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Using data recorded with the ANTARES telescope from 2007 to 2015, a new search for dark matter 
annihilation in the Milky Way has been performed. Three halo models and five annihilation channels, 
WIMP+WIMP → bb̄, W+W−, τ+τ−, μ+μ− and νν̄ , with WIMP masses ranging from 50 GeV

c2 to 100 TeV
c2 , 

were considered. No excess over the expected background was found, and limits on the thermally 
averaged annihilation cross-section were set.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

A wide variety of observations supply evidence for the existence 
of dark matter (DM) [1,2]. Its nature, however, is so-far unknown, 
and attempts to elucidate it have given rise to a lively and var-
ied research programme in physics. A common hypothesis is to 
consider dark matter to be made of new, unknown particles. The 
assumption that these particles are a thermal relic of the Big Bang 
leads to the conclusion that they are weakly interacting massive 
particles (WIMPs).

Different approaches are used to search for these particles: pro-
duction at particle accelerators [3], direct detection of the recoil 
from collisions with nuclei [4] or indirect detection by means of 
the secondary particles that they produce when they decay or an-
nihilate [5]. Most of the particles that have been put forward as 
WIMPs candidates annihilate in pairs and subsequently produce 
standard model particles, including neutrinos. Neutrino telescopes 
may play a paramount role in the search for WIMPs via their an-
nihilation products, because of their particularly clean signals and 
low expected backgrounds.

In this paper the results from the search for dark matter in 
the Milky Way using data recorded with the ANTARES neutrino 
telescope from 2007 to 2015, with a total live time of 2102 days 
are presented. Only neutrinos detected via muons produced inside 
or around the detector are considered. Here and in the following 
“neutrino” means νμ + ν̄μ , unless stated otherwise.

In Section 2 it is presented how the neutrino flux can be de-
rived from the annihilation of DM particles. The detector and the 

* Corresponding author.
E-mail address: ctoennis@ific.uv.es (C. Tönnis).
reconstruction method are described in Section 3, while the new 
analysis methodology is explained in Section 4. The results are pre-
sented in Section 5.

Compared to work previously published [6], a considerably in-
creased data sample is used and a maximum likelihood method or 
“unbinned method” is applied. In addition, more recent parameters 
for the DM halo in the Milky Way are used.

2. Dark matter phenomenology

In this type of indirect search two important ingredients have 
to be considered: the amount and spatial distribution of dark 
matter in the source under consideration, and the energy spectra 
of the standard model particles produced by WIMP annihilation. 
These two features are to a large extent independent of each other. 
They are relevant for modelling the expected signal and enter into 
the analysis at different stages.

The signal spectra used for the analysis presented here were 
calculated using the code described in [7]. Spectra were ob-
tained for five annihilation channels and 17 WIMP masses between 
50 GeV

c2 and 100 TeV
c2 . These spectra take into account the effect of 

neutrino oscillations. In the following, the results for each annihi-
lation channel are given assuming a 100% branching ratio. The five 
annihilation channels are:

WIMP + WIMP → bb̄,W+W−, τ+τ−,μ+μ−, νμν̄μ. (1)

Of these channels, the bb̄-channel produces the softest neutrino 
spectra, whilst the νμν̄μ-channel produces the hardest spectra. Al-
though the νμν̄μ-channel is suppressed in many models, such as 
those with the WIMP being the lightest neutralino of supersym-

http://creativecommons.org/licenses/by/4.0/
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Table 1
Table of dark matter halo parameters for the Milky Way as taken from [10] and 
[11]. ρlocal is the local density and rs is the scaling radius.

Parameter NFW Burkert McMillan

rs [kpc] 16.1+17.0
−7.8 9.26+5.6

−4.2 17.6 ± 7.5

ρlocal [GeV/cm3] 0.471+0.048
−0.061 0.487+0.075

−0.088 0.390 ± 0.034

Fig. 1. The integrated J-Factor, J int , for a cone-shaped region �� centred on the 
Galactic Centre with an opening angle � . For the halo models the parameters from 
Table 1 are used. The calculations are done using the code CLUMPY [13].

metric models, it is included in this study in order to be as model 
independent as possible.

The second ingredient, i.e. the amount and distribution of dark 
matter in the source, is described by the so-called J-Factor. The 
J-Factor, J (ψ), is the integral of the dark matter density squared, 
ρ2

DM, over a line of sight at an angular separation ψ from the 
centre of the source. The relative signal strength at an angular sep-
aration ψ to the source is described by the expression J (ψ)d�(ψ). 
The J-Factor can be integrated over an observation window ��:

Jint(��) =
∫

��

∫
ρ2

DM · dl · d�. (2)

Jint relates the thermally averaged annihilation cross-section 
〈σv〉 to the neutrino flux 
νμ+ν̄μ via the following equation:

d
νμ+ν̄μ

dEνμ+ν̄μ

= 〈σv〉
8πM2

WIMP

· dNνμ+ν̄μ

dEνμ+ν̄μ

· Jint(��), (3)

where Nνμ+ν̄μ is the average number of neutrinos in the energy 
bin dEνμ+ν̄μ per WIMP annihilation, v is the WIMP velocity and 
MWIMP is the WIMP mass.

The shape of the J-Factor crucially depends on the halo model. 
In this analysis three models are used: the NFW [8], the Burkert [9]
model and the “McMillan” [10] profile. The parameters for these 
models are taken from [11] and [10] and are shown in Table 1. 
The McMillan profile is a variant of the Zhao profile [12], which 
treats one of the shape parameters, γ , as a free parameter and 
therefore is also referred to as the “γ free” model. The optimum 
value of γ for this model is 0.79 ± 0.32. The uncertainties on the 
halo profile parameters are not used in this analysis. In Fig. 1 the 
integrated J-Factors for the three models are shown. The NFW pro-
file gives a larger total amount of dark matter that is also more 
concentrated in the core of the source than for the Burkert profile. 
This is due to the fact that the NFW profile is a so-called cuspy 
profile and diverges at the centre of the source, in contrast to the 
cored Burkert profile.
3. Simulation and reconstruction

The ANTARES neutrino telescope [14] is installed at the bot-
tom of the Mediterranean Sea, about 40 km from Toulon and about 
2475 m below the sea surface. Being located in the Northern hemi-
sphere (42◦48′ N, 6◦10′ E) allows the ANTARES detector to directly 
observe the centre of the Milky Way, using the Earth as a shield 
against the background from atmospheric muons.

ANTARES consists of 12, 450-m long, detector lines that are 
anchored to the seabed and kept vertical by buoys. Each line com-
prises 25 storeys with three 10-inch photomultipliers (PMTs) [15]
per storey. The PMTs are housed inside pressure-resistant glass 
spheres [16].

The storeys also house the electronics to control the PMTs [17]
and a system to monitor the alignment of the lines [18]. For the 
synchronisation of the individual storeys a system of optical bea-
cons [19], located at various points of the apparatus, is used [20].

In this analysis two muon track reconstruction strategies are 
used: 
Fit and QFit. In the QFit strategy [21] a χ2-like quality 
parameter, Q, is minimised. Q is calculated from the squared dif-
ference between the expected and measured times of the detected 
photons, taking into account the effect of light absorption in the 
water [21]. This strategy allows for the reconstruction of events 
with photon hits on only one line (single-line events).


Fit [22] maximises a likelihood ratio 
 in a multistep pro-
cess. The value of 
 of the final iteration of this process is used as 
a measure of the quality of the reconstruction. In addition, the an-
gular error estimate β is used to define a cut employed to reduce 
the background.

The main background for analyses using muon tracks are at-
mospheric muons. Taking advantage of the absorption of the Earth 
that acts as an efficient shield against muons, most of this back-
ground can be rejected by accepting only upgoing-reconstructed 
muons in the analysis. Thanks to the detector’s latitude, the cen-
tre of the Milky Way is efficiently observed, since it is below the 
horizon most of the time. To further reduce the background of at-
mospheric muons wrongly reconstructed as upgoing, cuts on the 
parameters that quantify the quality of the reconstruction (Q, 
), 
and on the estimate of the angular error (β) are used, as specified 
in the next section. Atmospheric neutrinos are an additional but 
much smaller part of the background. However, unlike atmospheric 
muons, this background is irreducible, although the information of 
the energy and correlations with the source can help to discrimi-
nate it from the signal.

In order to evaluate the sensitivity of the search, Monte Carlo 
simulations, using a detailed detector response for each data 
run, have been performed [23]. Concerning the background, at-
mospheric neutrinos [24] and muons [25] with energies ranging 
from 10 GeV

c2 to 100 TeV
c2 have been simulated with the standard 

ANTARES simulation chain [16,26,27]. From this simulation the 
detector resolution and acceptance are calculated for all five an-
nihilation channels and for WIMP masses ranging from 50 GeV

c2 to 
100 TeV

c2 .
In this paper, data taken from 2007 to 2015, corresponding to 

2102 days of live time, was used. The agreement between the data 
and the simulation has been tested extensively for both reconstruc-
tion strategies.

4. Methodology

The maximum likelihood method is used to look for a signal 
of dark matter annihilation. The likelihood, which is a function 
of the number of signal events assumed to be present in the 
selected event sample, ns, is based on two probability distribu-
tions, S and B, which describe the behaviour of the signal and 
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the background events, respectively, as a function of the relevant 
event variables. The likelihood is then maximised by varying ns. 
The statistical significance of the value obtained is extracted from 
the distribution of maximum likelihoods produced by generating 
pseudo-experiments, i.e. samples of events with known amounts of 
background and signal. The likelihood function used has the form

L(ns) = e−(ns+Nbg)

Ntot∏
i=1

(
nsS(ψi,Nhit,i, βi) + NbgB(ψi,Nhit,i, βi)

)
,

(4)

where Nbg is the expected number of background events, which is 
set equal to Ntot, the total number of reconstructed events. ns is 
the variable that changes during the maximisation process. The 
two functions S and B depend on: ψi , the angular distance of the 
i-th event to the centre of the Milky Way; Nhit,i , the number of 
hits in the i-th event; and βi , the angular error estimate for the 
i-th event. The number of hits Nhit,i is a proxy for the muon en-
ergy [28].

In order to take the source extension into account, in S the 
non-integrated J-Factor, J(ψ), is used, smeared out with the point-
spread function (PSF) assuming a 15% systematic uncertainty on 
the angular resolution, which is the dominant systematic error 
from the detector in this analysis. This error is based on a 2.5 ns 
uncertainty in the timing of detected photon hits in ANTARES [29]. 
By doing this, a combination of the PSF and the source morphol-
ogy is obtained that is also used for generating signal events in the 
pseudo-experiments.

Further uncertainties exist due to the choice of the halo model 
and the expected neutrino signal spectra. These uncertainties are 
studied by using different annihilation channels and halo profile 
functions in the analysis (see Figs. 5 and 6).

A slightly modified likelihood function is defined for single-line 
events reconstructed with the QFit strategy:

L(ns) = e−(ns+Nbg)

Ntot∏
i=1

(
nsS̄(θi, N̄hit,i,Qi) + NbgB̄(θi, N̄hit,i,Qi)

)
,

(5)

where N̄hit,i is the number of hits per storey (instead of the num-
ber of hits per PMT) used for the reconstruction, and θi is the 
difference in zenith angle between the i-th event and the centre 
of the Milky Way. S̄ and B̄ are the corresponding probability func-
tions describing the signal and background distributions.

The likelihood functions are then studied using pseudo–
experiments, which are generated from the distribution of back-
ground events from time-scrambled data and that of signal events 
from simulation. The signal events are generated by taking into 
account the angular resolution of the detector, the source mor-
phology and the expected signal spectra. Ten thousand pseudo-
experiments are simulated for each combination of WIMP mass, 
annihilation channel and reconstruction strategy, and for each con-
sidered value of signal events, ns. The maximum value considered 
for ns is 80 for the QFit strategy and 120 (180) for the 
Fit strat-
egy using the NFW and McMillan (Burkert) profile. The maximum 
values were chosen because of differences in the amount of back-
ground in these cases. For each pseudo-experiment a test statistic 
(TS) is calculated:

TS = log10

(
L(nopt)

L(0)

)
, (6)

where nopt is the value of ns that maximises the likelihood func-
tion. Since for a fixed signal strength the amount of detected 
events may vary, the TS distributions were combined using Pois-
sonian weights producing new TS distributions. Sensitivities and 
limits are calculated following the approach suggested by Ney-
man [30]. The 90% C.L. sensitivity in terms of detected neutrino 
events, μ̄90%, is calculated as the average number of inserted sig-
nal events, which leads to TS values that are in 90% of the cases 
above the median of the TS distribution for pure background. The 
90% C.L. limit in terms of detected neutrino events, μ90%, is calcu-
lated by using the TS value of the unblinded data instead of the 
median of the background if this TS value is above the median; 
otherwise the limit is set to the sensitivity.

The event selection criteria, in particular the definition of the 
cuts on Q and 
 and the selection of the reconstruction strategy, 
have been optimised with the Model Rejection Factor method to 
obtain an unbiased cut selection for optimal sensitivities [31]. The 
cut parameters have been tuned individually for each annihilation 
channel and several WIMP masses in the mass range under consid-
eration, maintaining always a blind approach, i.e. with no access to 
the actual data.

It was found that for most combinations of WIMP mass and an-
nihilation channels the optimum cuts are Q < 0.7 and 
 > −5.2, 
respectively. Once μ̄90% (the 90% C.L. sensitivity on the average 
number of signal events obtained from the likelihood function) is 
computed, the limits on the neutrino flux for a given mass MWIMP
and annihilation channel are calculated as


νμ+ν̄μ,90% = μ̄90%(MWIMP, ch)∑
i
Ai

(MWIMP, ch) × Ti
eff

, (7)

where the index i denotes the periods with different detector 
configurations, ch the annihilation channel used and Ti

eff the to-
tal corresponding livetime. In fact, throughout the considered 9 
years, the number of available detector lines has changed from 
5 to 12. The time span over which the number of available lines 
remains unchanged is defined as a particular detector configura-
tion period. The effective area averaged over the neutrino energy, 
Āi

eff(MWIMP, ch), is defined as:

Ai =
∑
ν,ν̄

⎛
⎜⎝

∫ MWIMP

Eth
ν

Ai
eff(Eν,ν̄ )

dNν,ν̄

dEν,ν̄

∣∣∣
ch,MWIMP

dEν,ν̄

∫ MWIMP
0

dNν
dEν

∣∣∣
ch,MWIMP

dEν + dNν̄
dE ν̄

∣∣∣
ch,MWIMP

dE ν̄

⎞
⎟⎠ , (8)

where Eth
ν is the energy threshold for neutrino detection in 

ANTARES (approximatively 10 GeV), MWIMP is the WIMP mass, 
dNν,ν̄/dEν,ν̄ is the energy spectrum of the (anti-)neutrinos at the 
detector’s location for annihilation channel ch (see Equation (1)) 
and WIMP mass MW I M P , and Aeff(Eν,ν̄ ) is the effective area of 
ANTARES as a function of the (anti-)neutrino energy.

Due to their different cross-sections, the effective areas for neu-
trinos and anti-neutrinos are slightly different and therefore are 
considered separately. In addition, the fluxes of muon neutrinos 
and anti-neutrinos are different and are convoluted with their re-
spective efficiencies. The effective area for a detector configuration 
period is defined as the ratio between the neutrino event rate and 
the signal neutrino flux for a certain neutrino energy. It is calcu-
lated from simulation.

5. Results

The final results are obtained by comparing the TS value of the 
data, TSobs, to the TS distributions previously calculated under the 
blinded procedure.

In Fig. 2 a comparison between the unblinded data and the 
expected background is shown. No significant excess above the 
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Fig. 2. The number of events as a function of the distance to the Galactic Centre 
(crosses) in comparison to the background estimate (red line) for the 
Fit recon-
struction. For this plot a quality cut of 
 > −5.2 is used. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version 
of this article.)

Fig. 3. 90% C.L. upper limits on the neutrino flux from WIMP annihilations in the 
Milky Way as a function of the WIMP masses for the different channels considered. 
For this plot the NFW profile was used.

background can be seen, which is consistent with the fact that all 
the TSobs values obtained are smaller than the medians of the cor-
responding background TS distributions. Since all background-like 
results should equally reject the considered dark matter model, up-
per limits have been set to the sensitivities calculated from the 
pseudo-experiments.

The resulting upper limits in terms of neutrino flux are shown 
in Fig. 3. For each annihilation channel and WIMP mass range, the 
reconstruction strategy, QFit or 
Fit, which gives the best sensitiv-
ity is used in the final result. 
Fit is used for MWIMP ≥ 260 GeV

c2

for the τ+τ− and μ+μ− channels; for MWIMP ≥ 750 GeV
c2 for the 

bb̄ channel; for MWIMP ≥ 150 GeV
c2 for W +W − and for MWIMP ≥

100 GeV
c2 for the νμν̄μ channel. For the remaining values, i.e. at 

low WIMP masses, the QFit results are used.
From the limits on the neutrino flux, limits on 〈σv〉 can be de-

rived. The 90% C.L. upper limit on 〈σv〉 for the τ+τ− channel as a 
function of the WIMP mass is shown in Fig. 4, compared with lim-
its obtained by other indirect searches. Most of the direct search 
experiments are not directly sensitive to 〈σv〉. The limits for all 
annihilation channels for the NFW halo profile are shown in Fig. 5.
Fig. 4. 90% C.L. limits on the thermally averaged annihilation cross-section, 〈σv〉, as 
a function of the WIMP mass in comparison to the limits from other experiments 
[32–36]. The results from IceCube and ANTARES were obtained with the NFW pro-
file.

Fig. 5. 90% C.L. limits on the thermally averaged annihilation cross-section, 〈σv〉, 
as a function of the WIMP mass for all annihilation channels using the NFW halo 
profile.

The IceCube results presented in Fig. 4 (using tracks only [32]
and using cascades as well [33]) refer to the same channel and the 
same halo model, therefore the difference between the limits is 
due to the detector performance, position and integrated live time. 
The centre of the Milky Way is above the horizon of the IceCube 
detector and consequently the neutrino candidates correspond to 
downgoing events. To select neutrino candidates in the analyses 
of IceCube a veto for tracks starting outside the central part of 
the detector has to be used, which reduces the acceptance. This, 
in addition to the better angular resolution of ANTARES and the 
larger integrated live time in this analysis, explains the difference 
between the limits.

For the analysis by H.E.S.S. a different set of halo parameter 
values is used, leading to a more extended source. The results of 
FERMI and MAGIC are based on dwarf spheroidal galaxies and use 
the bb̄ annihilation channel. Results from direct detection exper-
iments are not shown since these experiments are typically not 
sensitive to 〈σ v〉.

This result allows to partly constrain models where the ex-
traterrestrial neutrinos observed by IceCube are partly explained 
in terms of annihilating dark matter candidates [37]. For WIMP 
masses above 100 GeV

2 the limitations from partial-wave unitar-

c
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Fig. 6. 90% C.L. limits on the thermally averaged annihilation cross-section, 〈σv〉, as 
a function of the WIMP mass for the three considered halo models for the τ+τ−
channel.

ity [38] will become relevant, although there is an approach to 
overcome these limitations [39].

In order to illustrate the large effect of the choice of the halo 
model and the profile parameters, a comparison between upper 
limits derived using the NFW, the Burkert and the McMillan re-
sults is shown in Fig. 6 for the τ+τ− channel. As can be seen, 
depending on the WIMP mass, differences of more than one order 
of magnitude are observed between the different halo models.

6. Conclusions

The results from a new search for dark matter annihilation 
in the Milky Way using data from the ANTARES neutrino tele-
scope from 2007 to 2015 show no excess above the expected 
background. Limits at 90% C.L. have been set for the NFW, the 
McMillan and the Burkert profile, five annihilation channels and 
WIMP masses ranging from 50 GeV

c2 to 100 TeV
c2 . These limits are 

the most stringent for a certain region of the parameter space.
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