~AI ) ~((a1+az)p+242)

a1+a2

Tp,a1,a2 (A]) = (

PrROOF. Observe that

ai l as l n
S () 5 ()1

1>1

aip azp
- sl mm=) (3)) (7))

1>1

Bin 1 \? (@B 4 ay A R
= B2aphj ;GXP _(§> ( B2Aj ) <§>
>1

j(n+1) 20 (a1ta2)p+23t oo o
_ B ( B2&23 > 2 / x[(a1+a2)p+71] exp (—LL') dz + o (B(n-l-l)j)
0

2 B2azpAj alBQAj + a9
RBi(n+1) B28i(aip+242) n+1 4
= n+1r (G1+a2)p+ —_— +O(B(n+1)])
2 (a1 B2 1 ap) 1 F 2
Bn+1)j

n+1 .
— o an (ANT (B<n+1>y) '
2(&1 _|_CL2)(a1-i-az):D-|'nT+1Tp7 v 2( j) <(a1 +a2)p+ 2 > to

Fixing Aj = 0, a; = a2 = a/2, we obtain

W1\, ~BOtL n+1 (.
> 1 (E) =Tl (ap+ T) +o (B]( “)) ,
1 2a 2

as claimed. O

We now investigate the behaviour of the function K}/ (a) and its derivatives.

PROPOSITION 1. Let

2 2

Ip75 (CY) = O—BW4P+1_Q72)S = O_B/O t4p+1_a€_2t2 (logt)s dt , 8= 0, 1,2 .
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Then we have

(A.3) K} (@) = (Ipo(a)+o;(1)) B~
= #r (2p+1- %) B~ ;
K@)+ = KM (a)
(A.4) = - (j log B + % + o(1)> KM (o)
Kb () = K (@)
(A.5) = <j210g2B +2j 1ogB§Z:(1J EZ; + 23 EZ; + 0(1)> EM(a) .

PROOF. These proofs follow the ones concerning the scalar needlet case (see
[13]). We have indeed

KM(a) = ﬁz (%)41) exp <—2 (éy) (20+1)17°

1>1
) 1 \* 7\2 (I'= 40 (1'=2))
_ (2—a) v _ b
- Bty () exp< Q(Bj>> rol!
-2 )
= BiaJC—BW4p+1—a,2,o + 0; (BiO‘J)

= B_O‘jlp_ro (@) + 05 (B_O‘j) ,

KM (a) = ﬁz (é)@exp <_2 <§)2> (20 + 1)1 (~ log)

1>1

9 _
= —KJM (o) log BY — C—B%‘J </ At =21% 0 4t 4 oj(1)>
B

. Ipa (@) , M (.,
_ (j log B + 1o (@) —1—0](1)) K" (a) ,

1 I\* A%
M E —a 2
/t4p+1_°‘e_2t2 log tdt + o(1)>

/t4p+1_°‘e_2t2 log? tdt + 0(1))

_ ) I, ()  Ip2(a)
= (j%log? B + 2jlog B2 | P
<] & 7708 Ipo (@) Ipo(a)

. ) (2
= K" () (log 33)2 + 2B~ log B’ (O_B
2
B_O‘J -
w5 (4

+ 0(1)) KM () .
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COROLLARY 1. From Proposition [, we have that:
M
K j ()

= I (B,a — ag) B0~ 4 o (B0

where
apg—a

I,(B,a—ag)=02@2p+1) 7 .

PrROOF. The computation above shows that

2
Ipo(a) = C—BW4p+1—a,2,o
2—(217—%-{-1) o
Ly
Cr priTs
and following (A.3))
M a
K@) plae-angmer Tep+i-5) (oo
K37 (o) I'(2p+1-%)

— B(aofa)j (2 (2p + 1))060—2706 +o0 (B(Ocofa)j) ,
as claimed. O

The next results follow strictly Proposition 27 in [13], hence we will report the
statements, while we will omit the proofs.

PrOPOSITION 2. Let s >0, B> 1. Then

Jr
. Bs
sj s _ ns(Jo—1) .
(A7) > BY = g (B B ) ;
i=Jo
JL B* 1
(A.8) > BYlogB’ = ——logB <<JL - = >BS"L
= Bs —1 Bs —1
1
— J _1 _ BS(J()*I)
CENE—
Jr . ,
(A.9) > B (log BY)
Jj=Jo

B ) 12 B* o
= BS—l(IOgB) (((JL_BS—1> +(BS—1)2>B

2 s
- (((Jo -1)- le_ 1) * (BSB_ 1)2> BS(JO_I))

COROLLARY 2. Let

2
JL JL

Jr
Vigaz (8) = Z B® Z B®I (logBj)2 — Z B log B?

j=Jo j=Jo j=Jo
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The we have
BS
(B —1)

Bflog B 2
Vi () = (21 )

Moreover if Jo = —J,

- (BSJL - BS(J“*D)2 = BT (J — Jy + 1)

i B?log B 2 B sJr s(—Jr—1) 2 1 s(2Jp—1) 2
VJL<S>_<BS_1> {Bs_l(fs B I @75+ 12 |

so that

B3s
Al lim B2/t =log? B——— .
( O) ,]Lli?oo VJL (S) 0og (BS — 1)4

Appendix B. Auxiliary Results: Covariance terms

LEMMA B.1. Let 75 (Aj) be defined as in (2.8). Hence we have for 4p—ag > 0,
Jo <0,

(B.1)
Jr, ) Jr—j . 9
Yo (Jr) == Z B% Z 75 (Aj) B®AT = T (1+70) B** +0(B*") ,
j=Jo Aj=—Jo—j
Jr _ _ Jr—j .
S1(Ju) =Y BYlogB’ Y 7p(Aj)BWA
j=Jo Aj=—Jo—j
B%log B _ 1 B
(B2) :w ((1+TO)JL— <ﬁ (1+Tl)>)B2JL+0(BQJL) ,
Jr ) . JL—j .
S2(Jr) =Y B¥log BI Y~ 1p(Aj) BN
j=Jo Aj=—Jo—j
(B.3)
_ B%log’ B 2 B211

o ((1 +70) J7 — <ﬁ (1 +?1)> Jr+ 1P (1 +’%2)> B4 (BY)
where
9(4p+1—ao)
(BUpt2-00) — 1) ’
(B 1)
(Bir+2—as _ 1)2’

Ty = 24ptl-a0 (( Wy (B) )3) ;

B4p—a0+l -1

To =

T = 94pt1—ao

W (B) (BGB4p7ag (B(Pfl) 4 1) 4 B4B(4p7ag) (BSB4pfocg+1 _ 6) 4 B2 (B(4p*060) + 1) + 1)
L (B) = o

Moreover if we define

Zy, =30 (Jp) S2 (Jr) — 21 (J1) ,
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we have

BSlog”? B
. _4JL - ~
JliriloB Zy, - 7( 21y (1+7)

where

1 o~ o~~~ ~ o~
7= s ((32 +1) (To+ T2+ ToT2) + 271 — Tf)
PROOF. Let us call P = (4p 4+ 1 — ) and observe that:

JL—j

> BYMrg(Aj) -1
Aj=Jo—j
= B%J [cosh (AjlogB)]”" —1=2F — 7 |
Aj=To—j Aj=ge_j (B& + B=49)
-1 1 Jr—j 1

g Aj:z:Jo—j (BAJ'(%) +B‘Aj(%))P +A;1 (BAJ'(%) +B—Aﬂ'(%))P

where we have considered the case Jy < 0 . Hence we have, from Proposition [2]

-1 Jj—Jo

3 ! ~ Y BDa;

. P— . P
Aj=Jo—j (BAJ(%) + B_AJ(%)) Aj=1

1 .
- (1= B*(PH)(J*JU))
B(P+1) _ 1 (

while we have

JL—j 1 JrL—j
~ —(P-1)Aj
(P—1 P\ P T Z B
Aj=1 (BAJ(T) + B—AJ(T)) Aj=1
1 .
- - _ p—(P-1)(Jr—j)
s (1B )
Consider now
JL ) JL*J- )
D BY > BY¥rp(4A))
j=Jo Aj=—Jo—j
Jr —1 —1 Jr JL—j
=S BY4 S BY Y 2B L3 2 3T 9P prai(ren),
Jj=Jo j=Jo Aj=Jo—j j=1 Aj=1

We have, given that P+ 1> 0, if Jy <0

iBQj i BAI(P+1)

j=Jo Aj=Jo—j
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Z BY___ -~ p+1) (1 _B*(PJrl)(j*Jo))

Jj=Jo
2 P+1)J
1 < B (372 _ BQ(Jofl)) _ M (B(l*P)(Jofl) . B(lp))>

BP+1) _ 1\ B2 -1 BP-1 1
= o (BQJL) .
On the other hand,
JL—j
S 3 proury
j=1 Aj=1
Jr 1
_ 2j _ p—(P=-1)(JL—j)
- ZB B(P—l)_l(1 B )
j=Jo
1 B2 2Jr B(P+1) 2Jr 2Jr
B(P-1) _ 1 <B2_1B _B(P+1)_1B >+O(B )

32
((32 ~D (BT 1)

)3% Fo(B)

Hence we have

Jr _ JrL—j _
> B¥ " BYrp(Aj)
j=Jo Aj=—Jo—j
B? 2Fr
= B (14 ———— B'r
B2 _1 ( +(BP+1_1)>+O( )
B? ~
T B2 1BQJL (1+70) +o(B”") |
Similar calculations lead to
Jr . ‘ JL—j .
> B¥logB’ > BMrp(Aj)
j=Jo Aj=—Jo—j
Jr —1 —1 Jp—j
=Y BYlogB'+2" | Y B¥logB’ Y B +ZB2J log B/ > BP0
Jj=Jo j=Jo Aj=Jo—j j=1 Aj=1
where
Jr JL*J-
ZBQJ' log B Z B—Ai(P-1)
j=1 Aj=1
Jr 1
_ 2j J _ p—r—j)(P-1)
X;B log B (B(P1>—1 (1-B ))
j=
log B B?(BP~1 -1 B2 (B2+(P+1) _ 1) (BP-1) — 1
_ 0g B2JL ( ) Jp — ( ) ( . ) +o (B2JL)
B®P-1) _1 (B2 —1)(BP+1 —1) (B2 —1)* (B(P+D — 1)
B2loe B 1 BQ+(P+1) ~1
_ iBQJL JL _ ( ) : +o (B2JL)
B?Z -1 (BP+1 —1) (B2 —1) (BP+D) — 1)
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while, if Jo < 0

-1 -1
Z B log B Z BAIP+1) _ O(BZJL) '

i=Jo Aj=Jo—j
We hence obtain
Jr JrL—j
> B¥logB’ > BMrp(Aj)
j=Jo Aj=—Jo—j

B2 log BRB2JL _ 1 oP (B2+(P+1) _ 1)
Z 7" (J (1 _ 1 B2JL
B2 1 L (1+7o) 1 + (B~ 1)2 + o )
B?log BB?/r ~
= ﬁ (JL (1 + TO) -

Furthermore, we have:

7 +’%1)> +o0(B*") .

Jr JrL—j

> B¥log?B’ > BY7p(Aj)
j=Jo Aj=—Jo—j
Jr -1 -1 JrL JL—j
— Z B 10g2 Bi4oP Z B 10g2 BI Z BAIP+L) 4 ZBQJ' 1Og2 BI Z B—Ai(P-1)
Jj=Jo Jj=Jo Aj=Jo—j J=1 Aj=1
We observe that
JL JL—j
ZBQJ' log® B Z B—Ai(P-1)
j=1 Aj=1

1 B%log’ B _,; 1 2 B? —(P-1)J L P+1)j1..2 nj
= i | o1 P (JL_B2—1) MTTE = BTNy B 0g? BY
j=1
B2log? B 1 1 B2H(P+1) _q
_ 2Og BQJL JLQ/ T -9 5 JL ( 2)
(B2-1) (B(P+) —1) (B2 -1) (BE+) —1)

+<B2+1 W, (B) >>+0(BM)

(B2 =1 (B7+ = 1)°

B?log” B T1 B?+1
— 732‘]1, ~ J2 —92 J ~ BQJL
B -1) <TO P ) o)
where
W, (B) = (BSBP~1 (BP~Y 4+ 1) + B*BP~Y (B*BY — 6) + B2 (B~Y +1) +1)
" (B) = .

B2 +1
On the other hand we have

—1 —1
Z B 1Og2 BI Z BAIP+L) _ 0(B2JL) 7
Jj=Jo Aj=Jo—j

so that
> B¥log’B’ > BY7p(Aj)

j=Jo Aj=—Jo—j
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B?log® B 2(1+71) B?+1 _ 0
_ 1 Br)
B -1) B o T e (B

Hence we have, from Corollary 2] that

B*log’ B ;. e 2(1471) B%+1 . .
ZJL = WB (1+TO)JL—mJL+W(1+T2) (1+T0)

B ((1 +70) Ji -

- (JL (1+70) — ﬁ (1 +?1)>2>

BSlog? B B>+1) 27, — 72
_ 0g BYL <1+<( )(To+7'2+7'07'2)+ 71— Ty

(B2 _ 1)4 BQ B2
B®log’ B _,; -
- (B2_1)4B FA+T)
as claimed. O

Appendix C. Auxiliary Results: Cumulants
LeMMA C.1. Let A; and B; be defined as in (£.10) and {{-11]). As Jr, — o0

ﬁcum {Z(Ajl +Bj,), Y (Aj, +Bjy), Y (A, +Bj,), > (A, + Bj4)}

ll lg l3 l4

Ji log* B
== OJL ( B2JL .

PROOF. It is readily checked (see also [12]) that
cum {@, @, 6'1, 6'1} =0 (1—31—4010) .
Let us compute:

2 2 2 5
: = cum ( Ek ﬂjlk;p Zk ﬂjzk;p Zk Bjsk;:ﬂ Ek 5;'41@;17 )

Jrgegads Nj,GoK M (an)” Nj, GoK Y () NjyGoK Y ()’ Ny, Go K (a)

Ja

L2 () 2L+ 1) PO
- 5 (B )on @60.0)

l1,l2,l3,la \1=1

! 1
- <Zl_[ m) cum <; B?ﬂc;pv;ﬁik;p’;B?sk;p’§ﬂ?4k;p>

Nji GOK% (ao)

1
4 ‘ L ‘
= <Z <H B(Omf?)aifg <le>> B(2—4ao)j (ll4ao)>
1 \i=1
=0 <BGJ Héjf) :
i=1

4 f2( li‘ ) PN )
= Z (2[ + 1)4 < $> cum (Cl,Cl,Cl,Cl) +o (B74J)
l
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Then we have

o G (a0) Gl (a0) Gl (a0) G, (00)
Go ’ Go ’ Go ’ Go
1

B&]L
J1J2J374

= 0 leNizNjaN’ cy

J4~j41,72,J374

1 : _
= 0| 5o ZB% =0 (B™%r) .
J

As in [12] and [13], the proof can be divided into 5 cases, corresponding respectively
to

1
ﬁcum ZAjl’ZAj2’ZAj3’ZAj4 ,mcum Zle’ZBj2’ZBj3’ZBj4
Ji J2 Js Ja J1 J2 Js Ja

1 1
Frmeumy 2 Ay D Bia > B D B s gapewm { DA D An ) Bi ) Bis
Ji J2 VE] Ja J1 J2 VE] Ja
and

1
mcum ZAjl,ZAanZAjaszj4 )
J1 J2 J3 Ja

where we have used [L.10) LTIl We have for instance
1
B eumy 2 A D A ) Ap ) Ay,
Ji J2 Ja Ja

4
1 . .
= 0 B4JL Z H (BZh log B‘h) C;'Ll NEWEVE

J1,J2J3,Ja 1=1

= 0 1 ZBSjl 4Bip=% | =0 LZI 4Bngj)_O(10g4BJL '
= Bl £ 08 = (B4JL - 08 = B2/t )
and
1
B > Bi.> B Y Bi,Y Bi
J1 J2 Js Ja
4 ~ ~ ~ ~
1 ; j G () Gy (ao) Gy (o) G (o)
= — B¥ log B L L L L
B ZJ: " Cum{ Go ' Go ' Go ' Go

= O(log*B’*B~?r) ;

The proof for the remaining terms is entirely analogous, and hence omitted. (Il
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