






























Constrained Extended Plackett-Luce model for
the analysis of preference rankings

Cristina Mollica and Luca Tardella

Abstract Choice behavior and preferences typically involve numerous and subjec-
tive aspects that are difficult to be identified and quantified. For this reason, their ex-
ploration is frequently conducted through the collection of ordinal evidence in the
form of ranking data. Multistage ranking models, including the popular Plackett-
Luce distribution (PL), rely on the assumption that the ranking process is performed
sequentially, by assigning the positions from the top to the bottom one (forward
order). A recent contribution to the ranking literature relaxed this assumption with
the addition of the discrete reference order parameter, yielding the novel Extended
Plackett-Luce model (EPL). In this work, we introduce the EPL with order con-
straints on the reference order parameter and a novel diagnostic tool to assess the
adequacy of the EPL parametric specification. The usefulness of the proposal is
illustrated with an application to a real dataset.

Key words: Ranking data, Plackett-Luce model, Bayesian inference, Data augmen-
tation, Gibbs sampling, Metropolis-Hastings, model diagnostics

1 Introduction

A ranking π = (π(1), . . . ,π(K)) of K items is a sequence where the entry π(i) in-
dicates the rank attributed to the i-th alternative. Data can be equivalently collected
in the ordering format π−1 = (π−1(1), . . . ,π−1(K)), such that the generic compo-
nent π−1( j) denotes the item ranked in the j-th position. Regardless of the adopted
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format, ranked observations are multivariate and, specifically, correspond to permu-
tations of the first K integers.

The statistical literature concerning ranked data modeling and analysis is re-
viewed in [3] and, more recently, in [1]. Several parametric distributions on the set
of permutations SK have been developed and applied to real experiments. A popu-
lar parametric family is the Plackett-Luce model (PL), belonging to the class of the
so-called stagewise ranking models. The basic idea is the decomposition of the rank-
ing process into K−1 stages, concerning the attribution of each position according
to the forward order, that is, the ordering of the alternatives proceeds sequentially
from the most-liked to the least-liked item. The implicit forward order assumption
has been relaxed by [4] in the Extended Plackett-Luce model (EPL). The PL exten-
sion relies on the introduction of the reference order parameter indicating the rank
assignment order. In this work, we investigate a restricted version of the EPL with
order constraints for the reference order parameter representing a meaningful rank
attribution process and we also introduce a novel diagnostic to assess the adequacy
of the EPL assumption as the actual sampling distribution of the observed rankings.

2 The Extended Plackett-Luce model with order constraints

2.1 Model specification

The implicit assumption in the PL scheme is the forward ranking order, meaning
that at the first stage the ranker reveals the item in the first position (most-liked al-
ternative), at the second stage she assigns the second position and so on up to the
last rank (least-liked alternative). [4] suggested the extension of the PL by relaxing
the canonical forward order assumption, in order to explore alternative meaningful
ranking orders for the choice process and to increase the flexibility of the PL para-
metric family. Their proposal was realized by representing the ranking order with
an additional model parameter ρ = (ρ(1), . . . ,ρ(K)), called reference order, where
the entry ρ(t) indicates the rank attributed at the t-th stage of the ranking process.
Thus, ρ is a discrete parameter given by a permutation of the first K integers and the
composition η−1 = π−1ρ of an ordering with a reference order yields the sequence
η−1 = (η−1(1), . . . ,η−1(K)) which lists the items in order of selection, such that
the component η−1(t) = π−1(ρ(t)) corresponds to the item chosen at stage t and
receiving rank ρ(t). The probability of a generic ordering under EPL can be written
as

PEPL(π
−1|ρ, p) = PPL(π

−1
ρ|p) =

K

∏
t=1

pπ−1(ρ(t))

∑
K
v=t pπ−1(ρ(v))

π
−1 ∈SK , (1)

Hereinafter, we will shortly refer to (1) as EPL(ρ, p). The quantities pi’s are the
support parameters and are proportional to the probabilities for each item to be
ranked in the position indicated by the first entry of ρ .
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Differently from [4], we focus on a restriction S̃K of the whole permutation space
SK for the reference order parameter. Our choice can be explained by the fact that,
in a preference elicitation process, not all the possible K! orders seem to be equally
natural, hence plausible. Often the ranker has a clearer perception about her extreme
preferences (most-liked and least-liked items), rather than middle positions. In this
perspective, the rank attribution process can be regarded as the result of a sequential
“top-or-bottom” selection of the positions. At each stage, the ranker specifies either
her best or worst choice among the available positions at that given step. With this
scheme, the reference order can be equivalently represented as a binary sequence
W = (W1, . . . ,WK) where the generic Wt component indicates whether the ranker
makes a top or bottom decision at the t-th stage, with the convention that WK = 1.
One can then formalize the mapping from the restricted permutation ρ to W with the
help of a vector of non negative integers F = (F1, . . . ,FK), where Ft represents the
number of top positions assigned before stage t. In fact, by starting from positing by
construction F1 = 0, one can derive sequentially

Wt = I[ρ(t)=ρF(Ft+1)] =

{
1 at stage t the top preference is specified,
0 at stage t the bottom preference is specified,

where I[E] is the indicator function of the event E and Ft = ∑
t−1
ν=1 Wν for t = 2, ...,K.

Note that, since the forward and backward orders (ρF,ρB) can be regarded as the two
extreme benchmarks in the sequential construction of ρ , this allows us to understand
that ρF(Ft +1) corresponds to the top position available at stage t. Conversely, Bt =
(t − 1)− Ft is the number of bottom positions assigned before stage t and thus,
symmetrically, one can understand that ρB(Bt + 1) indicates the bottom position
available at stage t.

The binary representation of the reference order suggests that, under the con-
straints of the “top-or-bottom” scheme, the size of S̃K is equal to 2K−1. The reduc-
tion of the reference order space into a finite set with an exponential size, rather than
with a factorial cardinality, is convenient for at least two reasons: i) it leads to a more
intuitive interpretation of the support parameters, since they become proportional to
the probability for each item to be ranked either in the first or in the last position
and ii) it facilitates the construction of a Metropolis-Hastings (MH) step to sample
the reference order parameter.

2.2 Bayesian estimation of the EPL via MCMC

Inference on the EPL and its generalization into a finite mixture framework was
originally addressed from the frequentist perspective in [4]. Here we consider the
original MCMC methods recently developed by [6] to solve Bayesian inference for
the constrained EPL.

In the Bayesian domain, the data augmentation with the latent quantitative vari-
ables y = (yst) for s = 1, . . . ,N and t = 1, . . . ,K crucially contributes to make it
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tractable analytically the inference for the EPL . The auxiliary variables yst ’s are as-
sumed to be conditionally independent on each other and exponentially distributed
with rate parameter equal to the normalization term of the EPL, see also [5]. For
the prior specification, independence of p and ρ is assumed together with indepen-
dent Gamma densities for the support parameters, motivated by the conjugacy with
the model, and a discrete uniform distribution on S̃K for the reference order. [6]
presented a tuned joint Metropolis-within-Gibbs sampling (TJM-within-GS) to per-
form approximate posterior inference, where the simulation of the reference order is
accomplished with a MH algorithm relying on a joint proposal distribution on ρ and
p, whereas the posterior drawings of the latent variables y’s and the support param-
eters are performed from the related full-conditional distributions. At the generic
iteration l + 1, the TJM-within-GS iteratively alternates the following simulation
steps

ρ
(l+1), p′ ∼ TJM,

y(l+1)
st |π−1

s ,ρ(l+1), p′ ∼ Exp

(
K

∑
i=1

δ
(l+1)
sti p′i

)
,

p(l+1)
i |π−1,y(l+1),ρ(l+1) ∼ Ga

(
c+N,d +

N

∑
s=1

K

∑
t=1

δ
(l+1)
sti y(l+1)

st

)
.

3 EPL diagnostic

Simulation studies confirmed the efficacy of the TJM-within-GS to recover the ac-
tual generating EPL, together with the benefits of the SM strategy to speed up the
MCMC algorithm in the exploration of the posterior distribution. However, we were
surprised to verify a less satisfactory performance of the TJM-within-GS in terms
of posterior exploration in the application to some real-world examples, such as the
famous song dataset analyzed by [2]. Since the joint proposal distribution relies
on summary statistics, the posterior sampling procedure is expected to work well as
long as the data are actually taken from an EPL distribution. So, the unexpectedly
bad behavior of the MCMC suggested to conjecture that, for such real data, the EPL
does not represent the true (or in any case an appropriate) data generating mecha-
nism. This has motivated us to the develop some new tools to appropriately check
the model mis-specification issue.

Suppose we have some data simulated from an EPL model. We expect the
marginal frequencies of the items at the first stage to be ranked according to the or-
der of the corresponding support parameter component. On the other hand, although
computationally demanding to be evaluated in terms of their closed form formula
we expect the marginal frequencies of the items at the last stage to be ranked ac-
cording to the reverse order of the corresponding support parameter component.
After proving such a statement one can then derive that the ranking of the marginal
frequencies of the items corresponding to the first and last stage should sum up to



Constrained Extended Plackett-Luce model for the analysis of preference rankings 5

(K+1), no matter what their support is. Of course, this is less likely to happen when
the sample size is small or when the support parameters are not so different of each
other. In any case, one can define a test statistic by considering, for each couple
of integers ( j, j′) candidate to represent the first and the last stage ranks, namely
ρ(1) and ρ(K), a discrepancy measure Tj j′(π) between K + 1 and the sum of the
rankings of the frequencies corresponding to the same item extracted in the first and
in the last stage. Formally, let r[1]j = (r[1]j1 , . . . ,r

[1]
jK) and r[K]

j′ = (r[K]
j′1 , . . . ,r

[K]
j′K) be the

marginal item frequency distributions for the j-th and j′-th positions, to be assigned
respectively at the first [1] and last [K] stage. In other words, the generic entry r[s]ji
is the number of times that item i is ranked j-th at the s-th stage. The proposed EPL
diagnostic relies on the following discrepancy

Tj j′(π) =
K

∑
i=1
|(rank(r[1]j )i + rank(r[K]

j′ )i− (K +1))|,

implying that the smaller the test statistics, the larger the plausibility that the two
integers ( j, j′) represent the first and the last components of the reference order. To
globally assess the conformity of the sample with the EPL, we consider the mini-
mum value of Tj j′(π) over all the possible rank pairs satisfying the order constraints

T (π) = min
( j, j′)∈P

Tj j′(π), (2)

where P = {( j, j′) : j ∈ {1,K} and j 6= j′}.

3.1 Applications to real data

We fit the EPL with reference order constraints to the sport dataset of the
Rankcluster package, where N=130 students at the University of Illinois were
asked to rank K=7 sports in order of preference: 1=Baseball, 2=Football, 3=Basketball,
4=Tennis, 5=Cycling, 6=Swimming and 7=Jogging. We estimated the Bayesian
EPL with hyperparameter setting c = d = 1, by running the TJM-within-GS for
20000 iterations and discarding the first 2000 samplings as burn-in phase. We
show the approximation of the posterior distribution on the reference order in Fig-
ure 1, where it is apparent that the MCMC is mixing sufficiently fast and there is
some uncertainty on the underlying reference order. The modal reference order is
(7,1,2,3,4,6,5), with slightly more than 0.4 posterior probability. However, when
we compared the plausibility of the observed diagnostic statistic with the refer-
ence distribution under the fitted EPL, we got a warning with a bootstrap classi-
cal p-value approximately equal to 0.011. This should indeed cast some doubt on
the use of PL or EPL as a suitable model for the entire dataset. In fact, we have
verified that, after suitably splitting the dataset into two groups according to the
EPL mixture methodology suggested by [4] (best fitting 2-component EPL mixture
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Fig. 1: Traceplot (left) and top-10 posterior probabilities (right) for the reference
order parameter.

with BIC=2131.20), we have a different more comfortable perspective for using
the EPL distribution to separately model the two clusters. The modal reference or-
ders are (1,2,3,4,5,6,7) and (1,2,3,7,4,5,6) and the estimated Borda orderings are
(7,6,4,5,3,1,2) and (1,2,3,4,6,7,5), indicating opposite preferences in the two sub-
samples towards team and individual sports. In this case, no warning by the diag-
nostic tests applied separately to the two subsamples is obtained, since the resulting
p-values are 0.991 and 0.677.

4 Conclusions

We have addressed some relevant issues in modelling choice behavior and prefer-
ences. In particular, we have further explored the idea in [4] related to the use of
the reference order specifying the order of the ranks sequentially assigned by in-
troducing monotonicity restrictions on the discrete parameter to describe a “top-or-
bottom” attribution of the positions. Our contribution allows to gain more insights
on the sequential mechanism of formation of preferences, whether or not it is appro-
priate at all and whether it privileges a more or less natural ordered assignment of
the most extreme ranks. Additionally, some issues experienced when implementing
a well-mixing MCMC approximation motivated us to derive a diagnostic tool to test
the appropriateness of the EPL distribution, whose effectiveness has been checked
with an application to a real example.



Constrained Extended Plackett-Luce model for the analysis of preference rankings 7

References

1. Alvo M, Yu PL (2014). Statistical methods for ranking data. Springer.
2. Critchlow DE, Fligner MA, Verducci JS (1991). “Probability models on rankings.” Journal of

Mathematical Psychology, 35(3), 294–318.
3. Marden JI (1995). Analyzing and modeling rank data, volume 64 of Monographs on Statistics

and Applied Probability. Chapman & Hall. ISBN 0-412-99521-2.
4. Mollica C, Tardella L (2014). “Epitope profiling via mixture modeling of ranked data.” Statis-

tics in Medicine, 33(21), 3738–3758. ISSN 0277-6715. doi:10.1002/sim.6224.
5. Mollica C, Tardella L (2017). “Bayesian mixture of Plackett-Luce models for partially ranked

data.” Psychometrika, 82(2), 442–458. ISSN 0033-3123. doi:10.1007/s11336-016-9530-0.
6. Mollica C, Tardella L (2018). “Algorithms and diagnostics for the analysis of preference rank-

ings with the Extended Plackett-Luce model.” arXiv preprint: http://arxiv.org/abs/1803.02881.


