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Abstract

Modern physics is based on two fundamental pillars: quantum mechanics and
Einstein’s general relativity. Even if, when taken separately, they can claim success
in describing satisfactorily a plenty of physical phenomena, so far any attempt to
make them compatible with each other failed. It is a central goal of theoretical
physics to find a common approach to coherently merge quantum theory and general
relativity. Such an effort is not only motivated by the conceptual necessity of
completeness that imposes us to look for a unified theoretical framework that gives
a consistent picture at all scales, but also by the existence of physical regimes we
can not fully describe without a quantum theory of gravity, e.g. the first instants of
early universe cosmology. This problem has remained open for more than eighty
years now and keeps challenging physicists that, in the struggle to find a solution,
have proposed a myriad of models, none of whom can claim full success. In fact,
mainly due to the lack of experimental hints, the landscape of quantum gravity
currently looks like a variegated compound of approaches that start from different
conceptual premises and use different mathematical formalisms. In the majority of
cases, it is not clear whether different models reach compatible predictions or even
if they produce observable outcomes at all.

Given the impossibility to achieve a unique acknowledged theory, it is of pivotal
importance to seek insightful connections between different approaches. Such a
strategy may help identifying few promising hot spots that may catalyze forthcoming
efforts in the quantum gravity research community. In particular, more synergy
between top-down and bottom-up models is certainly needed. Besides shedding
light on some formal aspects of the models and eventually giving further support
to specific ideas, reducing the gap between full-fledged quantum gravity proposals
and simpler models that try to capture at least some expected features might
produce tangible progress in the field of quantum gravity phenomenology. Indeed,
it is now well-established that some effects introduced genuinely at the Planck
scale by heuristic models can be efficiently investigated in ongoing and forthcoming
experiments. Moreover, the exciting era of multi-messenger and multi-wavelength
has started where several satellites, telescopes, and new generation detectors are
furnishing us with an incomparable amount of data to probe the structure of gravity
on cosmological scales and in new regimes which had remained inaccessible. Finding
ways to rigorously derive Planckian testable effects from quantum gravity theories is
then needed to enter another phase of maturity of quantum gravity phenomenology,
i.e. the passage from the search for Planck-scale signals to the falsification of actual
theories. This thesis represents a small step in this direction.

To put this plan into action, we start recognizing that, despite the aforementioned
heterogeneity, there is the common expectation that near the Planck scale our
description of the spacetime as a smooth continuum, a picture shared by both
general relativity and quantum mechanics, should break down and be replaced by
some “fuzzy" structure we generically refer to as quantum spacetime. Again there are
different ways to implement such an idea in different models, however we feel that the
most relevant feature that characterizes spacetime quantization from a physical point
of view is the associated departure from classical spacetime symmetries that most
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significantly encode spacetime’s properties. In this regard, in the literature of the
last three decades there has been much interest in the development of deformations
of the Poincaré symmetries of special relativity, which most notably took the
form of quantum groups or Hopf algebras, with the aim of modeling Planck scale
physics. However, almost the totality of these studies is confined to the limit where
gravitational effects are negligible, i.e. a sort of “quantum Minkowski regime". With
the objective to bridge quantum gravity and, in general, beyond general relativity
theories with quantum or non-standard Minkowski spacetime models we here devote
our attention to the symmetry content of general relativity, synthesized in the
hypersurface deformation algebra, and explore possible deformations caused by non-
classical spacetime effects. Candidate modifications of the algebra of diffeomorphisms
have been already obtained in some recent analyses, others will be derived in this
thesis for the first time. We then translate modifications of the hypersurface
deformation algebra into corresponding deviations from special relativistic symmetry
with the main objective of looking for phenomenological opportunities. In particular,
studying the Minkowski limit of deformed diffeomorphism algebras, we shall infer
two much studied Planckian phenomena, namely modified dispersion relation and
the running of spacetime dimensions with the probed scale.

In this thesis we focus in particular on four different paths toward the character-
ization of non-classical (to be meant in a general sense as non-standard) spacetime
properties: noncommutative geometry, loop quantum gravity, multifractional geome-
try, and non-Riemannian geometry; only the second being widely recognized as a
candidate full-fledged quantum gravity theory.

We first motivate why these two phenomenological Planck scale effects, i.e. di-
mensional reduction and modifications of particles’ dispersion in vacuum, can be
ascribed to spacetime fuzziness or quantization intended as an intrinsic obstruction
to the measurability of spacetime distances below the Planck scale, an effect which
can be deduced from the heuristic combination of general relativistc and quantum
mechanical principles. Modified dispersion relation is derived rigorously in the
framework of noncommutative geometries and we discuss two different noncommu-
tative models which are of interest for this thesis: θ-Minkowski and κ-Minkowski.
The phenomenon of dimensional flow is instead presented from the perspective of
multifractional geometry. Within this framework we show how dimensional flow and
spacetime fuzziness are deeply connected. We illustrate how the assumption of an
anomalous scaling of the spacetime dimension in the ultraviolet and a slow change
of the dimension in the infrared is enough to produce a scale-dependent deformation
of the integration measure with also a fuzzy spacetime structure. We also compare
the multifractional correction to lengths with the types of Planckian uncertainty for
distance and time measurements. This may offer an explanation why dimensional
flow is encountered in almost the totality of quantum gravity models.

We then introduce the (classical) hypersurface deformation algebra and construc-
tively present two different ways of deriving it which we designate as representations
of the algebra: the gravitational constraint representation, where the brackets are
reproduced by the time and spatial diffeomorphism generators, and the Gaussian
vector field representation, in which the algebra can be read off from the Lie bracket
involving the components of a certain class of vector fields. Using this second
realization, we study possible Drinfeld twists of space-time diffeomorphisms with



vii

Hopf-algebra techniques. We consider both deformed and twisted diffeomorphisms
and compute the associated hypersurface deformation algebra.

We then turn our attention to recent loop-quantum-gravity-inspired studies that
have motivated a restricted class of modifications of the algebra of gravitational
constraints. We discuss these new results in the light of the possibility to identify
an effective quantum-spacetime picture of loop quantum gravity, applicable in the
Minkowski regime, where the large-scale (coarse-grained) spacetime metric is flat.
We show that these symmetry-algebra results are consistent with a description of
spacetime given in terms of the κ-Minkowski noncommutative spacetime, whose
relevance for the study of the quantum-gravity problem has already been proposed for
independent reasons. We exploit this unexpected link to extract viable testable pre-
dictions out of loop quantum gravity models. These loop-quantum-gravity-inspired
corrections to spacetime symmetries are used to analyze both the consequences on
particle propagation and on dimensional running. Adopting a different strategy, we
also construct a set of three operators suitable for identifying coordinate-like quanti-
ties on a spin-network configuration on the kinematical Hilbert space. Computing
their action on coherent coarse-grained states, we are able to study some relevant
properties such us the spectra, which are discrete.

After that we scrutinize the symmetry structure of multifractional theories with
either weighted or q- derivatives. These theories have the property that the spacetime
dimensions are anomalous since they change with the scale of observation. Despite
their different mathematical formalisms, both noncommutative and multifractional
geometries allow for the spacetime dimension to vary with the probed scale. For this
reason, we compare their symmetries and prove that, despite the presence of many
contact points claimed by precedent studies, they are are physically inequivalent,
yet one can describe certain aspects of κ-Minkowski noncommutative geometry
as a multifractional theory and vice versa. Turning gravity on, we calculate the
algebras of gravitational first-class constraints in the multifractional theories with q-
and weighted derivatives and discuss their differences with respect to the deformed
algebras of κ-Minkowski spacetime and of loop quantum gravity. Finally, with
the aim of traducing multiscale formal properties into physical effects, we derive
black hole solution in multifractional gravity theories and highlight new properties
in the horizon structure as well as in the thermodynamical properties. Potential
phenomenological signatures are underlined.

The fourth non-standard spacetime approach we consider is given by non-
Riemannian geometries with non-metricity. Among other reasons to modify classical
general relativity, one motivation is that modified Einstein-Hilbert action could
provide either a better behaved theory in the ultraviolet, while Einstein’s theory is
not renormalizable, or encode effective corrections to classical gravity, which could be
remnants of quantum effects at low energy scales. In this context it is often claimed
that a relaxation of the Riemannian condition to incorporate geometric quantities
such as torsion and non-metricity may allow to explore new physics associated with
defects in a sort of “spacetime microstructure". We show that non-metricity modifies
particles’ equations of motion. In particular, we find that it produces observable
effects in quantum fields in the form of 4-fermion contact interactions. The analysis
we present is carried out in the framework of a wide class of theories of gravity in the
metric-affine approach having a modified Lagrangian of the form L(gµν , gµρR(ρν)).
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Finally, we compute the non-metric deformations of the hypersurface deformation
algebra by using the Gaussian-vector-field method and make a qualitative comparison
with loop quantum gravity results.

The final part of this thesis is dedicated to the search for quantum spacetime
effects on the propagation of very-high energy particles in the form of in-vacuo
dispersion, i.e. a linear correlation between time of observation and energy of
particles. Motivated by some recent studies that exposed rather strong statistical
evidence of in-vacuo-dispersion-like spectral lags for gamma-ray bursts in the energy
range above 40 GeV, we analyze 7 gamma-ray burst events detected by Fermi-LAT
in the period 2008-2016 by extending the window of the statistical analysis down to 5
GeV. Intriguingly, we find results that are consistent with what had been previously
noticed at higher energies and, thus, could be of quantum-spacetime origin. Reduced
samples of the data set based on different energy cuts are also considered with
the objective to strengthen the results of the study. Besides the obvious interest
of the feature we find, the main importance of our study stands in the fact that
it represents one of the first analyses done over a collection of gamma-ray burst
events. This paves the way to statistical analyses needed to produce more robust and
reliable results despite huge uncertainties on the astrophysical mechanisms behind
the formation, the emission and the propagation of photons produced in gamma-ray
explosions.
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Chapter 1

Introduction

The problem of Quantum Gravity (QG), which consists in the attempt to reconcile
General Relativity (GR) and Quantum Mechanics (QM), has proven to be one of
the hardest to solve in the past seventy years of research in theoretical physics.
Indeed, already in 1916, Einstein noticed the necessity to find a synthesis between
GR and QM principles [1]. Our present physical description of the Universe is
based on two disjointed building blocks. GR naturally holds in the macroscopic
world from the Solar system to cosmological distances where the quantum properties
can be safely neglected. QM describes the microscopic world becoming relevant
approximately under the molecular scale where gravity is fairly negligible. Both GR
and QM have been tested through a lot of experiments and they have demonstrated
to be very successful in their respective domain of applicability. Nonetheless, as
soon as one tries to build a unified theory, numerous points of contrast arise in
the form of logical-mathematical inconsistencies we are not able to handle, ranging
from the problem of renormalizability to measurements’ issues or the problem of
time. A more or less radical departure from the present disconnected description
of quantum and gravitational phenomena seems to be needed. At the same time
there are physical regime we are not able to consistently describe within our current
fragmented theories and this makes QG an open scientific problem. For example,
what we presently understand about early universe cosmology signals the occurrence
of an unavoidable overlapping region where quantum and gravitational effects should
have the same order of magnitude and, thus, a theory of QG seems to be required
to address some of the most fundamental questions concerning the beginning of
our Universe [2, 3]. Another hint of the need to review GR and/or the Standard
Model, that is based on Quantum Field Theory (QFT), is provided by the gedanken
experiment of Planckian collisions [4]. In this regard, the outcomes of higher energy
(i.e. E ∼ EP =

√
~c5/G ≈ 1019 GeV) versions of LHC’s processes can not be

predicted by using the current disjointed picture. In fact, at Planckian energies, it is
necessary to take into account the gravitational properties of the colliding particles
but, at the same time, it is still unknown how to introduce them into the Standard
Model of particle physics in a satisfactory way [5]. A possible attempt to handle such
an issue is represented by the perturbative approach to QG that, in essence, consists
in treating gravity just as one more gauge interaction (in addition to electromagnetic,
weak and strong forces). In order to quantize the theory perturbatively, it is necessary



4 1. Introduction

to split the whole spacetime metric gµν into a fixed Minkowskian background ηµν
and a massless dynamical spin-two field hµν [4, 5, 6]. The former is needed to define
the causal structure of the quantum theory (i.e. to provide for the notion of causality,
to introduce correlation functions, and so forth), the latter describes the propagation
of gauge bosons carrying the gravitational force, i.e. gravitons. However, it has been
proved that the radiative corrections of the ordinary quantum field theory of the
gravitational field are affected by unmanageable UV divergences, i.e. one ends up to
face the so-called problem of non-renormalizability [5, 7].

The presence of so many controversial issues has given rise to plenty of different
approaches [8], each of which is motivated by few (often only one) of these indirect
arguments and, thus, addresses QG from a distinct perspective as well as makes use
of different mathematical formalisms. On the other hand, we can not favor a unique
model by falsifying the others due to the fact that none of the proposed theories
can claim internal consistency. What is more, we still lack relevant experimental
data, which, certainly, represents the main obstacle to the achievement of a quantum
theory of gravity [9, 10, 11]. As a result, at the moment the landscape of QG
looks like a variegated compound of interesting but incomplete approaches: most
notably string theory [12, 13] and loop quantum gravity (LQG) [14, 15, 16], but
also group field theory [17, 18], causal set theory [19, 20], asymptotic safety [21, 22],
lattice approaches such as causal dynamical triangulations [23], modifications of
GR as in Hořava–Lifshitz gravity [24], research based on noncommutative geometry
[25, 26, 27] or on fractal calculus [28, 29], and more phenomenological approaches
such as doubly (or deformed) special relativity (DSR) [30, 31]. In a situation like
this, we need to explore many complementary lines of research. One particular
strategy is to look for fundamental features that are shared by different quantization
programs. There is no guarantee that such features will persist in the final quantum
theory of gravity, but such a pattern of recurrence at least makes it more plausible.
Three recurring features are: spacetime fuzziness, modified dispersion relations, and
dimensional running. Now we shall illustrate how these different aspects are deeply
related with each other thereby suggesting an explanation for the fact that they
have been encountered in almost the totality of QG approaches.

A simple way to characterize spacetime fuzziness consists in introducing a
maximum achievable resolution ∼ `Pl, i.e. a length scale below which distances can
not be resolved. Even such a heuristic description clashes with usual spacetime
symmetries. In fact, the symmetries of both SR and GR are encoded by non-compact
groups and, thus, their transformations allow different observers to probe arbitrarily
small distances thereby forbidding the presence of a minimum (maximum) length
(energy) `Pl (EP = ~/(`Plc)) scale. For this reason, we here regard deformations
or any form of departures from (or revision of) standard spacetime symmetries
as a possible guiding principle which all the approaches to QG should have in
common given the generality of space and time measurement uncertainties. In
fact, if we assume that the classical Poincaré generators still implement the right
transformations between inertial observers up to the Planck scale, then the existence
of a minumum-allowed length would break Lorentz invariance by introducing a
privileged reference frame. Thus, we would have Lorentz invariance violation (LIV)
at the Planck scale [32]. Another perspective, which we shall adopt in the whole
thesis, is that the minimum lenght `Pl is instead a relativistic invariant (analogously
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to the speed of light c in the Poincaré group of special relativity (SR)) under
symmetry transformations, which, though, can not be the standard Lorentz ones,
yet a deformed version of them. This is known as deformed (doubly) special relativity
(DSR) proposal introduced in [33, 34], whose most promising formal realization is
perhaps provided by noncommutative spacetimes and their dual quantum-group
description of the symmetries [35].

We want to extend the ideas that the deformation of the symmetries, which
is required by this sort of discretization of spacetime at the Planck scale in the
sense we briefly explained above, could be a typical feature of QG scenarios beyond
the Minkowski regime. To put it in other words, we will seek for modifications of
diffeomorphism symmetries that characterize general curved manifolds. We will
start reminding how diffeomorphism invariance and local Poincaré invariance are
deeply interconnected. Consequently, if effects of quantum or anomalous geome-
try are expected to break Poincaré symmetries in local inertial frames then also
diffeomorphisms should be challenged in a related manner. In particular, among
others, a rigorous realization of spacetime fuzziness we shall here consider is that of
noncommutative geometry [25, 26, 27]. In this case, as we will see below in some
detail, the requirement of duality between noncommutative spacetime coordinates
and the associated symmetry generators produces a characteristic deformation of the
algebra which is described by Hopf-algebra structures. Besides noncommutativity,
other non-standard spacetime features involving some kind of departures from GR
diffeomorphisms include fractal calculus and non-Riemannian structures.

In fact, as already emphasized, especially over the last decade the QG literature
has been increasingly polarizing into top-down and bottom-up approaches. The
top-down approach attempts to provide models that could potentially solve at
once all aspects of the QG problem, but typically involves formalisms of very high
complexity, rather unmanageable for obtaining physical intuition about observable
(and potentially testable) features. The bottom-up approach relies on relatively
simpler models, suitable for describing only a small subset of the departures from
standard physics that the QG realm is expected to host, but has the advantage
of producing better opportunities for experimental testing [11]. A good synergy
between the two approaches would be desirable: from the top we could obtain
guidance on which are the most significant structures to be taken into account in
more humble formalizations, and from the bottom we could develop insight on how to
handle those structures, hopefully also in terms of experimental tests. Unfortunately,
so far top-down has stayed on the top and bottom-up has not risen to the top.
This thesis offers a contribution toward shortening the gap between top-down and
bottom-up approaches in order to extract phenomenological predictions form more
formal frameworks, such as LQG, and, at the same time, shed some more light on
some qualitative similarities between different models.

Quantum deformations of spacetime symmetries will play a key role in establishing
such links. In fact, for the purposes of this thesis, it is of pivotal importance the fact
that recent canonical QG analyses [36, 37, 38], inspired in particular by the LQG
framework, discovered deformations of the Dirac algebra of gravitational constraints
[39, 40] or hypersurface deformation algebra (HDA), that encodes the symmetry under
diffeomorphisms in Hamiltonian GR. The main goal of this thesis is then to search
for Planckian deformations of GR symmetries in other (semi-classical) approaches



6 1. Introduction

to QG and, when viable, derive related deformations of the SR symmetries in the
zero-curvature limit in order to make contact with the DSR proposal. As a matter
of fact, our strategy essentially sees the (modifications of the) HDA as the point of
connection between the top-down and bottom-up approaches to the QG problem.
For a top-down approach obtaining results for the modifications of the HDA should
be viewed as a very natural goal, and then, as we will show here, the path from
the HDA to a quantum-spacetime description of the Minkowski limit should be
manageable.

We shall here focus on three different approaches to QG, namely: LQG, spacetime
noncommutativity, and multifractional geometries; and on a class of (classical)
modified f(R,Q) theories of gravity1 in the metric-affine approach that violate
the Riemannian geometry conditions by introducing a non-zero non-metric tensor
Q = −∇g [41, 42, 43], an object that could give a meaningful characterization of
non-smooth (discrete) spacetime features at mesoscopic scales (see Refs. [44]). In all
these cases we will implement our strategy and, thus, shall derive modifications to
the HDA and discuss the Minkowski limit where such modifications leave trace in the
form of corresponding departures from the special relativistic symmetries as proposed
in the DSR scenario. The objective will be to look for shared features between the
various models for quantum spacetimes, i.e. spacetimes with non-classical properties
which, in particular, are encoded in departures from standard symmetry algebras.
Besides being a powerful way to compare the formal structure of different QG
approaches and build connections between them, the main importance of the line of
investigation we deploy in this thesis stands in its potential consequences for QG
phenomenology.

In particular, we identified two main effects expected in the Planckian regime
that are quite recurrent in the QG literature: modifications of the energy-momentum
dispersion relation (MDR) for high-energy particles and the reduction (or, more
generally, the variation) of the spacetime dimensions. We shall address both of them
in the light of the scopes of this thesis work. We shall highlight how they can be
seen as consequences of the uncertainty relations for time and length measurements
close to the Planck scale we obtained above and, then, also connected between them
as effects of spacetime quantization in the sense of symmetry deformations. Thus,
these two phenomena, which are expected to happen near the Planck regime, should
constitute a commonality shared by all (or at least most of) the QG approaches. In
this thesis, we shall see how these effects can be recovered in the frameworks we will
consider thanks to the aforementioned Planckian corrections to GR diffeomorphisms
in the form of deformations of the HDA.

1.1 Quantum spacetime

All QG approaches lead to a common intuition: the combination of GR with QM
is always accompanied by a limitation to the localization of the spacetime point
[45, 46, 47, 48, 49, 50, 51, 52, 53, 54]. This can be easily seen by taking into account

1Among other motivations for classical modifications of GR, from a QG point of view modified
gravity approaches can be of interest since they modify the Einstein-Hilbert action to make the
theory renormalizable.
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both QM and GR effects in a measurement procedure. In particular, we can review
the Salecker–Wigner procedure [55] for the quantum measurement of spacetime
distances and highlight how, taking into account the quantum nature of measuring
devices, the presence of gravitational interactions forbids to identify a length with
arbitrarily good accuracy (zero uncertainty). A preliminary observation, which is
needed, is that QM and GR give rather different definitions of the position of an
object. In the former, time is a mere parameter used to evolve the state describing the
system of interest while spatial coordinates are simply identified by the eigenvalues
of a position operator. On the contrary, in GR coordinates have no meaning by
themselves and, in order to identify a “position” (a spacetime event), one has to
specify first the metric tensor which is a dynamical variable that, once specified
some initial conditions, has to solve Einstein’s equations. Different observers, that
can perceive different metrics, in general would assign different positions to the same
object.

For the purpose of measuring a given distance, Salecker and Wigner [55] recog-
nized three basic devices: a clock, a light signal, and a mirror. One sets the initial
time when the light ray leaves the clock site. Then, it is reflected by the mirror
at a distance L. And when the light ray comes back to the clock, the time one
reads is T = 2L/c, where c is the speed of light. Now, quantum mechanics affects
this measurement by introducing an uncertainty δL. In the same way, if we try to
measure the time of travel T , the latter will be affected by a quantum uncertainty
δT . To calculate these uncertainties, one can follow two possible lines of reasoning.
The first, due to Ng and Van Dam [56], seeks the major element of disturbance for
the measurement of both distance and time in the QM motion of the quantum clock.
The second argument, by Amelino-Camelia [57], focuses on the QM uncertainty
in the position of the center of mass of the whole system. In both cases, since
one is considering QM properties of devices, the system is initially described by a
wave packet with uncertainties on position and velocity that affect the measurement
by producing an initial spread δL(0). Then, the length L acquires an uncertainty
δL(T ) ' δL(0) + δv(0)T , where δv(0) is the QM uncertainty on the velocity of the
system (there is a slight difference in the two cases, since in the first one δv(0) refers
to the clock, while in the second to the center of mass), over the duration T of our
measurement. Let us discuss explicitly the uncertainty on length measurements
but an analogous reasoning applies also to time measurements, for which there is
an equivalent result. According tof Ref. [56], the uncertainty δL is induced by the
fact that, as a quantum object, the clock can not stay absolutely still. It has a QM
uncertainty on its velocity δv(0) = δp(0)/M > ~/[2MδL(0)], where M = Mc it the
mass of the quantum clock. In the light of this, we can rewrite the QM uncertainty
on the measurement of our distance as

δL(T ) > δL(0) + ~L
cMδL(0) >

~L
cMδL(T ) , (1.1)

where we have replaced T = 2L/c and also maximized the denominator by
putting δL(T ) in place of δL(0). (Due to the quantum motion of the clock, the
uncertainty on the length measurement is expected to increase, i.e., δL(T ) > δL(0).)
Therefore, using only standard QM arguments, one finds
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(δL)2 >
~L
cM

. (1.2)

Turning gravity on, we know that the gravitational field of the clock will affect
the measurement of the distance L. As soon as gravity comes into play, spacetime is
no longer Minkowski and, thus, distances change due to curvature effects. To see how
much does this modify the distance, one can calculate the uncertainty δL produced
by the gravitational field of the clock. Suppose our quantum clock is spherically
symmetric and that the metric around it is approximately Schwarzschild. Passing
to “tortoise coordinates” [58], the time interval for a complete trip is given by

T̃ = T + rS
c

[
ln
∣∣∣∣rc + L

rS
− 1

∣∣∣∣− ln
∣∣∣∣ rcrS
− 1

∣∣∣∣] ,
where rc is the size of the clock and rS = 2GMc/c

2 is the Schwarzschild radius.
Then, the distance reads

L̃ = L+ rS
2 ln

∣∣∣∣rc + L− rS
rc − rS

∣∣∣∣ .
Here, the first term is the distance in Minkowski spacetime, while the second

contribution is the gravitational correction due to the clock. Thus, one has

δL ' rS
2 ln

∣∣∣∣rc + L

rc

∣∣∣∣
in the approximation rc � rS. This expression tells us that, having introduced

GR effects, there is an additional uncertainty to the measurement of the distance
given by

δL >
GMc
c2 ,

having neglected the numerical factor ln[(rc + L)/rc]. Combining this bound
with the QM one of Eq. (1.2), we finally obtain [56]

δL > δL 1
3

:= (`2PlL)
1
3 , (1.3)

where the subscript stresses that this lower bound has exponent 1/3. Following
a similar line of reasoning, one can easily find an intrinsic uncertainty also on
measurements of time intervals [56]

δT > δT 1
3

:= (t2PlT )
1
3 . (1.4)

The argument in Ref. [57] is slightly different. In that case, one identifies the
source of disturbance with the center of mass of the system rather than with the
clock. The QM part of the reasoning remains the same, the only difference being
the replacement of Mc with the total mass Mtot into Eq. (1.2). On the gravity side,
one simply requires that the total mass is not large enough to form a black hole,
i.e., Mtot 6 c2s/G, where s is the size of the total system made up of the clock plus
the light signal plus the mirror. In fact, if a black hole formed, then the light signal
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could not propagate to the observer, thereby making the measurement impossible.
Combining this restriction with the QM uncertainty, one finds [57]

δL > δL 1
2

:=

√
`2PlL

s
; (1.5)

the subscript 1/2 is to distinguish the exponent of the uncertainty. Analogously,
the uncertainty on time measurements reads [57]

δT > δT 1
2

:=

√
t2PlT

t
, (1.6)

where t = s/c.
There are some worth making comments about these time and distance uncer-

tainty expressions. First, they both depend on the time T = 2L/c of the measurement,
a feature that has been often regarded as a sign of quantum gravitational decoherence
[59]. Second and most importantly for what follows, it is worth noting that the
interplay of QM and GR principles determines a feature that, hopefully, might
help our intuition on the physics of QG. In fact, one ends up with an intrinsically
irreducible uncertainty on the measurement of a single observable, in this case the
distance or time interval. This is often interpreted as a confirmation that QG requires
a new understanding of geometry. This single-observable uncertainty is not just a
QM effect, since QM only imposes a limitation on the simultaneous measurement
of conjugate variables. It also has no counterpart in GR. In fact, one recovers
the standard case δL = 0 by turning off either GR or QM. As far as we consider
only QM limitations, we can of course get δL = 0 by taking the infinite-mass limit
Mc,Mtot →∞ in Eq. (1.2). However, this is no longer possible when we consider
GR interactions since, in the presence of gravity, the apparatus would form a black
hole before reaching an infinite mass. Again, from Eq. (1.2) one can see that the
uncertainty on the distance L goes to zero if we turn off QM by sending ~ → 0.
Moreover, both δL 1

3
and δL 1

2
depend on `Pl, that goes to zero if one takes either the

limit G→ 0 (i.e., we neglect gravity) or ~→ 0 (i.e., we neglect quantum properties).
However, as soon as both QM and GR effects are taken into account, there is an
irreducible δL. These uncertainty expressions are telling us that QG might require
either a new measurement theory or an exotic picture of spacetime, or both. In
the second case, we are led to expect a sort of spacetime foam at scales close to
the Plack distance or spacetime fuzziness. The appearance of a limitation on the
measurement of distances suggests that, at Planckian scales, spacetime is no longer
the smooth continuum we are used to in both QM and GR. At those very-high-energy
(very-short-distance) scales, the presence of an intrinsic δL may mean that spacetime
is made of events that cannot be localized with arbitrary sharpness. In the light of
this argument, which then found confirmation and concrete realization in several QG
approaches [60, 61, 62, 63, 64, 65, 66, 67, 68], in QG classical continuous spacetime
is expected to be replaced by a “fuzzy structure", which we can generically call
quantum space-time.
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1.2 Modified dispersion relation
As aforesaid, one of the issues raised by the appearance of a minimum (maximum)
allowed length (energy) scale concerns the relativistic symmetry transformations.
As first outlined in Refs. [30, 33], one could ask under which conditions it is possible
to reinterpret `Pl as an observer independent scale. Following the analogy with
the transition from Galilean relativity (where there is no invariant scale) to SR
(where there is an invariant scale of velocity, c), one can wonder if Planck scale
physics may require another modification of symmetry transformations such that
transformations between inertial observers are characterized by two relativistic
invariant scales, namely the speed of light c and the Planck length `Pl or energy EP .
As a consequence, the energy-momentum dispersion relation, which for simplicity we
write down for massless particles in 1+1 dimensions, should get modified by Planck
scale correction terms as in

E2 ' p2c2 +m2c4 + η1 p
2c2

(
E

EP

)
+ η2 p

2c2
(
E

EP

)2
+O

(
E

EP

)3
(1.7)

with the associated effect of in-vacuo dispersion due to an energy-dependence of
the velocity of ultra-relativistic particles obeying the above relation, that perhaps
represents the most promising candidate Planck-scale effect (see Refs. [11, 69, 70]
as well as the following chapters of this thesis). Here η1 and η2 are just (unknown)
dimensionless constants to be determined with experiments and which can take
different values in different QG models, as we shall also see and discuss in this thesis.
These are the key points of the DSR scenario. It is important to stress that DSR
represents a guiding principle rather than a precise mathematical formalism and,
thus, different realizations and interpretations of this proposal have been suggested in
the literature [71, 72, 73]. Among them, the most developed and studied framework
is perhaps that of spacetime noncommutativity [74].

This is a (bottom-up) way to introduce noncommutative geometry in the search
of a unified description of QM and GR (for different perspectives on the role of
noncommutative geometry in QG research see e.g. Refs. [75, 76]). At the Plack-scale
it could be necessary to rely on a picture of spacetime analogous, to some extent,
to the phase space of QM. Then, coordinates would not commute, qualitatively
just like the phase space variables in QM. Thus, noncommutative geometry offers a
possible formalization of the aforementioned concept of quantum spacetime. Roughly
speaking, such a non-classical description of spacetime challenges, to some extent, the
ordinary Poincaré transformations that reflect the smoothness of classical spacetime.
However, if one properly deforms the Poincaré Lie algebra into a Hopf algebra
then one can still have a maximally symmetric spacetime where the non-trivial
commutator between coordinates is implemented as a relativistic law covariant
under a quantum group [35]. The symmetry generators can then close modified
commutation relations involving usually some non-linearities and, moreover, they
often have a deformed action on products of functions (i.e. non-primitive coproducts
or coactions) [77].

There is a two-way possibility to introduce a noncommutative spacetime: one
can either start assuming that the spacetime coordinates do not commute among
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themselves (so deforming the Heisenberg algebra) or hypothesise that the Poincaré
Lie algebra approximates at low energies a more fundamental symmetry algebra
which is a Hopf algebra. In fact, the standard Lorentz transformations generate
the symmetries of Minkowski spacetime so reflecting its classical (smooth) structure
encoded in the algebra of the coordinates, which are commutative. Thus, it is
evident that indroducing a spacetime noncommutativity could lead to corresponding
departures from Poincaré transformations. Vice-versa, the replacement of the
Poincaré algebra with a quantum Hopf algebra, possibly codifying the symmetries of
spacetime at the Planck-scale, could require a noncommutative geometry, which can
be directly derived by exploiting the duality between momentum and coordinate
algebras. Let us briefly discuss two much-studied examples of noncommutative
spacetimes and their dual Poincaré Hopf algebras which we will encounter again in
this thesis work: θ-Minkowski and κ-Minkowski noncommutative spacetimes.

1.2.1 θ-Minkowski

The first case we wish to review is the so-called canonical noncommutative spacetime
or θ-Minkowski spacetime [78, 79, 80, 81], defined by

[x̂µ, x̂ν ] = iλ2θµν (1.8)

where µ = 0, 1, 2, 3 is a spacetime index, θµν does not depend on the coordinates
x̂µ2 and λ is the deformation parameter with the dimensions of a length believed to be
near the Planck-scale λ ∼ `Pl. The classical limit is given by λ→ 0 where we recover
Minkowski spacetime. Given the tensorial form of (1.8), it follows immediately that
it can not be invariant under the ordinary Poincaré transformations, in particular
boost and rotation transformations are challenged. We then have to characterize
the θ-deformed relativistic symmetries leaving (1.8) invariant, i.e. implementing θµν
as an observer-independent matrix. Before doing so, evidently it is necessary to
introduce some basic operations on this noncommutative (quantum) geometry.

In order to handle functions of noncommutative coordinates (i.e. functions over
such a quantum spacetime) it is possible to introduce a very useful mathematical
tool: the Weyl map. In fact, it permits to associate biunivocally a noncommutative
function F (x̂) with a commutative ordinary one f(x):

F (x̂) = Ω(f(x)) (1.9)

and, thus, by using the Weyl map Ω we can study the properties of noncommu-
tative functions just referring to the standard ones on classical Minkowski spacetime
[78]. It is an isomorphism between a given noncommutative algebra for the spacetime
coordinates and a corresponding ?-product (or Moyal product). In other words, a
Weyl map Ω establishes a one-to-one correspondence between a noncommutative
theory and a commutative theory with a nontrivial multiplication rule. This means
that, using a Weyl map Ω, we can write the product of two functions F (x̂µ), G(x̂ν)

2Note that we indicate the noncommutative coordinates as x̂, while the ordinary (commutative)
ones as x.
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depending on noncommutative coordinates x̂µ in terms of a nontrivial multiplica-
tion rule between two functions f(xµ), g(xν) of the commutative coordinates, i.e.
F (x̂µ)G(x̂ν) = Ω(f(xµ) ? g(xν)).

To introduce a suitable Ω we can take the advantage of the existence of a
well-defined notion of inverse Fourier transform on the canonical spacetime, thus:

F (x̂) = Ω(f(x)) =
∫
d4keikµx̂

µ
F̃ (k) (1.10)

where kµ are standard commutative momenta and F̃ (k) are the Fourier expansion
coefficients which have to be integrable functions. From (1.10) follows immediately
that the commutative function f(x) is given by:

f(x) = Ω−1(F (x̂)) =
∫
d4keikµx

µ
F̃ (k) (1.11)

with the same Fourier weights of (1.10) but now the plane wave basis eikµxµ is
commutative, while in (1.10) the exponentials eikµx̂µ depend on the noncommutative
coordinates spanning the canonical spacetime. By inverting the above equation we
gain the coefficients F̃ (k):

F̃ (k) = 1
(2π)4

∫
d4xe−ikµx

µ
f(x) (1.12)

Given the possibility to express any functions as a linear combination of infinite
noncommutative plane waves, evidently it is sufficient to study the properties of
exponentials eikµx̂µ and, then, extend by linearity (1.10) such constructions to
arbitrary functions F (x̂). The first challenge is to define a product between two
noncommutative functions F and G through a non-standard (non-commutative)
product between two commutative ones f = Ω−1(F ) and g = Ω−1(G). The ordinary
commutative product can not work properly:

F (x̂)G(x̂) 6= G(x̂)F (x̂) 7−→ f(x)g(x) 6= Ω−1(F (x̂)G(x̂)) (1.13)

Although, we can find a noncommutative ?- product suitable to describe the
product on the canonical spacetime through commutative functions f, g, i.e.:

f(x) ? g(x) = Ω−1(F (x̂)G(x̂)) (1.14)

which formally represents the so-called Moya-Weyl product. In order to find the
explicit expression of (1.14) we can start from the Moyal-Weyl product between
plane waves so choosing f(x) = eipµx

µ and g(x) = eikµx
µ and, then, reading off the

corresponding F and G from (1.10):

eipµx
µ
? eikµx

µ = Ω−1(eipµx̂µeiµx̂µ) (1.15)

If we make use of the BCH lemma3 together with (1.8), the left side part of the
above formula can be rewritten as:

3The Baker-Campbell-Hausdorff lemma allows to write the product of two noncommutative expo-
nentials in the following manner: eXeY = eZ = eX+Y+ 1

2 [X,Y ]+ 1
12 ([X,[X,Y ]]−[Y,[X,Y ]])+.... Note that in

the case of the canonical noncommutativity, due to the commutation relation [x̂µ, x̂ν ] = iλ2θµν , the
BCH formula simply reduces to eXeY = eX+Y+ 1

2 [X,Y ] 7−→ eipµx̂
µ

eiµx̂
µ

= e−
i
2 pµθ

µνkν+i(pµ+kµ )̂xµ .



1.2 Modified dispersion relation 13

eipµx
µ
? eikµx

µ = e−
i
2pµθ

µνkνΩ−1(Ω(ei(pµ+kµ)xµ) = eipµx
µ
e−

i
2pµθ

µνkνeikµx
µ (1.16)

and, thus, the Moyal product f ? g, allowing to compute the product between
noncommutative functions F (x̂)G(x̂) with the help of (1.9), is given by

f(x) ? g(x) = f(x)e
i
2
←−
∂ µθ
−→
∂ νg(x) = Ω−1(F (x̂)G(x̂)) (1.17)

where
←−
∂ acts on the left-side function (f(x)) while

−→
∂ on the right-side one

(g(x)). Therefore, from now on we can use the above equation (1.17) to calculate
the product between functions of the noncommutative coordinates:

F (x̂)G(x̂) = Ω(f(x) ? g(x)) (1.18)

At this point, it is noteworthy that we have an infinite number of different ways to
associate F (x̂) with f(x) (and vice-versa). In fact, there are infinite non-equivalent
Weyl maps differing in the order of the spacetime arguments (x̂µ) of the exponentials
but equally suitable for mapping Ω : f → F since they all reduce to the standard
plane wave basis eikµxµ in the limit λ −→ 0. Loosely speaking, whenever one
quantizes the classical theory, in order to reach the wider quantum theory starting
from its poorer limiting case (i.e. the classical theory), it is natural to expect such
ordering ambiguities.

The last still missing tool is the derivation of functions depending on noncom-
mutative coordinates. For the above introduced ?-product (1.17), we can define the
derivative of F (x̂) as follows:

∂̂µF (x̂) = ∂̂µΩ(f(x)) := Ω(∂µf(x)) (1.19)

i.e. the derivative of a noncommutative function ∂̂µF (x̂) is simply equal to the
Weyl map of the derivative of the commutative function (Ω(∂µf(x))) associated with
F through Ω.

At this point, we have all the necessary tools to introduce an action for the θ-
Poincaré generators acting on functions of the canonical noncommutative coordinates.
Given the above defined Weyl map we have chose, it is possible to introduce all the
generators with standard actions i.e.

Pµ . F (x̂) = Pµ . Ω(f(x)) = Pµ . Ω(eikνxν ) = iΩ(∂µeikνx
ν ) = −kµΩ(f(x)) , (1.20)

for infinitesimal translations; and then

Mµν . F (x̂) = iΩ(x[µ∂ν]e
ikρxρ) = Ω((kµxν − xµkν)eikρxρ) . (1.21)

for Lorentz transformations. As a result, the commutation relations between
infinitesimal symmetry generators remain the usual ones, i.e.

[Pµ, Pν ] = 0 , [Pµ,Mρσ] = iηµ[ρPσ] , [Mµν ,Mαβ] = i
(
ηα[νMµ]β − ηβ[µMν]α

)
.

(1.22)
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However, due to the noncommutativity of the Moyal-Weyl ?-product (1.17),
the action of the generators on the ordered product of functions is modified in the
following way

∆Pµ = Pµ ⊗ 1 + 1⊗ Pµ , (1.23)

∆Mµν = Mµν ⊗ 1 + 1⊗Mµν −
1
2θ

αβ
(
ηα[µPν] ⊗ Pβ + Pα ⊗ ηβ[µPν]

)
(1.24)

and the Leibniz rule, that applies to Lie algebras, is violated. These relations are
called coproducts and, since they do not obey the Leibniz rule, it is customary to
say they are non-primitive. The algebra in Eq. (1.22) together with the coalgebra
(1.23)-(1.24) define the so-called θ Poincaré Hopf algebra. To complete the Hopf
algebra construction, also the antipode and counit will have to be introduced, but
do not play a role in this thesis and the reader can find them e.g. in Ref. [82]. One
last comment concerns the generality of the above expressions for the commutators
and the coproduct. As it should be clear already from the above discussions, the
explicit formulas for both the algebra and the coalgebra depend on our choice of
the Weyl map. Different ordering choices would produce different deformations that,
though, still implement the symmetries of the canonical spacetimes. We will come
back to this point in this thesis.

In general, both structures of Hopf algebras can be then used to derive interesting
phenomenological outcomes [11]. From the algebra one can straightforwardly deduce
the mass Casimir and, for the case of the θ-Poincaré algebra (1.22), trivially find
that it is not modified

�̂θ = ηµν ∂̂
µ∂̂ν +m2 (1.25)

and, thus, the dispersion relation for free particles propagating on the canoni-
cal spacetime (1.8) remains classical4 (i.e. coincides with the undeformed special
relativistic one). Then, it seems that a quantum spacetime holding canonical non-
commutativity (1.8) does not affect the kinematic of free particles neither at the
Planck-scale contrary to our expectations. In the next section we shall present an-
other example of quantum spacetime, i.e. κ-Minkowski noncommutative spacetime,
where particle propagation is instead affected by Planckian deformations of the
symmetries. On the other hand, the coalgebra (1.24) is highly non-trivial and there
could be associated testable Planck-scale effects [11, 83, 84], among them violations
of the Pauli exclusion principle have attracted particular interest [85, 86, 87].

1.2.2 κ-Minkowski

We have seen an example of noncommutative spacetime where coordinates’ noncom-
mutativity is directly inspired by the desire to somehow mimic the phase space of QM.
A possibly richer class of noncommutative spacetimes is that in which coordinates
satisfy Lie-algebra type commutation relations of the general form

4Note that this statement concerning the dispersion relation in the canonical spacetime implies
that Hopf algebra generators can be interpreted precisely as ordinary Lie algebra generators. Such
hypothesis can not be taken for granted.
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[x̂µ, x̂ν ] = λγµνρ x̂ρ . (1.26)
Among them, much interest has been devoted to the so-called κ-Minkowski

spacetime where γ0i
i ≡ 1 ∀i, otherwise γµνρ ≡ 0 [74], and thus we have

[x̂0, x̂j ] = iλx̂j [x̂k, x̂l] = 0 . (1.27)
According to the standard notation, greek indexes run from 0 to 3 (µ, ν, .. =

0, 1, 2, 3), while latin ones only from 1 to 3 (i, j, .. = 1, 2, 3). Given (1.27), the
ordering-issue pertains only to the position of the time coordinate x̂0 with respect
to the spatial coordinates x̂i in a given basis. Again multiple choices can be made.
This will be relevant in one of the analyses carried out in Section 3.3.1 of Chapter 3.
For brevity and simplicity, we here focus on the so-called “time-to-the-right" Weyl
map where

ΩR(eikµxµ) = eikj x̂
j
eik0x̂0

. (1.28)
Then one can show that the ?R product is given by:

ΩR(eipixi ?R eikjx
j ) = ΩR(ei(pi+e−λp0ki)xi+i(p0+k0)x0) . (1.29)

Now we have again to address the issue of implementing noncommutativity in Eq.
(1.27) as a relativistic property of spacetime in accordance with the DSR proposal.
In fact, also in this case, the Poincaré symmetries of SR are violated. Specifically,
one can easily realize that both translations and boosts are challenged. Given the
above ordering convention, it turns out that the best way to define the translation
generator Pµ is

PRµ . ΩR(eipµxµ) := −iΩR(∂µeipµx
µ) = pµΩR(eipµxµ) (1.30)

where we have defined PRµ so that it coincides with the standard translation
operator acting on commutative exponentials associated to the noncommutative
ones through ΩR. For this reason it is often said that the translation generators
on κ-Minkowski have classical action. Note also that such a classical action (1.30)
entails a corresponding undeformed commutator between two translation generators.
Also rotations can be defined with a classical action on commutative exponentials
related to the noncommutative ones on κ-Minkowski through ΩR, i.e.

RRj . ΩR(eipµxµ) := −iεjklΩR(xk∂leipµx
µ) . (1.31)

Finally, it can be demonstrated that, in order to make the algebra sector con-
sistent, one needs to modify the action of the infinitesimal boost generator in the
following manner [88]

BR
j .ΩR(eipµxµ) := ΩR([xj(1− e2iλ∂0

2λ − λ

2∇
2) + λ(−→x ·

−→
∂ )∂j + ix0∂j ]eipµx

µ) (1.32)

Evidently, the presence of boosts’ non-classical action brings some kind of
deformation of the algebraic sector. In fact, in the light of the above defined actions,
the commutation relation between the generators are
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[Bi, P0] = iPi [Bi, Pj ] = iδij(
1− e−2λP0

2λ + λ

2 (−→P )2)− iλPiPj

[Ri, Rj ] = iεijkRk [Ri, Pj ] = iεijkPk [Pµ, Pν ] = 0 [Ri, P0] = 0 (1.33)

Here (and below as well) we have omitted the apex "R" since we do not discuss
alternatives Weyl maps in this section. Among other ways, the coproducts can be
computed by acting with the above defined generators on the ordered product of
plane waves (ΩR(eikµxµ)ΩR(eipνxν )) [74]. By doing so, one finds for the coalgebra

∆P0 = P0 ⊗ 1 + 1⊗ P0 , ∆Pi ⊗ 1 + e−λP0 ⊗ Pi , ∆Ri = Ri ⊗ 1 + 1⊗Ri ,

∆Bi = Bi ⊗ 1 + e−λP0 ⊗Bi + λεijkPje
−λP0

2 ⊗Rk .
(1.34)

Eqs. (1.33) and (1.34) form the κ-Poincaré Hopf algebra in the so-called “bicross-
product basis" [89, 90], that implements the deformed relativistic symmetries of
κ-Minkowski noncommutative spacetime (1.27).

Notice that in this case both the algebra and the coalgebra get non-linear
modifications. Let us now discuss what are the physical and potentially observable
consequences we can derive from these departures from SR. First of all, from Eqs.
(1.33) it is straightforward to achieve the Casimir of the algebra, i.e. an operator
that commutes with each symmetry generator:

�̂ = ( 2
λ

sinh(λP0
2 ))2 − eλP0(−→P )2 (1.35)

which, evidently, reduces to the undeformed mass Casimir (i.e. � = P 2
0 −
−→
P 2)

when one takes the commutative limit λ −→ 0. Again we omitted the explicit
reference to the ordering we have chosen for the ?-product, however it is worth
stressing that different choices in general produce different realizations of the de-
formed symmetries for the same noncommutative spacetime thereby also leading to
different predictions for some physical outcomes. This fact will play an important
role in some of the analyses carried out in this thesis in Chapters 3 and (4). Now
if we give κ-Poincaré generators exaclty the same meaning usual Lie algebra gen-
erators have, the expression of (1.35) in the momentum representation provides a
Planck-scale-deformed on-shellness relation for free particles:

( 2
λ

sinh(λE2 ))2 = ( 2
λ

sinh(λm2 ))2 + eλE(−→p )2 (1.36)

where m is the inertial mass (rest energy) of the particle, E its energy and −→p
the spatial momentum. Thus, we have a modified dispersion relation (MDR), a
Planck-scale effect appeared several times in the QG literature in different forms
and inspired by different scenarios (see again Ref. [11] and references therein).
In the context of DSR-inspired models, this is a quite natural outcome to expect
[71]. In fact, if we look at the past, Galilean symmetry transformations turned
out to be inadequate for processes involving high-velocity (close to c) particles and
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they were replaced by the Lorentz transformations of Einstein’s SR carrying an
observer-independent velocity-scale and, consequently, requiring a corresponding
dimensionful deformation of the dispersion relation: E = p2

2m ⇒ E =
√
p2c2 +m2c4.

In the same way, the DSR proposal [30, 71] suggests that the Planck-length `Pl
could be an observer-independent quantity and, as a result, at very high (small)
energies (lengths) the classical Poincaré symmetries of SR should be abandoned
in favor of novel symmetry transformations (κ-Poincaré being an example of such
symmetries) accommodating a second relativistic invariant with the dimension of
a length (i.e. `Pl) or energy (EP ), in addition to the speed of light c. Again, this
revision (of course negligible at low energies E � EP ) is accompanied by a proper
modification of the dispersion relation caused by the dimensionful deformation of
symmetry transformations (see (1.36)). From the phenomenological point of view,
the most notable aspect of predicting a MDR is that, contrary to the majority of
the QG effects relegated to the untestable "quantum-black-hole" regime, not only
does (1.36) produce "new physics" at `Pl but it also leaves a trace at low energies
in the form of UV-corrections. As a consequence, it could be possible to observe
small corrections to some phenomena caused by the Planck-scale realm at least in
few astrophysical and/or cosmological contexts [11]. Specifically, by expanding the
MDR (1.36) up to the first order in the infinitesimal quantity λE � 1 one easily
finds

E2 ≈ m2 + p2 + λEp2 (1.37)

where the QG correction is suppressed by the factor λE ∼ `PlE. Unfortunately,
it is immediate to realise that such a deformation is completely negligible in most
of the laboratory experiments. With LHC energies one gets ELHC/EP ≈ 10−15,
which would be completely hidden by experimental errors. On the other hand, such
a discouraging estimation does not mean that (1.37) can not produce observable
effects, but it brings us to address the main challenge of QG inspired phenomenology,
i.e. the smallness of Planck-scale corrections [11]. Doubtlessly, this recognition
reduces drastically the number of physical situations offering us an insight into QG
induced new phenomena. In order to provide for the tininess of Planck-scale effects
the indispensable tool is a natural amplifier [11]. Let us suppose that the ordinary
law for group velocity (v = dE/dp) is still valid. Then the velocity of massless (or
as well ultrarelativistic) particles acquires an energy dependence

v ≈ 1 + λE (1.38)

which can be quite directly tested noticing that, whereas in oridnary SR two
photons with different energies (∆E = E2 − E1) emitted by the same source almost
simultaneously (say δt the initial time-spread between the two signals) would reach
a far away detector (being T the duration of the whole travel) at the same time
(4t ≡ 0), those two photons should reach the detector at different times in such a
DSR scenario. In fact (1.38) introduces a lapse given, up to the first oder in λ, by:
∆t ≈ λT∆E ∼ T∆E/EP 6= 0 [69]. Evidently, looking at this quantum-spacetime
induced lapse ∆t, the role of the Planck-scale-effect amplifier can not be played
as much by a large energy difference ∆E between the two photons but rather by
a tens billion light years travel T . As we shall see in Chapter 6 of this thesis, the
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perfect astrophysical phenomenon to observe this kind of effect is represented by the
emission of gamma ray bursts (GRBs) for which a time travelled before reaching
our detectors as much as T ∼ 1017 s is not at all unusual. Moreover, GRBs are
typically made up of a several number of short duration mircobursts lasting for
almost δt ∼ 10−3 s and, what is more, some of the photons in these bursts can easily
have an energy difference in the GeV. All these peculiar characteristics make GRBs
very suitable for testing such an energy dependence (1.38) of the speed of light. In
fact, computing the time delay with the roughly estimated inputs we mentioned
one finds ∆t ∼ (10−3 − 10−2) s, which means that this analysis already enjoys a
Planck-scale sensitivity: ηP = ∆t/δt ∼ 1 (see [69]).

In the transition from Galilean to Einsteinian relativity not only the dispersion
relation had to be modified but also the way we compose velocities as a result of the
introduction of a relativistic invariant scale of velocities. Thus, pushing forward this
analogy, we can wonder whether the composition laws for energy momentum should
be changed due to the introduction of a relativistic invariant energy scale. It is a
common belief that this is indeed the case in the Hopf algebra description of the
symmetries of noncommutative spacetime and the information on how to compose
momenta should be contained in the coalgebra sector. In fact, the coproduct fixes
the deformation of the conservation law in a way which is DSR-compatible with the
deformation of the symmetries and of the dispersion relation. From Eqs. (1.34) one
can read off

E1 ⊕λ E2 = E1 + E2 ,
−→p 1 ⊕λ −→p 2 = −→p 1 + e−λE1−→p 2 , (1.39)

where the maintenance of standard composition for energies comes from the
fact that the coproduct of the time translation generator is primitive, while the
deformation of the composition law for spatial momenta reflects the coproduct
structure of Pi. Here the subscripts tag two different particles 1 and 2. As the MDR,
also these modifications of the energy-momentum conservation are accompanied
by interesting phenomenological consequences which could be tested with current
experiments. Among them, let us mention changes in the threshold energies for some
particle process of astrophysical interest [91], consequences for CPT violations [92]
and neutrino oscillations [93] and finally Planckian effects in macroscopic bodies [94].
Some of the related effects are now well established, others still under discussion.
However, we refer to Ref. [11] for a rather exhaustive review on tests of QG-inspired
phenomenology.

It is often believed that at super-Planckian distance scales the only correct de-
scrption of spacetime degrees of freedom should be "strongly quantum", so forbidding
from referring to any kind of spacetime coordinates as well to continuous symmetries,
even if deformed. From this perspective the κ-Minkowski/κ-Poincaré realisation of
the DSR scenario seems at most to represent a very limited regime (i.e. that neglect-
ing gravitational effects, G −→ 0) of the QG realm and, at a more fundamental level,
it should be replaced at least by some kind of “DSR geometrodynamics". This thesis
work partly represents an attempt of doing that by regarding deformations of the
HDA as an opportunity to link top-down with bottom-up models. In this way, i.e.
deriving DSR-like effects from other QG or non-classical-spacetime approaches, we
shall contribute to bridge the gap between the available experimental data and our
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current limited knowledge of the relevant formalism or, at least, of the QG problem
itself. There are complementary advantages in implementing such a procedure. On
the one hand, one would give further support to DSR ideas and propose a path to
extend them beyond the “Minkowski regime". On the other, by doing so, it would
be possible to identify some shared (and, perhaps, characterizing) QG features that,
what is more, could be presently tested with feasible experimental analyses. We
believe this strategy represents a necessary step to be done in order to turn from
the test of phenomenological toy models to the falsification of actual “full-fledged"
QG proposals.

1.3 Dimensional reduction
In addition to MDRs, another commonality shared by many approaches to QG is the
phenomenon of dimensional reduction near the Planck scale [95]. Before addressing
the issue of dimensional flow in QG, one first needs to define what does he mean
for “dimension". There are indeed multiple definitions relying on different physical
and/or geometrical arguments to have information on the number of dimensions.
In this thesis we will focus on three much studied estimators, namely: the spectral
dimension, the Hausdorff dimension, and the thermal dimension. In the former
case, the dimension is inferred from the diffusion time of a random walk. The
Hausdorff dimension is simply given by the scaling behavior of the volume V (r)
of a ball with radius r. Finally, in thermodynamical systems, one has that the
partition function depends on the phase space volume and, thus, it gives again an
estimate of the dimension of the system. Different definitions of the dimension can
be more suitable for a given QG approach or another. Perhaps the strongest hints
of Planckian dimensional reduction have been found in asymptotic safety [97] and
causal dynamical triangulations [96]. However, more and more analyses inspired
by different QG frameworks have been gradually showing the same phenomenon
[98, 99, 100, 101]. In the light of this, it seems rather unlikely that so many different
approaches to QG would obtain the same Planck-scale effect only by accident.
Instead, it is possible that dimensional flow could actually represent a characteristic
QG feature. If this is the case, then there should be a common reason independent
of the peculiarities of a specific approach. It is then intriguing to ask whether the
uncertainty relations in Eqs. (1.3) and (1.5) can imply dimensional reduction.

We provide preliminary support for the presence of a direct connection between
dimensional flow and spacetime fuzziness [102, 103] as in Eqs. (1.4), (1.5) within
the context of multifractional theories [28, 104] fully reviewed in [29]. These are a
class of field theories of matter and gravity where spacetime is “anomalous” and
changes properties with the probed scale, in a way similar to a multifractal. While
in other QGs dimensional flow is a derived property not required a priori, here it is
part of the definition of the framework. Thus, multifractional models do not actually
predict dimensional reduction, but rather naturally implement it by construction.
In particular, the running of dimensions is produced by an integration measure of
the type

dDq(x) := dq0(x0)dq1(x1) · · · dqD−1(xD−1) = ∂0q
0dx0∂1q

1dx1 · · · ∂D−1q
D−1dxD−1 .
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The factorizable form is assumed for technical reasons [29] not especially im-
portant here (we will critically discuss this assumption in Section 4.1 of Chapter
4), while the specific form of the distributions qµ(xµ) is obtained by requiring that
dimensional flow is slow at large scales. This assumption (spacetime dimension
almost constant in the IR), true in all QGs without known exception, is at the core
of a result we will invoke often later, the second flow-equation theorem [104] (a “first”
version holds for nonfactorizable measures). An approximation of the full measure,
which is relevant for our purposes and physically nonrestrictive, is the binomial
space-isotropic profile

qµ(xµ) ' (xµ − xµ) + `∗
αµ

∣∣∣∣xµ − xµ`∗

∣∣∣∣αµ , (1.40)

where the index µ is not summed over and takes values 0, 1, 2, . . . , D − 1. For
simplicity, we assume αµ = δ0µα0+(1−δ0µ)α, i.e., the exponents αµ 6=0 associated with
spatial directions have all the same value α; moreover, we also enforce 0 < α0, α < 1,
to avoid negative dimensions and obtain the correct IR limit [29]. Depending on
the symmetries of the Lagrangian, there are four possible multifractional theories,
classified according to the derivative operators appearing in kinetic terms. Here we
will concentrate on two theories with the same asymptotic expression for length, with
so-called q- and fractional derivatives. For our purposes here, suffice it to say that
q-derivatives are defined as ∂qµ = (dqµ/dxµ)−1∂µ. Details on fractional derivatives
are discussed in [29].

To get the Hausdorff dimensions dh of spacetime, one computes the volume V
of a D-cube with size edge `, leading to the result that, if α0 = α (as fixed by the
arguments below), then V =

∫
cube d

Dq(x) ' `D∗ [(`/`∗)D + (`/`∗)Dα]. Thus, we have
dh ' Dα in the UV (` < `∗). Here we have neglected mesoscopic contributions to
V, which are not relevant to get the number of dimensions in the far UV [105]. For
the two multifractional theories considered here, it is not difficult to prove that,
in the UV, the spectral dimension (the scaling of the return probability P ∼ `−ds

measuring how likely it is to find a test particle in the neighborhood of a point
when probing spacetime with an apparatus with resolution 1/`) coincides with the
Hausdorff dimension, ds ' Dα ' dh, for α0 = α [29]. Both α and `∗ are free
parameters of the theory with the only requirement that `∗ must be small enough
to comply with experimental constraints [29]. The measure qµ(xµ) is fixed by the
second flow-equation theorem [104], but there remains an ambiguity related to the
choice of a preferred frame, which amounts to the choice of xµ in Eq. (1.40). In
fact, physical observables have to be compared in the picture with xµ coordinates
representing clocks and rods that do not adapt to the scale. This poses the so-called
presentation problem [106, 29], which consists in the choice of the physical frame
where Eq. (1.40) is defined and observables are calculated. The presentation problem
will be analyzed in some more details in Chapter 4.

We want to use multifractional theories as a testing ground for our conjecture, i.e.
a connection between dimensional flow in multifractional theories and the limitations
on the measurability of spacetime distances obtained above in Eqs. (1.3), (1.4), (1.5),
and (1.6). The observations we here report can also be viewed as an explanation of
why one gets a correct intuition about distance fuzziness even just resorting to the
qualitative interplay of QM and GR. The link is provided by the fact that limitations
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on geometric measurements are intimately related to dimensional flow [102, 102].
Conversely, the reason why dimensional reduction should be expected in any QG
model is that it is a direct consequence of spacetime fuzziness, a feature that, as we
showed above, simply comes from the combination of QM with GR basic principles.

We focus on the (1 + 1)-dimensional theory with q-derivatives, a context where
the analysis progresses more simply but without loss of any characteristic feature.
Using Eq. (1.40), the spatial distance between two points A and B is

L :=
∫ xB

xA
dq1 = `+ 1

α

`∗
`

(∣∣∣∣xB − x̄
`∗

∣∣∣∣α − ∣∣∣∣xA − x̄
`∗

∣∣∣∣α) , (1.41)

with ` = xB − xA. Thus, different presentations (i.e., different values of x̄
[29, 106]) give different results for the distance, although they do not change the
anomalous scaling, which is solely governed by α. Up to now, this has been regarded
as a freedom of the model, but we here suggest that the presentation ambiguity
should be viewed as a manifestation of spacetime fuzziness. Four presentation choices
have been identified as special among the others [106], but the second flow-equation
theorem [104] selects only two of these: the initial-point presentation, where x̄ = xA,
and the final-point presentation, where x̄ = xB. In both cases, Eq. (1.41) simplifies
in such a way that the difference between L and the value ` that would be measured
in an ordinary space is [106]

δLα ' ±
`∗
α

(
`

`∗

)α
, (1.42)

approximately valid in any space dimensions, where the plus sign is for the initial-
point presentation and the minus is for the final-point presentation. Notice that the
multifractional contribution to distances (1.42) is of the same type of the lower bound
on distances obtained above by heuristically combining QM and GR arguments (see
Eqs. (1.3), (1.4), (1.5), and (1.6)). This leads us to advocate a novel interpretation
of (1.42), such that it gives an intrinsic uncertainty on the measurement of spacetime
distances. According to this interpretation, the initial-point presentation generates
a positive fluctuation +δLα, while the final-point presentation produces a negative
fluctuation −δLα, with the possibilities α = 1/2 and α = 1/3 being favored by
the connection with [56, 57] we are starting to build up. In this way, we have
linked dimensional reduction, which is encoded in multifractional geometries by
construction, with spacetime fuzziness in the form of minimum allowed length and
time scales.

Notably, the value α = 1/2 has been already recognized as special for several
theoretical reasons [29]. In particular, it gives the result ds ' 2 in the UV, a value
that has already been singled out for independent reasons in many QG studies
(see Refs [28, 96, 97, 100, 99, 101, 107, 108, 109, 110, 111] and references therein).
What is more, the length scale `∗ turns out to be related to the Planck length. In
this case, we have `∗ = `2Pl/s < `Pl, where s is the observation scale. Thus, the
dependence on the scales at which the measurement is being performed becomes
explicit. This is exactly what is expected to happen in multifractal geometry [28] and,
in particular, in multifractional theories, where the results of measurements depend
on the observation scale [29]. In the case α = 1/3, `∗ coincides with `Pl. In both
cases, the relation of `∗ with `Pl exposes the possibility of encoding highly nontrivial
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quantum features within multifractional theories. A similar line of thought applies
also to the time direction, which leads us to entertain the concrete possibility that the
binomial measure should be isotropic in space and time, i.e., α0 = α. It is intriguing
that, in the illustrative example for our main claim, a connection is established
between a multifractional theory with a built-in dimensional flow (a feature usually
derived, rather than assumed, in top-down approaches to QG) and uncertainties on
distance measurements motivated by heuristic bottom-up approaches, combining
just QM and GR principles without adding any hypothetical QG ingredient. We
can thereby conjecture that the connection between the form of dimensional flow
and the form of spacetime fuzziness should have wider applicability. If so, this could
be the origin of the fact that dimensional reduction is encountered in almost all QG
models.

Moreover, notice that, from the multifractional perspective, the reinterpretation
we are proposing is not arbitrary. In Ref. [106], it was observed that the theory with
fractional derivatives describes spacetimes with a microscopic stochastic structure,
i.e., a nowhere-differentiable geometry where location of events (“points” in space)
cannot be determined with arbitrary accuracy and particle trajectories are nonsmooth.
The presentation label x̄µ prescribes how integrals on stochastic spacetime variables
can be performed, as in the Itô–Stratonovich dilemma in random processes. Inspired
by this, instead of defining as many physically inequivalent theories (but with
the same anomalous scaling) as the number of presentations, and to choose one
presentation among the others, one can take “all presentations at the same time.”
In this case, the measures {qµ(x − x̄µ) : x̄µ ∈ RD} would not correspond to
a class of (in)finitely many theories labeled by x̄µ all with the same anomalous
scaling: they would be one measure corresponding to one theory with an intrinsic
microscopic uncertainty. This stochastic view holds only in the multifractional
theory with fractional derivatives and also in the case with q-derivatives, which
is an approximation of the former [29]. In this thesis work we will retain both
interpretations. A direct and rigorous way to understand where stochasticity may
come from in classical multifractional spacetimes is the following. Considering the
second-order truncation of the full measure determined by the flow-equation theorem
[104], we have (index µ omitted everywhere)

q(x) = x+ `∗
α

∣∣∣∣ x`∗
∣∣∣∣α Fω(x) , (1.43)

where Fω(x) = Fω(λωx) is a complex modulation factor encoding a fundamentally
discrete spacetime symmetry x→ λωx in the far UV (λω is fixed). This symmetry
arises as a consequence of the theorem, it is not imposed by hand, and Eq. (1.43)
is the generalization of (1.40) (with x̄ = 0 for simplicity; presentation does not
affect the argument here) to higher orders in the flow equation [104]. Requiring the
measure to be real-valued, one has [104, 29, 105]

Fω(x) =
+∞∑
n=0

Fn(x), ωn = ωn , (1.44a)

Fn(x) := An cos
(
ωn ln

∣∣∣∣ x`∞
∣∣∣∣)+Bn sin

(
ωn ln

∣∣∣∣ x`∞
∣∣∣∣), (1.44b)
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where An and Bn are constant amplitudes and `Pl ∼ `∞ . `∗. The coor-
dinate dilation of the discrete scale invariance is governed by the frequency ω,
λω = exp(−2π/ω). The log-oscillating structure is determined by the flow-equation
theorem [104], while the simple but crucial linear relation ωn = ωn is determined
by discrete scale invariance, the trade mark of iterative (also called deterministic)
fractals [105]. For phenomenological reasons, the modulation factor (1.44) is usually
approximated by only two frequencies, the zero mode n = 0 [F0(x) = A0 = const] and
the n = 1 mode. This approximation is quite effective in capturing the physical im-
print of the logarithmic oscillations in particle-physics and cosmological observables
[29], but here we prefer to retain the full structure (1.44). Defining y := ln |x/`∞|
and taking the average 〈f(y)〉 := (2π)−1 ∫ 2π

0 dy f(y), we get

〈Fω〉 = A0 , 〈F 2
ω〉 = A2

0 +
∑
n>0

A2
n +B2

n

2 . (1.45)

Since the sign and magnitude of the multiscale correction to lengths are mod-
ulated by log oscillations, the latter solve the presentation problem by making
the presentation choice irrelevant. Moreover, for certain n-dependences of the am-
plitudes An and Bn (corresponding to introducing ergodic mixing phases in the
oscillations), Eq. (1.44) is a Weierstrass-type nowhere-differentiable function [112].
Non-differentiability is a key property of random distributions. As a result, we reach
the neat conclusion that, in multifractional theories, the “stochastic fluctuations” of
the geometry are provided by the logarithmic oscillatory modulation of the measure.

Let us offer some additional comments on how our observations might shed
light on why the flow of dimensions in the UV is a universal property of QG
approaches. The above arguments indicate the possibility that dimensional flow
is linked to distance fuzziness, whose form can be inferred from the combination
of QM with GR, without knowledge of the detailed features of one or another QG
model. In the light of our analysis, spacetime fuzziness could be viewed in analogy
with the Hawking temperature for black holes, also derived from semi-quantitative
model-independent arguments combining QM and GR. Multifractional theories are
particularly manageable for what concerns the structures that one needs to investigate
in order to test our conjecture. The test may be harder in other formalisms of QG.
Nonetheless, all the main elements of our arguments are already in place in some of
the major proposals in the literature. In particular, asymptotically-safe quantum
gravity and the discrete-geometry, mutually related frameworks of lLQG, spin foams
and group field theory all have dimensional flow [23, 21, 22, 101, 107, 113, 114, 115]
and implement fuzziness by the presence of minimal lengths, areas or resolutions
[14, 116, 117]. Maybe also causal dynamical triangulations [23] realize fuzziness, as
indicated by modified-dispersion-relation arguments [118]. In this thesis, in Section
3.4 of Chapter 3, we will derive dimensional flow in LQG from the modification
of special relativistic symmetries that also bring a modification of the dispersion
relation [101, 115]. This again serves as a clear example of the relation existing
between the phenomenon of dimensional reduction and MDRs.

Besides shedding light on some convergences between disparate QG models,
the derivation of dimensional flow and its connection with intrinsic spacetime
measurement uncertainties can be useful to extract interesting phenomenology as
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we have seen already for MDRs. If indeed our conjecture is confirmed, then the
phenomenology would be empowered by the possibility of combining experimental
bounds on dimensional flow and experimental bounds on fuzziness. For example,
for multifractional theories the established bounds on dimensional flow [29] acquire
the added significance of bounds on the minimal resolution 1/`∗ achievable. In turn,
from Eq. (1.42) we can infer constraints on time-space isotropic ds (or dh) using
bounds on fuzziness [11]. In fact, neglecting an O(1) numerical factor, Eq. (1.42)
yields spacetime fuzziness of the form σ ∼ (`∗)1−α`α. For models in which this form
of fuzziness admits phenomenological description in terms of distance fluctuations
(which one would naturally expect, but needs to be checked in each specific model
[11]), one would then expect to find [11] a strain noise σ2 =

∫
dνS2(ν) with spectral

density S(ν) ∝ cα(`∗)1−αν−
1+2α

2 (ν here denoting the frequency), and this form of
strain noise can be meaningfully constrained, even for very small `∗, using modern
gravity-wave interferometers, such as LIGO and VIRGO. Since α = dUV

S,H/D (see
above), we find for the UV dimension dUV

S,H ∝ D log(S
√
ν/`∗)/ log(c/ν`∗), and for

a first order-of-magnitude estimate we can take as reference the LIGO sensitivity
level of S ∼ 10−20 m Hz−1/2 at ν ∼ 103 Hz. This allows to establish meaningful
constraints even for “Planckian values" of `∗: for example for `∗ ' `Pl at 103 Hz
one would expect fuzziness noise at the level of 10−20 m Hz−1/2 for dUV

S,H ∼ 1.7. So
this is a rare case for QG research where experimental sensitivities are at a level
comparable to where we are with theoretical understanding, since most arguments
point to 1.5 . dUV

S,H . 2.5.

In this chapter we have introduced a general and model independent way to
characterize what a quantum spacetime is, namely a place where events or points can
not be determined with arbitrarily sharp precision. In fact, the naive combination of
QM with GR principles brings an irreducible uncertainty to space and time interval
measurements. This simple argument also shows how `Pl is the natural scale for
these obstructions to the measurability of spacetime distances and, thus, the scale
at which we expect our picture of the spacetime as a smooth continuum to be not
attainable anymore and be replaced by some fuzzy structure. Then we have shown
how, as a direct consequence of spacetimetime fuzziness, the dispersion relation for
particles should be modified and, too, the number of Hausdorff dimensions should
decrease. These are two characterization of spacetime quantization which, even if
often taken separately, we have suggested to be intimately related. We have stressed
how different QG approaches have been able to quantitatively and in some cases
rigorously derive one or both of these features. In this thesis, we will try to give
a common origin to these three aspects: fuzziness, dimensional flow, and modified
dispersion relations. This shared cause for these two much-studied phenomena
will be identified in the deformation of spacetime symmetries which we consider as
the most relevant and convenient description of quantum spacetime properties. In
particular, we will concentrate on how different QG or non-classical (non-standard)
spacetime models affect the diffeomorphism invariance of GR and, by restricting to
the Minkowski limit of the models considered, we will derive related DSR effects. In
this way we will put forward a general framework to derive MDR and dimensional
flow from deformations of GR symmetries and, thus, make a step towards having
a unified strategy to obtain observable traces of Planck-scale physics. Indeed, we
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believe that our study, besides moving closer different approaches to non-standard
spacetime formalisms and in some cases uncovering unexpected convergences, is of
particular relevance in order to extract phenomenological predictions from quantum
spacetime or QG models which are often unable to provide observable outcomes due
to the formal complexity involved.

Outline of the thesis

The organization of this thesis work is the following. In Chapter 2 we start review-
ing classical GR in the Hamiltonian formulation by focusing in particular on the
implementation of the symmetry under diffeomorphisms. This leads us to introduce
one of the key mathematical construction we will analyze in this thesis work, i.e. the
HDA or algebra of gravitational constraints. In particular, we present two different
methods to derive the algebra and also how to make the reduction to Poincaré
isometries in order to recover the Poincaré algebra of SR from the broader HDA of
3 + 1 GR. After that, we propose a way to perform the deformation quantization of
the HDA with a Moyal-Weyl ?-product thereby paving the way to the formulation
of diffeomorphisms in noncommutative spacetime manifolds. This is a first example
of how diffeomorphism symmetries could be modified by quantum effects. Others
possibilities will be explored in the other chapters of the thesis, comparisons will be
drawn.

In Chapter 3 the focus is on the Planckian deformations of the HDA recently
discovered in effective approaches to LQG. After a brief but self-consistent review of
the basics of LQG, we introduce spherically symmetric GR models in the Ashtekar
formulation with the addition of quantum corrections. We show how these LQG-
motivated quantum corrections give rise to a modification of the HDA in both real
and complex connection variable formulations. Then, reducing to the Minkowski
regime, we find that the LQG-deformed HDA suggests corresponding modifications
of the Poincaré symmetries of the type expected in DSR models. Firstly, with
the aim of investigating this LQG-deformed Poincaré algebra, we carry out an
analysis proving that such an algebra can be made dual to the so-called κ-Minkowski
noncommutative spacetime. We then use these results on symmetry deformations to
make a step forward in the direction of setting the stage for LQG phenomenology.
Indeed, from the LQG-deformed Poincaré algebra, we are able to compute both the
MDR and the dimensional running. Both effects turn out to be sensitive to some
formal ambiguities present in the definition of LQG corrections and, thus, we show
how they could be used to constrain some arbitrariness contained in the formalism.
In this way, by means of the study of HDA deformations, we are able to link two
different approaches to QG and, what is more, translate this insightful connection
into potentially observable predictions for LQG. Motivated by the presence of a link
between spacetime noncommutativity and LQG we will also construct coordinate-like
operators defined on the kinematical Hilbert space of LQG and discuss some of their
properties by evaluating their actions on spin-network coherent states.

In the light of the discussion contained in the Introduction, proposing a direct
relation between dimensional running and spacetime fuzziness with the associated
departures from standard spacetime symmetries, we analyze in some detail the
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relation between the symmetry structures in multifractional and noncommutative
spacetimes in Chapter 4. Two multifractional theories are considered, namely
the multifractional theory with q-derivatives and the multifractional theory with
weighted derivatives, and compared with the Hopf algebra symmetries of κ-Minkowski
spacetime. Despite the presence of several similarities and the possibility to build
clear connections, the two approaches are shown to be inequivalent. We then compute
for the first time the HDA in these two multifractional models by turning gravity on
and compare multifractional modifications of diffeomorphism symmetries with those
obtained in effective LQG models. In the last section of the chapter, we eventually
study black hole solutions in multifractional gravity and highlight departures from
standard GR in the causal horizon structure as well as in the thermodynamical
properties.

In Chapter 5 we are interested in non-standard spacetime properties, namely
torsion and non-metricity, which are expected to describe an intermediate regime of
the spacetime geometry near the Planck scale. Indeed, these additional geometric
quantities are believed to be useful in an effective description of spacetime discreteness.
Specifically, we introduce a broad class of modified Palatini gravities where the
dependence of the Lagrangian on the Ricci and metric tensors only appears in the
form of traces of gµαR(αν)(Γ). These modified gravity theories are described in
terms of non-Riemannian geometries. We first introduce some basic mathematical
properties of non-Riemannian manifolds and then analyze how field equations get
modified by the presence of non-metricity and torsion. In particular, focusing on
fermionic fields, we point out how non-metric corrections leave trace in physically
relevant quantities. Specifically, we deploy two phenomenological studies and prove
how high-energy particles’ physics experiment can be used to significantly improve
current bounds on departures from Riemannian geometries. We conclude the chapter
by computing the non-metric corrections to the HDA and, performing the Minkowski
limit, the related modifications of SR symmetries. A qualitative comparison with
LQG deformations of the HDA discussed in Chapter 3 is also reported.

Finally, Chapter 6 is devoted to a genuine quantum-spacetime phenomenology
analysis. Specifically, we discuss a recent study we carried out in the search for
in-vacuo dispersion traces in the spectrum of 7 GRBs observed by Fermi-LAT.
Remarkably, we find that the data we analyze, which is in the range spanning from
few GeVs to tens of GeVs, could be interpreted as a manifestation of MDR even if
the magnitude of the QG effect would not be compatible with previously established
bounds on in-vacuo dispersion.

Conclusions are drawn in Chapter 7.



27

Chapter 2

Hypersurface deformation
algebra

In this chapter we are concerned with the symmetries of classical and, then, non-
commutative GR in the canonical formalism. The canonical formulation is of crucial
importance for the analysis of the dynamical equations of a physical system, as
well as to determine the observables, and also poses the basis to address solutions
numerically. Here we are interested in the canonical formulation of GR mainly due
to the fact that, as we shall see in the Sections 2.1.1 and 2.1.2, it allows us to encode
diffeomorphism invariance into a symmetry algebra analogously to what we have in
SR where the symmetries of Minkowski space are described by the Poincaré algebra.
In this way, imposing proper restrictions, there is a clear and direct way to relate
the algebra of symmetries of GR with the Poincaré symmetries both locally and
asymptotically. This will be the starting point to transfer quantum deformations of
GR symmetries, which appeared in a number of recent QG studies, to corresponding
deformations of Minkowski isometries thereby obtaining DSR-like effects that are
usually in the form of (non-linear) modifications of the Poincaré transformations.

We start reviewing briefly the Hamiltonian formalism for GR and focus on how
the symmetries under diffeomorphisms are encoded in canonical gravity. This leads
us to introduce the HDA or Dirac algebra [39, 40], i.e. the algebra of time and
space diffeomorphisms. We shall discuss two different ways to generate the HDA
which we shall call: gravitational constraints representation [40] and Gaussian vector
fields representation [119]. After that, we will show how to regain the Poincaré
algebra from the broader HDA when we restrict to either local [120] or asymptotic
[121] flat spacetimes. Throughout the thesis we shall refer to this procedure as
the “Minkowski limit" of the HDA. Finally, in Section 2.2, we propose a new
approach to the formulation of a gravity theory in noncommutative spacetimes.
In the QG literature many proposals for noncommutative gravity appeared so far
[123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135], however the issue
of general coordinate transformations for a noncommutative algebra remains to be
addressed satisfactorily. We here take a first step towards the direction of facing this
problem by generalizing the Gaussian vector fields representation to both “twisted"
and “deformed" diffeomorphisms for the Moyal-Weyl noncommutative spacetime
[136, 137]. The HDA of twisted diffeomorphisms agrees with the classical one, while
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the HDA obtained from deformed diffeomorphisms is modified due to the explicit
presence of ?-products in the brackets [138]. The results allow one to distinguish
between twisted and deformed symmetries. The algebroid brackets maintain the
same general structure regardless of space-time noncommutativity, but they still
show important consequences of nonlocality. Such an analysis also represents the first
example we provide in this thesis of non-classical modifications of GR symmetries.
Other possibilities, either recently proposed by other authors or originally developed
by us, will be presented and explored in subsequent chapters.

2.1 Canonical General Relativity

For this section we mainly follow Ref. [40] and references therein. In the covariant
4-dimensional formulation of GR there there are redundancies due to the fact that
the metric tensor gµν both contains dynamical information and determines the
coordinate system. The canonical (or Hamiltonian) formulation of the theory can
be seen as a way to disentangle the dynamical from the gauge variables. To this
end, the starting point consists in choosing a “time direction" or, in other words,
splitting the space-time manifold in three spatial directions and one time direction.
This can be done by foliating the 4-manifold as M = R × Σ (see Figure (2.1)),
where Σ are 3-surfaces of some “time function" t = const. At this point one can
introduce a tangent vector tµ∂µt = 1 and a normal vector nµ = Xµ/

√
−gρσXρXσ

with Xµ = gµν∂νt. Given that one has an induced metric on Σ ( or 3-metric)
equal to qµν = gµν + nµnν , which is going to serve as configuration variable of the
Hamiltonian system. Finally, defining the lapse function N = nµt

µ and the shift
vector Nµ = qµνtν , one can write the 4-metric as

gµν =
(
−N2 Ni

Nj qij

)
.

(a) (b)

Figure 2.1. (a) The figure shows the decomposition of the "flow of time" field tµ into the
normal (nµN) and the tangent (Nµ) components to the spatial surface (Σt). (b) The
figure represents the foliated manifoldM = R×Σ, which can be considered as made up
of the evolution in "time" of a spacelike surface Σt, while n is the unit normal vector
orthogonal to the three dimensional surface.
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It is worth noticing that one has now split the components of the metric into gauge
choices and dynamical variables. Indeed, we shall see that no time derivatives of g00
and g0i will appear in the Hamiltonian, that will contain (first-order) time derivatives
only of the spatial components qij . In other words, the lapse N and the shift Ni

will play the role of Lagrange multipliers imposing the validity of the Hamiltonian
on constraint surfaces. Finally, it is useful to define the extrinsic curvature Kij as
the Lie derivative of the 3-metric along the normal direction, Kij = Lnqij/2. In can
be proven that Kij = (q̇ij −DiNj −DjNi)/(2N), being Di the covariant derivative
on Σ i.e. Djqkl = 0. Such a relation tells us that the extrinsic curvature can be
interpreted as the “velocity" of qij and, indeed, it will turn out to be proportional to
its momentum.

Now we have all the elements needed to pass from the Einstein-Hilbert action to
the Hamiltonian. In fact, we can write the Einstein-Hilbert Lagrangian as

LEH = 1
16πG

∫
d3x
√
−g R = 1

16πG

∫
d3xN

√
q
(

(3)R+KijK
ij − (Ki

i )2
)
, (2.1)

where we used the fact that
√
−g = N

√
q as one can easily notice from the above

decomposition of gµν , and the Gauss-Codazzi relation R =(3) R+KijK
ij − (Ki

i)2

in order to express the Ricci scalar onM in terms of the Ricci scalar on Σ, (3)R
and the extrinsic curvature. Notice that this relation between R and (3)R holds up
to boundary terms which can be safely neglected in Eq. (2.1) but will be discussed
later on in this section in relation to the Minkowski limit. Boundary terms will play
a key role in the definition of the asymptotic limit in a proper way. At this point
one can define the momenta as usual and from Eq. (2.1) find that

πN (x) = ∂LEH

∂Ṅ(x)
= 0 , πi(x) = ∂LEH

∂Ṅ i
= 0 ,

πij(x) = ∂LEH
∂q̇ij

=
√
q

16πG
(
Kij −K l

lq
ij
)
.

(2.2)

As we had anticipated, the momenta associated to N(x) and N i(x) identically
vanish and, thus, these four configuration variables are non-dynamical. They are
primary constraints. Then, reminding that gµν has ten independent components, for
the moment we are left with six potential degrees of freedom. In order to single out
only the physical ones we need to complete the Hamiltonian analysis by counting
the number of higher order constraints.

The Hamiltonian is given by

H =
∫
d3x

(
q̇ijπ

ij + λπN + µiπi − LEH
)

=
∫
d3x (16πG

√
q
N

(
πijπ

ij − 1
2(πll)2

)
+ 2πijDiNj

−
√
q

16πGN
(3)R+ λπN + µiπi) ,

(2.3)
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where λ and µi are Lagrange multipliers of primary constraints, i.e. πN and πi
respectively. Using the Poisson brackets between the phase space variables (qij , πkl)

{F (x), G(y)} =
∫
d3z

(
∂F (x)
∂qij(z)

∂G(y)
∂πij(z) −

∂F (x)
∂πij(z)

∂G(y)
∂qij(z)

)
, (2.4)

and following a standard procedure, from the primary constraints we can derive

H = −π̇N = −{πN , H} = 16πG
√
q

(
πijπ

ij − 1
2(πll)2

)
−
√
q

16πG

(3)
R = 0 , (2.5)

which is the Hamiltonian density, and

Hi = −π̇i = −{πi, H} = −2Djπ
j
i = 0 , (2.6)

which is the momentum density. Thus, we have four secondary constraints that
leave us with the renowned two dynamical degrees of freedom of the gravitational
field. Together they give us the equations of dynamics of GR in the Hamiltionian or
Arnowitt-Deser-Misner (ADM) form. In the light of this, we can rewrite the total
Hamiltonian as a linear combination of constraints

H =
∫
d3x

(
NH+N iHi + λπN + µiπi

)
, (2.7)

and, consequently, it is common to state that Hamiltonian GR defines a fully
constrained system with no real dynamics, in the sense that there is no evolution
in time. In fact, the above equation tells us that Hamiltonian is always trivial on
the constraint surface or, in other words, along the solutions of Eqs. (2.5) and (2.6)
which are the physical solutions of the theory. Notice that this is strictly related to
the fact that we have no absolute time in GR because a non-vanishing Hamiltonian
would generate time evolution in an external time parameter. Consistently with the
concept of general covariance, dynamics is instead generated by the constraints as a
gauge flow which we can parametrize arbitrarily.

This leads us to discuss diffeomorphisms in Hamiltonian GR, which is also the
most important issue of this introductory part of Chapter 2 for the purposes of our
thesis work, whose focus is on the Planckian deformations of symmetry structures
in QG approaches and, in particular, on the connection between deformations of the
Poincaré algebra arising in bottom-up models and deformations of the algebra of
diffeomorphisms obtained in top-down models. As long as we work in the Lagrangian
formulation, it rather easy to show that the classical Einstein-Hilbert action (2.1)
is invariant under diffeomoprhisms, i.e. xµ → xµ + ξµ(x), but no clear covariance
is present when we cast GR in the Hamiltonian formalism. In fact, first of all we
have picked up a time function thereby breaking the symmetry between space and
time directions which is manifest in the 4-dimensional formulation. As a result, the
equations of motion (2.5) - (2.6) involve tensors on Σ and not on the full manifold
M. Despite these apparent drawbacks, the spacetime symmetries of GR must still
be present, even if less evident to deduce. We shall see that diffeomorphisms in
Hamiltonian GR require to be treated with same carefulness and will lead us to
introduce the Dirac algebra of constraints or HDA, whose deformations in different
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QG approaches will be explored in this thesis. We shall reveal how they can be
addressed in the next two subsections 2.1.1 and 2.1.2 where we present two different
methods to look at diffeomorphisms invariance in Hamiltonian GR. These two
methods can also be understood simply as two different representation of the HDA
as it will become clear in the following. The former derivation makes direct use
of the gravitational constraints and the HDA is derived by computing the Poisson
brackets involving all the possible combinations of constraints [139, 140]. In this
representation the meaning of the HDA is clear and, with the appropriate differences,
it is possible to interpret gravitational constraints in analogy to Poincaré generators
as symmetry generators [121]. However, we will only sketch out the main steps of
the derivation which is rather involving (we redirect the reader to Ref. [141] for
the details of the computation). The latter approach is less known and it has been
rediscovered recently [119, 142]. As we will show, it is much simpler and it only
relies on few differential calculus ingredients. In the following chapters, we shall
relay on either the first or the second derivations, depending on which of them will
turn out to be more manageable in the specific framework considered.

2.1.1 Gravitational constraints representation

As aforementioned, in the canonical formulation, the structure of spacetime has to
be analyzed in terms of the algebra of constraints undertaking Poisson brackets,
without reference to coordinates. Then one can rely Hamiltonian methods, which
gives crucial insights about the symmetries of the full theory irrespective of whether
it is formulated canonically or in a covariant manner. To perform such a study the
main mathematical ingredients are provided by symplectic and Poisson geometry,
which we defined in the previous section (2.4).

For the discussion on the symmetry structure of Hamiltonian GR it is useful to
introduce the smeared versions of the constraints in Eqs. (2.5) and (2.6) as follows

H[N ] =
∫
d3xN(x)× H(x) , (2.8)

D[N i] =
∫
d3xN i(x)× Hi(x) . (2.9)

The former is the Hamiltonian or scalar constraint while the latter is called
momentum or sometimes (spatial) diffeomorphism constraint. The Hamiltonian
constraint generates normal or time diffeomorphisms, i.e. if x0 → x0 +N(x) then
δF = {F,H[N ]} being F = F [qij , πkl] a functional of the phase space variables. The
momentum constraint implements tangential or spatial diffeomorphisms and, thus,
if xj → xj +N j(x) then the variation of the functional is δF = {F,D[N j ]}.

Thus, constraints not only pose restrictions on initial values on the tensors defined
on Σt=0 but also generate diffeomorphisms, i.e. the gauge transformations of GR.
See Fig. (2.2). Said differently, gauge transformations generated by the constraints
are equivalent to spacetime diffeomorphisms. Most importantly, in a canonical
formulation, invariance under these transformations ensures that observables of
the theory are independent of the particular embedding of spatial hypersurfaces in
space-time. Since Hamiltonian GR is a fully-constrained system, solutions with the
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(a) (b)

Figure 2.2. (a) The figure graphically shows that the Poisson bracket between a smeared
Hamiltonian constraint H[δN ] with lapse function δN and a smeared momentum
constraint D[δNa] with shift function δNa corresponds to a smeared Hamiltonian
generator with lapse function δM = −δNa∂aN : {H[δN ], D[δNa]} = H[δM ]. In fact,
the combined action ofH[δN ] andD[δNa] in sequence results in a deformation orthogonal
to the starting hypersurface, i.e. in a time-diffeomorphism implemented by H[δM ]. For
simplicity the spacelike hypersurface Σ considered is one-dimensional. (b) The figure
graphically shows that the Poisson bracket between two smeared Hamiltonian constraints
with lapse functions δM and δN respectively gives a spatial-diffeomorphism generator
with shift function δNa = qab(δM∂bδM − δM∂bδN): {H[δM ], H[δN ]} = D[δNa]. In
fact, the combined action of two Hamiltonian constraints in sequence results in a
deformation tangential to the original hypersurface Σ, i.e. in a 3-diffeomorphism D[δNa].
For simplicity one draws a one-dimensional slice Σ.

same initial values but different field values in a future region must be considered as
the same physical configuration. Interpreting these transformations as gauge means
that we do not consider solutions as physically distinct if they can be mapped to
each other by the Hamiltonian flow of first-class constraints.

Given that, in order to assure the consistency of the theory in the ADM form
and, in particular, guarantee that diffeomorphisms generated by H[N ] and D[N i]
are actually symmetries of the theory, we still need to prove that they form a closed
class of symmetry transformations. This can by done by computing the Poisson
brackets between all the possible combinations of constraints. The main tools are
the Poisson brackets in Eq. (2.4) and the definitions of the densities in Eqs. (2.5)
and (2.6). We do not provide the calculations, which are rather challenging and
lengthy and can be found e.g. in [139, 140, 141], but the result is

{D[Mk], D[N j ]} = D[L ~MN
k],

{D[Nk], H[M ]} = H[L ~NM ],
{H[N ], H[M ]} = D[qjk(N∂jM −M∂jN)],

(2.10)

This is known as the HDA and has been first derived by Dirac in [39], and later
on discussed in several papers both from the classical and quantum points of view
[36, 37, 38, 141, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152]. The closure of the
brackets ensures that Hamiltonian GR is covariant under changes of the embedding
or, in other words, that the constraints actually map a physical solution into a
physical solution. Notice that, due to the fact that the (right-hand side of the) last
bracket involves the inverse components of the 3-metric qij(x) which are spacetime
functions, from a mathematical point of view, the Poisson brackets of gravitational
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constraints constitute a Lie algebroid rather than a Lie algebra. This can be seen as
one of the consequences of the non-linearity of GR. See also Fig. (2.2) for a useful
visualization of the HDA content. We will not need to go into the technical details
of Lie algebroids. Nonetheless, at least for completeness, we feel it is necessary to
provide a definition of them since a few concepts will be used or at least mentioned
in the following sections. A Lie algebroid is a vector bundle A over a smooth base
manifold B together with a Lie bracket [·, ·]A on the set Γ(A) of sections of A and a
bundle map ρ : Γ(A)→ Γ(TB), called the anchor, provided that the following two
properties are satisfied:

• ρ : (Γ(A), [·, ·]A) → (Γ(TB), [·, ·]) is a Lie-algebra homomorphism: for any
ξ, η ∈ Γ(A), we have ρ([ξ, η]A) = [ρ(ξ), ρ(η)] (the Lie bracket of vector fields
in Γ(TB)).

• For any ξ, η ∈ Γ(A) and f ∈ C∞(B), the Leibniz rule [ξ, fη]A = f [ξ, η]A +
(ρ(ξ)f)η holds.

If the base manifold B is a point, the Lie algebroid is a Lie algebra. Let us also
mention that, in the case of Lie algebroids, one needs to generalize the notion of
Lie algebra morphisms if one desires to identify classes of equivalence. However,
morphisms between algebroids will not play any role in our analysis. We refer to
Ref. [153] and references therein for further details.

2.1.2 Gaussian vector fields representation

We here show a different way of obtaining the HDA [119, 142]. Such a derivation
explicitly builds on the fact that the closure of the HDA assures us that different
GR solutions are equivalent up to a diffeomorphisms or, equivalently, that physical
observables do not depend on the specific embedding we choose for the metric. Given
that, we are free to pick a convenient choice , for instance the so-called Gaussian
embeddings. Of course, we are not interested in the Gaussian system in its own right,
but rather have to make sure that the gauge choice leads to brackets of pace-time
vector fields which depend only on hypersurface data. The latter can be eventually
reinterpreted as Lie-algebroid brackets.

In a Gaussian embedding, the metric gµν assumes the form

ds2 = −dt2 + qabdxadxb → gµν = −nµnν + qabX
a
µX

b
ν , (2.11)

with the spatial metric qab. We have written the metric in a basis dual to
(nµ, Xµ

a ), where nµ is the unit normal to a family of space-like hypersurfaces Σt

(at constant t), while Xµ
a form a basis of TΣt. With these conditions, we have the

orthonormality relations gµνnµnν = −1 and gµνnµXν
a = 0. Just as we did in the

preceding section, we then decompose τµ by τµ = Nnµ + MaXµ
a , in terms of the

lapse, N , and the shift, Ma.
Of course, a foliation which is Gaussian for one embedding is, in general, not

Gaussian for a different embedding. Gaussianity is therefore not preserved by general
coordinate transformations. We can, however, restrict the class of transformations
to diffeomorphisms generated by Gaussian vector fields vµ obeying
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inLvg = 0 , (2.12)

where iw stands for the internal product (or contraction) with a vector field w.
Thus, we impose that the normal components of the metric do not change under
transformations generated by vµ. As one can easily prove, this condition is sufficient
to preserve the Gaussian form (2.11). Choosing a Gaussian embedding corresponds
to fixing a representative in each equivalence class of hypersurface embeddings,
in which the subset of Gaussian vµ furnishes the remaining coordinate freedom.
Expanding the Lie derivative, the Gaussian condition (2.12) can be rewritten as

nµvρ∂ρgµν + nµ(∂µvρ)gρν + nµ(∂νvρ)gρµ = 0 , (2.13)

resulting in

vρdnρν + ∂ν(vρgρµnµ) + gµν [n, v]µ = 0 . (2.14)

We here used the Cartan identity, the definition of the Lie bracket, and (dn)µν =
∂µnν−∂νnµ. Due to the Gaussian from of the metric (2.11), we have dn = 0 because
n = dt is closed. Decomposing the Gaussian vector in the basis chosen above — that
is, writing vµ = Nnµ +MaXµ

a — we then have

− ∂νN + gµν(nµnρ∂ρN + [n,M ]µ) = 0 , (2.15)

where we have used the orthogonality of the basis. (Although we use the same
notation for components N andMa of a Gaussian vector field and the time evolution
vector field, the former are more general since they refer to a coordinate change.)
Projecting this expression along normal and tangential directions, respectively, we
find

∂νN = 0 and [n,M ]a = qab∂bN . (2.16)

Here we used the fact that the bracket [n,M ]µ does not have a normal component
thanks to the geodesic property of nµ for a Gaussian system. We can now compute
the Lie bracket between two Gaussian vector fields. As we shall see, we will find
a set of brackets having the same structure of the HDA, once we split them into
normal and tangential parts according to the basis we have chosen.

[v1, v2]µ = vρ1∂ρv
µ
2 − v

ρ
2∂ρv

µ
1 = (N1LnN2 −N2LnN1 + LM1N2 − LM2N1)nµ

+[M1,M2]µ +N1[n,M2]µ −N2[n,M1]µ

= (LM1N2 − LM2N1)nµ + [M1,M2]µ + qµb(N1∂bN2 −N2∂bN1) ,
(2.17)

where we decomposed both v1 and v2 in the basis (n,X), and then used the
equations (2.16). The terms of the type LnN = nρ∂ρN are all zero due to the first
equality in (2.16). In order to obtain the HDA, we have to extract normal and
tangential contributions: If N1 = N2 = 0,

[v1, v2]µ = [M1,M2]µ , (2.18)
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if Ma
1 = 0 and N2 = 0,

[v1, v2]µ = −nµLM2N1 , (2.19)

and if Ma
1 = 0 = Ma

2 ,

[v1, v2]µ = qµb(N1∂bN2 −N2∂bN1) . (2.20)

Finally, we view the pairs (N,Ma) as fibers of a Lie algebroid over the space of
spatial metrics, and interpret the three cases of [v1, v2]µ as Lie-algebroid brackets

[(0,Ma
1 ), (0,M b

2)] = (0,LM1M2) , (2.21)
[(N, 0), (0,Ma)] = (−LMN, 0) , (2.22)
[(N1, 0), (N2, 0)] = (0, (N1∂bN2 −N2∂bN1)qab) . (2.23)

The anchor map is given by the Lie derivative of the metric along τµ =
Nnµ +MaXµ

a ; see [119]. With these brackets, pairs (N,Ma) form the hypersurface-
deformation Lie algebroid over the space of spatial metrics. Spatial diffeomorphisms
form a subalgebroid which is also a Lie algebra, while the brackets involving only
normal deformations depend on the inverse-metric components as coordinates on
the base manifold (the “structure functions”). We also note that the base manifold
can be extended to the full phase space of GR, given by spatial metrics and extrinsic
curvature, or linear combinations of the latter components. While this extension is
not necessary in the classical algebroid, it may be required for some quantum effects
as we will see later in this thesis.

This second derivation of the HDA, which we call Gaussian vector fields rep-
resentation of the HDA, has several advantages over the usual ones in canonical
gravity. It is much shorter and minimizes the amount of technical calculations.
Moreover, it utilizes space-time tensor calculus and implements the 3 + 1-split only
by decomposing vector fields. It is therefore ideal for an application to non-classical
space-time structures in which some versions of tensor calculus exist. In the next
section we will apply these methods to the deformation theory of this algebroid with
the goal of reaching a notion of (deformed) general covariance. We shall concentrate
only on the simplest example of non-commutative spacetime model, i.e. the Moyal
plane [78]. In other chapters we will instead work on quantum deformations of
diffeomorphisms using the gravitational constraints representation of the HDA.

Before discussing the noncommutative deformation of the HDA in the gaussian
vector fields representation, let us remark that the Gaussian nature, by itself, is not
relevant because it just constitutes a choice of gauge fixing. However, the Gaussian
system makes it easier to check two important consistency conditions which we
emphasize here: (i) The derivation of the hypersurface-deformation brackets requires
us to extend the fields N and Ma from a given hypersurface into a spacetime
neighborhood. Only such an extension makes it possible to compute the spacetime
Lie derivative of two vector fields in (2.17) and then decompose the result into normal
and spatial components. In the classical derivation, such an extension is possible
thanks to the form of the differential equations (2.16), which are well-posed with N
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and Ma as initial conditions on one hypersurface. (ii) The resulting hypersurface-
deformation brackets (2.21) depend only on spatial data, given by the fields N and
Ma together with the spatial metric qab. It is therefore possible to interpret them
as Lie-algebroid relations over the space of metrics. There is no dependence on
properties of the embedding of a hypersurface in spacetime. In our new derivations
below as well as in the others presented in the next chapters, we will take a pragmatic
approach and look for a generalization of the Gaussian condition such that these
two consistency conditions are still satisfied. These will be the criteria to accept a
given deformation of the HDA as consistent.

2.1.3 Minkowski limit

In this subsection we want to show how to recover the ten dimensional Poincaré
algebra from the broader (infinite dimensional) algebroid of diffeomorphisms (2.10)
( or, equally, (2.21)). In the rest of the work we shall refer to this procedure as the
“Minkowski limit" of the HDA. Such a limit will play a central role in the majority of
the analyses presented in this thesis since, as already claimed, our main goal consists
in looking for the Minkowski regime of deformed HDAs derived in different QG
approaches in order to both make contact with the studies on deformed SR (and even
with noncommutative geometries, when this will be possible) and, most importantly,
shorten the gap between formal deformations of the HDA inspired by QG models
and potential phenomenological predictions which can be sometimes extracted from
modifications of the Poincaré algebra (see the Introduction in Chapter 1 or Chapter
6). Thus, this section will serve as a reference for the rest of this work.

For the discussion of the Minkowski limit of the HDA we shall follow mainly
Refs. [120, 121]. First of all two conditions have to be accomplished if we want to
reduce from diffeomorphisms to Poincaré symmetries:

• the spatial 3-metric has to be Euclidean qij ≡ δij , i.e. the surfaces Σ have zero
curvature;

• the lapse and the shift must be linear in the coordinates and, in particular,
given by: N = α+ vkx

k and N i = αi + ϕjεijkxk.

Here α , αi , ϕj do no depend on coordinates. These two requirements can be met
in two distinct contexts: either locally [120], where GR has to reduce to SR because
of the weak equivalence principle, or asymptotically [121] if the spacetime manifold
is flat at the infinity. Let us start with the first case.

Local Poincaré symmetries

With the above restrictions we can show that general diffeomorphisms reduce to
the subset of Poincaré transformations [120]. Then, it is possible to read off the
commutators between the Poincaré generators from the HDA (2.10). To this end,
let us make explicitly the case of rotations. They are generated by the momentum
constraint D[N i], since they produce deformations which are tangential to the
hypersurfaces Σ, with shift vector given by N i = Rilx

l = εijlϕjxl (where εijl is the
Levi-Civita symbol and ϕj stands for the angle of a rotation around the j axis).
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This can be easily understood as follows. Let us introduce a local Cartesian frame
on gij and consider a rotation around the z axis (i.e. we are choosing j = 3).
Then, the rotated coordinates are obtained just adding N i = εi3lϕ3xl to the starting
coordinates (x, y, z). In fact, we have that x′i = xi +N i since in this way we find
x′ = x− ϕ3y, y′ = y + ϕ3x, and z′ = z, as we could expect (see Fig. (2.3)).

Figure 2.3. The figure represents a rotation of the coordinates, spanning a two-dimensional
slice t = const, by an agle φz around the z-axis. Such a hypersurface-deformation acts
on the tangential direction, i.e. it does not change the time-coordinate, and, thus, it
requires a null lapse function.

Having proven that D[N i] accounts for rotations, let us derive the Poisson bracket
between two Lorentz generators of infinitesimal rotations (i.e. {Jl, Jj}) from the
HDA. In light of the above discussion, this can be done by inserting N l = εlikϕi1xk
and M j = εjmnϕm2xn into

{D[N l], D[M j ]} = D[LN iM j ] (2.24)
and, doing so, we obtain

LN iM j = N i∂iM
j −M i∂iN

j = εilkϕl1xkε
jmnϕm2δni − εimnϕm2xnε

jlkϕl1δki

= (δljδkm − δlmδkj)ϕl1ϕm2xk − (δmjδnl − δmlδnj)ϕl1ϕm2xn

= ϕj1ϕk2xk − ϕl1ϕj2xl = −εjlkεltsϕt1ϕs2xk = −εjlkϕl3xk (2.25)

This means that the right-hand side of Eq. (2.24) (i.e. the result of combining
two rotations) is still a momentum constraint that implements infinitesimal rotations
by an amount ϕl3xk = εltsϕt1ϕs2xk or, in other words, we have shown that {Jl, Jj} =
εljkJk.
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Following the same line of reasoning, one can easily realize that Nk = αk

corresponds to spatial translations, N = α is a time translation by an amount α,
and finally N = vix

i represents a boost along the i-axis. Then, plugging proper
combinations of these lapse and shift into the HDA (2.10) it is possible to regain
the full Poincaré algebra just as we did for {Jl, Jj}. Let us call Pi the generator of
infinitesimal spatial translations, P0 the generator of infinitesimal time translations,
and Bi the generator of infinitesimal boosts. Inserting N = α and Nk = αk into
the second bracket in Eq. (2.10) one finds that {P0, Pi} = 0. From the same
Poisson bracket with N = vkx

k and N i = ϕjεijkxk one finds {Ji, Bj} = εijkBk,
while with the same lapse but Nk = αk one has {Bi, Pj} = δijP0, and finally with
N i = ϕjεijkxk and N = α one regains {Ji, P0} = 0. From the bracket in Eq. (2.24)
one can obtain that {Ji, Pk} = εiklPl with the choices N i = ϕjεijkxk and Mk = αk.
Finally, if we plug N = vkx

k and M = skx
k into the last bracket of the HDA then

we have {Bi, Bj} = −εijkJk, while with the choice N = α and M = skx
k we find the

last missing bracket i.e. {Bi, P0} = −Pi. Thus, we have shown that, one recovers
the standard Poincaré algebra by taking the flat (linear) limit of the algebra of
constraints in a local region of space.

Asymptotic Poincaré symmetries

The other case in which we can recover the Poincaré algebra from the HDA is
when the spacetime is asymptotically flat [121]. In fact, if the spacetime satisfies
appropriate fall-off conditions, then the constraints H[N ] and D[M j ] generate
asymptotic Poincaré transformations.

The spacetime manifoldM is said to be asymptotically flat if the two following
conditions hold:

• There is a compact region B homeomorphic to a compact ball in R4 such that
M−B = UNn=1En where the mutually disjoint manifolds En, called ends, are
homeomorphic to the complement of a ball in R4;

• In each En the 4-metric approaches the Minkowski metric at spatial infinity
as follows. Let (t,−→x ) be the standard Cartesian coordinates in which ηµν
takes the usual form ηµν = diag(−1, 1, 1, 1) and let the radius be defined
as r2 = −→x · −→x . Spatial infinity is defined as the 3-manifold defined by
r = const. → ∞ which is homomorphic to R × S2. Then we require that
gµν = ηµν + fµν(t,−→x /r)/r + O(r−2), for r → ∞ in each En where fµν is a
smooth tensor on the asymptotic sphere S2.

For the spatial tensors the fall-off conditions read

qij = δij +
fij(t,

−→x
r )

r
+O( 1

r2 ) , πkl =
F kl(t,

−→x
r )

r2 , (2.26)

where fij and Fkl are smooth tensors at spatial infinity. In analogy with what
happens locally, it makes sense to choose as lapse and shift functions the Killing
vector of Minkowski space just as we did already above. It is then possible to show
that with these conditions the constraints in Eq. (2.8) diverge and are not even
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differentiable. To cure these problems one has to add proper boundary (counter)
terms to the gravitational constraints which are given by [121, 141]

P [Nk] = 1
8πG

∫
Σ
dsjN

kπjk , (2.27)

E[N ] = 1
16πG

∫
∂Σ

√
qqlmqni[DlN(dsm(qni − δni))−DnN(dsl(qmi − δmi))]

+
∫
∂Σ

√
qqlmN [dsnΓnlm − dslΓnnm] ,

(2.28)

where dsj = εjlmdx
ldxm = r2njdΩ = r2nj sin2 θdθdφ is the usual measure on S2

and ni = xi/r the unit normal on S2. Thus, the full constraints that are well-behaved
at infinity become

J [Nik] = 1
16πGD[N i] + P [N i] , J [N ] = 1

16πGH[N ] + E[N ] . (2.29)

At this point one could substitute the lapse function and the shift vector with
the Killing vectors of Minkowski space in Eqs. (2.27) - (2.28), thereby obtaining
the so-called ADM charges [40]. A satisfactory discussion on (quasi or semi) local
charges in GR would require much more efforts. We here avoided several important
subtleties and only focused on the role of charges as generators of asymptotic Poincaré
symmetries. We shall not enter into the different definitions of energy and momenta
appeared in the literature (see e.g. Ref. [154] for a review), but something more on
GR asymptotic charges will be said in Chapter 3.

Finally, by computing the Poisson brackets between two currents J [N,Nk] and
J [M,M l], writing down explicitly the expressions of the current as a functional
of the boundary terms, and also taking into account that N = α + vkx

k and
N i = αi + ϕjεijkxk, it is not difficult to obtain once again all the Poisson brackets
of the Poincaré algebra.

2.2 Quantum hypersurface deformations: the Moyal
plane case of study

In the Introduction (Chapter 1) we have seen how the concept of spacetime non-
commutativity enters in the QG problem. If we regard it as a way to formalize
the DSR approach, then it iwould be a bottom-up approach which might be useful
to characterize a sort of flat and semi-classical regime of QG, whose main interest
then resides in the potential phenomenological applications as we shall see most
directly in Chapter 6. At the same time, though, there have been several attempts
in the QG literature, most notably by Connes [155, 156], to generalize the idea
of noncommutativity to generic spacetime manifold and, to some extent, noncom-
mutative gravity can be now regarded as an independent approach to QG. The
approach pioneered by Connes starts recognizing the tight relation between the
geometrical properties of space and the algebra of continuous functions on it. For
commutative algebras, the theorem by Gelfand and Neimark guarantees there is
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an equivalence between compact Hausdorff spaces and C∗-algebras. The main idea
is that of trying to extend this equivalence to noncommutative algebras. Indeed,
although in this case one can not reconstruct the space from the noncommutative
algebra, it is still possible to introduce generalized versions of the metric and the
related differential calculus by means of the Dirac operator acting on functions of
the algebra, which can be defined properly [155, 156, 157]. Furthermore, spacetime
noncommutativity has been discovered in different studies in the context of string
theory where noncommutativity is induced by the presence of of external fields
[158, 159, 160]. Another perspective on nonommutativity in string theory has been
recently advanced in Refs. [161, 162, 163], claiming that the target space of closed
strings is noncommutative regardless of the specific features of the background.

Despite all these remarkable efforts, the situation for the quantization of the
full group of diffeomorphisms remains unclear and the relevant literature is at least
fragmented. The main obstacle seems to be the proper definition of coordinate
transformations and a self-consistent calculus once coordinates have been promoted
to noncommuting objects. As a matter of fact, it is not difficult to realize that
noncommutativity introduces a preferred frame (or coordinate choice) and thus
is not compatible with the standard symmetries. For instance, if we assume that
[x̂ρ, x̂σ] = iθρσ, as it is the case for the canonical or Moyal-Weyl noncommutative
spacetime, then the transformed coordinates x̂′µ = x̂µ + ξ̂µ, with a vector field ξ̂µ
depending linearly on x̂µ (as required for rotations and boosts), do not obey the
original commutation relation [x̂′ρ, x̂′σ] 6= iθρσ. To avoid this, as we briefly hinted
above, one needs to quantize (or deform) the symmetry group in a specific way. Such
a deformation theory in complete form is not available for diffeomorphism groups.
For this reason, among others, we do not yet have a widely accepted noncommutative
theory of gravity.

In this section we propose a new line of inquiry and ask whether diffeomorphisms
can be consistently quantized in the sense of a deformation theory in analogy to
what has been already done for the SR group of Poincaré symmetries. We therefore
provide candidate structures for any deformed general relativistic theory, without
using specific actions or dynamical equations. In contrast to most previous studies of
noncommutative geometry, we follow a canonical approach by building on the classical
results we reviewed in the precedent sections. Specifically, we shall implement a
deformation quantization (in the sense of the Moyal star product) of the HDA in its
Gaussian vector field representation. This will allow us to avoid the full treatment
of the 3 + 1 ADM splitting of the manifold endowed with a ?-product as well as
difficulties in addressing ordering issues in the definition of constraints. We will do
that for both deformed and twisted diffeomorphisms. The latter ones have been
introduced in [136, 137] as a formal approach to noncommutative gravity and we
are going to briefly review their results in the next subsection before discussing the
original results of this chapter.

2.2.1 Non-commutative Gravity

The main idea is to replace the diffeomorphism invariance of GR by its twisted
version. This is done by deforming the Hopf algebra structure of the universal
enveloping algebra of the Lie algebra of vector fields by twisting the coproduct by
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means of Drinfeld twists [136, 137]. The action of diffeomorphisms on single fields
then stays unmodified while the Leibniz rule (which provides the action on two or
more fields) is changed in a specific way that reflects the noncommutative properties
of the spacetime. As a result, the ?-product of two (or more) fields is covariant
under twisted diffeomorphisms.

Let us start introducing the Moyal-Weyl plane and reviewing some mathematical
preliminaries that will be necesary for our analysis. The generalization to generic
spacetime manifolds is then performed by enforcing the duality with the twisted group
of diffeomorphisms [136, 137]. Spacetime coordinates (locally) obey a Heisenberg-like
commutation relation given by Eq. (1.8). We have also seen in the Introduction that
a suitable choice for the Weyl map is that in Eq. (1.17), where the twist element
is F = fα ⊗ fα := e

1
2 iθ

αβ∂α⊗∂β ∈ U [A] ⊗ U [A] and its inverse, F−1 = f
α ⊗ fα :=

e−
1
2 iθ

αβ∂α⊗∂β . Here, α is used as a multi-index as shown by an expansion of the
exponential function:

F = 1 + 1
2 i θ

αβ∂α ⊗ ∂β −
1
8θ

α1β1θα2β2∂α1∂α2 ⊗ ∂β1∂β2 + · · ·

+ 1
n! (i/2)nθα1β1 · · · θαnβn∂α1 · · · ∂αn ⊗ ∂β1 · · · ∂βn + · · · ,

and write

fα =
∞∑
n=0

(i/2)n/2√
n!

∂α1 · · · ∂αn , (2.30)

raise the multi-index using θα1β1 · · · θαnβn , and write more compactly

f(x) ? g(x) =: fα(f(x))fα(g(x)) . (2.31)

Thus, the identity or neutral element of the tensor product of algebras, U [A]⊗
U [A], is given by 1 ⊗ 1 = F−1F = f

β
fα ⊗ fβfα. In this notation, when we omit

the right (or left) arrow over partial derivatives
−→
∂ α (or

←−
∂ α), the derivative on

the left-hand side of a tensor product acts to the left while the derivative on the
right-hand side acts on functions standing to the right of the star. Notice that the
product is noncommutative but still obeys associativity:

(f ? g) ? h = f ? (g ? h) . (2.32)

In terms of the twist and the coproduct, the associative property can be expressed
as

F12(∆⊗ 1)F = F23(1⊗∆)F , (2.33)

or equivalently

fβfα1 ⊗ fβfα2 ⊗ fα = fα ⊗ f1
αf

β ⊗ fβf2
α . (2.34)

In the former equation we have used F12 = F ⊗1 = fα⊗fα⊗1 ∈ U [A]⊗U [A]⊗
U [A] and F23 = 1⊗F = 1⊗ fα⊗ fα ∈ U [A]⊗U [A]⊗U [A]. An analogous property
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holds for the inverse twist element. (These identities can be confirmed by using the
explicit expression for the twist F = e

i
2 θ
αβ∂α⊗∂β and its inverse F−1 = e−

i
2 θ
αβ∂α⊗∂β .)

A second property which F has to satisfy is

(ε⊗ 1) ◦ F = 1 = (1⊗ ε) ◦ F . (2.35)
If one wishes to define a commutator element in U [A]⊗ U [A], which is called

the R-matrix and allows us to make a permutation of the functions we are (star)
multiplying, then he can define

f ? g =: Rα(g) ? Rα(f) , (2.36)
where R−1 = R

α ⊗Rα. In order to find the R-metrix in explicit form, one can
write

f ? g = f
α(f)fα(g) = fβfγf

α(f)fβfγfα(g)

= f
β(fγfα(g))fβ(fγf

α(f))

= f
β(Rα(g))fβ(Rα(f)) = R

α(g) ? Rα(f) ,

(2.37)

with Rα ⊗Rα := fγfα ⊗ fγf
α. Here the representation of the identity has been

used in the second step. As a result, the R-matrix is given by R = Rα ⊗ Rα =
fγf

α ⊗ fγfα. In particular, for the Moyal-Weyl spacetime we are considering here,
one can verify

R = eiθ
αβ∂α⊗∂β , R−1 = e−iθ

αβ∂α⊗∂β . (2.38)
Using twist properties, the Yang-Baxter equation R12R13R23 = R23R13R12

follows.
Before turning to diffeomorphisms, we introduce the notion of a Lie bracket.

We define two different generalizations of standard brackets between two fields: the
?-Lie bracket [, ]? and the Moyal bracket [ ?, ]. These two brackets will be used to
define the action of twisted and deformed diffeomorphisms on single fields. The
?-Lie bracket between two generic vector fields, v1 and v2, is defined as

[v1, v2]? := v1 ? v2 −R
α(v2) ? Rα(v1) . (2.39)

In components,

[v1, v2]µ? = vρ1 ? ∂ρv
µ
2 − f

γfαv
ρ
2 ? ∂ρfγf

α
vµ1 . (2.40)

Given this definition we can show that

[v1, v2]? = [fα(v1), fα(v2)] , (2.41)
where on the right-hand side we have the classical Lie bracket: We compute

[v1, v2]? = v1 ? v2 −R
α(v2) ? Rα(v1)

= fα(v1)fα(v2)− fγfαf
β(v2)fγf

α
fβ(v1)

= fα(v1)fα(v2)− fα(v2)fα(v1) = [fα(v1), fα(v2)] .

(2.42)
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This ?-Lie bracket satisfies the following modification of the Jacobi identity

[v1, [v2, v3]?]? = [[v1, v2]?, v3]? + [Rα(v2), [Rα(v1), v3]?]? . (2.43)

Alternatively, we can define what we call the Moyal bracket:

[v1 ?, v2] := v1 ? v2 − v2 ? v1 . (2.44)

It obeys the usual Jacobi identity

[v1 ?, [v2 ?, v3]] = [[v1 ?, v2] ?, v3] + [v2 ?, [v1 ?, v3]] , (2.45)

in contrast to ?-Lie brackets. Indeed, it is immediate to notice that [v1, v2]? 6=
[v1 ?, v2]. This result will be at the root of the difference between twisted diffeomor-
phisms and deformed diffeomorphisms. We anticipate that the former do not change
the action on single fields but have a modified Leibniz rule, while the latter retain
the Leibniz rule but act on single fields in a non-standard way. As mentioned, to
have a consistent differential structure, we will then have to change the definition of
deformed diffeomorphisms in such a way that there is a deformation not only of the
action but also of the Leibniz rule. We also mention that the Moyal bracket allows
us to map Eq. (1.8) into [xµ ?, xν ] = iθµν . Thus, this bracket is needed to provide a
representation of Eq. (1.14) on manifolds equipped with the non-standard product
of Eq. (1.17).

Another property which we will extensively use is ∂µ ? f = ∂µf , which is a
direct consequence of Eq. (1.8) with constant θ, and, consequently, ∂µ(f ? g) =
(∂µf) ? g+ f ? (∂µg). Finally, as first discussed for instance in Ref. [136], the ?-tensor
product of tensors, which is needed to have a noncommutative differential calculus
together with the generalizations of Lie brackets defined above, is given by

τ ⊗? τ ′ = f
α(τ)⊗ fα(τ ′) . (2.46)

The tensor product is therefore twisted just as the pointwise product of functions.
Consider a generic tensor u. On a commutative space, it transforms as u′ =

u+ δvu = u+Lvu under infinitesimal diffeomorphisms generated by the vector field
v = vµ∂µ. As usual, Lvu is the Lie derivative of u along v. It is possible to represent
standard diffeomorphisms on A by means of twisting. For a function u, we write

δvu = Lvu = vρ∂ρu = fβf
α(vρ∂ρ)fβfα(u) = (fβ(vρ∂ρ)fβ) ? u = Lv? . u (2.47)

We have inserted the representation of the identity in terms of the twist and its
inverse, and defined

v? := fβ(v)fβ =
∑
n

(
− i2

)n 1
n!θ

µ1ν1 . . . θµnνn(∂µ1 . . . ∂µnv
ρ)∂ν1 . . . ∂νn∂ρ (2.48)

as an element of U [A]. The application of Lv? is what we call an infinitesimal
twisted diffeomorphism. For a vector field uµ, we proceed in a similar way and write
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Lvuµ = vρ∂ρu
µ − (∂ρvµ)uρ

= fβ(vρ∂ρ)fβ ? uµ − ∂ρ(fβ(vµ)fβ) ? uρ

= (vρ∂ρ)? ? uµ − (∂ρv?)µ ? uρ , (2.49)

always keeping v to the left of u. In the second term, we may change the ordering
by applying the R-matrix,

Lvuµ = v? ? uµ − R̄α(uρ) ? ∂ρR̄α(v?)µ = [v?, u]? , (2.50)

in order to derive a relationship with Eq. (2.39). However, this notation has to
be treated with some care because (v?)µ is not a function but acts to the left on uρ in
the second term of the commutator. The same procedure can be used to derive the
Lie derivative of an arbitrary tensor (density), rewriting the classical relationships
in such a way that components of v (the vector field along which we take the Lie
derivative) always stay on the left. Now that we have defined the action of twisted
diffeomorphisms on tensors, we can introduce the generalization of the basic tensors
we need to arrive at a noncommutative version of the Einstein-Hilbert action (2.1),
namely the metric and the connection and higher rank tensors related to them. For
the metric tensor gµν , we have

Lvgµν = v? ? gµν + (∂µv?ρ) ? gρν + (∂νv?ρ) ? gµρ . (2.51)

Then, requiring that the covariant derivative of the metric vanishes

∇αgµν = ∂αgµν − Γσ ? gσν − Γσgµσ = 0 , (2.52)

one can obtain that the affine connection is

Γσµν = 1
2 (∂µgνρ + ∂νgµρ − ∂ρgµν) ? gρσ , (2.53)

where the inverse metric can be found by demanding that gρσ ? gσν = δνρ , see Ref.
[136] for the explicit derivation and the related expressions for the metric and its
inverse. Furthermore, one can prove that the correct generalization of the Riemann
tensor is simply

Rσµνρ = ∂νΓσµρ − ∂µΓσνρ + Γανρ ? Γσµα − Γαµρ ? Γσνα . (2.54)

Finally, if one introduces a measure E that transform under twisted diffeomor-
phisms as

Lv? . E = −(∂µvµ) ? E − vµ ? (∂µE) , (2.55)

then the action

S?EH =
∫
d4xE ? R , (2.56)

with R = gµν ? Rσµρν , is invariant as one can easily check (see also the discussion
below).
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This in principle provides a consistent generalization of covariant GR to non-
commutative Moyal-Weyl product rule and it can also be extended to more general
noncommutative geometries (see e.g. [137]). However, as also pointed out in
Refs. [132, 133], we stress that twisted symmetries are not genuine deformations of
classical symmetries but rather mappings of the classical symmetries on spaces with
noncommutative ?-products. Following what has been done for other gauge groups
[164, 165, 166], one should properly deform also the action on single fields in order
to have a definition of ? (or deformed) diffeomorphisms. To our knowledge, no such
formulation is currently available in the literature. The introduction of deformed
diffeomorphisms, as opposed to twisted diffeomorphisms, represents one of the main
objectives of the analysis reported below. In particular, we shall concentrate on the
deformation quantization of the HDA in its Gaussian vector fields representation for
both twisted and deformed diffeomorphisms.

2.2.2 A first step towards canonical non-commutative gravity

Our objective here consists in generalizing the Gaussian-vector-field representation
of diffeomorphisms to the case in which the product of fields calculated at the same
point is non-commutative and is given by the Moyal ?-product. Specifically, we are
interested in discussing two different paths to the formulation of diffeomorphisms on
A, that is twisted and deformed (or ?-) diffeomorphisms, and stress the pros and
cons of each of these approaches. The latter case, which we introduce for the first
time, requires an important specification concerning the co-product: primitive or
not. We will argue that also deformed diffeomorphisms can be made meaningful
only if the Leibniz rule is properly deformed.

Twisted diffeomorphisms

Let us start with twisted diffeomorphisms. Twisted diffeomorphisms have been
already studied in Ref. [136] and we have reviewed them in the preceding subsection,
in their covariant form, and by definition they do not introduce deformations with
respect to the commutative case in the algebra sector. As a result, we do not
expect to find ?-product deformations of the HDA for twisted diffeomorphisms
even if formulated in a canonical way. Thus, we here discuss their canonical form,
thereby generalizing the results of Ref. [136], mainly as a warm-up before turning
to deformed diffeomorphisms.

Firstly, we need to introduce the notion of a noncommutative Gaussian system
for twisted diffeomorphisms. To this end, let us notice that, from the point of view of
hypersurface deformations, the main property of a Gaussian system should be that
it leads to constant components g0µ of the metric. In this way, the lapse function
and shift vector in the background metric are fixed, and it becomes possible to
isolate the role of lapse and shift as generators of hypersurface deformations. The
simplest choice of constant background lapse and shift that is compatible with a
non-degenerate metric of Lorentzian signature is g00 = −1 and g0i = 0 for i 6= 0.
Given that, we have to show that there is a choice of coordinates on the Moyal plane
such that the metric is Gaussian in this specified sense. We do so by assuming the
classical Gaussian system under the standard product of functions or coordinates,



46 2. Hypersurface deformation algebra

and showing that there is a frame in which the required properties are satisfied
also for a noncommutative product and twisted diffeomorphisms. In particular,
the classical system provides us with a time coordinate t such that n = dt is the
co-normal to spatial hypersurfaces t = constant. The same 1-form is a co-normal on
the Moyal plane with twisted diffeomorphisms: For a vector field X tangential to a
spatial hypersurface and n = dt, we have

Xµ ? nµ = iX? ? dn = LX? . t = Xµ∂µt = 0 . (2.57)

The Lie derivative along X? is equal to the classical Lie derivative because all
higher-derivative terms in (2.48) vanish when acting on a linear function such as t.
In a Gaussian frame, the co-normal therefore has constant components, and so does
the normal nµ = gµν ? nµ = gµνnµ because higher derivatives in the star product
vanish when applied to a constant nµ, and the inverse metric has been introduced
above as gνα ? gαµ = δαµ . The normal is therefore normalized with respect to the
non-commutative system, in the following sense:

in? ? g ? in = n?µ ? gµν ? n
ν = fαnµfα ? gµν ? n

ν (2.58)
= nµgµν ? n

ν = nν ? n
ν = nνn

ν = −1 . (2.59)

In a classical Gaussian system, we have nµ∇µnν = 0 because worldlines normal
to spatial hypersurfaces are geodesics. In a Gaussian frame, all contributions from
connection components in this equation are zero because the only relevant ones,

Γ0
0µ = 1

2g
0α(∂µg0α + ∂0gµα − ∂αg0µ) = 0 , (2.60)

vanish identically for a Gaussian metric. The equation nµ∇µnν = 0 is therefore
equivalent to nµ∂µnν = 0 in a Gaussian system. The same equation is true in the
form nµ ? ∂µn

ν = 0 for a non-commutative Gaussian system because, as we just
showed, the components of nµ are still constant. From this equation, we can derive
nµ ?∇µ ? nν = 0 using the definition of the non-commutative Christoffel connection,
which gives

Γ0
0µ = 1

2g
0α ? (∂µg0α + ∂0gµα − ∂αg0µ) = 1

2g
0α ? ∂0gµα = 0 , (2.61)

for the relevant connection components. It will be convenient to do calculations
of the hypersurface-deformation brackets in a Gaussian frame. However, whenever
possible, we will not make explicit use of the fact that normal components are
constant in order to display all relevant star products. In particular, in order to
be as general as possible, we will derive differential equations for the normal and
angential components of a Gaussian vector field without using constan components
of the normal. We then analyze these differential equations using all the properties
of a Gaussian frame, including the constant nature of components of the normal.
This step will allow us to show that there is a well-posed initial value problem and a
set of algebroid brackets which depend only on hypersurface data.
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We are interested in deriving properties of hypersurface deformations in noncom-
mutative space-time, with possible modifications of the action of twisted diffeomor-
phisms. To this end, we modify the classical expression used to define a Gaussian
vector field as follows: Instead of inLvg = 0, we require that

(Lv? . g) ? in = 0 . (2.62)
We act with in from the right in order to make sure that it stands next to the

metric, without components of v? in between. Classically, we say that v is Gaussian
if a diffeomorphism of the metric along the direction given by v does not have a
normal component. We have generalized this statement by saying hat the twisted
infinitesimal diffeomorphism of g, generated by v, gives zero if we ?-contract the result
with the normal n. Since the normal components are constant, (2.62) is equivalent
to the classical condition on Gaussian vector fields, and it is therefore consistent
with the metric form of a Gaussian system. We have that inLvg = nµ(Lvg)µν , and
analogously we can write the twisted version in components as (Lv? . g)µν ?nµ, where
the Lie derivative of the metric is given in (2.51) in terms of twisted diffeomorphisms.
We rewrite star products using (2.31), for instance (vρ)? ? ∂ρg = f

α((vρ)?∂ρ)fα(g)
in the first term, and therefore obtain the Gaussian condition for v as(

Lfα(v?)fα
g
)
? in = 0 . (2.63)

The next step is to try and obtain relations for the normal and tangential
components of the ?-Lie bracket between the normal n and the Gaussian vector field
v. In doing that, we will try to follow as close as possible the steps of the derivation
for the commutative case. First, we would like to compute Lfα(v?)fα

(g ? in), or the
action of the twisted Lie derivative on the ?-product of two fields:

f
α(v?)fα(g ? in) = f

α(v?)fα(fβ(g)fβ(in))

= f
α(v?)f1

αf
β(g)f2

αfβ(in) = f
α(vµ)?f1

αf
β(∂µgσν)f2

αfβ(nσ)

+fα(∂νvµ)?f1
αf

β(gσµ)f2
αfβ(nσ) + f

α(vµ)?f1
αf

β(g)f2
αfβ(i∂µn) .

(2.64)

Adding and subtracting the term f
α(∂σvµ)?f1

αf
β(gνµ)f2

αfβ(nσ), we obtain

f
α(vµ)?f1

αf
β(∂µgσν)f2

αfβ(nσ)

+fα(∂νvµ)?f1
αf

β(gσµ)f2
αfβ(nσ) + f

α(∂σvµ)?f1
αf

β(gνµ)f2
αfβ(nσ)

−fα(∂σvµ)?f1
αf

β(gνµ)f2
αfβ(nσ) + f

α(vµ)?f1
αf

β(g)f2
αfβ(i∂µn) .

(2.65)

Using both (2.34) and (2.36), for the first three terms we have

f
α(vµ)?f1

αf
β(∂µgσν)f2

αfβ(nσ) + f
α(∂νvµ)?f1

αf
β(gσµ)f2

αfβ(nσ)

+fα(∂σvµ)?f1
αf

β(gνµ)f2
αfβ(nσ) = f

α
1 f

β(vµ)?fα2 fβ(∂µg)fα(in)

+fα1 f
β(∂νvµ)?fα2 fβ(gσµ)fα(nσ) + f

β
f
α
1 (∂σvµ)?fα2 fβ(gνµ)fα(nσ)

=
(
Lfα(v?)fα

g
)
? in .

(2.66)
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We write the last two terms of (3.79) as

f
α(vµ)?f1

αf
β(g)f2

αfβ(i∂µn)− fα(∂σvµ)?f1
αf

β(gνµ)f2
αfβ(nσ)

= f
α(Rγ(g))f1

αf
β
Rγ(vµ)?)fβf

2
α(i∂µn)− fα(Rγ(gνµ))f1

αf
β
Rγ(∂σvµ)?f2

αfβ(nσ)

= f
α(Rγ(g))fα

(
Rγ((vµ)?∂µ) ? in

)
− fα(Rγ(gνµ))fα(Rγ(∂σvµ)? ? (nσ))

= R
γ(g) ?

(
iL
Rγ (fβ(v?)fβ)

n

)
,

(2.67)

and arrive at

Lfα(v?)fα
(g ? in) =

(
Lfα(v?)fα

g
)
? in +R

α(g) ?
(
iL
Rα(fβ(v?)fβ)

n

)
. (2.68)

We see that, as a direct consequence of loss of commutativity of the ?-product,
the Leibniz rule does not apply. It is modified through the action of the R-matrix,
as we expected. Using the above expressions we can rewrite Eq. (2.63) as

(
Lfα(v?)fα

g
)
? in = Lfα(v?)fα

(g ? in)−Rα(g) ?
(
iL
Rα(fβ(v?)fβ)

n

)
= 0 . (2.69)

The next step is an application of the Cartan identity. The validity of such an
identity is usually required as an axiom, but it is possible to prove it in the following
manner. Let us make indices explicit in

Lfα(v?)fα
(g ? in) = f

α(vρ∂ρ)?fα (gµν ? nµ) = (vρ)? ? ∂ρ(gµν ? nµ) + ∂ν(vρ)? ? (gρµ ? nµ)

= (vρ)? ? ∂ρ(gµν ? nµ) + ∂ν(vρ)? ? (gρµ ? nµ) + (vρ)? ? ∂ν(gρµ ? nµ)− (vρ)? ? ∂ν(gρµ ? nµ)
= ∂ν((vρ)? ? gρµ ? nµ) + (vρ)? ? (dn)ρν ,

(2.70)

where we defined the two-form (dn)ρν := ∂ρ(gµν ? nµ)− ∂ν(gµρ ? nµ). Thus, we
derived

L?v . (g ? in) = iv? ? d(g ? in) + d(iv? ? g ? in) , (2.71)

commonly known as the Cartan identity. With this result, we have

Lfα(v?)fα
(g ? in)−Rα(g) ?

(
iL
Rα(fβ(v?)fβ)

n

)
= iv? ? d(g ? in) + d(iv? ? g ? in)−Rα(g) ?

(
iL
Rα(fβ(v?)fβ)

n

)
= 0 .

(2.72)

Now we use dn = d(g ? in) = 0 and obtain
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R
α(g) ?

(
iL
Rα(fβ(v?)fβ)

n

)
= d(iv? ? g ? in) . (2.73)

At this point we are ready to decompose v? into components normal and tangential
to hypersurfaces, v? = (N? ? n)? + (M? ? X)? (with N? := fα(N)fα and M? :=
fα(M)fα), we write

R
α(g) ?

(
iL
Rα(fβ(N??n)?fβ)

n

)
+R

α(g) ?
(
iL
Rα(fβ(M??X)?fβ)

n

)
= −dN? , (2.74)

where we have used the relations

in? ? g ? in = −1 iX? ? g ? in = 0 ; (2.75)

see (2.58). Writing indices explicitly,

R
α(gνµ) ?

[
Rαf

β(N? ? nρ)?fβ(∂ρnµ)−Rαf
β
∂ρ(N? ? nµ)?fβ(nρ)

+Rαf
β(M? ? Xρ)?fβ(∂ρnµ)−Rαf

β
∂ρ(M? ? Xµ)?fβ(nρ)

]
= −∂νN? , (2.76)

So far, following Refs. [136, 137], we have defined twisted (four) diffeomorphisms
by a representation of the infinitesimal diffeomorphisms of classical differential
manifolds on the Moyal plane, i.e. a manifold equipped with a specific non-trivial
?-multiplication rule (1.17). As a consequence, they have an undeformed action on
single fields or tensors but, due to the Moyal ?-product, act non-trivially on products
of two or more objects. Thus, twisting diffeomorphisms corresponds to mapping
them to the Moyal space (or, more generally, to a manifold with non-commutative
products). In order to find formulae relating the lapse function and shift vector
components, it will be more useful to rewrite the relation (2.76) as one on the
commutative classical manifold in an intermediate step. We will then represent the
final hypersurface-deformation brackets on the Moyal space in order to obtain a
twisted version of the HDA.

Using the definition of the R-matrix as well as that of the ?-Lie bracket, we
rewrite Eq. (2.76) as

−∂νN? = (Nnρgνµ) ? ∂ρnµ − (∂ρ(Nnµ)gνµ) ? nρ + (Mρgνµ) ? ∂ρnµ − (∂ρMµgνµ) ? nρ

= g?µν ? N
? ? (nρ ? ∂ρnµ − (∂ρnµ) ? nρ)− g?µν ? nµ ? ∂ρN? ? nρ (2.77)

+g?νµ ? Mρ ? ∂ρn
µ − g?νµ ? ∂ρMµ ? nρ .

We can now use the constant nature of nµ in a Gaussian frame, so that nρ star-
commutes with any function and the partial gradient ∂ρnµ = 0 vanishes. Multiplying
both sides of (2.77) by nν , we have

− nν ? ∂νN? − ∂νN? ? nν = −nν ? g?νµ ? ∂ρMµ ? nρ , (2.78)

where we also used nµ ? nµ = −1. Applying the product rule in
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0 = nρ?∂ρ(nµ?Mµ) = (nρ?∂ρnµ)?Mµ+nµ?(nρ?∂ρMµ)+(nµ?nρ−nρ?nµ)?∂ρMµ ,
(2.79)

and using nν?Xν = 0 as well as the vanishing star commutator nµ?nρ−nρ?nµ = 0
of the constant nµ, implies that nρ ? ∂ρMµ = 0.

Thus, we finally obtain

0 = −nν ? ∂νN? − ∂νN? ? nν = −2nν∂νN? = −2nν∂νN . (2.80)

In the last step, we have mapped the expression back to the commutative
space and, therefore, multiplication is the usual commutative rule. The tangential
projection of Eq. (2.76) is made in a similar way. By ?-multiplying with qab, we have

[n,M ]a? = qab ? ∂bN
? . (2.81)

Lapse N and shift Ma are subject to the same type of partial differential
equations as in the classical derivation. Therefore, they are extendable to a space-
time neighborhood of a spatial hypersurface and can be used in the Lie brackets
of Gaussian space-time vector fields. Now we have all the necessary ingredients to
evaluate the ?-Lie bracket of space-time vector fields and, then, project it along
the tangential and normal directions as defined above. We calculate the ?-product
between the ?-Lie bracket [v?1, v?2]µ? and an arbitrary scalar function f for twisted
diffeomorphisms,

[v?1, v?2]µ? ? f =
(
(vρ1)? ? ∂ρ(vµ2 )? −Rα(vρ2)? ? Rα(∂ρvµ1 )?

)
? ∂µf

= vρ1∂ρv
µ
2 ∂µf − ∂ρv

µ
1 v

ρ
2∂µf

= (N1n
ρ +Mρ

1 )∂ρ(N2n
µ +Mµ

2 )∂µf − ∂ρ(N1n
µ +Mµ

1 )(N2n
ρ +Mρ

2 )∂µf
= (N1n

ρ∂ρN2 − ∂ρN1N2n
ρ)nµ∂µf + (LM1N2 − LM2N1)nµ∂µf

+[M1,M2]µ∂µf +N1[n,M2]µ∂µf −N2[n,M1]µ∂µf , (2.82)

and extract normal and tangential terms and using the above relations for [n,M ]:

[(0,Ma
1 ), (0,M b

2)] = (0,LM1M2) , (2.83)
[(N, 0), (0,Ma)] = (−LMN, 0) , (2.84)
[(N1, 0), (N2, 0)] = (0, (N1∂bN2 −N2∂bN1)qab) . (2.85)

As we expected and already anticipated, the HDA brackets coincide with
Eqs. (2.21). Thus, our computation extends theconstruction of [136], where 4-
dimensional non-commutative gravity with the Moyal product has the same symme-
try algebra as classical GR, to the 3 + 1 formulation. In fact, by construction he
only deformations of symmetries are encoded in the coalgebraic sector where, due to
the non-standard multiplication, the Leibniz rule does not apply. Having a closed
and consistent set of brackets also ensures that noncommutative gravity possesses
the same number of degrees of freedom as GR. We shall see that this statement
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remains true also for deformed diffeomorphism symmetries, in which case the HDA
does receive ?-product deformations.

As we stressed in Chapter 1, one of the main goals of this thesis is the identification
of a path to derive departures from the standard Minkowski space-time, which might
play a role in phenomenology and are characterized by deformed Poincaré isometries,
from quantum corrections to GR in its ADM formulation, which can be derived
either from full-fledged QG approaches or from semi-classical models for gravity,
provided that we are able to carry out their Hamiltonian or 3+1 formulation. We
identified the HDA as a promising tool that could serve this scope. Consequently,
once we have obtained the Poisson brackets for general coordinate transformations, it
is of interest for us to study their Minkowski (or flat) limit. In this way, one restricts
the set of diffeomorphisms and only allows a subset of coordinate transformations,
which are the isometries of Minkowski spacetime. This can be done by following
the procedure we described in Section 2.1.3. Here, as expected, we find that the
twisted HDA has no deformations compared with the standard version of GR. It is
then not difficult to show that, after the specified restrictions, the resulting Poincaré
algebra is also unmodified. On the other hand, one can expect that the action of
Poincaré generators on products of functions will be non-trivial as a result of the
presence of a noncommutative multiplication rule. This is consistent with the known
fact that the symmetry algebra dual to the Moyal-Weyl space-time is the so-called
θ-Poincaré algebra with standard commutators but deformed coproducts [78]. While
the derivation of the θ-Poincaré algebra from the twisted HDA is not particularly
interesting, such an approach gives much more insightful hints when applied to other
QG models, as we shall see in the next chapters.

Deformed diffeomorphisms

Let us now turn to the implementation of the procedure to obtain a Gaussian-vector-
field representation of the HDA for deformed diffeomorphisms. To our knowledge,
deformed diffeomorphisms have never been treated in the literature (besides marginal
mentions) and, thus, as already anticipated, we shall consider both the case where
the action on single tensors is deformed but it still respects the Leibniz rule and that
in which the coalgebra is instead modified. The former attempt is mainly motivated
by the desire to follow as close as possible non-commutative quantum field theories
[164, 165, 166, 167, 168, 169], where the relevant ?-action is invariant under ?-U(1)
symmetries obeying the Leibniz rule.

We define a deformed diffeomorphism by its infinitesimal action

Lv . u := vρ ? ∂ρ ? u = vρ ? ∂ρu , (2.86)
on functions. In the last step we used the fact that, for the constant-θ case,

the action of the derivative is not modified, that is ∂µ ? f ≡ ∂µf . Deformed
diffeomorphisms are different from twisted ones because vρ ? ∂ρu 6= δvu defined in
(2.47). Thus, contrary to the twisted case, we expect to find modifications of the
HDA and, eventually, a deformed or ?-modification of general covariance.

We can try to define a deformed Gaussian system analogously to a twisted one.
The first place where we used the Lie derivative in the construction of a twisted
Gaussian system was in Eq. (2.57). Because it acts on a linear coordinate function t,
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it remains true if we use the Lie derivative (2.86) corresponding to deformed rather
than twisted diffeomorphisms. The second place, the introduction of a condition
on Gaussian vector fields, will be discussed soon. The Gaussian condition for the
metric would read

nµ ? Lv ? gµν = 0 . (2.87)

However, it is a tedious but rather straightforward exercise to show that it does
not lead to a well-defined Lie-algebroid structure for deformed diffeomorphisms.
Therefore, we modify it by subtracting a term which will lead to consistent relations:

nµ ? Lv ? gµν − ∂γ(vρ ? nµ ? gρµ) ? gγα ? nβ ? gαβ ? nν = 0 , (2.88)

is the new ?-modified Gaussian condition. The commutative analog of the new
condition reads

nµLvgµν = nρ∂ρ(gδγnγvδ)nν . (2.89)

Notice that the difference with respect to the usual Gaussian condition is that
the variation of the metric g under a diffeomorphism along the direction identified
by v is non-zero. We are therefore choosing a different gauge where, instead of being
zero, the normal contribution to Lvg is fixed to another specific value. Since the
structure of hypersurface deformations should be gauge independent, we expect the
new condition (2.89) to imply the same hypersurface-deformation brackets as derived
in [119] when applied to the ordinary product. As a brief argument, we can see that
the classical condition can be modified by our counterterm because the latter is zero
when the conditions for lapse and shift that follow from the original condition are
satisfied, in particular when 0 = nρ∂ρ(N2) = ind(iving). (The counterterm vanishes
“on shell.”)

Using the Cartan identity, we write the modified Gaussian condition as

iv ? dn+ d(iv ? in ? g) + i[n ?, v] ? g + (d(iv ? in ? g) ?←−in) ? n = 0 , (2.90)

where ←−in highlights the fact that the normal vector is ?-contracted with the
tensor on the left of the product, d(iv ? in ? g). Decomposing v = N ? n+M ?X
and using dn = 0 as well as the orthogonality conditions

in ? g ? in = −1 iX ? in ? g = 0 , (2.91)

we find

in ? dN ? nµ ? gµν + [n ?, M ? X]µ ? gµν = ∂νN + ∂γN ? nγ ? nν . (2.92)

We extract the tangential part by ?-multiplying both sides of the equation by
gνα ? qaα from the right

[n ?, M ? X]a = ∂νN ? gνα ? qaα , (2.93)
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and the normal part by ?-multiplying both sides of the equation by nν from the
right

− nρ ? ∂ρN + [n ?, M ? X]µ ? gµν ? nν = 0 . (2.94)
The commutator term is equal to

[n ?, M?X]µ?gµν?nν = nρ?∂ρ(M?X)µ?gµν?nν−(M?X)ρ?(∂ρnµ)?gµν?nν . (2.95)

In our Gaussian frame, nα is normalized, geodesic, and has constant components.
The commutator is therefore zero and we have

nν ? ∂νN = 0 . (2.96)
Since the components nν are constant, the ?-product does not imply higher

derivatives in this equation. Therefore, we still have a well-posed initial-value
problem for lapse N and shift Ma. Using a decomposition as in (2.82), we now
obtain

[(N1, 0) ?, (N2, 0)] = (0, (N1 ? ∂bN2 −N2 ? ∂bN1) ? qab) . (2.97)
For brackets involving tangential vector fields, we have

[(0,Ma
1 ) ?, (0,Ma

2 )] = (0, [M1 ? X ?, M2 ? X]α ? qaα) (2.98)
and

[(N, 0) ?, (0,Ma)] = (−LM?X . N, 0) . (2.99)
Therefore, we are able to derive a well-defined HDA in our modified Gaussian

frame. It has the form of the classical version without any correction term other
than a generalization to Moyal space. This means that we find for the ?-HDA the
same form of the classical HDA but with the usual point product replaced by the
?-product. Note, however, that the ?-product implies higher time derivatives which
affect the interpretation of the HDA. We will comment on this implication in more
detail below. However, in order to make sure that there is a fully covariant tensor
calculus, we have to return to a discussion of the Leibniz rule. We shall prove
though that the assumption of the validity of the Leibniz rule is not compatible
with ?- (or deformed) diffeomorphism covariance. The demonstration that an action
for noncommutative gravity, such as the one introduced in Ref. [136], is covariant
requires an application of the Leibniz rule. In particular, inserting the Lie derivative
δvL in the Lagrangian density L = E ?R in the action of Eq. (2.56) should result in
a boundary term. On the other hand, assuming the Leibniz rule, the infinitesimal
variation of the Lagrangian density under deformed diffeomorphisms would be given
by

δvL = Lv . (E ? R) = (Lv . E) ? R+ E ? Lv . R (2.100)
= (vρ ? ∂ρE + ∂ρv

ρ ? E) ? R+ E ? vρ ? ∂ρR (2.101)
= ∂ρ(vρ ? E ? R) + E ? vρ ? ∂ρR− vρ ? E ? ∂ρR , (2.102)
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which differs from a total derivative by the non-zero star commutator (E ? vρ −
vρ ? E) ? ∂ρR. However, foregoing the Leibniz rule at this point and applying the
Lie derivative directly to the density E ? R does give us a total derivative:

Lv . (E ? R) = vρ ? ∂ρ(E ? R) + (∂ρvρ?)E ? R) = ∂ρ(vρ ? E ? R) . (2.103)

The action would then be invariant but the Lie derivative does not agree with
(2.100). We therefore have to refine our notion of deformed diffeomorphisms, in
contrast to the situation in noncommutative field theories [164, 165], for which there
are ?-actions invariant under both twisted U(N) transformations with non-trivial
coproducts and deformed U(N) transformations with standard Leibniz rule. As
aforementioned, the main reason why we tried to define ?-diffeomorphisms with
trivial co-multiplication was the desire to mimic what happens in noncommutative
quantum field theories, but we now see that there is a pronounced difference between
noncommutative gravity and other noncommutative systems at a fundamental level.
In our example of a density times the Ricci scalar, the defect in the Leibniz rule
was given by a star commutator of components. We can therefore try to modify the
Leibniz rule by rearranging different factors. We now define

Lv . (u ? w) := (Lv . u) ? w +R(u) ? (LR(v) . w) , (2.104)

where R is defined in (2.36). Together with this deformed Leibniz rule, we also
change the ordering in the action of ?-diffeomorphisms on vectors to obtain the new
Lie derivative

Lv . uµ := vρ ? ∂ρu
µ − ∂ρvµ ? uρ . (2.105)

Now we can prove that uµ ? uµ transforms as a scalar under deformed diffeomor-
phisms: We have

(Lv . uµ) ? uµ +R(uµ) ? (LR(v) . uµ)

= (vρ ? ∂ρuµ − ∂ρvµ ? uρ) ? uµ +R(uµ) ? (R(vρ) ? ∂ρuµ +R(∂µvρ) ? uρ)
= vρ ? ∂ρu

µ ? uµ − ∂ρvµ ? uρ ? uµ + vρ ? uµ ? ∂ρuµ + ∂µv
ρ ? uµ ? uρ .

(2.106)

The second and the fourth terms in the last line cancel out, and we have

(Lv .uµ)?uµ+R(uµ)? (LR(v) .uµ) = vρ ?∂ρu
µ ?uµ+vρ ?uµ ?∂ρuµ = Lv . (uµ ?uµ) .

Finally, in order to prove that the new Leibniz rule implies a consistent extension
of the deformed Lie derivative to tensors, we start with the ? product of two vector
fields, uµ1 ? uν2 :

Lv . (uµ1 ? uν2) = (Lv . uµ1 ) ? uν2 +R(uµ1 ) ? (LR(v) . u
ν
2)

= vρ ? ∂ρu
µ
1 ? u

ν
2 − ∂ρvµ ? u

ρ
1 ? u

ν
2 + vρ ? uµ1 ? ∂ρu

ν
2 − ∂ρvν ? u

µ
1 ? u

ρ
2

= vρ ? ∂ρ(uµ1 ? uν2)− ∂ρvµ ? uρ1 ? uν2 − ∂ρvν ? u
µ
1 ? u

ρ
2 = Lv . Tµν (2.107)
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with the contravariant 2-tensor Tµν := uµ1 ? u
ν
2 . By induction, the claim then

follows for arbitrary tensors:

Lv . (uµ1
1 ? uµ2

2 ? · · · ? uµnn ? w1
ν1 ? · · · ? w

n
νn)

= (Lv . uµ1
1 ) ? (uµ2

2 ? · · · ? uµnn ? w1
ν1 ? · · · ? w

n
νn)

+R1(uµ1
1 ) ? (LR1(v) . (uµ2

2 ? · · · ? uµnn ? w1
ν1 ? · · · ? w

n
νn))

= (vρ ? ∂ρuµ1
1 ) ? (uµ2

2 ? · · · ? uµnn ? w1
ν1 ? · · · ? w

n
νn)

−(∂ρvµ1 ? uρ1) ? (uµ2
2 ? · · · ? uµnn ? w1

ν1 ? · · · ? w
n
νn)

+vρ ? uµ1 ? ∂ρu
µ2
2 ? uµ3

3 ? · · · ? uµnn ? w1
ν1 ? · · · ? w

n
νn

−∂ρvµ2 ? uµ1
1 ? uρ2 ? u

µ3
3 ? · · · ? uµnn ? w1

ν1 ? · · · ? w
n
νn

+R1(uµ1
1 ) ? R2(uµ2

2 ) ? (LR2R1(v) . (uµ3
3 ? · · · ? uµnn ? w1

ν1 ? · · · ? w
n
νn))

= · · · = Lv . (Tµ1µ2...µn
ν1ν2...νn ) (2.108)

with Tµ1µ2...µn
ν1ν2...νn := uµ1

1 ? uµ2
2 ? · · · ? uµnn ? w1

ν1 ? · · · ? w
n
νn .

We have clarified the reason why the Leibniz rule has to be modified when
we adopt a noncommutative multiplication rule, and provided a new definition to
resolve the problem. With this result, we can now focus on the derivation of the
hypersurface-deformation brackets for deformed diffeomorphisms with deformed
Leibniz rule as in Eq. (2.104). Combining the lessons from our previous derivation
with the standard Leibniz rule as well as the new Lie derivative, we now introduce a
modified Gaussian condition by requiring

R(nµ) ? (LR(v) . gµν) = −∂ρ(vρ ? nν ? gµρ) ? nγ ? nρ ? gγν (2.109)

for space-time vector fields v. Using the modified Leibniz rule we can rewrite
this equation as

Lv . (nµ ? gµν)− (Lv . nµ) ? gµν = −∂ρ(vρ ? nν ? gµρ) ? nγ ? nρ ? gγν , (2.110)

and thanks to the Cartan identity, obtain

∂ν(vρ?nµ?gµρ)+vρ?(dn)ρν−[v, n]µ? ?gµν = −∂ρ(vρ?nν ?gµρ)?nγ ?nρ?gγν . (2.111)

Here (dn)ρν ≡ ∂ρ(nµ ? gµν) − ∂ν(nµ ? gµρ) vanishes as before. Decomposing
vµ = N ? nµ +Ma ? Xµ

a , we find

− ∂νN − [N ? n, n]µ? ? gµν − [M ?X,n]µ? ? gµν = ∂ρN ? nγ ? nρ ? gγν . (2.112)

Projection implies the normal part

−∂νN ? gνα ? nβ ? gαβ − [N ? n, n]α? ? nβ ? gαβ − [M ?X,n]α? ? nβ ? gαβ
= ∂ρN ? nγ ? nρ ? gγν ? g

να ? nβ ? gαβ ,
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or

−∂νN ? nν −N ? nρ ? ∂ρn
α ? nβ ? gαβ + ∂ρ(N ? nα) ? nρ ? nβ ? gαβ

−[M ?X,n]α? ? nβ ? gαβ = ∂ρN ? nα ? nρ ? nβ ? gαβ .

We now use nρ ? ∂ρnµ = 0, cancel out ∂ρN ? nα ? nρ ? nβ ? gαβ, and obtain

− ∂νN ? nν = [M ?X,n]α? ? nβ ? gαβ . (2.113)

The commutator on the right is equal to

[M?X,n]α? ?nβ?gαβ = (M?X)γ?(∂γnα)?nβ?gαβ−nγ?∂γ(M?X)α?nβ?gαβ . (2.114)

If we now use the properties of our Gaussian frame, in particular that nα is
normalized, geodesic, and has constant components, the commutator is zero and we
arrive at

− ∂νN ? nν = 0 . (2.115)

The tangential part of (2.112) is

−∂νN ? gνα ? qαb − [M ?X,n]α? ? qαb − [N ? n, n]α? ? qαb
= −∂bN − [M ?X,n]α? ? qαb −N ? nρ ? ∂ρn

α ? qαb − ∂ρN ? nα ? nρ ? qαb

= ∂ρN ? nα ? nρ ? qαb ,

which is equivalent to

[M ?X,n]a? = −∂bN ? qab . (2.116)

As before, the equations for lapse and shift provide a well-posed initial-value problem.
Again the last step consists in computing the bracket

[v1, v2]µ? = [N1 ? n,N2 ? n]µ? + [N1 ? n,M2 ? X]µ? (2.117)
+[M1 ? X,N2 ? n]µ? + [M1 ? X,M2 ? X]µ?

= N1 ? n
ρ ? ∂ρ(N2 ? n

µ)− ∂ρ(N1 ? n
µ) ? N2 ? n

ρ

+N1 ? n
ρ ? ∂ρ(M2 ? X

µ)− ∂ρ(N1 ? n
µ) ? M2 ? X

ρ +M1 ? X
ρ ? ∂ρ(N2 ? n

µ)
−∂ρ(M1 ? X

µ) ? N2 ? n
ρ + [M1 ? X,M2 ? X]b? ? Xa

b . (2.118)

Choosing Gaussian vector fields with either zero lapse N or shift Ma func-
tions we can decompose the above brackets as a set of three distinct commutators
[(0,M1), (0,M2)]?, [(0,M1), (N2, 0)]? and [(N1, 0), (N2, 0)]?. If both lapse functions
are zero, we find

[(0,M1), (0,M2)]? = (0, [M1 ? X,M2 ? X]a?) . (2.119)
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For both shift vector fields equal to zero, we obtain

[(N1, 0), (N2, 0)]? = (0, N1 ? q
ab ? ∂bN2 − ∂bN1 ? N2 ? q

ab) . (2.120)

The remaining bracket reads

[(0,M), (N, 0)]? = (LM?X . N, 0) . (2.121)

A first worth comment is that the overall structure of the bracket between N
and Ma is preserved despite the noncommutativity of coordinates. Indeed, the ?-Lie
bracket between two tangential deformations still gives us a tangential hypersurface
deformation, the one involving a normal and a tangential deformations gives a
normal displacement, and the bracket between two normal deformations results
in a spatial shift. The only type of modifications that appear with respect to the
standard hypersurface brackets are higher derivative terms. Those terms are implicit
in the above expressions, but it is clear that such terms appear as soon as we
expand the Moyal star product by powers of θ. Thus, while formally similar to the
classical HDA, the above brackets show crucial differences in their structure owing
to non-locality (in particular in time) of ?-products. Even if it remains unclear
whether diffeomorphisms on noncommutative spaces should be introduced by means
of twisting or explicitly deforming their action, this result can be a starting point for
an alternative formulation of non-commutative gravity. Furthermore, besides being
useful for constructing non-commutative gravity actions, this HDA in principle may
allow us to change the frame by generating deformed infinitesimal transformations. In
this perspective, it would be worth further exploring in what sense the above brackets
Eqs. (2.119), (2.120), (2.121) generate deformed diffeomorphisms that preserve the
(local) noncommutative structure of the Moyal manifold. This could be done in
analogy with similar investigations adopted in the research on DSR in the attempt to
give a physical characterization to the deformation of spacetime symmetries. Once
more confidence in these deformed diffeomorphism transformations was achieved,
it would be interesting to study their flat Minkowski limit and see what kind of
deformed Poincaré isometries they correspond to. If further developed, this line of
reasoning could provide a sort of top-down derivation of the DSR program or, at
least, a novel way to generalize DSR concepts in presence of gravity.

For twisted diffeomorphisms the flat-spacetime (or Minkowski) limit of the HDA
was trivial. On the contrary, the study of the Minkowski regime of the deformed
HDA encoding ?-diffeomorphisms remains an open challenge which should be of
particular interest both from the perspective of relating ?-product corrections to
the non-linear Poincaré transformations of non-commutative spacetimes [89, 90] and
also to have a better understanding of what general modifications of the HDA should
affect the Poincaré algebra. From the same perspective, in future investigations, we
are also interested in finding a way to implement the deformation quantization of
the HDA by using the gravitational constraints representation. Of course, such a
procedure would be much more involving since it would force us to deal directly
with ordering issues in the definition of the constraints as well as with other tricky
aspects of noncommutative differential calculus [170]. Besides providing a check of
the results obtained in this section and of the equivalence of the two representations
of the HDA even in presence of deformations, a noncommutative version of the
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HDA as in Eq. (2.10) would help deriving the Minkowski limit and making contact
with the known noncommutative deformations of the SR symmetries. To so do, a
starting point could be provided by some formal studies on quantum Lie algebroids
which have already appeared in the mathematical literature [153]. In addition
to shedding some light on long-standing questions in noncommutative gravity, it
might also help in making contact with other recently proposed modifications of the
HDA [36, 37, 38, 143, 146, 147, 171, 172] (see also Section 3.2 of the next chapter).
One possible point of contact is the presence of extrinsic curvature as one of the
coordinates on the base manifold of a noncommutative HDA. Although the brackets
bear a formal resemblance with the classical ones, their detailed form is markedly
different. The main reason is the non-locality of the ?-product, which includes higher
derivatives in space-time. In the noncommutative HDA brackets as written, we
therefore have time derivatives of N , Ma and the inverse spatial metric qab, which,
unlike those of the constant nµ, are in general non-zero. Since the brackets cannot
contain space-time data, we should interpret the ?-products in them as follows:
Working in the Gaussian frame, time derivatives of N and Ma can be replaced by
spatial derivatives using the equations (2.115) and (2.116). Any first-order time
derivative of qab can be expressed as a linear combination of extrinsic-curvature
components Kab, while higher-order time derivatives of qab are related to higher-order
momenta in the Ostrogradsky treatment of a canonical higher-derivative theory.
Without a specific noncommutative action, we cannot write these terms explicitly,
but rather leave the brackets in the form (2.120) with implicit higher-derivative terms.
We conclude that the base manifold of the noncommutative HDA should contain
not only the spatial metric but the entire phase space of a higher-derivative metric
theory. The presence of extrinsic curvature among these variables is reminiscent
of holonomy modifications in models of LQG, but the explicit dependence is, in
general, different (see e.g. [36, 37]).

This constructive method to derive the brackets between spatial and time com-
ponents of Gaussian vector fields will be applied in Chapter 5 to a wide class of
non-Riemannian geometries, those characterized in particular by the presence of a
non-vanishing non-metric tensor.
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Chapter 3

Loop Quantum Gravity

In this chapter we start with an elementary but rather comprehensive and self-
consistent review of the LQG approach, the major effort to provide a non-perturbative
quantization of gravity without relying on a fixed background metric [173, 174]. We
refer to Ref. [175] and references therein for further details and open issues we do
not discuss here. Then, at the end of the first section, we briefly sketch out the
spherically symmetric reduction of (classical) GR formulated in terms of connection
(or Ashtekar) variables. Such a subsection will serve as an intermediate step towards
the discussion of effective LQG models which so far have been consistently formulated
only in symmetry reduced contexts. These simplified models for LQG have attracted
some interest in the latest literature on the field mainly due to the fact that they can
be useful to identify LQG-like semi-classical corrections to GR [36, 37, 38]. Notice
that we focus on spherical symmetry since, contrary to homogeneous cosmological
frameworks, it has the advantage of being an inhomogeneous model that retains
both time and space diffeomorphisms. This is of course a crucial requirement for
discussing diffeomorphisms in presence of LQG corrections.

In Section 3.1.1 we introduce effective LQG models in spherically symmetric
spaces and, in Section 3.2, show that the introduction of holonomy corrections into
the Hamiltonian constraint as suggested by the loop quantization (or polymerization)
technique affects the symmetry under diffeomorphisms under general assumptions.
We shall see that the HDA can still be closed and, thus, there is no anomaly, but
characteristic deformations of the brackets appear [144, 145, 146, 150]. Section 3.2
is divided into two subsections. The former is dedicated to the formulation with
real connection variables and it is a review part based on Refs. [176], the latter
instead is about deformations of the HDA in models formulated in terms of complex
connection variables. This second subsection is an original contribution [177]. In
fact, we discuss for the first time under which conditions the HDA can be deformed
or not in different proposals for self-dual LQG introduced by many authors in the
recent literature [178, 179].

Section 3.3.1 and Section 3.3.2 contain our main results in this chapter. Building
on the classical results concerning the connection between the Poincaré algebra and
the HDA we reviewed in Section 2.1.3 of Chapter 2, we study the Minkowski limit of
these LQG-deformed HDA for both real and complex connection cases. In Section ??,
we show that the deformed Poincaré symmetries derived from LQG corrections to the
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HDA [180] are consistent with a description of spacetime in terms of κ-Minkowski
noncommutative spacetime [181]. Encouraged by such an intriguing link and taking
a different path, we then construct a set of three operators suitable for identifying
coordinate-like quantities on a spin-network configuration [182]. Computing the
action of these operators on coherent states, we find out that they do not commute.
This may provide additional insights on how space-time noncommutativity could be
realized in the context of LQG.

Section 3.4 focuses on the associated phenomenological consequences. Starting
from the LQG-deformed symmetries discussed in the third section, we investigate
both the modifications of particles’ dispersion relations [183, 184] and the running of
the spacetime dimensions in the UV [101]. They both represent two aspects common
to many QG approaches and, possibly, connected with experimental observations
(see Chapter 6). As we shall see throughout this chapter, LQG corrections are not
uniquely defined but subjected to several ambiguities [183, 184]. Remarkably, we
show how potentially observable quantities, namely the MDR and the spectral (and
also the thermal) dimension, depend on these formal choices and, thus, could be
hopefully used to constrain and guide the LQG formalism in the (not-too-distant)
future.

3.1 Ashtekar’s GR and loop quantization method

We have already reviewed briefly the Hamiltonian (or canonical) formulation of GR
in Chapter 2, which is the starting point of LQG. In order to make a short and
concise introduction to LQG, we here first need to turn from the metric formalism,
which we adopted in Chapter 2, to the so called tetrad formalism. Thus, we will have
to define the tetrads, which are the fundamental milestones to define the Ashtekar’s
variables [185]. Then, we reexamine the classical Hamiltonian GR in connection
(or tetrad) formulation and we underline the advantages of this simpler and more
manageable picture of gravity in light of the aim to quantize the theory. After
that, we sketch out the quantization program of the Ashtekar’s GR pointing out the
simplifications of quantizing such a GR formulation and we dicuss some of the open
issues of the quantum theory [174]. Finally, we introduce loops and we mention the
benefits they carry [186]. All this section is based on [173, 174, 175].

Geometrically it is possible to characterize the geometry through the tetrads
instead of the four metric and, thus, the spacetime metric gµν can be given by

gµν(x) = ηab(x)eaµ(x)ebν(x) (3.1)

the above formula can be taken as the definition of the tetrads. Let us examine
these new tensors:

eaµ(x) (3.2)

they have a lower vector spacetime index µ = 0, 1, 2, 3 and so they are four-
vectors. Although, they own also an upper index i = 1, 2, 3, which is internal, i.e.
it does not refer to spacetime. It is possible to see the internal indexes as labeling
the axes of a local reference frame or as a basis of the SU(2)(or SO(3, 1)) gauge
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group. To fully disclose the geometrical meaning of (3.2) one can compute the scalar
product of two tetrads:

ea · eb = eµae
ν
agµν = ηab (3.3)

where we have used only (3.1), i.e. the definition of a tetrad. The equation (3.3)
is telling us that (3.2) form a local set of four (one for each value of the spacetime
index µ) othonormal vectors, in other words (3.2) define an arbitrary reference frame
in each point of the spacetime. Thus, it is possible to define a Riemannian manifold
M by introducing an orthogonal reference frame through the tetrads instead of
giving the geodesic distance between any two points (computed with the help of the
metric). In conclusion, we can describe the gravitational field with four vector fields
(3.2):

gµν(x) 7→ eaµ(x) (3.4)
It is worth noting that if we perform a Lorentz transformation over the tetrads:

eaµ(x) −→ Λabebµ(x) (3.5)
having acted on the internal (i.e. "tangent") indexes, the metric does not change.

Therefore, we have an internal local Lorentz SO(3, 1) (or SU(2)) gauge invariance,
which we did not have in the metric formulation of GR. As it is reasonable, defining
an arbitrary reference frame, the tertads carry automatically an invariance under
rotations of such a reference frame and, consequently, three spurious degrees of
freedom, as can be read off also on (3.1). As a consequence, we will have three
more constraints, not only the scalar H (2.5) and momentum Hi (2.6) constraints,
implementing rotational invariance in addition to the diffeomorphism contraints, in
other words we are using redundant variables.

As done in Chapter 2, we need to foliate the spacetime manifold (M = R× Σ)
for the purpose of putting the theory of gravity in its Hamiltonian form. Having
performed such a splitting of the spacetime, it is then obvious that we need triads
rather than tetrads due to the fact that the dynamical variables are are not the full
ten components of the four metric but only the six components of the three metric
qij (see the Chapter 2):

qij = δabe
a
i e
b
j (3.6)

having used (3.1).
Since the triads encode the information about the gravitational field in a back-

ground indepentent way, i.e. without referring to the metric itself, any quantity
expressed in terms of them both is background independent and carries the grav-
itational degrees of freedom. For this purpose we define the densitized triads as
follows:

Eia = 1
2ε

ijkεabce
b
je
c
k (3.7)

where the space indexes i, j, k run from 1 to 3 and it is also true for the internal
indexes a, b, c. The Hamiltonian treatment needs also the canonical conjugated
variables defined as
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Ka
i = 1√

−h
KijE

j
bδ
ab (3.8)

which is the projection of the extrinsic curvature (3.8) along the densitized triads
(3.7). By using equations (2.4) and (3.8) it can be shown that {Eia,Ka

i } form a
cononical couple and their Poisson brakets are given by

{Eia(x),Kb
j (y)} = 8πδbaδijδ(−→x −−→y ) , (3.9)

{Eia(x), Ejb (y)} = 0 , (3.10)
{Ka

i (x),Kb
j (y)} = 0 , (3.11)

where the Poisson brakets are valued at the same time. We need to perform
a further simple change of variables in order to reach the Ashtekar’s connections,
which are defined as a linear combination of the extrinsic curvature (3.8) and the
projection of the spin connection along the triads:

Aai = Ωa
i + γKa

i (3.12)

where Ωa
i = εabcW d

icδbd and γ is the real non-vanishing Barbero-Immirzi parameter
[187, 188], and W a

µb = eaνe
ρ
bΓνµρ − e

ρ
b∂µe

a
ρ is the spin connection. We postpone to

Section 3.4 some issues related to the choice of the Barbero-Immirzi parameter
[189, 190, 191, 192], which are going to play an important role in some of our analyses.
The above variables (3.12) are the so-called Ashtekar’s connections. Remarkably,
these new variables (3.12) are again conjugated to the densitized triads (3.7), i.e.
their Poisson brakets are

{Eia(x), Abj(y)} = 8πγδbaδijδ(−→x −−→y ) , (3.13)

{Eia(x), Ejb (y)} = 0 , (3.14)
{Aai (x), Abj(y)} = 0 . (3.15)

To sum up, we have done two consecutive changes of canonical couples:

{hij(x), πij(x)} 7−→ {Eia(x),Ka
i (x)} 7−→ {Eia(x), Aai (x)} (3.16)

At this point, it is useful to introduce the analogue of the Maxwell tensor (or
field strength) as:

F aij = ∂jA
a
i − ∂iAaj − εabcAciAbj (3.17)

and we can express the Einstein Hilbert action SEH =
∫
dtLEH (see Eq. (2.1))

in terms of the connection variables:

SEH [Eia, Aai , N,N i, Na] =
∫
dt

∫
Σ
dx3[ȦaiEia−NH(Eia, Aai )−N iHi(Eia, Aai )−NaG

a(Eia, Aai )]
(3.18)



3.1 Ashtekar’s GR and loop quantization method 63

and by using (2.1), (2.5), (2.6), (3.19), (3.7), (3.8) and (3.12) we can explicitly
give the constraints in terms of the new canonical variables (3.16):

H(Eia, Aai ) = EiaE
j
b√

det(E)
[εabd F dij − 2(1 + γ2)(Ka

i K
b
j +Ka

jK
b
i )] (3.19)

Hi(Eia, Aai ) = EjaF
a
ij − (1 + γ2)Ka

jDkE
k
a (3.20)

Ga(Eia, Aai ) = DkE
k
a = ∂kE

k
a + εcabA

b
kE

k
c (3.21)

where the first and the second equations Hamiltonian (2.5) and the momentum
constraints (2.6) expressed in the connection variables, while the third equation
gives us three additional constraints, known as Gauss’ constraints having exactly
the structure of the Gauss law for a SU(2) gauge invariant theory. Therefore, in
the Ashtekar’s formulation there are nine dynamical variables Aai , instead of the
six we had in the metric formulation, and a total of seven constraints {H,Hi, Ga},
three more than that we had before (2.7), and, finally, we count again two physical
configurations, as expected. In conclusion, in this connection formulation one can
loosely regard GR as a SU(2) Yang-Mills theory without a background metric.

It is important to note that if we choose a pure imaginary Barbero-Immirzi
parameter, i.e. γ = i, we simplify both the scalar H and the vector Hi constraints
and, what is more, we achieve, in contrast to the ADM case, a Hamiltonian constraint
which is polynomial in both the positions and the momenta. Despite such a simplified
constraint would be suitable for quantization, it is also true that choosing a complex
value for γ means working with complex canonical variables (see (3.12)). Therefore,
in order to gain the observable quantities one should impose "reality conditions",
which, however, are very difficult to implement. We will go back to the value of γ in
Section 3.4 and, for the moment, just assume it is a real number.

Now we would like to perform the nonperturbative quantization of such a
background independent formulation of GR, let us just sketch it out and look at the
obstacles to quantize the Ashtekar’s connection formulation. First of all, we must
represent the canonical variables {Aai , Eia} as operators on the Hilbert space H by
choosing the wave functions as functional of half of the phase space variables (e.g.
Aai ):

Âai . ψ[Aai ] = Aaiψ[Aai ] (3.22)

Êia . ψ[Aai ] = −i ∂

∂Aai
ψ[Aai ] (3.23)

which define the "coordinate" space (spanned by Aai ) and its dual "momentum"
space (spanned by Eia) and the Poisson brakets (3.13) automatically turn into
commutators on H. Another time, the physical wave functions must be solutions of
all the constraints (3.19):

Ĥ . ψ[Aai ] = 0
Ĥi . ψ[Aai ] = 0
Ĝa . ψ[Aai ] = 0

(3.24)



64 3. Loop Quantum Gravity

where Ĥ, Ĥi, Ĝa are only formal expressions for the quantum versions of the
classical constraints (3.19). The above equetions (3.24) have only a formal meaning,
if we want to fill up them with physical meaning we need to actually find an explicit
operatorial form of the classical constraints (3.19) and also to solve them in order to
define the physical Hilbert space HPhys. Despite several attempts both in the past
three decades and still ongoing, there is no fully satisfactory and unique proposal for
an operator and, thus, the HPhys of LQG is still unknown. In the light of this, in
this thesis work we shall follow a rather recent line of investigation in LQG that does
not try to quantize the constraints but rather works in a classical framework where
though the Hamiltonian constraint is modified by the introduction of correction
functions inspired by the loop quantization technique. In such a way, one has a
sort of semi-classical or effective formulation of LQG models which, at least for the
spherically symmetric manifolds, can be rigorously derived from the operatorial
form of the theory (see e.g. [193]). We will introduce these models in some detail in
Section 3.2.

Now let us discuss the solution of the other two operator constraints, namely
(Ĥi, Ĝa). One can start solving the Gauss law:

Ĝa . ψ[Aai ] = 0 ⇒ ψ[Aai ] ∈ HGauss (3.25)

so finding the Gauss’ Hilbert space. Then, one can continue along this path
trying to solve the quantum vector constraint:

Ĝa . ψ[Aai ] = 0, Ĥi . ψ[Aai ] = 0 ⇒ ψ[Aai ] ∈ HKinematic (3.26)

so reaching the Hilbert space of the kinematic solutions, HKin. In order to
find a solution, we have to perform the last step, i.e. we have to introduce the
so-called Wilson loops into the theory. In fact, substituting (3.12) with their loop
integrals and (3.7) with their fluxes one can easily solve the classical form of the last
two constraints in (3.19) and simplify the search for the solutions of the first one
(3.19). In this further change of dynamical variables one uses no more directly the
connections (3.12) and the densitized triads (3.7) but traces of the holonomies of the
connections (loops) and surface integrals of the triads (fluxes), as we are going to
illustrate. These new fundamental variables are more suitable for quantization since,
roughly speaking, they automatically smear out the divergences of the constraint
operators and, thus, we use them instead of the connections (3.12).

Given the Ashtekar’s connection Aai , we can parallel transport it along a closed
path α ⊂ Σ defining in this way a holonomy:

hα[Aai ] := Pe
∫
α
τ iAai α̇adt (3.27)

where τ i = − i
2σ

i, where σi are the Pauli matrices, i.e. the SU(2) generators,
α̇a = dαa

dt are the components of the vector tangent to the arbitrary closed curve α
parameterized by t, while P stands for path-ordering the power expansion of the
exponential in such a way that the connection variables Aai are ordered from left to
right with the curve parameter, on which they depend, increasing. Notice that this
change of variables, i.e. from connections to their ordered path integrals, will be
responsible for the so-called holonomy corrections in the effective LQG models we
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introduce below. Bearing in mind their geometrical meaning, it can be proved that
the holonomies transform under SU(2) gauge transformations as follows:

h′α = g(i)hαg−1(f) (3.28)

where g is the gauge transformation parameter calculated at the initial (left
side) or at the final (right side) point of the closed curve α. Given the gauge
transformation property of the holonomy, it is clear that one can easily obtain a
gauge invariant quantity just taking the trace of (3.27):

Tα := Tr(hα[A]) (3.29)

which is called Wilson loop. It follows that by working with loops we can
eliminate the Gauss constraints, which is automatically satisfied. From the definition
of holonomy (3.27) one can show directly that the two following properties hold:

hα1◦α2 [A] = hα1 [A]hα2 [A] hα−1 [A] = h−1
α [A] (3.30)

where α1 ◦ α2 stands for the composition of two oriented curves and α−1 for the
curve with opposite orientation. Now, in order to gain a Poisson algebra free of delta
functions, i.e. finite Poisson brakets free of infinities, we must define a corresponding
smeared version of the other canonical variable Eia

Fσ[Eia] =
∫
σ
τaEianidudv , (3.31)

where σ is an arbitrary two dimensional surface on Σ spanned by the coordinates
u and v, τa = − i

2σ
a1 and ni is the conormal to σ. Looking at (3.13) and (3.27), we

deduce that a surface integral (3.31) is the only possible smearing for the purpose of
having a well defined Poisson algebra. The above equation (3.31) defines the so-called
flux variables. It is worth noticing that, considered the nature of the connection
variables, we were able to integrate them without introducing an integration measure,
i.e. a background metric, as shown in the above definitions. Thus, by using the
holonomies and the fluxes as canonical variables instead of the connections a well
defined Poisson algebra results:

{hα[A], Fσ[E]} = 8πγ
∑
e⊂α

he[A]o(e, σ) (3.32)

where the quantity o(e, σ) is needed to gain the correct result by taking into
account if the edges e of the closed curve α intersect the surface σ. In particular it
is null when the edges do not intersect σ or they belong completely to the surface,
while it is ±1 if the intersection consists of a single point (the sign depending on
the mutual orientation of the closed path and the surface). Although, note that the
Poisson bracket between two fluxes or two holonomies is non-trivial because of its
still distributional structure.
Now, we can define the SU(2) gauge components of the fluxes as:

Fσ[E] = τaFa[E, σ] = − i2σ
aFa[E, σ] (3.33)

1Where σa denote the usual Pauli matrices.
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and, thus, we can use the holonomy flux algebra (3.32) to find the action of
Fa[E, σ] on a functional of a holonomy ψ(hα[A]), which is a functional on the
connections configuration space A:

Fa[E, σ] . ψ(hα[A]) = {Fa[E, σ], ψ(hα[A])} =

= ∂ψ(hα[A])
∂hα[A] {Fa[E, σ], hα[A]} = ∂ψ(hα[A])

∂hα[A] τa{Fσ[E], hα[A]}
(3.34)

where the cylindrical functionals of the connections are defined in their more
general form as follows:

ψΓ,f [A] = f(hα1 [A], ......., hαn [A]) (3.35)

where Γ = ∪ni=1αi is the graph made up of n oriented curves α1, ...., αn over the
manifold M, f is a function on [SU(2)]n given the fact that the parallel transport
holonomies hαi [A] are elements of the SU(2) group. Therefore, the above functionals
(3.35) map the elements of [SU(2)]n to complex numbers:

ψ : [SU(2)]n −→ C (3.36)

Finally, it is necessary to represent the holonomy flux algebra (3.32) in terms
of operators on the Hilbert space. We can perform, as already done before, an
heuristic quantization defining the Wilson loops Tα as multiplicative operators and
the fluxes as derivative operators acting on functionals of the connections ψα(A),
which constitute the configuration space A. Surprisingly, such a naive quantization
of (3.32) is unique if one imposes diffeomorphism invariance as a result of the LOST
(from the initials of the authors) theorem. Whereas, we still have to introduce
a well-defined scalar product and, consequently, to address the hermiticity of the
operators.

This can be done thanks to the Gelfand-Naimark-Segal construction which
provides a spatial diffeomorphism invariant measure (dµ0) for the C∗-holonomy
flux algebra (3.32) and also a self-adjoint representation for the algebra’s generators
on an auxiliary Hilbert space Haux, where Haux is the space of square integrable
cylindrical functionals on A for all graphs Γ and functions f , the closure of A, also
called the space of generalized connections:

Haux = L2(A, dµ0) (3.37)

where the integration measure dµ0 , that is invariant under both SU(2) gauge
symmetries and spatial diffeomorphism, was found by Ashtekar and Lewandosky.The
Ashtekar-Lewandoski measure, under which the cylindrical functionals (3.35) are
square-integrable, can be defined as:∫

dµ0[A]ψΓ,f [A] =
∫
SU(2)n

dg1....dgnf(g1, ..., gn) (3.38)

where we are now referring to the space of generalized connections A and dgi
denotes the SU(2) invariant measure. Moreover, dµ0 allows to have a well-defined
scalar product:
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(ψΓ,f , ψΓ,h) =
∫
dµ0[A]ψΓ,f [A]ψΓ,h[A] =

∫
SU(2)n

dg1....dgnf(g1, ..., gn)h(g1, ..., gn)

(3.39)
such a scalar product, as we already said, has the advantage of being invariant

under local SU(2) transformations and also under three dimensional diffeomorphism.
As already said, the quantum version of time diffeomorphisms still represent an open
challenge in LQG research.

Now, the auxiliary Hilbert space Haux is "too large" and we need to impose the
invariance of the cylindrical functionals under rotations and 3-diffeomorphism in
order to restrict to the kinematic Hilbert space HKin, which is still non physical. To
do so, firstly we have to find a quantum operatorial representation of (3.35), i.e. we
need a basis of (3.37), and, secondly, we have to represent properly the constraints
(3.19) on (3.37).

A basis of (3.37) is provided by the Peter-Weyl theorem and, thus, taking the
matrix elements of the irreducible representations of SU(2) and associating these
irreducible representations jk to each link of a graph Γ:

ψΓ,f [A] =
∑

j1,...,jn

Cm1...mn,n1...nn
j1...jn

R(j1)
m1n1(hα1 [A]).....R(jn)

mnnn(hαn [A]) (3.40)

where Cm1...mn,n1...nn
j1...jn

are the Clebsh-Gordan coefficient, R(ji)
mini(hαi [A]) are the

matrix elements of a given irreducible representation jk and ji are the irreducible
representations of the SU(2) group.

The equation (3.40) can be rewritten in the following mantifestly gauge invariant
way:

ψΓ[A] = (
⊗
k

R(jk)(hαk [A]))(
⊗
n

in) (3.41)

where jk are the irreducible representations (half integer spin numbers) associated
with each link of αk composing the graph Γ, R(jk) are the matrix elements in a given
basis and in stand for invariant tensors in the product of representations j1....jn
associated with each node of Γ, also called intertwiners. The functionals (3.41)
constitute the so-called spin network basis, where the spin network is a "coloured"
graph Γ with links labelled by spins jk and with nodes labelled by intertwiners ik,
S = {Γ,−→j ,−→i } (see also Fig. 3.1).

Let us summarize the several suitable properties of the spin network states (3.41):
they are normalizable, SU(2) gauge invariant, they form an orthonormal basis for the
gauge group of rotations and, finally, they are decomposable into linear combinations
of loops. Moreover, they have a direct physical interpretation, in fact spin network
states are the eigenfunctions of geometrical operators (e.g. area and volume) with
discrete eigenvalues.

At this point, we can construct the operatorial form of the Gauss and the spatial
diffeomorphism constraints and act with them on spin network functionals (3.41):
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Figure 3.1. The figure represents a spin network on the lattice consisting in a graph Γ,
made up of links "coloured" by irreducible spin representations jl and of nodes "coloured"
by invariant tensors in.

Ĝa . ψΓ[A] = (∂l
δ

δAal
+ γεcab

δ

δAcl
Abl )ψΓ[A] = 0 (3.42)

Ĥi . ψΓ[A] = F aij
δ

δAaj
ψΓ[A] = 0 (3.43)

defining in this way the kinematic Hilbert space HKin, which therefore can be
found in a satisfactory manner.

The final step necessary to reach the physical quantum theory would be the
quantization of the Hamiltonian constraint (3.19). However, mainly due to its non-
polynomial form such a quantization has not been accomplicshed yet. Nevertheless,
expectation values of operators quantizing the Hamiltonian constraint (i.e. semi-
classical approximations of Ĥ[N ]) have been recently constructed by considering at
least two quantum-geometry corrections: the so-called inverse triad corrections [144]
and the so-called holonomy corrections [36, 37, 38]. The former corrections come
from the discrete spectra of the triads, including zero as eigenvalue, and, thus, one
has to properly quantize the spatial volume in terms of the flux variables in order to
avoid infinities in the Hamilonian constraint, which contains the inverse triads (3.19).
Whereas, the latter take into account the replacement of the connections with their
holonomies carrying higher powers of the connections themselves (see Eq. (3.27) as
well as the discussions in Section 3.2 and Section 3.4). Notice that these (effective)
quantization attempts are not free of ambiguities and we shall explicitly show this
later on by offering at the same time a possible way to distinguish different formal
choices on phenomenological grounds. Holonomy corrections will be discussed in
more detail in the next section. Before that, we have to reduce to the spherically
symmetric case. In fact, all the results and analyses presented in the rest of this
chapter rely on the spherically symmetric reduction of GR.
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3.1.1 Spherically symmetric reduction of connection GR

For this section we mainly follow Ref. [194]. The spatial hypersurfaces Σ are
spherically symmetric if the rotation group SO(3) acts effectively on them and
the symmetry orbits are two-dimensional spheres. In other words, the 3-manifold
is spherically symmetric it can be decomposed as Σ = B × S2, where B is a
one-dimensional radial manifold while S2 are the two spheres enjoying the SO(2)
symmetry subgroup. As a result, the line element defined by the induced metric
on Σ, i.e. qij , is invariant under the rotation group. In particular, if we use the
coordinates (θ, φ) to cover S2 and r to span B then ds2 is

ds2 = −N2(t, r)dt2 + L2(t, r) (dr +N r(t, r)dt)2 +R2(t, r)dΩ2 , (3.44)

in terms of two arbitrary functions L(t, r) and R(t, r) and where dΩ2 is the usual
measure on the two sphere. Of course, the form of the metric can be translated
into related restrictions on the Ashtekar variables and the triads. Most importantly,
due to spherical symmetry, one has a reduction of the number of free variables
and a reduction of the gauge freedom to those changes of gauge that preserve the
invariance condition. It is possible to obtain the (reduced) phase space variables
for the spherically symmetric case as shown in [195]. We provide a brief sketch
of the procedure as follow. If Li are the rotational Killing vectors, we can obtain
connections and triads which are invariant under rotations by solving the equation

LLjEai = −[Tj , Eai ] = −εijkλjEak , (3.45)

where Tj are the generators of O(3), while λj are just constants.
The solution of Eq. (3.45) is given by the following connections:

(Ar(r)τ3, A2(r)τ2 +A3(r)τ3, A2(r)τ3 −A3τ2) , (3.46)

where Ar, A2, A3 are real functions which are canonically conjugate to Er, E2, E3,
while τi = − i

2σi are the SU(2) generators, r being the radial variable. Defining the
angular connections and triads as

Aφ :=
√
A2

2 +A2
3 , Eφ :=

√
E2

2 + E2
3 , (3.47)

where from now on we suppress the dependence on r. We also introduce ‘internal
directions’ (on the SU(2) tangent space)

τAφ := A2τ3 −A3τ2
Aφ

, (3.48)

τφE := E2τ3 − E3τ2
Eφ

, (3.49)

which allow us to define the ‘internal angles’ α and β via the relations

τAφ =: τ2 cos(β) + τ3 sin(β) , (3.50)

τφE =: τ2 cos(β + α) + τ3 sin(β + α) . (3.51)
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Note that Aφ is not canonically conjugate to Eφ, which is instead the momentum
of the combination Aφ cosα = γKφ (and thus conjugate to the angular extrinsic
curvature component), i.e.:

{Aφ cosα(r), Eφ(r′)} = γGδ(r − r′) . (3.52)

The angular component of the extrinsic curvature Kφ can be read off from the
relation A2

φ = Γ2
φ + γ2K2

φ, where Γφ = −Er′/(2Eφ) 2.
Assuming that the Gauss constraint has been solved classically3, we can write

the (spatial) diffeomorphism and the scalar (Hamiltonian) constraint respectively as:

D[N r] = 1
2G

∫
B
drN r(2EφK ′φ −KrE

r′) , (3.53)

H[N ] = − 1
2G

∫
B
drN

[
K2
φE

φ + 2KrKφE
r

+(1− Γ2
φ)Eφ + 2Γ′φEr

]
, (3.54)

where we have used the definition Ar = Γr + γKr. At this point, the symplectic
structure of the theory is given by the two Poisson brackets

{Kr(r), Er(r′)} = 2Gδ(r − r′) (3.55)
{Kφ(r), Eφ(r′)} = Gδ(r − r′) (3.56)

Given the above Eqs. (3.55)-(3.56) it is rather straightforward to compute the
classical hypersurface deformation algebra as

{D[N r], D[N r′ ]} = D[N r∂rN
r′ −N r′∂rN

r] (3.57)
{D[N r], H[N ]} = H[N r∂rN ] (3.58)
{H[N ], H[N ′ ]} = D[qrr(N∂rN

′ −N ′∂rN)] (3.59)

where the inverse of the spatial metric qrr = Er/(Eφ)2.
In the next two sections we shall see how the above algebra is deformed once

we introduce holonomy corrections of the connection variables for both real and
imaginary values of the Barbero-Immirzi parameter. The emergence of non-classical
spacetimes due to modification of diffeomorphism invariance perhaps represents one
of the most interesting results appeared in the recent LQG literature [36, 37, 38,
145, 146, 147, 148, 150, 151]

3.2 Deformed diffeomorphisms
As aforesaid, it is expected that Eqs. (3.57), (3.58), (3.59) should receive QG
corrections [145, 146, 147, 148], and in particular this is expected for the LQG

2The prime ′ stands for the derivative with respect to the radial coordinate, i.e. Er′ = ∂rE
r.

3This allows us to reduce the phase space to two pair of canonical variables (Kr, E
r) and

(Kφ, E
φ).
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scenario [146, 149]. A fully deductive derivation of the deformed HDA within LQG is
at present beyond our technical abilities for the reasons discussed above, so different
authors have relied on different approximation schemes, but all results agree on the
following form for the deformed HDA [145, 146, 150]:

{D[N r], D[N r′ ]} = D[N r∂rN
r′ −N r′∂rN

r]
{D[N r], H[N ]} = H[N r∂rN ]

{H[N ], H[N ′ ]} = D[βqrr(N∂rN
′ −N ′∂rN)]

(3.60)

where HQ[N ] denotes a deformed (“quantum") scalar constraint and β is a
deformation function, whose explicit expression depends on the specific corrections
that are taken into account. The key challenge for the LQG community is to find an
appropriate representation of constraints as operators on a Hilbert space, and so far
no proposal has fully accomplished this task. However, several techniques have been
developed and some promising candidates for the quantum Hamiltonian operator
(HQ[N ]) have been proposed [149, 193, 152]. In particular, in spherically-symmetric
models [144, 195], which are here of interest, some of the quantum corrections,
namely the local (i.e. point-like) holonomy corrections [36, 37, 144], have been
successfully implemented, and the corresponding quantized version of the scalar
constraint can still close an algebra provided that it is properly deformed as in Eqs.
(4.39). These corrections come from the fact that, as we have seen in the previous
seciton, in LQG one relies on holonomies of the connection and gravitational flux
(see Eqs. (3.27) and (3.31) ). Now if the loop α is infinitesimal then we can write
hα[A] ≈ 1 + A(α′) + O(α2). Such an approximation is expected to hold at some
intermediate scale when high curvature terms become important but the usage of
the full quantum theory can still be avoided. Thus, one should have a sort of a
semi-classical limit where the dynamics are well approximated by GR with small
effective quantum corrections in the form of non-linear terms in the connections.

Finally, it is worth noticing that the closure of the Poisson brackets in presence
of quantum correction terms is a highly non-trivial results since it provides a strong
hint that the (loop) quantum theory does not contain anomalies [196]. However,
the HDA gets modified and, thus, the symmetry of these models is not the usual
general covariance of GR but a deformed version of it, whose nature is still not fully
clear. Shedding some light on the meaning of these LQG-inspired deformations of
the spacetime symmetries is one of the main goals of this chapter. Specifically, we
shall see how in the Minkowski limit these deformations in Eq. (3.60) can be related
to corresponding modifications of the Poincaré algebra, as first underlined in Ref.
[180], thereby matching somehow (and in a sense that will be specified below), at
least qualitatively, the phenomenological research proposal of DSR.

Firstly, in the next two sections we show how this modified covariance arises in
effective LQG models formulated using either real or complex connection variables.

3.2.1 Real connection variables

Working with real Ashtekar variables, we now want to study how (loop) quantum
corrections deform the HDA. To this end we turn to the effective LQG theory by
polymerizing the angular extrinsic curvature component:
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Kφ →
sin(Kφδ)

δ
, (3.61)

where δ is related to some scale, usually `Pl, as suggested, for instance, by the
discrete spectrum of the area operator (δ is proportional to the square root of the
minimum eigenvalue, or the ‘area gap’ from LQG). Clearly, the classical regime
is recovered in the limit δ −→ 04. The above substitution (3.61) can be justified
as follows. In the quantum theory there is no well-defined operator corresponding
to the Ashtekar-Barbero connection Aia on the LQG kinematical Hilbert space.
Instead, in the loop representation, a well-defined object is the holonomy operator
(3.27). For our analysis are of particular interest the holonomies of connections along
homogeneous directions (called point-like holonomies), which simplify as

hj(A) = exp(µAτj) = cos(µA)I + sin(µA)σj (3.62)

and do not require a spatial integration since they transform as scalars. In fact,
so far one knows only how to implement (local) holonomy corrections for connections
along homogeneous directions (for a negative result concerning implementation of
nonlocal (extended) holonomy corrections in spherical symmetry see [197]). In our
case, this is given by γKφ ( = Aφ cosα):

hφ(r, µ) = exp(µAφ cosαΛAφ ) = cos(µγKφ)I + sin(µγKφ)Λ (3.63)

In order to see how the replacement (3.61) is implied by Eq. (3.63) one must
take into account that the scalar constraint (3.54) is quantized by utilizing the
Thiemann trick

√
Er ∝ {Kφ, V } (where V is the volume), whose quantum version

contains the commutator hφ[h−1
φ , V̂ ] = hφh

−1
φ V̂ − V̂ h−1

φ V̂ hφ. (This is equivalent to
regularizing the curvature of the connection by holonomies, with the minimum area
being the ‘area gap’ from LQG.) Using Eq. (3.63) one can easily see that products
of holonomies are given by cosine and sine functions of Kφ. Finally, it turns out that
the resulting quantum or ‘effective’ (since we are going to ignore operator ordering
issues, which are not crucial to our goals) scalar constraint could be obtained simply
making the replacement of Eq. (3.61). This justifies the following form of the
effective Hamiltonian constraint

HQ[N ] = − 1
2G

∫
B
drN

[
sin2(Kφδ)

δ2 Eφ + 2Kr
sin(Kφδ)

δ
Er + (1− Γ2

φ)Eφ + 2Γ′φEr
]
.

While the effective diffeomorphism constraint (3.53) remains undeformed since
spatial diffeomorphism invariance translates into vertex-position independence in
LQG, which is implemented directly at the kinematical level by unitary operators
generating finite transformations5.

4 The fact that zero does not belong to the spectrum of the area operator in LQG is precisely
the input from the full theory which gives a nontrivial quantum geometrical effect.

5In fact, there is no well-defined infinitesimal quantum diffeomorphism constraint in LQG for
the basis spin network states. Some progress in constructing it has been achieved in [171].
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Then, it is tedious but straightforward to show that only the Poisson bracket
between two Hamiltonian constraints is deformed due to the introduction of point-
wise (since they act at the vertices of spin-networks only) holonomy corrections
(3.61) resulting in (see e.g. Ref. [176] for a full derivation):

{HQ[N ], HQ[N ′ ]} = D[cos(2δKφ)qrr(N∂rN
′ −N ′∂rN)] (3.64)

while the other two Poisson brackets (3.57)-(3.58) remain unmodified [176].
Finally, comparing the above equation with the last bracket in Eq. (3.60), we can
identify the deformation function β = cos(2δKφ) for the case where we considered
only point-wise holonomy corrections of Kφ in the real connection formulation and by,
implicitly, choosing the fundamental representation of the SU(2) group. In the next
subsection, we shall see that β is affected by several quantization ambiguities since it
changes according to the choices we make for e.g. the Barbero-Immirzi parameter or
the representation of SU(2). The relevance of this observation, which we make here
for the first time, comes from the fact that, as we will show in the following section,
these LQG deformations can be related to deformations of the Poincaré symmetries
in the Minkowski limit and, eventually, be probed with experimental observations.
We shall then see that, at least in principle, different formal choices in the definition
of effective LQG models could be distinguished on phenomenological grounds.

3.2.2 Complex connection variables

We have mentioned that, even if the form of the Hamiltonian constraint simplifies,
the formulation of the quantum theory using complex Ashtekar variables is rather
involved due to the necessity to implement reality conditions on the observables.
However, at the level of effective models we are here concerned, there is no concrete
obstruction preventing us from implementing complex connections and, in principle,
no reason to prefer the formulation with γ ∈ R.

Actually, there has been a renewed interest in the study of symmetry reduced
systems (both cosmological and spherically symmetric) with complex connections
[198, 200, 201, 202, 203] and, in this case, the fate of diffeomorphism invariance is
much less clear and under current exploration. In fact, in Ref. [178] it has been
recently proven that there is at least a class of quantum corrections, we call them
“magnetic field" corrections, that preserve standard GR covariance. Our claim here
is that the type of corrections considered in Ref. [178] is different from that in
Eq. (3.61) since it modifies different terms in H[N ] and, implementing instead the
same corrections leading to the deformation in Eq. (3.64), one obtains once again
deformed covariance no matter if γ = i. Let us first sketch out the result of Ref.
[178] and then prove our conjecture.

In spherically symmetric LQG we have the canonical pairs (Ar, Er), (A2, E
2)

and (A3, E
3), of which Ar, E2 and E3 have density weight one. As anticipated, the

Hamiltonian constraint simplifies to

HQ[N ] =
∫

dxN [2ArEr(A2E
2+A3E

3)+f(A2
2+A2

3−1)((E2)2+(E3)2)+2Er(E2A′3−E3A′2)
(3.65)
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where, following Ref. [178], we have introduced the magnetic-field correction
function f(B1) = f(A2

2 +A2
3). The apex " ′ " stands for a derivative with respect to

the radial direction, e.g. A′3 ≡ ∂rA3.
To compute the Poisson bracket {HQ[N ], HQ[M ]}, we remind the reader that,

as functions of the generalized momenta, the spin connections components are given
by:

Γ1 = E3E′2 − E2E′3

(E2)2 + (E3)2 , Γ2 = − E′rE3

(E2)2 + (E3)2 , Γ3 = E′rE2

(E2)2 + (E3)2 (3.66)

At this point, one can easily evaluate {HQ[N ], HQ[M ]} and find out that with
the quantum correction B1 → f(B1) the hypersurface-deformation brackets close
without any deformation, i.e.

{HQ[N ], HQ[M ]} = (Er)2Hr[N ′M −M ′N ] (3.67)

with:

Hr =
∫

dxNr (Ar(E2A3 − E3A2) +A′3E
3 +A′2E

2) (3.68)

where Hr is the vector constraint where we introduced the smearing function
Nr := (∂rN)M − (∂rM)N for the radial direction. This is the result of Ref. [178]
where the authors then claimed that GR covariance is retained classically in effective
LQG in its self-dual (or complex) form. We here show that the situation is much
more subtle and the choice of γ by itself is not sufficient to say whether covariance
is violated, deformed, or preserved.

Our crucial objection to this analysis is that the magnetic-field correction is not
equivalent to the holonomy correction implemented for the real case as in Eq. (3.61).
To prove this, let us turn for a moment to real connection variables and introduce
the modification f(B1) into the full Hamiltonian constraint with generic γ (either
real or imaginary). For generic values of the Barbero-Immirzi parameter one has to
add the Lorentzian part of the constraint to the Euclidean component which is the
only one left if γ = i (3.65), and thus

HQ
tot[N ] =

∫
dxN [2ArEr(A2E

2 +A3E
3) + f(A2

2 +A2
3 − 1)((E2)2 + (E3)2)

+2Er(E2A′3 − E3A′2)− (1 + γ2)(KrE
r(K2E

2 +K3E
3)

+((K2)2 + (K3)2))((E2)2 + (E3)2))] (3.69)
= HE +HL

where again we have introduced the magnetic field correction function. Before
deriving explicitly the Poisson brackets, we turn to spherically symmetric variables
in which the Gauss constraint has been solved explicitly. The invariant variables
are two canonical pairs, (Kφ, E

φ) and (Kr, E
r), which we have used in the above

section. The Hamiltonian constraint then takes the form
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HQ
tot[N ] = −

∫
dxN(Er)−1/2(K2

φE
φ(1+γ2)+2KφKrE

r−f(Γ2
φ+γ2K2

φ−1)Eφ+2ErΓ′φ)
(3.70)

where, in terms of the previous variables,

Eφ ≡
√

(E2)2 + (E3)3, Kr = γ−1(Ar − Γr) , (3.71)

and

A2
φ ≡ A2

2 +A2
3 ≡ Γ2

φ + γ2K2
φ . (3.72)

The spin connection components (Γr,Γφ) can be computed from the spatial
metric expressed in terms of the densitized triads (see Refs. [144, 195] for additional
details). In particular, we have that

Γφ = −(Er)′

2Eφ . (3.73)

It is important to note that by definition B1 = A2
φ − 1 and, thus, the modified

term f(B1)((E2)2 + (E3)2)1/2 = f(A2
2 +A2

3− 1)((E2)2 + (E3)2)1/2 reads f(B1)Eφ =
f(Γ2

φ + γ2K2
φ − 1)Eφ when it is expressed in the above defined variables. Now we

can compute the Poisson bracket {H[N ], H[M ]} and find under which conditions
it closes even if in the presence of the deformation we have introduced. It is easy
to understand that the only terms that give non-zero contributions are the Poisson
brackets involving a phase space variable on one side and the first (or second)
derivative of the conjugated field on the other. In the light of this we have

{HQ
tot[N ], HQ

tot[M ]} = 1
4

∫
dxdyN(x)M(y)(Er(x)Er(y))−1/2((1 + γ2){K2

φ(x), E′φ}

×E
r(y)E′r(y)Eφ(x)

(Eφ(y))2 + 2{Kφ(x), E′φ(y)}Kr(x)Er(x)E
r(y)E′r(y)
(Eφ(y))2

+2Kφ(x){Kr(x), E′r(y)}E
r(x)Er(y)E′φ(y)

(Eφ(y))2 − {f,E′φ(y)}E
φ(x)Er(y)E′r(y)

(Eφ(y))2

−2Kφ(x){Kr(x), f}Er(x)Eφ(y)− 2Kφ(x)E
r(y)

Eφ(y){Kr(x), E′′r(y)}Er(x)) + (N ↔M)

where we have used the fact that f(B1) = f(Γ2
φ+γ2K2

φ−1) = f(1
4(E′x)2/(Eφ)2 +

γ2K2
φ−1). Integrating by parts in order to shift the derivatives from the phase-space

variables to the lapse function M(y) and exploiting δ(x, y), that come from the
canonical Poisson brackets, in order to get rid of the integral over y we obtain:
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{HQ
tot[N ], HQ

tot[M ]} = 1
4

∫
dxNM ′(−2(1 + γ2)Kφ

E′r

Eφ
− 2 Er

(Eφ)2KrE
′r − 4KφE

′φ Er

(Eφ)2

+4 Er

(Eφ)2E
φK ′φ + 4Kφ

ErE′φ

(Eφ)2 + ∂f

∂Kφ

E′r

Eφ
+ 4KφE

φ ∂f

∂E′r
) + (N ↔M)

= 1
2

∫
dx Er

(Eφ)2 (NM ′ −N ′M)(2EφK ′φ −KxE
′r) + 1

4

∫
dx(NM ′ −N ′M)

×(−2(1 + γ2)Kφ
E′r

Eφ
+ ∂f

∂Kφ

E′r

Eφ
+ 4KφE

φ ∂f

∂E′r
)

= D[ Er

(Eφ)2 (NM ′ −N ′M)] + 1
4

∫
dx(NM ′ −N ′M)(−2(1 + γ2)Kφ

E′r

Eφ

+ ∂f

∂Kφ

E′r

Eφ
+ 4KφE

φ ∂f

∂E′r
) .

Thus, the anomaly-free condition imposes that:

− 2(1 + γ2)Kφ
E′r

Eφ
+ ∂f

∂Kφ

E′r

Eφ
+ 4KφE

φ ∂f

∂E′r
= 0 . (3.74)

Since f = f(1
4(E′r)2/(Eφ)2 + γ2K2

φ − 1) = f(g(Kφ, E
′r)) we can rewrite the

above equation as follows:

− 2(1 + γ2)Kφ
E′r

Eφ
+ 2γ2Kφ

df
dg

E′r

Eφ
+ 2Kφ

E′r

Eφ
df
dg = 0 . (3.75)

It is easy to realize that, if γ ∈ R or if γ ∈ C and γ 6= i, such an equation has
no solution and consequently the theory is anomalous. On the other hand, if we
choose an imaginary Barbero-Immirzi parameter i.e. γ = ±i, the equation is verified
for any choice of the deformation function. In this latter case there is no anomaly
and, moreover, there is no deformation of the HDA that remains classical, i.e. we
regain the result in Eq. (3.67). This leads us to wonder that the magnetic-field
correction could be the only one allowed for the self-dual case and that no consistent
deformation of covariance can be induced by quantum corrections of constraints,
differently from what happens in real connections. We start noticing that less
restrictions and possibilities for deformed covariance appear when we reformulate
the model in the phase space (K,E) instead of (A,E). Let us show that, working in
the phase space (K,E) with γ = i, we can have deformed covariance just as in the
real case (3.64) provided that we implement quantum corrections in the same way
as in Eq. (3.61).

Let us first focus on the last two terms of the Euclidean Hamiltonian density

H = 2Er(E2B2 + E3B3) +B1((E2)2 + (E3)2) (3.76)
= 2Er(E2A′3 − E3A′2) + 2ErAr(E2A2 + E3A3) (3.77)

+1
2(A2

2 +A2
3 − 2)((E2)2 + (E3)2) , (3.78)

that is,
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2E1Ar(E2A2 + E3A3) (3.79)
1
2(A2

2 +A2
3 − 2)((E2)2 + (E3)2) . (3.80)

The former is left unmodified in Ref. [178], while it is deformed when one works
with real connection variables after a simple algebraic manipulation. Let us review
these passages in order to provide the reader with some more hints of our arguments,
before displaying an explicit computation of bracket deformations in the self-dual
case. First, it has been rewritten as follows

2ErAr(E2A2 + E3A3) = 2ErArAφ(σA · σE)Eφ , (3.81)

where

σA = A2σ3 −A3σ2
Aφ

(3.82)

σE = E2σ3 − E3σ2
Eφ

(3.83)

and σi with i = 1, 2, 3 are the Pauli matrices, with σA · σE = 1
2tr(σAσE). Then,

Eq. (3.81) is also equal to

2ErArAφ(σA · σE)Eφ = 2ErArγKφE
φ (3.84)

and, finally, it is deformed by introducing the holonomy correction of the angular
extrinsic curvature in the usual way

2ErArγKφE
φ → 2ErArf(γKφ)Eφ (3.85)

As aforementioned, this modification is not taken into account in Ref. [178].
Finally, the latter term of Eq. (3.79) is modified in both cases but in different ways.
In Ref. [178] the following deformation is implemented

1
2(A2

2 +A2
3 − 2)((E2)2 + (E3)2) = A2

φ((E2)2 + (E3)2)→ f(A2
φ)(Eφ)2 (3.86)

while in Refs. [178, 179] this term is divided into an extrinsic-curvature part and
a spin-connection part as follows

A2
φ(Eφ)2 = Γ2

φ(Eφ)2 + γ2K2
φ(Eφ)2 (3.87)

and only the extrinsic-curvature part is modified

γ2K2
φ(Eφ)2 → f(γ2K2

φ)(Eφ)2 . (3.88)

We suggest that this can be the reason why different results are obtained in the
two approaches besides of the choice of the Barbero-Immirzi parameter. Indeed,
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reintroducing terms is the above described mechanism that should allow deformations
of the hypersurface brackets. An explicit example is provided below.

Consider the Euclidean scalar constraint (3.65), now written in terms of invariant
phase space variables (Kφ,Kr, E

φ, Er) 6

HQ[N ] =
∫

dxN(x)(Er)−1/2
(
f2(Kϕ)Eϕ + 2f(Kϕ)ErKr (3.89)

+
(

1− (Er′)2

4(Eϕ)2

)
Eϕ − 2(Er)2Er

′′

Eϕ
+ 2(Er)2Er

′
Eϕ
′

(Eϕ)2

)
(3.90)

where we have introduced generic holonomy corrections of the homogeneous con-
nection by making the replacement: Kϕ → f(Kϕ). In this way, we are implementing
the same type of modifications we have in the real case where, indeed, space-time
brackets are modified.

We compute

{HQ[N ], HQ[M ]} =
∫

dxdyN(x)M(y)(Er(x))−1/2(Er(y))−1/2[2(Er(y))2Er
′(y)

(Eϕ)2(y) ×

{f2(Kϕ(x)), Eϕ′(y)}Eϕ(x)− 1
2f(Kϕ(x))Er(x){Kr(x),

(Er′(y))2} 1
Eϕ(y) − 4f(Kϕ(x))Er(x){Kr(x), Er′′(y)}(Er)2(y)

Eϕ(y)

+4f(Kϕ(x))Er(x){Kr(x), Er′(y)}(Er(y))2Eϕ
′(y)

(Eϕ(y))2 ] + (N ↔M)

where we have written the only terms which will not be cancelled by those
contained in the last term where the shifts are exchanged. For brevity, let us
calculate explicitly only the two relevant Poisson brackets

2ErKr{f(Kϕ), Eϕ′}E
rEr

′

(Eϕ)2 = 2 (Er)2

(Eϕ)2
df(Kϕ)

dKϕ
KrE

r′ d
dxδ(x− y)

2E
r(x)Ex(y)
Eϕ(y) {Kr, E

r′′}f(Kϕ) = 4(Er)2

Eϕ
f(Kϕ) d2

dx2 δ(x, y) , (3.91)

and after integrating by parts

−4 d
dx

(
Er(x)Er(y)
Eϕ(y) f(Kϕ(x))

) d
dxδ(x− y) (3.92)

= −4
(
Er(x)Er(y)
Eϕ(y) f ′(Kϕ(x)) + Er(x)′Er(y)

Eϕ(y) f(Kϕ(x))
) d

dxδ(x, y) ,

= −4 E
r(x)Er(y)

Eϕ(x)Eϕ(y)
df(Kϕ(x))

dKϕ
Eϕ(x)K ′ϕ(x) d

dxδ(x, y) + · · · (3.93)

6Irrelevant overall factors will be neglected to lighten the notation and shorten the computations.
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where we have neglected terms that cancel. (The Ex′-term cancels out with the
term in (3.91).) Plugging these expressions into Eq. (3.91) and integrating by parts,
we obtain7

{HQ[N ], HQ[M ]} = −
∫

dxN ′M Er

(Eϕ)2
df(Kϕ)

dKϕ
(2EϕK ′ϕ −KrE

r′) + (N ↔M) .

(3.94)
Finally, we can write:

{HQ[N ], HQ[M ]} = D[df(Kϕ)
dKϕ

Er

(Eϕ)2 (NM ′ −N ′M)] . (3.95)

Thus, no matter if we work with real or self-dual configuration variables, the
HDA can be modified by introducing proper quantum corrections in the form of the
scalar constraints.

Having shown that even for Euclidean (and, thus, self-dual) LQG we find in
general deformations of the HDA, which are qualitatively of the same type of
those found for real connection variables (3.64), let us now analyse in some detail
three different quantization scheme based on well-known procedures in the LQG
literature to deal with self-dual holonomies [198, 200, 203]. In the first case [198]
we obtaine the formulation of effective constraints with holonomy corrections of
self dual connections by complexifying real variables. With this first choice, the
holonomies are evaluated in the fundamental representations of SL(2,C) group just
as the real connection case was based on the fundamental representation of SU(2).
The second analysis makes use of self dual connections (i.e. γ = ±i) by exploiting
the recently introduced procedure of analytic continuation that uses the continuous
representations of SU(1, 1) as the symmetry group [200, 201, 202]. The third treats
the same issue but using the the tool of generalized holonomies, as used in [203].

We extract a holonomy correction function from each of these approaches [183],
which we then use to polymerize the effective Hamiltonian constraint. It is worth
stressing that, for the derivation of the polymerization functions, the original work
was done in a homogeneous LQC scenario. Our intent to transfer the correction
function to the spherically symmetric case is to examine its effect on the deformation
function β (3.60), which is impossible to do in a strictly minisuperspace setting
(since the spatial diffeomorphism constraint in that case is trivially zero). Also, we
are not deriving new rigorous regularization schemes for these approaches applied
to midisuperspace models, but rather mimicking the work done for the real-valued
variables to make first contact with observations as we show in the last two sections
of this chapter.

Fundamental SL(2,C) holonomies

Self-dual connections are given by

Aia = Γia ± iKi
a (3.96)

7Boundary terms are neglected.
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where the Barbero-Immirzi parameter is, thus, purely imaginary i.e. γ = ±i. The
main difference with respect to real-valued connections is that now the variables Aia
are no more in the adjoint representation of the SU(2) group but they are elements
of the non-compact group SL(2,C). Following Thiemann [204, 205], we can obtain
the latter gauge group through a complexification of the former. This means that
any element A ∈ SL(2,C) can be written as [198]

A = Aiτi (3.97)

with Ai ∈ C and τi are the SU(2) generators already introduced at the beginning
of the previous section.

As a first-pass at the problem, we choose to work in the fundamental represen-
tation of SL(2,C). This is not well-justified from the point of view of LQG since
the functions obtained in this case would then naturally be unbounded. As a result,
singularity-resolution is not possible for such a naive choice of the representation for
the effective constraints. Nevertheless, theoretical premonitions aside, one is still
allowed to do this without violating any of the gravitational restrictions. Thus we
want to emphasize this case only to be a toy model; a sort of warm-up exercise in
deriving modifications of the HDA for self dual variables.

For the purposes of our analysis, the crucial thing is that, in light of Eq. (3.97),
the holonomy of the angular complex connection Aφ cosα = γiKφ is given by

hφ(r, µ) = exp(µγKφΛAφ ) = cosh(µKφ)I− 2 sinh(µKφ)Λ , (3.98)

with Kφ ∈ R. Then we can introduce the following holonomy corrections

Kφ →
sinh(Kφδ)

δ
. (3.99)

Thus, we find the following form for the effective Hamiltonian

HQ[N ] = − 1
2G

∫
B
drN

[
−sinh2(Kφδ)

δ
2 Eφ + 2Kr

sinh(Kφδ)
δ

Er + (Γ2
φ − 1)Eφ − 2Γ′φEr

]

where we have considered only the Euclidean part since the Lorentzian one
disappears when working with a purely imaginary Immirzi parameter (the reason
being that the coefficient of the Lorentzian part is given by (1 + γ2)).

It is then straightforward to calculate the Poisson brackets between the quantum-
corrected effective constraints, on evaluating which one finds the following deforma-
tion to the hypersurface deformation algebra

{HQ[N ], HQ[N ′ ]} = D[cosh(2δKφ)hrr(N∂rN
′ −N ′∂rN)] . (3.100)

Analytic continuation: SU(1, 1) holonomies

Now we want to address once again the system of self dual spherically symmetric
LQG by using a recently proposed procedure, namely an analytic continuation from
the real Barbero-Immirzi parameter to the imaginary one[199, 200]. This recent
proposal, originally proposed for LQC and black hole entropy calculations, puts the
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self dual variables on a much more rigorous footing. The approach is based on the
principle that imaginary Immirzi parameter has to be used in combination with an
analytic continuation of the spin j representations to j = −1

2 + i
2s with s ∈ R. The

need for such a procedure can be briefly justified as follows (see e.g. Refs. [200, 201]
for further details). Consider the eigenvalues of the area operator in LQG:

al = 8πl2Pγ
√
jl(jl + 1) . (3.101)

If the Barbero-Immirzi parameter is purely imaginary γ = ±i, then, as one can
realize by looking at the above expression, the area eigenvalues necessarily become
imaginary. This would prevent the area operator from being a candidate observable
even at the level of the kinematical Hilbert space. A heuristic manner to avoid this
drawback is given by the following analytic continuation

jl →
1
2(−1 + is) (3.102)

since it is immediate to realize that it implies

al → 4πl2P
√
s2
l + 1 (3.103)

In this way the spectrum of the area operator becomes continuous but it remains
real. In the language of group theory this corresponds to turning from SU(2) to
SU(1, 1) representations8.

The expression of the field strength in terms of holonomies of homogeneous
connections has been derived in Ref. [199] for an arbitrary representation s of the
non-compact SU(1, 1) symmetry group. For our purposes here, it is of interest the
fact that the result of Ref. [199] corresponds to the following effective holonomy
correction

Kφ →
sinh(δKφ)

δ

√
−3

s(s2 + 1) sinh(θφ)
∂

∂θφ
( sin(sθφ)
sinh(θφ)) (3.104)

where we have introduced the class angle θφ defined as

sinh(θφ2 ) = sinh2(δKφ

2 ) (3.105)

We refer to Ref. [199] for formal details. Although the form of the function
obtained here is not very tractable, it has been shown that one has a non-singular
quantum cosmological solution on implementing it [202]. As a side note, we remark
that the effective solution of this system is only known so far in the cosmological
context and a full quantum theory is still beyond reach.

Plugging these holonomy corrections (3.104) into the Hamiltonian constraint, a
tedious but straightforward computation reveals that the hypersurface-deformation
algebra is modified as follows

8 We note that the dimension of the representation also gets a similar analytic continuation in a
systematic procedure in this formalism; however, it is unimportant for our purposes here.
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{HQ[N ], HQ[N ′ ]} = −3
s(s2 + 1)D[cosh(2δKφ)

(
1

sinh(θφ)
∂

∂θφ

(
sin(sθφ)
sinh(θφ)

))

+sinh(2δKφ)
δ

∂θφ
∂Kφ

(
− cosh(θφ)

sinh2(θφ)
∂

∂θφ

(
sin(sθφ)
sinh(θφ)

)
+ 1

sinh(θφ)
∂2

∂θ2
φ

(
sin(sθφ)
sinh(θφ)

))

+sinh2(δKφ)
δ2

∂2θφ
2∂K2

φ

(
− cosh(θφ)

sinh2(θφ)
∂

∂θφ

(
sin(sθφ)
sinh(θφ)

)
+ 1

sinh(θφ)
∂2

∂θ2
φ

(
sin(sθφ)
sinh(θφ)

))

+sinh2(δKφ)
δ2

(
∂θφ
∂Kφ

)2( 1
sinh3(θφ)

∂

∂θφ

(
sin(sθφ)
sinh(θφ)

)
− cosh(θφ)

sinh2(θφ)
∂2

∂θ2
φ

(
sin(sθφ)
sinh(θφ)

))

+ 1
2 sinh(θφ)

∂3

∂θ3
φ

(
sin(sθφ)
sinh(θφ)

)
grr(N∂rN

′ −N ′∂rN)]

More compactly, we can rewrite the above equation in an implicit but more
compact form as follows:

{HQ[N ], HQ[N ′ ]} = D[β(Kφ)grr(N∂rN
′ −N ′∂rN)] . (3.106)

Generalized holonomies

In a series of recent papers [203], another novel way of dealing with self dual Ashtekar
variables has been proposed. It is based on the introduction of new fundamental
variables which are called generalized holonomies. They are defined as

hα(A) = P exp(
∫
α
ėaiAiaτi) , (3.107)

where the fundamental difference with respect to standard holonomies of Eq.
(3.27) consists in an additional factor of i multiplying the complex connection Aia.
The main motivation for introducing these objects comes from the fact that, as
shown in Ref. [203], standard holonomies cannot be defined in the kinematical
Hilbert space of LQC. Generalized holonomies retain some important properties.
However, one of the major drawbacks is that they transform in a simple manner
under gauge transformations, thereby loosing one of the pivotal characteristics of
holonomies.

Here we wish to seek which is the form of effective quantum corrections carried by
generalized holonomies and, furthermore, how they affect the Poisson bracket {H,H}.
To this end let us consider a generic homogeneous complex connection, which we
call c(r), and his conjugated momentum p(r′) such that {c(r), p(r′)} = iδ(r − r′).
From Eq. (3.107) it follows that the holonomy of c(x) is given by

hj(c) = exp(µcτj) = cosh(µc)I + sinh(µc)σj . (3.108)

If we take c(r) = γKφ(r) = iKφ(r) we can rewrite the above equation as

hφ(r, µ) = cosh(µiKφ)I + sinh(µiKφ)σφ
= cos(µKφ)I + sin(µKφ)Λ , (3.109)
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which coincides exactly with Eq. (3.63). This means that, for what regards
holonomy corrections, the real case is equivalent to the self-dual case formulated in
terms of generalized holonomies. In fact, in both cases, holonomy corrections yield
the same substitution Kφ → sin(δKφ)/δ in the effective Hamiltonian constraint (see
Eq. (3.64)).

3.3 Links with non-commutative spacetimes

Starting from the results of the precedent two sections on LQG deformations of
the HDA, in this section we offer a contribution toward establishing a link be-
tween LQG and approaches focusing on the assumption of noncommutativity of
coordinates in the Minkowski regime of QG. Both the LQG approach and the
spacetime-noncommutativity approach involve the possibility that the geometry
of spacetime might be quantized in the QG realm. LQG should be applicable
to all regimes of QG, but the complexity of the formalism is such that de facto
there is no physical regime of QG for which we are presently able to use LQG
for an intuitive (intelligible) characterization of the novel physical properties that
would result from the quantum-geometric properties. On the other hand, spacetime
noncommutativity takes the more humble approach of postulating one or another
form of noncommutativity of spacetime coordinates, hoping that it might be appli-
cable in the Minkowski regime, but has the advantage of leading to several rather
intuitive findings about the physical implications of these assumptions, some of
which attracted even some interest in phenomenology [11]. A link between LQG
and spacetime noncommutativity is solidly established for dimensionally-reduced
3D quantum gravity [206, 207, 208, 209], but it remains so far unclear whether a
generalization of those results is applicable to the 4D case of real physical interest.
The two analyses here reported might be a significant step toward the mutual relation
between LQG and noncommutative geometries.

The analysis in the first subsection [181] starts from a recent publication by
Bojowald and Paily [180], which found that the LQG-based modifications to
the HDA in Eq. (3.64) leave a trace in the Minkowski regime, characterized by
a suitable modification of the Poincaré algebra, and correctly concluded that a
quantum-spacetime dual to that deformed Poincaré algebra should then give the
quantum-geometry description of LQG in the Minkowski regime. In fact, as we
discussed in Chapter 1, deformed Poincaré algebras are characteristic of the structure
of DSR-relativistic theories, and for such theories one expects in general that the
duality between Minkowski spacetime and the classical Poincaré algebra be preserved
in the form of a duality between a suitably deformed Poincaré algebra and a “quantum
Minkowski spacetime" as it is the case for θ-Minkowski and κ-Minkowski spacetime we
have reviewed in the introduction. In particular, we contemplate the possibility that
this quantum-spacetime picture be given in terms of κ-Minkowski noncommutative
spacetime. Considering a sufficiently general class of possible representations of the
action of the generators on κ-Minkowski coordinates, we establish with a constructive
analysis the compatibility between κ-Minkowski and the LQG-deformed symmetry
algebra results obtained in Ref. [180]. Such an analysis leads us also to the
identification of the coproduct structure of the LQG-deformed Poincaré algebra.
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The second analysis [182] takes a completely different path towards establishing
a link between LQG and spacetime noncommutativity. Working in the kinematical
Hilbert space of LQG, we here construct a set of three operators that could identify
coordinate-like quantities on a spin-network configuration. In doing so, we rely on
known properties of operators for angles. Computing their action on coherent states,
we are able to study some relevant properties such us the spectra, which are discrete.
In particular, we focus on the algebra generated by quantum coordinates and,
remarkably, it turns out that they do not commute. This may provide additional
hints on how space-time noncommutativity could be realized in the context of
LQG. In conclusion, we explore the semiclassical regime, necessary to make contact
with coordinates on manifolds, and it is given by the large-spin limit in which
commutativity can be restored. We also briefly discuss the regularization properties
of these noncommutative coordinate operators.

3.3.1 Quantum Minkowski regime

We have seen that (semi-classical) LQG modifications of the Hamiltonian constraint
yield quantum deformations of the HDA as in Eqs. (3.60) (but see also Eqs. (3.95)
(3.100) and (3.106)). In the above sections we have shown how the specific form of
the deformation β depends on a set of formal assumptions, yet the appearance of
a modification in (the right-hand side of) {HQ, HQ} seems to be a rather robust
and general result regardless of the LQG-inspired model used. We have also shown
in Chapter 2 that, at the classical level, one can regain the Poincaré algebra from
the HDA by taking a “Minkowski" limit of canonical GR in the way we already
discussed. It is then natural to ask if the Minkowski limit of the LQG-deformed HDA
leads to a corresponding deformation of the Poincaré algebra and, if so, whether
such a deformation of Poincaré isometries is of the type required to characterize the
symmetries of non-commutative spacetimes. To this end, it is of particular interest
the analysis reported in Ref. [180], which shows that the simplest and most studied
case of deformed HDA (3.64) reduces to a Planck-scale-deformed Poincaré algebra
if one takes the flat-spacetime limit. Most notably the relevant deformations of
the Poincaré algebra are qualitatively of the type known to arise in the description
of the relativistic symmetries of noncommutative spacetimes. Building on their
preliminary but encouraging results, we put forward and somehow complete their
analysis by showing that the symmetry-algebra results reported by Bojowald and
Paily in Ref. [180] are consistent with a description of spacetime in the Minkowski
regime given in terms of the κ-Minkowski noncommutative spacetime [181]. For
simplicity we shall here concentrate only on the case of real connection variables with
holonomies evaluated in the fundamental representation of SU(2). However, as we
explicitly showed above, deformations of the HDA can be obtained also for complex
Ashtekar variables (3.95), (3.100), (3.106). We will distinguish between different
quantization choices later on, when we will discuss how these formal ambiguities
may affect phenomenological outcomes, namely the form of the MDR and the UV
value of the spacetime dimensions.

Now our objective is to take the Minkowski limit of the deformed HDA in order
to derive the corresponding deformation of the Poincaré algebra. After that, we
want to show that such a deformation is suitable for describing the symmetries of
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κ-Minkowski spacetime (1.27). For this purpose, let us first notice that qualitatively
the main difference between deformations of the HDA and those of the Poincaré
algebra appeared in the literature on spacetime noncommutativity [30, 31, 33, 89, 90]
stands in the fact that in the former case the deformation function β = β(hij ,Kkl) is
a function of the phase space variables while in the latter the modifications are given
in terms of non-linear combinations of the symmetry generators. In this regard, an
important observation has been done in Ref. [180] where the authors proved that,
under the assumption of spherical symmetry, the deformation function β can be
expressed as a function of the generator of spatial translations, i.e. β = cos(λPr),
being λ a parameter of the order of the Planck length. This relation will be useful
throughout this subsection as well as in the last section of this chapter. This can be
seen as follows. As shown in Chapter 2, in Hamiltonian GR, the role of Poincaré
generators is played by boundary terms. In particular, the generator of infinitesimal
translations for spherically symmetric spaces is given by the (quasi-local) Brown
York momentum [210]

P = 2
∫
∂Σ
d2zυb(naπab − naπab) , (3.110)

where υa = ∂/∂xa, na is the co-normal of the boundary of the spatial region
Σ, and the over barred symbols in the above equation are the same functions but
evaluated at the boundary. From this, it is possible to establish that the radial
Brown-York momentum Pr is related to the extrinsic curvature component Kϕ in
the following way

Pr = − Kϕ√
|Er|

. (3.111)

Thus, given Eq. (3.64), we also have that

β = cos(λPr) . (3.112)

In the light of this, if we take the Minkowski limit of Eq. (3.64) by doing the steps
illustrated in Section 2.1.3 of Chapter 2, the net result is that the relevant Poincaré
algebra is characterized by a deformed commutator between boost generator and
generator of time translations:

[Br, P0] = iPr cos(λPr) . (3.113)

Since only the Poisson bracket involving two scalar constraints is quantum
corrected (see Eqs. (3.60)), the other commutators are undeformed, i.e. [Br, Pr] =
iP0 and [P0, Pr] = 0. At this point we are ready to show that the operators
Br, Pr and P0 generate the deformed-Poincaré-symmetry transformations which
are symmetries of the κ-Minkowski noncommutative spacetime. We find that the
spherically-symmetric version of the κ-Minkowski noncommutativity of spacetime
coordinates is

[X0, Xr] = iλXr. (3.114)
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To do that, the first non-trivial task consists in identifying a suitable representa-
tion for the symmetry generators. Thus, we propose the following ansatz which will
prove itself to be general enough to serve our scopes, i.e. :

Br = F (p0, pr)Xrp0 −G(p0, pr)X0pr , Pr = Z(pr) , P0 = p0 , (3.115)

where pr and p0 are standard momenta operators dual to commutative spacetime
coordinates, i.e. [xr, pr] = i, [x0, p0] = −i, [xr, p0] = 0, [x0, pr] = 0, [x0, xr] = 0,
[p0, pr] = 0. Notice also that κ-Minkowski coordinates can be written in terms of
the phase space variables (xr, x0, pr, p0) as Xr = xr and X0 = x0 − λxrpr. In the
above representation F (p0, pr), G(p0, pr) and Z(pr) are functions of the translation
generators to be determined by enforcing compatibility with the deformed algebra
(3.113). Explicitly our objective is to find choices of F (p0, pr), G(p0, pr) and Z(pr)
such that (3.113) is satisfied, with [Br, Pr] = iP0 and [P0, Pr] = 0. We then notice
that this is assured if Z(pr) is a solution of the equation

λZ(pr) sin(λZ(pr)) + cos(λZ(pr)) = λ2pr
2

2 + 1. (3.116)

As a consequence, F (p0, pr) and G(p0, pr) can be given in terms of such a solution
for Z(pr) through the following equations:

G(pr) = Z(pr) cos(λZ(pr))
pr

,

F (p0, pr) = G(pr)eλp0 = Z(pr) cos(λZ(pr))eλp0

pr
,

(3.117)

So we have reduced the problem of finding representations on κ-Minkowski of
the Bojowald-Paily deformed Poincaré algebra to the problem of finding solutions to
equation (3.116). Of course we must also enforce that such solutions Z(pr) satisfy
the limiting condition limλ→0

Z(pr)
pr

= 1, since the undeformed representation of
Poincaré generators must be recovered when the noncommutativity is turned off.

We were unable to find an explicit all-order expression for such a solution Z(pr),
but we find that its perturbative derivation (as a series of powers of λ) is always
possible and straightforward up to the desired perturbative order. In particular, to
quartic order in the parameter λ the needed solution Z(pr) takes the form:

Z(pr) = pr + 1
8λ

2pr
3 + 55

1152λ
4pr

5. (3.118)

Notice that on the basis of remarks given above evidently pr acts on κ-Minkowski
noncommutative coordinates as follows:

[pr, X0] = iλpr, [pr, Xr] = −i (3.119)

while for what concerns p0 one has

[p0, X0] = i, [p0, Xr] = 0 (3.120)
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Equipped with this final specification one can easily check explicitly that (as en-
sured automatically by our constructive procedure) the representation here obtained
up to quartic order in λ for the generators Br, Pr and P0 satisfies all the Jacobi
identities involving these generators and κ-Minkowski coordinates. For example one
has that:

[[Br, Xr], X0] + [[X0, Br], Xr] + [[Xr, X0], Br] =

−i[ (Z
′ cos(λZ)− λZZ ′ sin(λZ))pr − Z cos(λZ)

p2
r

xrp0, X0] +

+i[ (Z
′ cos(λZ)− λZZ ′ sin(λZ))pr − Z cos(λZ)

p2
r

x0pr, X0] +

−[iZ cos(λZ)
pr

xr − λ[Br, Xr]pr − iλ
Z cos(λZ)

pr
xrp0, Xr] +

+[iZ cos(λZ)
pr

x0, X0] + iλ[Br, Xr] = 0

where Z ′ = dZ(pr)
dpr

.

These results concerning the interplay between the algebra of symmetry genera-
tors and κ-Minkowski coordinates provide strong encouragement for the possibility
that the quantum-Minkowski spacetime emerging from the Bojowald-Paily analysis
is the κ-Minkowski noncommutative spacetime. However, a complete description
of the the symmetries of a noncommutative spacetime in terms of Hopf algebras
necessitates also a specification of the coproducts of the generators, as we briefly
reviewed in Section 1.2 of Chapter 1. From the representations of Br, Pr and P0 we
derived one easily finds (with standard steps of derivation which we briefly reminded
in Section 1.2 of Chapter 1 and have been discussed in several publications such as
Refs.[88, 89, 90]) that these coproducts are given by:
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∆Br = Br ⊗ 1 + 1⊗Br − λP0 ⊗Br + 1
8λ

2Pr
2 ⊗Br

+1
2λ

2P0
2 ⊗Br −

3
8λ

2Br ⊗ Pr2 − 3
4λ

2PrBr ⊗ Pr

−3
4λ

2Pr ⊗ PrBr −
5
8λ

3P0Pr
2 ⊗Br + 3

4λ
3P0Pr ⊗ PrBr

−3
4λ

3Pr
2Br ⊗ P0 −

3
4λ

3Pr
2 ⊗ P0Br −

3
4λ

3PrBr ⊗ P0Pr

−3
4λ

3Pr ⊗ P0PrBr + 67
1152λ

4P 4
r ⊗Br + 15

64λ
4Pr

2 ⊗ Pr2Br

−1
8λ

4P0
4 ⊗Br + 9

16λ
4P0

2Pr
2 ⊗Br + 15

64λ
4Pr

2Br ⊗ Pr2

−167
288λ

4Pr
3Br ⊗ Pr −

59
288λ

4Pr ⊗ Pr3Br

− 97
144λ

4Pr
3 ⊗ PrBr −

3
8λ

4P0
2Pr ⊗ PrBr

+3
4λ

4P0Pr
2 ⊗ P0Br + 3

4λ
4P0Pr ⊗ P0PrBr

+ 11
144λ

4PrBr ⊗ Pr3 − 3
4λ

4Pr
2Br ⊗ P0

2

−3
4λ

4Pr
2 ⊗ P0

2Br −
5

1152λ
4Br ⊗ Pr4

−3
8λ

4PrBr ⊗ P0
2Pr −

3
8λ

4Pr ⊗ P0
2PrBr

∆Pr = Pr ⊗ 1 + 1⊗ Pr + λPr ⊗ P0 + 1
2λ

2Pr ⊗ P0
2

−1
8λ

2Pr ⊗ Pr2 + 3
8λ

2Pr
2 ⊗ Pr + 1

4λ
3Pr

3 ⊗ P0

+3
8λ

3Pr ⊗ P0Pr
2 + 3

4λ
3Pr

2 ⊗ P0Pr + 1
2λ

4Pr
3 ⊗ P0

2

− 49
1152λ

4Pr ⊗ Pr4 + 11
36λ

4Pr
3 ⊗ Pr2 − 1

8λ
4Pr ⊗ P0

4

+ 7
16λ

4Pr ⊗ P0
2Pr

2 + 1
18λ

4Pr
2 ⊗ Pr3

+ 167
1152λ

4Pr
4 ⊗ Pr + 3

4λ
4Pr

2 ⊗ P0
2Pr
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∆P0 = P0 ⊗ 1 + 1⊗ P0 + λPr ⊗ Pr + 1
2λ

2P0 ⊗ P0
2

+1
2λ

2P0
2 ⊗ P0 −

1
2λ

2P0 ⊗ Pr2 − λ2P0Pr ⊗ Pr

+1
2λ

2Pr
2 ⊗ P0 −

1
8λ

3Pr ⊗ Pr3 + 3
8λ

3Pr
3 ⊗ Pr

+1
2λ

3P0
2Pr ⊗ Pr − λ3P0Pr

2 ⊗ P0 + 1
4λ

4Pr
4 ⊗ P0

−1
8λ

4P0 ⊗ P0
4 − 1

8λ
4P0

4 ⊗ P0 + 1
8λ

4P0Pr ⊗ Pr3

+1
4λ

4P0 ⊗ P0
2Pr

2 + 3
4λ

4P0
2Pr

2 ⊗ P0 −
7
8λ

4P0Pr
3 ⊗ Pr

where again we are working to quartic order in λ. Reassuringly the coproducts
“close", i.e. they can be expressed in terms of the generators Br, Pr and P0, which
is considered as a key consistency criterion [88, 89, 90] for the description of the
symmetries of a noncommutative spacetime. Together with the above results, this
establishes that the Bojowald-Paily operators Br, Pr and P0 describe the relativistic
symmetries of the κ-Minskowski spacetime. It is well-known that the κ-Poincaré
Hopf algebra can present itself, as far as explicit formulas are concerned, in some
rather different ways, depending on the conventions adopted. This is because for
a Hopf algebra not only linear but also non-linear redefinitions of the generators
provide admissible “bases". Given that, we must now infer that Br, Pr and P0 must
give a basis of κ-Poincaré. In the light of this discussion, the most direct way for
showing that a given set of commutation rules is a basis for κ-Poincaré is to show
that there is a nonlinear redefinition of the generators which maps them into a
known basis of κ-Poincaré. In order to accomplish this task we took as reference
the most used basis of κ-Poincaré, the so-called bicrossproduct basis (1.33). In the
spherically symmetric case we represent the κ-Poincaré algebra in the bicrossproduct
basis in terms of the following commutators

[P0,Pr] = 0 , [Br,P0] = iPr ,

[Br,Pr] = i
1− e−2λP0

2λ − iλ2P
2
r ,

(3.121)

where we introduced the notation P0, Pr, Br for the generators of the bicrossprod-
uct basis. We have obtained the relationship between the Bojowald-Paily operators
Br, Pr and P0 and bicrossproduct-basis generators P0, Pr, Br in terms of the function
Z(pr) which must solve Eq.(3.116) in order for us to have a consistent representation
of Br, Pr and P0 on the κ-Minskowski spacetime. This relationship takes the form:

Br = Z(PreλP0) cos(λZ(PreλP0))
PreλP0

Br,

Pr = Z(PreλP0),

P0 = sinh(λP0)
λ

+ λ

2P
2
r e
λP0 ,

(3.122)
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which (since we have an explicit result for Z(pr) to quartic order in λ) we we
can render explicit to quartic order in λ:

Br = (1 + λ2P2
0 −

3
8λ

2P2
r −

3
4λ

3P0P2
r+

−5
4λ

4P2
rP2

0 −
113
1152λ

4P4
r )Br

(3.123)

Pr = Pr + λPrP0 + λ2

2 PrP
2
0 + λ2

8 P
3
r + 3

8λ
3P0P3

r+

+λ3

6 PrP
3
0 + 9

16λ
4P2

0P3
r + λ4

24PrP
4
0 + 55

1152λ
4P5

r

(3.124)

P0 = P0 + λ

2P
2
r + λ2

6 P
3
0 + λ2

2 P0P2
r+

+λ3

4 P
2
0P2

r + λ4

120P
5
0 + λ4

12P
3
0P2

r .

(3.125)

Having identified the relations between the two sets of operators, i.e. (Br, Pr, P0)
and (Br,Pr,P)0), we have proven that the deformed symmetry algebra derived by
Bojowald and Paily can actually provide a suitable characterization of the symmetry
transformations of κ-Minkowski coordinates. We also obtained a specific form for
the coproducts, which, as stressed above, for consistency should be found to play a
role in the action of relativistic-symmetry transformations on the product of states
within the LQG formalism. This would deserve additional efforts needed to fully
clarify the relation we here established between non-commutative spacetimes with
deformed Poincaré symmetries and the LQG-deformed HDA.

3.3.2 Proposal for coordinates operators

Inspired by the results we obtained in the previous subsection that suggest a possible
link between LQG and the noncommutativity of spacetime coordinates, we now
follow a rather different line of reasoning. Here the idea is to build in a constructive
manner a set of background independent operators we want to interpret as a possible
generalization of usual coordinates on a manifold to the abstract spin-network graph
where LQG states of geometry are defined. Specifically, we shall construct a set of
three operators suitable for identifying coordinate-like quantities on a spin-network
configuration [182]. In fact, there is a well-known detailed analysis of the properties of
geometric quantities such as areas [66], volumes [211] and also lengths [212, 213, 214],
but very little is known about what happens to spacetime points or, to put it more
precisely, if there exists an analogous procedure to also characterize coordinates.
Areas, volumes and lengths, when realized as well-defined quantum operators on the
kinematical Hilbert space, indeed have the remarkable feature of possessing discrete
spectra [66, 67]. We here propose a tractable way of defining an operator that
mimics the three spatial coordinates. To this end, we can rely on known properties
of operators for angles, which are already well-known in the LQG literature. The
main objective will be computing their spectra and, most importantly, the algebra
these operators obey.
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We can start by rapidly reviewing how one can introduce an operator for directions
in space as first proposed in Ref. [215]. Our construction is based on this well-
established LQG result. Consider a sphere around a node n, with several edges
emanating from it, on the spin-network graph. Let us choose three regions on the
surface of a sphere and accordingly divide the edges in three sets Se with e = {1, 2, 3}
as in Fig. (3.2). Given this decomposition of the links, it is always possible to regard
a generic node n as a trivalent node [215]. Here S1, S2 and S3 refer to the set of
edges that meet at n, labeled respectively by 1, 2 and 3. Suppose all the edges are
outgoing and associate a flux operator F̂ ei that identifies the direction of each of
these sets. In other words, they are the fluxes through the surfaces dual to the (set
of) links Se — see Fig. (3.3). In order to have null angular momentum at the node
one has to impose a closure condition F̂ 1 + F̂ 2 + F̂ 3 = 0. Then one can define the
cosine operator of the angle θ between S1 and S2 as

ĉos θ := F̂ 1
i F̂

2
i√

F̂ 1
l F̂

1
l

√
F̂ 2
k F̂

2
k

. (3.126)

Analogously, one can of course define the cosine of the angle between S2 and S3,
and for that between S1 and S3.

Figure 3.2. The figure shows the way we group the links converging at a given node. We
pick out three sets of links and gather them in three different “total” links, which we
call S1 and S2 and S3. Given such a construction, it is possible to define an operator for
the angle between S1 and S2, for the angle between S2 and S3, and for that between S1
and S3.

Its spectrum can be obtained by acting on the spin-network state associated to
the graph (3.2), and by using the closure condition, and is given by
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ĉos θ |Ψ〉 = j3(j3 + 1)− j1(j1 + 1)− j2(j2 + 1)√
j1(j1 + 1)

√
j2(j2 + 1)

|Ψ〉 (3.127)

up to a numerical prefactor. Here j3 is the total spin number labeling the group
of edges S3, j1 is the total spin of S1 and, finally, j2 labels S2. As already shown in
[215], on taking the naive classical limit of this cosine operator, we can regain the
cosine of the angle between the two surfaces.

Figure 3.3. The figure gives the abstract picture of the above mentioned decomposition
of the vertex. Using such a decomposition, any n-valent vertex can be reduced to a
3-valent one. Indeed, the edges of the vertex are distributed among three sets S1, S2
and S3, whose total spin labels are respectively

∑
i xi ,

∑
j yj and

∑
k zk. Thus, each of

the sets is recast into a single edge denoted with n1 for, e.g., the S1 set. These three
total edges now converge at a 3-vertex.

Analogously, we introduce an operator for the sine of the angle as

ŝin θ :=
niεijkF̂

1
j F̂

2
k√

F̂ 1
l F̂

1
l

√
F̂ 2
k F̂

2
k

, (3.128)

where ni is the normal versor along the internal directions {j, k}. This operator is
defined in a more natural way through the wedge product of two of the fluxes.

It is worth stressing that both Eq. (3.127) and Eq. (3.128) make no reference
to the space-time manifold but are rather defined only in terms of quantities on
the abstract spin-network graph, namely its edges and nodes. We are now ready to
realize this background independence also for the case of points or coordinates.

Using the sphere described above for the angle operator, around a node, we can
separate the surface of the sphere into three regions Se with e = {1, 2, 3}, which like
before, collect the edges through each of these regions and assign a flux operator F̂ ei
that labels an outgoing direction for each of these regions. Then, using the outer
product of two fluxes, we can define coordinate operators.

The coordinate operators (COs) are introduced as
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X̂ := r
niεijkF̂

2
j F̂

3
k√

F̂ 3
l F̂

3
l

√
F̂ 2
k F̂

2
k

, (3.129)

Ŷ := r
niεijkF̂

3
j F̂

1
k√

F̂ 3
l F̂

3
l

√
F̂ 1
k F̂

1
k

, (3.130)

Ẑ := r
niεijkF̂

1
j F̂

2
k√

F̂ 1
l F̂

1
l

√
F̂ 2
k F̂

2
k

, (3.131)

where r is a constant with dimensions of a length. Let us first stress that X̂, Ŷ ,
and Ẑ are not usual space-time manifold coordinates, but rather our proposal for a “
notion of coordinate" on the abstract spin-network. Taken one node as reference
point, we used the directions of (three of) its links in order to define a 3d basis
suitable for introducing objects that resemble usual coordinates. Thus, the elements
of this basis should provide locally the position with respect to a given specific node.
Indeed, our generalizations for space directions are identified in terms of the angular
momenta of the three groups of edges converging into the same node, which is picked
as an origin of the “coordinate frame" we build. In particular, they are given in
terms of the cross product between orthogonal flux operators identifying the three
directions of space.

It is also important to observe that our COs are not expected to be diffeomorphism-
invariant since the very notion of coordinates on (even a classical) manifold depends
on the choice of the chart. However, defining operators that are not diffeomorphism-
invariant is common in LQG, see e.g. the case of the ‘length’-operator. As a matter
of fact, hitherto the full diffeomorphism-invariance was not even recovered (because
of the current failure of imposing the scalar constraint in a general set-up of pure
gravity in LQG) within the case of the more common area and volume operators,
which nevertheless are widely treated in the literature [66]. Moreover, our COs
are defined by construction on the kinematical Hilbert space and, thus, cannot be
‘observables’ in the nomenclature of Dirac. Nonetheless, the reason for developing the
proposal of geometrical noncommutative quantities, including the angle operators
as much as the coordinate operators we are about to introduce here, lies in the
possibility of gaining intuition about the emergent deformation of symmetries, which
instead retains a physical and (experimentally) observable meaning as we shall see
in the subsequent two subsections.

Note that these COs can be naturally regularized in a well-defined sense. Consider
each of the circular regions Se to have a radius ε. When we take the limit ε → 0,
both the numerator and the denominator blows up but the CO remains well behaved.
To make this more precise, we define the integrated fluxes with smearing functions
as done in [215]

[F e]f =
∫
Se

d2S f iε naE
a
i , (3.132)
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where (e = 1, 2, 3) stands for the three surfaces9. In the limit ε→ 0, we have the
test function replaced by a delta distribution. Obviously, one can immediately notice
that the COs have been defined such that the dependence on the test function, as
well as the area of the surfaces, drops out of the expressions (3.129)-(3.131). Thus
our expressions have already been regularized, in the sense that it is free from the
dependence on all of the fiducial structures introduced.

The domains of these operators have to be defined in a suitable way. Since each
of these operators have two of the area operators appearing in the denominator,
it implies that there has to be at least one edge piercing each of the surfaces on
the sphere. In other words, there appears the area operator in the denominator of
the these operators. Since the area operator has an eigenvalue for a surface only
when an edge of the spin-network graph intersects it, this would make the CO
ill-defined if this would not be the case. Thus, the requirement for the operators to
be well-defined should be that the sphere encloses one and one node alone and that
each of the surfaces on the sphere must have some edges coming out of them.

Now that we have discussed a few subtle aspects to take into account, let us
underline that this definition we have introduced fits a set of necessary and reasonable
requirements. Indeed, given our definitions for quantum coordinates, if one wishes
to locate a point on a spin network, this can be done thanks to the above introduced
operator, written more compactly as

R̂e = rεee
′e′′(F̂ e′ ∧ F̂ e′′)√
(F̂ e′)2(F̂ e′′)2

,

r being the distance of such a point on the classical smooth manifold (in which
the spin-network is embedded) from the node. Naturally, one could question what
might be an appropriate choice for the value of r appearing in our expressions.
Given the above discussion, it should be clear that it is an arbitrary parameter
with the dimension of length, whose value depends on the point we refer to. Of
course, one might be worried that, being r arbitrarily large, we are introducing
an unphysical noncommutativity on large scales then. From this perspective, a
natural choice would be taking r ≡ `Pl =

√
~G/c3 — eventually dependent on

the Barbero-Immirzi parameter γ as well, if one considers also the details of the
lattice regularization adopted. However, it is worth noting that, as we discuss below,
the classical limit is recovered in the large spin limit rather than naively sanding
`Pl → 0. Moreover, it is worth mentioning that the construction we display does not
represent the only possible definition of operators for coordinates. Instead of starting
from Cartesian coordinates, one might use for instance Gaussian normal coordinates
[217, 218, 219], and try to find a suitable quantization procedure. However, the
definition we introduced has the advantage of being closely related to the LQG angle
operator.

Our next task is to compute the spectra and, finally, we want to look at the
algebra. To this end, we need to act with these COs over spin-network states
|Ψ〉 := |j,m〉 of the geometry. Adopting the usual notation, the principal quantum
number j labels the irreducible representations of the SU(2) internal gauge group,

9This method would work even when smearing with different test functions across the three
different surfaces.
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while m denotes its projection along one of the three available spin directions. Since
we desire to show how the semi-classical limit of these COs can be obtained, the best
option is to use the so-called coherent-picture of operators recently introduced in
Ref. [223]. This provides a representation of operators in the basis of semi-classical
state vectors. Indeed coherent states are semi-classical spin-networks in the sense that
they are peaked on a given classical geometry. Specifically, in spin-foam models it
has been shown that these states exponentially dominate the partition function that
sum over geometries [220, 221], and can also be picked on space-time backgrounds
of cosmological interest [222]. Another way of saying that coherent states are
semi-classical is that they minimize the uncertainty of phase-space operators. We
will briefly comment on this below. Notice that this can be rigorously done since
coherent states provide an (over-complete) basis for the kinematical Hilbert space
(see e.g. [220]) we are interested in. Let us explicitly specify that our Hilbert space
is constructed from the tensor product of three Hilbert spaces (one for each flux F̂ e
defined over the surface Se), i.e. Htot :=

⊗3
e=1He where it is useful to remind that∑3

e=1 F̂
e = 0. Consequently, our space is given by Htot ' SU(2)× SU(2)× SU(2).

Let us stress that we are free to choose different quantum numbers m for each of
these three Hilbert spaces. Indeed, we will make use of that in order to simplify the
computation of the spectrum of our CO later in this section. The starting point
is to recognize that coherent states furnish an (over) complete basis of the Hilbert
space, i.e.

I =
∫

Γ
dµ(g,−→p ) |g,−→p 〉 〈g,−→p | . (3.133)

Here (g,−→p ) ∈ Γ identifies a point of the phase-space, g denoting a group element
of SU(2) such that 〈g|j,m〉 =

√
2j + 1Dj(g), and −→p standing for the quantum

number of momenta. The explicit expression for the Haar measure dµ(g,−→p ) in the
coherent-state expansion is given in [220]. We do not report it here since it will not
play any role in our analysis. Using this representation of the identity matrix, any
operator can be constructed in the following way

Ôf =
∫
dµ f(g,−→p ) |g,−→p 〉 〈g,−→p | , (3.134)

with a proper choice of the functions f(g,−→p ). This gives what is called the
coherent-state representation of an operator. The SU(2) gauge invariance of coherent
state operators has been discussed in some details in Ref. [223]. In this regard, it is
worth noticing that coherent states are not invariant under SU(2) transformations
and, as a result, one needs to make a suitable choice of the function f(g,−→p ) in
order to obtain a gauge invariant combination for the desired operator Ôf . For our
purposes here, it is of particular relevance the fact that one can introduce a coherent-
state picture for the flux operator, which is invariant under left multiplications
by SU(2) elements, by identifying f ≡ −→p [223]. Indeed, this ensures the gauge
invariance of the (coherent-state representation of the) operators (3.129), (3.130),
and (3.131).

The CO depends on flux operators. Thus, in order to compute the action of
COs on coherent spin-network states, we only need to know the action of the flux
operators. In the coherent-state picture, fluxes can be represented as
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F̂ ei = −i
∫
dµ pi |ge,−→p 〉 〈ge,−→p | , (3.135)

and their (left) action on spin-network states is [223]

F̂ ei |je,m〉 = i

2Ft(j
e)σ(je)

i |je,m〉 , (3.136)

where — see e.g. Ref. [223] — the Ft(je) coefficient reads

Ft(je) = 1
2t(2je + 1)je(je + 1)

[
je(t(2je + 1)2 + 2)

− exp
(
−(2je + 1)2t

4

)∑
s

(1 + 2s2t) exp(s2t)
]
.

(3.137)

Here t is a parameter that controls the classicality of the coherent states, often
called the Gaussian time. Small values of t correspond to states that are sharply
peaked on a prescribed geometry of space. For simplicity, let us neglect the normal-
ization in Eq. (3.129)-(3.131). Taking into account Eq. (3.136), for the cross-product
operator εijkF̂ ej F̂ e

′
k we can easily find

εijkF̂
e
j F̂

e′
k |je,mj〉

∣∣∣je′ ,mk

〉
= −εijk4 Ft(je)σ(je)

j |je,mj〉Ft(je
′)σ(je′ )

k

∣∣∣je′ ,mk

〉
.

Retaining the normalization factor
√
F̂ eF̂ e

√
F̂ e′F̂ e′ , we cannot obtain an analytic

expression for the action of the coordinate operators on coherent states, but we
can make a numerical integration over the tensor product of the three phase-space
corresponding to the three links S1, S2 and S3. Starting from the above formula, we
can compute the algebra closed by the COs. Again, omitting the normalization part
of the operators, we calculate the action of the commutation relation

εijkεlmn[F̂ ej F̂ e
′
k , F̂

e′
m F̂

e′′
n ] , (3.138)

over spin-networks associated to trivalent nodes with edges colored with spins
je, je

′ and je′′ , i.e.

εijkεlmnF̂
e
j F̂

e′
k F̂

e′
m F̂

e′′
n |je,m〉

∣∣∣je′ ,m〉 ∣∣∣je′′ ,m〉− (↔)

= εijkεlmn
16 Ft(je)σ(je)

j Ft(je
′)σ(je′ )

k

×Ft(je
′)σ(j′e)

m Ft(je
′′)σ(je′′ )

n |ψ〉 − (↔) ,

where, for brevity, we rename

|ψ〉 ≡ |je,m〉
∣∣∣je′ ,m〉 ∣∣∣je′′ ,m〉 .

Here, the symbol (↔) stands for the second term of the commutator where fluxes are
exchanged, namely the operator εijkεlmnF̂ e

′
m F̂

e′′
n F̂ ej F̂

e′
k . Then, taking into account

that [σ(je)
i , σ

(je′ )
j ] = 2iεijkσ

(je)
k δje je′ , we find for the commutator
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εlnj
8 Ft(je)F 2

t (je′)Ft(je
′′)σ(je′ )

i σ
(je)
j σ

(je′′ )
n |ψ〉 . (3.139)

Reminding the definition of coordinates (3.129), (3.130) , (3.131) and using the
above calculation (3.139), we can write down the commutators between coordinate
operators. We find the following algebra

[X̂, Ŷ ] = iẐ
F̂ 3

(F̂ 3)2
, [Ẑ, X̂] = iŶ

F̂ 2

(F̂ 2)2
,

[Ŷ , Ẑ] = iX̂
F̂ 1

(F̂ 1)2
,

(3.140)

having omitted the internal indexes. Here we have also used the fact that flux
operators belonging to different edge sets commute, namely

[F̂ ei , F̂ e
′
j ] = 0 , e 6= e′ , (3.141)

and that we are restricting to orthogonal edge directions

F̂ ek F̂
e′
k = 0 , e 6= e′ . (3.142)

We obtained a noncommutative algebra for our COs, in which the associative
property is still preserved. Indeed, we can write down the Jacobi identity, namely

[[X̂, Ŷ ], Ẑ] + [[Ẑ, X̂], Ŷ ] + [[Ŷ , Ẑ], X̂] =

[Ẑ F̂ 3

(F̂ 3)2
, Ẑ] + [Ŷ F̂ 2

(F̂ 2)2
, Ŷ ] + [X̂ F̂ 1

(F̂ 1)2
, X̂] ≡ 0 ,

(3.143)

where we have used the fact that Ẑ commutes with F̂ 3, since it depends only on
the other two fluxes. An analogous observation applies to the other two commutators
in the above expression. The first comment that is worth making at this point is
that COs do not commute, as a consequence of the LQG quantization. Bearing
in mind the form of coordinate operators that are expressed in terms of fluxes
— namely Eqs. (3.129), (3.130) and (3.131) — it is possible to understand this
noncommutativity as a direct consequence of having an internal SU(2) symmetry.
The noncommutativity can be seen as arising from the quantization of the SU(2)
Poisson brackets. Furthermore, it is worth commenting the fact that the algebra
of coordinates we have derived closely resembles the commutation relations for the
fuzzy sphere [224]. In fact, the above commutators can be succinctly rewritten as

[X̂e, X̂e′ ] = iεee
′e′′X̂e′′ F̂ e

′′

(F̂ e′′)2
, (3.144)

where the indexes refer to the three edge directions identified by S1, S2 and S3.
The main difference with respect to the standard fuzzy-sphere commutators resides
in the appearance of more complicated structure functions (rather than structure
constants) in our case (3.144). The interest for the fuzzy sphere comes from the
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fact that it is the noncommutative algebra of space coordinates that arises in 3D
quantum gravity [206]. However, we do not obtain exactly the algebra of the fuzzy
sphere due to the fact that on the right-hand side of the commutator there is still an
explicit dependence on the flux. Nonetheless, our result provides a first constructive
realization of the ideas of noncommutative geometry from LQG. The idea that
noncommutativity might arise in LQG as a consequence of direction quantization
was proposed in Ref. [225] few years ago. To some extent this result be regarded as
a concrete realization of that proposal.

Now let us show that the classical commutative limit can be recovered in the
large spin approximation. To this end let us compute the action of the commutator
(3.144) on a generic spin-network state associated to our 3-vertex, which we formally
write as |Ψ〉 = |je,me〉 |je′ ,me′〉 |je′′ ,me′′〉. For simplicity, let us make the case with
e = 1, e′ = 2, and e′′ = 3. Thus, we are taking a spin-network states given by the
tensor product of three holonomies related to the three different edges of our vertex.
Let us expand two holonomies in the internal z-direction and one on the internal
x-direction, i.e. |Ψ〉 = |j1,mz

1〉 |j2,mx
2〉 |j3,mz

3〉. Then, the action of the commutator
[X̂1, X̂2] reads

[X̂1, X̂2] |Ψ〉 = iδlxm
z
1m

z
3m

x
2√

j1(j1 + 1)
√
j2(j2 + 1)j3(j3 + 1)

|Ψ〉 , (3.145)

having neglected numerical overall factors. From the above equation the reader
can easily recognize that the classical limit coincided with the large spin limit with
j3 →∞, which restores the commutativity of coordinates. In Eq. (3.145)

m1m3m2√
j1(j1 + 1)

√
j2(j2 + 1)

√
j3(j3 + 1)

∼ O(1)

and, then, we have a factor 1/
√
j3(j3 + 1) that involves the spin on the internal edge

S3 shared by both X̂ and Ŷ . The classical limit corresponds to the requirement of
having large spins on the internal direction S3 and, as desired, for large values of
j3 the right hand side of Eq. (3.145) collapses to zero. The fact that the (semi-)
classical limit can be obtained by taking the large spin limit lies at the very root of
the role of coherent states and their role in bridging classical and quantum regimes
[220, 221, 222, 223]. A different coarse-graining method for LQG states has been
recently proposed in Ref. [226], where, instead of increasing the spin number, one
increases the number of vertices while keeping fixed the total volume in order to
reach a semi-classical continuum limit.

Finally, we wish to show, in the simplest way, how the operators for coordinates
acting on spin-network states can be related to usual coordinates on a smooth
manifold. In fact, according to the background-independence philosophy, Eqs.
(3.129), (3.130), and (3.131), do not identify positions on a manifold but rather
on an abstract spin-network graph. In full LQG, we should not make use of the
concept of manifold, which is substituted by abstract spin networks. For this
reason, we defined our operators only in terms of nodes, edges, and links. However,
it is also well known that, at least in the (semi) classical limit one requires the
existence of a background manifold in which to embed the spin-network graphs.
If we take the classical limit naively and ignore all the ordering issues present in
the definition of the operators, we can recover geometrical quantities defined on
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standard manifolds. Then, assuming that triad operators only act in a small region,
we can approximate fluxes in (3.132) as F i ≈ δ2naEia , being then Eia constant
over a small surface S ∼ δ2 with normal na. For the sake of brevity and simplicity,
we also restrict to sufficiently small S such that curvature is zero. Thus, we have
simply Eai =

√
heai ' δai , where eai ebjηij = hab. Under these approximations, let us

consider e.g. our definition for X̂ (3.129) that becomes

X ' r
εijkn

a
2E

j
an

b
3E

k
b√

na2E
i
an

c
2E

i
c

√
nb3E

i
bn
d
3E

i
d

' r
εijkn

a
2δ
j
an

b
3δ
k
b√

na2δ
i
an

c
2δ
i
c

√
nb3δ

i
bn
d
3δ
i
d

= r
εabcn

b
2n

c
3√

ne2n
e
2

√
nd3n

d
3

= r
n2 ∧ n3
||n2||||n3||

= r (i2 ∧ i3) = r i1 ,

(3.146)

being i1, i2, and i3 the orthogonal unit vectors providing the directions of the X,
Y and Z axes respectively. Of course, similar conclusions apply to the operators Ŷ
and Ẑ as defined in (3.130) and (3.131) respectively. In this limit, we have found
meaningful formulas for usual space-time coordinates on a manifold.

3.4 Implications for phenomenology
It is well-known that the lack of experimental evidence represents one of the main
obstacles in our search for a theory of QG [8, 11]. In the absence of observations,
researchers often rely on less dependable principles, such as ‘beauty’ and ‘naturalness’,
as guidance for advancing QG proposals [8]. In this regard, LQG does not represent
an exception. As in other QG models, conclusions typically depend on various
quantization choices [189, 190, 191, 192]. Then one is usually forced to choose between
quantization ambiguities, often on the same footing theoretically, by following one’s
personal penchants or other questionable criteria. So far very little work has been
directed towards understanding whether these formal alternatives affect physical
outcomes. Among other reasons, this is largely a consequence of the fact that the
complexity of the full-fledged theory has created a gap between technical results and
potential observations.

Now, relying on the deformed symmetry results we reported in the precedent
section, we take a small step towards correcting this by establishing a paradigm
for incorporating (a restricted class of) holonomy corrections, arising from effective
LQG models, in deriving two of the rare phenomenological results obtained in the
QG research, namely: MDR [183, 184] and UV dimensional flow or reduction [101].
Remarkably, we shall see that both of these effects change quantitatively depending
on the quantization scheme adopted. In particular, we shall focus on three formal
choices needed to properly define the quantum theory: the internal gauge group,
the spin representation, and the regularization technique. Relating different LQG
quantization schemes to different predictions for observable quantities allows us to
differentiate and, hopefully, pick between several quantization choices via testable,
state-of-the-art phenomenological predictions [183, 184]. Although a few explicit
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examples are shown here to establish the claim, the framework we develop in this
section is more general and is capable of addressing other quantization ambiguities
within LQG and also those arising from other similar QG approaches.

This section completes the Chapter 3, whose aim was again that of building a
bridge between the formal structures of loop quantization to the more manageable
DSR scenario with the objective to enhance to possibilities to link mathematical
constructions in QG to observable quantities. The current situation is such that QG
phenomenology often misses a clear derivation from full-fledged developed approaches
to QG. On the contrary, the high complexity of these formalisms (in this chapter
we focused on LQG) does not allow to infer testable effects. We are here giving a
further contribution to fill this gap by showing an analysis to derive both MDRs
and dimensional flow from LQG-inspired deformations of Poincaré isometries. In
summary, we lay down a preliminary framework to test LQG using observations
[183, 184].

3.4.1 Modified dispersion relations

We now show a path to derive the form of the dispersion relation from the effective
regime of LQG, where the classical constraint equations are modified by the presence
of holonomy corrections (3.60), (3.64), (3.100), (3.106). We have seen that these semi-
classical effects modify the form of the HDA and, most importantly for our purposes,
such a deformation leaves trace in the Minkowski limit where a corresponding
deformed Poincaré algebra arises (3.113). As a direct consequence of the modification
of the Poincaré algebra we can also derive the MDR which, as it is well-established
in the literature [11] and we shall also see in Chapter 6, can be tested with current
experiments and most notably thanks to astrophysical observations of very-high-
energy particles propagating in empty space [69].

Moreover, it is interesting for us that quantization ambiguities leave their imprints
on the form of the MDR. This would suggest that different quantization schemes
adopted (and often treated interchangeably) are not equivalent and, conceivably,
might be distinguished thanks to forthcoming tests of Planck-scale departures from
special relativistic symmetries [11, 70]. Although we focus on particular quantization
choices characteristic to LQG (such as the choice of the Barbero-Immirzi parameter,
the regularization scheme used or the dimension of the gauge group), we shall
unequivocally demonstrate that our analysis is general enough to include other such
ambiguities in LQG as well as for corrections coming from other canonical QG
approaches [183, 184].

We have already derived and discussed the LQG modifications of the HDA for
different choices of the Barbero-Immirzi parameter and the related gauge group.
In particular, we have shown how they result in different forms for the correction
function β, see Eqs. (3.60), (3.64), (3.95), (3.100), (3.106) since quantum holonomy
corrections are sensible to the choice of γ. At the same time, for the real SU(2)
case we have seen how these quantum corrections affect the HDA in such a way
that, in the Minkowski limit, a deformed Poincaré algebra comes out (3.113). On
the basis of these results and considerations, we can eventually expect that different
choices for γ (as well as for the aforementioned parameters) produce different forms
of the MDR and, thus, it could be possible to discriminate formal LQG ambiguities
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through the experimental tests of the MDR, e.g. real connections from the complex
ones.

We can start by noticing that all the LQG symmetry deformations we analyzed
imply a modification of the mass Casimir (for massless particles) of the form (as it
can be verified by a straightforward check)

P 2
0 =

∫
β(Pr)PrdPr , (3.147)

whose explicit expression depends on the particular corrections implemented.
This is obtained by simply requiring the invariance of the Casimir under the LQG-
deformed Poincaré commutators (3.113). Then, if β is given by Eq. (3.112), one
finds

P 2
0 = −2λ−2 + 2λ−2(cos(λPr) + λPr sin(λPr)) (3.148)

and, thus, upon the identifying P0 ∼ E and Pr ∼ p, we find the modified on-shell
relation E2 = −2λ−2 + 2λ−2(cos(λp) + λp sin(λp)). We shall now scrutinize in some
detail the MDRs for different deformation functions β. Indeed, even for a real-valued
γ, conclusions still depend on other quantization ambiguities. Furthermore, it is worth
recalling that holonomy-corrections in LQG arise from regularizing the curvature
operator in terms of holonomies of connections instead of the connections themselves.
There are two main ways, which are somewhat misleadingly called the the ‘holonomy’
(HR) and ‘connection’ regularizations (CR) [227, 228], in which one can carry this
out. In the former case, one uses the holonomy of a square plaquette to regularize the
curvature operator while in the latter case, one uses open holonomies for achieving it.
Similarly, the dimension (or spin) of the representation also plays a crucial role in the
regularization procedure. Although there are sometimes justifications provided for
using the fundamental representation (i.e. j = 1/2) in symmetry-reduced models in
the form of choosing highly fine-grained states by packing them with a collection of
units carrying the smallest quanta of geometry [229], this is somehow in contrast to
the full theory where the states depend on different spin-labels. The spin-ambiguity
in LQG also affects dynamics as the Hamiltonian constraint operator depends on its
choice [228, 230, 231].

The deformation functions for the HR scheme are listed below corresponding to
different spin-representations, namely j = 1/2, 1, 3/2.

1. β 1
2

= cos(2δKφ) for holonomies calculated in the j = 1/2 representation;

2. β1 = cos3(δKφ)− sin4(δKφ)− 7
4 sin(δKφ) sin(2δKφ)

+3
4 sin(2δKφ)2 for holonomies calculated in the j = 1 representation;

3. β 3
2

= − sin2(δKφ)+ 12
5 sin(δKφ)4− 9

10 sin(δKφ)6+cos(δKφ)2(1+ 9
2 sin(δKφ)4)−

39
10 sin(δKφ)3 sin(2δKφ)+sin(2δKφ)2(−9

5+ 9
10 csc(δKφ) sin(2δKφ)) for holonomies

calculated in the j = 3
2 representation.

Taking the Minkowski limit, in the sense we already illustrated extensively, we
can find a correspondingly deformed Poincaré algebra and, then, a modification of
the energy-momentum dispersion relation. Explicitly, for massless particles:
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1. E2 = −2 + 2(cos(p) + p sin(p)) for spin j = 1/2;

2. E2 = −3
4 − cos(1

2p) + cos(p) + cos(3
2p) −

1
4 cos(2p) − p

2 sin(p2) + p sin(p) +
3
2p sin(3

2p)−
p
2 sin(2p) for spin j = 1;

3. E2 = −23
40−

3
5 cos(p2)+13

80 cos(p)+ 9
10 cos(3p

2 )+3
8 cos(2p)− 3

10 cos(5p
2 )+ 3

80 cos(3p)−
3
10p sin(p2) + 13

80p sin(p) + 27
20p sin(3p

2 ) + 3p
4 sin(2p)− 3p

4 p sin(5p
2 ) + 9

80p sin(3p) for
spin j = 3/2.

The β for different spin-representations of the CR scheme are as follows

1. β 1
2

= cos(2δKφ) for holonomies calculated in the j = 1/2 representation;

2. β1 = cos4(δKφ) + sin(δKφ)4 − 3
2 sin(2δKφ)2 for holonomies calculated in the

j = 1 representation;

3. β 3
2

= sin2(δKφ)+ 24
5 sin4(δKφ)− 18

5 sin6(δKφ)+cos2(δKφ)(1+18 sin4(δKφ))−
18
5 sin2(2δKφ) for holonomies calculated in the j = 3

2 representation.

The corresponding (unexpanded) forms of the MDRs, for the above-mentioned
βs, are given below.

1. E2 = −2 + 2(cos(p) + p sin(p)) for spin j = 1/2;

2. E2 = −1
2 + 2(1

4 cos(2p) + 1
2p sin(2p)) for spin j = 1;

3. E2 = 1
10 + 2 × 10−16p2 − 11

20 cos(p) + 3
10 cos(2p) + 3

20 cos(3p) − 11
20p sin(p) +

3
5p sin(2p) + 9

20p sin(3p) for spin j = 3/2.

For all the above calculations, we put the Barbero-Immirzi parameter and the
Planck length to 1 for simplifying the notation. See Fig. (3.4a) for a comparison of
two of these MDRs with real connection variables.

At this point, we wish to show how working with self dual connections also
changes the form of the MDR. In fact, we find that the choice of γ, in particular,
whether it is a real variable or a purely imaginary one can influence the form of
the MDR. We focus on three different quantization scheme based on well-known
procedures in the LQG literature [198, 199, 200, 201, 203], which we introduced
already in the previous section, namely: holonomies evaluated in the fundamental
representations of the SL(2, C) group [198], holonomies evaluated in the continuous
representations of SU(1, 1) [199], generalized holonomies [203]. Let us briefly discuss
the deformed dispersion relation for each of these three possibilities.

For the case of SL(2, C) holonomies, it is clear that from Eq. (3.100) it follows
that

[Br, P0] = iPr cosh(λPr) (3.149)

and, thus, using again the ansatz in Eq. (3.147), the form of the MDR is

P 2
0 = 2(λPr sinhλPr − coshλPr + 1

λ2 ) ' P 2
r + λ2

4 P
4
r . (3.150)
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Figure 3.4. The graphs compares different MDRs obtained for LQG holonomy-corrections,
within different quantization schemes: on the left-hand side (a) we have two MDRs, both
calculated for a real γ and in the j = 1 representation, but using two different methods
of regularizing the field strength: the green plot for the ‘holonomy’ regularization and
the red plot for the ‘connection’ regularization. On the right-hand side (b), the orange
plot represents the SU(2) case with real γ while the blue plot corresponds to the
choice of a purely imaginary γ implemented in the SU(1, 1) gauge. They are both in
the fundamental representation. The orange plot in (b) and either of the plots in (a)
compares MDRs for different spin values, 1/2 and 1 respectively. We set mPl ≡ 1.

Clearly, it is different in form from the real-valued case (3.148) due to the
difference in holonomy correction functions (compare Eq. (3.61) with Eq. (3.99)).
The leading correction to SR is:

P 2
0 ' P 2

r + λ2

4 P
4
r . (3.151)

This implies the energy-dependent velocity of (mass-less) particles on such a
deformed Poincaré spacetime takes the form

v(E) = dH

dp
' 1 + 3

8λ
2E2 . (3.152)

Such an approach to self dual variables would then be distinguishable from the
real Ashtekar-Barbero variables in its effect on the resulting deformation of Lorentz
symmetry.

We have seen that another proposed way to deal with self dual spherically
symmetric LQG is provided by the procedure of analytic continuation [199, 200, 201,
202]. In this case, we do not calculate the explicit form of the MDR in this case due
to the complicated nature of the deformation function, we can still numerically plot
its behaviour, as shown below (see Fig. (3.5)). See Fig. (3.4b) for a comparison
with the real SU(2) case with j = 1/2 and for a different range of momenta. This
would illustrate crucial features of its behaviour even without deriving its analytical
form. From a phenomenological point of view, it is of interest the leading non-trivial
correction to the dispersion relation. It can be found by making a series expansion
of β of Eq. (3.106) for small values of δ ≈ 0. In this way, making use of Eq. (3.147),
we find

P 2
0 ' P 2

r + λ2

4 P
4
r . (3.153)
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and for the group velocity

v(E) = dH

dp
' 1 + 3

8λ
2E2 . (3.154)

Notice that these expressions coincide with Eqs. (3.151)-(3.152) that refer to
the case with SL(2, C) holonomies. However, it is not difficult to realize that such
a convergence is present only at the leading order. Then, at the next order, the
MDR in the analytic continuation scheme gets a negative correction term while the
MDR for SL(2, C) holonomies is positive-definite (see Eq. (3.151)). This can be
immediately understood looking at Fig. (3.5)).

A last comment concerns the generalized-holonomy technique [203]. In this case,
as we already mentioned above, by construction all the results coincide with the
standard SU(2) scheme with real connections. Complex and real cases have been
plotted in Fig. (3.5)).
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Figure 3.5. Behavior (for 0 < Pr < 2) of the on-shell relations for massless particles (m = 0)
implied by four different mass Casimirs: the red line gives the usual special-relativistic
dispersion relation, the orange line is the MDR obtained with both real (3.148) and
generalized connections, the green line is the one given by Eq. (3.151), and the blue line
is the MDR in the analytic continuation case. We set λ ≡ 1 and s→ 0.

Thus, we have shown that, by taking the Minkowski limit of the deformed
HDA, one can derive MDRs which are sensitive to several quantization ambiguities
through the form of the deformation function. In the various approaches to the
implementation of LQG holonomy corrections, we have obtained MDRs which are
different from each other and also with respect to Eq. (3.148). This leads us to claim
that different quantization techniques used in LQG, although not necessarily having
physically inequivalent flat limits, are sometimes distinguishable relying solely on
phenomenological grounds.

Of course, further explorations are needed in order to fully understand the
nature of these quantum modifications of the HDA. Along this direction, we have
shown in Section 3.3.1 an attempt to link them to the known structure of Hopf
algebras. Similar studies can be found in Refs. [181, 232, 233]. Here, we have laid
a foundation for constructing phenomenological falsifiability conditions for such
deformations, dependent on quantization ambiguites within LQG, to be verified by
incipient data. We hope this may motivate additional efforts in the QG research
community directed both at deriving deformed HDA in other approaches and at



3.4 Implications for phenomenology 105

investigating the connection between deformations of the HDA and deformations of
the Poincaré algebra.

In the next subsection we follow a similar perspective and strategy while discussing
the effect of UV dimensional running of spacetime dimensions.

3.4.2 Dimensional reduction

As we discussed in the Introduction (see the end of Chapter 1), there is a growing
interest for the phenomenon of Planck-scale dynamical dimensional reduction in the
QG literature, mainly due to the fact it seems to be an almost model independent
effect in the sense that it is found and realized in most of the QG approaches and,
most importantly, could eventually guide us towards phenomenological traces of QG
as recently suggested in Ref. [95] (see also references therein). We also warned the
reader though by reminding that in QG the concept of spacetime dimension is a
troublesome issue and a unique straightforward definition is not available.

In response to this difficulty, many different ways to characterize the dimensions
at the Planck scale have been developed along the years. Mainly, three definitions
have been adopted: the spectral dimension [96], the Hausdorff dimension [29], and
the thermal dimension [234]. Moving from the results of the precedent subsection
on the LQG-deformation of the dispersion relation, we now want to discuss the
ultraviolet dimensional running within this effective LQG approach we introduced
and motivated in this chapter. As for the MDR, here our philosophy is again that
of extracting phenomenological results from the deformed symmetry results (3.60)
with the final objective of guiding the future developments of the LQG theory and
relate formal quantities to observable quantities.

We have seen that the LQG-deformed HDA (3.64) produces, in the “Minkowski
limit", a corresponding Planckian deformation of the Poincaré algebra of the form

[Br, P0] = iβ(`PlPr)Pr , (3.155)

where the deformation function β it is directly related to the second derivative
of the square of the holonomy correction f(Kφ), i.e. β = d2f2(Kφ)/2dK2

φ, and as
we have seen above it is affected by a number of ambiguities. For the purposes of
this analysis, we then assume a rather general form

β(`PlPr) ' 1 + α1`
α2
PlP

α2
r , (3.156)

which is motivated by the above considerations and, trivially, satisfies the
necessary requirement lim`Pl→ 0 β(`PlPr) ≡ 1, since we wish to recover the standard
Poincaré algebra in the “continuum (or scale-free) limit". We leave unspecified the
constants of order one α1,2 that parametrize the aforementioned ambiguities. In
this LQG model, these parameters are expected to encode at least the leading-order
quantum correction to the Poincaré algebra, no matter what specific quantizatization
choices one makes. This is also confirmed by the results of the precedent section.

Using Eqs. (3.155), (3.156), it is not difficult to derive the following parametriza-
tion for the MDR

ω2 ' p2 + 2α1
α2 + 2 `

α2
Pl p

α2+2 (3.157)
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Now we have all the necessary ingredients to compute and discuss different
spacetime dimensions within this framework10 The first thing we want to show is
that, regardless of the value of the unknown parameters α1 and α2, the different
characterizations of the UV flowing introduced in the literature predict the same
number of dimensions, given the above parametrization for β (3.156) which should
hold for any of the proposed quantization schemes.

To see this we start by the computation of the spectral dimension, which is
defined as follows

dS = −2 d log(P (s))
d log(s) , (3.158)

where P (s) is the average return probability of a diffusion process in a Euclidean
spacetime with fictitious time s. Following Refs. [107, 117], we compute dS from
the Euclidean version of our MDR (3.157) which is a d’Alembertian operator on
momentum space:

∆E = ω2 + p2 + 2α1
α2 + 2 `

α2pα2+2 . (3.159)

Then, a lengthy but straightforward computation leads to the following result:

dS = 1 + 6
2 + α2

. (3.160)

Notice that the value of dS does not depend on α1 but only on α2, i.e. only on
the order of Planckian correction to the dispersion relation (see Eq. (3.157)). We
will use this fact later on.

Now we want to show that also the thermal dimension dT is also given by Eq.
(3.160). The thermal dimension dT has been studied recently in e.g. Ref. [234].
The main motivation for using dT instead of dS to get information on spacetime
dimensionality at the Planck scale is that the physical significance of dS is not
totally comprehended. This is due to the fact that the computation of dS requires
a preliminary (unphysical) Euclideanization of the spacetime and also it turns out
to be invariant under diffeomorphisms on momentum space. Consequently, the
authors of Ref. [234] have suggested to describe the phenomenon of dimensional
reduction in terms of the thermal (or thermodynamical) dimension dT , which can
be defined as the exponent of the Stefan-Boltzmann law. Then, the UV flowing of
dT is realized through the MDR that affects the partition function used to compute
the energy density. In particular, if one has a deformed Lorentzian d’Alembertian,
∆L
αtαx = ω2 + p2 + `2αtt ω2(1+αt) − `2αxx p2(1+αx), then dT is the exponent of the

temperature T in the modified Stefan-Boltzmann law

ραtαx ∝ T
1+3× 1+αt

1+αx , (3.161)
which can be obtained as usual deriving the logarithm of the thermodynamical

partition function with respect to the temperature. In our case we have that
αt = 0 , αx = α2/2 and, thus, dT = dS = 1 + 6/(2 + α2) (see Eq. (3.160)).

10See also Ref. [115] for a different treatment of the dimensional running due to LQG-deformations
of the relativistic symmetries. There different assumptions are made on the modifications of the
Poncaré algebra.
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Let us now turn to the Hausdorff dimension of momentum space, dH . If the
duality with spacetime is not broken by quantum effects, in principle dH should
coincide with both dS and dT . As pointed out in Ref. [99], a way to compute it
consists in finding a set of momenta that ”linearize” the MDR. Given Eq. (5), a
possible choice is given by

k =
√
p2 + 2α1

α2 + 2 `
α2
Pl p

α2+2 . (3.162)

In terms of these new variables (E, k) the UV measure on momentum space
reduces to

p2 dpdω −→ k
4−α2
α2+2 dkdω . (3.163)

Finally form this expression (3.163) we can read off dH :

dH = 2 + 4− α2
α2 + 2 = 1 + 6

2 + α2
, (3.164)

i.e. equal to dS and dT . Thus, no matter which definition of dimensionality is
used, in this semi-classical approach (or in symmetry reduced models) to LQG the
UV running gives dS ≡ dT ≡ dH .

We have seen that three different definitions of dimension appeared in the
literature in order to generalize this notion for a quantum spacetime. Of course,
in the IR-low-energy regime where they all reduce to 4 and, thus, we could expect
that this should happen also in the UV. However, in general this is not the case.
Here we showed that this advisable convergence can be achieved in the semi-classical
limit of LQG under rather general assumptions, since all these distinct definitions of
dimension give the same outcome.

Now, following the same perspective that we adopted in the previous subsection,
we wonder whether the number of UV dimensions can be used to constrain the
ambiguities in the choice of these LQG-based modifications of the Dirac spacetime
algebra or, at least, to distinguish between them. In fact, we have seen already
that the deformation function β is affected by many formal ambiguities and how
this can be translated into different predictions for the modifications of particles’
dispersion relations. The details of the UV dimensional running depends on the
specific functional dependence of β = β(`PlPr). Thus, we can expect that different
quantization choices give also different numbers for dUV . To do so, we can not
rely anymore on the perturbative ansatz in Eq. (3.156) but we should use the full
non-perturvative expressions for β. Then, we shall see that the number of the UV
dimensions differs in some cases but, in a given LQG approach, we still have that
dS ≡ dT ≡ dH .

In the previous subsection we have already obtained the non-perturbative expres-
sions for β (and, as a consequence, for the MDRs) corresponding to different choices
for the regularization scheme, the spin representation, and the Barbero-Immirzi
parameter (see Eqs. (3.4.1), (3.4.1), (3.4.1), (3.4.1)). Given the complicated form of
the MDRs, the spectral dimension dS as a function of the diffusion time s can be
evaluated only numerically. Moreover, an additional complication is represented by
the change of sign of β for some value of `PlPr that depends on the adopted scheme.
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For a discussion of the phenomenon of “signature change" and the (potentially) asso-
ciated physics see e.g. Ref. [235] and references therein. For the aim of computing
dS , we interpret the signature change as a natural cut-off for particles momenta.
Therefore, dS is given by

dS(s, pmax) := −2∂ lnP (s, pmax)
∂ ln s = 2s×

∫∞
0
∫ pmax

0 dωdpp2e−s∆
E(ω,p)∆E(ω, p)∫∞

0
∫ pmax
0 dωdpp2e−s∆E(ω,p) ,

(3.165)
where the return probability is given by

P (s, pmax) ∝
∫ ∞

0

∫ pmax

0
dωdpp2e−s∆

E(ω,p) . (3.166)

Here pmax is the value of the momentum for which we have the first maximum
of the square of the energy ω2. It corresponds to the point where the correction
function β changes sign and, thus, we have signature change [235]. In the light
of this, we interpret pmax as the maximum allowed momentum for particles, for
higher momenta spacetime turns Euclidean and propagation ceases. In Fig. (3.6)
we show the running of dS in the HR scheme for three different spin representations,
i.e. j = 1/2, 1, 3/2. Note that no matters what is the value of j we always get a
one-dimensional spacetime in the UV, what is sometimes referred as the ultra-local or
“Carrollian limit" (see Ref. [115]). This is simply due to the fact that we introduced
a cut-off for the spatial momenta. In Fig. (3.7) we plot dS for the same spin
representations but with the holonomy corrections computed in the CR scheme.
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  s

Figure 3.6. Running of dS for HR. The blue line is for j = 1/2, the orange line for j = 1,
and the green line for j = 3/2. Notice that, as expected, the correct IR limit is recovered
for s → ∞ where dS = 4, while dUV ≡ 1 in all the spin representations. This is a
consequence of having a maximum spatial momentum.

At this point, just as we did already for the analysis of the MDRs, we can
consider the running of dS for complex Ashtekar connections. Again we focus on
three possibilities: SL(2, C) variables [198], SU(1, 1) variables [199, 200], generalized
holonomies [203]. The latter case is trivially coincident with the j = 1/2 SU(2) case
and, thus, we will not discuss it further. The running of dS for the SL(2, C) and the
SU(1, 1) gauge groups is shown in Fig. (3.8) and in Fig. (3.9) respectively. In the
SU(1, 1) case we still have signature change so eventually the spectral dimension shall
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Figure 3.7. Running of dS for CR. The blue line is for j = 1/2, the orange line for j = 1,
and the green line for j = 3/2. Notice that, as expected, the correct IR limit is recovered
for s → ∞ where dS = 4, while dUV ≡ 1 in all the spin representations. This is a
consequence of having a maximum spatial momentum.
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Figure 3.8. Running of dS for SL(2, C) holonomy corrections with j = 1/2.

reach 1 for sufficiently small times s. On the other hand, β has a definite sign in the
SL(2, C) case and, thus, there is no bound for the momenta. Intriguingly, for s → 0
we find that the UV spectral dimension has an oscillatory behavior around the value
of 2. The possibility that dS may run to two in the UV is a scenario encountered
in many QG models (see e.g. Ref [95]). In addition to other features that recently
attracted a renewed interest into complex connections [198, 200, 201, 203, 204, 205],
this result may provide further motivation for exploring LQG models formulated
with complex Ashtekar variables.

We then computed the propagation time s at which the spectral dimension is
equal to 2 for both different regularization schemes and spin representations. For
the HR scheme we have

s 1
2

= 0.59 , s1 = 0.76 s 3
2

= 0.93 , (3.167)

while for the CR case one finds

s 1
2

= 0.59 , s1 = 2.36 , s 3
2

= 4.89 . (3.168)
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Finally, we wish to ask something different. According to the study developed in
Ref. [236], it is possible to translate the presence of a maximum allowed value for
the momenta (or the energy) into a minimum diffusion time which can be probed in
the following manner smin ∝ 1/p4

max. Consequently, the running of dS would stop
at smin. If we do so, then we obtain for the HR scheme

d
1
2
S ' 1.29 , d1

S ' 1.43 , d
3
2
S ' 1.57 , (3.169)

and for CR

d
1
2
S ' 1.29 , d1

S ' 2.1 , d
3
2
S ' 3.1 . (3.170)
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Figure 3.9. Running of dS for SU(1, 1) holonomy corrections with j = 1/2.

Given the results we presented in this subsection, we feel confident that the
number of UV dimensions can teach us something about LQG. In this analysis the
value of dUV is inferred from the LQG corrections used to build HQ[N ] which, as
we discussed extensively, are far from being unique. Remarkably, these quantum
modifications can be related to the phenomenon of dimensional reduction. Then the
main idea has been that of inspecting how different ways to implement holonomy
corrections in LQG affect the dimensional running. In this regard, a first observation
we made has been that, given the general form of the LQG-deformed Poincaré
algebra (see e.g. Eq. (3.156)), no matters the specific form of f(Kφ) is assumed
the spectral, Hausdorff and thermal dimensions all give the same outcome [101].
Such a convergence somehow reduces a certain degree of ambiguity and arbitrariness
present in the literature on QG dimensional running and also represents a natural
expectation, i.e. dUV does not depend on the particular definition adopted just as it
is trivially the case in the IR. After that, we explored the possibility to constrain
part of quantization ambiguities in LQG by showing that they are not equivalent
since generate different dimensional runnings for dS . Even if the phenomenological
footprints of the phenomenon of dimensional reduction are not well established yet
(see however Ref. [95]), we are confident that this analysis gives a contribution toward
enforcing the fecund bond between theoretical formalisms and phenomenological
predictions. We have connected LQG polimerization technique to the running of
dimensions in the UV. In this way we have provided further evidence that the
dimensional reduction can be realized also in the LQG approach, thereby confirming
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the results of previous studies [236]. Remarkably, the value of dUV is sensible to the
specific choice of quantum corrections which are considered in the model. Therefore,
if dS (or directly related quantities) will turn out to be an observable then, along the
lines of investigation we here deployedm its value could be used to select a particular
form for the quantum correction functions, thereby reducing the LQG quantization
ambiguities. Without resorting to phenomenology, if more theoretical consensus on
1.5 < dUV < 2 [95] then one could e.g. focus mostly on those LQG modifications of
the HDA compatible with this range of values.
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Chapter 4

Multi-fractional Geometries

Among the most recent theories beyond Einstein gravity or, better to say, beyond
Riemannian geometry, multi-fractional spacetimes [29, 104, 105, 106] have received
some obstinate attention due to their potential in giving a physical meaning to several
concepts scattered in QG, as we have seen also in Section 1.3 of Chapter 1. As a
matter of fact, a variation of the spacetime dimension with the probed scale has been
encountered in many QG approaches [28, 96, 97, 100, 99, 101, 107, 108, 109, 110, 111].
Then, if volumes and distances change depending on the scale of observation the
spacetime behaves like multi-fractal sets. A spacetime with such a property is
called multiscale because dimensional flow requires the existence of at least one
fundamental scale in the geometry, `∗ ∼ 1/E∗. This is the foundational principle of
multifractional theories. The multifractional framework can be regarded either as an
independent proposal for a fundamental theory or an effective framework wherein
to better understand the multiscale geometry of the other approaches. The main
advantage of such an approach is that it allows to control the change of spacetime
dimensionality analytically. Moreover, there is an open discussion concerning the
usefulness of dimensional flow as a treasure trove for phenomenology [29], since it
leaves an imprint in observations at virtually all scales.

The main idea is simple. Consider the usualD-dimensional action S =
∫
dDx
√
−g

×L[φi, ∂] of some generic fields φi, where g is the determinant of the metric and ∂
indicates that the Lagrangian density contains ordinary integer-order derivatives.
In order to describe a matter and gravitational field theory on a spacetime with
geometric properties changing with the scale, one alters the integro-differential
structure such that both the measure dDx→ dDq(x) and the derivatives ∂µ → Dµ

acquire a scale dependence, i.e., they depend on a hierarchy of scales `1 ≡ `∗, `2, . . . .
Without any loss of generality at the phenomenological level [29, 104], it is sufficient
to consider only one length scale `∗ (separating the infrared from the ultraviolet).
The explicit functional form of the multi-scale measure depends on the symmetries
imposed but it is universal once this choice has been made. In particular, theories
of multi-scale geometry where the measure dDq(x) =

∏
µ dq

µ(xµ) is factorizable in
the coordinates are called multi-fractional theories and the D profiles qµ(xµ) are
determined uniquely (up to coefficients, as we will discuss below) only by assuming
that the spacetime Hausdorff dimension changes “slowly” in the infrared [29, 104].
Below we will give an explicit expression. Quite surprisingly, this result, known as
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second flow-equation theorem, yields exactly the same measure one would obtain
by demanding the integration measure to represent a deterministic multi-fractal
[105]. There is more arbitrariness in the choice of symmetries of the Lagrangian,
which leads to different multi-scale derivatives Dµ defining physically inequivalent
theories. Of the three extant multi-fractional theories (with, respectively, weighted,
q- and fractional derivatives) two of them (with q- and fractional derivatives) are
very similar to each other and especially interesting for the ultraviolet behaviour of
their propagator. Although a power-counting argument fails to guarantee renormaliz-
ability, certain fractal properties of the geometry can modify the poles of traditional
particle propagators into some fashion yet to be completely understood [29].

Let us now introduce only the technical ingredients of multifractional spacetimes
needed in this chapter; it is not meant to give a self-contained, exhaustive introduc-
tion on the subject. The reader is encouraged to consult the bibliography for all
details concerning theoretical foundations [28, 104], conceptual topics [106], physi-
cal interpretation [102, 103] and phenomenology [237, 238, 239]. Recent overview
sections can be found in [29].

As aforementioned, the first element we will use is the existence of a factoriz-
able nontrivial measure in position and in momentum space. By definition, any
given multifractional field-theory action S =

∫
dDq(x)L in D topological dimen-

sions is characterized by a measure dDq(x) = dq0(x0) dq1(x1) · · · dqD−1(xD−1) =
dDx v0(x0) · · · vD−1(xD−1), where qµ(xµ) are called geometric coordinates and vµ(xµ) >
0 are D measure weights, possibly all different from one another. The symme-
tries of the Lagrangian L depend on the choice of kinetic terms for the field. In
turn, these symmetries determine the measure dDp(k) = dp0(k0) · · · dpD−1(kD−1) =
dDk w0(k0) · · ·wD−1(kD−1) in momentum space. Of the four extant multifractional
theories, in the whole chapter we will consider only those with so-called q-derivatives
and with weighted derivatives apart from a few qualitative considerations on the
other two theories, which are though much less developed at present. The former,
where all derivative operators ∂µ = ∂/∂xµ in the field-theory action are replaced
by ∂/∂qµ(xµ) (called q-derivatives), is characterized by a specific relation between
position and momentum geometric coordinates, which are canonically conjugate
variables [240]

pµ(kµ) = 1
qµ(1/kµ) . (4.1)

Since 1/q(1/k) = p(k) =
∫
dk w(k) for each direction, the measure weight in

momentum space is

wµ(kµ) =
[
pµ(kµ)
kµ

]2
vµ

( 1
kµ

)
. (4.2)

In the case of the theory with weighted derivatives, where derivative operators are
∂µ → v

−1/2
µ ∂µ(v1/2

µ · ), the measure weight w(k) is arbitrary [241]. The gravitational
and particle-physics actions of these theories can be found in [240], we will remind
the gravitational action below when we shall focus on the HDA in multifractional
geometries.

Finally, the form of the geometric coordinates qµ(xµ) is dictated by fractal
geometry and it is constrained by two requirements: to have an anomalous scaling
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at small scales (i.e., such that q is not linear in x) and to display a discrete scale
invariance at possibly even smaller scales [105]. In a couple of places below, we will
take the example of the isotropic coarse-grained binomial measure

qµ(xµ) ' q∗(xµ) := xµ + sgn(xµ)`∗
α

∣∣∣∣xµ`∗
∣∣∣∣α , (4.3a)

where 0 < α < 1 is a constant and `∗ is the only characteristic length scale of the
measure (more scales correspond to polynomial measures, called multiscale [105]).
This measure has an anomalous scaling for |xµ| � `∗ determined by α along all
spacetime directions (isotropy). Discrete scale invariance has been washed away by a
coarse-graining procedure at scales smaller than `∗ [105] and is not apparent in (4.3a).
Notice that, by construction, for |xµ| � `∗ one recovers the usual smooth continuous
spacetime manifold as desired. Consequently, in the theory with q-derivatives the
conjugate momentum measure reads

pµ(kµ) ' p∗(kµ) := kµ

1 + α−1|`∗kµ|1−α
. (4.3b)

These are the basic technical ingredients we shall use in the analyses presented
in the following two sections.

In Section 4.1, motivated by a first analysis done in Ref. [242], we scrutinize
further the relation between multifractional and noncommutative differential space-
times. The main reason to look for a link between these two approaches is that
the multifracional measure, e.g. that in Eq. (4.3a), is not invariant under Poincaré
symmetries which are broken in the UV |xµ| � `∗ (but, trivially, restored in the IR
|xµ| � `∗) and, as we have seen already, departures from SR also characterize non-
commutative spacetimes and are the basis of much of their associated phenomenology.
Given that, we shall ask whether we can establish a connection between the various
symmetry structures on both sides. Besides the relevance of such an investigation
from a theoretical perspective, it is worth reminding once more that modifications of
standard flat spacetime symmetries have potential phenomenological consequences.
More specifically, we will explore the similarities between κ-Minkowski and other non-
commutative spacetimes with multifractional spacetimes and discuss, under which
circumstances and to what extent, a connection can be indeed established [143].
Finally, turning gravity on, we shall briefly discuss how to formulate a gravity theory
in multifractional models and, then, compute the HDA [143]. We will compare its
deformations, when present, with those of LQG in the effective-dynamics approach
we already discussed in Section 3.2 of Chapter 3 (see in particular Eq. (3.60)).

In Section 4.2, we study deformations to GR black hole (BH) solutions due to
fractal properties of the geometry [243]. Specifically, we will derive the metric for
both the multifractional theory with q-derivatives and that with weighted derivatives.
In doing so, we will concentrate on the multifractional modifications to the causal
structure of the BH manifold, the consequences for the singularity, and finally basic
thermodynamical properties.
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4.1 Deformed symmetries

In this thesis work we regarded the deformation of the symmetries of GR (or SR
in the flat limit) as one of the most characterizing features of QG scenarios. Given
that, we now want to study the symmetry structure of multifractional models and
its relation with the deformed symmetry scenarios we have already highlighted and
investigated for noncommutative spaces (Chapter 1, 2 and 3) and LQG (Chapter 3).
In particular, we shall focus on three cases: noncommutative spacetimes [89, 90],
multiscale (in particular, multifractional) spacetimes with weighted and q-derivatives
[105] and LQG [113, 114]; and try to clarify what are the relations between these
three distinct approaches to QG.

Let us start investigating the relation between noncommutative spacetimes and
multifractional geometries in the absence of curvature and comparing the symmetries
of both position and momentum space. Note that noncommutative spacetimes do
have dimensional flow [98] and, therefore, are multiscale by definition [106]. The issue
here is whether they are dual to commutative multifractional spacetimes, which are
a special case of multiscale geometries. Then, we will turn gravity on and calculate
for the first time the HDA in the multifractional theory with q-derivatives and in
the multifractional theory with weighted derivatives. Multifractional deformations
of GR symmetries will be compared with the results obtained for LQG in Chapter 3.

4.1.1 Deformed Poincaré symmetries

We start from the findings of Ref. [242], where it was shown that the cyclicity-inducing
measure of κ-Minkowski spacetime can be reproduced by the spacetime measure
of multifractional theories in the limit of very small scales. This suggested a tight
relation, or even a duality, between κ-Minkowski spacetime and some multifractional
theory. However, in order to have a duality it remained to show that both theories
have the same symmetries. In this section, we will fill this gap and conclude that,
although κ-Minkowski is not exactly dual to any of the known multifractional
theories, it shares a number of similarities which permit to describe, in certain
regimes, this noncommutative spacetime as a multifractional one and vice versa
[143].

We immediately spell out the main reason why one cannot establish an exact
duality between κ-Minkowski and any of the commutative multifractional theories:
multifractional measures are always factorizable both in position and in momentum
space, while, in general, the measures of κ-Minkowski in position and momentum
space do not enjoy this property. It is therefore natural to find different symmetries
in these theories. These findings lead us to a reconsideration of the mutual standing
of noncommutative and multifractional theories: rather then being dual to each
other, they are one the extension of the other to the case of nonfactorizable position
or momentum measures. They simply cover different regions in the landscape of
multiscale theories (roughly sketched in [106]).

In the process, we will recover previous results in a more general way [143].
In Ref. [242], a class of noncommutative spacetimes was constructed such that
their cyclicity-inducing measures in position space coincide, after inspecting the
Heisenberg algebra of spacetime coordinates, with a specific fractional measure ∼ xα
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employed in multifractional theories. Contrary to that approach, we will face this
problem at the level of the Poincaré algebra and find a correspondence between
κ-Minkowski and the noncommutative version of a certain multifractional spacetime,
without imposing cyclicity invariance. Generalizing to an arbitrary multifractional
measure, we will obtain a class of noncommutative spacetimes endowed with a
certain deformed Poincaré algebra, which we will write down explicitly.

Multifractional from MDR

We here begin by establishing whether κ-Minkowski spacetime corresponds to some
multifractional spacetime with a certain measure. The symmetry algebra of κ-
Minkowski spacetime is given by the bicross-product κ-Poincaré algebra we already
introduced in the Introduction. As a first approximation, we can focus on the
deformation of the Casimir operator of the κ-Poincaré algebra: in D = 1 + 1
dimensions,

C = −
( 2
λ

sinh λK0
2

)2
+ eλK0K2, (4.4)

where as usual λ = `Pl is the Planck length, K and K0 are the generators
of, respectively, spatial and time translations in the bicross-product basis and we
are restricting to the massless case. Our aim is to find the factorizable measure
dQ0(X0)dQ1(X) of position space from the on-shellness relation e−λK0C = 0 sug-
gested by Eq. (4.4). Defining

P0 = 2
λ
e−

λK0
2 sinh λK0

2 , P = K , (4.5)

we recover the standard relation −P 2
0 +P 2 = 0 between the time and the spatial

parts of the momentum. We can read off the spacetime coordinates from Eq. (4.1):

Q = X , Q0 = λe
λ

2X0

2 sinh λ
2X0

= λ

1− e−λ/X0
. (4.6)

Therefore, using the relation (4.1) between conjugate geometric coordinates, we
have been able to shift the nontrivial features of the κ-deformed Casimir (4.4) from
momentum space to position space. To check that the spacetime dimensionality
changes with the scale, we can calculate the Hausdorff dimension dh := d lnV/d lnR,
where V =

∫
ball dQ

0dQ1 is the volume of a 2-ball of Euclidean radius
√
X2

0 +X2
1 = R.

Clearly, the spatial dimension is 1. The Euclideanized time direction is less trivial.
Centering the ball at X0 = 0 = X, from Eq. (4.6) one has

V ∝ R

1− e−λ/R
⇒ dh = 1− λ/R

1− eλ/R
. (4.7)

In D dimensions, one replaces 1 → D − 1. In the infrared (IR, |λ/R| � 1,
large scales and long time intervals), we get standard spacetime with Q0 ' X0,
V ∼ RD and dh ' D − 1 + 1 = D. In the ultraviolet (UV, |λ/R| � 1, small
scales and short time intervals), the time direction becomes degenerate, Q0 '
λ(1 + e−λ/X0) ' λ, and dh ' D − 1 + 0 = D − 1. Thus, the Hausdorff dimension
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runs from D − 1 to D monotonically. In 4 dimensions, it runs from 3 to 4. Another
useful geometric indicator is the spectral dimension of spacetime we introduced in
Section 3.4 of Chapter 3. In the multifractional theory with q-derivatives, P(σ) =∫
dDP exp[−Q0(σ)PµPµ] ∝ [Q0(σ)]−D/2 [244]. Then, ds = Dλ/[(eλ/σ − 1)σ]. In

the IR (λ/σ � 1), ds ' D, while in the UV (λ/σ � 1) ds ' 0. However, the
multifractional spacetime found from the Casimir operator is not κ-Minkowski
spacetime. An easy way to see this is to compare the measure in momentum space,
which is different: factorizable in the multifractional case (in order to have an
invertible Fourier transform [241, 240]) and nonfactorizable in the noncommutative
case. Also, the running of ds found above is not the dimensional flow of κ-Minkowski
spacetime where, for the bicross-product Casimir, the spectral dimension decreases
from the UV to the IR [98]. Therefore, the Casimir alone cannot establish a duality
between κ-Minkowski and a multifractional spacetime, although it does correspond to
the dispersion relation of a multiscale spacetime. This spacetime is not multifractal
because the measure Q0(X0) in Eq. (4.6) does not correspond to a fractal geometry
[105]. The same conclusion is reached after computing the walk dimension and
noting that it does not combine with the Hausdorff and spectral dimension in the
way it should for fractals [106].

Noncommutative products from multifractional

As anticipated, the factorizable measure of multifractional models is the main obsta-
cle towards establishing a duality between them and noncommutative spacetimes.
However, commutative multiscale theories with nonfactorizable measures were shown
to be not very manageable in early studies of fractal spacetimes on a continuum [28],
which was the reason to propose the factorizable measures of modern multifractional
theories [105]. Since the technical problems entailed in multiscale nonfactorizable
measures seem unavoidable, and since κ-Minkowski is a multiscale theory (by def-
inition) where nonfactorizability issues are solved with the elegant machinery of
noncommutative products, we might as well regard noncommutative spacetimes
as the natural generalization of multifractional spacetimes to nonfactorizable mea-
sures. In this case, both classes of theories are multiscale but the landscape of
noncommutative models might contain the landscape of multifractional spacetimes.
If this conjecture were true, one should be able to write a nontrivial phase-space
Heisenberg algebra for any of the four known multifractional theories. The theory
with ordinary derivative does not have a well-defined momentum transform and has
therefore been regarded as a multiscale toy model; we do not expect it to correspond
to any noncommutative spacetime. The theory with fractional derivative is still
under construction and we cannot say much about its relation with noncommutative
models. The following calculation proves the conjecture “noncommutative implies
multifractional” wrong. In other words, despite some remarkable similarities at
the level of the spacetime measure, noncommutative and multifractional models
constitute separate, nonoverlapping regions in the landscape of multiscale theories.

Consider the multifractional theory with q-derivatives. If it corresponded also to
a noncommutative spacetime, then we should be able to derive the Moyal product
from the product of functions of the geometric coordinates qµ(xµ) defining the theory.
The opportunity of finding the ?-product in this way resides in the nonlinearities



4.1 Deformed symmetries 119

brought by both the coordinates qµ(xµ) and their conjugate momenta pµ(kµ). Thus,
let us consider the composition of two plane waves

eipµ(kµ) qµ(xµ) eipν(k̃ν) qν(xν), (4.8)

where the coordinate profiles are given by Eq. (4.3). Although the full multi-
fractional profiles are more complicated, for our purposes the binomial example is
enough. Momenta pµ(kµ) and coordinates qµ(xµ) are nonlinear functions of kµ and
xµ, respectively. Let us suppose, for simplicity, that the measure is deformed only
in the spatial part, i.e., q0 ≡ x0 and p0 ≡ k0. Our aim is to interpret Eq. (4.8) as
the Moyal product eikµxµ ? eĩkνxν of two plane waves on x-space. Plugging Eq. (4.3)
into Eq. (4.8), expanding for small momenta, and taking the resulting expression as
our definition of the ?-product, in 1 + 1 dimensions we get

eikµx
µ
? eĩkνx

ν := exp
[
i(kµ + k̃µ)xµ + i

`∗
α

(k1 + k̃1)
∣∣∣∣x1
`∗

∣∣∣∣α
−i
(

k1
|`∗k1|α−1 + k̃1

|`∗k̃1|α−1

)
x1
α

]
. (4.9)

The final step consists in using the above definition to find the corresponding
noncommutative theory. As shown in Section 1.2 of Chapter 1, this can be done by
means of a Weyl map. We hereby introduce a suitable Weyl map defined by

eikµx
µ
? eĩkνx

ν := Ω−1
(
eikµX

µ
eĩkνX

ν
)
' Ω−1

(
ei(kµ+k̃µ)Xµ− kµk̃ν2 [Xµ,Xν ]

)

= Ω−1
(
ei(kµ+k̃µ)Xµ+ k0k̃1−k1k̃0

2 [X1,X0]
)
,

(4.10)

where we have used the first-order approximation of the BCH formula (see again
Chapter 1). Equating this with Eq. (4.9), we finally obtain the commutation rule

[X1, X0] = 2i
k0k̃1 − k1k̃0

[
`∗
α

(k1 + k̃1)
∣∣∣∣∣X1

`∗

∣∣∣∣∣
α

−
(

k1
|`∗k1|α−1 + k̃1

|`∗k̃1|α−1

)
X1

α

]
.

(4.11)
If we wrote, for instance, the noncommutative Lagrangian of a scalar field with

this result, then by construction we would obtain the scalar-field Lagrangian of
the q-theory approximately. However, Eq. (4.11) is ill-defined because it depends
on the momenta of both plane waves, while it should be momentum independent.
The explicit reference to plane waves’ momenta prevents us from interpreting Eq.
(4.11) as a general noncommutative spacetime algebra that should hold for any
number of waves. This happens because we imposed the commutator to give the
nonlinear terms coming from the BCH formula. For a well-defined noncommutative
theory there is a mutual compatibility between the ?-product, the Weyl map Ω and
the noncommutativity of Xµ. In particular, the ?-product matches the non-linear
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functions of the momenta appearing in the terms of the BCH expansion (see the
last line of Eq. (4.10)) in such a way that the commutator involving Xµ does not
depend on momenta. Clearly, it does not happen in the case we are analysing here.
Moreover, both (4.9) and (4.11) are completely ad hoc formulæ constructed for the
composition of two plane waves and they would not work for three or more phases.
All these problems stem from the factorizability of the measure of the q-theory.
There is, in fact, a clear tension between Eqs. (4.9) and (4.10): while the first is a
factorized composition of position and momentum coordinates, the second tends to
mix the momenta of both waves. Forcing the definition (4.9) results in the expression
(4.11).

The same outcome can be derived in the following way. Consider the scalar-field
action in the q-theory in 1 + 1 dimensions:

Sq = −1
2

∫
d2q

(
∂qµφ∂

qµφ+m2φ2 + 2σ
n! φ

n
)

= 1
2

∫
dq0dq1

[
(∂q0φ)2 − (∂q1φ)2 −m2φ2 − 2σ

n! φ
n
]

= 1
2

∫
dx0dx1

[
v1
v0

(∂0φ)2 − v0
v1

(∂1φ)2 − v0v1m
2φ2 − v0v1

2σ
n! φ

n
]

(4.12)

and let us compare it with the scalar-field action in a generic (i.e. without
specifying any specific form for the ?-product) noncommutative theory:

S? = −1
2

∫
d2x

(
∂µφ ? ∂

µφ+m2φ ? φ+ 2σ
n! φ ? φ ? ... ? φ

)
. (4.13)

In the former action Sq we have done easy manipulations in order to shift the
non-trivial form of the q-measure as well as of the q-derivatives to prefactors in
front of the fields. In this way, since in a noncommutative theory the ?-product
between fields produce this kind of non-trivial prefactors, we can try to check if it
is possible to match deformations in Sq with those carried by the ?-products in S?.
However, this is not the case as one can readily comprehend with a more careful
comparison. In Sq there are three terms quadratic in the field φ but all of them have
different measure prefactors given by the combinations of the profiles v0(x0) and
v1(x1). In D dimensions, the µ-th component of the kinetic term has a “deformation”
v0v1 · · · (1/vµ) · · · vD−1, while the mass term has a v0 · · · vD−1 prefactor. It is then
difficult to read a ?-product in this type of action, since terms in S? with the same
number of fields (e.g. kinetic and mass term) have the same deformation because
they are all of the form φ ? φ and the derivatives of the kinetic term do not affect
the ?-product. This is a general feature of noncommutative theories that does not
fit the structure of multiscale actions. The same conclusion can be reached in all
other multifractional theories with factorizable measures. For instance, in the theory
with weighted derivatives the free scalar-field case is trivial because, after a field
redefinition φ→ φ/

√
v0v1, the O(φ2) part coincides with a commutative theory (see

Ref. [245] for the details of the dynamics in D dimensions). This is not an issue per
se because one could invoke the trace property on the free part and concentrate on
nonlinear field terms. The interaction φn has exactly the same structure as in Eq.
(4.12) and its deformation v0v1 could be used as a ?-product, were it not for the fact
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that interacting noncommutative field theories are not easy to work out. Although
we do not try this calculation here since we do not foresee any way to avoid the
factorizability problem.

Noncommutative multifractional spaces

Thus, we have seen that we can not interpret multifractional spacetimes as noncom-
mutative. Nonetheless, we can make them so and study the corresponding deformed
symmetry algebras. Instead of a direct construction, we follow a more attractive
path which, in generic terms, starts from a noncommutative symmetry algebra and
leads to a multifractional measure. We begin with a special case and then move to
the general one. Working in D = 1 + 1 dimensions, we can denote with (Q,Q0, P, P0)
the phase-space operators of the multifractional theory with q-derivatives with a
generic nontrivial weight measure given by dQ0dQ = dX0dXv(X). We assume
that such a deformed measure only depends on the spatial coordinate X, while
the time part is left unmodified (i.e., it has a trivial weight). This assumption is
dictated only by the aim of the following calculation, which is to reproduce the
κ-Minkowski algebra. Of course, one can conceive the general case with a nontrivial
time measure and repeat the procedure detailed below. In that case, one will find
a more general noncommutative spacetime that collapses to κ-Minkowski in the
limit Q0(X0) → X0. The calculation would be complicated by the presence of
commutators [f1(X0), f2(X)] between functions of operators, which can be written
as infinite series once f1,2 are known [246]. By definition, the geometric coordinates
obey the Heisenberg algebra

[Q,P ] = i, [Q0, P0] = −i, [Q,P0] = [Q0, P ] = 0, (4.14)

and they are related to the phase space generated by (X,X0,K,K0) in the
following way:

Q =
∫
dX v(X), Q0 = X0, P = 1

v(X)K, P0 = K0 , (4.15)

where v is the measure weight in the spatial direction. The third expression
is a consequence of imposing the canonical commutation relations [Q,P ] = i and
[X,K] = i, which are the quantum counterpart of the classical canonical relation
(4.1). We want to prove that the multifractional weight is given by v(X) ∝ |X|−1 if
X and X0 are κ-Minkowski coordinates, i.e.,

[X,X0] = iλX . (4.16)

Such a result, that establishes a connection between multifractional and non-
commutative spacetimes, was first derived in Ref. [242]. However, in that case
the analysis was done in position space and by using the ?-product to find a map
between the set of (Q,Q0) coordinates and (X,X0). Information on the multifrac-
tional momentum space was not used and this permitted to keep the multifractional
side of the correspondence arbitrary. On the other hand, here we find the same
outcome in a more compact way just using the deformed Heisenberg algebra of the
κ-Minkowski phase space, but specifying the multifractional theory to be the one
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with q-derivatives. The κ-Heisenberg algebra is given by the commutation relations
[247]

[X,K] = i, [X0,K0] = −i, (4.17)
[X,K0] = 0, [X0,K] = iλK, (4.18)

as one can easily check by computing the Jacobi identities involving the phase-
space operators and taking into account (4.16). The explicit form of the measure
weight v(X) can be derived thanks to the two sets of commutators (4.14) and (4.17).
To this aim, let us consider the commutation relation between time Q0 and the
spatial momentum operator P :

0 = [P,Q0] = [ 1
v(X)K,X0] = 1

v(X) [K,X0] + [ 1
v(X) , X0]K

= 1
v(X)(−iλK)− v′(X)

v2(X) [X,X0]K − iλ

v(X)

[
1 + v′(X)

v(X) X
]
K , (4.19)

where v′(X) = dv(X)/dX and we have used the third expression in Eq. (4.15)
and the phase-space commutators (4.17). Notice that the ordering between X and
K is nontrivial because they are noncommuting variables. Integrating over X and
introducing a length scale λ to keep v dimensionless, we get

−
∫
dX

X
=
∫
dv

v
⇒ v(X) = λ

|X|
, (4.20)

which is exactly the measure found in Ref. [242]. Apart from the shortness of this
novel derivation, the main advantage comes from the fact that we have not assumed
any specific form for the integration measure on κ-Minkowski spacetime, contrary
to the analysis of Ref. [242]. There, the argument was based on a comparison
of the fractional measure with the κ-Minkowski cyclic-invariant measure, which
has the drawback of breaking the relativistic symmetries (see, e.g., [170]). Here
we have found the measure (4.20) relying only on the commutators of the phase
space of both multiscale (4.14) and κ-Minkowski (4.17) variables. In this way, we
have not been forced to introduce a symmetry-breaking measure on κ-Minkowski
spacetime. The measure weight v(x) ∼ 1/|x| arises as the ultraviolet limit of a
multifractional measure with logarithmic oscillations. In this limit, the fundamental
scale `∞ appearing in the oscillatory part is factored out of the asymptotic measure
as an overall constant. Thus, the theoretical problem of the disappearance of the
Planck length in the κ-Minkowski cyclic-invariant measure was solved in [242] by
regarding κ-Minkowski spacetime as the limit of noncommutative multifractional
Minkowski spacetime and by identifying `∞ with the Planck scale. This embedding
would be fully valid only if the symmetries of κ-Minkowski exactly matched those of
the multifractional q-theory. Here we checked this correspondence at the level of the
Heisenberg algebra and below we will give another proof at the level of the Poincaré
algebra. Therefore, the geometrical and physical interpretation of [242] is confirmed.
Note that there is no contradiction between this result and the fact that we cannot
identify multifractional field theories with noncommutative field theories because



4.1 Deformed symmetries 123

such embedding is of a noncommutative spacetime within another, while the above
negative results involve noncommutative theories on one hand and commutative
multifractional theories on the other hand.

At this point we desire to follow an almost complementary path, i.e. we start
from the multifractional q-theory and recast it as a noncommutative spacetime with
exactly the same symmetries. By definition, the dynamics of this theory in the
absence of curvature is invariant under the so-called q-Poincaré symmetries

qµ(x′µ) = Λµνqν(xν) + aµ , (4.21)

which correspond to highly nonlinear transformations of the x-coordinates. This
means that, in the q position space, we have the undeformed Poincaré commutators
between the classical generatorsN and momenta (P0, P ) of, respectively, infinitesimal
boosts and time-space translations:

[N , P ] = iP0 , [N , P0] = iP , [P0, P ] = 0 , (4.22)

where

N = i

(
Q

∂

∂Q0
−Q0

∂

∂Q

)
, P0 = i

∂

∂Q0
, P = −i ∂

∂Q
.

On the other hand, these q-Poincaré commutators generate the nonlinear trans-
formations (4.21) on the X position space. In order to make this manifest, we derive
the symmetry algebra expressed in terms of the momenta (K0,K). To this end,
we consider the simplified case in which only the spatial part of the measure is
modified. Then, P0 = K0 and P = P (K) is determined by the geometric coordinates
in position space via Eq. (4.1). In terms of the momenta (K0,K), the symmetry
algebra is

[N ,K] = iK0
w(K) , [N ,K0] = iP (K), [K,K0] = 0, (4.23)

where, according to Eq. (4.2), w(K) = (P 2/K2)v(1/K). These commutation
relations reduce to the usual Poincaré algebra if we send to infinity the deformation
parameter appearing in w → 1 and P → K. For instance, for the operatorial version
of the binomial measure (4.3)

Q(X) = X + sgn(X)`∗
α

∣∣∣∣X`∗
∣∣∣∣α , (4.24a)

P (K) = K

1 + α−1|`∗K|1−α
, (4.24b)

one has

v(X) = 1 +
∣∣∣∣X`∗
∣∣∣∣α−1

, w(K) = 1 + |`∗K|1−α

(1 + α−1|`∗K|1−α)2 , (4.25)

and the limit giving the standard Poincaré algebra is |`∗/X| → 0 ← |`∗K|
(vanishing fundamental length scale at which multiscale effects become apparent).
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Interestingly, the deformation we have obtained is given by nonlinear functions
of the generators of translations (i.e., K and K0) on the X position space. These
kinds of modifications are those studied to characterize the relativistic symmetries
of noncommutative spacetimes (see Ref. [248] for a recent review on generalized
deformations of the Poincaré algebra in the framework of quantum groups). In
the light of this analogy, we want to determine what type of noncommutativity
of the coordinates (X0, X) is implied by (4.23). Our strategy is to derive the
commutation relations involving the set of operators (N ,K0,K,X0, X) from the
known commutators of both the q-Poincaré algebra (4.22) and the Q phase space.
Then, we will look for the outcome of the commutator [X,X0] needed to satisfy all
the Jacobi identities. Let us start by deriving the commutators between the boost
operator N and (X0, X). They can be obtained from the corresponding commutators
on the Q space, which are by definition

[N , Q0] = iQ, [N , Q] = iQ0 , (4.26)

giving the desired commutation relations [N , X0] and [N , X]:

[N , X0] = iQ(X), [N , X] = iX0v
−1(X) . (4.27)

Given the above deformed actions of N on the coordinates, one can now derive
the commutator between spacetime coordinates by requiring the validity of the
Jacobi identity involving (N , X,X0):

0 = [[N , X], X0] + [[X0,N ], X] + [[X,X0],N ]
= iX0[v−1(X), X0] + [[X,X0],N ]

= −iX0[X,X0] v
′

v2 + [[X,X0],N ] . (4.28)

At this point, we make two mutually exclusive Ansätze: either

[X,X0] = ih(X0) (4.29)

or

[X,X0] = if(X) . (4.30)

In the first case, Eq. (4.28) and the first commutator in (4.27) giveX0h(X0)v′(X)/v2(X) =
Q(X)h′(X0), which is solved by

h(X0) = βeX
2
0/(2l2) , Q(X) =

√
2lErf−1

(√
2
π

X

l

)
,

where β is a dimensionless constant, l is a constant length and Erf−1 is the
inverse error function. This noncommutative spacetime is compact and has a very
strange behaviour: it has a canonical position-space algebra in the double early-time
limit |X0/l| � 1 and UV limit |X/l| � 1 (where Q ' X). Since it does not possess
a well-defined IR limit, we discard this solution. Case (4.30) is more appealing.
From Eq. (4.28) and the second commutator in (4.27), we have v′/v = −f ′/f , hence
f = λ2/v, where λ is a constant length:
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[X,X0] = iλ2

v(X) . (4.31)

Fortunately, the measure weight v(X) is unconstrained and it can take the
standard form in multifractal spacetimes with q-derivatives (in the absence of log
oscillations, Eq. (4.25)). If λ = 0, the algebra of the coordinates is trivial, [X,X0] = 0
and position space is commutative. If λ 6= 0, then Q position space is canonical. In
fact, from the definition of geometric coordinates it follows directly that

[Q,Q0] = iλ2 . (4.32)

The nature of position space depends on whether one imposes λ = 0 (commutativ-
ity) or λ 6= 0 (noncommutativity). Note that for v(X) = λ/X, Eq. (4.31) reproduces
the κ-Minkowski algebra (4.16). Thus, up to an absolute value we have obtained
the same result of the previous subsection, but using the Poincaré algebra instead of
the Heisenberg one. Repeating the procedure we adopted to derive Eq. (4.23) and
considering the Jacobi identity for N , X0 and K, the remaining commutators read

[K,X] = − i

v(X)w(K) , [K0, X0] = i, (4.33a)

[K0, X] = 0, [K,X0] = 0 . (4.33b)

Equipped with these commutators, one can finally check that all the Jacobi
identities are satisfied. The choice λ 6= 0 in Eq. (4.31) defines a noncommutative
extension of the multiscale theory under examination. In order to complete this
extension, we need to identify a suitable Weyl map. After having found a correspon-
dence between the noncommutativity given by Eq. (4.31) on the x-space and the
canonical noncommutative q-space, it is immediate to write down the ?q-product for
a canonical spacetime with (4.32):

fp(q0, q) ?q gk(q0, q) = Ω−1
q [fp(Q0, Q)gk(Q0, Q)]

= ei(pµ+kµ)qµe−iλ
2p0k, (4.34)

where µ = 0, 1. Such a Weyl map allows us to work with functions depending on
commutative coordinates (q0, q) equipped with the ?q-product (4.34). For instance,
the action for a real scalar field φ with self-interaction reads

S?q = −
∫
dq0dq

(
1
2∂q

µφ ?q ∂
qµφ+ m2

2 φ ?q φ+ σ

n!φ ?q · · · ?q φ
)
. (4.35)

The same line of reasoning applies also to the x position space but with more
technicalities due to the form of Eq. (4.31). By definition of the Weyl map, we know
that fp(X0, X)gk(X0, X) = Ωx[fp(x0, x) ?x gk(x0, x)], where the coordinates (x0, x)
are commutative while (X0, X) obey Eq. (4.31). Then, we can express functions of
noncommutative coordinates as inverse Fourier transforms of commuting functions
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on momentum space, i.e., f(X0, X) = (2π)−1 ∫ dp0dp eipµx
µ
f̄(p0, p). Thus, in order

to find the ?x-product explicitly, we must be able to compute the product of phases
such as eipµXµ

eikνX
ν depending on noncommuting operators. This can be done

by exploiting the BCH lemma that, in general, gives such a product in terms of
the sum of the two operators plus an infinite series of corrections. The latter are
combinations of the commutators between the operators: exp(ipµXµ) exp(ikνXν) =
exp[i(kµ + pµ)Xµ − kµpν [Xµ, Xν ]/2 + O(λ4)] = exp{i(kµ + pµ)Xµ + iλ2(k0p −
kp0)/[2v(X)] + O(λ4)}, where we used Eq. (4.31) and we restricted only to the
first-order correction term. Unfortunately, in the case of Eq. (4.31) we do not have
a simplified version of the BCH formula. This prevents us form finding explicitly
the ?x-product at all orders in λ which, thus, can be introduced only in a formal
way (i.e., order by order).

This concludes our exploration about the relation between noncommutative and
multifractional geometries in Minkowski space. Now we would like to turn gravity
on and inspect the symmetry under diffeomorphisms in multifractional gravity. As
we did in the precedent chapters, the main scope will be again that of analysing
the form of the HDA and look for departures form standard GR symmetries. In
fact, a natural question, which we answer here for the first time, is whether the
HDA should be deformed in this framework and whether the LQG modifications
of the HDA in the effective-dynamics approach (3.60) can be linked with possible
modifications of the HDA in the multiscale approach.

4.1.2 Deformed diffeomorphism symmetries

In Section 3.3.1 of Chapter 3, we have shown there is a connection between κ-
Minkowski spacetime and the effective-dynamics (or effective-constraint, or deformed-
algebra) approach of LQG. Due to the relation between κ-Minkowski and multifrac-
tional spacetimes we established above, one may wonder if there is also a relation
between the latter and the effective limit of LQG described by the deformed-algebra
approach. If present, such a relation will not be a duality for the reasons explained
above. Nevertheless, it is possible to construct the deformed algebra of the gravita-
tional constraints in two multifractional theories (with q- or weighted derivatives)
and compare it directly with the anomaly-free algebra found in the effective-dynamics
approach of LQG. We will do so here and discuss similarities and differences in the
deformations.

Some hints that the HDA may actually get modified by altering the differential
structure come from the fact that, as we have seen so far, multiscale measures in the
Minkowski embedding produce nonlinear deformations of the Poincaré algebra. And,
as we have already seen in Chapter 2 and in Chapter 3, the Poincaré algebra can be
obtained as the flat-spacetime limit of the HDA. This suggests to look for a possible
connection between LQG in the effective-dynamics approach and multiscale theories.
In the light of this, we here derive the HDA in two different multifractional models:
the theory with q-derivatives and that with weighted derivatives. Before doing that,
let us briefly review how one can can treat the gravitational field in multifractional
geometries.

Gravity in multifractional theories has been studied in Ref. [240]. The case of
the q-theory is simple and amounts to replacing xµ → qµ(xµ) everywhere in the
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standard Einstein–Hilbert action of GR. In other words, ordinary derivatives ∂µ are
replaced by [1/vµ(xµ)]∂/∂xµ = v−1

µ (xµ)∂µ (no index summation), where vµ = ∂µq
µ.

As a result, the Riemann tensor in this theory is

qRρµσν = 1
vσ
∂σ

qΓρµν −
1
vν
∂ν

qΓρµσ + qΓτµν qΓρστ − qΓτµσ qΓρντ , (4.36)

where the Christoffel symbol is

qΓρµν = 1
2g

ρσ

(
1
vµ
∂µgνσ + 1

vν
∂νgµσ −

1
vσ
∂σgµν

)
. (4.37)

Finally, the q-version of the Einstein–Hilbert action reads

qS = 1
2κ2

∫
dDxv(x)

√
−g(qR− 2Λ) + Sm , (4.38)

where v(x) =
∏
µ vµ(xµ) and Sm denotes the matter action. Despite its simplicity,

this replacement gives rise to a nontrivial physics because it introduces a preferred
frame where all observables should be computed [106, 240]. It is easy to guess
that the constraint algebra has the same form of Eq. (2.10), with the difference
that coordinates now are the composite objects qµ(xµ). However, as a consequence,
neither the first-class constraints (2.10) nor the Lie derivatives therein are the
standard ones. Since the spatial q-derivatives can be expressed as ∂qi = v−1

i (xi)∂i
(where ∂i = ∂/∂xi), we can write explicitly the q-HDA as

{Dq[Mk], Dq[N j ]} = Dq

[
1

vj(xj)
(M j∂jN

k −N j∂jM
k)
]
,

{Dq[Nk], Hq[M ]} = Hq

[
1

vj(xj)
N j∂jM

]
, (4.39)

{Hq[N ], Hq[M ]} = Dq

[
hjk

vj(xj)
(N∂jM −M∂jN)

]
,

where the index of the deformed measure weight vj is inert and it is not contracted
with other indices. We stress that the constraints Hq[N ] and Dq[Nk] generate time
translations and spatial diffeomorphisms of the geometric coordinates qµ(xµ), which
means that these are not the usual time translation and diffeomorphisms, as it would
become evident when turning to x-spacetime. Thus, all Poisson brackets acquire the
same anisotropic deformation in the right-hand side. Such a result is not compatible
with the LQG modifications of the HDA in the effective-dynamics approach because,
in the latter case, spatial diffeomorphisms are unmodified (i.e., both {D,H} and
{D,D} remain untouched). On the other hand, the scalar part {Hq, Hq} of Eq.
(4.39) can be compared with the analogous LQG bracket in Eq. (3.60). Although
one might naively identify the LQG deformation function β = 1/vi(xi) with the
inverse of the multifractional spatial measure weight, we also have deformations
in the other brackets. Another point of departure comes from the fact that the
q-deformation (4.39) of the HDA is background independent: it consists only in the
measure of the anomalous geometry, which is completely independent of the metric
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structure. Finally, while β can change sign in different regimes [235], 1/v is always
positive definite. The deformation of the HD in the multifractional theory with
q-derivatives also differs from the LQG since all q-Poisson brackets are deformed.
We conclude that, regardless of the quantization scheme adopted, the HDA of LQG
and of the multifractional q-theory are physically inequivalent.

In the multiscale theory with weighted derivatives, the gravitational field behaves
quite differently. After a frame choice, a conformal transformation of the metric
and some field redefinitions, it is possible to write the gravitational action of
the system as the standard Einstein–Hilbert action plus a rank-0 function φ(x)
that looks like a scalar field [240]. Since the form of the HDA is insensitive to
the specific matter content of the theory, one might think that the gravitational
and the scalar parts should satisfy separately the classical HDA (2.10). However,
φ = φ[vµ(xµ)] is not a scalar field, since it is a nondynamical function of the measure.
The super-Hamiltonian constraint can be written as H[N ] = H0[N ] + Hφ[N ] =∫
d3xN(H0 +

√
hHφ), where h is the determinant of the spatial metric,

H0 = πlkπ
lk

√
h
− π2

2
√
h
− (3)R

√
h (4.40)

is only metric dependent and the density Hφ is both metric and measure depen-
dent. The diffeomorphism constraint is the usual one, D[Nk] = −2

∫
d3xNkhkjDlπ

lj .
Since there are no dynamical degrees of freedom associated with φ, there is no con-
jugate momentum πφ. Thus, when computing the Poisson brackets (2.10), the only
contribution of the measure-dependent φ part is given by the last two pieces in

{H[N ], H[M ]} = {H0[N ], H0[M ]}

+
∫
d3xN(x)

∫
d3yM(y){H0(x),

√
h}Hφ(y)

+
∫
d3xN(x)

∫
d3yM(y)Hφ(x){

√
h,H0(y)} . (4.41)

However, it is easy to realize that the last two Poisson brackets cancel each other. In
fact, the only terms that give nonzero contributions to the constraint algebra are those
that contain the spatial derivative h′ij of the metric in one argument of the Poisson
bracket and the conjugate momentum πlm in the other. This happens because only
in that case do we get the derivative of a delta function, which prevents the term
from being cancelled by the identical Poisson bracket where the two functionals are
exchanged. Then, taking into account that the boundary conditions are chosen such
that the constraints vanish at infinity, it is possible to shift these derivatives to N and
M thanks to an integration by parts. Following these steps, one can work out the
Dirac algebra. In the light of this, it is clear that the measure-dependent term of the
Hamiltonian constraint with weighted derivatives does not affect the Poisson bracket
{H[N ], H[M ]}. As a result, we can claim that standard diffeomorphism invariance
is preserved in the multiscale theory with weighted derivatives in the absence of
matter, since the φ-dependent correction term is not affected by diffeomorphisms.
When interacting matter fields are present, diffeomorphism invariance is broken
[240]. As far as LQG is concerned, the absence of deformations in the HDA excludes
a relation between the theory with weighted derivative and the LQG formulation
where anomaly freedom is imposed.
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4.2 A physical application: multifractional black holes

In this section we wish to apply the machinery of multifractional models to a physical
situation, i.e. BH solutions. We study static and radially symmetric black holes
in the multi-fractional theories of gravity with q-derivatives and with weighted
derivatives, and underline departures form standard GR as well us for what regards
BH thermodynamical properties [243].

4.2.1 Multifractional black holes with q-derivatives

Let us start with multi-fractional gravity with q-derivatives. Given the discussion in
the preceding section, there is no difference between GR and multi-fractional gravity
with q-derivatives when we write the latter in terms of qµ coordinates. In fact, the
geometric coordinates qµ provide a useful way of re-writing the theory in such a
way that all non-trivial aspects are hidden. However, the operation we described
as “xµ → qµ(xµ)” is only a convenient way of writing this theory from GR and it
should not be confused with a standard coordinate change trivially mapping the
physical dynamics onto itself. The presence of a background scale dependence (a
structure independent of the metric and encoded fully in the profiles qµ(xµ), which
will be given a priori) introduces a preferred frame (called fractional frame, labeled
by the fractional coordinates xµ) where physical observables must be calculated. In
the fractional frame, where the integration measure gets non-trivial contributions
dDx v(x) = dDx(1 + . . . ) and derivatives are modified into operators v−1

µ (xµ)∂µ, one
sees departures from GR. In the light of Eqs. (4.36)–(4.38), it is not difficult to
realize that the solutions to Einstein equations are the same of GR when they are
expressed in qµ coordinates, but non-linear modifications appear when we rewrite
the solution as a function of xµ by using the profiles qµ(xµ). In the first part of this
work, we shall show that these multi-fractional modifications affect not only the
event horizon and the curvature singularity but also thermodynamic properties of
black holes such as the Hawking temperature.

We are interested in studying the Schwarzschild solution in the multi-fractional
theory with q-derivatives. To this aim, we first have to transform the multi-fractional
measure to spherical coordinates. This represents a novel task since the majority
of the literature focused on Minkowskian frames or on homogeneous backgrounds.
Let us start from the Cartesian intervals analyzed above. If we center our frame
in spherical coordinates at xA, then we have that ∆x = r provided the angular
coordinates are θA = θB and φA = φB. Thus, we can rewrite Eq. (4.3a) as

q(r) =
∣∣∣∣r ± `∗

α

(
r

`∗

)α∣∣∣∣ . (4.42)

Here we have defined q(r) ≡ ∆q(r). In the deterministic view, this formula
states that the radius acquires a non-linear modification whose sign depends on the
presentation. In the stochastic view, we do not have any non-linear correction of
the radius but, rather, the latter is afflicted by an intrinsic stochastic uncertainty
and it fluctuates randomly between r + `∗

α (r/`∗)α and r − `∗
α (r/`∗)α. In the first

case, we just have a deformation of the radius, while in the second case we are
suggesting that a stochastic (most likely quantum [102, 103]) feature comes out as a
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consequence of multi-fractional effects, namely the radius acquires a sort of fuzziness
due to multi-fractional effects. See also Section 1.2 of Chapter 1.

Including also one mode of log oscillations, which are present in the most general
multi-fractional measure [104], in the spherical-coordinates approximation Eq. (4.42)
is modified by a modulation term:

q(r) =
∣∣∣∣r ± `∗

α

(
r

`∗

)α
Fω(r)

∣∣∣∣ (4.43a)

Fω(r) = 1 +A cos
(
ω ln r

`∞

)
+B sin

(
ω ln r

`∞

)
. (4.43b)

Here A < 1 and B < 1 are arbitrary constants and ω is the frequency of the
log oscillations. The ultramicroscopic scale `∞ is no greater than `∗ and can be as
small as the Planck length [102, 103]. Notice that the plus sign is for the initial-
point presentation, the minus for the final-point one, and both signs are retained in
the interpretation of the multrifractional modifications as stochastic uncertainties.
The polynomial part of Eq. (4.43) features the characteristic scale `∗ marking the
transition between the ultraviolet and the infrared, regimes with a different scaling
of the dimensions. On the other hand, the oscillatory part Fω(r) is a signal of
discreteness at very short distances, due to the fact that it enjoys the discrete
scale invariance Fω(λωr) = Fω(r), where λω = exp(−2π/ω). Averaging over log
oscillations yields 〈Fω〉 = 1 and Eq. (4.42) [105]. Indeed, in the stochastic view, the
logarithmic oscillatory part is regarded as the distribution probability of the measure
that reflects a non-trivial microscopic structure of fractional spaces [102, 103]. We
want to take expression (4.42) or the more general (4.43) as our definition of the
radial geometric coordinates, while we leave the measure trivial along the remaining
2 + 1 directions (t, θ, φ). We will consider modifications in the radial and/or time
part of the measure for the theory with weighted derivatives, while still leaving the
angular directions undeformed. Note that q(r) 6=

√
[q1(x1)]2 + [q2(x2)]2 + [q3(x3)]2

(assuming the spherical system is centered at xµ = 0). In fact, we derived Eq.
(4.42) passing to spherical coordinates in the fractional frame and, of course, this is
not equivalent to having geometric spherical coordinates [106] as in (4.42). How-
ever, it is not difficult to convince oneself that the difference between q(r) and√

[q1(x1)]2 + [q2(x2)]2 + [q3(x3)]2 is negligible with respect to the correction term in
(4.42) at sufficiently large scales, which justifies the use of the spherical geometric co-
ordinate q(r) as a useful approximation to the problem at hand. Notice, incidentally,
that the geometric radius in the theory with fractional derivatives is q(r) exactly [29].
To summarize, we are going to analyze the multi-fractional Schwarzschild solution
in six different cases: in the deterministic view with the initial-point presentation;
in the deterministic view with the final-point presentation; in the stochastic view,
where the presentation ambiguity corresponds to an intrinsic uncertainty on the
length of the fractional radius without and with log oscillations.

Looking at Eqs. (4.36)–(4.38) and recalling the related discussion, it is easy to
realize that the Schwarzschild solution in geometric coordinates qµ(xµ) (as well as
all the other GR solutions) is a solution of the q-multi-fractional Einstein equations.
Explicitly, the Schwarzschild line element in the multi-fractional theory with q-
derivatives is given by
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q
ds2 = −

[
1− r0

q(r)

]
dt2 +

[
1− r0

q(r)

]−1
dq2(r) + q2(r)(dθ2 + sin2 θdφ2), (4.44)

where r0 := 2GM ,M is the mass of the black hole and q(r) is a non-linear function
of the radial fractional coordinate r, given by Eq. (4.42) in the case of the binomial
measure without log oscillations and by Eq. (4.43) in their presence. Our first task
is to study the position of the event horizon. As anticipated, fixing the presentation
we will find that the horizon is shifted with respect to the standard Schwarzschild
radius r0. In particular, choosing the initial-point presentation the radius becomes
smaller, while it is larger than the standard value 2GM in the case of the final-point
presentation. The two shifted horizons obtained by fixing the presentation can also
be regarded as the extreme fluctuations of the Schwarzschild radius, if we interpret
the presentation ambiguity as an intrinsic uncertainty on lengths coming from a
stochastic structure at very short distances (or, equivalently, as a semi-classical
quantum-gravity effect) according to [102, 103]. From this perspective, the horizon
remains r0 but now it is affected by small quantum fluctuations that become relevant
for microscopic black holes with masses close to the multi-fractional characteristic
energy E∗ ∝ 1/`∗, i.e. when the Schwarzschild radius becomes comparable with
the multi-fractional correction. From Eq. (4.44), the equation that determines the
fractional event horizon rh is

q(rh) = r0 , (4.45)

valid even for the most general multi-fractional measure (which we have not
written here but can be found in [104]). Looking at this implicit formula for rh in
the case (4.43), it is evident that the initial-point rh is inside the Schwarzschild
horizon and, on the opposite, the final-point rh stays outside the Schwarzschild
horizon. However, in order to make an explicit example and also to get quantitative
results, let us restrict to the coarse-grained case without log oscillations. Then, the
above equation simplifies to

rh ±
`1−α∗
α

rαh = r0. (4.46)

If we also fix the exponent by choosing α = 1/2 (a value that, as already stressed,
has a special role in the theory), we can easily solve the horizon equation analytically,
obtaining

rip
h = 2`∗ + r0 − 2

√
`2∗ + r0`∗ < r0 (4.47)

for the initial-point presentation, while

rfp
h = r0 + 2

√
`2∗ + r0`∗ − 2`∗ > r0 (4.48)

for the final-point presentation. The superscripts distinguish the two possibilities.
On the other hand, following the interpretation of [102, 103], we would have

rh = r0 ± δ(r) , δ(r) := 2
√
`2∗ + r0`∗ − 2`∗ , (4.49)
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where δ has the meaning of uncertainty on the position of the event horizon
generated by the intrinsic stochasticity of spacetime. In Fig. 4.1, we show the
geometric radius q(r) as a function of the fractional radius r for the two different
presentations we consider.

Figure 4.1. Behavior of the geometric radius q(r) as a function of the fractional radius r
with α = 1/2 and `∗ = 1. The solid line is the relation for the initial-point representation;
choosing instead the final-point presentation, we find the dotted line; the dashed line
is the ordinary case q(r) = r. The interpretation of multi-fractional corrections as
quantum/stochastic uncertainties would make the dashed line fuzzy by adding random
fluctuations between the two other curves in the limit of large fractional radius r. Then,
once we enter into the regime where r ∼ δr (i.e., r < 1 in the plot), it is no longer
allowed to talk about a radial distance r according to the stochastic view.

The next task is to study whether and how the curvature singularity of the
Schwarzschild solution is affected by multi-fractional effects. The bottom line is
that the singularity is still present but the causal structure of black holes generally
changes. In fact, novel features appear both for the final-point presentation and the
case of a fuzzy radius. Consider first the measure without logarithmic oscillations.
(i) In both the initial-point and the final-point presentations, there is no departure
from the GR prediction on the curvature singularity at the center of the black
hole, since q(0) = 0 (for the most general factorizable measure). (ii) However, and
contrary to what one might have expected, if we choose the final-point presentation,
a second essential singularity appears. In fact, the geometric radius in the final-point
presentation q(r) = r − (`1−α∗ /α)rα has two zeros where the line element (4.44)
diverges, one at r = 0 and one at the finite radius

r = α−
1

1−α `∗ ⇒ r ∼ `∗ . (4.50)
The r = `∗ locus corresponds to a ring singularity that is not present in the

Schwarzschild solution of GR. (iii) Finally, in the stochastic view the singularity
is resolved due to multi-fractional (quantum) fluctuations of the measure. Unfor-
tunately, this is not the case. In fact, the origin r = 0 represents a special point
because δ(0) = 0 and it does not quantum fluctuate. Therefore, in the origin
multi-fractional effects disappear and the theory inherits the singularity problem
of standard GR. Let us also mention that stochastic fluctuations become constant
in the limit α→ 0 and the singularity might actually be avoided. However α = 0
is not a viable choice in the parameter space, unless log oscillations are turned
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on. We will do just that now. Considering the full measure (4.43), we find that
not only is the singularity not resolved, but in principle there may also be other
singularities for r 6= 0 due to discrete scale invariance of the modulation factor Fω(r).
To see this in an analytic form, we first consider a slightly different version of the
log-oscillating measure (4.43), q(r) = [r + (`∗/α)(r/`∗)α]Fω(r), where the modula-
tion factor multiplies also the linear term. This profile is shown in Fig. 4.2. The
geometric radius vanishes periodically at r = exp(−nβ±)`∞, n = 0, 1, 2, . . . , where
β± = arccos[(A±B

√
A2 +B2 − 1)/(A2 +B2)]. Since −1 6 A 6 1 and −1 6 B 6 1,

the parameter β± is well defined only when |B| >
√

1−A2. In general, also in the
actual case (4.43), these extra singularities appear only when one or both amplitudes
A and B take the maximal value |A| ∼ 1 ∼ |B|. Fortunately, observations of the
cosmic microwave background constrain the amplitudes to be smaller than about 0.5
[29], which means that some protection mechanism avoiding large log oscillations
is in action. This is also consistent with the fact that, in fractal geometry, these
oscillations are always tiny ripples around the zero mode.

Figure 4.2. Semi-log graph showing the behavior of the geometric radius (4.43) as a
function of the fractional radius r, with A = B = ω = 1. In this figure, `∗ = 1 and
`∞ = 10−2. Here α = 1/2 and we chose the initial-point presentation. There are periodic
zeros of q(r) which are additional singularities for x � `∗, at ultra-short distances
from the origin. The qualitative trend does not depend on the chosen presentation.
Cosmological observations constrain the amplitudes in the measure to values that avoid
these singularities.

We continue the analysis of the Schwarzschild solution in multi-fractional gravity
with q-derivatives by studying the thermodynamics of the black hole in the absence
of log oscillations. In particular, we calculate the Hawking temperature for both
presentations and compare it with the GR case. In the presence of logarithmic
oscillations of the measure, the Hawking temperature collapses to the standard
behavior in the limit of large r0, while for small radii we encounter a series of
poles in correspondence with the zeros of the geometric radius (see the previous
subsection and, in particular, Fig. 4.2). The Hawking temperature can be defined in
the following manner:

T ip,fp
h := 1

4π
d

dr

[
1− r0

q(r)

] ∣∣∣∣∣
r=rip,fp

h

. (4.51)
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Imposing the same restrictions we made above for the horizon, we can find the
analytic expression for the multi-fractional Hawking temperature:

T ip
h =

r0

(
1 +

√
`∗

2rip
h

)

4π
(
rip

h +
√

2`∗rip
h

)2 , (4.52)

T fp
h =

r0

∣∣∣∣∣1−
√

`∗
2rfp

h

∣∣∣∣∣
4π
(
rfp

h −
√

2`∗rfp
h

)2 , (4.53)

which, of course, reduce to lim`∗→0 T
ip,fp
h = TH0 := 1/(4πr0) in the standard

case. As expected, there are no appreciable effects at large distances r0 � `∗ and
the correct GR limit is naturally recovered. Given that, we can ask ourselves what
happens to micro (primordial) black holes with Schwarzschild radius close to or
even smaller than `∗. Again we shall discuss all the three possibilities regarding
the presentation. Let us start with the initial-point case and make an expansion of
Eq. (4.52) up to the first order in `∗ for r0 � `∗:

TH '
`∗

2πr2
0

= 2`∗
r0
TH0 > TH0 . (4.54)

Thus, multi-fractional micro black holes are hotter than their GR counterparts,
which means that they should also evaporate more rapidly. Such a result is somehow
counter-intuitive since we found that, in presence of putative QG effects (here
consisting in a non-trivial measure), not only is the information paradox [249] not
solved, but it even gets worse. This can be noticed immediately by comparing the
solid line in Fig. 4.3 with the usual behavior represented by the dashed line.

In the final-point presentation, the modification of the Hawking temperature is
given by Eq. (4.53), where the event horizon at which T fp

h has to be evaluated is
defined in Eq. (4.48). As the reader can easily understand by looking at Fig. 4.3,
the behavior is even worse with respect to the initial-point case. In fact, the dotted
line (that represents T fp

h as a function of r0) increases more rapidly than the other
two curves as the black-hole mass decreases. Therefore, again we find that multi-
fractional effects do not cure the GR information paradox but make it even more
prominent. However, it is interesting to look at the behavior of T fp

h for very small
black holes. We can see that there is a value of r0 where the Hawking temperature
vanishes. Thus, in multi-fractional q-gravity in the final-point presentation, (micro)
black holes with r0 = (5 − 2

√
5)`∗ ≈ 0.5`∗ do not emit Hawking radiation. Even

so, however, they are unstable since, as clear from the figure, any increase +δM
or decrease −δM of their mass would make them emitting rather efficiently. The
third possibility is to regard multi-fractional modifications as an uncertainty on
relevant physical quantities. In that case, we have that TH = TH0 ± δT , i.e., the
Hawking temperature fluctuates around the GR value. As for the other quantities
we analyzed, the magnitude of such random fluctuations depends on how large `∗
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Figure 4.3. Behavior of the Hawking temperature TH as a function of r0, for α = 1/2
and `∗ = 1. The solid line is the black-hole solution in the multi-fractional theory
with q-derivatives in the initial-point presentation; the dotted line is for the final-point
presentation; the dashed line represents TH for the GR Schwarzschild solution. If
we regard the multi-fractional part as a quantum uncertainty on the radius and the
presentation ambiguity as the two possible signs for the fluctuations, then TH would
quantum fluctuate around the standard Hawking temperature.

is and it decreases as M (or, equivalently, rh) increases. To summarize, the theory
with q-derivative does not solve the information paradox of GR, a datum consistent
with the problems one has when quantizing gravity perturbatively here [29]. On
the other hand, approximating the theory to the stochastic view the information
paradox is not worsened and the role of the random fluctuations in this respect is
not yet clear. This may indicate that the theory with fractional derivatives is better
behaved than its approximation the q-theory, again consistent with previous findings
[29].

In Ref. [250], it was shown that the recent discovery of gravitational waves can
provide, at least in principle, a tool to place observational constraints on non-classical
geometries. In particular, a way to obtain an upper bound on the multi-fractional
length `∗ consists in comparing the mass shift ∆M , due to quantum fluctuations
of the horizon, with the experimental uncertainty δMBH on the mass of the final
black hole in the GW150914 merger. Such a mass shift ∆M can be related to the
appearance of a quantum ergosphere [250]. Here we want to reconsider this analysis
in the framework of the multi-fractional theory with q-derivatives. In other words, we
are going to study the formation of the quantum ergosphere in the multi-fractional
Schwarzschild black hole (4.44) with the objective to see if it is possible to find
constraints on `∗. In this subsection only, we ignore log oscillations. The mass
shift ∆M is related to a corresponding change of the radial hypersurfaces ∆q(r) by
∆q(r) = 2∆M G. In order to find the width ∆r of the ergosphere, we have to plug
Eq. (4.42) into the above expression, thereby obtaining

∆r
2 = ∆M G

1± (`∗/r)1−α =: ∆M̃ G , (4.55)

where the plus sign holds for the initial-point presentation and the minus sign for
the final-point presentation. According to Ref. [242], noting that ∆M ∼ E2

∗/MBH in
the absence of multi-fractional effects (here E∗ is some quantum-gravity scale) and
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imposing ∆M < δMBH (with δMBH = O(M�) if we are considering the GW150914
merger), one obtains a very high bound i.e. E∗ < 1058 GeV. In the case of the
multi-fractional theory with q-derivatives, if we use the initial-point presentation
then we have a plus sign in the denominator of Eq. (4.55) and the energy bound
is even higher, since ∆M̃ < ∆M . Things completely change with the final-point
presentation, where the upper bound on E∗ is

E∗ <

√√√√MBHδMBH

[
1−

(
`∗
r

)1−α]
=

√
1−

(
`∗
r

)1−α
1058GeV . (4.56)

For α� 1, the upper bound remains E∗ < 1058 GeV for any sensible value of `∗.
However, in the limit α→ 1 the upper bound dramatically lowers, regardless how
small is the ratio `∗/r. This shows that the correction to the quantum ergosphere,
combined with gravitational waves measurements, can be used to severely constrain
the multi-fractional theory with q-derivatives in the final-point presentation for big
values (i.e., close to 1) of α. Note, however, that values α ∼ 1 do not have any
theoretical justification. Adopting the stochastic view instead, the correction term
in the denominator of Eq. (4.55) would result from the quantum uncertainty on
the radius, i.e., q(r) = r ± δr. Given that, the only constraint coming from the
quantum-ergosphere calculation is (`∗/r)1−α < 1. However, this inequality is always
satisfied as far as we consider solar-mass or supermassive black holes for which the
radius r of the ergosphere exceeds the multi-fractional length `∗ by several orders
of magnitude. In this case, multi-fractional effects on the ergosphere might be
relevant only for primordial (microscopic) black holes with r < `∗. On the other
hand, according to the stochastic view, it is meaningless to contemplate distances
smaller than the multi-fractional uncertainty δr. Consequently, we conclude that
this argument cannot be used to constrain the scale `∗.

4.2.2 Multifractional black holes with weighted derivatives

Having conluded the analysis on BH solutions in the multifractional theory with q-
derivatives, let us now turn to the theory with weighted derivatives. As we have seen
in the derivation of the HDA, the gravitational action in the theory with weighted
derivatives is similar to the one of scalar-tensor models, with the crucial difference
that the role of the scalar field is played by the non-dynamical measure weight
v(x) = v0(x0) · · · vD−1(xD−1). Since this is a fixed profile in the coordinates, one
does not vary the action with respect to it and the dynamical equations of motion are
therefore different with respect to the scalar-tensor case. However, even if it is not
dynamical, the measure profile affects the dynamics of the metric so much that the
resulting cosmologies depart from the scalar-tensor case [240]. As for scalar-tensor
models, we can identify a “Jordan frame” (or fractional picture) and an “Einstein
frame” (or integer picture) related to each other by a measure-dependent conformal
transformation of the metric. In the Jordan frame, the action for multi-fractional
gravity with weighted derivatives in the absence of matter is given by [240]

Sg = 1
2κ2

∫
dDxeΦ/β√−g [R− Ω∂µΦ∂µΦ− U(v)] , (4.57)
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with
Ω := 9ω

4β2 e
2
β

Φ + (D − 1)
( 1

2β∗
− 1
β

)
, (4.58)

where Φ(x) = ln v(x) is not a Lorentz scalar field and ω is an arbitrary constant
(not to be confused with the frequency of log oscillations). In D = 4 topological
dimensions, β = β∗ = 1 is fixed by the theory. In [240], one demanded that U 6= 0 in
order to support consistent solutions with cosmological constant. Since this quantity
is measure-dependent but background independent, if we want to describe both BHs
and consistent cosmologies, we have freedom to choose Ω but not U(v). However,
keeping BHs and cosmology as separate entities this restriction is lifted. The metric
gµν in the Jordan frame is not covariantly conserved, just like in a Weyl-integrable
spacetime. For convenience, we will move to the Einstein frame, which is obtained
after performing the Weyl mapping

gµν = e−Φgµν , (4.59)

so that the action (4.57) in D = 4 reads

Sg = 1
2κ

∫
d4x
√
−g

(
R− Ω∂µΦ∂µΦ− e−ΦU

)
. (4.60)

In this frame, although the metricity condition ∇σgµν = 0 is satisfied, the
dependence in the measure profile cannot be completely absorbed. As we will see,
black-hole solutions are highly sensitive to the choice of ω, which may even hinder
their formation. For illustrative purposes, we will examine the cases Ω = 0 (ω fixed)
and Ω = −3/2 (ω = 0). At this point, it is important to recall a key feature of these
theories. In standard GR, at the classical level one has the freedom to pick either the
Jordan or the Einstein frame, leading to equivalent predictions; at the quantum level,
these frames are inequivalent and one must make a choice based on some physical
principle. In the multi-fractional case, the existence of the non-trivial measure
profile v(x) that modifies the dynamics renders both frames physically inequivalent
already at the classical level. A natural question is which one is “preferred” for
observations. The answer is the following. Measurements involve both an observable
and an observer. Given the nature of multi-scale spacetimes, both feel the anomalous
geometry in the same way if they are characterized by the same scale, while they
are differently affected by the geometry otherwise. This is due to the fact that
measurement apparatus have a fixed scale and do not adapt with the changing
geometry. In the multi-fractional field theory with weighted derivatives and in the
absence of gravity, this occurs in the fractional picture, while in the integer picture
the dynamics reduces to that of an ordinary field theory. In the presence of gravity,
the integer picture (Einstein frame) is no longer trivial (see Eq. (4.60)), but the
interpretation of the frames remains the same. Therefore, the Jordan frame is the
physical one [240]. Physical black-holes as those found in astrophysical observations
can be formally described within the Einstein frame, while to extract observables
one has to move to the Jordan frame.

Let us examine the spherically symmetric solution when the “kinetic term” of
the measure vanishes, i.e.:
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Ω = 0 ⇒ ω = 2
3e
−2Φ, (4.61)

Sg = 1
2κ2

∫
d4x
√
−g

(
R− e−ΦU

)
. (4.62)

Taking the variation with respect to gµν ,1 we get

Rµν −
1
2gµν

(
R− e−ΦU

)
= 0. (4.63)

We restrict to an isotropic, static and radially symmetric geometry. Thus, our
ansatz is

gµνdx
µdxν = −γ1(r)dt2 + γ2(r)dr2 + γ3(r)r2

(
dθ2 + sin2 θ dφ2

)
. (4.64)

After some manipulations (γ3 can be consistently set to 1), the Einstein equations
read (primes denote derivatives with respect to r and the r dependence is implicit
in all functions)

0 = (γ1γ2)′, (4.65)

0 = γ′′1 − γ′1
(
γ′2
2γ2

+ 1
r
− γ′1

2γ1

)
− γ1
r2

(
r
γ′2
γ2
− 2γ2 + 2

)
,

(4.66)

plus a master equation for U :

U = −v 2
γ2r

(
γ′1
γ1
− 1− γ2

r

)
. (4.67)

Restoring coordinate dependence, a consistent solution is given by

γ1(r) = 1− r0
r
± χ

6 r
2, γ2(r) = 1

γ1(r) , U = ∓v(x)χ, (4.68)

which is a two-parameter family with a cosmological potential. Several caveats
are in order. First, although the functions γ1 and γ2 depend only on the radius, the
“potential” term U is factorized in the coordinates, since it depends on the measure
weight v(x) (which we did not approximate to a radial profile as done in the theory
with q-derivatives. Second, the existence of the “hair” χ = const was foreseeable
since we have considered a non-zero “potential” coupled to gravity. Third, the sign
in front of the r2 term is arbitrary but, in order to get a Schwarzschild–de Sitter
solution, we pick the minus sign. The cosmological constant χ can be expressed in
terms of a temperature Tvac by means of the Stefan–Boltzmann law, so that

χ = 4π3

15
T 4

vac
m2

Pl
≈ 10−66 eV2, (4.69)

1Since Φ is a not dynamical measure profile, we do not vary the action (4.57) with respect to it.
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where Tvac ≈ 34 K [251].2 However, in this scenario, the Stefan–Boltzmann
law receives a sub-leading contribution as a consequence of integrating out in the
presence of some measure profile, i.e.,

∫∞
0 dν →

∫∞
0 dν w(ν), with w(ν) = 1 + δw(ν),

so that ρ = σT 4 + δρ. Nevertheless, the correction is small. Taking for instance the
binomial measure

ω(ν) =

1 +
∣∣∣∣∣ νν∗

∣∣∣∣∣
1−α3

, (4.70)

with α = 1/2, ν∗ ' 3× 109 cm−1, and integrating out over all frequencies,

ρ = 240σ
∫ ∞

0
dν w(ν) ν3

e
2πν
T − 1

∼ σT 4 + δρ , (4.71)

δρ = σT 4
[

4725
16
√

2π4

√
T

ν∗
ζ

(9
2

)]
+O

(
T

ν∗

)
, (4.72)

we get δρ(Tvac)/(σT 4
vac) ≈ 10−4, which becomes even smaller for lower tempera-

tures. Since we are interested only in the order of magnitude of χ, we can just adopt
the standard power law

ρ ∼ T 4, (4.73)

and set the value of χ as in (4.69), ignoring any other anomalous contribution.
Moreover, according to (4.69), one sees that even for a BH of mass 1010M�, it is
safe to assume that (GM)2 � 1/χ.

Thus, assuming a non-trivial dimensional flow in the Hausdorff dimension of
spacetime (i.e., a non-trivial multi-fractional measure), we have just shown that the
simplest BH solution is the Schwarzschild–de Sitter solution, where the cosmological
constant term is caused by the multi-scaling nature of the geometry. This offers a
possible reinterpretation of the cosmological constant [252] as a purely geometric
term arising from the scaling properties of the integration measure. Since, in this
case, there is no reason to expect a huge value of χ due to quantum fluctuations of
the vacuum energy (as it would be the case in quantum field theory), then we do not
have the problem of fine tuning large quantum corrections. This step towards the
solution of the cosmological constant problem is somehow analogous to what happens
in unimodular gravity, as noted in [240]. In unimodular gravity, as a consequence
of fixing the determinant of the metric gµν , the source of the gravitational field is
given only by the traceless part of the stress-energy tensor and, thus, all potential
energy is decoupled from gravity (see. e.g., Ref. [253]). In this way, χ appears
as an integration constant rather than a parameter of the Lagrangian [254, 255].
However, unimodular gravity also has the feature of breaking time diffeomorphisms
as recognized for the first time in Ref. [256], whose consequences are still to be
completely understood. The multi-fractional scenario has the advantage of formally
preserving full diffeomorphism invariance [143] as we have seen in the precedent

2We have employed the conversion factor 1K = 8.6217× 10−5 eV and mPl = 1.22× 1028 eV.
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section, although in this case the “diffeomorphism” transformations are deformed
with respect to those of general relativity.

At this point, it is interesting to discuss the causal structure of our manifold.
Imposing γ1(rh) = 0, we distinguish three horizon radii (r0 = 2MG)

r
(1,2)
h ∼ −

(
MG±

√
6
χ

)
, r

(3)
h ∼ r0

(
1 + 2

3M
2G2χ

)
. (4.74)

r
(1)
h is unphysical since it is negative. In order for r(2)

h to be physical, it should be√
6/χ > MG, which means that in the small-χ limit r(2)

h is the cosmological horizon.
r

(3)
h is the apparent inner horizon which reduces to the standard Schwarzschild radius
when χ → 0. Hereafter, we shall consider only this horizon. Undoing the Weyl
mapping, the solution in the Jordan frame is

gµν = 1
v(x)gµν . (4.75)

Moreover, since in the Jordan frame the Hawking temperature is given by (recall
that γ1(rh) = 0),

TH(x) = 1
4π lim

r→rh

∣∣∣∣∣γ1(r)
v(x)

∣∣∣∣∣
′

= 1
4π lim

r→rh

∣∣∣∣∣γ′1(r)v(x)− γ1(r)v′(x)
v(x)2

∣∣∣∣∣
= 1

4π lim
r→rh

∣∣∣∣∣γ′1(r)
v(x)

∣∣∣∣∣ = 1
4π

∣∣∣∣∣r0
r2

h
− χ

3 rh

∣∣∣∣∣ lim
r→rh

1
v(x)

= T
(0)
H lim

r→rh

1
v(x) , (4.76)

with T (0)
H = |r0/r

2
h−χrh/3|/(4π), the Hawking temperature in the Einstein frame,

it is immediate to notice a shift due to the anomalous geometry. From previous
works [29], we can safely infer that the contribution from the anomalous geometry
to observables is rather tiny at large scales. Hence, we write

v(x) ' 1 + δv(x) +O(δv2), (4.77)

so that

TH(Ω=0) ∼ T
(0)
H + δT(Ω=0) (4.78)

with

T
(0)
H =

(
T

(0)
BH − T

(0)
vac

)
, δT(Ω=0) = −T (0)

H lim
r→rh

δv, (4.79)

and
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T
(0)
BH = MG

2πr2
h
' TH0, T (0)

vac = χ
rh

12π ∼
MGχ

3π . (4.80)

where we have approximated rh ∼ r
(3)
h . Since 1 > δv(x) > 0, one expects to get a

redshift. Two comments are in order. The first is that the temperature now depends
on the spacetime coordinates through the non-trivial measure profile v(x), and, as
stated before, this implies that one can have a spacetime-dependent redshift. The
second is that the temperature has two sources: one is the standard BH temperature
T

(0)
BH and the other, T (0)

vac, comes from the de Sitter background, can be related to
the effective temperature scale of the cosmological vacuum energy. The equilibrium
point is achieved when

T
(0)
BH = T (0)

vac →M = MC '
1

2G

√
3

2χ. (4.81)

This condition would set a critical mass scale MC above which accretion takes
place at a higher rate than evaporation. Plugging in the χ estimate (4.69) (G ∝
1/M2

Pl), MC ≈ 1052 Kg ≈ 1023M�. Even for the largest monster BH ever discovered
so far, with M ≈ 1010M�, accretion cannot compete with evaporation. It is
interesting to ask oneself whether the anomalous geometry can lead to significant
differences on the time evaporation of BHs, such extremely massive objects, with
masses at least comparable with the solar mass, will have small Hawking temperatures.
In particular, for this case, δρ(TH)/(σT 4

H) ≈ 10−8, so that the approximation (4.73)
is well justified also here. According to the standard Stefan–Boltzmann law, the
power emitted by a perfect black body in repose (E = M) is

P = σAhT
4
H = −dE

dt
= −Ṁ, (4.82)

σ being the Stefan–Boltzmann constant. Note that, in this theory, the horizon
area Ah remains unchanged

Ah =
∫
dθdφ v(x)√gθθgφφ

∣∣∣
r=rh

=
∫
dθdφ r2 sin θ

∣∣∣
r=rh

= 4πr2
h. (4.83)

For a process involving some energy (mass) loss, we compute the time needed to
jump from an initial energy Ei to a final energy Ef . Inserting (4.76) into (4.82),

− v(x)4

AhT
(0)
H

4
dE

∣∣∣∣∣
r→rh

= σdt. (4.84)

At this point, we will consider a toy-model geometry where only the time and
radial directions are anomalous, v(x) = v0(t)v1(r), so that

−
∫ Ef

Ei

v1(rh)4

r2
h

(
T

(0)
H

)4dE = 4πσ
∫ tf

ti

∣∣∣∣∣ 1
v0(t)

∣∣∣∣∣
4

dt. (4.85)
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Under the approximation (4.77), the right-hand side of (4.85) can be rewritten as

4πσ
∫ tf

ti

∣∣1− 4δv0(t)
∣∣ dt. (4.86)

Adopting the deterministic view with the initial-point presentation in this last
part of the analysis, we set the binomial measure without log oscillations for each
anomalous direction,

v0(t) = 1 + δv0(t), δv0(t) =
∣∣∣∣∣ t∗t
∣∣∣∣∣
1−α0

,

v1(r) = 1 + δv1(r), δv1(r) =
∣∣∣∣∣`∗r
∣∣∣∣∣
1−α

. (4.87)

Taking rh ∼ r
(3)
h , from (4.85) we get

256
15 π

3
{

5G2
(
E3

f − E3
i

)
+ 12G

√
2G`∗

(
E

5/2
f − E5/2

i

)
+G3χ

[
28G

(
E5

f − E5
i

)
+ 60

√
2G`∗

(
E

9/2
f − E9/2

i

)] }
= 4πσ

∆t− 4 t∗
α0

∣∣∣∣∣∆tt∗
∣∣∣∣∣
α0
 , (4.88)

with ∆t = tf − ti. Considering a process where we jump from a initial state to a
final state with zero energy, for example the evaporation of a black hole, we have
Ei = M0 (the initial mass) and Ef = Mf = 0. Then,

256
3 π3G2M3

0 + 7168
15 π3G4M5

0χ+ 256
15 π

3GM2
0
√

2GM0`∗
(
12 + 60G2M2

0χ
)

' 4πσ

∆t− 4 t∗
α0

∣∣∣∣∣∆tt∗
∣∣∣∣∣
α0
 . (4.89)

Given some test BH of mass M0 ≈M�, for the natural choice α0 = α = 1/2 [29]
and taking the most stringent characteristic time derived from αQED measurements
[239], t∗ ≈ 10−36 s, `∗ ≈ 10−27 m, we get∣∣∣∣∣(∆t)0 −∆t

∆t

∣∣∣∣∣ ≈ 10−16, (4.90)

where we have employed Eq. (4.69) and (∆t)0 refers to the evaporation time
predicted by the standard lore. Such deviation is independent of the presentation
adopted. As it stands, multi-fractional effects entail slight changes on the evaporation
time on BHs, therefore coinciding with the usual model in the large-scale regime.

The simplest version of multi-fractional gravity with weighted derivatives is in
the absence of the fake “kinetic” term in the Jordan frame action, ω = 0 (Ω = −3/2).
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In this case, the v dependence cannot be eliminated in the equations of motion as
we did before. The metric components now receive a direct contribution from the
anomalous geometry, so that, in order to preserve staticity and radial symmetry,
we have to consider a radial measure weight independent of angular coordinates,
v(x) = v(r). This must be regarded as an approximation of the full theory because
we do not have the freedom to change coordinates via a Lorentz transformation,
which is not a symmetry of the theory.3 As in the case with q-derivatives, the
difference with respect to the exact case will be in sub-leading terms that do not
change the qualitative features of the solution. Two other assumptions we will have
to enforce in order to get an idea of the solution will be that of small geometric
corrections and α = 1/2. Considering a large-scale regime where multi-scale effects
are small, v1(r) ' 1 + δv1(r), for the black-hole metric (4.64) we have γ2 = 1/γ1 and

γ1 ' γ̃1 + δγ1, γ3 ' 1 + δγ3, (4.91)

where γ̃1 = 1 − r0/r − χr2/6. At zeroth order in the M2χ expansion, the
linearized Einstein equations are

0 = 3r
2(r0 − r)

δv′21 + 2
r
δγ′3 + δγ′′3 ,

0 = 2
r

(
r0
r
− 1

)
δγ′3 −

2
r2 δγ3 + 2

r2 −
3
2δv

′2 − 2
r2 δγ1 + δγ′′1 .

(4.92)

In the deterministic-view initial-point presentation, described by means of the
binomial profile in the r component (4.87), one can easily find the non-trivial analytic
solution

δγ1 = `∗
2

(
r2

8r3
0
− 3

4r0
+ 1
r

)
ln
(

1− r0
r

)
− `∗

8r ln
(
r0
r

)
+ `∗

16

( 1
2r0

+ r

r2
0
− 1
r

)
− 3

16
r0`∗
r2 ln

(
r

r0
− 1

)
δγ3 = 1 + 3`∗

8

[ 1
r0

ln
(

1− r0
r

)
− 1
r

ln
(

1− r

r0

)]
,

(4.93)

wherein we have imposed the standard solution (classical BH in the presence of
a cosmological constant) in the limit `∗ → 0. The potential U is obtained from the
equations of motion and is non-zero for consistency:

U ' χ

1 +

√
`∗
r

+O(χ2) . (4.94)

Moreover, we can compute the new horizon radius rh. Restricting ourselves to a
small deformation,

3On the other hand, the Fourier transform is well defined even when the measure weight is v(r),
as is clear from an inspection of the plane waves [29].
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rh = r̂h + δr, r̂h = r
(3)
h , (4.95)

we have

0 = γ1(rh) ' γ1(r̂h) + δrγ′1(r)|r=r̂h

' γ̃1(r̂h) + δγ1(r̂h) + δrγ̃1
′(r)|r=r̂h

= δγ1(r̂h) + δrγ̃1
′(r)|r=r̂h , (4.96)

so that

δr = − `∗32
(
1 + r2

0χ
)
. (4.97)

Once the horizon position is known, computing the Hawking temperature is
straightforward:

TH(Ω6=0) = 1
4π lim

r→rh

∣∣∣∣∣γ′1(r)
v(r)

∣∣∣∣∣ ' 1
12πr2

h

(
1−

√
`∗
rh

)(
3r0 − r3

hχ
)
, (4.98)

from which it is immediate to note that, when `∗ → 0, rh ' r
(3)
h and TH(Ω6=0) '

T
(0)
H . We can repeat the same procedure to derive the evaporation time of BHs for

this specific theory. Starting from (4.84),

1
4π

∫ M0

0

dM

r2
hT

4
H

= σ∆t, (4.99)

where

1
4π

∫ M0

0

dM

r2
hT

4
H
' 512

5 π3M0r0
√
r0`∗

(
5r2

0χ

4 + 1
)

+ 448
15 π

3M0r
4
0χ+ 64

3 π
3M0r

2
0,

(4.100)
we can immediately derive the evaporation time and compare it with the one

from the standard framework. For a test BH with M0 ≈ M�, one obtains again
Eq. (4.90), the only difference being in decimals. Thus, although BH solutions and
predictions for the Hawking temperature are inequivalent for the two values of Ω
considered here, deviations with respect to standard GR are found to be of the same
order.
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Chapter 5

Non-metric Geometries

A first step towards the combination (or at least the intersection) of GR with QM is
represented by the study of QFT in curved spacetimes. It is a semiclassical approach
to gravity, in the sense that it is the way to understand the effects of classical gravity
on quantum fields that describe fundamental particles [257]. Naively, it is expected
to hold in a regime where particle fields have to be treated quantum mechanically
while gravitational effects can not be neglected but are not strong enough to require
quantization. Nowadays such an approach is very well developed and, moreover, has
revealed very fruitful to gain insights into potential QG features (e.g. the possibility
of non-unitarity or loss of information, see [249]).

Looking for a full QG theory, the next step of this bottom-up approach might
be to allow modifications of the GR dynamics. This is one of the many ways to
motivate the study of theories of modified gravity (MGT) [258, 259, 260, 261, 262].
Besides the more popular motivations coming from dark matter and dark energy,
they could represent an additional step forward, shortening the gap between GR
and QG. In fact, a shared hope is that they might provide an effective description of
QG or, at least, encode some low-energy (i.e. below the Planck scale) QG effects.
A trademark of (the majority of) MTG is that they depart from Einstein GR by
modifying the Riemannian geometry with the introduction of two pivotal quantities:
torsion (Sµνρ ≡ −2Γρ[µν]) and non-metricity (NM) (Qρµν ≡ −∇ρgµν). Thus, it is
interesting to contemplate the possibility that putative quantum effects of gravity
could be encoded in additional geometric objects breaking the Riemannian condition,
i.e. the tight relation we have in GR between the metric and the affine connection.
In this way, one would still have a classical gravity model but with the addition of
non-trivial elements supposed to bring in the (low-energy) footprints of geometry
quantization, perhaps giving us some insights about the relevant structures needed
to formulate QG. A loose suggestion that this might be the case comes from the
fact that, if a quantum spacetime will share some kind of analogy with crystalline
solids, then we already know that distributions of point defects in these lattices can
be encoded in the NM tensor [44, 263, 264, 265, 266].

In this chapter we start by reviewing non-Riemannian manifolds. Then, we study
fields’ equations in presence of torsion and NM, highlighting the non-Riemannian
correction terms and focusing on fermion fields. After that, we will have all the
ingredients needed to explore the effects of NM on both relativistic and non-relativistic
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systems. Specifically, the NM effects will manifest themselves in the form of point-
like (non-unitary) interaction vertices and energy shifts of atomic levels respectively
in the relativistic and non-relativistic regimes. The first study will allow us to
improve significantly current bounds on NM [267]. Finally, we will investigate the
implications of breaking the Riemann postulates on diffeomorphism invariance. We
will do so by computing the HDA in the Gaussian vector field representation for
geometries with torsion and NM. Again symmetry algebra results will be compared
with the above studied LQG and noncommutative spacetime results contained in
Section 3.3.1 of Chapter 3.

5.1 Mathematical preliminaries: non-Riemannian spaces

Let us start by reviewing non-Riemannian spacetimes from a rather general perspec-
tive and showing how do they depart from usual (pseudo-)Riemannian spacetimes.
We shall also provide some mathematical relations holding in these generalized
geometries. This will allow us to stress that the connection tensor and the metric
tensor have very different role and, consequently, it is rather natural to assume them
to be independent. In the light of this, one can notice that the most general forms
for these tensors imply the presence of both torsion and NM. These results will then
be used to formulate fields’ equations of motion in non-Riemannian spaces.

What tells us whether the spacetime is (pseudo-)Riemannian or not is the relation
between the connection Γ and the metric g. In GR this relation is set by the fact
that Γ is the Levi-Civita connection of g but, in general, such a relation depends on
the dynamics of the specific theory we assume. Firstly, it is important to remind
that Γ and g have very different roles. An affine structure or affine connection Γ
is needed in order to compare e.g. two vectors defined at different points of the
manifoldM. It is a bilinear map ∇Γ : (X,Y ) 7→ ∇Γ

XY and has the properties:

∇Γ
X(fY +W ) = X[f ]Y + f∇Γ

XY +∇Γ
XW (5.1)

∇Γ
X(Y ⊗W ) = ∇Γ

XY ⊗W + Y ⊗∇Γ
XW , (5.2)

where X,Y,∇Γ
XY are smooth vector fields in M, f is a smooth function on

M and X[f ] is the derivation of f by X (which, though, is already defined for
a manifold even without an affine connection). The object ∇Γ

XY is the covariant
derivative with respect to Γ of Y in the direction of X. In a given coordinate basis
{∂µ} with X ≡ Xµ∂µ, Y ≡ Y µ∂µ and ω ≡ ωµdxµ, it is possible to write:

∇XY = Xµ∇∂µ(Y ν∂ν) = Xµ
(
(∂µY ν)∂ν + (∇∂µ∂ν)Y ν

)
, (5.3)

where the object ∇∂µ∂ν defines the connection coefficients asociated to the basis
{∂µ} by: ∇∂µ∂ν ≡ Γµνλ∂λ. Then one can show that:

∇ΓY ≡ (∇Γ
µY

λ)dxµ ⊗ ∂λ =
(
∂µY

λ + ΓµνλY ν
)
dxµ ⊗ ∂λ

∇Γω ≡ (∇Γ
µων)dxµ ⊗ dxν =

(
∂µων − Γµνλωλ

)
dxµ ⊗ dxν

(5.4)
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Thus it is possible to write the components of the (1, 1) tensor ∇ΓY and the
(0, 2) tensor ∇Γω in the basis {∂µ} with the use of the connection coefficients in
that basis and partial derivatives. These results generalize to (p, q) tensors, and
therefore, a way to completely determine an affine connection is by specifying its
connection coefficients in a given basis. The notion of covariant derivatives permits
the comparison of vectors defined in tangent spaces of M at different points by
means of the parallel transport. A vector Y is said to be parallely transported along
the integral curve of the vector X with respect to the connection Γ if ∇Γ

XY = 0 along
the curve. Thus this allows to compare the vector V defined at p ∈ M with the
vector W defined at q ∈M by finding a vector field X whose integral curve passes
through p and q and parrallely transporting V along this curve. This fully clarifies
the role of the affine connection in a spacetime manifold, or an affine connected
manifold to underline that the manifold has been equipped with an affine connection.

In an affine connected manifold, it is then possible to introduce the notions
of torsion and curvature via the torsion (Sµνλ) and Riemann (Rµνρλ) tensors. A
possible definition of them is made by explicit use of the connection coefficients [268]

Sµν
λ ≡ −2Γ[µν]

λ

Rµνρ
λ ≡ 2∂[µΓν]ρ

λ + 2Γ[µ|α|
λΓαν]ρ .

(5.5)

These tensors are clearly properties of the affine connection (note that we still have
not defined a metric inM). The meaning of both tensors can be seen geometrically
[268] as follows. Let us start with torsion. Consider two infinitesimal vectors vµ and
wµ defined at a point p with coordinates xµ. For the torsion tensor, consider two
infinitesimal vectors vµ and wµ defined at a point p with coordinates xµ. Define the
points pv and pw with respective coordinates xµ + vµ and xµ + wµ. Consider also
the vectors vµw at pw, defined by parallely transporting v in the direction of w, and
wµv at pv, defined by parallely transporting w in the direction of v. It is possible to
show that [268]:

(xµ + vµ + wµv )− (xµ + wµ + vµw) = vαwβSαβ
µ . (5.6)

Since the vectors v, w, vw, and wv would form an infinitesimal parallelogram
in Rn (and in any space with vanishing torsion), one says that the torsion tensor
mesures the failure for infinitesimal parallelograms to close. For the Riemann tensor,
consider the point pv+w with coordinates xµ + vµ + wµ, and the 1-form ωµ defined
at p. Now consider the 1-form ωvµ at pv+w obtained by parallely transporting ωµ
from xµ to xµ + vµ and then to pv+w, and also the 1-form ωwµ at pv+w obtained by
parallely transporting ωµ from xµ to xµ +wµ and then to pv+w. Notice that the two
endpoints are the same. The Riemann tensor measures the difference between ωvµ
and ωwµ by [268]:

ωvµ − ωwµ = vλwνRλνµ
ρωρ . (5.7)

Finally, one has to specify how to measure space-time lengths, i.e. time intervals
and spatial distances. This is where a metric structure g over E comes into play. It
consists of a symmetric non-degenerate (0, 2) tensor field g = gµνdx

µ ⊗ dxν . If we
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want our spacetime to be locally Euclidean, it also has to be positive-definite. For a
locally Minkowskian spacetime, we require that the metric tensor has Lorentzian
signature. A metric structure naturally provides a volume element:

dVg = g1/2dxµ1 ∧ ... ∧ dxµn , (5.8)

with g ≡ |det(g)|. It also provides a natural isomorphism between tangent
and cotantgent spaces at a point, and one can define the length of a vector vµ as
Length(v) ≡ (vµvµ)1/2 = (gµνvνvµ)1/2. Then one can compute the length of a path
c(τ) (with τ ∈ (τ0, τ1) ⊂ R) by:

Length(c(τ)) ≡
∫ τ1

τ0
Length

(
dc(τ)
dτ

)
dτ . (5.9)

Thus, from a physical perspective, the metric allows to define clocks and rulers
at every point of a spacetime, thereby allowing an observer to measure time intervals
and spatial distances. As a connection and a metric structure allow one to transport
and compare distant vectors, and also to measure time intervals and spatial distances,
a spacetime (E ,Γ,g) is a manifold E with an affine connection Γ and a metric g. In
particular, it is worth noting that the metric tensor plays a completely independent
and distinct role with respect to the affine connection and, thus, in principle there is
nothing that tells us there should be a relation between them and what this relation
must be. Such a relation is an additional ingredient provided by the dynamical
action one postulates.

In general (i.e. without specifying any such relation between Γ and g), given
a metric tensor, one can decompose the connection coefficients1 as Γµνλ = Cµν

λ +
Nµν

λ +Kµν
λ [268] where:

Cµν
λ ≡ 1

2g
λβ
(
2∂(µgν)β − ∂βgµν

)
,

Nµν
λ ≡ 1

2
(
2Q(µν)

λ −Qλµν
)
,

Kµν
λ ≡ 1

2g
λβ
(
2S(µ|β|ν) − Sµνβ

)
;

(5.10)

where Cλµν are the Christoffel symbols of g, Nµν
λ is the distortion tensor, and

Kµν
λ is the contortion tensor; and Qλµν ≡ −∇λgµν is the non-metricity tensor. This

decomposition tells us about the general relation between metric and connection. If
the distortion and contortion tensor vanish, the connection is completely determined
by the metric tensor. In this case the spacetime is said to be (pseudo-)Riemannian
and the connection is said to be torsion-free and compatible with the metric (i.e.
∇g = 0 ). This connection bears the name of Levi-Civita connection of g, and
has vanishing torsion and non-metricity tensors, leaving only the Riemann tensor
to characterize their geometry, as in GR. When we write the covariant derivative
with respect to the Levi-Civita connection of g, we will write ∇g. More general
spacetimes, or equivalently more general theories, have non-vanishing torsion and
non-metricity tensors, and thus non-trivial contortion and distortion tensors too.

1Recall that the connection coefficients Γµνλ fully determine the connection Γ.
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These spacetimes are called non-Riemannian. These two tensors are the ones that
measure the departure of a spacetime from being Riemannian or, equivalently, from
GR. In particular, the non-metricity tensor measures departures of a spacetime from
having a metric-compatible connection, and is associated to the change in lengths of
parallely transported vectors.

From the above relations, one can deduce that the torsion is a intrinsic feature
of the connection alone. Given a connection, the torsion tensor determined by is
its anti-symmetric part. On the other hand, the NM tensor is a more complicated
object. It is a property of the relation between metric and connection. This means
that, given a connection, the NM tensor would be different for different metric
tensors (or viceversa). Therefore, one can see NM as a correction to the connection
given a metric or as a correction to the metric given a connection. One of the main
consequences of this is that whereas the torsion tensor only affects matter fields
which are explicitly coupled to the connection, the NM tensor can also affect matter
fields which are not by the modifications that it introduces in the metric tensor.

In order to explore the effects of NM and translate them into observable pre-
dictions, let us now focus on a wide class of MGT where the appearance of NM
contributions can be ascribed to matter fields. In these models the gravitational
Lagrangian is a general (analytic) function of the metric and the (symmetric) Ricci
tensors2, i.e. LRBG ≡ fRBG(gµν , R(µν)). This class of theories are known as Ricci
Based Gravity (RBG) [41, 42, 43]. A common features of these theories, is that they
are understood as a UV modification of GR characterized by a (high-)energy scale
ΛQ = (8πGλ2

RBG)−1/4 = (2π)1/4(EpΛRBG)1/2, and they reduce to GR in the low
energy limit ΛQ → ∞. This is justified as standard GR has been tested very well
in the low energy limit [269] and, very recently, also in the strong-field limit thanks
to the first observations of gravitational waves. However, to the extent that MGT
are simply regarded as the generalization of GR to the case with non-vanishing
torsion and NM, it is not always clear how to translate experimental observations
confirming GR into stringent bounds on MGT. In fact, rather surprisingly, gaining
experimental insight on these geometrical entities (i.e. S,Q) has revealed to be very
challenging [270]. Focusing on torsion Sµνρ, since the publication of a seminal paper
by Mao et al. [271] the debate on how to constrain torsion has started as well as the
recognition of a role for torsion in BH physics and cosmology [272, 273, 274, 275].
On the contrary, it is unclear which might be the observable signatures of NM and,
thus, any experimental bound is still lacking (see, however, [269]).

The general action of RBG models is of the form [41, 42, 43]

SRBG = 1
2κ2

E

∫
dVg LG[gµν , Rµν(Γ), κ] + Sm[g,Γ, ψ, φ,Aµ] , (5.11)

where κE is the Einstein constant and κ is proportional3 to Λ−2
Q , and dVg =√

−g d4x the volume element.
The dynamics of the theory is derived by varying the action (5.11) with respect

to the metric gµν and the connection Γµνλ and applying the least action principle to

2In the metric-affine formalism, the Ricci tensor depends only on the connection and not on the
metric.

3Λ−2
Q is the (high energy) scale at which the departure of these theories from GR are of order 1.
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find their equations of motion [276]. One finds

∂LG
∂gµν

− LG2 gµν = κ2
ETµν , (5.12)

by varying the action with respect to the metric, and

− 1√
−g
∇µ(
√
−g ∂LG

∂Rγαµδ
) + Sδρσ

∂LG
∂Rγαρσ

+ 2Sννµ
∂LG
∂Rγαµδ

= − 1√
−g

∂Sm
∂Γγαδ

, (5.13)

of we take the variation with respect to the connection. We remind the reader
that Sµνρ is the torsion tensor we defined above. These theories admit an Einstein
frame representation [43] in terms of an auxiliary metric qµν defined as

qµν = gµαΩα
µ . (5.14)

Such a representation is obtained by first introducing ten additional fields Σµν

that allow to rewrite the action (5.11) as

SRBG → S̃RBG = 1
2κ2

E

∫
dVg LG[gµν ,Σµν , κ] (5.15)

+
∫
dVg

∂LG
∂Σµν

(R(µν) − Σµν) + Sm[g,Γ, ψ, φ,Aµ] , (5.16)

and if one defines
√
−qqµν/2κ2

E :=
√
−g(∂LG/∂Σµν) then also

S̃RBG[g,Γ,Σ, ψ, φ,Aµ] = 1
2κ2

E

∫
dVg [LG[gµν ,Σµν , κ]+

√
−q√
−g

qµν(R(µν)−Σµν)]+Sm .

(5.17)
In the Einstein frame the gravitational part of the action depends on (g,Γ,Σ).

Then, by varying the action with respect to g, one finds

2gαρ ∂LG
∂gρβ

= Tαβ + δαβLG , (5.18)

while varying with respect to Γ

∇α(
√
−qqµν) = 0 , (5.19)

and finally the variation with respect to Σ leads to

R(µν) = Σµν . (5.20)

When the equations of motion are satisfied, this auxiliary metric is related to
the metric by qµν = gµαΩα

µ, where Ωα
µ is a (model dependent) function of gµν and

Tµν . Using the auxiliary metric and the fact that Σ can be re-expressed in terms
of the metric and the connection, it is possible to re-write the above equations of
motion for RBG theories as [43]:



5.1 Mathematical preliminaries: non-Riemannian spaces 151

Gµν (q) = κ2

|Ω|1/2

[
Tµν − δµν

(
LG + T

2

)]
equation from δSRBG

δgµν
= 0 (5.21)

∇µ
(√
−qqαβ

)
= 0 equation from δSRBG

δΓµνλ
= 0. (5.22)

where qµαqαν ≡ δµν , Gµν(q) ≡ qµαGαν(q), Tµν ≡ gµαTαν and T ≡ Tµµ. Here
the gravity Lagrangian LG is also a function of gµν and Tµν when the equations
of motion are satisfied [43]. Note that the equation of motion (5.22) tells us that
in RBG theories, the connection is not dynamical, and that it is constrained to
be the Levi-Civita connection of the auxiliary metric qµν . Thus, we stress that in
RBG theories, the connection is constrained to be the Levi-Civita connection of
the auxiliary metric qµν defined in (5.14), as it can be derived from the least action
principle applied to the affine connection.

The specific form of the relation qµν = gµαΩα
µ depends on the particular RBG

model we assume. However, from its dependence in gµν and Tµν , the relation
between qµν and gµν has the generic form:

Ω−1
µ
ν = δµν +

∞∑
n=1

[
Cδnδ

µ
ν + CTn (Tµν)n

]
(5.23)

where (Tµν)n = (Tµα1) (Tα1
α2) · · · (Tαnν), Cδn and CTn are (model dependent)

functions of T and are of order Λ−4n
Q (i.e. κ2n). Note that all the coefficients will

vanish in the low energy limit, thus recovering GR at low energies. This dependence
of Ω−1

µ
ν allows one to write:

gµν = qµν +
∞∑
n=1

[
Cδngµν + CTn (Tµν)n

]
(5.24)

with (Tµν)n = gµα (Tαν)n. Given the deppendence of the coefficients Cδn and
CTn , we can see that the departures of the metric from being compatible with the
spacetime connection are proportional to (powers of) the energy-density. From
(5.21), we see that qµν is carrying gravitational effects related to the total energy
content, i.e. the effects of integrating over the sources. This is the role of the metric
gµν in standard GR. And from (5.24), we see that in the low energy limit gµν = qµν ,
so that all RBG theories become GR at low energies. This tells us that the main
difference of RBGs with respect to GR is that both the total energy-matter and the
energy-matter density affect the space-time geometry. In the light of this, it has
been also claimed [277] that RBG could represent a consistent way to realize the
proposal of rainbow gravity [278], which can be naively understood as an extension
of DSR ideas to GR. We will come back to DSR effects from RBG models in the
last section of this chapter where we derive NM corrections to the HDA and discuss
the Minkowski limit.

We can now compute the form of the non-metricity tensor that characterizes
RBG theories from its definition Qλµν ≡ −∇λgµν by using (5.24)

QRBGλµν = −
∞∑
n=1

[(
∂λC

δ
n

)
gµν +∇λ

(
CTn (Tµν)n

)]
. (5.25)
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Given the dependence of the coefficients in T , we here see that non-metricity
in RBG theories is proportional to (derivatives of) the energy-stress tensor and its
traces. Again, one could thus say that NM is sourced by energy density. After
this discussion we see that the corrections to the metric arising in RBG theories
become important in the high energy-density regime (rather than high energy); and
that these corrections are responsible for the non-metricity in RBG theories, as
they measure the departure of the metric from being the one compatible with the
spacetime connection. These corrections are suppressed by the high energy scale
ΛQ, as they are generically of the form ρ/Λ−4

Q . However this suggests that if we
look to situations with very high energy densities, we might be able to probe these
corrections, thereby being able to put experimental constraints to NM in RBG
gravity. To this end, let us now first add matter fields and derive the equations
of motions for fermionic fields in presence of NM. After that, we shall discuss the
phenomenological consequences of the NM corrections that arise and, in a specific
case, we will be able to significantly improve the present constraints on RBGs, more
specifically on Born-Infeld-like models [42].

5.2 Field theory with NM and phenomenology
For making contact with observations, let us investigate how do matter fields interact
with NM. Thus, we wish to compute the equations of dynamics for different types of
matter fields. This will eventually allow us to derive physical effects driven by the
presence of NM. Specifically, we explicitly show that the Dirac equation for fermions
in curved spacetimes has to be modified. These modifications will be due to the
form of the divergence operator (Div) which has to be generalized in the presence
of torsion and NM.

Since we want to treat spin 1/2 fields Ψ, we need to introduce a spinor connection
Γµ, which appears in ∇µΨ ≡ (∂µ − Γµ)Ψ, and is related to the usual spacetime
connection given by the connection symbols Γαµν . Such an introductory review part
will be important to appreciate where and how NM correction terms can appear.
We remind that the Clifford algebra CL(1,3) with generators T i is defined by the
relations

{T i, T j} = 2ηij . (5.26)

Any set of matrices obeying Eq. (5.26) provides a representation of the generators
of CL(1,3). An example is given by the four 4 × 4 Dirac matrices γµ. In this
example, the representation of the full Clifford algebra CL(1,3) consists of the 16-
dimensional complex vector space generated by the 16 linearly independent matrices:{

I, γµ, γ[µγν], γ[µγνγρ], γ[µγνγργσ]
}
. Then, one can use the fact that it is possible

to write the Dirac representation of CL(1,3) as a direct sum of lower dimensional
irreducible representations as follows

CL(1,3) = (0, 0)⊕ (1
2 ,

1
2)⊕ (1, 0)⊕ (1, 0)⊕ (1

2 ,
1
2)p ⊕ (0, 0)p , (5.27)

where the subscript in e.g. (0, 0)p stands for pseudo-vector representation that is
even under parity. Let us focus on the tensor representation (1, 0)⊕ (1, 0), that is
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generated by six independent matrices. Using Dirac matrices, the only way to build
such a tensor representation is given by

σµν ≡ −1
2γ

[µγν] ≡ −1
4[γµ, γν ] (5.28)

which are six independent matrices4. Moreover, it is easy to verify that they
satisfy

[σµν , σρτ ] = gµτσρν + gνρστµ − gµρστν − gντσρµ, (5.29)

which are the commutation relations of the SO(1, 3) algebra. It follows that
the six σµν matrices are a representation of the six SO(1, 3) generators. Thus, we
can say that the 6−dimensional Lorentz group has a natural embedding into the
16−dimensional Clifford algebra. This embedding is called the spin representation
of SO(1, 3), here denoted SP . In other words, Sp is the tensor representation of
CL(1,3). At this point, one can define Sp as the 4-dimensional (complex) vector
space being acted upon by SO(1, 3) under its spin representation (which is generated
by the six matrices σµν). Now, notice that γ ∈ CL(1,3) can be seen as (1,1) tensors
on Sp by

γ(Ῡ,Ψ) ≡ C1
1 (Ῡ⊗ (C1

1γ ⊗Ψ)) ≡ [ῩγΨ] =∈ C, (5.30)

where Ῡ ∈ Sp ∗ , Ψ ∈ Sp and C1
1 stands for tensor contraction.Being that both

CL(1,3) and the space of (1,1) tensors on Sp are 16-dimensional as complex vector
spaces, they are isomorphic. This tells us that Dirac spinors transform under the spin
representation of the Lorentz group. For global Lorentz transformations, ∂µΨ behaves
like a spinor. However, this does not happens for local Lorentz transformations.
Therefore, one has to look for a directional derivative of spinor fields ∇µ such that
∇µΨ which behaves like a spinor for local Lorentz transformations. This defines
the covariant derivative of spinor fields, as an analogy to the covariant of a vector
field. To find it, let us take into account the proprieties of spinors Ψ ∈ Sp and
dual/adjoint spinors Ῡ ∈ Sp ∗ under a local transformation Λ ∈ SO(1, 3) :

Ψ Λ−→ LΛΨ ; Ῡ Λ−→ ῩL−1
Λ ; [ῩΨ] Λ−→ [ῩΨ] (5.31)

being LΛ the image of Λ in SP . The covariant derivative has the usual form

∇µΨ ≡ ∂µΨ− ΓµΨ ; Ῡ←−∇µ ≡ ∇µῩ ≡ ∂µῩ− ῩXµ (5.32)

the conditions for ∇µΨ (∇µῩ) to be a spinor (dual spinor) set the following
transformation properties for Γµ and Xµ:

Γµ
Λ−→ (∂µLΛ)L−1

Λ + LΛΓµL−1
Λ and Xµ

Λ−→ LΛ(∂µL−1
Λ ) + LΛXµL

−1
Λ ,
(5.33)

and the condition for [ῩΨ] to be a scalar translates into:
4σµν is an antisymmetric tensor and, thus, it has N(N−1)

2 independent components. Here N is
the number of gamma matrices (i.e. N = 4) and, thus, σµν has six independent components.
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[ῩΨ] ≡ ∂µ[ῩΨ]. (5.34)

This last condition (5.34) together with (5.33) force Γµ = −Xµ. Therefore,
the problem of formulating spinor fields in a locally Lorentz invariant spacetime
is to know the form of Γµ. Since the Lorentz group is a Lie group, then any
element can be written like Λ ≡ eλaT

a , where T a are the generators of the group
in a given representation. In the spinor representation this can be written as
LΛ ≡ e

1
2λabσ

ab = I + 1
2λabσ

ab + O(λ2
ab). Then, under an infinitesimal Lorentz

transformation, a spinor field transfroms like:

Ψ inf. Λ7−−−→ Ψ + 1
2λabσ

abΨ , (5.35)

so that under this transformation δΨ = 1
2λabσ

abΨ. A parallel transport of a
spinor field is defined by the vanishing of its covariant derivative. Then, the change of
a spinor under an infinitesimal parallel transport is: δΨ ≡ ∂µΨδxµ = ΓµΨδxµ. The
spinors Ψ live in fiber bundle given by the set of all the tangent spaces, sometimes
called tangent bundle, and, thus, one expects their parallel transport to be equivalent
to an infinitesimal Lorentz transformation, i.e. δΨ = 1

2λabσ
abΨ for some λ. In

conclusion, one has Γµδxµ = λabσ
ab/2. Now, one can describe the tangent space by

means of any basis, not only the coordinate basis. Thus there exist a set of fields
called vierbeins that relate the two basis: ∂µ = eaµua and ua = ea

µ∂µ. In particular
it is possible to choose (in an neighbourhood of p) a constant basis {ua} such that
∂µua = 0 and all the spacetime dependence is in the vierbein fields. Furthermore, if
this basis is orthonormal, the components of tensorial quantities in this basis are
just like the components in Minkowski space described by an orthonormal basis.
Thus gab ≡ eaµebνgµν = ηab, γµ = ea

µγa and so on. This is called the flat basis (or
flat vierbein). The covariant derivatives of vectors can be expressed in both the
coordinate and the flat bases, keeping in mind that they are the same tensor. This
defines the components of the covariant derivative when acting on a tensor described
in the flat basis as follows. Le us consider the (1,1) tensor ∇V where V is a vector
field:

∇V ≡ (∇V )νµdxµ ⊗ ∂ν = (∇V )νµdxµ ⊗ eaνua ≡ (∇V )aµdxµ ⊗ ua

plugging (∇V )νµ = ∂µV
ν −ΓµανV α in the previous equation, and doing the same

for the 1-form dual to V (i.e. Vµ = gµνV
ν) one finds:

∇µV a = ∂µV
a − [ebν∂µeaν + eaνeb

ρΓνµρ]V b (5.36)
∇µVa = ∂µVa + [eaν∂µebν + ebνea

ρΓνµρ]Vb. (5.37)

We call ωµba ≡ ebν∂µeaν + eaνeb
ρΓνµρ the spin connection; so that:

∇µV a = ∂µV
a − ωaµbV b and ∇µVa = ∂µVa + ωbµaVb (5.38)
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The relation between the spin connection ωµba and Γµ will become clear after
working out the relation between the spin connection and the infinitesimal Lorentz
parameters λij in (5.35). An infinitesimal Lorentz transformation of a vector V is:

V a Λ7−−−−→ (δab + λab)V b, (5.39)

then, under an infinitesimal Lorentz transformation, δV a = λabV
b. On the

other hand, if one makes an infinitesimal parallel transport of V , the change in
V is, in flat components: δV a = ωµb

aV bδxa. In this way one transforms the flat
indexes of such a vector that can only transform under Lorentz transformations
and thus λab = ωµb

aδxµ. Then one reaches the well-known expression for the spinor
connection:

Γµ = 1
2ω

c
µaηbcσ

ab = 1
2
(
∂µe

c
α + ecβΓβµα

)
ηbcea

ασab. (5.40)

In particular, in the flat basis one has ωcµ(aηb)c ≡ ωµ(ab) = −Qµab. As ωcµ(aηb)c

does not contribute to the spinor connection (σ(ab) = 0) NM does not couple to
spinor fields through the connection, but only through its corrections to the metric
tensor, as happened for spin 0 and spin 1 fields.

Now we can proceed to calculate the dynamics for spin 1/2 fields in a non-
Riemannian background geometry. In spaces with NM and torsion, the usual Dirac
equation in curved spaces (i.e.

(
γµ∇µ +m

)
ψ = 0) is modified due to two reasons:

the relation between the divergence operator and the covariant derivative is not the
usual one, and the curved Dirac matrices are no longer covariantly constant (5.45).
Let us derive the modified Dirac equations for non-Riemannian spacetimes from the
action for a Dirac field [279]

SΨ =
∫
V

√
−gd4x

[1
2
(
Ψ̄γµ(∇µΨ)− (∇µΨ̄)γµΨ

)
+ Ψ̄mΨ

]
. (5.41)

A variation of the field Ψ̄i leads to the following variation of the action (5.41):

δSΨ =
∫
V

√
−gd4x

[(1
2γ

µ∇µΨ +mΨ
)
δΨ̄ +

(
−1

2γ
µΨ
)
δ∇µΨ̄

]
. (5.42)

As there is no variation of Γµνα, then δ and ∇µ commute. Then using

Div(A) = ∇µAµ −
(1

2Qµα
α + Sµα

α
)
Aµ, (5.43)

eventually we find

δSΨ =
∫
V

√
−gd4x

[(1
2γ

µ∇µΨ +mΨ
)
−∇µ

(
−1

2γ
µΨ
)

+
(1

2Qµα
α + Sµα

α
)(
−1

2γ
µΨ
)]

δΨ+

+
∫
V

√
−gd4x Div

(
∂L

∂(∇µΨi)
δΨ
)
.

(5.44)
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The last term is a boundary term by Stokes’ theorem. Therefore it vanishes for
variations δΨi vanishing in the boundaries. The computation of ∇µγα using (5.40)
yelds5:

∇µγα = 1
2Qµν

αγν , (5.45)

which is consistent with ∇α{γµ, γν} = 2Qαµν . Using (5.45) to rewrite

∇µ
(
γµΨ

)
= γµΨ + 1

2Qµα
µγα , (5.46)

and applying now the principle of least action (i.e.: the dynamics is given by
δS = 0 for any infinitesimal δΨ̄) we find:[

γµ∇µ −
1
2
(
Sµα

α +Q[αµ]
α
)
γµ +m

]
Ψ = 0. (5.47)

The same procedure for a variation of the field Ψ leads to the equations of motion
for Ψ̄:

Ψ̄
[
γµ∇µ −

1
2
(
Sµα

α +Q[αµ]
α
)
γµ −m

]
= 0. (5.48)

Note that for Riemannian spacetimes with Sµνα = 0 and Qµνα = 0, the usual
Dirac equation is recovered as expected.

Let us now express the above modified Dirac equation in terms of the Levi-Civita
connection. This will allow us to show explicitly that the non-metricity tensor does
not couple directly to fermionic fields since it does not appear explicitly into the
equation of motion. To this end, we start noting that γµ∇µ = γµ∂µ − γµΓµ. We
then need to compute the quantity γµΓµ:

γµΓµ = 1
2ωµabe

µ
c γ

cσab = −1
8ωµabe

µ
c γ

c[γa, γb] = −1
4ωµabe

µ
c (ηcaγb−ηcbγa−iεdcabγdγ5) ,

(5.49)
where we used repeatedly the identity γaγbγc = ηabγc+ηbcγa−ηacγb− iεdabcγdγ5.

Reminding that

Γg = i

4ωµabe
µ
c ε
dcabγdγ5 = γµ

2 ωgµabσ
ab , (5.50)

where ωgµab stands for the spin connection as a function of the Levi-Civita affine
connections, and defining

ΓS := i

4ε
dcabS[acb]γdγ5 , (5.51)

we can then rewrite the above equation as

γµΓµ = Γg+ΓS−1
2ωµ[ab]e

aµγb = Γg+ΓS−1
2η

acγb(Kcab+Nc[ab]) = Γg+ΓS−γ
b

2 (Qa[ab]+S
a
ab) .

(5.52)
5From [268]: ∇µγα = ∂µγ

α − Γαµνγν +
[
γα,Γµ

]
; since γα is in the vector and spin reps. of

SO(1, 3) .
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If we plug in the above expression into Eq. (5.47), then we eventually obtain

[
γµ∂µ − Γg − ΓS + 1

2
(
Sµα

α +Q[αµ]
α
)
γµ − 1

2
(
Sµα

α +Q[αµ]
α
)
γµ +m

]
Ψ = 0 ,

(5.53)
and thus also [

γµ∇gµ −
i

4ε
dcabS[acb]γdγ5 +m

]
Ψ = 0 , (5.54)

As anticipated, this result proves that the non-metricity tensor does not naturally
couple with the spin 1/2 field. Notice that, as we may expect, if the manifold is
torsion-less (as it is in standard GR), i.e. Sabc ≡ 0, then we have[

γµ∇gµ +m
]

Ψ = 0 , (5.55)

which is the known generalization of the Dirac equation to Riemannian curved
manifolds. Finally it is worth mentioning that the usual fermion current jµ ≡ Ψ̄γµΨ
is conserved (i.e. Div(jµ) = 0) if Ψ̄ and Ψ satisfy (5.48) and (5.47) respectively.

Now we have derived the fields’ equations in presence of torsion and NM in
addition to space-time curvature. In this way we have pointed out that these
non-Riemannian geometric objects bring explicitly additional correction terms with
respect to standard field theory in Minkowski spacetime. This fact already suggests
that there should be physical effects associated to the breaking of the Riemannian
postulates. We are now ready to deploy a few analyses aimed at translating these
modifications of particle dynamics into potentially observable outcomes both in
the relativistic and non-relativistic regimes of RBG theories. We shall see that the
former case will contribute to a significant improvement of the present experimental
constraints on RBGs.

In the physical regimes of interest for us here, we can treat the non-Riemannian
contributions appearing in RBG theories as small perturbations to the (Riemannian)
spacetime metric qµν . This is motivated from the relation (5.24). The n-th order
coefficients in the sum of (5.24) are supressed by the high-energy scale Λ−4

Q , and
we can rewrite them as: Cδn ≡ αn/Λ4n

Q and CTn ≡ βn/Λ4n
Q , where αn and βn are

model-dependent dimensionless coefficients. Thus up to 1st order (5.24) becomes:

gµν = qµν + α

Λ4
Q

Tqµν + β

Λ4
Q

Tµν +OΛ−8
Q

(5.56)

where Tµν is the matter stress-energy tensor, T = gµνTµν and α and β are
numerical coefficients of order 1.

5.2.1 Bounds from NM-induced Fermi-like interactions

Let us show how NM induces effective point-wise interactions between a pair of spin
1/2 fields and any other fields existing in nature [267]. For this purpose, let us start
with the standard covariant Lagrangian for a spin 1/2 field in a curved spacetime
[279]
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L =
√
−g

[1
2
(
Ψ̄γµ(∇µψ)− (∇µΨ̄)γµψ

)
+ Ψ̄mψ

]
, (5.57)

Using now the form of the metric (5.56) we find to lowest order in 1/ΛQ

eaµ = δaµ + α

2Λ4
Q

Tδaµ + β

2Λ4
Q

T aµ ea
µ = δa

µ − α

2Λ4
Q

Tδa
µ − β

2Λ4
Q

Ta
µ

√
−g = 1 + 4α+ β

2Λ4
Q

T Γµ = O(Sµνλ) .

(5.58)

Now let us make the following consideration: for scattering experiments at
the surface of the Earth (concretely in LEP), we can neglect Newtonian and post-
Newtonian corrections to the Standard Model Lagrangian. This is equivalent to use
qµν ≈ ηµν as explained above. By use of (5.58) we can thus write the Lagrangian
(5.57) as L = L0 + LI , where L0 is the usual Lagrangian for spin 1/2 fields in
Minkowski spacetime [279] and LI can be seen as an interaction Lagrangian for a
Dirac field in Minkowski spacetime with the stress energy tensor, which takes the form

Ll = β

2Λ4
Q

(
T

[
Ψ̄
↔
/∂ψ + Ψ̄mψ

]
+ Tµa

[
Ψ̄γa

↔
/∂ µψ

])
+ 3α

2Λ4
Q

T

[
Ψ̄
↔
/∂ψ

]
+O(Λ−8

Q ). (5.59)

Here torsion has been neglected because, as shown in [280], torsion-induced
interactions are beyond experimental reach unless a very-high density of spin (the
source of torsion [281]) is considered. This behavior of torsion contrasts with that of
non-metricity, since the latter is sourced by the energy-momentum density, which
can be more easily controlled and magnified in particle colliders.

The Lagrangian LI evidences that NM in RBGs induces contact interactions
between a fermion pair and any kind of field entering the stress-energy tensor
(even self-interactions). As a result, the cross-section of any of these interaction
processes changes. Accordingly, we can constrain ΛQ by requiring that the non-
metric contribution to the cross-section of particle processes does not exceed the
measurement error at the energy scales at which direct measures have been performed.
This also implies that theories with non-metricity of the form (5.56) should be
regarded as effective theories because the lack of new dynamical degrees of freedom
(as compared to GR) together with the existence of 4-fermion contact interactions
(5.59) may lead to unitarity violations at the scale ΛQ (unless some strong coupling
mechanism beyond the linear approximation fixes this issue6).

Let us now focus on the process e+e− → e+e− in the ultra-relativistic regime
(me ≈ 0) for which up to lowest order in 1/Λ4

Q, the Lagrangian (5.59) reads

LI = − β

Λ4
Q

[
Ψ̄e

(
γa
↔
∂µ + γµ

↔
∂ a

)
ψe

] [
Ψ̄eγ

a
↔
∂ µψe

]
. (5.60)

6In some RBGs black hole and cosmic singularities may be avoided in a non-perturbative
way[282, 283].
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Within the Standard Model, the contribution of (5.60) to the cross section of
this process at tree level and lowest order in 1/Λ4

Q is

σQ ' 0.35 β

Λ4
Q

pb. (5.61)

Current data on the process e+e− → e+e− can be found in [284, 285]. Measure-
ments from LEP7 at a center of mass energy of

√
s = 207 GeV show that the cross

section for this process is σexp = 256.9± 1.4± 1.3 pb8 [284, 285]. Let us stress that,
in order to compute σQ at the lowest order, we are allowed to use the usual values of
the Standard Model charges and masses. In fact, one may legitimately ask whether
the electron mass, charge values are affected and, thus, modified by RBG models. If
so, a fully consistent derivation of σQ should take this into account otherwise, for
instance, it may happen in principle that non-metric (first-order) corrections to the
cross-section can be absorbed into the redefinition of the charges. Such a task can
be addressed as follows. The Noether charges are given by

Q =
∫
∂M

ji dV
i

3 , (5.62)

where−→j is the three vector current, associated e.g. with the U(1) gauge symmetry
of the Dirac equation, and dV i

3 is the measure of the three volume ∂M . Given the
discussion on the precedent section, using the (modified) divergence theorem (5.43),
then we can write

Q =
∫
M
Div(−→j ) dV4 =

∫
M

[∇kjk −
(1

2Q
α
kα + Sααk

)
jk]dV4 . (5.63)

Now let us focus first on the integrand and postpone the discussion on the
integration measure. As shown above, the quantity ∇kjk −

(
1
2Q

α
kα + Sααk

)
jk can

be rewritten as ∂kjk +O(S) in the absence of curvature i.e. Γαµν ≡ 0 which is the
situation we are now considering, and where O(S) are corrections carried by torsion
only and which can be safely neglected due to the aforesaid reasons. On the other
hand, the four volume can be written as

dV4 ' d4x+ 4α+ β

2Λ4
Q

T d4x , (5.64)

then we have that

Q '
∫
M
∂kj

k d4x+ 4α+ β

2Λ4
Q

∫
M

(∂kjk)T d4x = Q0 +Q1 , (5.65)

where Q0 is the Noether charge in the usual Minkowski spacetime, and Q1 is
the leading non-metric correction. Now note that Q1 depends on the trace of the
stress-energy tensor. For the spin 1/2 fields we have that T = Tαα = mψψ, which is
negligible in the ultra-relativistic limit we are considering (and which is fairly justified

7Let us mention that using LHC data for process of the type qq → ff would not improve the
limit we here establish. See e.g. [286].

8We use the data with θacol < 10o and | cos θe± | < 0.96 [284, 285].



160 5. Non-metric Geometries

in electron scattering experiments with
√
s = 207 GeV), and thus Q −−−→

m→0
Q0. This

completely justifies why we are allowed to neglect corrections to the electric charge
and mass in the regime of LEP collisions and also naively proves that non-metric
corrections can not be fully re-absorbed.

The requirement that any RBG model in the metric-affine approach has to be
consistent with current data9 sets a lower (upper) bound for ΛQ (λQ) of about

ΛQ & 0.6β1/4 TeV, (5.66)
λQ . 2β−1/4 × 10−18 m , (5.67)

where β has been defined in Eq. (5.56) . Correspondingly, for ΛRBG (λRBG) we
have

ΛRBG & 0.06β1/2
modelmeV, (5.68)

λRBG . 2β−1/2
model cm. (5.69)

For BI inspired models with Lagrangian
(
| det(δµν + λ2

BIg
µαRαν)|n − 1

)
/(8πGλ2

BI)
[42], one has βBI = 1

2n , with n = 1/2 corresponding to the so-called Eddington-
inspired BI model. Picking out n = 1/2, the above bounds translate into ΛBI & 0.06
meV and λBI . 2 cm. It is worth mentioning that these bounds we here established
are in the range recently highlighted in the naive estimations of [262]. Let us stress
that this represents an improvement on the previous best limit on λBI (see e.g.
[287, 288]) by more than 7 orders of magnitude. A worth feature of the above
constraint is that it weakly depends on the details of the model considered. For
astrophysical and cosmological bounds on the n = 1/2 model see [262]. The status
of the art of the constraints on NM is summed up below in table (5.1).

5.2.2 Bounds from NM-induced atomic energy shifts

Let us now discuss a phenomenological scenario in the non-relativistic limit of Eq.
(5.47). In particular, we are concerned about the effects of non-metric corrections to
the simplest atomic system, i.e. a one-electron (hydrogen-like) atom. As shown in
a seminal paper by Parker [289], we already know that the presence of curvature
introduces (tiny) modifications of the energetic levels of bounded systems such as
atoms. Then, we can expect that NM as well may affect those systems and produce
physical effects in the form of shifts of the energy transition lines. We shall see
though that, as it happens for curvature, the corrections are too small to be observed
and, consequently, allow us to set a much weaker constraint on ΛQ if compared with
those we established in Eq. (5.68). In this case, the bounds we set to RBGs are
comparable with others obtained in different contexts but are not competitive with
respect to the most stringent ones (see again the table (5.1)).

As discussed above, in non-Riemannian spacetimes, the Dirac equation gets
corrected by terms involving NM and torsion as in Eq. (5.47). We also explained
that non-Riemannian corrections arise as a consequence of the fact that the relation

9This is done by requiring σSM + σNM is compatible with the experimental value.
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between the divergence operator and the covariant derivative is not the usual one,
and, too, the curved Dirac matrices are no longer covariantly constant. In order to
generalize Parker’s study to RBG geometries, we are first interested in deriving the
non-Riemannian modifications Hamiltonian for electrons. We can make the usual
identification H = i∂0 in order to obtain the Dirac Hamiltonian from the equations
of motion for spin 1/2 fields. By doing so, the Hamiltonian for spinors is:

HD = −i
g00

[
γ0γi (∂i − Γi + qi)− γ0m

]
+ i [Γ0 − q0] , (5.70)

where we defined qµ ≡ (Qρ[µρ] + Sρµρ)/2. For our purposes here, it is then useful
to define an interaction Hamiltonian accounting for curvature and non-metric effects
that the background geometry has on spinor fields. We define this sort of geometric
interaction Hamiltionian as

HI := HD −HM
D , (5.71)

where HM
D is the Dirac Hamiltonian in Minkowski spacetime10. This immediately

leads to the following interaction Hamiltonian

HI = −i[γaγb
( 1
g00 ea

0eb
i + δ0

aδ
i
b

)
∂i + 1

g00 ea
0eb

i (qi − Γi)

+q0 − Γ0 +
( 1
g00 ea

0 + δ0
a

)
mγa].

(5.72)

By the use of (5.40) and rewriting all the terms in the usual basis of the Dirac
algebra {I, γ5, γ

a, σab, γaγ5} one finds a general form for the interaction Hamiltonian
as a linear combination of the basis elements, with the coefficients containing all the
information about the spacetime geometry

HI = AI +Baγ
a + Cabσ

ab +Dabcdσ
abσcd , (5.73)

with

A ≡ −i
[
g0i

g00∂i + g0i

g00 qi + q0

]
, Ba ≡ −i

[
ea

0

g00 + δa
0
]
m

Cab ≡
i

2

[
g0µ

g00 ωµab + 4
( 1
g00 ea

0eb
i + δ0

aδ
i
b

)
∂i

]
, Dabcd ≡ −

i

g00 ea
0eb

iωicd .

(5.74)

Notice that non-Riemannian modifications may also suggest different (and per-
haps even more intriguing) phenomenological analyses, which though will not be
tackled here and are part of a work in progress to be presented elsewhere. Now,
using (5.58) and neglecting again torsion for the aforementioned reasons, up to
lowest order in 1/Λ4

Q we find

10Which is (5.70) with the substitutions: γµ → γµ , Γµ → 0 , qµ → 0 , gµν → ηµν .
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HI = i

Λ4
Q

[
−β

(
T 00δa

0δb
i + 1

2
(
δa

0Tb
i + Ta

0δb
i
))

γaγb∂i+
3α+ β

4 (∂aT )γ0γa

+
(
α

2 Tδa
0 − β

2Ta
0 − βT 00δa

0
)
mγa

]
.

(5.75)

Here we also used the fact that we put ourselves in a local inertial frame where the
Riemannian part of gµν is Minkowski metric. With this choice we drastically simplify
the problem. It reduces to the study of fermions in a flat spacetime with a local
non-metric contribution. Keeping only the leading order terms in the non-relativistic
limit as in [289]11, one finally has

HNR
I = −i3α+ β

4Λ4
Q

∂0T −
m

2Λ4
Q

(
βT 00 − αT

)
. (5.76)

In order to test non-metricity effects through energy shifts of atomic levels, one
should be able to change the local distributions of energy and momentum around
the atom minimizing the impact of undesired electromagnetic couplings. Clouds
of dark matter particles and/or intense neutrino fluxes, both having very weak or
no couplings to the electromagnetic sector, could do the job. We will work out the
case of a hydrogen-like atom traversed by a radiation flux emitted by a spherically
symmetric source. With the goal of rendering our example as simple as possible, we
model such a fluid as an ideal null fluid with12

Tµν = ρlµlν , (5.77)

then the non-metric tensor becomes

Qαµν = − β

Λ4
Q

∇α(ρlµlν) . (5.78)

Plugging this into (5.76), the non-relativistic interaction Hamiltonian turns into

HNR
I = − β

2Λ4
Q

mρ , (5.79)

and, thus, the full Hamiltonian reads

HNR = p2

2m −
1

4πε0
e2

r
− β

2Λ4
Q

mρ . (5.80)

Here we are no more working in natural units since we want to evaluate upper
bounds to the nonmetricity length scale lQ. Notice that the non-relativistic Hamil-
tonian HNR is made up of two parts. The first one Hem is the usual Hamiltonian
of a particle in a central electric field. The second contribution is an additional
potential encoding non-metric effects. Now we can calculate explicitly the shift of
the ground-state energy level due to the presence of VQ.

11γi = −iβ̃α̃i ∼ O(αem), γ0 = −iβ̃ ∼ O(1), ∂i ∼ pi ∼ O(αem)
12Here ρ is the energy density of the fluid and lµ is a radial null vector.
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Physical effect considered to set the bound ΛRBG (eV) λRBG (m) κRBG (kg−1m5s−2) source
1. Stellar equilibrium & 10−13 . 107 . 106 [290]
2. Nucleus stability & 10−9 . 103 . 10−2 [291]
3. Primordial nucleosynthesis & 10−14 . 108 . 108 [292]
4. Gravitational waves & 10−19 . 1013 . 1018 [293]
5. Neutron stars & 10−10 . 104 . 1 [294]
6. Particle scatterings (electrons) & 10−4 . 10−2 . 10−12 [267]
7. Atomic shifts & 10−23 . 1017 . 1026 [267]
Table 5.1. The table contains all the available bounds on RBG models coming from

different analyses focusing on different physical situations which, to our knowledge,
appeared in the literature so far. Here we used the common notation by introducing the
quantity κRBG ≡ 8πGλ2

RBG. In particular, the constraint 1. has been obtained in [290]
by comparing modified solar physics models from Eddington-like theories with current
experimental observations. 2. comes from the requirement that the gravitational force
does not exceed the electromagnetic force at the subatomic scale leads, as put forward in
[291]. The bound 3. has been derived in [292] where the predictions of Eddington-Born-
Infeld models for primordial nucleosynthesis are compared with observations. It also
represents the only cosmological constraint on RBGs. The bound in 4. has been found in
[293] thanks to the detection of gravitational waves together with their electromagnetic
counterpart. Finally, the authors of [294] have found the constraint 5. by requiring the
possibility of the formation and stability of relativistic stars in RBGs. The last two
cases are those discussed here for the first time.

Assuming an energy density profile that decays with the distance R to the center
of the source as ρ = 4ρsR2

s/(Rs + R)2, being Rs the size of the source and ρs the
energy density of the flux at R = Rs, the non-metricity correction to the energy
levels is

∆Q
(n,l,m) ' −

β

2Λ4
Q

mρs

(
1 + 1

R2
s

〈
4r2 cos2 θ − r2

〉
nlm

)
, (5.81)

where r measures the distance from the center of the atom, and terms of order
(r/Rs)3 and higher have been neglected. Then, for a state of the form (n, 0, 0), one
gets

∆Q
(n,0,0) = − 2β

Λ4
Q

mρs
〈

Ψ(0)
n00

∣∣∣ R2
s

(Rs +R)2

∣∣∣Ψ(0)
n00

〉
= − β

2Λ4
Q

mρs

(
1− 1

3

(
na0
Rs

)2
(5n2 + 1)

)
,

(5.82)

being a0 the Bohr radius and m the electron mass. By comparing the shift
produced by NM effects with the error committed by neglecting relativistic (hyperfine)
corrections, we can put upper bounds on ΛQ. In fact, working within the non-
relativistic picture, we are making an error in the computation of the energy given
approximately by δNR ≈ α2

em ' 10−5. Requiring that the correction due to NM has
to be smaller than the non-relativistic error, then we can obtain an upper bound to
the NM length scale ΛRBG. In particular, since the NM shift represents an extremely
small correction to the unperturbed energy levels, let us consider an optimistic
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situation (only for illustrative purposes) by taking high values for n as well as for ρs
in order to amplify the NM correction as much as possible. Consider a very large
n transition (1000, 0, 0)→ (2, 1, 0) and take a very high energy density ρs ' 1031

J/m3 (comparable in magnitude to the observed gravitational wave events generated
by black hole mergers), the constraint that one finds by requiring ∆Q to be less than
the error ∼ α2

em due to neglecting relativistic corrections is just λRBG . 1017β
−1/2
model

m. Thus, the constraint on the energy scale of non-Riemannian contributions would
be extremely small, i.e. ΛRBG & 10−17 µeV. This is orders of magnitude weaker
than our relativistic estimates, however, it is still a better bound for BI gravity that
the one obtained in [293] from GW170817 and GRB 170817A . In order to guide
the reader toward the state of the art of the constraints on RBG models we provide
a table (5.1) with the comparison between the bounds we here established and some
of the most significant limits appeared in the literature.

5.3 Gaussian vector fields representation with NM cor-
rections

MTG are usually implemented and studied in their covariant formulation and
less attention is generally given to the canonical (or 3+1) version of them. As
a consequence, it is commonly believed that they preserve full diffeomorphism
invariance simply due to the fact that modifications to GR are introduced in a
covariant way at the level of the action. Here the issue we desire to tackle does
not directly regard the general covariance of MTG, even if it is related to it, but
rather concerns the effect of the breaking of the Riemannian condition, by the
presence of torsion and NM, on diffeomorphism invariance. In other words, we
wish to explore what is the relation between the symmetry under diffeomorphisms
and the fact that the GR manifold is Riemannian, and whether non-Riemannian
manifolds can still enjoy the symmetries of GR. To this end, we want to generalize
the procedure we reviewed in Section 2.1.2 of Chapter 2 and applied already to
the case of non-commutative (Moyal-type) modifications when torsion and NM are
non-zero. It is not difficult to realize that, given Eqs. (2.12), (2.16), (2.17), we
can follow similar steps until we arrive at the calculation of normal and tangential
components of the Lie bracket [n,M ]µ.

Firstly, let us derive some useful relations from the orthogonality conditions of the
basis (nµ,Mµ). By using the above definition of NM tensor, one can straightforwardly
obtain

nµ∇ρnµ = 1
2Qρµνn

µnν , (5.83)

nµ∇ρnµ = −nµ∇ρnµ, (5.84)
Mµ∇ρnµ + nµ∇ρMµ = Qρµνn

µMν , (5.85)
nµ∇ρMµ = −Mµ∇ρnµ, (5.86)
nµ∇ρMµ = −Mµ∇ρnµ. (5.87)

At this point we are ready to calculate the normal component of [n,M ]µ. We
have that
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nµ[n,M ]µ = nµn
ν∇νMµ − nµMν∇νnµ =

−(Mµnν∇νnµ + nµM
ν∇νnµ) =

−(2Mµnν∇νnµ + nµMν(dn)νµ) =
QρµνM

ρnµnν 6= 0 .

(5.88)

For the tangent part one finds easily that

− hab∂bN + δab [n,M ]a = 0 . (5.89)

Thus, the equations for the normal and tangential components of the Gaussian
vector field vµ become

[n,M ]a = hab∂bN , nν∂νN = −1
2M

ρQρµνn
µnν . (5.90)

Notice that the NM tensor corrects the equation for the laps function in a
non-trivial manner. The last step, just as we did in the previous section, consists in
the computation of the bracket between two Gaussian vectors vµ1 and vµ2 :

[v1, v2]µ = vρ1∂ρv
µ
2 − v

ρ
2∂ρv

µ
1 = (N1LnN2 −N2LnN1 + LM1N2 − LM2N1)nµ

+[M1,M2]µ +N1[n,M2]µ −N2[n,M1]µ

= (LM1N2 − LM2N1)nµ + [M1,M2]µ + hµb(N1∂bN2 −N2∂bN1) ,
(5.91)

and, thus, eventually

[(0,Ma
1 ), (0,M b

2)] = (0,LM1M2) , (5.92)

[(N, 0), (0,Ma)] =
(
−LMN + 1

2M
µQµρσn

ρnσ, 0
)
, (5.93)

[(N1, 0), (N2, 0)] = (0, (N1∂bN2 −N2∂bN1)hab) . (5.94)

As we have seen in the first section of this chapter, it is usually possible to
introduce a sort of auxiliary metric qµν whose Γµρσ is the Levi-Civita connection. We
remind that the relation between the two metric tensors gµν and qµν is of the form
(see Eq. (5.14))

gµν = qµα(Ω−1)αν , (5.95)

where the new tensor Ωµ
ν is a function of the stress energy tensor and its trace,

i.e. Ωµ
ν = Ωµ

ν (T, Tρσ). Thus, we can rewrite the above HDA in terms of the auxiliary
metric qµν and Ωα

β as follows

[(0,Ma
1 ), (0,M b

2)] = (0,LM1M2) , (5.96)

[(N, 0), (0,Ma)] =
(
−LMN + 1

2M
µQµρσn

ρnσ, 0
)
, (5.97)

[(N1, 0), (N2, 0)] = (0, (N1∂bN2 −N2∂bN1)qacΩb
c) . (5.98)
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In particular, in RBG the NM is given by (5.56)

Qµρσ = 1
Λ4
Q

(a1(∇µT )qρσ + a2∇µTρσ) , (5.99)

taking into account only the leading order terms O(1/Λ4
Q) (being ΛQ the energy

scale of non-metric corrections) and where Tµν is the stress-energy tensor of matter
fields, then we can rewrite the brackets as

[(0,Ma
1 ), (0,M b

2)] = (0,LM1M2) ,

[(N, 0), (0,Ma)] =
(
−LMN + Mµ

2Λ4
Q

a1(∇µT )qρσnρnσ + Mµ

2Λ4
Q

a2∇µTρσnρnσ, 0
)
,

[(N1, 0), (N2, 0)] = (0, (N1∂bN2 −N2∂bN1)(qab + a1
Λ4
Q

Tqab + a2
Λ4
Q

qacT bc )) .

Now we have obtained a set of brackets between the components of the Gaussian
vector fields with two correction terms on the right-hand-side of the second and the
third brackets which are due to the NM tensor. Just as we did in Section 2.2 of
Chapter 2 when we were considering Moyal-type non-commutative corrections of the
HDA, we need to examine whether or not they are admissible correction terms. A
first worth doing comment is that, as expected, in absence of matter fields the HDA
simply reduces to the standard one of GR since all the NM modifications involve
the stress-energy tensor Tµν . Indeed, as already mentioned in this Chapter, RBGs
are a subclass of MTG where the departures of GR arise only when energy-matter
densities are introduced otherwise they are fully equivalent to GR. As we can see
from the second bracket in Eq. (5.96) (but of course also in the above equations),
the NM correction i.e. MµQµρσn

ρnσ/2 directly involves the normal four vector nα.
Such a term would then explicitly break the HDA since it requires the knowledge of
additional data which are not defined on the hypersurfaces Σ. In fact, we remind
that the HDA brackets should depend only on hypersurface data i.e. (N,Ma, hab).
Given that, we can consider three possibilities. One is that NM modifications
break diffeomorphism invariace. A second option to retain the symmetry could be
imposing some restrictions on the NM tensor in order to make this term vanish,
i.e. one imposes the condition MµQµρσn

ρnσ ≡ 0. This would select a subclass of
NM tensors that do not violate diffeomorphism invariance. Finally, following an
approach analogous to the one adopted in Section 2.2 of Chapter 2, we can try to
modify the Gaussian condition by adding a term suitable to cancel out the undesired
NM correction. It is not difficult to check that the following modified Gaussian
condition:

nµLvgµν −∇ρgµσMρnµnσnν = 0 , (5.100)

would give us the standard normal condition for the lapse function, i.e. nµ∂µN =
0, and not change the tangential equations provided that habnb ≡ 0. Here we
treat all these three options on the same level and keep the correction term in
[(N, 0), (0,Ma)] in the following discussion. Let us now briefly comment on the
modification of the bracket between two normal components of vρ. In this case the
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Lie derivatives remain undeformed and the only contribution comes from the fact
that the metric has a dependence on matter fields due to NM. Such a deformation is
then allowed in the sense that it does not break the HDA structure. It is also worth
noticing that, at least qualitatively, it is of the same form of the LQG corrections
to the HDA we studied in Section 3.2 of Chapter 3. Indeed, in both cases the
modification can be related to the contribution of energy densities (even if in the
LQG case the Brown-York momentum also includes the energy momentum carried
by the gravitational field that does not alter instead the HDA for the above case
with NM, which is influenced only by matter contributions). Whether and to what
extent, the LQG corrections can be interpreted as a consequence of NM has not been
investigated yet. As a start, one should try to make the identification βqab = qacΩb

c

and e.g. derive Ωµ
ν as a function of the LQG β function and the auxiliary metric.

At this point we are interested in analyzing the Minkowski (or flat) limit of this
modified HDA. This can be done by restricting to linear hypersurface deformations
with the following choices for the lapse function and the shift vector:

Mk(x) = δk + εkijϕixj , N(x) = δ + αix
i . (5.101)

Here (δ, δi, ϕi, αi) are the arbitrary parameters associated to infinitesimal sym-
metry transformations of flat hypersurfaces. At the same time we need to impose
the condition of zero curvature by taking:

Γµρσ ≡ 0 . (5.102)
It is worth noticing that, due to the presence of non-metricity, this is not

equivalent to the requirement that the metric tensor reduces to the Minkowski
metric, contrary to what happens in Riemannian manifolds.

For the sake of simplicity and illustrative purposes, we shall focus on the case of
f(R) gravity [259], then a2 ≡ 0 and the algebra simplifies into

[(0,Ma
1 ), (0,M b

2)] = (0,LM1M2) ,

[(N, 0), (0,Ma)] =
(
−LMN + Mµ

2Λ4
Q

a1(∇µT )qρσnρnσ, 0
)
,

[(N1, 0), (N2, 0)] = (0, (N1∂bN2 −N2∂bN1)qab(1 + a1
Λ4
Q

T )) .

In the light of the above discussion, the condition on the affine connection in
Eq. (5.102) can be immediately translated into the requirement qij ≡ δij , while for
the normal vector we can choose nµ = (−1, 0, 0, 0). Notice that the former bracket,
involving two shift vectors, remains untouched. Thus, if we plug in combinations of
Mk as in Eq. (5.101), then it gives us directly

[(0, εaijϕ1
ixj), (0, εbijϕ2

ixj)] = (0, εcijϕ3
ixj) , [(0, δa1), (0, δb2)] = (0, 0)

[(0, δa1), (0, εbijϕixj)] = (0, δc3) ,

with ϕ3
i := εijkϕ

j
1ϕ

k
2 and δa3 := εaijϕiδj . Following the same procedure for

[(N, 0), (0,Ma)], we find
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[(δ, 0), (0, εbijϕixj)] = (1
2ε

bijϕixjQb00, 0) , [(δ, 0), (0, δb)] = (1
2δ

bQb00, 0)

[(αixi, 0), (0, εbijϕixj)] = (αi1xi + 1
2ε

bijϕixjQb00, 0) ,

[(αixi, 0), (0, δa)] = (δ1 + 1
2δ

bQb00, 0) ,

with δ1 := αiδi and αi1 := εbjiαbϕj . Finally, from [(N1, 0), (N2, 0)] we find

[(δ, 0), (αjxj , 0)] = (δαbΩba, 0)
[(αj1xj , 0), (αj2xj , 0)] = (εbjlϕjxlΩba, 0) ,

with εbjlϕj := αl1α
b
2 − αl2αb1.

As an illustrative example, let us consider the case in which the only contribution
to the energy density is that of the cosmological constant Λ. As a result, the
stress-energy tensor is or the form

TΛ
µν = ρΛqµν , (5.103)

where ρ = Λ/(8πG), and it affects the metric gµν only with its trace, as it would
be the case for the f(R) model. Thus, if we plug in Eq. (5.103) into the above
brackets between the components of the Minkowski space, then we can write

[(δ, 0), (αjxj , 0)] = (δαa(1 + a1
Λ4
Q

TΛ), 0) ,

[(αj1xj , 0), (αj2xj , 0)] = (εajlϕjxl(1 + a1
Λ4
Q

TΛ), 0) ,
(5.104)

where all the other brackets are unmodified with respect to the standard special-
relativistic case. Here TΛ := (TΛ)αα is the trace of the stress-energy tensor. Finally,
if we realize the above brackets by means of the following set of symmetry generators
(Bi, Pi, P0, Ji), then we can also write

[Bi, P0] = i

(
1 + a1

Λ
2πGΛ4

Q

)
Pi , [Bi, Bj ] = −iεijk

(
1 + a1

Λ
2πGΛ4

Q

)
Jk . (5.105)

As a consequence, the mass Casimir gets modified as follows

C = P 2
0 − PiP i

(
1 + a1

Λ
2πGΛ4

Q

)
, (5.106)

or equally the on-shell relation is

E2 = m2 +
(

1 + a1
Λ

2πGΛ4
Q

)
|−→p |2 . (5.107)
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We did not explore in detail the phenomenology related to these NM modifications
of the on-shellness relation. Let us limit to some qualitative comments. We can notice
there is a similarity with two previous existing proposals for LIV. One appeared in
a few recent studies on quantum versions of cosmological spacetimes [295], which
have been inspired by LQG, where the modification is E2 ' m2 + (1 + β)p2 with β
a parameter depending on the quantum state of the geometry (it is a function of
the expectation value of the Hamiltonian over the wave function of the spacetime
geometry). The other approach is perhaps one of the oldest framework for LIV
developed by Coleman and Glashow in Ref. [296] where E2 ' m2 + (1− ε)2p2 with ε
a generic Lorentz-violation parameter. We here considered the cosmological constant
as our source of energy density, then we could try to extend the analysis to other
kinds of matter-energy sources. The stress-energy tensor includes the contribution
from any kind of source but, given the above derivation, we should expect that
particles propagate differently in regions with different matter-energy densities. We
would also have to find a way to manage more general cases with ρ = ρ(x, t), and
for instance check whether is it possible to rewrite the corrections in terms of the
Poincaré symmetry generators’ densities with the aim of obtaining deformed Poincaré
algebras thereby making contact with the DSR proposal. This could shed further
light on NM corrections to the Poincaré algebra and the fate of Lorentz invariance
in presence of NM. The deployment of a phenomenological proposal related to these
NM effects is under investigation and will be left for forthcoming studies.
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Chapter 6

Quantum Space-Time
phenomenology with gamma
rays

Throughout this thesis we have seen how diffeomorphism and, consequently, also
Lorentz symmetries are challenged by quantum spacetime approaches. We have also
shown how departures from GR and SR symmetries usually take the form of MDRs
(1.7). In this chapter we present a statistical analysis over a collection of 7 GRBs
observed by Fermi-LAT aimed at testing the hypothesis of in-vacuo dispersion [297],
i.e. the possibility that (massless or ultrarelativistic) particles’ speed of propagation
on quantum spacetimes might depend on their energy. We analyze all the photons
with energy at the emission greater than 5 GeV and apply a pair-view method [298]
in order to estimate the magnitude of linear order modifications of the dispersion
relation, i.e. the parameter η1 in Eq. (1.7). Remarkably, we find preliminary
evidence of in-vacuo-dispersion-like spectral lags consistently with what has been
noticed by some recent studies [299, 300, 301] which, though, had focused only on
the energy range above 40 GeV.

Over the last two decades there has been considerable interest in the possibility
to investigate experimentally some candidate effects of QG. This has led to the
development of the QG phenomenology program [11, 70] that focuses on some rare
physical windows that may allow us to probe effects introduced genuinely at the
Planck scale thanks to the fact that in rare contexts there can be natural leavers
amplifying the tiny QG deviations from standard physics. In this thesis work we
focused on two Planckian effects that may produce testable effects: MDR and the
reduction of spacetime dimensions. The phenomenology of dimensional running
is still largely unknown and deserves to be better understood (see, however, Refs.
[95, 99, 237] and references there in). On the other hand, tests of MDRs are now
well established and already provided challenging constraints to the simplest and
more optimistic models for Planck-scale physics [69].

Among the testable consequences of deforming the energy-momentum dispersion
relations, place of pride is held by QG-induced in-vacuo dispersion, namely the
possibility that spacetime itself might behave essentially like a dispersive medium for
particle propagation. If so, there might be an energy dependence of the travel times
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of ultrarelativistic particles from a given source to a given detector. In particular,
according to the most studied [11, 69, 302, 303, 304, 305] modelization of in-vacuo
dispersion, this would imply that e.g. two photons emitted simultaneously with an
energy difference ∆E accumulate a delay (see also Eq. (1.7))

∆t = ηX
∆E
MP

D(z)± δX
∆E
MP

D(z) , (6.1)

having traveled for a certain distance encoded in D(z) that accounts for the
interplay between QG and curvature effects and is given by [302]

D(z) =
∫ z

0
dζ

(1 + ζ)
H0
√

ΩΛ + (1 + ζ)3Ωm
. (6.2)

ΩΛ, H0 and Ωm denote, as usual, respectively the cosmological constant, the
Hubble parameter and the matter fraction, for which we take the values given in
Ref.[306]. In Eq. (6.1) the values of the parameters ηX and δX are to be determined
experimentally. In (6.1) the notation “±δX" reflects the fact that δX parametrizes
the size of quantum-uncertainty (fuzziness) effects. Instead the parameter ηX
characterizes systematic effects: for example in our conventions for positive ηX and
δX = 0 a high-energy particle is detected systematically after a low-energy particle
(if the two particles are emitted simultaneously). The label X for δX and ηX intends
to allow for a possible dependence [11, 305] of these parameters on the type of
particles (so that for example for neutrinos and photons one would have ην , δν , ηγ ,
δγ) and in principle also on spin/helicity (so that for example for neutrinos one
would have ην+, δν+, ην−, δν−).

It is well established that GRBs are very good candidates to perform astrophysical
tests of QG-induced in-vacuo dispersion [69]. In order to enhance the QG-induced
delay between particles with different energies emitted nearly at the same time
from the same source one needs sources that emit very high energy particles to
maximize ∆E and, most importantly, they have to be distant enough for the tiny QG
delays to accumulate and become detectable. GRBs are observed at cosmological
distances (up to redshift 9.2) and their emission during the prompt phase can span
several orders of magnitude in energy, from tens of keV up to tens of GeV. The best
instrument at our disposal for detecting the high-energetic component of GRBs is
the Fermi-LAT (Large Area Telescope) detector operating since August 2008 [307].
The LAT (detecting the photons above ∼ 30 MeV) has detected around ∼ 14 GRBs
per year among which though only a small fraction presents emission in the GeV
and has measured redshift, two properties that are crucial for testing the model of
Eq. (6.1). Nonetheless, exceptional GRB events allowed to set already very tight
constraints on the scale EQG := MP /η (neglecting stochastic contributions δX ≡ 0
as well as a potential dependence on particles’ properties), see e.g. Ref. [298] and
references therein. Specifically, using the highest energy detected photon (13.2 GeV)
of the GRB 08091C to estimate the maximum delay (16.5 s after the trigger), it
was possible to constrain: EQG > 0.1MP [298]. An even better result has been
achieved with the observation of the GRB 090510, where the time delay between
the trigger time and the arrival time of one 31 GeV photon was estimated to be less
than a second. This translated into a stringent limit, EQG > 1.2MP (more stringent
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bounds can be obtained, depending on the assumptions on the time of emission of
the relevant photon) [298].

However, before drawing definite conclusions, one should bear in mind that, even
if GRBs constitute interesting sources to test the hypothesis of in-vacuo dispersion,
they are not perfect signals. The GRB prompt emission extends over many decades
in energy (from the optical to GeV) and it is conceivable that the emission at very
different wavelengths is produced by different mechanisms. Different light curves
may describe the emission at different energies. This would translate into time delays
at the source between photons with different energies. Understanding the details
of the GRB spectrim at the source is of course of crucial importance to perform
in-vacuo dispersion tests, but no acknowledged model is currently available and,
in the search for energy-dependent time lags in GRB spectra, the influence of the
source effects is eventually hard to be accounted for.

Given that, instead of sticking with single-burst analyses, a way at our disposal
to address such a drawback without relying on any specific model for GRB emission
mechanisms consists in combining multiple GRB events thereby reducing the impact
of the details of emission of single sources on the time-lag estimations. Unfortunately,
mainly due to the limited data available in the GeV energy range, at present only
few multi-GRB analyses of in-vacuo dispersion are available and, moreover, the
bounds they produce on EQG are almost three orders of magnitude weaker than the
aforementioned constraints [298].

Intriguingly, some recent works have produced evidence of in-vacuo-dispersion-
like features in GRB observations in the range of tens of GeV. Perhaps the most
remarkable result has been claimed in Ref. [299] where the authors used IceCube data
for searching for GRB-neutrino in-vacuo-dispersion candidates (see also Refs. [304] for
preliminary searches of in-vacuo dispersion effects with neutrino events). Analogous
investigations were performed in a series of studies [300, 301] focusing on the highest-
energy GRB photons observed by the Fermi telescope. As summarized in Fig. (6.1)
these studies provided rather strong statistical evidence of in-vacuo-dispersion-like
spectral lags. For each point in Fig.(6.1) we denote by ∆t the difference between
the time of observation of the relevant particle and the time of observation of the
first low-energy peak in the GRB, while E∗ is the redshift-rescaled energy of the
relevant particle

E∗ ≡ ED(z)
D(1) (6.3)

where z is the redshift of the relevant GRB. In terms of E∗ Eq. (6.1) takes the
form

∆t = ηXD(1) E
∗

MP
± δXD(1) E

∗

MP
. (6.4)

The black points in Fig. (6.1) are “GRB-neutrino candidates" in the sense of
Ref. [299], while the blue points correspond to GRB photons with energy at emission
greater than 40 GeV. The linear correlation between ∆t and E∗ visible in Fig.(6.1)
is just of the type expected for QG-induced in-vacuo dispersion. Naturally it might
of course be accidental, but it has been estimated [299] that for the relevant GRB-
neutrino candidates such a high level of correlation would occur accidentally only in
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Figure 6.1. Values of |∆t| versus E∗ for the IceCube GRB-neutrino candidates discussed in
Refs. [299] (black points) and for the GRB photons discussed in Refs.[300] (blue points).
The photon points in figure also factor in the result of a one-parameter fit estimating
the average magnitude of intrinsic time lags (details in Refs.[299]).

less than 1% of cases, while GRB photons could produce such high correlation (in
absence of in-vacuo dispersion) only in less than 0.1% of cases [?]. The “statistical
evidence" summarized in Fig. (6.1) suggested us a deeper investigation and, in
particular, motivated us to explore whether or not the in-vacuo-dispersion-like
spectral lags persist at lower energies.

We consider the same GRBs relevant for the analysis summarized in Fig. (6.1),
i.e. GRB080916C, GRB090510, GRB090902B, GRB090926A, GRB100414A, GRB130427A,
GRB160509A 1, but now including all photons from those GRBs with energy at
the source greater than 5 GeV, thereby lowering the cutoff by nearly an order of
magnitude. Only 11 photons took part in the previous analyses whose findings
were summarized in our Fig. (6.1), whereas the analysis we are here reporting
involves a total of 148 photons. Thus, not only we analyze multiple GRB events
but also a significant number of photon in order to perform a statistical analysis.
One challenge for this is that evidently we cannot simply apply to lower-energy
photons the reasoning which led to Fig. (6.1): as stressed above the ∆t in Fig. (6.1)
is the difference between the time of observation of the relevant particle and the
time of observation of the first low-energy peak in the GRB, so it is a ∆t which
makes sense for in-vacuo-dispersion studies only for photons which one might think
were emitted in (near) coincidence with the first peak of the GRB. This assumption
is plausible [300] for the few highest-energy GRB photons relevant for Fig. (6.1),
with energy at emission greater than 40 GeV, but of course it cannot apply to all
photons in a GRB. Conceptually the main aspect of novelty of our analysis concerns
a strategy for handling this challenge.

1 The relevant data were downloaded from the Fermi-LAT archive and they were calibrated and
cleaned using the LAT ScienceTools-v10r0p5 package, which is available from the Fermi Science
Support Center.
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For these reasons, we do not consider the ∆t (with reference to the first peak of
the GRB), but rather we consider a ∆tpair, which gives for each pair of photons in
our sample their difference of time of observation. Essentially each pair of photons
(from the same GRB) in our sample is taken to give us an estimated value of ηγ , by
simply computing

η[pair]
γ ≡ MP∆tpair

D(1)E∗pair
, (6.5)

where E∗pair is the difference in values of E∗ for the two photons in the pair.
Of course the ∆tpair for many pairs of photons in our sample could not possibly

have anything to do with in-vacuo dispersion: if the two photons were produced from
different phases of the GRB (different peaks) their ∆tpair will be dominated by the
intrinsic time-of-emission difference, as we explained above. Those values of η[pair]

γ

will be spurious, they will be “noise" for our analysis. However we also of course
expect that some pairs of photons in our sample were emitted nearly simultaneously,
and for those pairs the ∆tpair could truly estimate ηγ . Since estimating ηγ from the
photons in Fig. (6.1) one gets ηγ = 30±6, the preliminary evidence here summarized
in Fig. (6.1) would find additional support if this sort of analysis showed that values
of η[pair]

γ of about 30 are surprisingly frequent, more frequent than expected without
a relationship between arrival times and energy of the type produced by in-vacuo
dispersion. This is just what we find, as shown perhaps most vividly by the content
of Fig. (6.2). The main point to be noticed in Fig. (6.2) is that we find in our
sample a frequency of occurrence of values of η[pair]

γ between 25 and 35 which is
tangibly higher than one would have expected in absence of a correlation between
∆tpair and E∗pair.
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Figure 6.2. Normalized distribution of η[pair]
γ for all pairs of photons (from the same GRB)

within our data set. For bins where the observed population is higher than expected
we color the bar in purple up to the level expected, showing then the excess in red.
For bins where the observed population is lower than expected the bar height gives the
expected population, while the blue portion of the bar quantifies the amount by which
the observed population is lower than expected.

Following a standard strategy of analysis (see, e.g., Refs.[301]) we estimate how



176 6. Quantum Space-Time phenomenology with gamma rays

frequently 25 < η
[pair]
γ < 35 should occur in absence of correlation between ∆tpair

and E∗pair by producing 105 sets of simulated data, each obtained by reshuffling
randomly the times of observation of the photons in our sample. In particular, each
such pair typically contributes to more than one of our bins, considering that the
energies of the photons are not known very precisely. The contribution of a given
pair to each bin is computed generating a Gaussian distribution with mean value ηγ
(calculated with Eq. (6.5)) and standard deviation σγ obtained by error propagation
of the energy uncertainty, which we assume to be of 10%. Then, we compute the area
of this distribution, which we limit in the interval [ηγ − ση, ηγ + ση], falling within
each bin, in order to evaluate the value to assign to a given bin. Thus, each pair in
general contributes to more than one bin and does that with a Gaussian weight. The
expected frequency of occurrence of values of η[pair]

γ corresponding to a given bin
was estimated by producing 105 sets of simulated data, each obtained by reshuffling
randomly the times of observation of the photons (of each GRB) in our sample.
Of particular significance for our objective is the higher than expected observed
frequency of values of η[pair]

γ between 25 and 35. Interestingly we find, using our
simulated data obtained by time reshuffling, that the excess in bin 25 < η

[pair]
γ < 35

visible in Fig. (6.2) is expected to occur accidentally only in 1.2% of cases.
For reasons that shall soon be clear it was valuable for us to divide our data

sample in different subgroups, characterized by different ranges of values for the
energy at emission, which we denote by E0. We label our GRB photons as:

• high: E0 > 40 GeV;

• medium: 15 GeV < E0 < 40 GeV;

• low: 5 GeV < E0 < 15 GeV.

It is worth noticing that our “high" photons were already taken into account in
the previous studies which led to Fig. (6.1), so it is particularly valuable to keep
them distinct from the other photons in our sample (the ones we label as “medium"
and “low"). To the end of probing how robust are our findings with respect to
restricting the analysis to only part of our data set, we started by making the same
analysis that led to Fig. (6.2) but now excluding the high photons, i.e. the only ones
that contributed to the results in Fig. (6.1). The outcome is shown in Fig. (6.3)
and clearly offers an intuitive characterization of the consistency that emerged from
our analysis between what had been found in previous studies of GRB photons with
energy at emission greater than 40 GeV, and what we now find for GRB photons
with energy between 5 and 40 GeV. We find particularly noteworthy the fact that
values of η[pair]

γ between 25 and 35 occur at a rate higher than expected even if we
exclude from the analysis the high photons. For this case we estimate, using our
simulated data obtained by time reshuffling, that the excess of occupancy of the bin
25 < η

[pair]
γ < 35 visible in Fig. (6.3) should occur accidentally only in 0.6% of cases.

Remarkably, a higher than expected observed frequency of values of η[pair]
γ

between 25 and 35 is present also if we constrain the two photons in a pair to be
of different type, for what concerns our categories of high, medium and low. In
Fig. (6.4) we show the results we obtain for pairs composed of a medium and a
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Figure 6.3. Results of a study of the type already described in the previous Fig. (6.2), but
now taking into account only pairs of photons that do not involve a high photon. Color
coding of the bars is the same as for Fig. (6.2).

low photon. For this case we estimate, using our simulated data obtained by time
reshuffling, that the excess of occupancy of the bin 25 < η

[pair]
γ < 35 visible in Fig.

(6.4) should occur accidentally only in 0.2% of cases.
In Fig. (6.5) we show the results we obtain for pairs composed of a high and

a low photon. As visible in Fig. (6.5), once again we find a higher than expected
observed frequency of values of η[pair]

γ between 25 and 35, even though in this case
the statistical significance is less striking: using our simulated data obtained by time
reshuffling, we find that the excess of occupancy of the bin 25 < η

[pair]
γ < 35 visible

in Fig. (6.5) should occur accidentally in about 14% of cases. Let us point out,
though, that this last result reflects in part also the fact that we do not have high
statistics of high-low pairs due to the limited number of high photons ∼ 10.

Finally, in order to highlight the consistency between the results we obtained
here and those reported in Refs. [300, 299], in Fig. (6.6) we made a sort of zoom
of the bottom left side of Fig. (6.1) by adding those photons with energy at the
emission in the range 5 GeV < E0 < 40 GeV (black points in Fig. (6.6) which were
excluded in Ref. [299] where the energy cut for photons was E0 > 40 GeV (blue
points in Fig. (6.6)). Notice that only those pairs of photons giving a value of
η

[pair]
γ with a relative error less than 30% are shown in Fig. (6.6). The gray lines
characterize the range of values of ηγ favored by the blue points, which is also the
region where black points are denser, i.e. 30 ± 6.

We discussed a total of 4 analyses which are to a large extent independent,
though not totally independent. Each analysis uses different pairs, but for example
the results reported in Fig. (6.4) and Fig. (6.5) could be used to anticipate to some
extent the results of Fig. (6.2) and Fig. (6.3). Considering the (rather high) level
of independence of the different analyses it is striking that in all cases we found
an excess of results with ηγ between 25 and 35. We found that 3 of our analyses
have significance between 0.2% and 1.5%, while the fourth analysis has significance
of about 14%. The present data situation is surely intriguing, but dwelling on
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Figure 6.4. Here we show the same type of results already shown in Figs. (6.2) and (6.3),
but now taking into account only pairs composed of a medium and a low photon.
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Figure 6.5. Results of a study of the type already described in the previous Fig. (6.2),
(6.3), (6.4), but now we require the pair to be made of a high and a low photon.

percentages is in our opinion premature. We therefore prudently quote in the main
text an overall significance of about 0.5%, but surely more refined techniques of
analysis of the overall statistical significance would produce an even more striking
estimate. We interpret these results as a rather striking indications in favor of values
of ηγ of about 30 in GRB data for all photons with energy at emission greater than
5 GeV.

We used data that were already available at the time of the studies that led to Fig.
(6.1) (which in particular focused on photons with energy at emission greater than 40
GeV) but nobody had looked before at those data for photons with energy at emission
between 5 and 40 GeV, from the perspective of Fig. (6.1). We therefore feel that it
might be legitimate to characterize what we here reported as a successful prediction
originating from the analyses on which Fig.(6.1) was based. Combining the statistical
significance here exposed with the already noteworthy statistical significance of the
independent analyses [299, 300] whose findings were here summarized in Fig. (6.1),
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Figure 6.6. As in Fig. (6.1) blue points here are for the GRB photons discussed in
Refs.[300, 299] (with energy at emission greater than 40 GeV). Here black points give
the E∗pair and the ∆tpair for our pairs of GRB photons, including only cases in which
both photons have energy at emission lower than 40 GeV and the associated value of
η

[pair]
γ is rather sharp (relative error of less than 30%) and between 10 and 100. The

gray lines characterize the range of values of ηγ favored by the blue points, which is also
the region where black points are denser. The violet line is for ηγ = 34 and intends to
help the reader notice the similarity of statistical properties between the distribution of
black and blue points, that goes perhaps even beyond the quantitative aspects exposed
in our histograms.

we are starting to lean toward expecting that, perhaps, not all of this is accidental,
in the sense that on future similar-size GRB data samples one should find again
at least some partial manifestation of the same feature. We are of course much
further from establishing whether this feature truly is connected with QG-induced
in-vacuo dispersion, rather than being some intrinsic property of GRB signals. In
this regard, we remind that most of the current studies consider only a single GRB
or just the most energetic photon for each GRB analysed. However, due to the very
poor understanding of the spectral evolution of GRBs it is difficult to produce robust
and reliable results if not analyzing statistically relevant sample as we did here. Let
us also notice that within our analysis the imprint of in-vacuo dispersion is coded in
the D(z) for the distance dependence and, while that does give a good match to the
data, one should keep in mind that only a few redshifts (a few GRBs) were relevant
for our analysis. Again, as more data will accumulate, survey analyses involving
high-energy GRBs at different redshifts will be possible. At the same time, it is
fair to say that, if we are actually seeing some form of in-vacuo dispersion it would
most likely be of statistical (“fuzzy") nature. In fact, as we discussed above, other
studies have provided evidence strongly disfavoring the possibility that this type of
in-vacuo-dispersion effects would affect systematically all photons with ηγ > 1 [298].
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Chapter 7

Conclusions

After more than eighty years of investigations QG still represents one of the main
open issues in fundamental physics. The QG problem can be formulated in many
different ways depending on which of the critical points arising from the attempt
to combine GR with QM one focuses on. As a result, the QG research program is
nowadays atomized and, in the majority of the cases, different approaches barely
communicate with each other.

Adopting a relativistic perspective, the closest to Einstein’s lessons, the com-
bination of GR with QM should require a spacetime quantization, yet there is no
unique concrete implementation of the concept of quantum spacetime. At present,
the formalization of quantum spacetimes varies according to the framework we work
with. This thesis has offered a contribution towards the identification of promising
path to the characterization of non-classical spacetime features, a path that in
principle should be applicable to any of the proposals appeared in the literature.
Our strategy started by recognizing that perhaps the most meaningful and useful
manner to describe a quantum spacetime, no matter what are the details of how
it is implemented, is through its symmetries. Indeed, at the level of (canonical)
GR the smooth continuous nature of classical spacetime is encoded in the HDA
that assures diffeomorphism invariance. Then, departures from classical spacetime
manifolds, which have been found in all QG approaches, should become visible in
the form of modifications of the HDA. We regarded quantum (or more generally
non-standard) deformations of the HDA as a general method to identify and de-
scribe quantum-spacetime models and give a common language to very different
constructions.

We have focused on four different approaches to introduce non-classical or gen-
uinely quantum spacetime features: noncommutative geometry, LQG, multifractional
geometry, non-Riemannian geometry. Even if all these formalisms can claim to
realize the idea of quantum spacetime, they do it in very different ways. The former
approach sees in the non-commutativity of spacetime coordinates the core ingredient
of spacetime quantization. In LQG, as a result of a background-independent quanti-
zation of GR, areas and volumes take discrete values. A quantum spacetime could
be a spacetime with non-fixed dimension as it is the case in multifractional spaces.
Finally, it is possible that quantum effects may spoil the Riemannian postulates
and, then, torsion and non-metricity are supposed to offer an effective description of
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quantum spacetimes.
In this thesis we have tried to define a common ground for all these models by

ascribing the non-trivial features they introduce to a form or another of deformations
of the HDA. Translating different quantum-spacetime features into modifications of
the symmetry algebra of GR has clearly the advantage of simplifying the comparison
between different QG proposals which, at a first sight, seem to have nothing in
common. Moreover, apart from shedding light on shared points between distinct
formalisms, we believe this strategy could be the point of connection between the
top-down and bottom-up approaches. Besides the importance of establishing in-
sightful links, such a connection is all the more urgent if we think that we still
have no direct experimental evidence of QG and the more formal top-down models
are struggling in the derivation of physical predictions. For a top-down approach
obtaining results for the modifications of the HDA should be viewed as a very natural
goal, and then, the path from the HDA to a quantum-spacetime description of the
Minkowski limit should be manageable, as we have shown. This procedure described
in this thesis permits to transfer formal characterizations to effects that could give
us intuition on physically relevant scenarios, e.g. Planck-scale deformations of the
Poincaré isometries. As a consequence, this thesis also represents an attempt to
regain the DSR proposal from other and, in some cases, more advanced approaches.
This strategy eventually provides us a way to extract phenomenological outcomes
form quantum-spacetime pictures. In fact, as it is well known and we also showed in
this thesis, departures from SR symmetries probably represent the most promising
scenario among candidate Planck-scale-physics effects since they can be tested with
current experiments.

In Chapter 1, we have related the modification of the dispersion relations as
well as the reduction of dimensions in the UV with Planck-scale uncertainties in the
measurements of spacetime distances that arise from the heuristic combination of GR
with QM measurement procedures. In particular, we have shown for the first time
that two much-studied aspects of QG, dimensional flow and spacetime fuzziness, are
deeply connected. We illustrated the mechanism, providing first evidence in support
of our conjecture, by working within the framework of multifractional theories.

We compared the multifractional correction to lengths with the types of Planckian
uncertainty for distance and time measurements. This allowed us to fix two free
parameters of the theory and leads, in one of the scenarios we contemplate, to a
value of the ultraviolet dimension which had already found support in other QG
analyses. We have also formalized a picture such that fuzziness originates from a
fundamental discrete scale invariance at short scales and corresponds to a stochastic
spacetime geometry.

This observation might shed light on why the flow of dimensions in the UV is
a universal property of QG approaches. Our findings indicate the possibility that
dimensional flow is linked to distance fuzziness, whose form can be inferred from
arguments combining QM and GR, without knowledge of the detailed features of one
or another QG model. In this respect, spacetime fuzziness could be viewed in analogy
with the Hawking temperature for black holes, also derived from semi-quantitative
model-independent arguments combining QM and GR.
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In Chapter 2 we have studied infinitesimal diffeomorphisms on Moyal-type
noncommutative manifolds. We showed a constructive method to derive the brackets
between spatial and time components of Gaussian vector fields when functions and
tensors are multiplied with a noncommutative ?-product. Well-defined HDAs have
been derived, which implies that there are infinitesimal space-time transformations
that allow us to change the frame. In this sense, we demonstrated the covariance of
such theories without using an explicit action principle.

Both the HDA encoding twisted diffeomorphisms and the deformations of the
HDA produced by what we call deformed or ?-diffeomorphisms have been consid-
ered. In the former case, the brackets are unmodified compared with the classical
algebra of GR gravitational constraints. This result is consistent with precedent
works appeared in the the literature on twisted gravity. On the other hand, no
previous results are present for deformed diffeomorphisms. Thus, building on the
analogy with ?-U(1) (or in general ?-U(N)) gauge theories, we first defined deformed
diffeomorphisms with a suitably deformed action on single fields but retaining the
Leibniz rule. We have been able to overcome the technical challenges represented by
the correction terms to the HDA brackets, but eventually recognize a major obstacle
to the implementation of a consistent noncommutative differential calculus where
diffeomorphism transformations have a trivial coalgebra. This forced us to deform
the coproducts of ?-diffeomorphisms. As a result, we have reached a meaningful de-
formation of the HDA for deformed diffeomorphisms without pathological correction
terms and with a consistent differential calculus suitably adapted to ?-products.

The Minkowski limit was straightforward for twisted diffeomorphisms since there
is no deformation of the brackets, but remains an open challenge how to relate
?-product corrections to the non-linear Poincaré transformations of noncommutative
spacetimes. Finding a way to consistently define the flat-spacetime limit of the HDA
with ?-product deformations could help us better understanding what general modi-
fications of the HDA should affect the Poincaré algebra and how. We also stressed
that, while formally similar to the classical HDA, noncommutative HDAs based
on deformed diffeomorphisms show crucial differences in their structure owing to
non-locality (in particular in time) of ?-products. Our results may serve as a base for
an alternative formulation of noncommutative gravity in terms of the deformed diffeo-
morphisms put forward here, instead of relying on the symmetry principle of twisting.

The potentiality of the HDA as a tool to relate different QG models and, at the
same time, derive phenomenological outcomes has been fully disclosed in Chapter
3. Recent results in LQG have discovered that the symmetries of quantum space-
time are deformed compared to the gauge structure of GR as made explicit in the
modification of the HDA. This result is well-established for real Ashtekar variables
in spherically symmetric backgrounds but is still under debate for the complex-
connection formulation of the theory. In this regard, we argued that the HDA is
modified also in this latter case if quantum holonomy corrections are implemented
properly.

Taking the Minkowski limit of the LQG-deformed HDA we obtained a corre-
sponding deformation of the Poincaré algebra and, using Hopf algebra techniques, we
were able to prove that the dual spacetime picture can be given by the κ-Minkowski
noncommutative spacetime. We did this most explicitly using a perturbative method
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of analysis (expanding in powers of a relevant deformation parameter) and we also
provided a less explicit all-order argument. Our analysis led us to identify also
the coproducts, which, for consistency should be found to play a role in the action
of relativistic-symmetry transformations on the product of states within the LQG
formalism. It would be very interesting to work out coproducts from the LQG side.

Besides representing a significant step toward the description of the Minkowski
limit of LQG and establishing a precise role for noncommutativity in LQG research,
our analysis turned out to be pivotal to deriving observable predictions from LQG.
Indeed, from the LQG-deformed Poincaré algebra we derived a general form for the
MDR and, then, showed how the characteristic deformation function β depends on
several quantization ambiguites, among them: the choice of the Barbero-Immirzi
parameter, the regularization method, and the spin representation of the internal
gauge group. In this way, we have laid a foundation for constructing phenomenological
falsifiability conditions for such deformations, dependent on quantization schemes
within LQG, to be verified by incipient data.

Building on the LQG-deformed symmetry algebra results we also carried out
the computation of the dimensional running for both the thermal, spectral and
(momentum-space) Hausdorff dimensions and proved that, at a first approximation,
they all give the same outcome in the UV. Working with non-perturbative expressions
and considering in details the differences among LQG quantization schemes, we
provided a full characterization of the running and showed that also the number
of UV dimensions is sensitive to these formal choices. It is interesting that the
simple polymerization of connections is sufficient to generate the running of the
dimension, thereby assuring that the phenomenon of UV dimensional reduction can
be realized also in the LQG approach. Once the phenomenology of dimensional
flow will advance, the value of dUV could be used to select a particular form for the
quantum correction functions and reduce the LQG quantization ambiguities.

In the light of the unexpected link between LQG and spacetime noncommuta-
tivity we established, we ended the chapter by proposing a different path towards
the implementation of noncommutative spacetime features in the LQG formalism.
Namely, we constructed a proposal for coordinate operators. Our attempt relied
on some properties of operators for angles that were already established in the
literature. The definition has been instantiated in a background-independent fashion,
and the action of the operators has been specified on the kinematical Hilbert space
of LQG. The grouping of edges in a finite amount of sets, which is preliminary to
the definition of these operators in our work, together with the computation of the
action of these operators on coherent states, played a crucial role in our working
strategy. Indeed these steps enabled us to develop a coarse-graining and semiclassical
procedure that unveil the noncommutativity of the spatial coordinates at mesoscopic
scales. Finally, extracting the large-spin limit out of the action of the operators on
the coherent states, we recovered the coordinates’ commutativity of the space-time
manifold on macroscopic scales. Several aspects have to be explored further. For
instance, we did not address the reconstruction of the algebra of symmetries dual to
the noncommutative (fuzzy-sphere-like) version of space-time we obtain.

Even if independent and relying on different constructions as well as giving dis-
tinct outcomes, both of these two analyses we presented suggest a role for spacetime
noncommutativity in LQG. From different perspectives, we feel that these findings
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shed some light on the role of noncommutative geometry in LQG.

In Chapter 4 we have scrutinized the relation between multifractional and non-
commutative geometries as they both allow for the dimension to run with the
observation scale. We have explored the similarities between κ-Minkowski and
other noncommutative spacetimes with multifractional spacetimes by analyzing the
symmetries of both theories. We found no exact duality between these two mutually
disconnected regions of the landscape of multiscale theories. By making the multi-
fractional theory with q-derivatives noncommutative via a canonical quantization of
the geometric coordinates, we have been able to reproduce κ-Minkowski spacetime
in the deep UV limit of the multiscale measure, in a much more general way than
previously achieved in the literature.

We also studied the symmetries of the gravity sector of two multifractional models,
i.e. the theories with q- and weighted derivatives. Using the gravitational constraints
representation, we derived multifractional corrections to the HDA and compared
them with those of LQG. Most of our conclusions are based on the factorizability
property of the measure of multifractional theories, we then expect all our general
arguments to apply also to the case of the theory with fractional derivatives.

On the phenomenological side, we studied static and spherically symmetric black
hole solutions and discover multiscale-induced departures from the Schwarzschild
solution of GR. In multifractional gravity with q-derivatives, we considered two
different views, one where the presentation of the measure must be fixed and an-
other where it reflects a stochastic uncertainty faithfully to the analysis reported in
Chapter 1. In general, the position of the event horizon changes and the Hawking
temperature is modified. In multifractional gravity with weighted derivatives, static
and spherically symmetric black-hole solutions have a cosmological constant term,
i.e., they are Schwarzschild-de Sitter black holes. The cosmological constant arises
from non-trivial geometry and it is not related to quantum fluctuations of the
vacuum (we focused on classical spacetimes), in analogy with what found also in
unimodular gravity. In all the cases, we restricted ourselves to small deformations
due to anomalous effects, consistently with observational bounds on the scales of the
geometry, then all the predictions we made, such as deviations in the evaporation
time of black holes, correspond to tiny deviations with respect to the standard
framework. The singularity can not be avoided, even if we provided evidence that it
becomes non-local in the multifractional theory with q-derivatives. The appearance
of log-periodic singularities when r = 0 signals the breakdown of a purely metric
description of spacetime, related to the discrete nature of fractal spaces at ultra-short
distances. This aspect also deserves further investigations. It would be interesting
to explore in greater detail the differences and similarites with other QGs such as
noncommutative gravity or Horava-Lifshitz gravity, in particular for what regards
the possibility to give black-hole charges a purely geometric pedigree as well as the
violation of Lorentz symmetries. Then, our analysis should be extended to rotating
(Kerr) black holes with the hope of finding novel phenomenology also in the light of
the recent discovery of gravitational waves.

A mesoscopic regime of quantum spacetime could be given in terms of non-
Riemannian geometry, a possibility we have contemplated in Chapter 5. At an
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effective level quantum spacetime properties could be encoded in non-standard
geometric quantities such as torsion and, most notably, non-metricity.

After developing some basic tools for field theories in non-Riemannian manifolds,
we motivated a generalization of the Lagrangian for spin 1/2 particle fields to the
case in which geometric torsion and non-metricity are non-zero and computed the
associated equations of motion. With the aim of translating these formal results
into related physical effects, we focused on a wide class of MGT, i.e. the so-called
RBGs, where non-metricity is sourced by the energy density of matter fields. This
allowed us to to ascribe the phenomenological outcomes of our analysis directly to
non-metricity, a geometric object that has no physical role in GR and avoided so far
observational bounds.

We considered two phenomenological windows, i.e. particle and atomic physics,
belonging to the relativistic and non-relativistic regimes respectively. In the former
case we found new effects due to non-metricity in the form of effective Fermi-like
interaction vertices between particles. Then, using current data for the Bahbah
scattering, we set a lower bound of the order of 1 TeV on the scale at which non-
metricity could be present without being in conflict with experiments. This constraint
improves the most stringent constraints on Born-Infeld-like gravity models by almost
10 orders of magnitude. In the non-relativistic limit we computed the non-metric
corrections to the Hamiltonian for fermionic fields and, specifically, to the energy
levels of one-electron atoms by adding a Coulomb potential. Non-metricity-induced
shifts of the energy levels were used to derive a bound which though is many orders
of magnitude less stringent than the particle-physics one.

Given the impact of non-metricity on particles’ interactions, Higgs physics at
LHC or flavor physics could provide complementary bounds for these effects. Also
interesting would be understanding the role of non-metricity in the production of
non-linearities of the cosmological perturbations that reflect into non-gaussianities
in the Cosmic Microwave Background. Finally, once again, we carried out the
computation of the HDA in the Gaussian-vector-field representation and show that,
unlike torsion, non-metricity leaves an imprint on diffeomorphism symmetry since
the bracket are deformed. Intriguingly, in a specific sub-case, non-metric corrections
resemble LQG ones.

Having derived MDRs from different approaches to non-classical spacetimes by
using quantum or non-standard corrections to the symmetries under diffeomorphisms,
in Chapter 6 we presented a concrete analysis looking for quantum-spacetime effects
in the form of in-vacuo-dispersion features with GRB data collected by Fermi-LAT
in the period 2008-2016. Even if not yet sensitive to the detailed differences of
each model, this kind of analyses show the potentiality of QG phenomenology with
astrophysical data.

Motivated the intriguing results by some recent studies focusing on the highest
energetic component, we analyzed photons with energy at the emission between 5
GeV and 40 GeV, coming from 7 GRBs with measured redshift. By computing the
time delays between pairs of photons, we remarkably found that there is a recurrent
non-zero delay with a dependence on particles’ energies expected by the simplest
quantum-spacetime models. The in-vacuo-dispersion-like feature we found deserves
to be better understood by using additional tools of analysis, but of course we are
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aware of the fact that the most plausible explanation remains of astrophysical origin.
Let us notice that our study also represent a step forward towards the necessity

to disentangle intrinsic source effects from QG propagation effects. This is done by
combining multiple GRB events at different redshift in such a way that not only
the dependence of time lags on the distance can be tested but also the effects of the
detailed light curve at the emission, which is not known and can not be taken into
account, are somehow integrated over the whole data sample and so are expected to
affect less the results of the analysis.

In this thesis we explored different routes to QG. Far from being a comprehensive
picture, our work focused on a selected choice of approaches that could serve our
main scope, i.e. providing a constructive method to encode quantum-spacetime
features in deformations of the HDA with the objective of deriving phenomenological
outcomes when the Minkowski flat limit is considered.

Indeed, in the majority of analyses we here reported, it turned out that modifi-
cations of the HDA, due to non-standard spacetime features introduced at a formal
level, leave an imprint in the form of DSR-like effects we can test with current
experimental capabilities. It is then reasonable to expect that this could be valid
also for other QG approaches we did not take under consideration in this thesis.

All our studies go in the direction of enforcing the fecund bond between theoretical
formalisms and phenomenological predictions. We suggest that the former focus on
deformations of the HDA which, as we showed here, can be rather directly connected
to observable quantities such as the MDR and perhaps the UV dimensions.

Further explorations are needed in order to fully understand the nature of these
quantum modifications of the HDA. In this regard, we have alreadry taken some
steps, especially in the attempt to link them to the known structure of Hopf algebras
with their associated rich phenomenology.

We are confident that the encouraging results we established in our thesis will
motivate additional efforts in the QG research community directed both at deriving
deformed HDA in other approaches and at investigating the connection between
deformations of the HDA and deformations of the Poincaré algebra. In this way the
current gap between top-down and bottom-up approaches could be reduced and,
hopefully, the fruitful and unavoidable relationship between theory and experiments
could be reestablished also in the QG research.
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