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Automated Segmentation of 
Fluorescence Microscopy Images 
for 3D Cell Detection in human-
derived Cardiospheres
Massimo Salvi   1, Umberto Morbiducci2, Francesco Amadeo3, Rosaria Santoro   3,  
Francesco Angelini4, Isotta Chimenti   4,5, Diana Massai2, Elisa Messina   6, 
Alessandro Giacomello7, Maurizio Pesce3 & Filippo Molinari1

The ‘cardiosphere’ is a 3D cluster of cardiac progenitor cells recapitulating a stem cell niche-like 
microenvironment with a potential for disease and regeneration modelling of the failing human 
myocardium. In this multicellular 3D context, it is extremely important to decrypt the spatial 
distribution of cell markers for dissecting the evolution of cellular phenotypes by direct quantification of 
fluorescent signals in confocal microscopy. In this study, we present a fully automated method, named 
CARE (‘CARdiosphere Evaluation’), for the segmentation of membranes and cell nuclei in human-
derived cardiospheres. The proposed method is tested on twenty 3D-stacks of cardiospheres, for a 
total of 1160 images. Automatic results are compared with manual annotations and two open-source 
software designed for fluorescence microscopy. CARE performance was excellent in cardiospheres 
membrane segmentation and, in cell nuclei detection, the algorithm achieved the same performance 
as two expert operators. To the best of our knowledge, CARE is the first fully automated algorithm 
for segmentation inside in vitro 3D cell spheroids, including cardiospheres. The proposed approach 
will provide, in the future, automated quantitative analysis of markers distribution within the cardiac 
niche-like environment, enabling predictive associations between cell mechanical stresses and dynamic 
phenotypic changes.

Monitoring the differentiation process of stem/progenitor cells is important either to devise new regenerative 
medicine approaches, or to understand the molecular basis of chronic diseases involving modifications in tissue 
structure and property1. Until now, this issue has remained relatively unaddressed, also given the lack of system-
atic tools enabling quantitative investigation (even in real time) of cells dynamics inside the so-called stem cell 
niches2 or in disease models3,4. In the last decade the need for quantitative, cost-effective methods for analyzing, 
e.g., cell-matrix as well as cell-cell dynamic interactions, has become more and more compelling. The need for 
quantitative tools is being stimulated by the plethora of methods recently proposed to engineer tissue-specific 3D 
microenvironments mimicking the native architecture, i.e. the so-called ‘organoid’ approach5. This approach is 
expected in the future to support ‘synthetic’ tissue/niche modelling6 for enhanced regenerative medicine applica-
tions7, pathology decryption8 or fundamental cell differentiation programs in developmental processes9,10.

In this context, the cardiosphere is a representative model of cardiac niche, which may be suitable for myo-
cardial regeneration/engineering approaches11–13, as well for decryption and modelling of molecular mech-
anisms underlying myocardial diseases, such as, for example, cardiac fibrosis14,15. Cardiospheres are cultured 
taking advantage of the natural ability of stromal progenitors to (1) outgrow from explanted human adult-derived 
atrial appendage tissue, and (2) aggregate onto cell-repulsive culture substrates16, thereby maintaining cell to cell 
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contacts. Previous studies have already demonstrated that the outer and the inner cardiosphere environments 
present remarkable differences, as far as differentiation potency, paracrine signaling and metabolism are con-
cerned (a detailed discussion can be found, e.g., in ref.15). Up to now, only approaches with limited quantitative 
throughput have been applied to assess cell morphology and dynamics inside these complex structures, mostly 
based on fluorescence-based imaging technology17.

Cell segmentation within fluorescence microscopy images is a challenging task for an automated algorithm. 
First of all, the autofluorescence from out of focus tissues causes an irregular background intensity. This irregu-
larity makes the distinction of the foreground from the background a challenging task. Moreover, the variation of 
nuclei intensity within the same image also complicates the automatic cell separation, causing over-segmentation 
during the nuclei detection18. Most current nuclei detection approaches in fluorescence microscopy images are 
based on intensity thresholding19 and gradients20. However, all of these methods have been developed to analyze 
2D images and none of these has been applied in a multicellular 3D context.

To bridge the gap of knowledge derived by a paucity of automatic solutions for the specific characterization 
of cells inside in vitro 3D aggregates, including cardiospheres, here an adaptive algorithm is presented, CARE 
(‘CARdiosphere Evaluation’), for automatic cardiosphere segmentation in fluorescence microscopy images. The 
proposed technique takes a 3D stacked image from confocal microscopy as input and performs the segmentation 
and 3D rendering of cardiosphere membranes and nuclei. The CARE algorithm was tested on 1160 fluorescent 
images of human-derived cardiospheres. Manual annotations were compared with automatic results provided by 
CARE and two open-source software designed for cell detection (Fiji and CellProfiler).

Results
Primary derivation and confocal microscopy analysis of human cardiospheres.  Cardiospheres 
were stained with DAPI, and TRITC-labelled phalloidin to highlight, respectively, cells and nuclei distribution 
and shapes16. Conventional confocal microscopy was employed to obtain images of the cardiospheres by 3D-stack 
acquisition with a relatively high definition. By visual inspection of Fig. 1, cardiospheres exhibited a complex 
structure emerging above the culture plate as hemispheres, made of cells distributed with apparent multiple ori-
entation and cells/nuclei shapes. The presence of internal cavities with a non-uniform dimension can be also 
appreciated.

CARE vs. manual operator image segmentation.  All the 1160 images of the dataset are used to validate 
the performance of CARE in segmenting cardiospheres borders respect to two manual operators (OP1, OP2). 
Given the presence of a high number of nuclei in each image, only part of them was used to validate the DAPI 
layer. In particular, five random images are extracted from each stack, for a total of 100 images. The same two 
operators manually draw each cell in order to assess inter-operator variability in the cell nuclei detection.

A comparison between masks drawn by a manual operator (MASKMANUAL) and those provided by CARE 
(MASKAUTOMATIC) is also carried out to assess the algorithm performance in the segmentation of cardiosphere 

Figure 1.  Structure of the cardiospheres as observed by confocal microscopy. White color represents the 
cytoskeleton as evidenced by F-actin staining with Phalloidin. Blue color represents the nuclei as revealed by 
DAPI, an intercalant of the DNA. The three panels represent the midline stack (upper left) the 2.5 projection 
of the cardiospheres with the X and Y dimensions (lower left) and the projection of the whole stack along the 
indicated X and Y axes (right) respectively.
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borders and cell nuclei. The segmentation performance was calculated using the recall, precision, F1SCORE and 
jaccardINDEX, defined as follows:
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True positive (TP) denotes the number of pixels in common between manual and automatic masks, false neg-
ative (FN) represents all pixels not identified by CARE and false positive (FP) are all the pixels identified by CARE 
but not by the manual operator. In detail, recall measures the missed detection of ground truth shapes, precision 
evaluates the false detection of ghost objects, F1SCORE is defined as the harmonic mean of recall and precision21, and 
the jaccardINDEX measures similarity between two different shapes, defined as the size of the intersection divided 
by the size of the union of the segmented object22.

The results of the comparison between manual and automatic segmentation are summarized in Table 1. CARE 
demonstrated excellent performances in segmenting cardiospheres borders (PHAL), with very high average val-
ues of precision, recall, F1SCORE and jaccardINDEX respect to two expert operators (OP1, OP2) thus demonstrat-
ing the accuracy of the method (Table 1). As for nuclei segmentation (DAPI), the average F1SCORE calculated 
between the two operators (0.7872) is comparable with the one obtained between CARE and each of them (0.7679 
and 0.7615). The algorithm exhibited an excellent performance in the recognition of cell nuclei, compared to 
manual operators (OP1: 0.9001 and OP2: 0.9210). Being very sensitive, CARE tends to slightly overestimate the 
nuclei surface, and this leads to a lower precision, compared to manual operators (OP1: 0.6713 and OP2: 0.6517). 
Moreover, no statistical difference was found in the precision and recall values in the inner and outer environment 
of the cardiosphere, thus demonstrating the efficiency of the proposed nuclei detection (Table 2). The values of 
jaccardINDEX, between OP1 and CARE (0.6157), and OP2 and CARE (0.6174) were observed to be comparable to 
the value between OP1 and OP2 (0.6497).

Finally, a Kruskal-Wallis test23 is used to compare the inter-operator variability (OP1 vs OP2) with the auto-
matic performance (OP1 vs CARE, OP2 vs CARE). The Kruskal-Wallis test works under the null-hypothesis 
that the data comes from the same distribution (p-value was set to 0.05). For both PHAL and DAPI layer, the 
Kruskal-Wallis test confirmed that there was no statistical difference between inter-operator variability (OP1 
vs OP2) and automatic performance (OP1 vs CARE, OP2 vs CARE) for F1SCORE and jaccardINDEX distributions 
(p-value > 0.05). We also conducted an analysis of the number of nuclei identified by the 2 operators (OP1 and 
OP2) and CARE. No statistical difference was found between manual and automatic cell counting (Table 3). An 
explanatory example comparing the output of the segmentation obtained by applying CARE and by manual 
operators is presented in Fig. 2.

Layer #Images Validation Recall Precision F1SCORE jaccardINDEX

PHAL 1160

OP1 vs OP2 0.9410 ± 0.0285 0.9789 ± 0.343 0.9588 ± 0.0158 0.9170 ± 0.0281

OP1 vs CARE 0.9339 ± 0.0241 0.9728 ± 0.0345 0.9497 ± 0.0157 0.9079 ± 0.0255

OP2 vs CARE 0.9508 ± 0.0264 0.9717 ± 0.0351 0.9606 ± 0.0201 0.9271 ± 0.0255

DAPI 100

OP1 vs OP2 0.7602 ± 0.0486 0.8215 ± 0.0507 0.7872 ± 0.0234 0.6497 ± 0.0318

OP1 vs CARE 0.9001 ± 0.0329 0.6713 ± 0.0506 0.7679 ± 0.0370 0.6157 ± 0.0431

OP2 vs CARE 0.9210 ± 0.0316 0.6517 ± 0.0599 0.7615 ± 0.0439 0.6174 ± 0.0586

Table 1.  Performance of the proposed method in the cardiosphere border (PHAL) and nuclei segmentation 
(DAPI). Data are reported as mean ± standard deviation.

Layer #Images Validation PrecisionINNER PrecisionOUTER RecallINNER RecallOUTER

DAPI 100
OP1 vs CARE 0.6735 ± 0.1342 0.6584 ± 0.1341 0.8817 ± 0.0980 0.8760 ± 0.0720

OP2 vs CARE 0.6510 ± 0.1510 0.6472 ± 0.1484 0.9074 ± 0.0659 0.8966 ± 0.0671

Table 2.  Comparison between the segmentation performance in the external shell (precisionOUTER, recallOUTER) 
and the one obtained in the internal ‘core’ of the cardiosphere (precisionINNER, recallINNER).
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Comparison with open-source softwares.  The CARE automatic segmentation was also compared 
with two open-source softwares (CellProfiler and Fiji) widely applied to the analysis of fluorescence microscopy 
images. CellProfiler24 is composed of a series of image-processing modules that allow the user to perform an 
automatic analysis. Fiji25 is a Java-based software with several plugins which facilitate scientific image analysis 
based on a semi-automatic pipeline consisting of: (i) conversion of RGB image into grayscale, (ii) manual inten-
sity thresholding, (iii) hole filling and (iv) small particles removal. For the nuclei segmentation, here an additional 
step was included in the analysis: (v) automatic cell separation. A visual inspection of Fig. 3 allows to compare 
the performances of CellProfiler, Fiji and CARE in cardiospheres segmentation. A quantitative comparison of the 
performances offered by the two open-source software with CARE is reported in Tables 4 and 5.

As can be seen from Tables 4 and 5, the Cell Profiler segmentation is characterized by a low recall (PHAL: 
0.7997, DAPI: 0.8053) and this lead to a lowering of the average F1SCORE (PHAL: 0.7997, DAPI: 0.8053). Moreover, 
the mean jaccardINDEX (PHAL: 0.7939, DAPI: 0.5031) is lower than the proposed one for more than 10%.

Fiji segmentation performance is quite similar to CARE results. The average F1SCORE achieved with Fiji is 
slightly lower than those obtained with CARE (PHAL: 0.9249, DAPI: 0.7504). This software is semi-automatic 
and requires user intervention to function properly. For this reason, the average computational time is about 10 
times higher than CARE algorithm.

Discussion
In this work, we presented a fully automated algorithm for human-derived cardiospheres segmentation in fluores-
cence microscopy images. The cardiosphere is a promising phenotype for regeneration of the failing human myo-
cardium11,13,15, and a promising model of cardiac pathologies such as heart failure14. To the best of our knowledge, 
CARE is the first solution for the automatic segmentation of cells inside in vitro 3D aggregates.

The proposed algorithm is capable of recognizing cardiosphere membrane and cells inside fluorescence 
images. The proposed approach is able to automatically detect cell nuclei in a 3D context without any user inter-
action. The algorithm was tested on twenty 3D-stacks of human-derived cardiospheres, for a total number of 27 
cardiospheres and 1160 slides. Two expert biologists manually annotated cardiosphere membranes for all the 
images of our dataset. To assess the inter-operator variability in nuclei segmentation, the same manual operators 
also draw each cell boundary on 100 random images.

The comparison between automatic results and manual annotations showed very high performances for the 
proposed approach. In detail, the CARE algorithm showed excellent performance in membranes segmentation, 
with an average F1SCORE of 0.9497 ± 0.0157 and jaccardINDEX of 0.9079 ± 0.0255. In cell segmentation, the pro-
posed algorithm obtained a mean F1SCORE and jaccardINDEX comparable with respect to two expert operators 
(Table 1). The CARE algorithm also achieved the highest F1SCORE compared to other softwares (CellProfiler and 
Fiji) designed for cell segmentation in fluorescence microscopy. Finally, the proposed method obtained the lowest 
running time and, respect to other automatic and semi-automatic methods, the best jaccardINDEX.

Layer #Images #Nuclei OP1 #Nuclei OP2 #Nuclei CARE

DAPI 100 81.01 ± 46.24 79.42 ± 45.81 80.84 ± 42.30

Table 3.  Comparison between manual (#Nuclei OP1, #Nuclei OP2) and automatic (#Nuclei CARE) cell counting.

Figure 2.  Comparison between manual and automatic segmentation (rows). First column shows the original 
RGB image while manual masks performed by two expert operators (OP1, OP2) are reported in the second and 
third columns. The result provided by the proposed method is shown in the rightmost column.

https://doi.org/10.1038/s41598-019-43137-2
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Thanks to the implementation of adaptive thresholds and optimized object separation, the CARE algorithm 
achieves high accuracy in cell detection. The efficiency of the proposed method is demonstrated by the low com-
putational times: the CARE algorithm takes only 25 seconds to complete membrane and nuclei segmentation in 
images with hundreds of cells.

Thanks to the fast and robust cell detection provided by CARE, fully automatic systems for morphological/
antigenic characterization of cells inside 3D aggregates can be easily developed. In the next future, a novel cells 
separation approach will be included within the CARE architecture to further reinforce the detection perfor-
mance of our method. In addition, we will also test the CARE accuracy in cell segmentation in other in vitro 
3D aggregates/organoids. Finally, the CARE algorithm could be the tool of election for automated, quantitative 
analyses of markers distribution within the cardiosphere, aiming at discovering predictive associations between 
cell mechanical cues and dynamic phenotypic changes.

Methods
Cardiosphere culture.  Primary cardiospheres (CSs) were isolated as previously described15 from right 
atrial appendage biopsies obtained from three donor patients undergoing elective cardiac surgery during clin-
ically indicated procedures, after informed consent, in an institutional review board approved protocol at the 
“Umberto I” Hospital, “La Sapienza” University of Rome. All experiments were performed in accordance with 
relevant guidelines and regulations. Briefly, explant cultures were obtained after mechanical fragmentation 
and enzymatic digestion (trypsin/EDTA 0.05% for 15 minute at room temperature) of myocardial tissue, and 

Figure 3.  Comparison between two open-source software and the proposed method in the cardiosphere 
segmentation (rows). First column shows the original RGB image while CellProfiler23 and Fiji24 result are provided in 
the second and third columns respectively. The automatic mask obtained with CARE is shown in the last column.

Method
Computational 
Time (sec)

PHAL layer

Recall Precision F1SCORE jaccardINDEX

CellProfiler (automatic) 13.18 ± 4.51 0.7997 ± 0.0655 0.9912 ± 0.0028 0.8724 ± 0.0482 0.7939 ± 0.0671

Fiji (semi-automatic) 117.21 ± 13.91 0.8865 ± 0.0559 0.9902 ± 0.0005 0.9249 ± 0.0387 0.8775 ± 0.0548

CARE (proposed) 8.27 ± 1.31 0.9339 ± 0.0241 0.9728 ± 0.0345 0.9497 ± 0.0157 0.9079 ± 0.0255

Table 4.  Performance of two open-source software (CellProfiler, Fiji) in the segmentation of the external 
cardiosphere membrane (PHAL layer). Data are reported as mean ± standard deviation.

Method
Computational 
Time (sec)

DAPI layer

Recall Precision F1SCORE jaccardINDEX

CellProfiler (automatic) 14.26 ± 3.02 0.8053 ± 0.1198 0.5818 ± 0.1704 0.6536 ± 0.1341 0.5031 ± 0.1365

Fiji (semi-automatic) 123.81 ± 19.38 0.8457 ± 0.0944 0.6845 ± 0.0453 0.7504 ± 0.0522 0.6045 ± 0.0633

CARE (proposed) 12.42 ± 2.36 0.9001 ± 0.0329 0.6713 ± 0.0506 0.7679 ± 0.0370 0.6157 ± 0.0431

Table 5.  Performance of two open-source software (CellProfiler, Fiji) in the segmentation of the cardiosphere 
cell nuclei (DAPI layer). Data are reported as mean ± standard deviation.

https://doi.org/10.1038/s41598-019-43137-2
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plated on fibronectin-coated petri dishes in the following media recipe: Iscove’s modified Dulbecco’s medium 
(IMDM) (Sigma-Aldrich) supplemented with 20% FBS (Sigma-Aldrich), 1% penicillin-streptomycin (Sigma-
Aldrich), 1% L-glutamine (Lonza, Basel, Switzerland), and 0.1mM2-mercaptoethanol (Gibco, Thermo Fisher 
Scientific, Waltham, MA, USA). After 4 weeks, explant cells spontaneously migrated from tissue fragments were 
harvested with EDTA wash and mild trypsinization (trypsin/EDTA 0.05% for 2–3 minute at room temperature). 
Cells were then plated on poly-D-lysine (BD-Biosciences) coated wells (9000 cells/cm2) in the following media: 
35% IMDM/65% DMEM/F-12 Mix (Gibco and Lonza), 3.5% FBS, 1% penicillin-streptomycin, 1% L-glutamine, 
0.1 mM 2-mercaptoethanol, 1 unit/ml thrombin (Sigma-Aldrich), 1:50 B-27 (Invitrogen), 80 ng/ml bFGF, 25 ng/ml  
EGF, and 4 ng/ml cardiotrophin-1 (all Peprotech). CSs were harvested by pipetting and centrifugation at 50rcf 

Figure 4.  Schematic representation of the CARE algorithm.

https://doi.org/10.1038/s41598-019-43137-2
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Figure 5.  Processing for obtaining the initial threshold for different images of the stack with different high 
variation of intensity (PHAL layer). Starting from the red layer of the RGB image, the PWMCURVE is estimated 
from its grayscale histogram. Then, candidate thresholds are evaluated as inflection points of the curve (red 
dotted lines). The standard deviation of detected objects intensity using candidate thresholds is calculated 
and the initial threshold is determined as the one with the lowest standard deviation. In the last column, the 
application of the initial threshold on the RGB image is shown.

Figure 6.  Schematic representation of the CARE algorithm. Processing of cardiospheres membranes. First row 
shows the refining operation of cardiospheres external edges while second row illustrates the separation process 
of touching cardiospheres. (a) Current frame (reference frame), (b) realign frame (next frame), (c) realign frame 
after refining, (d) distance transform of the membrane mask, (e) application of the marker-based watershed for 
cardiosphere separation, (f) final membrane mask on RGB image.

https://doi.org/10.1038/s41598-019-43137-2
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after 1 week and plated in fibronectin-coated 8-well chamber-slides (Eppendorf) for 3–4 hours to allow attach-
ment. CSs were then fixed with 4% paraformaldehyde for 10 minutes at room temperature, and then subjected to 
immunofluorescence staining protocols.

Image database.  Twenty 3D-stacks of human-derived cardiospheres obtained from different patients, for a 
total number of 27 cardiospheres and 1160 slides, were analyzed. Each 3D-stack was acquired using two different 
lasers to highlight cell membranes (PHAL) and nuclei (DAPI). The voxel size (XYZ) was 0.345 × 0.345 × 0.432 µm/
pixel3. Each slice had a dimension of 1024 × 1024 pixels (resolution: 0.345 µm/pixel).

For each sample, the number of slices was adapted to include the entire cardiosphere within the Z-stack 
(average number of slices: 112). Two expert biologists (more than 10 years of experience) manually annotated 
membranes and nuclei boundaries. The image dataset and the CARE source code are available at https://data.
mendeley.com/datasets/tntrkg27st/1.

CARE algorithm architecture.  The CARE algorithm is designed to automatically segment 
cardiosphere-derived cells in fluorescence microscopy images. The algorithm is developed in MATLAB 
(MathWorks, Natick, MA, USA) environment. Image processing and analysis was carried out on a workstation 
with a 3.1 GHz quad-core CPU and 32-GB of RAM. The procedure of the proposed method is schematically 
described in Fig. 4. Three main steps compose the processing: PHAL processing, DAPI processing and 3D ren-
dering. In the following sections, a detailed description of the algorithm is provided.

PHAL processing.  The first step of the CARE algorithm is the identification of the cardiosphere membranes 
by analyzing the 3D stack of the PHAL layer. Then, the identification of the external borders of the cardiospheres 
is performed by applying an object-based detection scheme to each image of the stack. The core technology of this 
step is an original object-based detection strategy that we previously developed and adapted to these images26, 
which is briefly described in the following.

In order to analyze the phalloidin, the red layer of the RGB image is extracted and its grayscale histogram 
is calculated. Then, the Progressive Weighted Mean (PWMCURVE) of the grayscale histogram is computed. 
Considering a generic class P of the histogram (0 ≤ P ≤ 255), the value of PWMCURVE for that class is defined as:

= ∑
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Figure 7.  Processing for obtaining the initial threshold for different images of the stack with different high 
variation of intensity (DAPI layer). Starting from the blue layer of the RGB image, the PWMCURVE is estimated 
from its grayscale histogram. Then, candidate thresholds are evaluated as inflection points of the curve (red 
dotted lines). The standard deviation of detected objects intensity using candidate thresholds is calculated 
and the initial threshold is determined as the one with the lowest standard deviation. In the last column, the 
application of the initial threshold on the RGB image is shown.
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where, wi is the histogram count for the ith class and xi is the respective bin location. The PWMCURVE is evaluated 
for each class of the histogram as the weighted mean of all the grayscale histogram values up to that class. As the 
trend of PWMCURVE depends on the shape of the histogram, relevant features based on image color distribution 
can be extracted using this function. In particular, inflection points of PWMCURVE may be potential threshold val-
ues for performing cardiospheres segmentation, as they represent local stability points of the grayscale histogram. 
In particular, cardiosphere membranes can be defined as objects with an intensity higher than a threshold value 
that can be unambiguously identified as follows. First of all, the PWMCURVE is fitted with a 10th order polynomial 
function with the aim to estimate its inflection points (candidate thresholds). Then, the grayscale image is seg-
mented using all the candidate thresholds and the standard deviation of detected objects intensity is evaluated for 
all thresholds. Among candidate thresholds, the algorithm considers as initial threshold value the one that iden-
tifies objects with the lowest standard deviation. This condition on the standard deviation is imposed to obtain 
homogeneous objects.

Figure 8.  Processing of DAPI layer. (a) Original RGB image, (b) membrane mask applied to the image, (c) raw 
nuclei detection, (d) cell nuclei separation using a marker-based watershed.

Figure 9.  Cardiosphere 3D rendering before and after the cut-off frame estimation. PHAL and DAPI mask are 
combined to obtain the raw volumes. Then, the proposed algorithm identifies the frame in which there is the 
first contact between the cardiosphere and the surface. The final 3D rendering is achieved by excluding all the 
slides after the cut-off frame.

https://doi.org/10.1038/s41598-019-43137-2
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The processing steps for obtaining the initial threshold are illustrated in Fig. 5, where images with three differ-
ent laser intensities are presented as explanatory examples. From the results presented in Fig. 5, it can be appreci-
ated the robustness of the proposed method for cardiospheres border identification, where an optimal threshold 
image intensity value is selected, regardless of the shape both of the image histogram and of the cardiosphere.

The herein develop method also includes an automatic strategy for the refinement of the shapes of the objects 
detected. Preliminarily, detected objects with area less than 1200 µm2 are deleted because they are too small to be 
considered as cardiospheres. Then, starting from the first frame of the stack, the CARE algorithm also performs 
an iterative four-steps processing procedure to further clean the obtained masks:

	 1.	 definition of reference frame as the current frame;
	 2.	 definition of realign frame as the next frame after the reference frame;
	 3.	 deletion of all the objects inside the realign frame with an overlapping lower than 75% with reference frame 

objects;
	 4.	 move on to next frame (with the current realign frame becoming the next current frame).

The procedure described above is extended to all the images of the stack. With this operation, all previously 
segmented objects that do not belong to the cardiosphere are deleted. An example of the refining process is pre-
sented in Fig. 6a–c.

Our object-based detection technology has a high sensitivity, but sometimes it may lead to suboptimal profiles, 
possibly given by two or more cardiospheres that are very close to each other. In such a case, the automatic algo-
rithm may depict them as a single object. However, our technique incorporates a post-processing step to overcome 
this issue. A marked-based watershed26,27, was implemented to separate “fused” cardiospheres. To identify marker 
positions, the distance transform of the membrane binary mask is calculated, and the local maxima are identified 
using the extended-maxima transform27. Technically, the extended-maxima transform estimates regional maxima 
by searching in N-connected neighborhoods. For this application, a neighborhood size of N = 20 pixels (equal to 
6.91 µm) was empirically set, based on the observation that it guarantees an effective and affordable output in terms 
of cardiospheres separation. The separation process of “fused” cardiospheres is illustrated in Fig. 6.

DAPI processing.  After cardiospheres border segmentation, the proposed method analyzes the 3D stack of 
the DAPI layer (Fig. 7). Starting from the original RGB image (Fig. 8a), the cardiospheres segmentation is applied 
to each frame (Fig. 8b). All objects outside the mask are excluded from the analysis, as they do not belong to the 
cardiosphere. The same object-based detection used for the PHAL processing is applied for cell nuclei segmen-
tation to obtain a raw mask of cells inside each cardiosphere (Fig. 8c). In the acquired images, cell nuclei are very 
often close to each other and the algorithm connects them as a single structure28. For this reason, also at this stage 
of the investigation a marker-based watershed is applied in order to separate fused nuclei (Fig. 8d).

3D rendering.  The 3D rendering of cardiospheres is obtained combining the segmentation masks obtained 
as mentioned above with the corresponding RGB image (Fig. 9). Unfortunately, this operation is not sufficient to 
ensure a proper 3D reconstruction of the volume of cardiospheres, because it is affected by the border effect in 
the region where the cardiosphere is in contact with the surface on which it grows. To overcome this limitation, 
the method proposed here identifies the frame where the first contact between the cardiosphere and the support 
surface occurs (cut-off frame). To do that, starting from the first image of the stack, three conditions are checked 
on the border segmentation mask. If at least one of these conditions is satisfied, the slide is labeled as cut-off frame 
and the remaining images are not used for 3D rendering:

	 1.	 Grayscale intensity - if in the image i-th of the stack the grayscale average intensity inside the segmented 
border mask is lower than 0.20, then the image is too dark to be considered for 3D rendering;

	 2.	 Shape difference - if the area difference between the segmented border in frame i-1 and frame i is greater 
than 30%, then the cardiosphere is starting to spread on the surface;

	 3.	 Shape solidity - if the segmented border mask solidity is less than 0.60, then the shape is so irregular that 
it cannot belong to a single cardiosphere. Solidity of a region is defined as the ratio between its area and 
convex area. Since it is expected that cardiospheres are convex objects, the solidity is used as feature for the 
identification of the cut-off frame.

Figure 9 shows a 3D rendering before and after the estimation of the cut-off frame. Through the process 
described above, the CARE algorithm produces two renderings: (i) the 3D volume of the external border of the 
cardiosphere and (ii) the 3D volume of all the cell nuclei inside the cardiosphere.

Data Availability
The CARE algorithm and the dataset used during the current study are made available as indicated in the Method 
section.
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