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Abstract: A classical theorem of Kervaire states that products of spheres are parallelizable if and only if at least
one of the factors has odd dimension. Two explicit parallelizations on $™ x $2"~! seem to be quite natural,
and have been previously studied by the first named author in [32]. The present paper is devoted to the three
choices G = G, Spin(7), Spin(9) of G-structures on S™ x $2"~1, respectively with m + 2h - 1 = 7, 8, 16 and
related with octonionic geometry.
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1 Introduction

Let (M d g) be an oriented Riemannian manifold, V its Levi-Civita connection, and G a closed subgroup of
SO(d). Whenever G is the stabilizer of some tensor 1 on the Euclidean space R?, a G-structure on M gives rise
to a global tensor n on M, and the covariant derivative V1 can be viewed as a section of the vector bundle

W=TM®g"

referring to the orthogonal decomposition so(d) = g & g, [40, Corollary 2.2]. The covariant derivative V7 is
called the intrinsic torsion of the G-structure, and can be used to classify G-structures in the following way.

The action of G splits W into irreducible components W = W1 - - -&'W).. According to this decomposition,
G-structures on M can be classified into (at most) 2* classes, each class corresponding to those G-structures
whose intrinsic torsion lifts to a section of one of the subspaces W;, @ --- @ W;, of W:

Wi, @& W, ——W

T

M

In this framework, the holonomy condition turns out to be the most restrictive one, since the condition of
Riemannian holonomy contained in G is equivalent to n being parallel with respect to g, that is, the intrinsic
torsion is zero. On the opposite side, we have G-structures of general type, that is, when the intrinsic torsion
does not lift to any proper G-invariant subspace of W.

Whenever G # SO(d), the standard G-representation R¢ always appears as an irreducible component
in the decomposition of W. A G-structure lifting to this component is said to be locally conformally parallel,
because in this case g is locally conformal to Riemannian metrics with holonomy contained in G.
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The prototype example of this decomposition is the A. Gray and L. Hervella decomposition [23], with n
the Kahler 2-form and G = U(n), dealing with almost Hermitian structures on a M2". When n > 3, the space
W splits into four U(n)-irreducible components, giving rise to sixteen classes of almost Hermitian manifolds.
The number of classes reduces to four when n = 2.

Further examples have been studied in 1980s. Notably, M. Fernandez and A. Gray [17] considered G =
G, C SO(7) with n the associative exterior 3-form. The outcome is four irreducible components W = W; @
W, & W3 & W4, giving rise to (a-priori) sixteen classes. Also, M. Fernandez [14] studied G = Spin(7) with
n the Cayley 4-form, obtaining two irreducible components W = 'W; & W,. A structure theorem for locally
conformally parallel G, and Spin(7)-structures has been proved by S. Ivanov and the present authors, [25].

The irreducible components description for G, and Spin(7) in terms of symmetries of Vn has been sim-
plified by F. Cabrera, [7, 8], using the fact that Vn is completely determined by dn and d"n for G, and by
dn for Spin(7), [40]. Moreover, Cabrera gives explicit examples of locally conformally parallel structures on
product of spheres: a Spin(7)-structure ¢, on S” x S, [7], and a G,-structure @, g1 on S° x S1, [9].

The choice of Spin(9) ¢ SO(16) Riemannian holonomy is known since the 1960s to be possible only on
the (symmetric) Cayley plane F,/Spin(9) and its non-compact dual, [2]. A systematic study of non-integrable
Spin(9)-structures on Riemannian (M 16, g) was initiated by Th. Friedrich in 1999, [20—22]. Here the classi-
fication is pursued through a description of spin(9)* as A>(E®), for a suitably defined vector bundle E° lo-
cally spanned by 9 auto-adjoint, anti-commuting involutions. In this paper, Friedrich gives an example of a
Spin(9)-structure @gis, g1 on S1° x ST,

Friedrich’s description of non-integrable Spin(9)-structures appears to be very useful when dealing with
structures related to Spin(9), and was used in several papers by the present authors, [29, 33-39], some also
with L. Ornea and V. Vuletescu.

A beautiful and careful description of intrinsic torsion, together with its history and its relation to non-
integrable geometries, can be found in [1].

A very special G-structure appears whenever M is parallelizable. In fact, a parallelization on M is a vec-
tor bundle isomorphism between TM and the trivial bundle M x R or, equivalently, a section of the principal
bundle SO(M). As such, it defines a {1}-structure on M, and therefore a G-structure for any closed G € SO(d).
We say in this case that the G-structure is associated to the parallelization. If G is the stabilizer of a tensor n
on RY, a global tensor 17 on M is given by the above isomorphism M x RY ~ TM. Despite its trivial definition,
differential properties of 1 can be non-trivial, because they depend on the structure equations of the paral-
lelization. Note that this is the modern approach to invariant structures on nilmanifolds and solvmanifolds,
see the vast literature on this topic, e.g. [4, 11, 14-16, 18, 19].

A product of spheres is parallelizable if and only if one of the factors has odd dimension. This was proved
by M. Kervaire [27], see also the simpler proof given by E. B. Staples [41]. Under this hypothesis, a product of
spheres can then be equipped with any G-structure compatible with its dimension, and the properties of the
G-structure depend on the choice of the parallelization.

The present paper develops a topic that was in the doctoral thesis of the first named author [30]. Namely,
we take into account two parallelizations on S™ x S™, when n is odd, denoted by B and P. A thorough descrip-
tion of B and P, together with the underlying geometric idea and their structure equations, can be found in
[6, 31, 32]. Note that we consider B only for n = 1, 3, while in the original paper of M. Bruni it was defined
alsowhenn=5,7.

In the mentioned thesis, and in [31, 32], the almost Hermitian and almost hyper-Hermitian structures
associated to B and P, when the sum m + n permits, had been studied. In particular, the almost Hermitian
structures turn out to be the Calabi-Eckmann structures, and thus belong to W3 & W, — (W3 U W), [10,
Theorem 4.4].

In this paper we study the further choices of G-structures with G = G,, Spin(7) and Spin(9), in the frame-
work of the intrinsic torsion. Accordingly, we assume the dimension of S™ x S™ to be 7, 8 and 16, respectively.
This is a summary of the results obtained.

e n = 1: the G,, Spin(7) and Spin(9)-structures associated to B belong to the locally conformally parallel
class, and they coincide with Cabrera’s G, and Spin(7)-structures @gs,g1, Ps7.51, and with Friedrich’s

Spin(9)-structure @gis,1.
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e n = 1:the G, and Spin(7)-structures associated to P belong to W, and are thus of general type.

e n> 1:the G, and Spin(7)-structures associated to B and P are of general type.

Note that the fact that the structures associated to P are of general type is not in contrast with the mentioned

result about Calabi-Eckmann structures, because W3 & W, — (W3 UW,) represents the general type structures

between the integrable complex structures.
Finally, we study the intrinsic torsion under the action of the orthogonal group O(m+n) and the symmetric

group Gm+n.

e n = 1:theG,, Spin(7) and Spin(9)-structures associated to parallelizations in the orthogonal orbit O(m +
1)B are isomorphic to @ge,s1, Pg7,.51 and Pgis, 1, respectively.

e n = 1: the G,-structures associated to parallelizations in the orthogonal orbit O(m + 1) are of general
type.

e n = 3: the G, and Spin(7)-structures associated to parallelizations in the symmetric orbit &,,,3B are of
general type.

e n > 1: the G, and Spin(7)-structures associated to parallelizations in the symmetric orbit Gpm.nP are of
general type.

2 Preliminaries

2.1 Two parallelizations on S™ x S™

In this section, we briefly describe two parallelizations B and P on product of spheres S™ x ™, with odd n.
Note that B, proposed by M. Bruni in [6], is defined using a parallelization of S™, that is, only forn = 1, 3 or
7, and with a different argument for n = 5. We will consider B only in the cases n = 1, 3. Instead, P is defined
for every odd n, [30].

The parallelization B on S™ x S* and S™ x S3

When n = 1, the parallelization B at the point (X1, . . . Xm+1), 8) € S™xS! ¢ R™*! x §! is defined by referring
to the following meridian vector fields:

M; def orthogonal projection of dx, on S™ i=1,...,m+1

and to the unit tangent vector field 04 of S. Then it is easy to see that

B % {b1,b2, ..., bmi1} e {(M1, x109), (M2, x20¢), ..., Mmi1, Xm+109)}

is a parallelization of T,
of S™ x St

)S™ x TgS ! which is orthonormal with respect to the standard product metric

~~~~~ Xm+1

Remark 2.1. The vector fields {|x|dx,}i-1,...m+1 On R™1 < 0 are projectable with respect to the universal
covering map R™" \ 0 — S™ x S given by p(x) = (x/|x|,10g |x| mod 2m). It is easily proved that this is an
alternative construction for B on S™ x S'.

The above construction of B on S™ x S relies on the never-vanishing vector field T = dg on S'. In the case
S™ x §3 ¢ R™1 x R*, we choose one of the three never-vanishing vector fields on S> to mimic the same
construction. Namely, say eq, e, e3 is an orthonormal frame in Ty, mS3, and choose T = e;. Then:

.....

B dﬁf {bl’ bz’ ey bm+1, bm+2’ bm+3} = {(M19X1T)’ (MZy XZT)’ ceey (Mm+1’ Xm+1T)y (01 eZ)’ (09 63)}

is an orthonormal parallelization of T(,,

.....
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The parallelization ? on S™ x S”, n odd

Let now n be odd, say n = 2h - 1, and S™ xS" ¢ R™"! x R?". Denote by x; and y; the coordinates of R™*! and

R?", respectively. Denote by T the never-vanishing vector field on S = $2"~! given by complex multiplication:
n+1
T= Z tjoy; = =y20y, + Y10y, —*** = ¥2rOys 1 + Y2h-10yz-
j=1

Finally, denote by M; and N; the meridian vector fields on S™ and S", respectively:

M; def orthogonal projection of 9y, on S™ i=1,....,m+1,
N; def orthogonal projection of 9y, on S" j=1,...,n+1.

The parallelization P on S™ x S™ is then given by the vector fields:

pid=efMi+XiT i=1,...,m—1’

def .
Dm-1+j = YiMm + ;M1 + ((Xme1 + Yjxm — )T + N; j=1,...,n+1.

1)

The geometric idea for P is explained in [32], and is based on Staples’ proof in [41]. Briefly, a rank one vector
bundle (T) is detached from TS" = E® (T), and it is used to trivialize TS™. Then, a rank two trivial summand
from TS™ @ (T) is used to trivialize E. In the above construction of P, the rank two trivial summand is spanned
by the last two meridian vector fields of S™, that is, M, and M. Of course, there is nothing special about
My and My,,1, and one could instead choose any other pair of meridian vector fields.

S™ x S and S™ x S3, change of basis and structure equations

The following table gives the relation between B and P on S™ x S™, whenn =1, 3:

n=1 n=3
0 0 0 0
0 0 S
Inq : : 0 0 0 0 Q)

P=3 0 0 P=B|"0 Ol yi Y2 ¥3 Va
0 0| y1 »2 0 O|-y2 y1 —Ya V3
0 O|-y2 »n 0 O|-y3 va Y1 Y2

0 O[-ya -¥y3 ¥v2 N

Denoting by {b'} and {p'} the dual bases of B = {b;} and P = {p;}, the structure equations can be computed
by a direct calculation, described in details in [30]. The final result is given in the following formulas:

n=1 n=3 n>3
db' =b AT+ 2x;b™P AL i=1,...,m+1
B| dbi=1Abli=1,...,m+1 db™? =23 AT

db™3 = 2™ AT

dp'=p'AT,i=1,...,m-1
P dp™ =p" AT+p™I AT (6) in Appendix (6) in Appendix
dp

m+l _

pm+1/\T_pm/\T
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where 1 is given by:

m+1 )
T= Z x;b' for B
i=1

m-1
T= Z xip' + (Xmy1 = Xme1y2)P" + (Xmy> + Xm+1)/1)l9m+1 for P
i=1
Remark 2.2. The parallelization P for n = 3 is very twisted, and it is therefore given as a long formula in
Appendix.

Remark 2.3. Both B and P (the first defined here only for n = 1, 3) are orthonormal parallelizations with
respect to the product metric on S™ x S". Acting by the symmetric group Gm+n and by the orthogonal group
O(m + n) preserves orthonormality, thus all the G-structures we look at in this paper are compatible with the
product metric.

2.2 Structures related to octonions.

We recall here some basic facts on the octonions. Let {e;,...,e;} be the standard basis of R’, and
{el,..., e’} be the dual basis. One has then in R® = R @ R’ the standard basis {1, e1, ..., e;} and the
dual basis {A, e, ..., e’}.

The non-associative normed algebra O of Cayley numbers is defined in R® through the standard scalar
product (-, -) and the multiplication rules ei2 = -1, e;e; = —eje; and e;e;,q1 = e;,3 for all cyclic permutation of
{i, 1+ 1,1+ 3}, where indices run in Z-.

With this choice, the standard quaternion subalgebra H is generated by 1, e1, e>, e4. We are here follow-
ing the approach for example of [3, 5], and everything can be rephrased by ordering the octonion units as
{1,1,j,k,e,ie,je, ke} = {1, e, e,, ey, €3, €7, €5, —€¢} (cf. for example [24, 26]).

The 3-form ¢ on R’ = 3m(Q) is defined as

@ d=ef (x,yz) _ Z ei,i+1,i+3’ (3)
€77
where from now on we use notations like e+1:1+3 % oi A ¢i*1 A ¢i*3 and where G, is the stabilizer of @in
GL(8). Thus, for any ordered orthonormal basis € on an Euclidean vector space V’, a G,-structure ¢ on V
is defined.
If * is the Hodge star on (R%, (-, -)), it follows

*(/1 A (P) __ Z ei+2,i+4,i+5,i+6 __ Z ei,i+2,i+3,i+4’ (4)

i€2y i€z
and the 4-form ¢ A @ + *(A A @) on RS satisfies
p=AA Z b L3 _ Z bt 2,i43,i44 5
i€Zy i€Z;

The Lie group Spin(7) c SO(8) is the stabilizer of ¢, and again if € is any ordered orthonormal basis on
an Euclidean vector space V3, the above equation defines a Spin(7)-structure ¢pc on V.

3 G, and Spin(7)-structures on products of spheres

A G,-structure on a manifold M’ is a reduction to G, c GL(7) of the structure group, and from G, c SO(7) one
gets a Riemannian metric g. Since G, is the stabilizer of ¢, a G,-structure gives rise to a global 3-form on M’
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at each point defined as (3) and called the associative 3-form. Conversely, such a 3-form on M 7 is equivalent
to a G,-structure. Accordingly, a G,-structure is often identified with its 3-form.

Similarly, a Spin(7)-structure on a manifold M2, namely, a reduction of the structure group GL(8) to
Spin(7) c SO(8), induces a Riemannian metric and, since Spin(7) is the stabilizer of ¢, a Spin(7)-structure
on M8 can be identified with a global 4-form that can be locally written as ¢, called the Cayley 4-form.

Definition 3.1. Let M be a seven or eight-dimensional manifold with a G, or Spin(7)-structure, respectively.
Let ¢ or ¢ be its associated differential form and let V be the Levi-Civita connection of the induced metric.
The structure is said to be parallel if V¢ = 0 or V¢p = 0, and locally conformally parallel if ¢ or ¢ is locally
conformal to local structures @q, o, which are parallel with respect to the local Levi—Civita connections they
define. O

A G,-structure is parallel if and only if dp = d* ¢ = 0, and a Spin(7)-structure is parallel if and only if d¢ = 0,
[40]. Thus, one gets the following characterizations of locally conformally parallel G, and Spin(7)-structures,
[7, 8].

Theorem 3.2. A G,-structure @ on M’ is locally conformally parallel if and only if there exists a closed T €
QY(M) such that dp = 3T A @, d * @ = 4T A *@. A Spin(7)-structure ¢ on M8 is locally conformally parallel if
and only if there exists a closed T € Q' (M) such that d¢ = T A ¢.

Proof. Let ¢ be alocally conformally parallel G,-structure. Then for each x € M, there exist a neighborhood
U of x and a map o: U — R such that the local G,-structure gy = e’3"<p‘y is parallel with respect to its
local Levi-Civita connection. One then obtains dgy = d *yy ¢y = 0, where *y; is the local Hodge star-operator
associated to ¢y, and using these relations together with e*°*; = 39, one obtains do, =3doAg),,d*e|, =
4do A *@),. The closed 1-form 7 locally defined by do is easily seen to be global. The reverse implication is
obtained the same way, once observed that since 7 is closed then there exist local maps o: U — R such that
7|, = do. A similar argument applies for Spin(7). O

Let 95, ¢ be the G,, Spin(7)-structure on S°® x S, 7 x S! associated to B, respectively, that is,
os def Z bi,i+1,i+3’ ¢B def b3 A Z bi,i+1,i+3 _ Z bi,i+2,i+3,i+4.
i€Zy i€Zy i€Zy

The following theorem describe @5 and ¢ in terms of the universal covering p: R™! < 0 — S™ x S1, see
Remark 2.1.

Theorem 3.3. The G, and Spin(7)-structures ¢4 and ¢4 are locally conformally parallel. The local parallel
structures are induced by @, ¢ via p: R™1 < 0 — S™ x S, for m = 6, 7 respectively.

Proof. The 3-form ¢ = >
p-invariant 3-form

iez, dXi A\ dXiiq A dx;3 is parallel, and on R’ . 0 it is globally conformal to the
= LN dx ndxig nd
P = xP Z Xi N\ AXjp1 N AXjy3.
i€Z;
Observe that R7 ~. 0 is locally diffeomorphic to S® x S, and that ¢’ induces ¢, to end the proof in the G,
case. The Spin(7) case is similar. O

Since B is orthonormal, the metric induced on S x S, S7 x S by means of @, ¢ is the product metric.
Observe also that, since a parallel G, or Spin(7)-structure on a compact M gives a non-trivial element in 3 or
4-dimensional cohomology, 5% x St and S7 x S* cannot admit a parallel G, and Spin(7)-structure.

The same construction applies to seven and eight-dimensional products of spheres when P is chosen. On
S*x §3, S x §3 also ‘B is available.

In [17], [14] the irreducible components of W are identified. It is useful to recall the following simplified
defining relations, cf. [7], [8].
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Lemma 3.4. The following types of G,-structures on M’ can be characterized as follows:

o W; ®W, ®Wsifand onlyif (*de) A ¢ = 0;

o W; ®W, & W, ifand only if there exist a € Q' (M), f € C°(M) such that dp = a A @ +f * @;
o W; ®Ws3 @ W, ifand only if there exists f € Q1 (M) such that d* ¢ = B A *@;

e W,asWs@W,ifandonlyifdp A =0.

The following types of Spin(7)-structures on M® are characterized as:
o Wjifandonlyif (*d¢) A ¢ = 0;
e W, ifand only if there exists a € Q' (M) such that d¢ = a A ¢.

Accordingly, a G, or Spin(7)-structure is said to be of general type if none of the above relations is satisfied.
Theorem 3.5. The G,-structure @ associated to the frame P on S° x S is of general type.

Proof. The 3-form ¢ and the 4-form *¢@ are given by

i,i+1,i+3 _ 1,i+2,i+3,i+4
Py = Z b s *Qp =~ Z P .
i€Zy i€Zy

Using formulas (2.1) for P and n = 1 one obtains

6,1,3 4,5,6 3,4,7 5,7,1
dpp =3@p AT~ (p” 7 +p»° —-p>"" —p> ") AT,

A% @p = —b*@p AT —(p"13 4 p5:7 4 p36 4 p5i6ly \ p2 A 7,

A computation shows that none of the relations in Lemma 3.4 is satisfied, and ¢+ is of general type. O

The same conclusion holds for seven and eight-dimensional product of spheres equipped with the frame P,
and for % x §3, §° x S3 with the frame ‘B: in this case the computation is based on formulas (6) in Appendix,
and has been checked with a computer calculation.

Theorem 3.6. The G-structures associated to the frames B and P on S* x S? and to the frame P on S* x S> are
of general type. The Spin(7)-structures associated to the frame P on S7 x St, to the frames B and P on S° x S°
and to the frame P on S> x S° are of general type.

The parallelization B for n = 1 gives locally conformally parallel structures, that coincide with Cabrera’s
structures.

Theorem 3.7. The locally conformally parallel structures ¢ 7,51 and @ e, definedin [7] and [9] coincide with
¢ and @5, respectively.

Proof. Since p: R® \. 0 — S” x S! is a local diffeomorphism and p*(¢5) = |x|™¢, we are left to prove that
P (Pgr.s1) = |x|“¢b. Consider the versor field N %" |x|"2(x1 0, + -+ - + xsx;) on R8 ~ 0 and its dual 1-form

n € QY(R® \ 0). Then, from the definition of ¢g7,.¢: in [7]:
P (Psres) = x| (n A iy + *(n A iye))

and since the action of Spin(7) on S’ is transitive, one obtains n A iy¢ + *(n A iy@) = ¢. This completes
the proof of the statement about Spin(7). To complete the proof, choose the embedding S® x S < §7 x S!
given by xg = 0. The normal vector field is then dx, = bg, and from the definition of @ ¢, in [9], one obtains

def . .
Pssxst = lo, Psixst = Ip, 5 = P5. O
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4 The Spin(9)-structure on S*° x S

A Spin(9)-structure on a sixteen-dimensional Riemannian manifold (M, g) is a reduction of the structure
group of M to Spin(9) c SO(16). According to [20], an equivalent definition is the datum of a rank 9 vector
subbundle of End(TM), locally generated by self-dual anti-commuting involutions related on the intersec-
tions of their defining open sets by matrices of SO(9). This approach has been exploited in a series of papers
of the present authors and coauthors [29, 33-39].

In particular, Spin(9) is the stabilizer of a canonical 8-form @ € A8(R'®), that can be constructed in sev-
eral equivalent ways, cf. for example [12, 13, 28, 35]. In particular, on a parallelizable M 16 any parallelization
gives rise to such a global 8-form. One has therefore Spin(9) 8-forms on S° x 1, §13 x §3, §11 x 5%, §% x §7,
S7x 8%, 8% x §11, 53 x §13, §1 x S1° associated to B, P and denoted by @4, @, respectively.

Theorem 4.1. The Spin(9)-structure on S'° x S given by @ is locally conformaily parallel. The local parallel
Spin(9)-structures are induced by @ via p : R*® < 0 — S'° x S,

Proof. This follows by the fact that |x|‘8(D is p-invariant, globally conformal to @, and induces @, as in the
proof of Theorem 3.3. O

We now briefly describe the approach of [20] to classes of Spin(9)-structures. Let R be a Spin(9)-structure on
a 16-dimensional Riemannian manifold M'®, and denote by F(M) the principal orthonormal frame bundle.
Then R is a subbundle of F(M):

RC— > TF(M)

N

The Levi-Civita connection Z : T(F(M)) — s0(16) = spin(9) & spin(9)~ restricted to T(R) decomposes into
Z" @ T, where Z" is a connection in the principal Spin(9)-fibre bundle R, and I' € Q'(R xgpin9) 5pin(9)*) =
QL1(A3(V)), where V = V2 % XSpin(9) R?. The irreducible components of A*(M) @ A3(V) are described in
[20]. In particular, one component is the 16-dimensional representation A* (M), that defines the nearly parailel
Spin(9)-structures. The action of Spin(9) on S*° is transitive, with isotropy subgroup Spin(7), and this allows
to define the principal Spin(7)-fibre bundle Rgis,.1 Spin(9)x S — S xS1, that in [20] is shown to be actually
a nearly parallel Spin(7) ¢ Spin(9)-structure @g:s, i on S'° x S,

Theorem 4.2. The nearly parallel Spin(9)-structure @gis.s1 coincides with the locally conformally parallel
Spin(9)-structure @ associated to B.

Proof. Consider the following diagram of Spin(7) c Spin(9)-structures:
Spin(9) x R* —— Spin(9) x S!

| |

« _ Spin(9) o+ A _SPIn)

R0
A Spin(7) Spin(7)

where a(x) = (x/|x|, |x|)and B([g], p) = ([g],logp mod 271).Thenfoa = p : R® \ 0 — S'° x S and the map
a to R : Spin(9) x R* — R < 01isa Spin(7) ¢ Spin(9)-structure on R'® < 0. The pull-back (B o a) @y €
Q8(R1® \ 0) gives by definition the admissible frame {|x|dx, , . . . , |X|Ox,¢ }. A direct computation shows that
this frame is admissible also for a™ ! o R'. O
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5 Orthogonal and symmetric orbits

The representations of Sm+n and O(m + n) on R™" give symmetric and orthogonal orbits of G-structures on
S™ x S™. In this section we describe the following orbits:

e GS;¢ppon S8 xS, 54 xS3, 82 xS Ggpp on S7xSY §°xS3, 83 x5, 8 xS7;

e &;0pp50nS"xS% Gy on S® x S35

e 0O(7)pg on S® x S, 0(8)¢p5 on S7 x S'; 0(16)P5 on SP° x S1;

e 0O(7)ppon St xSt

Theorem 5.1. The symmetric orbits S;¢p of G,-structures on S x St, §* x §3, §2 x §°, Gg¢pp of Spin(7)-
structures on S’ x §1, 5% x S3, 83 x §°, St x §7, &7¢5 of G,-structures on S* x S?, Sg of Spin(7)-structures
on S x S are of general type.

Proof. Use theorem 3.4 together with the structure equations (2.1). O

Lemma5.2. Let A € O(m+1). Then A : R™"! \ 0 — R™*1 \ 0 is p-invariant, and the induced diffeomorphism
fa: S™ xS — S™x Sl is given by (x, 8) — (A(x), 6). Moreover, the matrix of df, with respect to the basis B on
S™x St is A.

Proof. Linear algebra computation. The universal covering map p is given in Remark 2.1. O

Theorem 5.3. The G, Spin(7), Spin(9)-structures on S® x S, S7 x 1, S1° x S1 in the orthogonal orbits O(7) 5,
0(8)¢p 5, 0(16)Dy are isomorphic to ¢4, 5, Pz, respectively.

Proof. Let ¢ 43y € O(7)@5. Then Lemma 5.2 gives f,(¢(z)) = ¢. Same argument for Spin(7) and Spin(9).
O

Note that Lemma 5.2 does not hold for  on S™ x §1, because of the twisting of pm, pm+1. One gets:
Theorem 5.4. The G,-structures on S® x S in the orthogonal orbit O(7)¢ are of general type.

Proof. Let A = (a;;) € SO(7), and let {q', ..., q”} be the parallelization on S® x S* induced by A:
. d f 7 .
q'EZai,]-p’ i=1,...,7.
j=1

Let T = —y,dy; + y1dy, a 1-form on S® x §1, and let u; be its coordinates with respect to {¢*, ..., q" }:
T=u1q1+~--+u7q7.

Then

i,i+1,i+3 _ 1,i+2,i+3,i+4
Pacp) = Z q , *Oap) =~ Z q ,
i€Z7 i€Zy

and using the structure equations (2.1) one obtains

i+1,i+3 i,i+3

dp ) =3P AT+ Z((ai,6p7 - ai,7p6)q —(aj1,60” - ai+1,7p6)q

i€z
7 6y i,i+l
+(ai3,60" — a3 70)q"" ) AT,

and

i+2,i+3,i+4 1,i+3,i+4

A* Qap)=—4*Papy NT+ Z((ai,6p7 -a;7p%)q ~(@112,6P" — ir2,70%)q

i€Z;

7 6\ . 1,i+2,i+4
+(ai3,60" — ai3,70°)q

7 6y 1,i+2,i+3
—(@isa,60" — Aira,70°)q" ) A T
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def
Let ai,j = Q6057 — 4;,70j,6-
A computation gives:

APy = > 1(-3Ui = Ui 02 + Xiss vz + Qirs 1) + Uin3(~Qive iv + Xir3,iv2 + Xig, i)
€77
i+4,i+5,i+6
+ U1 (Qire,is3 + X, iv2 + Xirs,i))q

+ Birg = U@ g + Q2,143 + Qg 1) + Uin (CQiit jrs = Xiss i+3 + Xise, i)
i+2,i+5,i+6
= U3 (~@iys 101 — Ais,i + Rii3,144))q

+ (=3Ujis + U3 (@iraie1 + Qirs,i + Xig3,ias) + Ui(QG a5 + Xisd i1 — Aivg,iv3)

i+2,i+4,i+6
= Ui (@is2,i + Aiia i3 — Ajr1,i+5))q

+ Guive = Uir3 (= Qiss,i + Air,ist + Ais3,ive) = Uiliss,i43 + Qijive — Aira,iv1)
i+2,i+4,i+5

+ Ui (= @igs j — Aii1ive + Rin2,i43))G

+ (Uire (=@ 2 + Qg a3 + Xis 1) = U3 (@igs 4o + Qi jer + Qivs ive)

i,i+4,i+5
+ Ui (Qies 143 + Qg ing = Qg ing) = Uied (@G 143 — Qivs,iv + Qivs,ive))d I.

Now one can use Lemma 3.4 to check which classes ¢, belongs to. As for the class W, & W3 © Wy, one
obtains

0= d(pA((P) A\ (pA((P) =0NT

where ¢ is a 6-form on S° x S* with constant coefficients with respect to P, and this is easily seen to be impos-
sible. The existence of a 1-form 8 on S° x S such that d * ¢ A@) = B A @ a(p) implies that

Qi i1 + Qivs iv2 — Aiveivg =0 1€ Z7.

This system has no solution, so that ¢ 5 () does not belong to the class W1 W3 ©&'W,. The above system comes
out also requiring the existence of a 1-form a and a function f on S®xS* such that d¢ AP) = ANP 4 )+ * P 4y
hence ¢ 45y does not belong to Wy @ W, & W. Finally, *d@4p) A @ 4(p) # 0 by a direct computation.

If det A = -1, some signs in formulas are reversed, but the same impossible conditions are obtained. [

Appendix: structure equations for ? on $™ x S

As anticipated in Remark 2.2, we eventually describe the structure equations for the parallelization P on
S™ x S" when n > 3. We already used them in Theorem 5.1.
Using the following abbreviations one gets:

def n+1

€]

m = ZYjpm—lﬂ';
j=1

def n+1
el
Xms1 = thpm—lﬂ',
j=1
Cu S yite-yity jk=1,.,n+1,

def .
Dj,k = ZC}"k:FSthli k1 ],k= 1,...,n+1.
—— ——

i odd odd
J &ven k even
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One gets also:

[pi, pjl = xipj - X;p; Lj=1,...,m-1,
[Pis Pm-14j] = ~VjXm + X 1)Di FXiPm-14js1 +XiVjXm + XitjXms1 i=1,...,m-1,j=1,...,n+1,
—_————

; odd

J even
m-1
[Pm-14j> Pm-1+1] = Dj i Z XiDi + YiPm-1+k = YiPm-14+j + (mDj ik = Xm11Cj 1) Xm + (Xms1 = 1D i + XmC; 1) Xms1
i-1
+ (:F)/jxm FliXme1 £ tj)pm—1+k¢1 +(2yXm * G Xme1 F tk)pm—1+jt1 jyk=1,...,n+1.
ke j S

(6)
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