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Abstract:Aclassical theoremofKervaire states that products of spheres are parallelizable if andonly if at least
one of the factors has odd dimension. Two explicit parallelizations on Sm × S2h−1 seem to be quite natural,
and have been previously studied by the �rst named author in [32]. The present paper is devoted to the three
choices G = G2, Spin(7), Spin(9) of G-structures on Sm × S2h−1, respectively with m + 2h − 1 = 7, 8, 16 and
related with octonionic geometry.
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1 Introduction
Let (Md , g) be an oriented Riemannian manifold, ∇ its Levi-Civita connection, and G a closed subgroup of
SO(d). Whenever G is the stabilizer of some tensor η on the Euclidean spaceRd, a G-structure onM gives rise
to a global tensor η on M, and the covariant derivative∇η can be viewed as a section of the vector bundle

W = T*M ⊗ g⊥

referring to the orthogonal decomposition so(d) = g⊕ g⊥, [40, Corollary 2.2]. The covariant derivative∇η is
called the intrinsic torsion of the G-structure, and can be used to classify G-structures in the following way.

TheactionofG splitsW into irreducible componentsW = W1⊕· · ·⊕Wk. According to this decomposition,
G-structures on M can be classi�ed into (at most) 2k classes, each class corresponding to those G-structures
whose intrinsic torsion lifts to a section of one of the subspacesWi1 ⊕ · · ·⊕Wil ofW:

Wi1 ⊕ · · ·⊕Wil
� � // W

��
M

∇η

HHZZ

In this framework, the holonomy condition turns out to be the most restrictive one, since the condition of
Riemannian holonomy contained in G is equivalent to η being parallel with respect to g, that is, the intrinsic
torsion is zero. On the opposite side, we have G-structures of general type, that is, when the intrinsic torsion
does not lift to any proper G-invariant subspace ofW.

Whenever G ≠ SO(d), the standard G-representation Rd always appears as an irreducible component
in the decomposition of W. A G-structure lifting to this component is said to be locally conformally parallel,
because in this case g is locally conformal to Riemannian metrics with holonomy contained in G.

*Corresponding Author: Maurizio Parton: Dipartimento di Economia, Università di Chieti-Pescara, Viale della Pineta 4,
I-65129 Pescara, Italy, E-mail: parton@unich.it
Paolo Piccinni: Dipartimento di Matematica, Sapienza—Università di Roma, Piazzale Aldo Moro 2, I-00185 Roma, Italy, E-mail:
piccinni@mat.uniroma1.it

Brought to you by | Universita degli Studi di Roma La Sapienza
Authenticated

Download Date | 5/16/19 4:52 PM

https://doi.org/10.1515/coma-2019-0007


Parallelizations on products of spheres and octonionic geometry | 139

The prototype example of this decomposition is the A. Gray and L. Hervella decomposition [23], with η
the Kähler 2-form and G = U(n), dealing with almost Hermitian structures on a M2n. When n ≥ 3, the space
W splits into four U(n)-irreducible components, giving rise to sixteen classes of almost Hermitian manifolds.
The number of classes reduces to four when n = 2.

Further examples have been studied in 1980s. Notably, M. Fernandez and A. Gray [17] considered G =
G2 ⊂ SO(7) with η the associative exterior 3-form. The outcome is four irreducible components W = W1 ⊕
W2 ⊕W3 ⊕W4, giving rise to (a-priori) sixteen classes. Also, M. Fernandez [14] studied G = Spin(7) with
η the Cayley 4-form, obtaining two irreducible components W = W1 ⊕W2. A structure theorem for locally
conformally parallel G2 and Spin(7)-structures has been proved by S. Ivanov and the present authors, [25].

The irreducible components description for G2 and Spin(7) in terms of symmetries of ∇η has been sim-
pli�ed by F. Cabrera, [7, 8], using the fact that ∇η is completely determined by dη and d*η for G2 and by
dη for Spin(7), [40]. Moreover, Cabrera gives explicit examples of locally conformally parallel structures on
product of spheres: a Spin(7)-structure ϕS7×S1 on S7 × S1, [7], and a G2-structure φS6×S1 on S6 × S1, [9].

The choice of Spin(9) ⊂ SO(16) Riemannian holonomy is known since the 1960s to be possible only on
the (symmetric) Cayley plane F4/Spin(9) and its non-compact dual, [2]. A systematic study of non-integrable
Spin(9)-structures on Riemannian (M16, g) was initiated by Th. Friedrich in 1999, [20–22]. Here the classi-
�cation is pursued through a description of spin(9)⊥ as Λ3(E9), for a suitably de�ned vector bundle E9 lo-
cally spanned by 9 auto-adjoint, anti-commuting involutions. In this paper, Friedrich gives an example of a
Spin(9)-structure ΦS15×S1 on S15 × S1.

Friedrich’s description of non-integrable Spin(9)-structures appears to be very useful when dealing with
structures related to Spin(9), and was used in several papers by the present authors, [29, 33–39], some also
with L. Ornea and V. Vuletescu.

A beautiful and careful description of intrinsic torsion, together with its history and its relation to non-
integrable geometries, can be found in [1].

A very special G-structure appears wheneverM is parallelizable. In fact, a parallelization onMd is a vec-
tor bundle isomorphism between TM and the trivial bundleM ×Rd or, equivalently, a section of the principal
bundle SO(M). As such, it de�nes a {1}-structure onM, and therefore a G-structure for any closed G ∈ SO(d).
We say in this case that the G-structure is associated to the parallelization. If G is the stabilizer of a tensor η
on Rd, a global tensor η onM is given by the above isomorphismM ×Rd ' TM. Despite its trivial de�nition,
di�erential properties of η can be non-trivial, because they depend on the structure equations of the paral-
lelization. Note that this is the modern approach to invariant structures on nilmanifolds and solvmanifolds,
see the vast literature on this topic, e.g. [4, 11, 14–16, 18, 19].

A product of spheres is parallelizable if and only if one of the factors has odd dimension. This was proved
by M. Kervaire [27], see also the simpler proof given by E. B. Staples [41]. Under this hypothesis, a product of
spheres can then be equipped with any G-structure compatible with its dimension, and the properties of the
G-structure depend on the choice of the parallelization.

The present paper develops a topic that was in the doctoral thesis of the �rst named author [30]. Namely,
we take into account two parallelizations on Sm ×Sn, when n is odd, denoted byB andP. A thorough descrip-
tion of B and P, together with the underlying geometric idea and their structure equations, can be found in
[6, 31, 32]. Note that we consider B only for n = 1, 3, while in the original paper of M. Bruni it was de�ned
also when n = 5, 7.

In the mentioned thesis, and in [31, 32], the almost Hermitian and almost hyper-Hermitian structures
associated to B and P, when the sum m + n permits, had been studied. In particular, the almost Hermitian
structures turn out to be the Calabi-Eckmann structures, and thus belong to W3 ⊕ W4 − (W3 ∪ W4), [10,
Theorem 4.4].

In this paper we study the further choices of G-structures with G = G2, Spin(7) and Spin(9), in the frame-
work of the intrinsic torsion. Accordingly, we assume the dimension of Sm × Sn to be 7, 8 and 16, respectively.
This is a summary of the results obtained.
• n = 1: the G2, Spin(7) and Spin(9)-structures associated to B belong to the locally conformally parallel

class, and they coincide with Cabrera’s G2 and Spin(7)-structures φS6×S1 , ϕS7×S1 , and with Friedrich’s
Spin(9)-structure ΦS15×S1 .
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• n = 1: the G2 and Spin(7)-structures associated to P belong toW, and are thus of general type.
• n > 1: the G2 and Spin(7)-structures associated toB and P are of general type.
Note that the fact that the structures associated to P are of general type is not in contrast with the mentioned
result about Calabi-Eckmann structures, becauseW3⊕W4−(W3∪W4) represents the general type structures
between the integrable complex structures.

Finally,we study the intrinsic torsionunder the actionof the orthogonal groupO(m+n) and the symmetric
groupSm+n.
• n = 1: the G2, Spin(7) and Spin(9)-structures associated to parallelizations in the orthogonal orbit O(m +

1)B are isomorphic to φS6×S1 , ϕS7×S1 and ΦS15×S1 , respectively.
• n = 1: the G2-structures associated to parallelizations in the orthogonal orbit O(m + 1)P are of general

type.
• n = 3: the G2 and Spin(7)-structures associated to parallelizations in the symmetric orbit Sm+3B are of

general type.
• n ≥ 1: the G2 and Spin(7)-structures associated to parallelizations in the symmetric orbit Sm+nP are of

general type.

2 Preliminaries

2.1 Two parallelizations on Sm × Sn

In this section, we brie�y describe two parallelizations B and P on product of spheres Sm × Sn, with odd n.
Note that B, proposed by M. Bruni in [6], is de�ned using a parallelization of Sn, that is, only for n = 1, 3 or
7, and with a di�erent argument for n = 5. We will considerB only in the cases n = 1, 3. Instead, P is de�ned
for every odd n, [30].

The parallelizationB on Sm × S1 and Sm × S3

When n = 1, the parallelizationB at the point ((x1, . . . xm+1), θ) ∈ Sm × S1 ⊂ Rm+1 × S1 is de�ned by referring
to the followingmeridian vector �elds:

Mi
def= orthogonal projection of ∂xi on Sm i = 1, . . . ,m + 1

and to the unit tangent vector �eld ∂θ of S1. Then it is easy to see that

B
def= {b1, b2, . . . , bm+1} def= {(M1, x1∂θ), (M2, x2∂θ), . . . , (Mm+1, xm+1∂θ)}

is a parallelization of T(x1 ,...,xm+1)S
m × TθS1 which is orthonormal with respect to the standard product metric

of Sm × S1.

Remark 2.1. The vector �elds {|x|∂xi}i=1,...,m+1 on Rm+1 r 0 are projectable with respect to the universal
covering map Rm+1 r 0 → Sm × S1 given by p(x) = (x/|x|, log |x| mod 2π). It is easily proved that this is an
alternative construction forB on Sm × S1.

The above construction of B on Sm × S1 relies on the never-vanishing vector �eld T = ∂θ on S1. In the case
Sm × S3 ⊂ Rm+1 × R4, we choose one of the three never-vanishing vector �elds on S3 to mimic the same
construction. Namely, say e1, e2, e3 is an orthonormal frame in T(y1 ,...,y4)S

3, and choose T = e1. Then:

B
def= {b1, b2, . . . , bm+1, bm+2, bm+3} = {(M1, x1T), (M2, x2T), . . . , (Mm+1, xm+1T), (0, e2), (0, e3)}

is an orthonormal parallelization of T(x1 ,...,xm+1)S
m × T(y1 ,...,y4)S

3.

Brought to you by | Universita degli Studi di Roma La Sapienza
Authenticated

Download Date | 5/16/19 4:52 PM



Parallelizations on products of spheres and octonionic geometry | 141

The parallelization P on Sm × Sn, n odd

Let now n be odd, say n = 2h −1, and Sm × Sn ⊂ Rm+1 ×R2h. Denote by xi and yj the coordinates ofRm+1 and
R2h, respectively. Denote by T the never-vanishing vector �eld on Sn = S2h−1 givenby complexmultiplication:

T =
n+1∑
j=1

tj∂yj = −y2∂y1 + y1∂y2 − · · · − y2h∂y2h−1 + y2h−1∂y2h .

Finally, denote by Mi and Nj the meridian vector �elds on Sm and Sn, respectively:

Mi
def= orthogonal projection of ∂xi on Sm i = 1, . . . ,m + 1,

Nj
def= orthogonal projection of ∂yj on Sn j = 1, . . . , n + 1.

The parallelization P on Sm × Sn is then given by the vector �elds:

pi
def= Mi + xiT i = 1, . . . ,m − 1,

pm−1+j
def= yjMm + tjMm+1 + (tjxm+1 + yjxm − tj)T + Nj j = 1, . . . , n + 1.

(1)

The geometric idea for P is explained in [32], and is based on Staples’ proof in [41]. Brie�y, a rank one vector
bundle 〈T〉 is detached from TSn = E⊕〈T〉, and it is used to trivialize TSm. Then, a rank two trivial summand
from TSm⊕〈T〉 is used to trivialize E. In the above construction ofP, the rank two trivial summand is spanned
by the last two meridian vector �elds of Sm, that is, Mm and Mm+1. Of course, there is nothing special about
Mm and Mm+1, and one could instead choose any other pair of meridian vector �elds.

Sm × S1 and Sm × S3, change of basis and structure equations

The following table gives the relation betweenB and P on Sm × Sn, when n = 1, 3:

n = 1 n = 3

P = B


0 0

Im−1
...

...
0 0

0 · · · 0 y1 y2
0 · · · 0 −y2 y1

 P = B



0 0 0 0

Im−1
...

...
...

...
0 0 0 0

0 · · · 0 y1 y2 y3 y4
0 · · · 0 −y2 y1 −y4 y3
0 · · · 0 −y3 y4 y1 −y2
0 · · · 0 −y4 −y3 y2 y1


(2)

Denoting by {bi} and {pi} the dual bases ofB = {bi} and P = {pi}, the structure equations can be computed
by a direct calculation, described in details in [30]. The �nal result is given in the following formulas:

n = 1 n = 3 n > 3

B dbi = τ ∧ bi , i = 1, . . . ,m + 1
dbi = bi ∧ τ + 2xibm+2 ∧ bm+3, i = 1, . . . ,m + 1

dbm+2 = 2bm+3 ∧ τ
dbm+3 = −2bm+2 ∧ τ

P

dpi = pi ∧ τ, i = 1, . . . ,m − 1
dpm = pm ∧ τ + pm+1 ∧ τ
dpm+1 = pm+1 ∧ τ − pm ∧ τ

(6) in Appendix (6) in Appendix
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where τ is given by:

τ =
m+1∑
i=1

xibi forB

τ =
m−1∑
i=1

xipi + (xmy1 − xm+1y2)pm + (xmy2 + xm+1y1)pm+1 for P

Remark 2.2. The parallelization P for n ≥ 3 is very twisted, and it is therefore given as a long formula in
Appendix.

Remark 2.3. Both B and P (the �rst de�ned here only for n = 1, 3) are orthonormal parallelizations with
respect to the product metric on Sm × Sn. Acting by the symmetric group Sm+n and by the orthogonal group
O(m + n) preserves orthonormality, thus all the G-structures we look at in this paper are compatible with the
product metric.

2.2 Structures related to octonions.

We recall here some basic facts on the octonions. Let {e1, . . . , e7} be the standard basis of R7, and
{e1, . . . , e7} be the dual basis. One has then in R8 = R ⊕ R7 the standard basis {1, e1, . . . , e7} and the
dual basis {λ, e1, . . . , e7}.

The non-associative normed algebra O of Cayley numbers is de�ned in R8 through the standard scalar
product 〈·, ·〉 and the multiplication rules e2i = −1, eiej = −ejei and eiei+1 = ei+3 for all cyclic permutation of
{i, i + 1, i + 3}, where indices run in Z7.

With this choice, the standard quaternion subalgebraH is generated by 1, e1, e2, e4. We are here follow-
ing the approach for example of [3, 5], and everything can be rephrased by ordering the octonion units as
{1, i, j, k, e, ie, je, ke} = {1, e1, e2, e4, e3, e7, e5, −e6} (cf. for example [24, 26]).

The 3-form φ on R7 = Im(O) is de�ned as

φ def= 〈x, yz〉 =
∑
i∈Z7

ei,i+1,i+3, (3)

where from now on we use notations like ei,i+1,i+3 def= ei ∧ ei+1 ∧ ei+3, and where G2 is the stabilizer of φ in
GL(8). Thus, for any ordered orthonormal basis C on an Euclidean vector space V7, a G2-structure φC on V
is de�ned.

If * is the Hodge star on (R8, 〈·, ·〉), it follows

*(λ ∧ φ) = −
∑
i∈Z7

ei+2,i+4,i+5,i+6 = −
∑
i∈Z7

ei,i+2,i+3,i+4, (4)

and the 4-form ϕ def= λ ∧ φ + *(λ ∧ φ) on R8 satis�es

ϕ = λ ∧
∑
i∈Z7

ei,i+1,i+3 −
∑
i∈Z7

ei,i+2,i+3,i+4. (5)

The Lie group Spin(7) ⊂ SO(8) is the stabilizer of ϕ, and again if C is any ordered orthonormal basis on
an Euclidean vector space V8, the above equation de�nes a Spin(7)-structure ϕC on V.

3 G2 and Spin(7)-structures on products of spheres
AG2-structure on amanifoldM7 is a reduction to G2 ⊂ GL(7) of the structure group, and fromG2 ⊂ SO(7) one
gets a Riemannian metric g. Since G2 is the stabilizer of φ, a G2-structure gives rise to a global 3-form onM7,
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at each point de�ned as (3) and called the associative 3-form. Conversely, such a 3-form on M7 is equivalent
to a G2-structure. Accordingly, a G2-structure is often identi�ed with its 3-form.

Similarly, a Spin(7)-structure on a manifold M8, namely, a reduction of the structure group GL(8) to
Spin(7) ⊂ SO(8), induces a Riemannian metric and, since Spin(7) is the stabilizer of ϕ, a Spin(7)-structure
on M8 can be identi�ed with a global 4-form that can be locally written as ϕ, called the Cayley 4-form.

De�nition 3.1. Let M be a seven or eight-dimensional manifold with a G2 or Spin(7)-structure, respectively.
Let φ or ϕ be its associated di�erential form and let ∇ be the Levi–Civita connection of the induced metric.
The structure is said to be parallel if ∇φ = 0 or ∇ϕ = 0, and locally conformally parallel if φ or ϕ is locally
conformal to local structures φα,ϕα, which are parallel with respect to the local Levi–Civita connections they
de�ne. �

AG2-structure is parallel if and only if dφ = d*φ = 0, and a Spin(7)-structure is parallel if and only if dϕ = 0,
[40]. Thus, one gets the following characterizations of locally conformally parallel G2 and Spin(7)-structures,
[7, 8].

Theorem 3.2. A G2-structure φ on M7 is locally conformally parallel if and only if there exists a closed τ ∈
Ω1(M) such that dφ = 3τ ∧ φ, d * φ = 4τ ∧ *φ. A Spin(7)-structure ϕ on M8 is locally conformally parallel if
and only if there exists a closed τ ∈ Ω1(M) such that dϕ = τ ∧ ϕ.

Proof. Let φ be a locally conformally parallel G2-structure. Then for each x ∈ M, there exist a neighborhood
U of x and a map σ : U → R such that the local G2-structure φU = e−3σφ|U is parallel with respect to its
local Levi–Civita connection. One then obtains dφU = d *U φU = 0, where *U is the local Hodge star-operator
associated toφU , andusing these relations togetherwith e4σ*U = e3σ*, one obtains dφ|U = 3dσ∧φ|U , d*φ|U =
4dσ ∧ *φ|U . The closed 1-form τ locally de�ned by dσ is easily seen to be global. The reverse implication is
obtained the same way, once observed that since τ is closed then there exist local maps σ : U → R such that
τ|U = dσ. A similar argument applies for Spin(7).

Let φB, ϕB be the G2, Spin(7)-structure on S6 × S1, S7 × S1 associated toB, respectively, that is,

φB
def=

∑
i∈Z7

bi,i+1,i+3, ϕB
def= b8 ∧

∑
i∈Z7

bi,i+1,i+3 −
∑
i∈Z7

bi,i+2,i+3,i+4.

The following theorem describe φB and ϕB in terms of the universal covering p : Rm+1 r 0→ Sm × S1, see
Remark 2.1.

Theorem 3.3. The G2 and Spin(7)-structures φB and ϕB are locally conformally parallel. The local parallel
structures are induced by φ, ϕ via p : Rm+1 r 0→ Sm × S1, for m = 6, 7 respectively.

Proof. The 3-form φ = ∑
i∈Z7

dxi ∧ dxi+1 ∧ dxi+3 is parallel, and on R7 r 0 it is globally conformal to the
p-invariant 3-form

φ′ = 1
|x|3

∑
i∈Z7

dxi ∧ dxi+1 ∧ dxi+3.

Observe that R7 r 0 is locally di�eomorphic to S6 × S1, and that φ′ induces φB, to end the proof in the G2
case. The Spin(7) case is similar.

Since B is orthonormal, the metric induced on S6 × S1, S7 × S1 by means of φB, ϕB is the product metric.
Observe also that, since a parallel G2 or Spin(7)-structure on a compactM gives a non-trivial element in 3 or
4-dimensional cohomology, S6 × S1 and S7 × S1 cannot admit a parallel G2 and Spin(7)-structure.

The same construction applies to seven and eight-dimensional products of spheres whenP is chosen. On
S4 × S3, S5 × S3 alsoB is available.

In [17], [14] the irreducible components of W are identi�ed. It is useful to recall the following simpli�ed
de�ning relations, cf. [7], [8].
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Lemma 3.4. The following types of G2-structures on M7 can be characterized as follows:
• W1 ⊕W2 ⊕W3 if and only if (*dφ) ∧ φ = 0;
• W1 ⊕W2 ⊕W4 if and only if there exist α ∈ Ω1(M), f ∈ C∞(M) such that dφ = α ∧ φ + f * φ;
• W1 ⊕W3 ⊕W4 if and only if there exists β ∈ Ω1(M) such that d * φ = β ∧ *φ;
• W2 ⊕W3 ⊕W4 if and only if dφ ∧ φ = 0.

The following types of Spin(7)-structures on M8 are characterized as:
• W1 if and only if (*dϕ) ∧ ϕ = 0;
• W2 if and only if there exists α ∈ Ω1(M) such that dϕ = α ∧ ϕ.

Accordingly, a G2 or Spin(7)-structure is said to be of general type if none of the above relations is satis�ed.

Theorem 3.5. The G2-structure φP associated to the frame P on S6 × S1 is of general type.

Proof. The 3-form φP and the 4-form *φP are given by

φP =
∑
i∈Z7

pi,i+1,i+3, *φP = −
∑
i∈Z7

pi,i+2,i+3,i+4.

Using formulas (2.1) for P and n = 1 one obtains

dφP = 3φP ∧ τ − (p6,1,3 + p4,5,6 − p3,4,7 − p5,7,1) ∧ τ,
d * φP = −4 * φP ∧ τ − (p7,1,3 + p4,5,7 + p3,4,6 + p5,6,1) ∧ p2 ∧ τ.

A computation shows that none of the relations in Lemma 3.4 is satis�ed, and φP is of general type.

The same conclusion holds for seven and eight-dimensional product of spheres equipped with the frame P,
and for S4 × S3, S5 × S3 with the frameB: in this case the computation is based on formulas (6) in Appendix,
and has been checked with a computer calculation.

Theorem 3.6. The G2-structures associated to the framesB and P on S4 × S3 and to the frame P on S2 × S5 are
of general type. The Spin(7)-structures associated to the frame P on S7 × S1, to the frames B and P on S5 × S3
and to the frame P on S3 × S5 are of general type.

The parallelization B for n = 1 gives locally conformally parallel structures, that coincide with Cabrera’s
structures.

Theorem 3.7. The locally conformally parallel structures ϕS7×S1 and φS6×S1 de�ned in [7] and [9] coincide with
ϕB and φB, respectively.

Proof. Since p : R8 r 0→ S7 × S1 is a local di�eomorphism and p*(ϕB) = |x|−4ϕ, we are left to prove that
p*(ϕS7×S1 ) = |x|−4ϕ. Consider the versor �eld N def= |x|−1(x1∂x1 + · · · + x8∂x8 ) on R8 r 0 and its dual 1-form
n ∈ Ω1(R8 r 0). Then, from the de�nition of ϕS7×S1 in [7]:

p*(ϕS7×S1 ) = |x|−4(n ∧ iNϕ + *(n ∧ iNϕ))

and since the action of Spin(7) on S7 is transitive, one obtains n ∧ iNϕ + *(n ∧ iNϕ) = ϕ. This completes
the proof of the statement about Spin(7). To complete the proof, choose the embedding S6 × S1 ⊂ S7 × S1
given by x8 = 0. The normal vector �eld is then ∂x8 = b8, and from the de�nition of φS6×S1 in [9], one obtains
φS6×S1

def= i∂x8ϕS7×S1 = ib8ϕB = φB.
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4 The Spin(9)-structure on S15 × S1

A Spin(9)-structure on a sixteen-dimensional Riemannian manifold (M, g) is a reduction of the structure
group of M to Spin(9) ⊂ SO(16). According to [20], an equivalent de�nition is the datum of a rank 9 vector
subbundle of End(TM), locally generated by self-dual anti-commuting involutions related on the intersec-
tions of their de�ning open sets by matrices of SO(9). This approach has been exploited in a series of papers
of the present authors and coauthors [29, 33–39].

In particular, Spin(9) is the stabilizer of a canonical 8-form Φ ∈ Λ8(R16), that can be constructed in sev-
eral equivalent ways, cf. for example [12, 13, 28, 35]. In particular, on a parallelizableM16, any parallelization
gives rise to such a global 8-form. One has therefore Spin(9) 8-forms on S15 × S1, S13 × S3, S11 × S5, S9 × S7,
S7 × S9, S5 × S11, S3 × S13, S1 × S15 associated toB, P and denoted by ΦB, ΦP, respectively.

Theorem 4.1. The Spin(9)-structure on S15 × S1 given by ΦB is locally conformally parallel. The local parallel
Spin(9)-structures are induced by Φ via p : R16 r 0→ S15 × S1.

Proof. This follows by the fact that |x|−8Φ is p-invariant, globally conformal to Φ, and induces ΦB, as in the
proof of Theorem 3.3.

We now brie�y describe the approach of [20] to classes of Spin(9)-structures. Let R be a Spin(9)-structure on
a 16-dimensional Riemannian manifold M16, and denote by F(M) the principal orthonormal frame bundle.
Then R is a subbundle of F(M):

R
� � //

  

F(M)

}}
M

The Levi–Civita connection Z : T(F(M)) → so(16) = spin(9)⊕ spin(9)⊥ restricted to T(R) decomposes into
Z* ⊕ Γ, where Z* is a connection in the principal Spin(9)-�bre bundle R, and Γ ∈ Ω1(R ×Spin(9) spin(9)⊥) =
Ω1(Λ3(V)), where V = V9 def= R ×Spin(9) R9. The irreducible components of Λ1(M) ⊗ Λ3(V) are described in
[20]. In particular, one component is the 16-dimensional representationΛ1(M), that de�nes thenearly parallel
Spin(9)-structures. The action of Spin(9) on S15 is transitive, with isotropy subgroup Spin(7), and this allows
to de�ne the principal Spin(7)-�bre bundleRS15×S1 Spin(9)×S1 → S15 ×S1, that in [20] is shown to be actually
a nearly parallel Spin(7) ⊂ Spin(9)-structure ΦS15×S1 on S15 × S1.

Theorem 4.2. The nearly parallel Spin(9)-structure ΦS15×S1 coincides with the locally conformally parallel
Spin(9)-structure ΦB associated toB.

Proof. Consider the following diagram of Spin(7) ⊂ Spin(9)-structures:

Spin(9) ×R+ //

R′

��

Spin(9) × S1

R

��

R16 r 0 α // Spin(9)
Spin(7) ×R

+ β // Spin(9)
Spin(7) × S

1

where α(x) = (x/|x|, |x|) and β([g], ρ) = ([g], log ρ mod 2π). Then β ◦ α = p : R16 r 0→ S15 × S1 and themap
α−1 ◦R′ : Spin(9) × R+ → R16 r 0 is a Spin(7) ⊂ Spin(9)-structure on R16 r 0. The pull-back (β ◦ α)*ΦB ∈
Ω8(R16 r 0) gives by de�nition the admissible frame {|x|∂x1 , . . . , |x|∂x16}. A direct computation shows that
this frame is admissible also for α−1 ◦R′.
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5 Orthogonal and symmetric orbits
The representations ofSm+n and O(m + n) on Rm+n give symmetric and orthogonal orbits of G-structures on
Sm × Sn. In this section we describe the following orbits:
• S7φP on S6 × S1, S4 × S3, S2 × S5;S8ϕP on S7 × S1, S5 × S3, S3 × S5, S1 × S7;
• S7φB on S4 × S3;S8ϕB on S5 × S3;
• O(7)φB on S6 × S1; O(8)ϕB on S7 × S1; O(16)ΦB on S15 × S1;
• O(7)φP on S6 × S1.

Theorem 5.1. The symmetric orbits S7φP of G2-structures on S6 × S1, S4 × S3, S2 × S5, S8ϕP of Spin(7)-
structures on S7 × S1, S5 × S3, S3 × S5, S1 × S7,S7φB of G2-structures on S4 × S3,S8ϕB of Spin(7)-structures
on S5 × S3 are of general type.

Proof. Use theorem 3.4 together with the structure equations (2.1).

Lemma 5.2. Let A ∈ O(m+1). Then A : Rm+1r0→ Rm+1r0 is p-invariant, and the induced di�eomorphism
fA : Sm × S1 → Sm × S1 is given by (x, θ) 7→ (A(x), θ). Moreover, the matrix of dfA with respect to the basisB on
Sm × S1 is A.

Proof. Linear algebra computation. The universal covering map p is given in Remark 2.1.

Theorem 5.3. The G2, Spin(7), Spin(9)-structures on S6 × S1, S7 × S1, S15 × S1 in the orthogonal orbitsO(7)φB,
O(8)ϕB, O(16)ΦB are isomorphic to φB, ϕB, ΦB, respectively.

Proof. Let φA(B) ∈ O(7)φB. Then Lemma 5.2 gives f *A(φA(B)) = φB. Same argument for Spin(7) and Spin(9).

Note that Lemma 5.2 does not hold for P on Sm × S1, because of the twisting of pm, pm+1. One gets:

Theorem 5.4. The G2-structures on S6 × S1 in the orthogonal orbit O(7)φP are of general type.

Proof. Let A = (ai,j) ∈ SO(7), and let {q1, . . . , q7} be the parallelization on S6 × S1 induced by A:

qi def=
7∑
j=1

ai,jpj i = 1, . . . , 7.

Let τ = −y2dy1 + y1dy2 a 1-form on S6 × S1, and let ui be its coordinates with respect to {q1, . . . , q7}:

τ = u1q1 + · · · + u7q7.

Then
φA(P) =

∑
i∈Z7

qi,i+1,i+3, *φA(P) = −
∑
i∈Z7

qi,i+2,i+3,i+4,

and using the structure equations (2.1) one obtains

dφA(P) = 3φA(P) ∧ τ +
∑
i∈Z7

((ai,6p7 − ai,7p6)qi+1,i+3 − (ai+1,6p7 − ai+1,7p6)qi,i+3

+ (ai+3,6p7 − ai+3,7p6)qi,i+1) ∧ τ,

and

d * φA(P) = −4 * φA(P) ∧ τ +
∑
i∈Z7

((ai,6p7 − ai,7p6)qi+2,i+3,i+4 − (ai+2,6p7 − ai+2,7p6)qi,i+3,i+4

+ (ai+3,6p7 − ai+3,7p6)qi,i+2,i+4 − (ai+4,6p7 − ai+4,7p6)qi,i+2,i+3) ∧ τ.
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Let αi,j
def= ai,6aj,7 − ai,7aj,6.

A computation gives:

*dφA(P) =
∑
i∈Z7

[(−3ui+2 − ui(−αi,i+2 + αi+4,i+3 + αi+5,i+1) + ui+3(−αi+6,i+1 + αi+3,i+2 + αi+4,i)

+ ui+1(αi+6,i+3 + αi+1,i+2 + αi+5,i))qi+4,i+5,i+6

+ (3ui+4 − ui(αi,i+4 + αi+2,i+3 + αi+6,i+1) + ui+1(−αi+1,i+4 − αi+5,i+3 + αi+6,i)
− ui+3(−αi+5,i+1 − αi+2,i + αi+3,i+4))qi+2,i+5,i+6

+ (−3ui+5 + ui+3(αi+4,i+1 + αi+6,i + αi+3,i+5) + ui(αi,i+5 + αi+2,i+1 − αi+6,i+3)
− ui+1(αi+2,i + αi+4,i+3 − αi+1,i+5))qi+2,i+4,i+6

+ (3ui+6 − ui+3(−αi+5,i + αi+2,i+1 + αi+3,i+6) − ui(αi+5,i+3 + αi,i+6 − αi+4,i+1)
+ ui+1(−αi+4,i − αi+1,i+6 + αi+2,i+3))qi+2,i+4,i+5

+ (ui+6(−αi,i+2 + αi+4,i+3 + αi+5,i+1) − ui+3(αi+5,i+2 + αi,i+1 + αi+4,i+6)
+ ui+2(αi+5,i+3 + αi,i+6 − αi+4,i+1) − ui+1(−αi,i+3 − αi+4,i+2 + αi+5,i+6))qi,i+4,i+5].

Now one can use Lemma 3.4 to check which classes φA(P) belongs to. As for the class W2 ⊕W3 ⊕W4, one
obtains

0 = dφA(P) ∧ φA(P) = σ ∧ τ

where σ is a 6-form on S6 × S1 with constant coe�cients with respect to P, and this is easily seen to be impos-
sible. The existence of a 1-form β on S6 × S1 such that d * φA(P) = β ∧ φA(P) implies that

αi,i+1 + αi+5,i+2 − αi+6,i+4 = 0 i ∈ Z7.

This systemhas no solution, so thatφA(P) does not belong to the classW1⊕W3⊕W4. The above systemcomes
out also requiring the existence of a 1-form α and a function f on S6×S1 such that dφA(P) = α∧φA(P)+f *φA(P),
hence φA(P) does not belong toW1 ⊕W2 ⊕W4. Finally, *dφA(P) ∧ φA(P) ≠ 0 by a direct computation.

If detA = −1, some signs in formulas are reversed, but the same impossible conditions are obtained.

Appendix: structure equations for P on Sm × Sn

As anticipated in Remark 2.2, we eventually describe the structure equations for the parallelization P on
Sm × Sn when n ≥ 3. We already used them in Theorem 5.1.

Using the following abbreviations one gets:

Xm def=
n+1∑
j=1

yjpm−1+j ,

Xm+1 def=
n+1∑
j=1

tjpm−1+j ,

Cj,k
def= yj tk − yk tj j, k = 1, . . . , n + 1,

Dj,k
def= 2Cj,k ∓δk,j±1︸ ︷︷ ︸

j odd
even

±δj,k±1︸ ︷︷ ︸
k odd

even

j, k = 1, . . . , n + 1.
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One gets also:

[pi , pj] = xipj − xjpi i, j = 1, . . . ,m − 1,
[pi , pm−1+j] = −(yjxm + tjxm+1)pi ∓xipm−1+j±1︸ ︷︷ ︸

j odd
even

+xiyjXm + xi tjXm+1 i = 1, . . . ,m − 1, j = 1, . . . , n + 1,

[pm−1+j , pm−1+k] = Dj,k
m−1∑
i=1

xipi + yjpm−1+k − ykpm−1+j + (xmDj,k − xm+1Cj,k)Xm + ((xm+1 − 1)Dj,k + xmCj,k)Xm+1

+ (∓yjxm ∓ tjxm+1 ± tj)pm−1+k±1︸ ︷︷ ︸
k odd

even

+ (±ykxm ± tkxm+1 ∓ tk)pm−1+j±1︸ ︷︷ ︸
j odd

even

j, k = 1, . . . , n + 1.

(6)
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