
Physics Letters B 753 (2016) 476–481

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

A note on the fate of the Landau–Yang theorem in non-Abelian gauge 

theories

Matteo Cacciari a,b,c,d, Luigi Del Debbio e,d, José R. Espinosa f,g, Antonio D. Polosa h,∗, 
Massimo Testa h

a Université Paris Diderot, F-75013 Paris, France
b Sorbonne Universités, UPMC Univ Paris 06, UMR 7589, LPTHE, F-75005 Paris, France
c CNRS, UMR 7589, LPTHE, F-75005 Paris, France
d CERN, PH-TH, CH-1211 Geneva 23, Switzerland
e Higgs Centre for Theoretical Physics, School of Physics & Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
f ICREA, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
g IFAE, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
h Dipartimento di Fisica and INFN, ‘Sapienza’ Università di Roma, Piazzale Aldo Moro 2, I-00185 Roma, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 October 2015
Received in revised form 17 December 2015
Accepted 17 December 2015
Available online 21 December 2015
Editor: A. Ringwald

Using elementary considerations of Lorentz invariance, Bose symmetry and BRST invariance, we argue 
why the decay of a massive color-octet vector state into a pair of on-shell massless gluons is possible in 
a non-Abelian SU(N) Yang–Mills theory, we constrain the form of the amplitude of the process and offer 
a simple understanding of these results in terms of effective-action operators.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The Landau–Yang theorem states that a massive vector (i.e. 
spin 1) particle cannot decay into two on-shell massless photons. 
The proofs of Landau [1] and Yang [2] show that one can reach 
this conclusion under very general conditions, using only Lorentz 
invariance, gauge invariance (in the form of transversality of pho-
ton polarization vectors) and the Bose symmetry of the photons.

One can also consider the case of a massive color-octet vector 
state decaying into two on-shell massless gluons. This process is 
of phenomenological interest not only for models predicting the 
existence of colored massive vector particles, but also for heavy 
quarkonium physics, e.g. for the hadroproduction of a J/ψ particle 
or its decay into hadrons.1 Evidence that this amplitude vanishes 
at tree-level has been given many times in Quantum Chromo-
dynamics (QCD), usually by explicitly calculating the two-gluon 
decay of a quark–antiquark pair projected onto a massive color-
octet spin-1, S-wave state that we denote as (Q Q̄ )

(8)
J=1, see e.g. 

* Corresponding author.
E-mail address: antonio.polosa@roma1.infn.it (A.D. Polosa).

1 In both cases the two gluons will not be exactly on-shell, but their off-shellness 
will be at most of the order of a few hundred MeV, and its effects therefore sup-
pressed by the ratio with the much larger scale set by the J/ψ mass or transverse 
mass.

Refs. [3–9]. In these papers it was generally understood, albeit with 
some exceptions, that the proofs of Landau and Yang could not be 
immediately extended to the color-octet case, because of additional 
terms in the amplitude induced by the antisymmetric character of 
the color quantum numbers. However, for a number of years no at-
tempt was apparently made to study the color-octet case in more 
detail or to explicitly check if the vanishing of the amplitude at 
tree level still held at higher orders.

This situation began to change only recently, when two cal-
culations found non-zero results for the one-loop amplitude of 
the transition between a massive color-octet vector state and two 
massless gluons: Ref. [10] calculated the next-to-leading order cor-
rections to gluon fusion production of massive color-octet vector 
bosons (colorons), while Ref. [11] reported that the (Q Q̄ )

(8)
J=1 →

gg amplitude is also different from zero at one-loop level.
These results indicate that a colored version of the Landau–

Yang theorem breaks down once quantum corrections are taken 
into account. In this note we analyze in depth the origin of the 
cancellation at tree level and the structure of the amplitude in full 
generality, we explore where the proof of a would-be Landau–Yang 
theorem for colored states fails, and derive constraints on the form 
of the amplitude for the decay of a massive vector color-octet in 
two massless gluons. We also identify higher-dimension effective 
operators whose presence can explain the non-vanishing results at 
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one-loop and beyond, and show how the LY theorem (or its failure) 
can be understood in a very direct and simple way at the operator 
level.

2. The Abelian case

It is instructive to first reconsider the original Landau–Yang the-
orem, highlighting the difficulties in extending it to the case of a 
color-octet state. We denote by

M(1,2) ≡ ⟨γ (k1,ϵ1)γ (k2,ϵ2)|V (P ,ϵ)⟩ , (1)

the amplitude for the decay V → γ γ , where V is a colorless 
massive spin-1 state and the γ ’s are photons. k1 and k2 are the 
photons 4-momenta, P is the 4-momentum of V , and momentum 
conservation dictates P = k1 + k2. Relying only on Lorentz invari-
ance and Bose symmetry (M(1, 2) = M(2, 1)), one can write

M ∼ A (ϵ1 · ϵ2)[ϵ · (k1 + k2)]
+ B [(ϵ1 · ϵ)(ϵ2 · k1) + (ϵ2 · ϵ)(ϵ1 · k2)]
+ C [ϵ · (k1 + k2)](ϵ1 · k2)(ϵ2 · k1) , (2)

where ϵ1 ≡ ϵ∗
1 (k1), ϵ2 ≡ ϵ∗

2 (k2) and ϵ ≡ ϵ(P ) are the polariza-
tion 4-vectors of the two photons and of the massive vector state 
respectively. A, B, C are coefficients that can be determined in per-
turbation theory: they only depend on scalar products of momenta, 
and therefore are constants in the decay of a massive vector parti-
cle. Terms that vanish because of transversality, ϵ1 ·k1 = ϵ2 ·k2 = 0, 
have not been included. Instead, for the sake of introducing the 
discussion of the non-Abelian case that will follow, we have kept 
in Eq. (2) also the A and C terms, even if in the Abelian case these 
terms are trivially equal to zero as a consequence of the transver-
sality of the massive vector polarization, ϵ(P ) · P = 0.

It is convenient to consider the B term in Eq. (2) after a 
Lorentz transformation to the rest frame of the massive state V . 
The photon polarizations transform under the Lorentz transforma-
tion, yielding in general non vanishing time components for ϵµ

1,2. 
However, the gauge invariance of the amplitude M in Eq. (2) is 
equivalent to the invariance of M under the transformations

ϵ
µ
j (k j) → ϵ̃

µ
j (k j) = ϵ

µ
j (k j) + β jk

µ
j , ( j = 1,2) , (3)

where β j are arbitrary constants. This means that we are allowed 
to use ϵ̃1,2 in place of ϵ1,2 in the expression of M . In particular, 
we choose β j in such a way that

ϵ̃
µ
j (k j,±) = 1√

2
(0,∓1,−i,0) . (4)

Therefore, only polarizations transverse to the ẑ direction will 
eventually appear in M . Taking the 3-momenta k1 and k2 along ẑ, 
in the rest frame of V , we simply have k1 = −k2 so that

ϵ̃1(2) · k2(1) = 0 . (5)

M in Eq. (2) is therefore zero and V → γ γ is forbidden, leading 
to a proof of the Landau–Yang theorem in the Abelian case.2 The 
treatment of gauge invariance in the non-Abelian case, discussed 
in the next section, will require instead more care.

2 If the initial particle were a 1+ axial-vector, the only non-trivial parity conserv-
ing term would be proportional to ϵµνρσ ϵµϵν

1 ϵ
ρ
2 (k1 − k2)σ . In the rest frame of 

the massive vector particle k1 − k2 = (0, 0, 0, 2E), E being the photon energy. Thus 
ϵ, ϵ1, ϵ2 can only have 0, 1, 2 indices and permutations. Since ϵ1,2 are transverse 
polarizations, and ϵ0 ∼ |P |/M (where P and M are the massive vector momentum 
and mass), we get ϵµνρσ ϵµϵν

1 ϵ
ρ
2 (k1 − k2)σ = 0. This illustrates that the Landau–

Yang theorem applies as well to positive parity vectors.

Before considering the non-Abelian case, it is instructive to un-
derstand the Landau–Yang result at the level of operators in the 
Lagrangian (or effective action) that describes the interaction be-
tween a color-singlet massive vector V µ and the electromagnetic 
tensor F µν . This approach takes care of gauge invariance automat-
ically and further cancellations can be shown by using the field 
equations of motion, as illustrated below. The only non-trivial op-
erator3 leading to the relevant Lorentz structures for the V → γ γ
decay written in Eq. (2) is:

(L = a(∂µVν)Fµρ F ρν , (6)

where a is some coefficient with dimension mass−2. Other opera-
tors with more derivatives just modify the momentum-dependent 
form factors of the vertices without changing its Lorentz struc-
ture.

Integrating by parts judiciously, the operator in Eq. (6) can be 
rewritten as

(L = −aVν(∂µFµρ)F ρν − a
4
(∂ν Vν)Fµρ F µρ . (7)

The second term, which can be written in this form thanks to the 
symmetry of Fµρ F µρ under photon exchange, can be dropped due 
to ∂ν Vν = 0. In the first, we can use the equation of motion of the 
electromagnetic field to replace ∂µ Fµρ by a sum over all electro-
magnetic currents to which the photon couples in the theory. This 
replacement, equivalent to a field redefinition, does not change the 
physics [12], but makes clear the fact that this Lagrangian does 
not contribute to the V → γ γ decay with on-shell photons. (The 
modified Lagrangian in terms of electromagnetic currents will give 
the right description for processes with virtual photons coupled to 
such currents in the final state.)

3. Non-Abelian case: tree-level cancellation

As mentioned in the Introduction the V a → gb gc amplitude is 
known to vanish at tree level. The purpose of this section is to 
trace the origin of the tree-level cancellation, showing it explic-
itly.

We choose to work with a colored vector field V a rather than 
in full QCD and projecting a quark–antiquark pair onto a spin-one 
color-octet state. We therefore introduce a pure-glue SU(N) La-
grangian, to which we add a massive colored vector field V a

µ , in 
the adjoint representation of SU(N), interacting with the gluons in 
a gauge invariant way:

LVF = −1
4

V a
µν V aµν − 1

2
M2 V a

µV aµ − 1
4

F a
µν F aµν + LI . (8)

Considering operators of dimension d = 4, there is only one oper-
ator that can contribute to the interactions:

LI = g′

2
V a

µν F aµν

= g′∂µV a
ν F aµν − gg′ f abc Ac

µV b
ν(∂µ Aaν − ∂ν Aaµ) . (9)

In this expression

V a
µν ≡ Dab

µ V b
ν − Dab

ν V b
µ , (10)

Dab
µ denotes the covariant derivative in the adjoint representation

Dab
µ = ∂µδab − g f abc Ac

µ , (11)

3 Operators like (∂µVµ)Fνρ F ρν are trivial in the sense that they can be removed 
by using ∂µVµ = 0.
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Fig. 1. Polar (A1) and direct (A2) contributions to the V a → gb gc amplitude.

and

F a
µν = ∂µ Aa

ν − ∂ν Aa
µ + g f abc Ab

µ Ac
ν . (12)

Using the interaction term between V and the gluons intro-
duced in Eq. (9) we can extract the relevant contributions from 
the two vertices directly relevant to our calculation, V → g and 
V → gg , and use them to evaluate the two amplitudes in Fig. 1.

From the first term in the r.h.s. of Eq. (9) we get, after integra-
tion by parts4

V a → ga : −g′ M2ϵν , (13)

where M is the mass of V , whereas from the second term we get

V a → gb gc : igg′ f abc(ϵ2 · ϵ1)[ϵ · (k1 − k2)] . (14)

In both cases, polarization vectors for legs that will eventually be 
external ones have already been included.

In order to complete the amplitude A1 in Fig. 1 we need to 
propagate the gluon with 1/(k1 +k2)

2 = 1/M2 from the V state to 
the triple-gluon vertex. This leads to

A1 = −igg′M2ϵν
1

M2 f abc(k1 − k2)
ν(ϵ1 · ϵ2) . (15)

The amplitude A2 is instead given simply by the expression for 
the V → gg vertex in Eq. (14). The sum A1 + A2 shows a full 
cancellation.

In Ref. [3] the same conclusion was reached by computing ex-
plicitly the Q Q̄ → gg amplitude with off-shell gluons after pro-
jecting the Q Q̄ pair onto an ℓ = 0 (i.e. S-wave, obtained by setting 
the relative momentum between Q and Q̄ equal to zero), spin 1, 
color-octet state, and later setting k2

1 = k2
2 = 0. The result found in 

Ref. [3] with off-shell gluons has the form

Mbca ∼ f bca {D (ϵ1 · ϵ2)[ϵ · (k1 − k2)]
+ E [(ϵ1 · ϵ)(ϵ2 · k1) − (ϵ2 · ϵ)(ϵ1 · k2)]} (16)

with

D = E/2 = 1 + M2

k2
1 + k2

2 − M2
. (17)

In this expression the second term comes from the sum of the 
two amplitudes with a propagating quark, whereas the first one 
originates from the amplitude with the tri-linear gluon vertex. In 
the on-shell limit k2

1 = k2
2 = 0 and one finds D = E = 0.

We have therefore shown that the vanishing of the amplitude 
for the decay of a massive color-octet vector bosons into two mass-
less gluon is due to a cancellation between the diagram with the 
triple-gluon vertex and the rest of the amplitude, whose forms 
are themselves dictated by gauge invariance. When working in full 
QCD and with a projected Q Q̄ pair instead of the vector boson V , 

4 We omitted null terms like ∂ν V a
ν = 0 and terms proportional to k1 ·ϵ2 and k2 ·ϵ1

that do not contribute to the final amplitude because of the general transversality 
considerations made in Section 2.

the cancellation takes place between the antisymmetric combina-
tion of the Abelian diagrams and the triple-gluon vertex diagram.

As we will show below, this delicate cancellation does not sur-
vive quantum corrections.

4. Non-Abelian case: full analysis

We consider now the process where a massive color-octet vec-
tor state decays into two massless colored gluons, V a → gb gc , in 
full generality. Lorentz invariance and Bose symmetry lead to the 
matrix element

Mbca ∼ ϵρϵ
µ
1 ϵν

2 Abca
µνρ

= f bca
{

D (ϵ1 · ϵ2)[ϵ · (k1 − k2)]

+ E [(ϵ1 · ϵ)(ϵ2 · k1) − (ϵ2 · ϵ)(ϵ1 · k2)]

+ F
k1 · k2

[ϵ · (k1 − k2)](ϵ1 · k2)(ϵ2 · k1)

}
, (18)

where f abc are the color-SU(N) structure constants. We have now 
denoted by ϵ1 ≡ ϵb∗

1 (k1), ϵ2 ≡ ϵc∗
2 (k2) and ϵ ≡ ϵa∗(P ) the polariza-

tions of the massless colored gluons. Note the minus sign between 
k1 and k2 momenta in the D and F terms, as well as the minus 
sign in the E term, compared to Eq. (2). Since ϵ · (k1 − k2) ̸= 0, 
the D and F terms cannot be dropped as was done in the Abelian 
case. An additional term proportional to the symmetric tensor dbca , 
rather than to the antisymmetric one f bca , is identical to the two-
photons case considered previously, and will therefore not be dis-
cussed further.

In the following we exploit the BRST symmetry [13] of the 
gauge-fixed action to constrain the form of the amplitude in 
Eq. (18). We will show that, differently from the Abelian case, we 
cannot conclude that all its terms are simultaneously zero.

The tensor Abca
µνρ(k1, k2) can be readily extracted from Eq. (18):

Abca
µνρ(k1,k2) = f bca

[
Dgµν(k1 − k2)ρ

+ E (gµρk1ν − gνρk2µ)

+ F
k1 · k2

(k1 − k2)ρ k2µk1ν

]
. (19)

As shown in the Appendix, BRST invariance implies that this tensor 
satisfies

kµ
1 ϵν

2 Abca
µνρ(k1,k2) = ϵ

µ
1 kν

2 Abca
µνρ(k1,k2) = 0 , (20)

which, together with Eq. (19), gives

0 = kµ
1 ϵν

2 Abca
µνρ

= f bca [
(D + E + F )(k1 · ϵ2)k1ρ

− (D + F )(k1 · ϵ2)k2ρ − E(k1 · k2)ϵ2ρ
]

, (21)

where we set k2
1 = 0, i.e. on-shell gluon, and used the transver-

sality condition k2 · ϵ2 = 0. From Eq. (21) we conclude that BRST 
invariance requires E = 0 and D + F = 0. However the latter rela-
tion can be satisfied even if D  ̸= 0 and F ≠ 0.

As discussed in the Abelian case, once BRST invariance is en-
forced, we can work with transverse polarizations and hence we 
know that the E and F terms will not contribute to the amplitude 
because terms of the form ϵ1 · k2 and ϵ2 · k1 vanish in an appro-
priate frame. However, we also see that the D term can survive in 
the non-Abelian case, consistently with the non-vanishing results 
at one loop obtained in Refs. [10,11].
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The explicit tree-level calculation performed in Section 3 shows 
the cancellation of the V a gluonic decay amplitude expected 
from (9). As done above for the Abelian case, it is interesting to 
understand this result directly in terms of the operators that can 
appear in the Lagrangian. The d = 4 operator in (9) generates the 
Lorentz structures of the terms E and D in Eq. (18). By themselves, 
these terms do not contribute to the V a → gb gc decay, as we have 
seen. At the operator level, that result is immediate to see in anal-
ogy to what we did for the Abelian case. Simple integration by 
parts yields

g′

2
V a

µν F a µν = −g′V b
ν(Dba

µ F a µν) , (22)

and then, use of the equation of motion for the gluons to replace 
Dba

µ F aµν by colored quark currents shows that the decay ampli-
tude into on-shell gluons is zero.

The operator that can generate both D and F terms (in the 
combination D + F ), and thus contribute to the gluonic decay 
of V a , is

(L6 = f bca V a
µν F b νρ F c µ

ρ , (23)

a d = 6 operator that can be radiatively generated as a finite cor-
rection to the effective action already at 1-loop order. Consistently 
with the results of our previous discussion, attempts to reduce 
this operator to equations of motion or trivially vanishing terms, 
as we did for the Abelian operator (6), fail in this case due to 
the non-Abelian nature of the gauge symmetry: no expression like 
(7) exists in this case. Note that the additional d = 6 operator, 
Dab µV b

µν Dac
ρ F c ρν will not contribute to the two-gluon decay of 

V a , as can be shown by direct use of the gluonic equation of 
motion. The relevance of these d = 6 operators for technicolor phe-
nomenology and this particular gluonic decay amplitude has been 
studied in [14,15].

5. Landau–Yang in ℓ = 1 scattering states

Up to this point we have considered the decay of a colored 
massive vector particle. Now we wish to analyze the Landau–Yang 
selection rule for the Q (p1)Q̄ (p2) → g(k1)g(k2) annihilation in 
P -wave, with quarks treated as spinless for simplicity. This con-
figuration constitutes a stand-in for that of spin-1/2 quarks whose 
projection onto a given spin and angular momentum state leads to 
a J = 1 vector state for the Q Q̄ pair.

We start by considering the amplitude

M = ϵ1µϵ2ν Aµν(k1,k2, p1) = ⟨k1,ϵ1;k2,ϵ2|p1, p2⟩, (24)

with on shell particles. The Aµν tensor can be decomposed in 
terms of form factors as

Aµν(k1,k2, p1) = A(∓)
1 (pµ

1 kν
2 ± pν

1kµ
1 ) +

+ A(∓)
2 (pµ

1 kν
1 ± pν

1kµ
2 ) +

+ A(−)
3 (k1 · k2) gµν + A(−)

4 kν
1kµ

2 +
+ A(−)

5 kµ
1 kν

2 , (25)

where Ai are functions of the Mandelstam variables s = (p1 + p2)
2

and t = (p1 − k1)
2. The form factors A(±)

i are symmetric/antisym-
metric with respect to k1 ↔ k2 exchange. In Eq. (25) we assume 
that the gluon configuration is color-odd so that the final state is 
Bose-symmetric.

BRST identities imply that if we saturate Eq. (25) with k1µϵ2ν

we get

0 = k1µϵ2ν Aµν =
= [A(−)

2 + A(+)
2 ] (k1 · p1) (k1 · ϵ2) +

+ [A(−)
2 − A(+)

2 ] (k1 · k2) (p1 · ϵ2) +
+ [A(−)

3 + A(−)
4 ](k1 · k2)(k1 · ϵ2) . (26)

From this equation we deduce that A(−)
2 = A(+)

2 = 0, while due to 
the transversality of the gluon polarizations, the A(∓)

1 and the A(−)
5

contributions to the physical amplitude vanish.
One can further see that, in the threshold limit, p1 = p2 = 0, 

we have A(−)
i = 0 because of antisymmetry, and therefore A(−)

3,4 = 0
at threshold. However this is not sufficient to imply the Landau–
Yang selection rule. In fact the initial state |p1, p2⟩ is to be pro-
jected onto the P -wave in the center of mass according to

|p1, p2;ℓ = 1,m⟩ =
∫

d,p̂1
Y ℓ=1

m (p̂1)|p1, p2⟩ , (27)

where p1 + p2 = 0 and p̂1 = p1/∥p1∥ is the unit vector along p1, 
and the transition amplitude is given by

M ∝ ϵ1µϵ2ν

∫
d,p̂1

Y ℓ=1
m (p̂1) Aµν . (28)

The P -wave condition selects contributions to Aµν that overall 
contain one power of p1 which originates from the t dependence 
of Ai ’s which, close to threshold, we parameterize as

A(−)
i ≃ (p1 · k1) Bi , (29)

with Bi constrained by (26). Replacing in Eq. (28) we find

M ∝ B3 ϵ1µϵ2ν gµν
∫

d,p̂1
Y ℓ=1

m (p̂1) (p1 · k1) ∝

∝ B3 (ϵ1 · ϵ2) km
1 , (30)

where 
√

2 k±1
1 = k1x ∓ ik1y , k0

1 = k1z and we used Eq. (5).
The result in Eq. (30) shows that the form of the amplitude for 

the process is very constrained. However, one cannot say anything 
about the value of B3, because the BRST identity in Eq. (26) only 
allows one to conclude that the combination B3 + B4 must vanish. 
This is the same kind of roadblock that was met in Section 4, and 
it shows that the Landau–Yang selection rule cannot be extended 
to non-Abelian gluons also in the case in which the initial state is 
not a single particle but a scattering continuum.

6. Conclusions

In this note we have considered the process where a massive, 
color-octet vector state decays into two on-shell massless gluons. 
The well-known result that this amplitude vanishes at tree level in 
QCD has been shown in general terms to be due to a cancellation 
between the color-antisymmetric, Abelian part of the amplitude 
and its non-Abelian part.

Using considerations of Lorentz invariance and Bose symmetry 
we have also written down the most general expression for this 
amplitude, and employed BRST invariance to constrain its form. We 
have shown that, at variance with the Abelian case, one cannot 
conclude that the amplitude vanishes to all orders. This is con-
sistent with recent evidence that the amplitude does indeed not 
vanish at one-loop. We have explained this result in terms of the 
emergence of higher-dimension operators, radiatively generated in 
the effective action already at one-loop order. In addition, we of-
fer a novel way of understanding the Landau–Yang theorem (or 
its failure) directly in terms of the relevant operators, manipu-
lated by integration by parts or using field equations of motion. We 
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have also considered in detail a situation where the massive vec-
tor state is given by the projection of a spinless quark–antiquark 
pair onto an ℓ = 1 angular momentum state, reaching the same 
conclusions.

7. Note added

While our note was being finalized Ref. [16] appeared, also dis-
cussing the failure of the Landau–Yang theorem in a non-Abelian 
gauge theory and reporting that an explicit calculation shows that 
the (Q Q̄ )

(8)
J=1 → gg amplitude at one loop is non-vanishing. This 

paper also prompted a revised version of Ref. [17] that now fea-
tures a discussion of the Landau–Yang theorem in QCD.
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Appendix A

We now detail the derivation of the identities in Eq. (20). The 
BRST transformations are defined by

δBRST Aa
µ ≡ θ δAa

µ = θ (Dµ)abcb , (31)

δBRST Ba ≡ θ δBa = 0 , (32)

δBRSTc̄a ≡ θ δc̄a = θ Ba , (33)

δBRSTca ≡ θ δca = −1
2

g θ f abccbcc , (34)

where θ is an anticommuting parameter and Ba are Lagrange mul-
tipliers enforcing the gauge fixing conditions. The theory that we 
are considering also contains a colored massive vector field V a

µ(x), 
whose BRST variation is given by

δV a
µ(x) = − g

2
f abc cb V c

µ . (35)

The Lagrangian density for the gauge-fixed theory,

L = LVF − δ (c̄a ∂µ Aaµ) − 1
2α

Ba Ba , (36)

satisfies δ L = 0 and therefore the expectation value of any BRST 
variation vanishes,

⟨δO ⟩ = 0 , (37)

where ⟨. . .⟩ denotes the vacuum T -product.
In particular, from

δ (c̄a(x)Ab
ν(y)V c

ρ(z)) =
= Ba(x)Ab

ν(y)V c
ρ(z) + c̄a(x)(Dν)bdcd(y)V c

ρ(z) +

− g
2

f cdec̄a(x)Ab
ν(y)cd(z)V e

ρ(z) , (38)

we have

0 = ⟨T (Ba(x)Ab
ν(y)V c

ρ(z))⟩ +
+ ⟨T (c̄a(x)(Dν)bdcd(y)V c

ρ(z))⟩ +

− g
2

f cde⟨T (c̄a(x)Ab
ν(y)cd(z)V e

ρ(z))⟩ . (39)

Integrating over the Nakanishi–Lautrup field Ba yields:

⟨T (Ba(x)Ab
ν(y)V c

ρ(z))⟩ =
= α ∂

µ
x ⟨T (Aa

µ(x)Ab
ν(y)V c

ρ(z))⟩ , (40)

hence

α ∂
µ
x ⟨T (Aa

µ(x)Ab
ν(y)V c

ρ(z))⟩ =
= −⟨T (c̄a(x)(Dν)bdcd(y)V c

ρ(z))⟩ +

+ g
2

f cde⟨T (c̄a(x)Ab
ν(y)cd(z)V e

ρ(z))⟩ . (41)

The tensor Abca
µνρ in Eq. (18) is given by the LSZ reduction for-

malism in the form

Abca
µνρ(k1,k2) ∝
∝ lim

(k1+k2)2→M2
lim

k2
1→0

lim
k2

2→0
k2

1k2
2[(k1 + k2)

2 − M2] ×
∫

dx dy ⟨T (Aa
µ(x)Ab

ν(y)V c
ρ(0))⟩eik1xeik2 y . (42)

Eqs. (41) and (42) imply

k1
µ Aabc

µνρ(k1,k2) ∝
∝ lim

(k1+k2)2→M2
lim

k2
1→0

lim
k2

2→0
k2

1k2
2[(k1 + k2)

2 − M2] ×
∫

dx dy ⟨T (c̄a(x)(Dν)bdcd(y)V c
ρ(0))⟩eik1xeik2 y , (43)

where the second term in the r.h.s. of Eq. (41) does not contribute 
because there are no single particle poles in the channel of the 
composite operator f cdecd(z)V e

ρ(z). As for the first term, the mass-
less ghost can contribute a term proportional to the momentum 
k2ν in the channel of the operator (Dν )bdcd(y). Eq. (43) can there-
fore be written as

k1
µ Aabc

µνρ(k1,k2) ∝ k2νAabc
ρ , (44)

so that

k1
µϵ2

νϵρ Aabc
µνρ(k1,k2) = (k2 · ϵ2)ϵ

ρAabc
ρ = 0 , (45)

because k2 · ϵ2 = 0. This proves Eq. (20).
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