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Abstract

This work is focused on the development of a safety framework for Human-

Humanoid coexistence, with emphasis on humanoid locomotion. After a brief

introduction to the fundamental concepts of humanoid locomotion, the two

most common approaches for gait generation are presented, and are extended

with the inclusion of a stability condition to guarantee the boundedness of

the generated trajectories. Then the safety framework is presented, with

the introduction of different safety behaviors. These behaviors are meant

to enhance the overall level of safety during any robot operation. Proactive

behaviors will enhance or adapt the current robot operations to reduce the

risk of danger, while override behaviors will stop the current robot activity

in order to take action against a particularly dangerous situation. A state

machine is defined to control the transitions between the behaviors. The

behaviors that are strictly related to locomotion are subsequently detailed,

and an implementation is proposed and validated. A possible implementation

of the remaining behaviors is proposed through the review of related works

that can be found in literature.
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Chapter 1

Introduction

1.1 Motivation

Since the introduction of robotic manipulators in factories, robots have started

to substitute humans in performing dangerous, fatiguing or repetitive tasks.

Fig. 1.1: Industrial robots in a fac-

tory

Robotics research has focused more

and more on this aspect, to de-

velop autonomous machineries able

to speed-up production activities in

factories, and to provide a better

quality of life to human workers.

However, those robots were heavy,

bulky and it was not safe to let them

operate in the presence of humans.

Therefore, in recent days, the re-

search focused on the development of softer, lighter robots, with the clear
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idea of robots and human beings working together in the same environment.

This started a new trend, usually referred to as Safe Human-Robot coex-

istence, trying to bring robots outside of their security cages, and finally

outside the factories towards domestic environments.

Fig. 1.2: Lightweight manipulator

Unlike before, allowing robots in

the same environment of humans to

cooperate, required an higher level

of mobility, achieved with the de-

velopment of mobile manipulators

(e.g. KUKA youBot, Robotnik RB1,

PAL TIAGo). This new category of

robots introduced a new set of prob-

lems for researchers to be solved, like

perception of the environment, localization, and clearly safe interactions with

humans. With the passing years, the design of mobile manipulators started

evolving, with the goal to resemble humans in their appearance and trying

to obtain capabilities comparable to those of a human being (e.g. Softbank

Pepper, PAL Reem).

However a wheeled robot is necessarily limited from a locomotion point

of view. There is no doubt that the capability of a person to take steps

to overcome obstacles or to climb stairs cannot be replicated with wheels.

The creation of legged humanoid robots is one of the most interesting and

difficult challenges that researchers have ever faced. Ideally, a humanoid

robot is extremely versatile, being able to walk in complex environments that

include stairs, uneven terrain and obstacles exactly like humans do. Their
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complex, highly redundant structure allows humanoid robots to complete

articulated tasks, like dual arm manipulation and multi-contact motions.

Fig. 1.3: HRP-4 Humanoid robot

The state of the art is, unfortu-

nately, quite far from the ideal sit-

uation. Humanoid robots are ex-

tremely complex, unstable, systems

that require a huge effort to be con-

trolled. If the goal is the deploy-

ment of humanoid robots in indus-

trial or domestic environments to co-

exist with human beings, research

must focus on how to make safe such

coexistence.

Researchers are currently focus-

ing on the main issue of humanoid

robotics: locomotion. Moving in the

environment by taking steps requires

a constant control of the robot bal-

ance, given the unstable nature of

the system and the complexity of the

robot structure.

This thesis is set in between this two problems: the issue of humanoid

locomotion and balance control, and the guarantee of a safe shared environ-

ment for humans and robots.
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1.2 Contributions

� The primary contribution of this thesis is the formulation of a novel

framework for safe human-humanoid coexistence. The framework pro-

vides general rules that should be followed when a human and a robot

share their workspace to avoid any dangerous situation and keep the

workspace safe. The proposed guidelines are taken into account in the

motion planning and control phase, and translated into a set of behav-

iors that allow the robot to perform its task while keeping high the

level of safety for its co-workers and the environment. In particular,

the emphasis will be on those behaviors that are directly related to lo-

comotion since while walking the humanoid is most likely to endanger

the surroundings.

� The second contribution of this work concerns the humanoid walking

pattern generation. We explore two gait generation techniques. The

first approach is planning-based, and consist of planning in real time the

reference trajectory for the robot Center of Mass based on a theoretical

analysis of the simplified robot model, the Linear Inverted Pendulum

Mode (LIPM). The second approach, control based, exploits the lin-

earity of the LIPM to be used in a Model Predictive Control scheme

to generate on-line the desired robot motion in order to adapt in real

time to the changing conditions of the environment.
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1.3 The COMANOID Project

The present work was carried out within the Horizon H2020 European project

COMANOID, a EU-funded project focused on Multi-contact Collaborative

Humanoids in Aircraft Manufacturing, that has started on January 1, 2015.

COMANOID investigates the deployment of

robotic solutions in well-defined Airbus air-

liner assembly operations that are labori-

ous or tedious for human workers and for

which access is impossible for wheeled or

rail-ported robotic platforms. As a solution

to these constraints a humanoid robot is pro-

posed to achieve the described task in real-

use cases provided by Airbus Group. At a

first glance, a humanoid robotic solution ap-

pears extremely risky, since the operations

to be conducted are in highly constrained aircraft cavities with non-uniform

(cargo) structures. Furthermore, these tight spaces are to be shared with

human workers. COMANOID aims at assessing clearly how far the state-

of-the-art stands from such novel technologies. In particular the project

focuses on implementing a real-world humanoid robotic solution using the

best of research and innovation. The main challenge will be to integrate cur-

rent scientific and technological advances including multi-contact planning

and control, advanced visual-haptic servoing, perception and localization and

human-robot safety.
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olo - 2017 IEEE/RAS International Conference on Humanoid Robots,
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� Real-Time Planning and Execution of Evasive Motions for a Humanoid
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Transaction On Robotics
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Chapter 2

State of the art

The goal of robotics research is to introduce robots in our daily-life activities,

both for service and industrial applications. For this reason, Human-Robot

interaction (HRI) is getting more and more attention.

In the past, the robots in the factories were confined in industrial cages,

and human workers were not allowed to enter this restricted workspace, with-

out stopping the robot operations. In recent days, however, this situation is

changing and robots are requested to collaborate with humans. This means

that humans and robots have to share the workspace and safely coexist. To

make safe Human-Robot interaction possible, we need to ensure safety in the

environment, and this means that the robot should be able to perceive the

environment and operate without colliding with objects and humans in the

surroundings.

The problem of safety has been extensively studied for industrial manip-

ulators, often approached as a collision-avoidance problem, and then success-

fully extended to mobile wheeled robots. However the problem of safety for
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humanoid robots did not receive much attention.

In the following we will briefly review the relevant approaches for safety

with industrial manipulators and mobile robots. Then we will focus on the

problem of safety with humanoid robots.

Due to the unstable nature of the system, the problem of safety must be

tackled under two different points of view, the first concerning the stability

and robustness of the robot locomotion, while the second focuses on how

the humanoid should behave to safely coexist in a workspace shared with

humans.

Thanks to the introduction of lightweight, compliant manipulators, robotics

research has experienced an increasing interest to the development of new

techniques for safe coexistence and interaction with humans leading to many

interesting results. These works focused on the main issues for safe HRI, such

as collision avoidance, detection and reaction [1] as well as the definition of

frameworks for minimizing the risk in HRI [2, 3].

The problem of collision avoidance in cluttered environment has been

studied widely, with the introduction of innovative concepts like the potential

fields [4] or the danger fields [5, 6, 7].

In the first, the collision avoidance algorithm relies on the use of artificial

potential fields. The robot is assumed to be moving in a field of forces.

The goal of the robot generates an attractive field while each obstacle in the

environment generates a repulsive force field, in order to push the robot away.

However this approach, although it has been validated with manipulators and

mobile robots, is subject to local minima.

In the second, the authors propose a dual approach, that takes into ac-
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count the relative motion between the robot and the objects. The concept of

danger fields is then extended with the introduction of the safety fields. The

latter represent an index of safety rather than an index of danger.

Another approach of interest is the one in [8, 9]. Here the authors present

an algorithm to avoid collisions through a correct evaluation of the distance

between the robot and the obstacles in real time. The distance evaluation is

performed in the so-called depth-space.

The collision avoidance problem, can be also considered as a motion plan-

ning problem. An RRT-based motion algorithm is introduced in [10] to plan

the motion of a manipulator in the presence of moving obstacles. Another

approach for dynamic environments is presented in [11] in a genetic algorithm

fashion. Authors in [12] propose a real-time planning/replanning framework

proved to be asymptotically optimal in static environments. The problem of

safe HRI is also considered in [13, 14, 15], where the authors use the informa-

tion about human intent to improve safety during human-robot collaboration

activities.

In [16], the problem of robot navigation in the presence of humans is

considered, and also in [17, 18] the problem of safe navigation is faced.

While the fundamental issues are the same, the design of safety layers

for humanoids must take into account the distinctive peculiarities of these

robotic systems, namely the fact that their base can only be displaced through

stepping gaits and that equilibrium must be maintained at all times during

motion. One of the first works that showcased a humanoid avoiding moving

obstacles was [19], where real-time vision and replanning were used for au-

tonomous navigation with ASIMO; more recent results are presented in [20]
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and, using Model Predictive Control (MPC) techniques, in [21, 22].

Model Predictive Control is now widely used to solve the problem of

gait generation since in [23] the preview control of [24], was reformulated

as an MPC problem. The main requirement is obviously that the robot

maintains dynamic balance while walking. A celebrated sufficient condition

that guarantees this property entails that the Zero Moment Point (ZMP, the

point where the horizontal component of the moment of the ground reaction

forces becomes zero) should remain at all times within the support polygon

of the robot.

Many gait generation schemes enforce this ZMP condition by comput-

ing a suitable trajectory for the robot Center of Mass (CoM). Due to the

complexity of humanoid dynamics, simplified models are invariably used to

relate the evolution of the CoM to that of the ZMP. A second-order linear

system is often adopted, known as the Linear Inverted Pendulum (LIP) or

the Cart-Table (CT) depending on whether the ZMP is seen as an input or

as an output [25]. Once a CoM trajectory is generated, kinematic control

provides joint commands that drive the robot along it.

In MPC-based approaches, the ZMP trajectory is generated on-line by

minimizing the control effort with the balance condition as a constraint.

Improvements were obtained in [26, 27] by incorporating footstep generation

in the MPC problem. These papers triggered a new line of works, e.g.,

[28, 29].

A related approach to gait generation is based on the notion of capture

point, which was first introduced in [30, 31] for investigating the push recov-

ery problem and then extended to the 3D case in [32]. Its use in an MPC
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framework on the LIP model has been discussed in [33] and [34].

In spite of their diversity, all the above approaches face a well-known

structural problem when connecting CoM to ZMP trajectories. This can be

understood, e.g., by considering that the LIP is unstable, while the CT —

which may be seen as its inverse system — is non-minimum phase. As a

consequence, an instability problem will arise in both cases, meaning that

the CoM motion associated to any ZMP trajectory will in general include

a divergent component. To achieve effective gait generation, it is therefore

essential to select a CoM trajectory which does not diverge, i.e., it is stable.

Indeed, in the CT-based MPC framework there is no guarantee of stability;

however, it is argued that jerk minimization produces stable CoM trajectories

provided that the prediction horizon is sufficiently long [35].

A recent study [36] of the above LIP instability issue has identified a

necessary and sufficient condition for the CoM trajectory to be stable in

response to any ZMP profile. This is a constraint on the initial system state,

whose expression involves the future history of the input. In view of the

duality of the LIP and CT, this result can be recast in the framework of

stable inversion for non-minimum phase systems [37].
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Chapter 3

Humanoid Locomotion

In this chapter we propose two different approaches to realize humanoid loco-

motion. The first, is based on the planning of the Zero-Moment Point (ZMP),

while the second is based on Model Predictive Control (MPC). Both of the

approaches rely on the well-known Linear Inverted Pendulum Mode (LIPM)

[38], introduced to simplify the modeling of the humanoid robot dynamics.

After analyzing the unstable dynamics of the LIPM, we derive a bounded-

ness condition that must be included in both approaches to guarantee the

stability of the system.

3.1 Linear Inverted Pendulum Mode

A humanoid robot is a system with a large number of degrees of freedom

(DoF) and very complex dynamics. For this reason it is a common practice

to make use of a simplified model to plan and control the locomotion of a

humanoid robot.
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x
xCoMxZMP

mzCoM
z

Fig. 3.1: The Linear Inverted Pendulum (LIP) in the sagittal plane.

The LIPM [25] is an approximate model that describes the motion of the

humanoid Center of Mass when its height is kept constant and no rotational

effects are taken into account. It is a popular choice due to the fact that

the differential equations of the x and y components of motion are linear,

decoupled and identical. Figure 3.1 shows an inverted pendulum, where

xCoM is the sagittal coordinate of the concentrated mass m, set at a constant

height zCoM, and xZMP is the position of the ZMP on the sagittal axis. The

ZMP is the point with respect to which the sum of the reaction forces does

not produce a moment in the horizontal direction.

The equation of motion governing the LIPM on the sagittal axis is

ẍCoM(t) = η2(xCoM(t)− xZMP(t)), (3.1)

where η =
√
g/zCoM.

If we look at the state-space representation of the system, considering as

state of the pendulum the position and velocity of its CoM (xc, ẋc) and as
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input for the system the ZMP position xz ẋc

ẍc

 =

 0 1

η2 0


 xc

ẋc

+

 0

−η2

xz (3.2)

it is evident that the system has an unstable dynamics associated to the pos-

itive eigenvalue η. As a consequence, an instability problem will arise when

connecting the ZMP to the CoM, meaning that the CoM motion associated

to any ZMP trajectory will in general include a divergent component. To

achieve effective gait generation, it is therefore essential to select a CoM tra-

jectory which does not diverge, i.e., it is stable. The above LIPM instability

issue can be solved with the identification of a necessary and sufficient con-

dition for the CoM trajectory to be stable in response to any ZMP profile

[36]. This is a constraint on the initial state of the system, whose expression

involves the future history of the input.

Considering the following change of coordinates

 xu

xs

 =

1 1/η

1 −1/η


 xc

ẋc

 , (3.3)

the system (3.2) can be decomposed into its unstable and stable component

of motion (xu, xs)

 ẋu

ẋs

 =

η 0

0 −η


 xu

xs

+

 −η
η

xz. (3.4)
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Focusing on the solution for the unstable subsystem for input xz(t)

xu(t) = eη(t−t0)xu(t0)− η
∫ t

t0

eη(t−τ)xz(τ)dτ (3.5)

we note that it is, in general, diverging. However it exists an appropriate

initial condition x∗u(t0) for the system, that allows to obtain a particular

solution that will be bounded with respect to the input. This initial condition

takes the form

x∗u(t0) = η

∫ ∞
t0

e−η(τ−t0)xz(τ)dτ, (3.6)

and leads to the particular bounded solution

x∗u(t) = η

∫ ∞
t

e−η(τ)xz(τ + t)dτ. (3.7)

Note that this solution, as already mentioned, is anticausal, since it depends

on the future values of the input xz. However it has been noticed in [24]

that the CoM trajectory must be noncausal with respect to the desired ZMP

trajectory.

The condition expressed in (3.6) can be used to write a constraint on the

initial conditions of the CoM

xc(t0) + ẋc(t0)/η = η

∫ ∞
t0

e−η(τ−t0)xz(τ)dτ, (3.8)

and we refer to this as the boundedness constraint [36]. Since this constraint

is a function of the initial state and the input, it will be crucial in the process

of gait generation, because it can be used to constraint the initial condition
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of the system if the reference ZMP input is already known, or constraint the

design of the input given the initial conditions of the system.

In the remainder of this chapter we will make use of (3.8) in the design of

the ZMP control input for the robot. First we will relate the ZMP to the CoM

of the humanoid through a closed-form expression, allowing us to compute

in real time a desired CoM trajectory to control the humanoid motion. Then

we will enforce the boundedness constraint in a Model Predictive Control

scheme.

3.2 ZMP-based Gait Generation

The elements that characterize the planning of a humanoid gait are the po-

sition of the footsteps and the trajectory of the ZMP and the CoM. An

intuitive way of planning the gait consists of a preliminary phase of footstep

planning [39, 40, 41], followed by the the definition of a suitable ZMP tra-

jectory. The condition for maintaining dynamic balance during locomotion

is that the ZMP must lie at any time instant inside the current support-

ing polygon. The support polygon is the robot footprint during the single

support phase of the locomotion, or the convex hull of the two feet during

the double support phase. So, given a footstep sequence, a ZMP trajectory

can be easily computed (e.g. by an appropriate interpolation of the planned

footstep positions).

Once the ZMP trajectory is planned, using the LIPM dynamics (3.1) and

imposing the boundedness constraint (3.8), it is possible to obtain a closed-

form expression that relates the reference ZMP to a bounded CoM trajectory
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Fig. 3.2: Evolution in time of the reference ZMP trajectory (red) and the
associated bounded CoM trajectory (blue).

x∗c(t):

x∗c(t) = e−ηtxc(0) +
xs(t)− e−ηtxu(0) + xu(t)

2
. (3.9)

The use of a closed-form relation to compute the desired trajectory for the

robot Center of Mass allows to plan and execute the desired motion in real

time. Figure 3.2 shows an example of CoM trajectory computed from a

reference ZMP trajectory using eq. (3.9).

3.3 MPC-based Gait Generation

Model Predictive Control (MPC) is a widely used control technique based on

the optimization of a certain cost function, over a finite prediction horizon

while satisfying a set of constraints. The key idea behind MPC is to optimize
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p1. choice of

footstep orientations 2. choice of

CoM trajectory

and footstep locations

kinematic 

control

high-level

velocity

generation

double-stage

intrinsically stable MPC

Fig. 3.3: Intrinsically stable MPC gait generation framework.

the current time instant, while keeping future time instants into account.

This is achieved by optimizing over a finite-time horizon, but only imple-

menting the current time instant and then optimizing again. Also, MPC has

the ability to anticipate future events and take control actions accordingly.

Due to its simple but robust formulation and its versatility, Model Predic-

tive Control became a powerful and commonly used tool for generating walk-

ing gaits. The possibility of enforcing constraints allows to include straight-

forwardly the dynamic balance condition that the ZMP must remain at any

time within the support polygon. Second, it provides considerable robustness

to perturbations thanks to its capability to predict future events through the

system model. Moreover, if formulated as a quadratic programming (QP)

problem, with constraints linear in the decision variable it can be used for

real-time computations.

In our formulation, the Intrinsically Stable MPC (IS-MPC) [42], the mo-
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tion model used is the LIPM (3.1) with a dynamic extension


ẋc

ẍc

ẋz

 =


0 1 0

η2 0 −η2

0 0 0




xc

ẋc

xz

+


0

0

1

 ẋz (3.10)

to have as input the ZMP velocity ẋz, assumed to be piece-wise constant over

time intervals of duration δ.

The decision variables of the optimization problem are the ZMP velocities

(ẋiz, ẏ
i
z), i = 1, . . . , N and the footstep positions and orientations (xjf , y

j
f , θ

j
f ),

j = 1, . . . ,M over the prediction horizon Th = Nδ. The optimization will

take care of choosing appropriate ZMP velocities and footstep positions and

orientations (xjf , y
j
f , θ

j
f ) to track high-level reference velocities. However to

maintain linearity in the MPC formulation, the footstep orientations must

be chosen before the computation of their positions [27]. Therefore, the opti-

mization is divided in two stages, the first to decide the appropriate footstep

orientations θjf , while the second is to determine the footstep positions (xjf , y
j
f )

and the ZMP velocities (ẋiz, ẏ
i
z).

Figure 3.3 shows a block scheme of the gait generation process. The MPC

block takes as input the vector v = (vx, vy) of reference sagittal and coronal

velocities and the reference angular velocity ω to be tracked. These signals

are exogenous, provided by a high-level velocity generation block, according

to the required task for the robot. The angular velocity is used to compute

the optimal footstep orientations θjf , that are sent with the reference linear

velocities as input to the second stage of the IS-MPC block. This block
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produces as output a reference trajectory for the robot CoM and feet, that

are then transformed by the kinematic controller into reference velocities for

the robot joints.

In the following we will describe the designed cost functions and the

associated constraints.

3.3.1 Cost Function

As said, the MPC gait generator takes as input high-level reference velocities

and generates a CoM trajectory and a set of footsteps such that to track

those references. In the double stage formulation, to maintain the constraint

linear in the decision variables, the footstep orientations must be chosen via

a preliminary optimization stage w.r.t the decision of the positions and the

ZMP velocities.

To do so the reference velocity ω is used inside a cost function of the form

M∑
j=1

(
θjf − θ

j−1
f

Ts
− ω

)2

, (3.11)

where Ts is the constant duration of a step. This first optimization problem

is subject to the linear constraint |θjf − θ
j−1
f | ≤ θmax, that limits to θmax the

maximum difference in orientation between two consecutive footsteps.

Once footstep orientations have been chosen, the gait must be completed
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by the CoM trajectory and the footstep locations. The cost function

N∑
i=1

(
(ẋk+iz )2 + (ẏk+iz )2+

kx(ẋ
k+i
c − vx cos(iωδ) + vy sin(iωδ))2+

ky(ẏ
k+i
c − vx sin(iωδ)− vy cos(iωδ))2

)
.

(3.12)

is designed with the purpose of minimizing the control effort and to penal-

ize the deviation from the reference velocities (vx,vy). Note that footstep

locations do not appear in the cost function, but influence the QP prob-

lem through the linear constraints to witch the problem is subject, i.e. the

ZMP constraint for maintaining balance, the CoM boundedness constraint

and the kinematic feasibility on the footstep locations. These constraints are

discussed in the following section.

3.3.2 Constraints

When dealing with humanoid locomotion, there are two constraints that

must be enforced in order to generate a feasible and executable gait. The

first is the balance constraint, to ensure that the computed ZMP will al-

ways lie inside the current support polygon to maintain dynamic balance.

The second constraint is on the footstep positions, since the feasible area

where the robot can actually step is limited by the workspace that the robot

can kinematically reach. Moreover the chosen footsteps must not lead the

robot to self-collisions. In addition to these two constraint, the boundedness

constraint (3.8) must be enforced.
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The ZMP constraint is defined as a rectangle with sides dzx, d
z
y, and the

form of the linear constraint is

RT
j

 δ
∑k+i−1

l=k ẋlz − x
j
f

δ
∑k+i−1

l=k ẏlz − y
j
f

 ≤ 1

2

 d z
x

d z
y

−RT
j

 xkz

ykz

 , (3.13)

where Rj is the rotation matrix associated to the angle θjf .

The kinematic feasibility constraint for the footsteps is

RT
j−1

 xjf − x
j−1
f

yjf − y
j−1
f

 ≤ ±
 0

`

+
1

2

 d f
x

d f
y

 , (3.14)

where dfx and dfy are the sides of a rectangle defining the feasibility zone, and

l is a reference distance between two consecutive footsteps.

Finally the boundedness constraint (3.8) takes the form

1

η

1− eδη

1− eNδη
N∑
i=1

eiδηẋk+iz = xkc +
ẋkc
η
− xkz . (3.15)

and guarantees the boundedness of the CoM trajectory w.r.t. the reference

ZMP profile. Also, enforcing this constraint allows to reduce the prediction

horizon Th without harming the gait stability. This also leads to an improve-

ment of the resolution time of the optimization problem.

Figures (3.4-3.5) show a comparison between the IS-MPC and the stan-

dard MPC, highlighting the instability issue when the prediction horizon is

reduced. The IS-MPC is always able to generate a non-diverging trajec-

tory of the CoM even when the prediction horizon is reduced. Conversely,
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the standard formulation of the MPC generates a diverging CoM trajectory

when the prediction horizon is reduced.
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Fig. 3.4: Th = 0.9 s: Intrinsically stable (top) vs. standard MPC (bottom).
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Fig. 3.5: Th = 0.6 s: Intrinsically stable (top) vs. standard MPC (bottom).
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A single-stage formulation of the Intrinsically Stable MPC have been pro-

posed in [43]. In that formulation, the first stage in charge of choosing the

footstep orientation has been eliminated by choosing the footstep orienta-

tions at the same time of the other decision variables and properly redefining

all constraints to preserve linearity, with the exception of the stability con-

straint (3.15) which remains linear and is therefore unchanged.

The ZMP constraint (3.13) becomes nonlinear if the orientation θjf of the

footstep is still a decision variable. To avoid this problem, we redefined the

constraint so that it becomes independent on the foot orientation. In partic-

ular, consider the construction in Figure 3.6, left. The blue square represents

the current footstep, while the red squares are two different placements of

the predicted footstep (same location but different orientations). The green

square, which has the same orientation as the current footstep but size re-

duced by a factor of
√

2, is always contained in the red squares, irrespective

of their orientation. Thus, if the ZMP is located inside the green square, it

is certainly contained in the actual footprint, whatever its orientation.

In conclusion, the ZMP constraint during single support can be redefined

as δ∑k+i−1
l=k ẋlz − x

j
f

δ
∑k+i−1

l=k ẏlz − y
j
f

 ≤ 1

2

x̃dimz
ỹdimz

−
xkz
ykz

 ,

where x̃dimz = xdimz /
√

2 and ỹdimz = ydimz /
√

2.

The above procedure for preserving linearity obviously implies a small

reduction of the ZMP constraint area with respect to the actual footprint.

However, this effect is more than balanced by the overall increase in the area

that becomes feasible for stepping thanks to the inclusion of the foosteps
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left footstep

right footstep

right footstep

Fig. 3.6: Redefining the ZMP constraint (left) and the kinematic feasibility
constraint for footstep locations (right).

orientation in the main MPC formulation (see Figure 3.6, right). As the

ZMP constraint, the kinematic feasibility constraint (3.14) becomes nonlinear

if the orientations of the footsteps have not been chosen yet. To circumvent

this problem, we redefine also this constraint appropriately. Figure 3.6, right,

shows two different predictions (same location, different orientations) for a

right footstep and the corresponding feasible areas (solid line) for placing

the next left footstep. Note that both the location and the orientation of

these areas depend on the orientation of the right footstep. To remove this

dependency, a reduced feasible area (dashed line) is defined in each original

area. This reduced region, whose orientation is fixed, is then translated based

on the orientation of the right footstep. By forcing the footstep to be inside

the union of all translated regions, we guarantee that it is also inside the

union of the original feasibility areas. This is a linear constraint which can

be written as xj+1
f − xjf − ` θj

yj+1
f − yjf

 ≤
 x̃dimf /2

`+ ỹdimf /2

 ,
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with x̃dimf , ỹdimf the dimensions of the reduced feasible area.
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Chapter 4

Safety Framework

This chapter is dedicated to the description of the safety framework for

human-humanoid coexistence. This framework has its roots in a collection

of guidelines that should be followed in the process of motion planning and

included in the robot controllers. Starting from the safety guidelines, we

have developed a set of safety behaviors, i.e. a set of actions that the robot

must execute to enhance the overall safety level, according to its state and

the state of the surrounding environment.

In the following of this chapter we will first describe the safety guide-

lines and then propose the safety behaviors that will actually realize those

guidelines. Also, to manage this behavior-based framework, we propose a

state machine to handle the transitions between behaviors. Finally we show

a possible control architecture.
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4.1 Safety Guidelines

An important feature for a robot is that during its operation it is aware

of the surroundings. In general this knowledge is obtained through vision

sensors (RGB/RGB-D cameras) or lasers, that are commonly used to build

a map of the environment and to detect objects in it through the process of

feature extraction. It is evident that to achieve these results it’s necessary

to appropriately control the robot gaze. The first safety guideline, watch

what you’re doing is inspired by this need for the robot to control it’s gaze

to always watch the main area of operation. This is of course true during

static manipulation tasks, that are generally visual-servoed, but it is crucial

also during locomotion. In fact while the robot walks, it should focus on the

area where it has planned to step in order to be ready to react to unexpected

situations.

Even when the robot is not performing any particular task, it should

always be on the lookout, meaning that it must monitor the environment to

keep its knowledge of the surroundings up-to-date, and eventually focus on

unmapped objects (e.g., moving objects) and be ready to react.

Evade if you can is the guideline to follow in case a moving object ap-

proaches the robot while it’s not performing any task. If it can be done safely,

the robot can try to perform an evasive action to avoid any possible collision

and increase the distance between itself and the incoming obstacle.

During any robot operation, whether it is static manipulation or locomo-

tion, the robot should be ready and able to stop the task as soon as possible

in a situation of clear and actual danger. This is the meaning of the guideline
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stop if you must.

In the case the robot is sharing its workspace with humans, an intuitive

way of enhancing the safety level is to scale down velocities and forces in

order to reduce potential damage in the case of a collision, and also to ease

the halting process in case of emergency. This means that the robot must

respect humans that share their environment with it.

Finally, in challenging conditions such as stairs, the robot must look for

support, meaning that it should try to establish additional contacts with the

environment so that it has at least two support points at all times.

The presented guidelines, can be considered as a starting point to realize

safety behaviors that are activated to improve the level of safety in danger-

ous situations. On the other hand, they can be taken into account also at

the planning/control stage. For example, watch what you’re doing, as said,

calls for visual-servoed manipulation or locomotion strategies, while look for

support has consequences at the planning stage, since the generation of stair

climbing motions must include handrail grasping and releasing to always have

at least two supporting points.

4.2 Safety Behaviors

The safety behaviors are actions, based on the previously defined safety guide-

lines, that the robot should perform during the execution of its operations.

We classify the behaviors in override behaviors and proactive behaviors.

Override behaviors will actually stop (or put on hold) the current task

and force the robot to take action against a dangerous situation that has
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been detected.

Proactive behaviors, on the other hand, do not stop the task, but try to

increase the overall safety level by calling for an adaptation or enhancement

of the current robot activity.

4.2.1 Override behaviors

As the name suggests, the override behaviors will take control over the current

robot operation, providing the robot with a new task to properly react to a

particularly dangerous situation. We define two override behaviors, namely

the safe fall behavior and the emergency stop behavior.

Despite it is a situation that we want to avoid, the occurrence of a fall

cannot be excluded. The robot may lose balance while performing a step or

due to a hardware/software fault. An external perturbation (e.g., a collision

with an object) may also lead to a loss of balance. This is the reason why a

safe fall procedure to deal with the loss of balance must be included in the

robot controller. When the robot detects an unrecoverable loss of balance, it

must immediately stop any task execution and fall so as to minimize damages

to itself and the environment.

Many situations that interfere with safe operations may occur (e.g. the

battery level is too low or a moving object is getting to close too the robot

area of operation). In that case, following the stop if you must guideline,

the robot must be ready to immediately interrupt the execution of its tasks.

Clearly, with a humanoid robot the emergency stop must be handled properly

since, especially during locomotion, we want the robot to keep its balance.
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4.2.2 Proactive behaviors

Contrary to override behaviors, proactive behaviors are actions intended to

modify the current robot task in order to increase its overall safety, without

interrupting the main task.

Following the evade if you can guideline, the first proactive behavior that

we propose is the evasion. If the robot is not performing any particular task

(e.g. is waiting for another robot or a human to complete a task) and it

detects an approaching moving object, it performs an evasive maneuver to

avoid the collision.

The second proactive behavior is the visual tracking. Whenever possible,

without interfering with the current task, the robot keeps its gaze directed at

the closest unexpected object (e.g. something that is not in the robot local

map) in its field of view, as suggested by the be on the lookout guideline.

During locomotion, the robot is in general controlled via a high-level task,

such as tracking of a reference velocity, or reaching a specific location in the

workspace. The footstep adaptation behavior allows the robot to modify its

footsteps to avoid collision with unexpected objects in its path or to react to

external disturbances that require extra stepping to recover from a possible

loss of balance.

In general the robot must be able to coexist with other agents in the

environment. For this reason, according to the guideline respect humans, the

velocity/force scaling behavior is introduced. If a close unexpected object is

perceived, the robot reduces its velocities/forces to reduce the risk of injures

in case a collision occurs. Clearly, with a humanoid robot this must be done
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properly, considering that the humanoid robot must always keep its balance

and scaling velocities/forces directly at the joint level might lead the robot

to a fall.

Finally, the add contact behavior, following the look for support guideline

is a procedure that allows the robot to try to establish new contacts for

additional support, if this can be done without harming the current task.

In the next section we will define the state machine that controls the

behaviors described so far, and we will also give a deeper definition of the

behaviors.

4.3 State Machine

This section is dedicated to the definition of the finite state machine that

controls the robot behaviors. First we will define a set of states for the

robot, each of which generalizes the current robot operation. Then we will

present some assumptions that we made throughout the realization of this

framework. Finally all the behaviors introduced in the previous section will

be better described using the terminology of finite state machines.

The robot states charachterize what the robot is doing at a certain time

instant. We identify five robot states:

� idle: the robot is standing in double support at a fixed position and is

not performing any particular task;

� manipulation: the robot is standing in double support and it is execut-

ing a task that does not require stepping;
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� locomotion: the robot is moving in the environment by taking steps (in-

cludes walking, multi-contact locomotion and stair climbing/descend-

ing);

� falling : the robot has lost balance and is falling;

� stopping : the robot is performing an emergency stop.

We assume that at any time instant the robot is in one of the states

previously defined. Moreover we assume that:

� robot is localized: the robot is aware of its location w.r.t. a 3D map

(SLAM);

� robot aware of risk of fall: the robot can estimate the risk of fall

rfall based on IMU measurement and ZMP support area;

� robot aware of battery level: the robot knows the level of charge

of its battery lbattery;

� robot aware of contact surfaces: the robot knows the surfaces in

the 3D map where it is safe to establish new contacts. The flag fcs

indicates the presence of a reachable surface in the robot workspace;

� robot aware of unexpected objects: the robot knows the minimum

distance duo to the closest unexpected object;

� robot aware of unexpected contacts: the robot is able to detect

if a contact occurred. It may also provide other information such as

contact location. When a contact is detected, the flag fuc is raised.
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Fig. 4.1: Safety Behaviors.

We will not discuss in any detail the perception processes that provide such

information.

4.3.1 Behaviors

Each behavior described in section 4.2 is characterized by:

� a triggering condition, that specifies the robot state(s) from which the

behavior can be activated, together with the events that actually cause

the activation, which are invariably expressed in terms of information

coming from the sensory system (fig. 4.1);

� the actions that realize the behavior and the robot state during such

actions;

� the release condition for terminating the behavior, and the state to

which the robot is returned upon release.

All triggering conditions are continuously checked by the robot. If its trig-
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gering condition is met, a behavior can therefore interrupt another behavior

prior to its natural release. For example an emergency stop may occur at

any time during normal robot operation.

Safe Fall

In the case the robot loses balance, this behavior is activated, starting a

procedure that will try to minimize the damages to the robot and the sur-

rounding environment.

The safe fall behavior is triggered if:

� State: any.

� Event: rfall > rhighfall

where rhighfall is a threshold associated to an unrecoverable loss of balance. The

safe fall behavior is specified as follows:

� Action: the robot acts so as to minimize the potential damage to its

own structures and/or the environment. To this end, several aspects

must be considered [44] including (i) how to fall, i.e., which internal

posture to assume before impact to preserve robot integrity (ii) where

to fall, i.e., how to choose the landing surfaces so as to avoid fragile

components.

� State during action: falling. Since a fall is regarded as a catastrophic

event, the safe fall behavior can only be released by the intervention

of a human operator, who will also reset the robot to an appropriate

state.
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� Release condition: by human intervention.

� Release state: by human intervention.

Emergency Stop

The emergency stop behavior requires a proper definition since, while the

robot tries to interrupt is current task as soon as possible, it has to avoid

any loss of balance. The triggering condition for emergency stop is:

� State: any except falling.

� Event: three events may independently trigger an emergency stop:

– E1: duo < dstopuo , where dstopuo is the radius of the robot proximal

area;

– E2: fuc is active (unexpected contact);

– E3: lbattery < llowbattery, where llowbattery is the minimum acceptable

battery level for safe operation.

The emergency stop behavior is defined as follows.

� Action: the specific action depends on the triggering conditions:

– A1: If the robot state was idle and the triggering event was E1 or

E3, the robot will augment its support polygon and/or assume a

low-impact configuration (e.g., by folding its arms);

– A2: If the robot state was idle and the triggering event was E2,

the robot will immediately decrease joint stiffness on the kinematic
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chain where the contact has occurred, provided that the latter is

on the upper body. Otherwise, the robot will maintain its current

pose;

– A3: If the robot state was manipulation the robot should safely

abort the task and stop its motion as soon as possible, regardless

of the triggering event;

– A4 If the robot state was locomotion, the robot should stop walk-

ing as soon as possible, regardless of the triggering event.

� State during action: stopping.

� Release condition: if the triggering event was E1, the behavior can

be released when duo > dstopuo . If the triggering event was E2 or E3, a

human operator should intervene to release the robot.

� Release state: If the triggering event was E1, the robot can be re-

turned to the previous state (i.e. the one before activating the emer-

gency stop behavior). Otherwise, by human intervention.

Evasion

If an unexpected object approaches the robot in the idle state, the latter

should execute an evasive maneuver, provided this can be done safely (evade

if you can guideline). The evasion behavior is triggered if:

� State: idle.

� Event: dstopuo < duo < devasionuo AND ḋuo < 0
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Here, devasionuo is a distance threshold under which evasion is assumed to

be advisable; clearly, devasionuo > dstopuo . The condition on the time derivative

of duo can be implemented by looking at variations of this quantity over a

small time interval. The evasion behavior is defined as follows.

� Action: an evasion maneuver is planned in real time based on the

spatial relationship between the robot and the approaching object [45].

Feasibility of the maneuver with respect to the current 3D map is con-

tinuously checked. Whenever the maneuver becomes unfeasible, the

associated flag fevasion is set to FALSE and the emergency stop behav-

ior is invoked.

� State during action: locomotion.

� Release condition: duo > devasionuo OR fevasion = FALSE.

� Release state: idle (if duo > devasionuo ) or stopping (if fevasion = FALSE)

Visual Tracking

If the robot is in idle and an unexpected object appears in its field of view,

the robot will direct its gaze at it (be on the lookout guideline). The visual

tracking behavior is triggered if:

� State: idle

� Event: devasionuo < duo < dtrack

Note that this behavior cannot be triggered if the robot is in the manipulation

or the locomotion states. In these cases, in fact averting the gaze from the
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current task can be dangerous (watch what you’re doing guideline). The

visual tracking behavior is defined as follows

� Action: the robot should move its head so as to track the closest

unexpected obstacle in its field of view.

� State during action: idle.

� Release condition: duo > dtrack

� Release state: idle

Footstep adaptation

During locomotion, it is possible that unexpected objects (either moving,

such as humans, or fixed, like cables on the ground) may interfere with the

planned footsteps. In this case, the robot should replan its footsteps using

the new information. The footstep adaptation behavior is triggered if:

� State: locomotion

� Event: duo < dfootstepuo , where dfootstepuo is a distance threshold under

which footstep adaptation may be advisable

The footstep adaptation behavior is defined as follows

� Action: the robot re-invokes walking pattern generation after adding

to the current map the unexpected objects that are closer than dfootstepuo .

� State during action: locomotion.
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� Release condition: duo > dfootstepuo OR (footsteps successfully adapted).

� Release state: locomotion

Velocity/force scaling

In the vicinity of an unexpected object, which may be a human, tighter

bounds are enforced on robot velocities/forces (respect humans guideline).

The velocity/force scaling behavior is triggered if:

� State: manipulation or locomotion

� Event: duo < dscaleuo , where dscaleuo is a distance threshold under which

scaling is advisable. Clearly dscaleuo > dstopuo .

The velocity/force scaling behavior is defined as follows.

� Action: robot velocities and/or forces are scaled down so as to fit the

tighter bounds.

� State during action: remains manipulation or locomotion.

� Release condition: duo > dscaleuo

� Release state: remains manipulation or locomotion.

If the robot state is locomotion, velocity/force scaling also affects the CoM

trajectory; this requires proper handling at the level of walking pattern gen-

eration. As for the scaling threshold, dscaleuo = dfootstepuo appears to be a sensible

choice.
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Add contact

In the presence of a moderate risk of fall, the robot tries to establish new

contacts for additional support (look for support guideline). The add contact

behavior is triggered if:

� State: idle or manipulation

� Event: rlowfall < rfall < rhighfall AND (fcs = TRUE)

Here, rlowfall is the threshold above which the risk of fall is considered to be

moderate. Note the role of flag fcs which indicates the presence of a reachable

contact surface in the robot workspace. Locomotion is not a triggering state

for this behavior because it is intrinsically risky to try to establish a new con-

tact while the robot is walking. Moreover, if the robot is climbing/descending

stairs, additional contact with the handrail has already been enforced at the

planning stage. The add contact behavior is defined as follows

� Action: the robot selects an additional support point and establishes

contact

� State during action: manipulation

� Release condition: the additional contact has been established

� Release state: returns to the initial state, i.e. either idle or manipu-

lation.

Figure 4.2 gives a compact view of the five robot states and the transitions

among them resulting from safety behaviors. Red arrows indicate transitions
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safe fall safe fall

safe fall

safe fall

emergency stop

emergency stop

add contact

evasion

Fig. 4.2: State transitions resulting from safety behaviors: red arrows indi-
cates override behaviors, black arrows indicate proactive behaviors.

resulting from override behaviors: in particular, transitions entering the stop-

ping state are the result of an emergency stop behavior, whereas transition

entering the falling state are the result of a safe fall behavior. Black ar-

rows identify transitions due to proactive behaviors; for example, the evasion

behavior brings the state from idle to locomotion and then back to idle.
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4.4 Safety areas and thresholds

Fig. 4.3: Thresholds associated to the distance of the robot from an unex-
pected obstacle duo (top) and on the estimated risk of fall rfall (bottom).

Most safety behaviors are triggered by some value being higher or lower

than some given threshold. This can be the distance of the robot from an

unexpected obstacle duo or the estimated risk of fall rfall.

Figure 4.3, top, summarizes the different thresholds that have been de-

fined on duo: d
track
uo , dfootstepuo , devasionuo , dscaleuo and dstopuo . These thresholds implic-

itly define a set of concentric annular areas, shown in Fig. 4.4, around the

robot:

� Strack - visual tracking area: this is the area defined by devasionuo < duo <

dtrackuo . If the unexpected moving obstacle enters this area the robot

should be tracking if Idle.

� S footstep - footstep adaptation area: this is the area defined by dstopuo <

duo < dfootstepuo . If an unexpected fixed obstacle is in this area the robot

should adapt its footsteps to avoid collision with it.
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� Sevasion - evasion area: this is the area defined by dstopuo < duo < devasionuo .

If the unexpected moving obstacle enters this area and the robot is Idle,

it should plan an evasion maneuver and execute it.

� Sscale - velocity/force scaling area: this is the area defined by dstopuo <

duo < dscaleuo . If the robot enters Manipulation and an unexpected mov-

ing obstacle enters this area, the robot should reduce the velocities and

forces associated to the manipulation task to avoid damaging contacts

with the obstacle.

� Sstop - emergency stop area: this is the area defined by duo < dstopuo .

This is the innermost safety area. If any unexpected obstacle enters

this area the robot must safely stop whatever action it is performing

and request human intervention.

Figure 4.3, bottom, shows the thresholds used for the risk of fall rfall. As

soon as rfall becomes significant (rlowfall < rfall < rhighfall ) the robot activates the

add contact behavior. If a fall is deemed inevitable (rfall > rhighfall ), the robot

will perform a safe fall.

4.5 Control Scheme

The implementation of the safety behavior architecture will invariably depend

on the specific platform and control architecture. Here we will refer to a

generic architecture for illustration.

Figure 4.5 shows a general overview of the control scheme. As already

noted, some details are intentionally left unspecified as they can be imple-
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Fig. 4.4: Safety areas assuming devasionuo = dfootstepuo .

mented in different ways, which may not be relevant for safety purpose (e.g.,

control of the robot head).

Notice that, while most behaviors can be realized with the proposed

scheme by appropriately activating and deactivating the relevant blocks, the

safe fall behavior will need a separate controller which overrides the scheme

in Fig. 4.5.

4.5.1 Head task generator

The Head Task Generator is in charge of generating suitable control inputs

for the robot head based on information available through vision. Its input

will basically depend on the visual-tracking behavior.
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Fig. 4.5: Control architecture with the safety behaviors shown as rounded
blocks.

4.5.2 Manipulation task generator

The Manipulation Task Generator provides the humanoid with a task for its

hands. The velocity/force scaling and add contact behaviors may be activated

to modify the high-level reference inputs.

4.5.3 Locomotion task generator

The locomotion task generator is based on the Intrinsically Stable Model

Predictive Control (IS-MPC) [42] described in Sect 3.3. In particular, the

module produces a trajectory of the robot CoM and feet such that balance

is guaranteed at all times (by ensuring that the ZMP is at all times within

the support polygon) based on the high-level motion commands and the

environment map.
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The proposed scheme is suitable not only for regular gaits but also for

executing sudden avoidance maneuvers as well as temporary or emergency

stops, all actions which are typically necessary in a safety framework.

The following chapter is dedicated to analysis and description of those

behaviors related to the Locomotion task generator.
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Chapter 5

Locomotion-based Safety

Behaviors

In this chapter we will give the details of those behaviors directly connected

to locomotion, namely the Evasion, the Footsteps Adaptation and the Emer-

gency Stop. These behaviors, that strongly rely on the gait generation tech-

niques proposed in Chapter 3 are one of the main contributions of this work.

5.1 Evasion

Consider a scenario where the humanoid robot is standing in a workspace,

when a moving obstacle, like a human or another robot, heads towards it.

The humanoid must be able to plan and execute in real time a maneuver

to avoid the possible collision. Once the moving obstacle is detected, its

approach direction relative to the robot is determined and, on the basis of this

information an appropriate evasion maneuver is generated. This maneuver
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Fig. 5.1: The situation of interest. A moving obstacle enters the safety area
of a humanoid and heads towards it. The humanoid must plan and execute
a fast evasive motion. Note the moving frame associated to the humanoid.

consists of a set of footsteps and a trajectory for the robot’s CoM and ZMP.

In the following we will tackle two different evasion problems: in the first,

we assume that the moving obstacle heading towards the robot, keeps its

direction of motion constant, meaning that the obstacle aims directly at the

humanoid initial position. This assumption is relaxed in the second problem,

where we consider the worst-case scenario where the obstacle is actively trying

to reach and collide with the humanoid.

5.1.1 Evasion

Whenever the robot is not executing any particular task, i.e. it is in the idle

state, and a moving obstacle enters the robot’s vicinity, heading towards it,

the humanoid must plan and execute a fast evasive motion in order to prevent

any collision from happening [45]. The proposed method goes through several
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Fig. 5.2: A block scheme of the proposed approach for planning and exe-
cuting evasive motions.

conceptual steps. Once the moving obstacle is detected, its approach direc-

tion relative to the robot is determined. From this information, an evasion

maneuver represented by footsteps is generated using a controlled unicycle as

a reference model. From the footstep sequence, we compute an appropriate

trajectory for the Center of Mass of the humanoid using the ZMP-based gait

generation technique of Sect. 3.2.

In the interest of safety, it is essential that the reaction time between the

detection of the moving object and the beginning of the evasive motion is as

small as possible. This is achieved by making use of closed-form expressions

that make the overall algorithm suitable for real-time implementation. In

particular, we rely on the existence of the analytical expressions relating a

desired Zero Moment Point trajectory to the associated bounded Center of

Mass trajectory 3.9, introduced in Sect. 3.2.

The proposed algorithm for planning and executing the evasive motion is

summarized in the block scheme in Fig. 5.2. The first step is to detect the

obstacle approach direction nobs relative to the robot, as shown in Fig. 5.1.

Starting from this information the robot chooses an evasion direction neva to
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align with, based on an a-priori defined evasion strategy. We considered two

different evasion strategies:

� move back: the humanoid aligns its direction with the obstacle ap-

proach direction and moves backwards;

� move aside: the humanoid aligns with a direction that is orthogonal to

the obstacle approach direction and moves backwards.

First, it should be noted that both strategies dictate that the humanoid

moves backwards. For the move back strategy, this is obvious — moving

forward would mean approaching the obstacle. For the move aside, this

requirement is related to the possibility of keeping the obstacle in view, as

moving backwards allows to maintain the obstacle in the half-plane in front

of the robot.

The move back strategy is obviously aimed at maximizing the distance

between the humanoid and the obstacle. In humans, this is a very instinctive

reaction related to an evolutionary rooted tendency called approach aver-

sion [46]. However, moving back is not sufficient to avoid collision if the

obstacle moves faster than the humanoid.

The move aside strategy embodies a different policy, i.e., moving the

humanoid as fast as possible away from the course of the obstacle. If executed

sufficiently fast, this strategy may allow to avoid obstacles faster than the

robot. The downside is that the distance between the humanoid and the

obstacle may decrease before increasing again.

In practice, the move back strategy is realized by setting neva = nobs,

whereas move aside corresponds to neva = n⊥obs, where n⊥obs is the normal
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unit vector to nobs in the half-plane behind the robot (see Fig. 5.1).

Once the evasion direction neva is chosen, the robot should generate the

trajectory to follow in order to align to the computed direction. To do so,

we use a controlled unicycle as reference model. Studies on human locomo-

tion [47, 48] have identified a gait model in which the orientation of the body

is for most of the time tangent to the path. In other words, human trajec-

tories closely resemble those typical of nonholonomic wheeled mobile robots,

such as the unicycle. This kind of viewpoint was already effectively assumed

in [49]. Refer to Fig. 5.3.

The reference unicycle starts at the origin of the humanoid frame, with

the same heading, and obeys the well-known model

ẋ = v cos θ (5.1)

ẏ = v sin θ (5.2)

θ̇ = ω, (5.3)

where x, y are the unicycle Cartesian coordinates, θ is its orientation, and

(v, ω) are the driving and steering velocity inputs. The following control law

will align the unicycle with the desired orientation θeva, while traveling at

constant speed

v = v̄ (5.4)

ω = k sign(θeva − θ), (5.5)

The desired orientation θeva is computed according to the chosen evasion
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strategy. In case the move back strategy is chosen, θeva = ∠nobs. If the move

aside strategy is in use, θeva = ∠nobs ± π/2 .

nobs

neva
back

neva
aside

x

y

incoming
obstacle

robot

move back

move aside

Fig. 5.3: Generation of the evasion trajectory using a controlled unicycle as
reference model.

At this point, to execute the evasive motion, the robot must generate a

suitable gait: if the gait generation relies on the MPC, the reference velocities

(v, ω) are directly used as input to the control scheme shown in Fig. 3.3. On

the other side, in order to plan the robot CoM trajectory starting from a

reference ZMP trajectory as described in Sect. 3.2, a set of footsteps must

be provided.

To generate this set of footsteps, the unicycle model (5.1-5.3) is integrated

under the control law (5.4-5.5) leading to a Cartesian trajectory that proceeds

backwards along an arc of circle until the desired orientation θeva is achieved

at the finite time instant ts = |θeva|/k and then becomes a straight line:
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Fig. 5.4: Footstep placement around the evasion trajectory (left). Planned
CoM-ZMP trajectory (right).

x(t) = v̄
sin kt

k
(5.6)

y(t) = sign(θeva) v̄
1− cos kt

k
(5.7)

θ(t) = sign(θeva) kt (5.8)

for t ≤ ts and

x(t) = x(ts) + v̄(t− ts) cos θeva (5.9)

y(t) = y(ts) + v̄(t− ts) sin θeva (5.10)

θ(t) = θeva (5.11)

for t > ts.

Figure 5.3 shows the trajectories associated to the two different evasion

strategies. Once the Cartesian trajectory is computed, the sequence of foot-
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steps is sampled from it using a constant time interval ∆t = ∆/|v̄| where

∆ is a constant step size. This is realized by displacing the x, y, θ samples

alternatively to the left and to the right of the trajectory, as depicted in Fig.

5.4, left. Figure 5.4, right, shows the footsteps and the associated CoM-ZMP

trajectories for a move aside evasion maneuver

5.1.2 Evasion with malicious moving obstacle

Fig. 5.5: Pursuit-evasion with unicycles: simulation for the pursuer (red)
and for the evader (blue). Axis ticks are 0.5 m apart.

In this section we relax the assumption that the moving obstacle keeps

constant its direction of motion, and consider the worst-case scenario where

the obstacle is actively trying to reach and collide with the humanoid. This

leads us to replace the moving obstacle with another humanoid, and to con-
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sider therefore a full-fledged pursuit-evasion problem with humanoids [50].

Our viewpoint is to consider a coupled dynamic system consisting of two

identical humanoids with equivalent control schemes but different objectives:

the pursuer tries to align with the line-of-sight to the evader, whereas the

latter attempts to move away from the line-of-sight to the pursuer, e.g., in a

direction orthogonal to it.

As before, our method is based on the use of the unicycle as a template

model for real-time trajectory generation. For this reason, in this section we

will discuss the pursuit-evasion problem with unicycles. The results obtained

with humanoids are presented in the dedicated Chapter 7.

Both the pursuer and the evader are controlled in pure feedback mode.

At any instant, the pursuer determines the line-of-sight to the evader, rep-

resented by the unit vector naim, and steers its course so as to align with

naim. The evader determines the line-of-sight to the pursuer, represented by

−naim, computes from this an evasion direction neva, and steers its course so

as to align with neva. Figure 5.6 depicts the geometry of the problem.

The evader is controlled with the same control laws (5.4-5.5) presented

in the previous section. The pursuer’s control law, has a different objective,

i.e. align the unicyle with the line-of-sight to the evader naim. Hence for the

pursuer eq. 5.5 becomes

ω = ksign(θaim − θ) (5.12)

where θaim = ∠naim.

The gait generation process for the humanoids is the same of the previous
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Fig. 5.6: Pursuit-evasion with unicycles: geometry of the problem

section. The coupled system interestingly converges to a limit cyle, where the

two unicycles travel on a circle with a relative orientation of π/2, as shown

in Fig. 5.5.

5.2 Footstep Adaptation

As seen in Chapter 3, at the end of the gait generation process, the robot is

provided with a sequence of footsteps and a trajectory for its CoM and ZMP.

However, the planned footsteps may become invalid because of some external

disturbances that have not been taken into account, such as unmapped ob-

jects. The footstep adaptation behavior is activated whenever an unexpected

object enters in the robot path and allows the robot to slightly modify the

current footstep plan (and the associated CoM and ZMP trajectory) to avoid

the obstacle and complete its locomotion task. We show how the humanoid
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can adapt its footsteps while walking to avoid obstacles, without interfering

with its main locomotion task [51].

CoM

sagittal
axis

closest
obstacle point 

obstacle

B

d

¸

µavo

µobs

Fig. 5.7: Definition of the relevant quantities. The current robot placement
is defined by its CoM: current footstep locations are also shown (light blue).

Consider the MPC-based gait generation strategy presented in Sect. 3.3.

The robot is asked to track reference velocities (vx, vy, ω), and the MPC

scheme provides the sequence of footsteps and the appropriate trajectory

for the CoM and the ZMP. If, while walking, it detects the presence of an

obstacle, it must take it into account during the planning of the optimal

trajectories and footstep positions. To do so, we modify the MPC by changing

the cost function and by adding a new constraint.

The cost function that we modify is the one in eq. (3.11), i.e. the cost

function that decides the optimal foot rotations to track the reference angular

velocity. We add a term that forces the robot to align its footsteps with

the tangent of the closest obstacle point, so the new expression of the cost

function becomes

M∑
j=1

((
θj − θj−1

Ts
− ω

)2

+ kobs
w(θobs)

d2
(θj − θavo)2

)
. (5.13)
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1

11Fig. 5.8: The weight function w(θobs).

In the second term of (5.13) the difference in orientation between θj and θavo

is penalized. θavo = θobs ± π/2 is the orientation of the tangent half-line

originating at the closest obstacle point, and θobs is the angle between the

robot and the obstacle. Figure 5.7 gives a graphic representation of these

quantities. Note that the second term is modulated through a scaling factor

kobs by a weight function w(θobs) and the inverse of the squared distance.

Figure 5.8 shows the definition of function w. The idea here is that the

robot moves forward, and therefore only obstacles lying in its front half-plane

should be considered.

CoM

closest
obstacle point 

obstacle

nobs

Fig. 5.9: Kinematically feasible zone (green) and forbidden zone (yellow)
for the next footstep as defined in the MPC.

As a stronger level of safety, besides the new term in the cost function,

we also introduce a constraint on the footstep locations, that depends on the

obstacle position. With reference to fig. 5.7, consider a point B = (xB, yB)
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located along the line connecting the CoM with the closest obstacle point at

a safety distance λ from the latter, and draw the normal to the same line

through B. The half-plane beyond this line (in yellow in Fig. 5.9, bottom) is

a forbidden zone for the footstep locations. This constraint is easily written

as

nT
obs


 xjf

yjf

−
 xB

yB


 ≥ 0 (5.14)

with nobs the unit vector defined in Fig. 5.9.

With this modified version of the MPC, the robot will do its best to

track the reference angular velocity and align to the direction tangent to the

closest obstacle point. This should be enough to drive the robot away from

the closest obstacle. In any case, if the robot gets too close to the object, the

constraint will make impossible for the robot to step any further towards the

obstacle, as shown in fig. 5.10.

Fig. 5.10: Avoidance of a wall (shown in gray) with the proposed gait
generation method. The CoM trajectory is shown in red.
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5.3 Emergency Stop

While the robot is walking, an unforeseen event may rise the necessity to

stop the robot’s locomotion as soon as possible. In the case of an emergency

stop, we want to reach a statically balanced configuration, i.e. we want both

the ZMP and the CoM stationary inside the support polygon.

The fastest and safest way to reach a complete stop is to immediately set

to zero the reference velocities (vx, vy, ωr). In this way the MPC will generate

a feasible and stable trajectory for the CoM such that to stop.

Another possible option relies on the concept of capture point xcp [30]

xcp = xc +
ẋc
ω
. (5.15)

The capture point, is the point where the robot should step in order to

reach a complete stop. Its position depends on the robot CoM velocity, so

the fastest the robot is walking, the further is the capture point. If it is in a

region (capture region) inside the robot workspace, this means that the robot

can reach the capture point in one step (1-step capturability). If the capture

point is already inside the support polygon (0-step capturability) the robot

can immediately stop without stepping.

This concept should be taken into account when designing an emergency

stop behavior. In our case, the capture point position is continuously checked,

and if it lies inside the current support polygon the robot is able to immedi-

ately stop without stepping (if needed it can also stop with one foot hanging

in the air). If on the other side the current robot velocity is too high and the

capture point is not in the support polygon, the robot will have to take at
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least one step before stopping. Hence, setting to zero the reference velocity

leads to a choice of the next step such that the robot will reduce as much as

possible its CoM velocity, henceforth bringing the capture point inside the

support area and finally stop.
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Chapter 6

Other Safety Behaviors

The remaining behaviors introduced in 4.2 are described in this chapter.

Those behaviors are not directly connected to locomotion, and we will ana-

lyze possible solutions for the implementations of the behaviors referring to

existing works.

6.1 Safe Fall

The stepping capabilities of a humanoid robot are for sure one of their

strengths when compared to locomotion abilities of wheeled robot, since

humanoids can overcome obstacles or climb stairs through stepping. This

however arises the problem of balancing. In the definition of a framework

for safe human-humanoid coexistence, a situation in which the robot loses

balance cannot be excluded, indeed it must be faced rigorously. When the

humanoid robot loses its balance, it becomes an extremely dangerous, uncon-

trolled object that can cause serious damages to itself and the environment
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and injuries to people. A safe fall behavior has the aim of minimizing the

dramatic consequences of a loss of balance by controlling the robot during

the fall, trying to choose properly how and where to fall.

Choosing how to fall means assuming a proper configuration to absorb the

impact with the floor, or plan a sequence of motions to distribute the impact

along the kinematic chains of the robot. In [52] a falling motion controller

that allows the robot to safely fall over backwards is presented, and is then

extended in [53] to tackle the problem of falling forward. The idea is to lower

the robot CoM as soon as possible, via crouching or knee-bending to restrain

the force of impact. Authors in [54] face the problem of fall management

in a similar way. According to the detected direction of fall they propose

two control strategies to fall forward (knee-bending scheme) or to fall on the

robot back.

Assuming a configuration that reduces the impact magnitude might not

be enough, and some strategies might be useful to absorb the impact. In

[44] a control strategy that combines robot reconfiguration and post-impact

compliance is presented. During the falling phase the robot posture is con-

trolled to avoid fall singularities, i.e. particular configurations that will not

absorb properly the impact force. After the impact occurs, instead of shut-

ting the actuators or imposing very high stiffness to the joints, an active

compliant control is used to absorb the impact, with the motors behaving

like spring-dumpers.

Other than how to fall, the robot should be able to choose where to fall,

in order to avoid falling on people or other objects, and maybe exploit the

environment to partially recover from the fall. [55] presents a fall controller
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capable of changing the fall direction of the robot such that the robot does

not hit a particular object in the environment. This is further extended to

multiple objects avoidance [56] and finally implemented on a real humanoid

[57].

6.2 Visual Tracking

Through vision sensors like RGB-cameras a robot is able to obtain geomet-

rical informations on the environment. These information, useful for motion

planning and control, are obtained after image processing, i.e. a procedure

to extract numerical information (features) from an image. An important

measurement that can be derived from image processing, is the position of

objects in the environment w.r.t. the camera.

The image processing starts form the so-called image segmentation. It

consists in the partitioning of the image into multiple segments, i.e. clusters

of pixels that share some characteristics. Starting from the segmented image,

features can be extracted to obtain numerical information that can be used

for motion planning and control.

The visual tracking behavior has the objective of controlling the robot

gaze in order to keep it aware of a particular object detected in the envi-

ronment (e.g. a moving object). The image acquired from the camera must

be processed in order to extract the feature parameters and identify any un-

expected object in the image. Then this features, representing the object,

must be controlled to be kept inside the robot field-of-view. This is a typical

visual servoing control problem, meaning that the control action is computed
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on the basis of visual measurements. In more details, we can consider this as

an image-space visual servoing problem [58]: the control action is computed

according to an error in the desired position of a feature directly in the image

plane.

The visual tracking problem has been widely studied in the past years,

and several solutions can be found in literature with applications to humanoid

robots [59, 60, 61, 62].

Clearly, exploring the computer vision literature, it is easy to find several

approaches to image processing for human detection and tracking [63].

6.3 Velocity/Force Scaling

A robot hitting a person is a clear hazard and, as well as for the falling prob-

lem, we cannot exclude the possibility of a collision between the humanoid

and a human in the environment. The idea behind the Velocity/Force scaling

behavior is to reduce the effect of a collision, by reducing the forces and veloc-

ities of the humanoid. If the robot is in the manipulation state, and a human

gets too close (duo < dscaleuo ), it can straightforwardly scale down the veloci-

ties/forces of the joints in the kinematic chains involved in the manipulation

task.

Although the reduction of velocities and torques at the joint level does

not harm the normal operations of a manipulator or a wheeled mobile base,

in the case of a walking humanoid this can be more dangerous than helpful.

The problem of keeping balance is crucial and an abrupt reduction of the

joint velocities/forces may lead to a fall. For this reason we need to face the
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Velocity/Force problem at the Cartesian level, and let the walking pattern

generator handle it.

In our MPC scheme, the robot is controlled through reference Cartesian

velocities, and the optimization problem takes care of generating the proper

gait. The reference velocity can be arbitrarily low (it can also be zeroed, as

seen in 5.3), since the MPC will always find a feasible solution that will keep

the robot balanced, thanks to the constraint enforced in the QP problem.

6.4 Add Contact

Humanoid robots are designed with the idea of having abilities similar to

human skills in both locomotion and manipulation, and these two problems

should not be considered separately. In fact, a humanoid robot walking

in a cluttered environment, just like a human, can increase its locomotion

capabilities by establishing extra contacts to achieve a more robust balance.

The issues to consider are basically two, i.e. how to balance and control

the robot in a multi-contact configuration and where to establish contacts.

For the first problem, one must understand the interactions between the

robot and the environment, and the consequences on the robot internal forces

and CoM [64]. Also, the ZMP concept needs to be extended to redefine the

idea of dynamic balance [65]. The balance and posture control problem is

tackled in [66] relying on optimization of contact forces in combination with

Model Predictive Control. In [67] a passivity-based whole-body controller

is presented, that allows the robot to balance with a subset of its end ef-

fectors and use the remaining to interact with the environment, through

73



task-hierarchy.

The goal of multi-contact planning is to generate a sequence of robot

configurations that use not only the end effectors (hands and feet) to interact

with the environment but the whole robot body (e.g. knees and elbows).

In [68] an overview of how humans use multiple contacts to perform various

locomotion and manipulation tasks is presented, while authors in [69] present

a planner that generates robot motions to perform transitions between multi-

contact stances. [70] propose a complete algorithm that starting from visual

information allows the robot to define step locations, compute feasible multi-

contact stances using hands and feet, and generate a motion plan to reach

the desired goal even going through different contact states.

Clearly, multi-contact planning comes in handy also when planning dy-

namic motions for the humanoid [71, 72], however in our safety framework,

we only want to consider the possibility of establishing extra contacts to en-

hance the robot balance during the execution of tasks that do not require

stepping, like manipulation. It is evident that when considering the problem

of stair climbing, the idea to grasp the handrail for additional support must

be taken into account directly at the planning level, hence will not need an

adaptation of the task.
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Chapter 7

Results

This chapter is dedicated to the presentation of the simulation and experi-

mental results. The simulations have been performed in the V-REP simula-

tion environment, while the experiments were conducted with two different

robotic platforms: the NAO humanoid robot and the HRP-4.

V-REP (Virtual Robot Experimentation Platform) is a powerful, cross-

platform 3D robot simulator developed by Coppelia Robotics1. It has an

integrated development environment (IDE) and it is based on a distributed

control architecture: each object or model present in the scene can be con-

trolled individually by an embedded script, a plugin or a ROS node. Con-

trollers can be written in many different programming languages such as

C/C++, Python, Lua and MATLAB. It is commonly used for fast algorithm

development, factory automation simulations and fast prototyping and ver-

ification. It features different calculation methods specific for robotics de-

velopment, like Inverse and Forward Kinematics, Collision Detection, Path/-

1www.coppeliarobotics.com
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Motion Planning and Vision Sensor simulation.

Fig. 7.1: Some V-REP Features

The main aspect is that V-REP features 4 different physics engine:

� Bullet physics library (open source): features 3D collision detection,

rigid and soft body dynamics;

� Open Dynamics Engine (ODE): it has two main components, rigid body

dynamics and collision detection;

� Vortex Dyanmics: commercial physics engine producing high fidelity

physics simulations, mainly used in high performance/precisions indus-

trial and research applications;

� Newton Dynamics: it implements a deterministic solver not based on

LCP (Linear Complementary Problem) or iterative methods.

The dynamics engine allows simulating interaction between objects, allowing

them to fall, collide, bounce ecc. Moreover V-REP provides many real robot

models both mobile and non-mobile.
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Fig. 7.2: NAO (left) and HRP-4 (right)

NAO is a small autonomous and programmable humanoid robot with 25

degrees of freedom (DoFs). It is 57.3 cm tall and its weight is 4.3 kg. It

is equipped with an Intel Atom CPU running at 1.6 GHz and with several

on-board sensors like cameras, microphones, sonars, pressure sensors, tactile

sensors, IMU.

HRP-4 is a life-size ”platform for research and development of working

humanoid robots” developed by KAWADA industries in collaboration with

the National Institute of Advanced Industrial Science and Technology (AIST)

in Japan. HRP-4 is a light-weight robot designed to coexist with humans and

assist or replace human operations or behaviors. It is 151 cm tall and weights

39 kg. It has 34 DoFs and is equipped with an Intel Pentium M runniung at

1.6 GHz.

In the following we will show the results obtained in the implementation

of the safety behaviors detailed in Chapter 5 as well as a simulation of the

complete framework.
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7.1 Evasion

The evasion behavior presented in Chapter 5 has been validated via simu-

lation and experiments using the NAO humanoid robot. The result of the

simulation is shown in Fig. 7.3. Here the gait generation is based on the

ZMP planning described in 3.2.

The humanoid is standing at the center of a room when a human walks

in (1st snapshot), directed towards the desk on the right. As the human

enters the safety area of the humanoid (2nd snapshot), the latter detects this

fact and generates an evasive motion using the move aside strategy. In par-

ticular, an evasion trajectory is first generated using the controlled unicycle

model (5.1-5.3), with v̄ = 0.04 m/s and k = 0.2 in eq. (5.4-5.5). Footsteps

are placed around this trajectory, using a stepsize ∆ = 0.08 m, in the range

of NAO capabilities. Then, a ZMP trajectory interpolating the footsteps is

computed, with duration of the double and single support respectively at

0.122 s and 0.425 s. The corresponding bounded CoM trajectory is gener-

ated using 3.9. Finally, joint commands are produced via kinematic control.

Overall, the achieved response time (between the detection of the moving

obstacle entering the safety area and availability of the first joint command)

is around 21 ms, confirming that the use of closed-form expressions in all

stages of motion generation makes real-time evasion possible. As a result,

the humanoid performs a successful move aside evasion (3rd to 5th snap-

shot). The simulation continues with another human crossing the room (6th

snapshot) towards the door, and the robot executing another evasive motion

(7th to 9th snapshot).

78



Fig. 7.3: Evasive motions using the move aside strategy: snapshots from a
simulation.

Experimental validation was performed using two NAOs, one acting as

the robot and the other (teleoperated) as the moving human. The result is

shown in Fig. 7.4. Generation of the evasive motion is performed on-board,

using the same parameters of the previous simulation. As expected, a move

aside evasive motion is successfully executed.

Fig. 7.4: Evasive motion using the move aside strategy: snapshots from an
experiment.

The situation of malicious moving obstacle presented in 5.1.2 has been

validated as well using two NAO humanoids. The results fully confirm the

79



t = 0.0 t = 10.2 t = 27.6

t = 37.4 t = 55.1 t = 87.3

t = 0.0

Fig. 7.5: Pursuit-evasion with humanoids: snapshots from a simulation.
The trajectories of the CoMs are shown in red (pursuer) and blue (evader).

pursuit-evasion behavior introduced in Sect. 5.1.2: the two robots converge

to a circular limit cycle, along which they travel at the same speed with a

relative orientation of π/2.

For the experiments, in spite of the rather limited processing capabilities

(each NAO is equipped with an Intel Atom running at 1.6 GHz) we were able

to perform all computations on-board.

Figure 7.6 shows snapshots taken during an experiment. The expected

limit cycle behavior is observed again, although its radius is slightly reduced
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t = 0.0

t = 20.4 t = 25.7 t = 36.8

t = 13.8t = 7.3

Fig. 7.6: Pursuit-evasion with humanoids: snapshots from an experiment.

with respect to the simulation. This is mainly due to the significant feet

slippage on the smooth floor.

7.2 Footstep Adaptation

To evaluate the footstep adaptation behavior presented in Sect. 5.2, we

started from the pursuit-evasion problem showcased in sect. 5.1.2, and we

extended the problem by including obstacles in the environment. We also

changed the gait generation strategy, preferring the MPC-based method de-

scribed in sect. 3.3.

The proposed approach was validated in V-REP simulations using two

NAO humanoids, one acting as the pursuer and the other as the evader.

High-level reference velocities are produced by (5.4–5.5) with v̄ = 0.1 m/s

and k = 0.2. Footsteps rotation is performed using kobs = 0.05 and θmax =
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π/16. For MPC, we set kxvel = kxvel = 10 in the cost function (3.12) and

used δ = 10 ms over a prediction horizon Th = 0.6 s. The duration of

the single and double support phase is fixed at respectively 0.2 s and 0.1 s.

For the ZMP bounding box we used xmax
z = ymax

z = 0.02 m, and for the

feasibility constraints L = 0.125 m, xmax
f = 0.05 m, ymax

f = 0.025 m. Overall,

the control scheme runs at 100 Hz and can be implemented on the NAO

hardware. Figure 7.7 shows pursuit-evasion in an environment containing a

Fig. 7.7: Simulation 1: Pursuit-evasion in the presence of a cylindrical
obstacle. COM trajectories are shown in red (pursuer) and blue (evader).

single cylindrical obstacle. In this case, the humanoids converge to a limit

cycle around the obstacle. The effect of the latter can be appreciated in

Fig. 7.8, where the motion of the robots is shown both in the absence and

the presence of the obstacle. Note how the trajectory deformation is smooth

thanks to the modulation mechanism with d used in the footsteps rotation

module.
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Fig. 7.8: Simulation 1: Comparison of motions with and without the obsta-
cle.

In the second simulation, shown in Fig. 7.9, the environment obstacle is a

long wall. At the beginning, the humanoids move as in the previous simula-

tion and tend to align with the wall. In this case, however, the combination

of the pursuit-evasion and the obstacle avoidance actions ultimately drives

the robots away from the obstacle.
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Fig. 7.9: Simulation 2: Pursuit-evasion in the presence of a wall obstacle.

CoM trajectories are shown in red (pursuer) and blue (evader).

Fig. 7.10: Simulation 3: Pursuit-evasion in a complex environment.

Pursuit-evasion in an environment with several obstacles is simulated in
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Fig. 7.10. In spite of the more complex geometry, the humanoids always

manage to avoid the obstacles, with the pursuer aggressively chasing the

evader but the latter always escaping.

Push Prediction Step Recover

Fig. 7.11: Reaction to a push during a real experiment with HRP-4. During
the push, the ZMP-CoM measurements reaches the edge of the foot (red line)
while the robot’s CoM is displaced forward. As a result, the MPC computes
a new optimal footstep (blue square) and computes a footstep trajectory to
bring its next swinging foot there.

Another interesting footstep adaptation behavior emerges from the intrin-

sic stability property of the MPC gait generation process. Since the MPC is

always computing the optimal solution starting from the current robot state,

it is able to fastly react to external perturbations like a push. In other words,

if the robot is pushed, the MPC perceives a change in the robot state, and

reacts to recover the loss of balance by stepping, hence adapting the robot

current footsteps to counter the perturbation. To validate this behavior we

let the robot step in place, and then we pushed it from behind. In order to

not lose balance, due to the ZMP contraint (3.13) enforced in the MPC, the

robot is forced to step forward, as shown in fig. 7.11.
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7.3 Emergency Stop

t = 0.0 t = 3.0 t = 5.0

Fig. 7.12: Simulation of an emergency stop in double support

Here we present the results of the emergency stop behavior described in

Sect. 5.3. As said, while walking the robot continuously checks the position

of the capture point (5.15), and when the emergency stop signal is triggered,

the robot performs an emergency stop according to its position.

If the capture point is inside the support polygon, the robot can imme-

diately stop, without the need of taking additional steps. Figure 7.12 shows

the snapshots of a simulation in which the emergency is triggered during the

robot double support phase at t = 5s. Since at this time instant the capture

point is inside the convex hull of the two feet, the robot is able to immediately

stop. In fig. 7.13 is shown the complementary situation: the emergency stop

signal is triggered during the single support phase at time t = 7s. However,

since the robot speed is sufficiently low (vx = 0.2m/s), the capture point lies

inside the current support foot and the robot is able to stop in single support.

After stopping with a foot hanging in the air, in a statically balanced config-

uration, the robot plans a motion to move the swinging foot back to where

it was at the start of the step. This shows how the robot can, for instance,

stop if anything unexpected appears along its path, and the only thing that
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t = 0.0 t = 3.0t = 1.0

t = 5.0 t = 7.0 t = 9.0

Fig. 7.13: Simulation of an emergency stop in single support

can be done is to step back. Finally, the snapshots of Fig. 7.14 show a sim-

t = 7.0 t = 9.0

t = 3.0t = 1.0t = 0.0

t = 5.0

Fig. 7.14: Simulation of an emergency stop where the reference velocity is
set to zero

ulation where the robot is walking at higher speed (vx = 0.3m/s), when the

emergency stop is triggered a time t = 5s. Due to the high CoM velocity, the

robot cannot stop without taking one more step, so the reference velocity is

87



immediately set to zero. This leads the robot to take one step (t = 7s), and

finally come to a complete stop. A video of the simulations can be found at

link2.

7.4 Framework Simulation

A demo of the framework is presented here. In this simulation, we put

the robot in condition to test the state machine. According to the robot

states and perception, the state machine chooses the appropriate behavior.

Snapshots of the simulations are depicted in Fig. 7.15 .

The robot is in the idle state and, following the be on the lookout guideline

scans the environment with the camera equipped on its head. Suddenly a hu-

man gets close enough to trigger the visual tracking behavior (i.e. the human

enters the largest red circle around the robot), so the robots start tracking

it with its head (snapshots 1-2). At time t = 19s the human starts moving

toward the robot, triggering the evasion behavior. The evasion maneuver

lasts as long as the human is far enough (duo > devasionuo ) at t = 30s. The

state is switched back to idle and, since the human is still close to the robot,

the visual tracking behavior is triggered again, until the human completely

exits the largest red circle at t = 34s.

Then, the humanoid is commanded to reach a specific goal in the envi-

ronment, so it switches to the locomotion state heading toward it (t = 70s).

However an obstacle is on its path, and as soon as the robot gets closer to

it, the footstep adaptation behavior starts, and the robot deviates from its

2https : //drive.google.com/file/d/1uRcEHmMCqaOzzLGjEQ2smqKl1bk97JH/view?usp =
sharing
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path to avoid the collision (t = 90s).

Once the robot reaches the goal at at t = 140s, the reference velocity is

set to zero and the robot safely stops. The robot state is switched again to

idle and the robot starts again to scan the environment.

A video of this simulation is available at link3.

t = 140.0t = 90.0t = 70.0

t = 0.0

t = 34.0t = 30.0t = 24.0

t = 19.0t = 8.0

Fig. 7.15: Snapshots from a simulation of the complete framework

3https : //drive.google.com/file/d/1uRcEHmMCqaOzzLGjEQ2smqKl1bk97JH/view?usp =
sharing
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Chapter 8

Conclusions

Creating a society where robots and human beings can safely live together is

the vision of modern robotics research. The most valid robot candidates for

this shared world are humanoid robots, given their similarities with humans,

and the potential to accomplish the same tasks. However, the state of the

art is still far from this ideal scenario, since there are several problems yet to

be solved. Humanoid robots are indeed extremely complex systems, due to

their unstable nature, and the problem of balance control during locomotion

is still a challenging one. Moreover, just as it was done in the past for robotic

manipulators in factories, safety problems must be solved before humanoid

robots are allowed to share an environment with humans. In this work we

have faced the problem of human-humanoid safe coexistence starting from

the problem of stable locomotion, up to the definition of a safety framework,

made up of general rules, the safety guidelines, to which the robot must

undergo in order not to endanger the surrounding environment.

Starting from the widely used Linear Inverted Pendulum Mode as a sim-
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plified model to plan and control humanoid gaits, we considered two different

approaches for gait generation, one based on the real-time planning of the

Zero-Moment Point, and the second relying on Model Predictive Control. In

both approaches we have included an important theoretical result, the bound-

edness constraint, to guarantee that the generated trajectories do not lead

to a diverging behavior. In the first approach, the boundedness constraint

is used to directly connect, with a closed-form expression, the planned ZMP

trajectory with the robot Center of Mass, allowing us to compute in real time

all the desired quantities needed by the robot controller in the gait genera-

tion process. Subsequently the boundedness constraint has been rewritten

so that it can be included in a Model Predictive Control scheme, the Instrin-

sically Stable MPC (IS-MPC). This control architecture generates a walking

gait able to track high-level reference velocities, taking care of automatically

selecting the appropriate footstep sequence and a suitable ZMP-CoM tra-

jectory. The inclusion of the boundedness constraint let us to reduce the

prediction horizon, drastically reducing the computational complexity of the

MPC optimization, resulting in an algorithm suitable for real-time imple-

mentation.

After having dealt with the problem of locomotion, we developed a safety

framework, giving general rules to be considered in the process of planning

and control of the humanoid robot with the aim of increasing the safety of

robot operations. The safety guidelines, can be summarized as follows:

� watch what you’re doing : always watch the main area of operation

� be on the lookout : if idle, monitor the environment and focus on unex-
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pected objects (e.g., moving objects)

� evade if you can: when a moving object approaches the robot, perform

an evasive action if this can be done safely

� stop if you must : in a situation of clear and actual danger, stop any

operation as soon as possible

� respect humans : scale down velocities and forces in order to reduce

potential damage in the case of a collision

� look for support : in challenging conditions (e.g., stairs) try to establish

additional contact with the environment so that the robot has at least

two support points at all times

Inspired by these guidelines we have defined a set of safety behaviors that,

when active, have the objective of adapting the robot current task, to guar-

antee safety for the robot and the environment. We defined two different sets

of behaviors, namely override behaviors, that will actually stop (or put on

hold) the current task and force the robot to take action against a dangerous

situation that has been detected, and proactive behaviors that, on the other

hand, do not stop the task, but try to increase the overall safety level by call-

ing for an adaptation or enhancement of the current robot activity. Among

these behaviors, we focused more on those that are directly related to lo-

comotion, namely evasion, footstep adaptation, and emergency stop,

with the clear intent of validating the gait generation techniques proposed so

far.

93



The safety framework and the locomotion-based safety behaviors have

been extensively and successfully validated through simulations in the V-REP

simulation environment, and via experiments on two real robotic platforms:

the NAO and the HRP-4 humanoid robots.

The proposed framework, with its guidelines and behaviors, opens the

doors of shopfloors and factories to humanoid robot, to coexist and share

the environment with human workers. However, coexistence implies the ab-

sence of physical interaction between humans and humanoids. Hence this

framework may be further extended in future, taking into account the pos-

sibility of physical human-humanoid collaboration. This generates a new set

of problems to face, starting with the problem of controlling the interaction

forces, to guarantee that humans are not hurt. Moreover, the exchange of

forces between human and humanoid, may lead to a loss of balance, so one

must reconsider the problem of static and dynamic balancing taking into ac-

count forces intentionally exerted by external agents. Last but not least, the

humanoid must be able to understand and somehow predict human actions,

in order to foresee if there is the intention to start a collaboration and react

accordingly.
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