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Abstract: DNA is an entity shielded by mechanisms that maintain genomic stability and are essential
for living cells; however, DNA is constantly subject to assaults from the environment throughout
the cellular life span, making the genome susceptible to mutation and irreparable damage. Cells are
prepared to mend such events through cell death as an extrema ratio to solve those threats from a
multicellular perspective. However, in cells under various stress conditions, checkpoint mechanisms
are activated to allow cells to have enough time to repair the damaged DNA. In yeast, entry into
the cell cycle when damage is not completely repaired represents an adaptive mechanism to cope
with stressful conditions. In multicellular organisms, entry into cell cycle with damaged DNA is
strictly forbidden. However, in cancer development, individual cells undergo checkpoint adaptation,
in which most cells die, but some survive acquiring advantageous mutations and selfishly evolve a
conflictual behavior. In this review, we focus on how, in cancer development, cells rely on checkpoint
adaptation to escape DNA stress and ultimately to cell death.

Keywords: cell cycle checkpoints; genomic instability; G2-arrest; cell death; repair of DNA
damage; adaptation

1. Introduction

While questionable, one of the most well-known and widely reported aspect in cancer biology is
the acquisition of genetic mutations that underlie cell transformation and tumor progression. From this
perspective, cell transformation is a genetic process of tumor cells adapted to stressful environmental
conditions; if to ‘cell adaptation’ can be conferred the Darwinian concept to respond to life’s needs for
survival, the nature of what adaptation means for tumor cells is extremely elusive. Either physical
or chemical environmental agents can cause DNA damage and consequently genetic mutations that
promote cell transformation.

Examples of physical agents promoting mutations are ionizing radiation, ultraviolet light present in
sunlight which can promote the estimated rate of up to 10,000 DNA lesions per cell per day [1,2]; chemical
agents such as benzo(a)pyrene B(a)P, 7,12-dimethylbenz[a]anthracene (DMBA), that generate DNA
adducts, leading to mutations [3]. Beside exogenously, DNA damage can also occur endogenously
as cells divide, with tens of thousands events every day in each single cell [2]. Thus, DNA damage
might potentially affect the function of central regulators of many biological processes, ultimately
leading to cancer development. Additionally, infectious pathogens elicit an oncogenic spiral that
is one of the causes of cancer development [4]. If we assess the concept that ‘adaptation’ means
the optimization of the phenotype whereby the organism acquires changes that increase its survival
and reproductive success, when this concept is applied to cell transformation it remains extremely
vague. Although this concept is suitable for viral carcinogenesis that hijacking cellular pathways
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promotes the survival and proliferation of infected cells, in a multicellular organism, cells do not need
to adapt their phenotype to a non-permissive environment. Unquestionably, in multicellular organisms,
cells are immersed in growth conditions favorable to their replication. However, there is an obvious
difference in the relationship between adaptation and environment in unicellular versus multicellular
organisms. Life and replication in unicellular organisms are dependent on the conditions present
in the environment and they survive if they are able to adapt to environmental changes. In sharp
contrast, in multicellular organisms cell division is tightly regulated to control cell shape, tissue
patterns, and morphogenesis [5], although cells are typically immersed in permissive environmental
conditions. Preservation of the integrity of multicellular organisms relies on these extra layers of
developmental control that function to restrain cellular proliferation that may change in response to
environmental or intracellular stress signals. This implies that, as previously defined [6,7], cancer cells
arise from cells adapted to respond to holistic control system and the escape from these host defense
mechanisms represents an important strategy for cell transformation.

2. Cell Cycle Surveillance System

Genetic damage produced by either exogenous or endogenous mechanisms represents an ongoing
threat to the cell. To preserve genome integrity, eukaryotic cells have evolved repair mechanisms
specific for different types of DNA Damage (for an extensive review see [8,9]). However, regardless
of the type of damage a sophisticated surveillance mechanism, called DNA damage checkpoint,
detects and signals its presence to the DNA repair machinery. DNA damage checkpoint has been
functionally conserved throughout eukaryotic evolution, with most of the relevant players in the
checkpoint response highly conserved from yeast to human [10]. Checkpoints are induced to delay
cell cycle progression and to allow cells to repair damaged DNA (Figure 1). Once the damaged DNA
is repaired, the checkpoint machinery triggers signals that will resume cell cycle progression [11].
In cells, multiple pathways contribute to DNA repair, but independently of the specific pathway
involved, three phase are traditionally identified: Sensing of damage, signal, and downstream effects
(Figure 2). The sensor phase recognizes the damage and activates the signal transduction phase to select
the appropriate repair pathway. For example, cells pose at least four independent mechanisms for
repairing Double-Strand-Breaks (DSBs): Non-Homologous End-Joining (NHEJ), either classic-NHEJ or
alternative-NHEJ, Homologous Recombination (HR), and single-strand annealing (SSA) [1,10,12,13].
Furthermore, highlighting the complexity of the DNA damage response, in mammals, at least four, in
part, independent sensors can detect DSBs: Mre11-Rad50-Xrs2 (MRN), Poly ADP-Ribose polymerase
(PARP), Ku70/Ku80 and Replication protein A (RPA) that binds single stranded DNA permitting
the further processing of DSBs [1,14]. In the presence of DSBs, the activation of the DNA damage
response and the mobilization of the repair proteins give rise to the formation of nuclear foci at the
sites of damage. In yeast, the MRX-complex (Mre11-Rad50-Xrs2) is recruited at the site of DSBs [15].
Localization of MRX-complex to the damaged site is required to recruit and activate the protein kinase
Tel1, which initiates DSBs signaling [13,16]. A similar mechanism is employed by MRN-complex in
mammal cells (in which Nbs1 is the mammalian ortholog of Xrs2). MRN-complex orchestrates the
cellular response to DBSs by physically interacting and activating the kinase Ataxia-Telangiectasia
Mutated (ATM, the mammalian ortholog of Tel1). The signal is transduced by ATM that phosphorylates
the histone variant Histone-2AX (H2AX) generating g-H2AX that promotes the recruitment of
Mediator of DNA-Damage Checkpoin 1 (MDC1) protein at the site of damage. MDC1 amplifies
the DNA-Damage Response (DDR) signal through the iterated recruitment of the MRN-ATM complex
at the damage site that further phosphorylates adjacent H2AX molecules extending the �-H2AX
mark [13,16]. Additionally, MDC1 functions as an interaction platform for other DDR components
including chromatin remodelers and ubiquitin ligase complexes [13,16]. The recruitment of these
factors is essential to create a more open and accessible chromatin conformation to facilitate access
at sites of DNA lesions and to allow ubiquitin-mediated accumulation of DNA repair factors, which
will ultimately contribute to DNA repair pathways [13,16,17]. An integral part of the DNA damage
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response is the parallel induction of repair mechanisms and reversible cell cycle arrest that delays cell
cycle progression to give cells time for DNA repair [11]. The Checkpoint kinases 1 and 2 (CHK1 and
CHK2) are key downstream effectors of DDR signaling as they promote cell cycle arrest. ATM/ATR
phosphorylate and activate the CHK1 and/or CHK2 kinase [18]. While CHK1 and CHK2 have
overlapping substrate preferences, they contribute differentially to the maintenance of the cell cycle
checkpoint. A central mechanism in the induction of the checkpoint-induced cell cycle arrest is the
inhibition of cyclin-dependent kinase(s) (Cdk). In this mechanism, ATM and CHK2 are required to both
stabilize and increase p53 DNA binding activity which in turn results in the induction of its several
transcriptional targets, among which the Cdk-inhibitor protein p21waf1/cip [19,20]. A central target
involved in the activation of the cell cycle checkpoint mediated by both CHK1 and CHK2 is the Cdc25
family of phosphatases (Cdc25A, B and C) [9]. Cdks are in an inactive state when phosphorylated at
two inhibitory sites, Thr 14 and Tyr 15. Removal of these phosphates by Cdc25 phosphatases results in
the activation of CDKs and cell-cycle progression [9]. Thus, CHK1/2-mediated phosphorylation of
Cdc25 proteins results in their functional inactivation, preventing CDKs dephosphorylation and
activation [9,21]. Overall, in mammal cells, CHK1 is thought to be the primary effector of the
G2/M phase checkpoints, whereas CHK1 and CHK2 exert a cooperative role in the intra-S and
G1/S checkpoints [22].

Figure 1. Cell fates following DNA Damage. Cell cycle checkpoint is induced by DNA damage.
Cell cycle entry occurs after the DNA damages have been fully repaired, or alternatively, cells have two
possible fates, to die or survive after a process of adaptation that allows cell division with unrepaired
DNA lesions.
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Figure 2. Schematic representation of the sensors, transducers and mediators involved in DNA damage
response (DDR) pathways. DNA damage response is sensed and repaired by multi-protein complexes.
Depending on the level of injury, the signaling triggered by the damage response will result in different
cellular fates.

3. After Event Cleaning Job: RELEASE of the DNA Damage Checkpoint

The DNA Damage response elicits the activation of a highly complex and synchronized network
of factors, such as kinases, phosphatases, transferases, and ligases [23–27]. Most of these enzymes add
to remove functional groups that reversibly change the proteins fate or function [23–27]. Thus, when
genome integrity is re-established the removal of these post-translational modifications is essential
for a rapid checkpoint silencing and cell cycle progression [13]. Distinct DNA damage checkpoints at
different stages of the cell cycle, such as G1/S, intra-S, and G2/M, have been described [28]. However,
the exact dynamic and molecular basis of the recovery phase still remains not entirely clear. Recently,
it has been shown that cell’s response to DSBs depends on its cell cycle phase and that checkpoint
dynamics are phase-dependent [28]. In the G1 phase, DBSs completely halt the cell cycle only in the
presence of high DNA damage levels. The most abrupt and complete halt to the cell cycle occurs during
G2/M, and interestingly, cell cycle arrest is linearly correlated with the amount of DNA damage [28].
The S phase checkpoint is the more permissive to DNA damage and allows cell cycle progression,
although at a greatly reduced rate [28]. However, multiple layers of complexity exist in order to
prevent cell cycle progression in the presence of damaged DNA. Cell cycle progression occurs in a
linear manner, in which each checkpoint functions as an additional layer of control of the previous
checkpoint. Thus, the G1 checkpoint is important in cells that have been exposed to DNA damage
in the G1-phase, as well as for those that have been adapted from the G2 checkpoint [29]. In this
context, it is interesting to note that, conversely to the redundancy of factors and mechanisms that
share a temporal and overlapping function in response to DNA damage, checkpoint recovery relies
on the involvement of phase-specific factors [13]. The CDC25B is a S/G2 phosphatase that is thought
to play an essential role in activating CDK1-cyclin B complexes at the entry into mitosis ([13] and
references there in). CDC25B has been shown to cooperate with the polo-like kinase 1 (PLK1) in
promoting the cell cycle resumption in G2 phase after DNA damage. In addition, recovery of the
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G2 DNA damage checkpoint appears to be distinct from G1. Indeed, both PLK1 and Cdc25B are
not expressed in G1 and do not influence cell cycle resumption in G1 (Reference [13] and references
therein). Essentially the same activation pathways promote mitotic entry in an unperturbed cell cycle
and checkpoint recovery [30]. However, these pathways are thought to be differentially involved
in these two processes. PLK1 is not essential for mitotic entry in cells progressing through normal
cell cycles; it has been shown that the complete inhibition of PLK1 can only delay G2/M transition
leaving the importance of PLK1 for mitotic entry during unperturbed cell cycle controversy [13,31].
Conversely, it is well established that initiation of the DNA damage response repress pro-mitotic
machinery and leads to the inhibition of pro-mitotic kinases among which CDK1, Aurora A, and
PLK1 [32–34]. Additionally, the degradation of Cdc25 and Bora, as well as of several other proteins
involved in mitotic entry, is critical for cell cycle arrest [35,36]. While PLK1 is dispensable for the onset
of mitosis in an unperturbed cell cycle, in sharp contrast PLK1, is essential for mitotic entry following
recovery from DNA Damage-induced cell cycle arrest [37]. Cell cycle re-entry relies on the Aurora-A
kinase and its co-factor Bora, which phosphorylates PLK1 at Thr210 in its activation loop; thus, Plk1 is
activated and promotes mitotic entry by stimulating cyclin B1-Cdk1 activation [25,30,37,38]. PLK1 can
promote cyclinB1/CDK1 activation by several mechanisms. Early works in Xenopus have established
that Plx1 (PLK1) phosphorylates and activates Cdc25C, and this activates the Cyclin B–CDK1 complex.
In vertebrates, the Cdc25 paralogues (Cdc25A, B and C), all have been shown to be target of PLK1
activity [39], but it remains poorly characterized, with Cdc25 phosphatase(s) the substrate of PLK1
during the G2 recovery. However, it has been suggested that G2 recovery is dependent on the specific
isoform Cdc25B, which is stabilized after damage, while Cdc25A expression is reduced [37,40]. Beside
its implication in the re-activation of cyclin-B1–CDK1 complex, PLK1 controls the silencing of DDR
signals by inactivating the ATM/CHK2 pathway. Within the DNA damage response mechanism,
53BP1 is an adaptor protein required to tether several checkpoint components at the damaged sites,
including CHK2 and ATM. In PLK1-mediated inactivation of the DNA damage checkpoint, it has
been shown that PLK1 phosphorylated 53BP1 that thus fails to form foci after DNA damage [41].
Additionally, it has been shown that PLK1 also directly phosphorylates and inactivates CHK2 [41].
Thus, PLK1 negatively regulates the ATM-CHK2 branch of the DNA damage to inactivate checkpoint
signaling and to control checkpoint duration [41]. Similarly, PLK1 negatively controls Claspin and
CHK1 and the inactivation of these components results in a shutdown of the checkpoint [42–44].
Specifically, phosphorylation of Claspin by PLK1 creates a docking site for �-TrCP protein, resulting in
the efficient ubiquitin-mediated degradation of this protein [42–44]. In conclusion, PLK1 is capable
of driving entry into mitosis after DNA damage-induced cell cycle arrest and to promote checkpoint
silencing and recovery.

4. DNA Damage and the Balance between Survival and Death

A central question in cells responding to DNA damage is how DDR pathway controls cell fate
decision. The accepted paradigm implies that the level of damage may trigger different responses;
thus, low-level promotes the initiation of repair and the activation of survival mechanisms, whereas
high-levels promote cell death. This concept includes the tacit assumption that, if the damage is
irreparable, cells undergo apoptosis; however, there currently is not a clear biochemical mechanism for
how cells distinguish between reparable and irreparable DNA damage. Evidence suggests that cells
respond to DNA damage by simultaneously activating DNA repair and cell death pathways [45,46];
p53 protein and its functional ambiguity might play a central role in this context, given the ability of
p53 to control the transcription of genes involved in either survival or death [47]. p53 influences several
pathways, which are essential for progression through the cell cycle, including G1/S, G2/M and spindle
assembly checkpoints [48]. Thus, it is not surprising that several signaling pathways can converge on
p53 to control cellular outcomes. Among them, PLK1 was shown to physically bind to p53 inhibiting
its transactivation activity, as well as its pro-apoptotic function [49]. As mentioned above, upon DNA
damage, ATM/ATR alone lead to phosphorylation of several hundreds of proteins, among them
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p53 [50]. The Mouse Double Minute 2 protein (MDM2) represents one of the predominant and critical E3
ubiquitin ligase for p53, responsible for the dynamic regulation of p53 function [51–54]. MDM2 mediates
p53 ubiquitination through a RING domain (Really Interesting New Gene domain). Additionally,
p53 and MDM2 function in a negative feedback loop, in which MDM2 transcription is activated by p53
and under normal stress conditions, MDM2 maintains low levels of p53 protein [51–54]. Furthermore,
it has been observed that MDM2 binds to the promoters of p53-responsive genes and form a complex
with p53 by interacting with its transactivation domain, thus MDM2 mediates histone ubiquitylation and
transcriptional repression of p53 targets genes [51–54]. Upon DNA damage, ATM/ATR either directly or
through CHK1/CHK2 phosphorylate p53 (Reference [46] and references there in). Similarly, it has been
shown that ATM phosphorylates MDM2 (References [46,55] and references therein); phosphorylation
of p53 and MDM2 in response to DNA damage by ATM/CHK1/CHK2 is thought to abrogate the
MDM2-p53 protein-protein interaction leading to p53 stabilization and activation. (References [46,55]
and references therein). In this context, it is thought that a low-level of DNA damage causes a
transiently expression and response of p53 whereas a higher-level of DNA damage leads to sustained
p53 activation. Thus, upon DNA damage cell fate is determined by tunable threshold of p53. Previous
studies have indicated that p53 may selectively contribute to the differential expression of pro-survival
and pro-apoptotic genes, due to the higher affinity of p53 for its binding sites in promoter associated
with cell cycle arrest, e.g p21/CDKN1A and lower affinity for those associated with apoptosis [47].
It has been shown that both pro-arrest and pro-apoptotic p53 target genes are expressed proportionally
to the p53 expression levels [47]. It is conceivable that, upon DNA damage triggering apoptosis, cells
must reach the pro-apoptotic threshold of p53 activity, whose level is determined by expression levels
of p53 itself. Interestingly, it has been shown that lowering this pro-apoptotic threshold with inhibitors
of antiapoptotic Bcl-2 family proteins sensitized cells to p53-induced apoptosis [47]. DNA damage can
activate both p53 and Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-B). A model
describing the crosstalk between p53 and NF-B was proposed by Puszynski and co-workers [56].
This work suggested that the diverse outcome of the p53/NF-B crosstalk in balancing survival and
death depended on the dynamic context of p53 and NF-B pathways activation. It has been proposed
that NF-B activation preceding p53 activation render cells more resistant to DNA damage-related
death [56]. Remarkably, data from gain and loss of function approaches demonstrated that sustained
anti-apoptotic NF-B activity in tumors might depend on mutant p53 activity [57]. Thus, the regulation
of p53 and its downstream effects are likely to be dependent on its interaction with other signal
transduction pathways, which may influence the final response to p53 activation. In addition to the
above-discussed mechanisms that control p530s duality in cell fate, site-specific phosphorylation of p53
also seems to be important in promoting its pro-apoptotic function. It has been observed that promoter
selectivity of p53 is regulated by post-translational modifications [58]. In this context, the increased
affinity of p53 to the regulatory regions of pro-apoptotic genes is related to its phosphorylation at
serine-46 (ser46) [58]. Thus, in stress-conditions, phosphorylation of p53 at S-46 regulates its pro-death
function through the induction of apoptotic genes such as NOXA [59] PTEN [60] and TP53AIP1 [61].
Several kinases phosphorylate p53 on S-46 either directly (HIPK2, p38, PKC�, and DYRK2) or indirectly
through ATM/ATR, with the effect to promote upregulation of pro-apoptotic p53-target genes [62–66].
In addition to its role as regulator of the cell fate of genomically compromised cells, several studies
have shown that p53 also directly impacts the activity of various DNA-repair pathways [67]. Thus,
p53 appears a multitasking factor providing protection from cancer development by maintaining
genome stability. In conclusion, p53 is a central component of the signaling network activated by
the DNA damage response and the tight regulation and balance of its activity must be maintained to
preserve the dynamic principle of the damage checkpoint.

5. Molecular Mechanisms of Checkpoint Adaptation

Cells have evolved a complex network to maintain the integrity of the genome. An essential event
in the DNA damage response is represented by the cell cycle arrest that allows cells to repair damaged
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DNA before entering the subsequent phases of the cell cycle [11]. Thus, the expected consequence in the
presence of DNA damage is that cell cycle re-entry will only occur following DNA repair [11]. However,
cells can enter into cell cycle before repairing their DNA through a mechanism originally described
as checkpoint adaptation [68–70]. While in mammal cells the molecular mechanism of checkpoint
adaptation has remained controversial and largely unknown until recently, it has been extensively
studied in Xenopus and yeast. Since the checkpoint adaptation and checkpoint recovery mechanism
share keys factors, it is not surprising that components of the checkpoint adaptation response are
highly conserved throughout the eukaryotic evolution [10]. In the yeast S. cerevisiae, analysis of
deletion mutants indicates that multiple factors are involved in checkpoint adaptation, among them:
Cdc5 (PLK1), Tel1 (ATM), and Mec1 (ATR) [16]. In response to different kinds of DNA damage,
checkpoint activation promotes the recruitment of Tel1/Mec1 to the lesion site [15]. The Tel1/Mec1
kinases directly phosphorylate the adaptor proteins Rad9 and Mrc1 that are able to recruit and
to activate the checkpoint Kinase Rad53, the structural homolog of human CHK2, but considered
functionally similar to CHK1 [71]. Phosphorylation of Rad53 as well as that of CHK1 promotes cell
cycle arrest [15,71–73]. Several observations indicate that inhibition of Rad53 plays a crucial role in
the control of the adaptation process; in particular, Rad53 over-activation was observed in diverse
adaptation-defective mutants [73]. Moreover, it has been shown that Cdc5-mediated phosphorylation
of Rad53 is required for checkpoint adaptation [74]; consistently with the finding that a dominant
negative Rad53 mutant was shown to bypass the requirement of cdc5, in a cdc5 adaptation-defective
mutant [73]. Finally, Rad53 de-phosphorylation mediated by both the phosphatases Ptc2 and Ptc3 has
been shown to bypass the DNA damage checkpoint [65,72,75]. Thus, most of the common pathways
involved in checkpoint adaptation inhibit Rad53 to promote entry into the cell cycle.

A consistent link between the Plx1 (PLK1) and Chk1 has been also observed in Xenopus laevis [76].
Persistent replication stress promotes the interaction between Claspin and Plx1, which causes the
phosphorylation and release of Claspin from the chromatin and thereby Chk1 inactivation [76].
While checkpoint adaptation has been extensively studied in both lower and higher eukaryotes,
its existence in mammal cells has long been considered controversial [10,77]. However, soon after
the studies cited above, several authors reported a similar type of functional interaction between
PLK1 and CHK1 in human cells. Overall these studies depict a model in which PLK1 phosphorylates
and promotes SCF�-TrCP ubiquitin ligase-mediated processing of Claspin, thereby promoting CHK1
de-phosphorylation and inactivation [43,44,78]. Based on these studies, PLK1 has attracted a lot
of interest for understanding the molecular mechanism controlling checkpoint adaptation. Thus,
a number of experimental observations have provided mechanistic insight into the involvement of
PLK1 in checkpoint adaptation. Interestingly, was observed that in the presence of DNA damage PLK1
degradation is required to achieve a proper G2 arrest [79], consistently with previous observations
indicating that sustained PLK1 activity following DNA damage increases the fraction of mitotic
cells [33]. In addition to Claspin, it was shown that in checkpoint adaptation WEE1 kinase is a direct
downstream target of PLK1 (Reference [37] and references there in) WEE1 negatively regulates entry
into mitosis by promoting the phosphorylation of CDK1, thus inhibiting the CDK1/cyclin B complex.
PLK1 phosphorylates and leads to degradation WEE1, thereby promoting entry into mitosis [Reference
37 and references therein]. The requirement of PLK1 activity in cells entering in mitosis it has been
elegantly confirmed by using a fluorescence-based probe for PLK1 activity at single cell level [80].
It has been reported that increased PLK1 activity is detected in cells entering mitosis in unperturbed
cell cycle and when cells recover from DNA damage checkpoint by addition of caffeine that force a
shutdown of the checkpoint [25,80,81]. An interesting observation arising from these studies is that,
once PLK1 activity increases beyond a certain level, it overrides damage checkpoint regardless of
whether DNA damage persists [80].

However, while a number of studies favor the notion of a central role of PLK1 to drive checkpoint
adaptation, likely there are multiple factors that contribute to the DNA damage recovery. CDK1 is a
key regulator of mitotic entry, and as discussed above, PLK1 itself can phosphorylate it. Thus, it is
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likely that signaling pathways able to influence Cyclin B/CDK1 activity in conjunction with PLK1
potentially might regulate adaptation [13,16,37].

6. Consequences of Checkpoint Adaptation

Cell cycle checkpoints and DNA repair mechanisms are important processes to maintain the
integrity of the genome and the faithful transfer of genetic information to daughter cells [10].
This surveillance mechanism provides time to repair the damage, and only when repair has been
successful, the checkpoint is extinguished and cells re-enter into the cell cycle [1,10,12,46,77,82,83].
In unicellular organisms, if DNA repair is not possible, cells can overcome DNA Damage through
checkpoint adaptation [15,21,71,77,84]. Interestingly, mounting evidence indicates that this concept
is not only found in unicellular eukaryotes like yeast but it might be extended also in multicellular
organisms [10,16,76,77,85]. While the critical determinants of the outcomes of checkpoint adaptation are
not yet precisely understood, checkpoint adaptation has several possible consequences. For instance
most cells that undergo checkpoint adaptation die, whereas some cells survive; surviving cells face two
different fates: Some cells will die in subsequent phases of the cell cycle, but a small number of cells
will survive and divide with damaged DNA [References [85–87] and references there in]. In line with
this model, it has been demonstrated that in repair-defective diploid yeast, nearly all cells undergo
checkpoint adaptation, resulting in the generation of aneuploid cells with whole chromosome losses
that have acquired resistance to the initial genotoxic challenge [84]. An important consequence of
this finding was the demonstration that adaptation inhibition, either pharmacologically or genetically,
drastically reduces the occurrence of resistant cells [87–89]. Thus, both in unicellular and multicellular
organisms checkpoint adaptation might represent a mechanism that increases cells survival and
increases the risk of propagation of damaged DNA to daughter cells [86,87,89]. Understanding
this aspect is particularly important as a weakened checkpoint, it has been shown, enhances both
spontaneous and carcinogen-mediated tumorigenesis [90,91]. Additionally, DNA damaging agents are
widely used in oncology to treat many forms of cancer [92]. Unfortunately, resistance to these agents
can result from a variety of factors that significantly reduce their efficacy in cancer therapy [93]. There is
evidence that checkpoint adaptation may drive the selection of therapy-resistant cells (Reference [92]
and references therein). A better understanding of the mechanisms that determine either survival or
death following checkpoint adaptation might provide insight into the potential mechanisms for the
failure of cancer therapies, thereby facilitating further improvement of current cancer treatments.

7. Future Directions

Cancer is often regarded as an asexual evolution in which cancer cells arise through the
sequential acquisition of beneficial mutations that should confer an increased fitness to the adapted
cells [94–96]. Checkpoint adaptation serves as a mechanism by which cells become adapted to stressful
conditions [16,77,84,85,89,92]. As described above, in this process the interaction between DNA
repair pathways and cell cycle checkpoints determines cell fate decision and prevents neoplastic
transformation. Preservation of integrity of multicellular organisms relies on these extra layers of
developmental control. While the nature of what adaptation means for tumor cells in a multicellular
organism remains puzzling, several observations indicate that the DNA Damage response may also
affect the biology of the surrounding cellular microenvironment (for review see Reference [97]). In this
process, the DNA damage response in cancer cells produces a paracrine signaling to induce changes in
nearby microenvironment. However, DNA-damage response plays a crucial role, not only in cancers,
but also in a wide variety of hereditary as well as non-genetic diseases [98–102]. A better understanding
of how the DDR-driven signals are regulated and received by the surrounding microenvironment
could represent an opportunity to understand how the systemic homeostasis controls cell fitness.
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