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Abstract—In this paper, we present the Framework for building
Failure Prediction Models (F2PM), a Machine Learning-based
Framework to build models for predicting the Remaining Time
to Failure (RTTF) of applications in the presence of software
anomalies. F2PM uses measurements of a number of system
features in order to create a knowledge base, which is then used
to build prediction models. F2PM is application-independent, i.e.
it solely exploits measurements of system-level features. Thus, it
can be used in differentiated contexts, without the need for any
manual modification or intervention to the running applications.
To generate optimized models, F2PM can perform a feature
selection to identify, among all the measured system features,
which have a major impact in the prediction of the RTTF. This
allows to produce different models, which use different set of
input features. Generated models can be compared by the user by
using a set of metrics produced by F2PM, which are related to the
model prediction accuracy, as well as to the model building time.
We also present experimental results of a successful application
of F2PM, using the standard TPC-W e-commerce benchmark.

I. INTRODUCTION

In computing systems, one significant cause of availability
and performance degradation is the accumulation of anomalies
of different nature. A large part of these anomalies is often
associated with errors and/or sub-optimal implementations
of applications, which may lead to the occurrence of, e.g.,
memory leaks, unterminated threads, unreleased locks, file
fragmentation. These phenomena have been widely observed
in different contexts, revealing an average percentage of 40%
of anomalies being due to errors in the software development
[?]. The accumulation of these kinds of anomalies can cause
exhaustion of system resources over time, and might lead to
incremental loss of performance, or even hang/crash of the
hosting system. The effect of resource exhaustion can be par-
ticularly strengthened in the case of long-running applications
(as in the case of many applications hosted in web/application
servers), which can be subject to the accumulation of a large
number of anomalies over time. Most of the time, the occur-
rence of anomalies in applications is unpredictable and their
causes are complex to figure out. Additionally, in some cases,
unearthing the causes would require a huge effort or, even,
could be cost-ineffective. In these cases, alternative approaches
to address accumulation of anomalies are preferred, such as
executing proper correcting actions aimed at removing their
effects. For example, a largely adopted technique is software
rejuvenation [?], which consists of forcing the state of the
application/system to a “clean” state, i.e. a state where the
system/application is known to work without the presence
(or with reduced number) of anomalies. Typical actions for

cleaning up the state include restarting the application or
rebooting the system.

Generally, being able to predict the occurrence of anoma-
lies (as well as the effects associated with their accumulation)
can help to improve both the performance and the availability
of systems. In fact, proper actions could be executed in advance
to prevent upcoming system failures or excessive performance
degradation. In the case of software rejuvenation, this kind
of proactive approach is referred to as proactive rejuvenation,
which consists of preventively forcing the application or the
hosting system to a clean state before the time when, e.g., a
crash is predicted to occur.

In this paper, we present the Framework for building
Failure Prediction Models (F2PM), a Machine Learning (ML)
based Framework aimed at building system failure prediction
models. F2PM allows to generate optimized ML models to
predict when a given (abnormal) condition is expected to
occur. We generally call this time Remaining Time To Failure
(RTTF). The condition can identify different kind of system
failures. Specifically, it can be defined by the user on the
basis of the values of one or more selected system features,
which can reveal that the system is approaching, e.g., a
hang/crash point or is working in a sub-optimal way (e.g., it
is providing very low performance). F2PM operates in a non-
intrusive way, i.e. any kind of instrumentation of applications
(such as inserting probes for collecting data) is not required,
thus being completely application-agnostic. In fact, F2PM
only exploits system-level features, which can be monitored
by using simple tools typically included also in the basic
versions of all common operating systems. This makes F2PM
of general usability. Since our proposal is based on Machine
Learning techniques, its applicability ranges to all contexts
where it is possible to collect in advance a sufficient number
of observations of the monitored phenomena. Essentially, the
higher the occurrence rate of anomalies/faults in the monitored
system, the quicker is the generation of a reliable prediction
model (coherent with the system under monitoring).

F2PM relies on a preliminary system observation phase.
During this phase, a number of system features are monitored,
and their values are recorded, while the application responsible
of generating anomalies runs. Every time the condition defined
by the user is met, F2PM logs the occurrence time, and
the system is restarted. Then, collected data are used for
building and validating a number of models generated by using
different ML algorithms. Before building the models, F2PM
also performs two additional steps: 1) the values of a number of
derived metrics, calculated on the basis of the collected system



features, are added to the collected data, and 2) a data selection
step is executed, where a number of training sets (including
different sub-sets of features and metrics) are extracted from
the data set. Then, a number of models are generated by
applying ML algorithms to the different training sets. For each
model, F2PM provides a set of metrics measuring the accuracy
and the model training/validation time, thus offering the user
the possibility to select the best suited model on the basis of
the model accuracy and building time. Particularly, the set of
metrics also includes the Soft-Mean Absolute Error (S-MAE),
which evaluates the absolute prediction error assuming that
an error below a given user-defined threshold T is acceptable
(i.e., an error less than T is not considered in the evaluation
of the metric). S-MAE is particularly useful when performing
proactive management of system failures. In fact, in this case,
if a correcting action is executed at time T before the system
is predicted to fail, a prediction error less than T would be
tolerated.

We also show how F2PM can be instantiated in the case of
web applications. However, we note that F2PM is designed to
be used independently of a specific kind of application and
type of anomaly. In fact, by changing the set of observed
system features and defining a proper condition to be met for
considering the system as failed, F2PM can be customized for
different systems and applications.

Finally, in order to highlight the usefulness of F2PM,
we note that software rejuvenation has been shown to be
en effective technique when using virtualization [?]. Given
the widespread adoption of virtualized and cloud computing
architectures, this extremely broadens the scope of usage of
F2PM.

The remainder of this paper is structured as follows. In
Section II we discuss related work. Section III describes the
organization of F2PM, and the design principles behind its
development. Finally, in Section IV we present and discuss
experimental results collected by using F2PM in the case of
a web application, where an implementation of the TPC-W
benchmark [?] hosted on top of Apache Tomcat is used.

II. RELATED WORK

Predicting the effect of application anomalies is not a new
idea. Along this path, several works have already proposed
prediction techniques and models [?].

In [?], the authors propose a proactive prediction and
control system for large clusters. The proposal relies on logs
containing six types of events categorized into classes (e.g.
the availability of specific systems, or performance violation
thresholds) and collected during one year of activity of a
large (350 nodes) system. By using time series, rule-based
classification, and Bayesian networks, the authors filter the
initial data, selecting only the entries, which are useful to
carry on a prediction. Essentially, as opposed to the above-
mentioned work, in this paper we devise a framework, which
is able to autonomously derive a set of different prediction
models, enabling the user to select the best-suited one.

A framework to automatically detect anomalies and track
the performance of an application is proposed in [?]. The
framework relies on a regression-based transaction model,

which reflects the resource consumption model of the ap-
plication. The proposal explicitly monitors CPU usage per
transaction, thus requiring a more in-depth analysis of the
application. The main difference with respect to F2PM is that it
does not require to insert any kind of probe in the applications,
thus extremely simplifying its instantiation ad usage.

In [?], a framework to support rejuvenation of virtualized
systems upon the prediction of upcoming crashes is proposed.
This framework has some common features with ours, includ-
ing the calculation of derived metrics and the feature selection,
based on Lasso Regularization. Anyway, there are substantial
differences. In the framework in [?] decision rules are gen-
erated at runtime in order to support software rejuvenation.
Conversely, F2PM is able to produce different ML models,
including non-linear ones, whose training is performed starting
from different sets of (filtered or unfiltered) training data.
Hence, F2PM enables the user to compare different models
and select the best one on the basis of a set of metrics, as we
have discussed in Section I. Additionally, prediction models
produced by the framework in [?] have been validated using
only synthetic anomalies injected in the system, and in the case
of memory leaks only. Instead, we show F2PM to be effective
with a combination of different anomalies, also occurring at
different rates, and we demonstrate F2PM in the case of a
real-world application.

There is a set of commercial tools [?], [?], [?] which can
be used to monitor Java applications by instrumenting the
JVM. While this allows for a non-intrusive instrumentation
to analyze transactions’ performance via the reconstruction
of their execution path, the approach is non-general, as it
focuses only on Java-based applications. We keep the ability
to monitor the evolution of this kind of applications, while
broadening the application scope to any language used to
build the (virtualized) service, as we operate in an application-
agnostic way.

A work similar in spirit to what we show here is the one
in [?], where an evaluation of a set of well-known Machine
Learning classifiers for software anomalies is presented. In [?],
three different states (all ok, warning, and danger) of the life
of a software system are defined, and the generated models
are only able to predict in what state a system is currently
expected to be. Differently, we are able to generate models to
precisely estimate the RTTF.

III. THE F2PM FRAMEWORK

F2PM is intended to build optimized ML models to predict
the occurrence of system failures. A model receives as input
the values of the set of selected system features and provides
the RTTF, where the failure condition is defined by the user.
F2PM is based on the workflow shown in Figure 1. For the
sake of simplicity, in our presentation we refer to the case of a
generic web application, where we assume that memory leaks
and unterminated threads may occur at different rates during
the lifetime of the application. However, as we discussed in
Section I, F2PM is not limited to this kind of applications and
this kind of anomalies. In the following, we go into details by
describing F2PM’s workflow through a sequence of phases.



Fig. 1. F2PM Architecture

A. Initial System Monitoring

As suggested in Section I, the initial system monitoring
phase consists of collecting measurements of a number of
system features while the system runs the application generat-
ing anomalies. All monitored system features are periodically
measured, with an interval established by the user. Each
measurement (datapoint) is timestamped with the elapsed time
from system start. Hence, a data history is created by F2PM,
including the sequence of all datapoints. Every time the system
failure condition is met, a fail event is added to the data history
and the system is restarted. This gives rise to a number of
runs of the system. We note that the duration of this phase
can be very different for different systems, mainly depending
on the anomaly occurrence rate(s) and the amount of available
resources in the system. Particularly, a given amount of data,
which would be sufficient to build ML models with a given
accuracy, has to be collected. Determining the size of the
dataset to be collected in this phase could require a long period
of training time. F2PM can support this task incrementally, via
the set of metrics that allow the user to evaluate the accuracy of
the produced models. If the estimated accuracy is not sufficient,
further system runs can be executed to collect new data into
the training set, and to produce new models.

Each datapoint consists of a tuple including the following
set of values:

Tgen is the timestamp denoting the elapsed time since
the system has started;

nth is the number of active threads in the system;
Mused is the amount of memory used by applications

running in the system;
Mfree is the amount of memory freely available for

usage by applications;
Mshared is the amount of memory used for buffers shared

by applications;
Mbuff is the amount of memory used by the underlying

operating system to buffer data;
Mcached is the amount of memory used to cache disk data;
SWused is the amount of swap space, which is currently

used;
SWfree is the amount of swap space, which is currently

free;
CPUus is the percentage of CPU time dedicated to

userspace processes;
CPUni is the percentage of CPU time occupied by user-

level processes with a positive nice value (lower
scheduling priority);

CPUsys is the percentage of CPU time spent in kernel
mode;

CPUiow is the percentage of CPU time spent waiting for
a I/O operations to complete;

CPUst is the percentage of time a virtual CPU waits for a
real CPU while the hypervisor is servicing another
virtual processor;

CPUid is the percentage of CPU time spent doing un-
fruitful work (i.e., the system is underloaded).

We note that we selected the above listed system features
because, on basis of them, we can potentially measure the
effect on the system of the kind of anomalies affecting the
application that we are studying (i.e. memory leaks and
unterminated threads). However, on the basis of the kind of
anomalies to be address, the user can change the system
features to be used. The output of this phase includes a set
of row data representing the evolution of the system feature
along a number of system runs.

B. Datapoint Aggregation and Added Metrics

In the first step of this phase, aggregated datapoints are
generated on the basis of a user-defined time interval. The
aggregation is done according to the scheme shown in Figure 2.
Each input datapoint (shown in black in the figure) is placed,
on the basis of the value of Tgen, on the time axis. Hence, all
datapoints falling in the same time interval are used to generate
one aggregated datapoint, meaning that all the values of the
system features are averaged in the aggregated datapoint. The
subsequent step consists of adding some metrics to each the
aggregated datapoint. Specifically, for each system feature j,
the slope is calculated according to the following formula:

slopej =
xendj − xstartj

n
, (1)

where xstartj and xendj are the values of the feature j of the
first and the last original datapoint falling in the time interval
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Fig. 2. Datapoint Aggregation

of the aggregated datapoint. Values of slopes are added to the
aggregated datapoints. Introducing these slopes adds further
knowledge about the dynamics of the system, which may show
a highly variable behaviour. For example, some systems could
show a constant increment of the resource usage over time
until the crash point is actually approaching. At that time, some
parameters could grow very quickly, even exponentially. The
slopes, which could be interpreted as a simple approximation
of a derivative function, in such a scenario might be proven
effective to promptly detect an upcoming crash point. As
a specific case, let us consider the above-specified SWused

feature. If the system crashes due to memory exhaustion,
SWused will start growing faster when approaching the crash
point. Therefore, the slope can be used effectively to build the
prediction model.

One motivation of aggregating datapoints along subsequent
fixed-sized time intervals is that a more precise picture of
the system behaviour along the time is achieved. In fact, the
generation of original datapoints might incur in some skewing
due to, e.g., the scheduler of the operating system, depending
on the current workload. Particularly, as soon as the system is
approaching the crashing point, this skew could have a higher
impact, thus not providing a regular representation of the
system behaviour along the time. An additional motivation is
related to the fact that a large number of datapoints can require
much time for a prediction model to be generated. Considering
that many runs are required to build an accurate model, and
taking into account the large number of datapoints in one single
run, this time can be very high. Datapoint aggregation reduces
the number of datapoints, without affecting the accuracy of the
model.

Among the features stored in a datapoint, we include Tgen,
namely the timestamp denoting the elapsed time since the
system has started. F2PM derives from Tgen an additional
derived metric, namely the inter-generation time among two
consecutive datapoints. This derived metric allows to capture
the overload taking place in the monitored system. In fact,
in case the system is overloaded, this inter-generation time is
expected to grow, due to the increased load of the system. To
demonstrate this, we have used WEKA [?] to carry on (using
the fast Linear Regression [?]) a correlation process among the
inter-generation time and the response time of the clients using
the application1 used to assess the proposed F2PM (which will
be later discussed in Section IV).

The correlation process builds a model for the Predicted

1The RT (ground truth) is measured from the clients, which have been
instrumented using software probes just for this study. In fact, F2PM does
not require any modification to the software involved in the usage of the
application.
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RT, namely an estimation of the actual RT experienced from
remote clients, starting only from the measurement of the inter-
generation time. In Figure 3, we report the results of this
correlation process. Three curves are shown: the measured RT
(referred to as Response Time), the measured inter-generation
time of datapoints (referred to as Generation Time), and the
outcome of the correlation model, evaluated on the inter-
generation time of datapoints (referred to as Correlated RT). As
it can be seen by the plots, both Generation Time of data points
and RT (ground truth) are increasing when the system is ex-
periencing memory leaks and unterminated threads. Therefore,
the inter-generation time is a significant measure to capture the
effects of the overloading of the system under monitoring. The
user can specify a specific threshold for this additional feature,
in order to fine tune the condition according to which F2PM
considers the system as failed. This correlation has a large
impact, and can be applied to differentiated contexts. In fact,
this technique can be effectively used, for example, to have a
pragmatic estimation of the response time seen by end users,
without any modification to the software at the end point.

Finally, at the end of the aggregation process, for each
aggregated datapoint, the RTTF is calculated. This is done by
exploiting the fail events, which have been added to the data
history during the initial monitoring phase.

C. Features Selection

In this phase, the issue of selecting an optimal sub-
set of system features and added metrics is addresses. For
large/complex systems, where even thousands of features could



be involved (e.g., in some Cloud-related contexts [?]), this se-
lection could significantly reduce the complexity of the model
generation phase, having a simpler (likely more effective)
representation of the system behaviour. In fact, this phase
aims at identifying those features having (incrementally) more
impact (weight) in the prediction of the RTTF. As shown in
Figure 1, the execution of this phase is optional, so that the
user is able to choose whether in the next phase F2PM should
consider the whole set of parameters, or only the ones selected
during this phase. As it will be later discussed in Section IV,
this choice can have effects on both the timeliness of the
generation of the model, and on its accuracy.

Feature selection is based on Lasso Regularization [?]. By
applying the Lasso Regularization method to our case, for a
given vector λ̄ of factors λ, we achieve as output a vector
β, whose elements are the weights of the vector xj , which
minimizes the following objective function:

1

n

n∑
j=1

V (yj , 〈β, xj〉) + λ||β||1 (2)

where n is the number of data points from the aggregation
step, xj is a vector of values of input features (independent
variables) of each data point, yj is the associated value of
the dependent variable (RTTF) for the specific data point, and
V (yj , 〈β, xj〉) is equal to (yj − βTxj)2.

For each value of λ ∈ λ̄, the calculated vector β includes a
(sub-)set of non-zero elements. All features and added metrics
associated with a zero element of the vector β are filtered out
from the training set. Generally, while increasing the value of
λ, more elements of the vector β are likely equal to zero.
Particularly, these elements are likely those which have a
smaller weight in the evaluation of the RTTF. Thus the effect
of using higher values of λ is the reduction of the number
selected features to be used in the ML models. The output of
this phase is a number of training sets, each one including a
sub-set of selected features and added metrics.

D. Model Generation and Validation

This phase aims at generating and validating a set of predic-
tion models, which are built by using the training sets produced
in the previous phases. We included in F2PM six ML methods
for building prediction models, namely Linear Regression [?],
M5P [?], REP-Tree [?], Lasso as a Predictor [?], Support-
Vector Machine (SVM) [?], and Least-Square Support-Vector
Machine [?]. This set of methods includes both linear and non-
linear ones. However, the set can be customized by the user
by adding other methods or removing some of them. In the
following, we provide a description of the above-mentioned
methods.

Linear Regression [?] is an approach for modeling the
relationship between a (scalar) dependent variable and one
or more explanatory variables. Given a data set defined as
{yi, xi1, . . . , sip}ni=1 of n statistical units, a linear regression
model assumes that the relationship between the dependent
variable yi and the p-vector of regressors xi is linear. This
relationship is modeled through a disturbance term or error
variable εi—an unobserved random variable that adds noise

to the linear relationship between the dependent variable and
regressors. Thus the model takes the form:

yi = β1xi1+ · · ·+βpxip+εi = xT
i β+εi, i = 1, . . . , n (3)

M5P [?] is a decision tree with the possibility of linear re-
gression functions at the nodes. First, a decision-tree induction
algorithm is used to build a tree, but instead of maximizing
the information gain at each inner node, a splitting criterion
is used that minimizes the intra-subset variation in the class
values down each branch. The splitting procedure in M5P stops
if the class values of all instances that reach a node vary very
slightly, or only a few instances remain. Second, the tree is
pruned back from each leaf. When pruning, an inner node is
turned into a leaf with a regression plane. Third, to avoid sharp
discontinuities between the subtrees a smoothing procedure is
applied that combines the leaf model prediction with each node
along the path back to the root, smoothing it at each of these
nodes by combining it with the value predicted by the linear
model for that node.

REP-Tree [?] is a fast decision tree learner. It builds a
decision/regression tree using information gain/variance and
prunes it using reduced-error pruning (with backfitting). Only
sorts values for numeric attributes once. Missing values are
dealt with by C4.5’s method [?] of using fractional instances.

Lasso as a Predictor [?] generates, depending on a param-
eter λ, a vector β whose elements are the weights of the vector
xj , which minimizes the objective function shown in Equation
(2). The application of Lasso as a Predictor is grounded
on the same mathematics used for Lasso Regularization, but
the goal is different. In fact, while during the regularization
process we are interested in determining the β vector, during
the prediction we exploit the already-computed β vector to
evaluate the prediction model, which is expressed as a closed-
form equation.

Support-Vector Machine [?] constructs a hyperplane or a
set of hyperplanes in a high- or infinite-dimensional space,
which can be used for classification, regression, or other tasks.
Intuitively, a good separation is achieved by the hyperplane that
has the largest distance to the nearest training data point of any
class (so-called functional margin), since in general the larger
the margin the lower the generalization error of the classifier.

Least-Square Support-Vector Machine [?] Given a training
set {xi, yi}Ni=1 with input data xi ∈ Rn and corresponding
binary class labels yi ∈ {−1,+1}, the SVM classifier, accord-
ing to Vapnik’s original formulation [?], satisfies the following
conditions:

wTφ(xi) + b > 1, if yi = +1,
wTφ(xi) + b < −1, if yi = −1.

(4)

which is equivalent to yi
[
wTφ(xi) + b

]
≥ 1, i = 1, . . . , N

where φ(x) is the non-linear map from original space to the
high (and possibly infinite) dimensional space.

Once generated the set of models by using the different ML
methods applied to the different training sets, the validation
phase takes place. This phase consists of computing a number
of metrics by using a sub-set (validation set) of samples
(possibly not used for the model training) included in the



training sets. Hence, for each model, the following metrics
are provided:

Mean Absolute Prediction Error (MAE): it is the average
of the differences between predicted and real RTTF. It is
calculated as:

MAE =
1

n

n∑
i=1

|fi − yi| , (5)

where fi is the predicted value, yi is the observed value, and
n is the number of samples in the validation set.

Relative Absolute Prediction Error (RAE): it is relative to
a simple predictor, namely the average of the actual measure-
ment. RAE normalizes the total absolute error by dividing it
by the total absolute error of the simple predictor.

RAE =

∑n
i=1 |fi − yi|∑n
i=1 |Y − yi|

, (6)

where

Y =
1

n

n∑
i=1

|yi| . (7)

Maximum Absolute Prediction Error (MAE): it is the
maximum prediction error, i.e. the maximum value in the set
|fi − yi| for each sample i in the validation set.

Soft-Mean Absolute Prediction Error (S- MAE): it is cal-
culated as the MAE, except that when the value |fi − yi| is
less a given threshold it is considered to be equal to zero.

Training Time: it is the time required by the learning
method for building the model.

Validation Time: it is the time required for completing the
validation of the model, including the calculation of the above
mentioned errors.

The above metrics provide the user with useful information
for comparing the different models produced by F2PM.

E. Additional Utilities of F2PM

To further enhance the applicability of F2PM, we provide
additional utilities, which can be used along the main Frame-
work. Two of these utilities can be used to inject anomalies
in the system in a synthetic way. This could be used, e.g.,
either for testing F2PM in a synthetic environment, or to speed
up the collection of datapoints for later training. The goal of
these utilities is to generate artificial memory leaks and detach
unterminated threads, according to uncorrelated distribution
functions. In this case, the hardware system could be stressed
under different anomaly loads, which allows F2PM to explore
many of the possible system configurations, which lead to a
crash.

Memory leaks are generated by allocating periodically a
variable-size contiguous chunk of memory and writing dummy
data into it. Writing data is essential to mimic a faulty
implementation, as otherwise the underlying operating system
kernel might not really allocate physical memory for the
buffer—depending on its internal implementation—yet only

virtual memory would be allocated, which on its turn would
not occupy actual physical space.

Each activation of the leak generator exploits two statistical
distribution: On the one hand, we rely on a uniform distribution
to define what is the size of each leak (in an interval specified
by the user at startup). By doing so, we are able to mimic a
general behaviour where applications require both small-size
and large-size buffers to carry on their work, and both these
kinds of buffers could be not released by a faulty implementa-
tion. The second statistical distribution is an exponential one,
which is used to draw the time to wait before the next memory
leak occurs. The mean of this exponential distribution is drawn
uniformly at randomly (again in an interval specified by the
user at startup). This allows us to mimic the execution of the
“faulty portions” of the software more or less often.

Similarly to the case of memory leaks, we have resorted
to one exponential distribution to draw the time spanning
between two consecutive generations of unterminated threads.
The average of the exponential distribution is drawn uniformly
at random at startup, again in a range defined by the user.

Again, we emphasize that only relying on these utilites
might not allow F2PM to build prediction models, which are
correct under any kind of utilization of the real (non-synthetic)
application, but they can be used as a complement of the actual
data collection on the real system application, in a controlled
environment.

Additionally, F2PM comes along with a thin client, called
Feature Monitor Client (FMC), which can be installed on
the monitored system. The goal of this client is to period-
ically gather system feature measurements and to generate
datapoints. This custom thin client can be used in place
of other third-party tools like collectd [?], e.g. when the
application under monitoring is hosted on a machine different
from the one where the training process is carried out. In our
implementation, the FMC waits about2 1.5 seconds between
the generation of one datapoint and the next one. This allows
us to catch as well very high variability of the system features,
and to avoid stealing too much computing power only for the
sake of monitoring.

The FMC is connected to the last utility, namely the
Feature Monitor Server (FMS), using standard TPC/IP sockets.
This technological solution allows to deploy FMC/FMS both
on the same machine under monitor, or on different machines.
This flexibility gives the user the possibility to monitor the
behaviour of both local and remote applications, in case other
system monitoring tools are not directly available.

IV. EXPERIMENTAL DATA

To evaluate the feasibility of our proposal, we carried out a
controlled experiment on a virtual architecture, which we built
on top of a 32-core HP ProLiant NUMA server. The server
is equipped with a Debian GNU/Linux distribution (kernel
version 2.6.32-5-amd64). VMware Workstation 10.0.4 is the
virtual environment hypervisor. All virtual machines of the
experimental environment were equipped with Ubuntu 10.04
Linux Distribution (kernel version 2.6.32-5-amd64). While we

2Fluctuations are related to CPU scheduling variability and to the current
load of the system.



emphasize that a virtual architecture is not mandatory for
the applicability of F2PM, this is a technical simplification,
which allowed us to quickly take control over a near-to-faulty
machine. In this way, the system can be quickly restarted, so
as to collect data related to a large number of executions in a
limited amount of time.

To perform our experiments we use two different virtual
machines (VM). One VM runs our FMS (to collect the hard-
ware features), and generates the workload targeting the second
VM. The second VM hosts the application, experiencing
occurrence of anomalies.

A. Test-Bed Application

We test F2PM in the case of a multi-tier e-commerce web
application that simulates a on-line book store, following the
standard configuration of TPC-W benchmark [?]. We use the
Java version [?], developed using servlets, and relying on
Mysql [?] as a data base server.

In order to generate TPC-W requests, we have used an
emulated browser. To evaluate the RT of the web application,
we have introduced software probes in the emulated browsers
to store on a database file the response time of every web
interaction.

The TPC-W implementation has been modified in order
to generate the anomalies of interest for this experimentation,
namely memory leaks and unterminated thread. Specifically,
we have modified the Home Web Interaction class (which
implements the beginning of a TPC-W session) so that, when
the servlet is started up, two different rates (for memory leaks
and unterminated threads) are generated. Then, whenever an
emulated browser connects to the initial page, some memory is
leaked or a new thread is spawn, according to the correspond-
ing probability. By using this approach, the generation rate of
anomalies directly depends on the load of the TPC-W server
(i.e., on the number of connections by the emulated browsers).

We have continuously run the experiment for one week,
having the emulated browsers continuously issue requests to
the TPC-W server. Upon a crash, the VM hosting the TPC-W
is automatically restarted, so as to start serving again requests
by the emulated browsers as soon as possible. During the
execution of the experiment, we have used our FMS/FMC
architecture to gather the features discussed in Section III-A.

B. Results

To evaluate the effectiveness of the features reduction using
Lasso Regularization, we report in Figure 4 the number of
selected parameters when increasing the value of λ. As it can
be seen, higher values of λ are generally associated with a
smaller number of features selected by Lasso (namely, Lasso
associates a higher number of features with a zero weight in
the β vector). Therefore, the regularization allows to select
only the features of high interest for the generation of the
prediction model. For the sake of completeness, we report in
Table I the features selected by Lasso when λ = 109, along
with the corresponding weights in the β vector.

As it can be seen, slopes play an important role to build
the prediction model. In fact, as we have already discussed,
they allow for the detection of sudden changes in the system
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Fig. 4. Parameters selected by Lasso

TABLE I. WEIGHTS ASSIGNED WHEN λ = 109

Parameter Weight

mem_used_slope 0.000019235560086
mem_free_slope 0.000236946638676
swap_used_slope 0.000263386541515
swap_free_slope 0.000263386541515

mem_free 0.000263386541515
mem_buffers 0.000263386541515

features, which can be used, e.g., to promptly detect an
approaching failure point. Similarly, memory is a predominant
factor, as the system becomes immediately unavailable when
there is no more free memory and the swap space is used
completely.

In order to evaluate the accuracy of the prediction models,
we only show, for the sake of brevity, the results for the Soft-
Mean Absolute Error (S-MAE). In Table II, we report S-MAE
error values in seconds, for the cases when prediction models
are built using all parameters and only parameters selected
by Lasso. In both cases, we can see that the best accuracy is
provided by REP-Tree. In comparison with REP-Tree, M5P
increases the error in the order of 10%. All other ML methods
show higher errors. We note that this could be due to the
fact that both REP-Tree and M5P divide the model space in
smaller portions, and evaluate for each portion a different linear
approximation.

The training times for all learning methods are shown in
Table III. The results are obtained by using all parameters
and only parameters selected by Lasso. It is evident that when
using all parameters the training times are significantly higher.
Based on the presented results, the user can make a choice
between less time in training or having a higher accuracy of
the prediction model. Similarly, as we can see in Table IV,
more time is required for validating prediction models when
all parameters are used.

A graphical representation of the prediction models gen-
erated by F2PM is presented in Figure 5. Specifically, we
show the generated models by using all parameters. In the
plots, the red curves represent the predicted RTTF (y axes) vs.
the real one (x axes). The green lines represent the ground
truth. Results show that, generally, the prediction error is
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(c) M5P
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Fig. 5. Fitted Models using all Parameters



TABLE II. SOFT MEAN ABSOLUTE ERROR—10% THRESHOLD

Using all parameters Using only parameters selected by Lasso

Algorithm Error (seconds) Algorithm Error (seconds)

Linear Regression 137.600 Linear Regression 156.603
M5P 79.182 M5P 118.292

REP Tree 69.832 REP Tree 108.476
SVM 132.668 SVM 146.594

SVM2 132.675 SVM2 146.607
Lasso (λ = 100) 405.187 Lasso (λ = 100) 405.187
Lasso (λ = 101) 405.187 Lasso (λ = 101) 405.187
Lasso (λ = 102) 405.186 Lasso (λ = 102) 405.186
Lasso (λ = 103) 405.178 Lasso (λ = 103) 405.178
Lasso (λ = 104) 405.124 Lasso (λ = 104) 405.124
Lasso (λ = 105) 404.823 Lasso (λ = 105) 404.823
Lasso (λ = 106) 404.041 Lasso (λ = 106) 404.041
Lasso (λ = 107) 399.023 Lasso (λ = 107) 399.023
Lasso (λ = 108) 399.240 Lasso (λ = 108) 399.240
Lasso (λ = 109) 392.469 Lasso (λ = 109) 392.469

TABLE III. TRAINING TIME

Using all parameters Using only parameters selected by Lasso

Algorithm Error (seconds) Algorithm Error (seconds)

Linear Regression 0.30 Linear Regression 0.08
M5P 3.10 M5P 1.58

REP Tree 0.56 REP Tree 0.17
SVM 417.41 SVM 164.96

SVM2 391.69 SVM2 205.65

TABLE IV. VALIDATION TIME

Using all parameters Using only parameters selected by Lasso

Algorithm Error (seconds) Algorithm Error (seconds)

Linear Regression 0.42 Linear Regression 0.12
M5P 0.36 M5P 0.09

REP Tree 0.55 REP Tree 0.11
SVM 0.39 SVM 0.13

SVM2 0.38 SVM2 0.13

higher when the system is far from the failure time, showing a
lower prediction of the real RTTF. One motivation of this be-
haviour of the models is that when the amount of accumulated
anomalies increases, the system performance (in particular the
system throughput) tends to decrease. As a consequence, also
the rate of occurrence of anomalies decreases, thus delaying,
with respect to the prevision, the actual time when the system
fails. In any case, results show that models provide low error
while approaching the actual failure time, where more accuracy
would be required in order to, e.g., trigger proper actions to
address the upcoming system failure. For example, graphs
show that, except for the case of Lasso as a predictor, the
prediction error becomes very low when the actual RTTF is

around 600 seconds.

As a final observation, we note that, also on the basis of
results presented in Figure 5, REP-Tree and M5P are the best
methods in our test-bed application.

V. CONCLUSIONS

In this paper, we have proposed the innovative F2PM
Framework for generating RTTF prediction models of ap-
plications. One advantage of our approach is that F2PM
can be used out of the box, without any need for manual
modification/intervention in the applications. Additionally, it
can be customized by the user according to a specific class
of application and/or type of anomalies. F2PM uses different
machine-learning methods to generate the models, allowing the
user to decide, on the basis of a set of metrics, the best suited
one for his needs.

We demonstrate how F2PM can be used, in the case of a
web application, based on a popular e-commerce benchmark.
We present a set of experimental results for evaluating F2PM.
In our specific test-bed scenario, we found that F2PM allows us
to select prediction models for application failure, with small
training time and high accuracy.
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