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Man is a mystery. It needs to be unravelled, and if you spend your whole
life unravelling it, don’t say that you’ve wasted time. I am studying that
mystery because I want to be a human being.
Fyodor Dostoevsky.
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Abstract

At the molecular scale, even in conditions of thermodynamic equilibrium,

the fluids do not exhibit a deterministic behavior. Going down below the

micrometer scale, the effects of thermal fluctuations play a dominant role in

the dynamics of the system, calling for a suitable description of thermal fluc-

tuations. These models not only play an important role in physics of fluids,

but a deep understanding of these phenomena is necessary for the progress

of some of the latest nanotechnology. For instance the modeling of thermal

fluctuations is crucial in the design of flow micro-devices, in the study of bio-

logical systems, such as lipid membranes, in the theory of Brownian engines

and in the development of artificial molecular motor prototypes. Another

problem with a huge technological impact is the phenomenon of nucleation –

the precursor of the phase transition in metastable systems – in this context

related to bubble formation in liquid-vapor phase transition. Vapor bubbles

form in liquids by two main mechanisms: boiling, by increasing the tempe-

rature over the boiling threshold, and cavitation, by reducing the pressure

below the vapor pressure threshold. The liquid can be held in these metasta-

ble states (overheating and tensile conditions, respectively) for a long time

without forming bubbles. Bubble nucleation is indeed an activated process,

requiring a significant amount of energy to overcome the free energy barrier
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and bring the liquid from the metastable conditions to the thermodynami-

cally stable state where vapor is observed. Depending on the thermodynamic

conditions, the nucleation time may be exceedingly long, the so-called "rare-

event" issue. Nowadays molecular dynamics is the unique tool to investigate

such thermally activated processes. However, its computational cost limits

its application to small systems (less than few tenth of nanometers) and to

very short times, preventing the study of hydrodynamic interactions. The

latter effects are crucial to understand the cavitation phenomenon in its en-

tirety, starting from the vapor embryos nucleation up to the macroscopic

motion.

In this thesis a continuum diffuse interface model of the two-phase fluid

has been embedded with thermal fluctuations in the context of the so-called

Fluctuating Hydrodynamics (FH) and has been exploited to address cavita-

tion. This model provides a set of partial stochastic differential equations,

whose deterministic part is represented by the capillary Navier-Stokes equa-

tions and reproducing the Einstein-Boltzmann probability distribution for

the macroscopic fields. This mesoscale approach enables the description of

the liquid-vapor transition in extended systems and the evaluation of bub-

ble nucleation rates in different metastable conditions by means of numerical

simulations. Such model is expected to have a huge impact on the under-

standing of the nucleation dynamics since, by reducing the computational

cost by orders of magnitude, it allows the unique possibility of investiga-

ting systems of realistic dimensions on macroscopic time scales. In addition,

after the nucleating phase, the deterministic equations have been used to

address the collapse of a cavitation nanobubble near a solid boundary, sho-

wing an unprecedented description of interfacial flows that naturally takes
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into account topology modification and phase changes (both vapor/liquid

and vapor/supercritical fluid transformations).
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Overview

Nucleation is a complex and intrinsically multiscale problem representing the

precursor of phase change in first order phase transitions. Among the huge

variety of nucleation problems in nature, this thesis is devoted to the study

of liquid-vapor phase change inception. The proposed model is based on a

mesoscale approach exploiting a diffuse interface approach embedded with

thermal fluctuations. The approach I follow in this PhD project is theore-

tical and numerical, and basically, can be structured as follows: I coupled a

diffuse interface model with fluctuating hydrodynamics, exploiting the model

to address homogeneous and heterogeneous nucleation. In order to perform

in silico experiments, an in-house parallel code has been developed. Nu-

cleation rates, have been calculated by numerically integrated the resulting

equations (Landau-Lifshitz-Navier-Stokes equations with capillarity) showing

very good agreement with MD simulations as well as more classical approach.

The model is also able to capture long terms dynamics in nucleation –not

easily detectable with conventional techniques– revealing some interesting

effects. In fact, in closed system, the hydrodynamic effects have a great in-

fluence on the nucleation dynamics, where the "bubble crowding" strongly

change the nucleation rate. Furthermore, I proposed a spherical version of

the LLNS, particularly useful when dealing with homogeneous nucleation,
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since it is reasonable to assume the spherical shape of nucleation embryos.

In addition LLNS equations can be also used in a pure deterministic set-

ting, showing a very accurate description of the hydrodynamics of a two

phase system. In particular, the model is exploited to study the collapse of

a cavitation nanobubble near a solid surface, showing an accurate reproduc-

tion of the main physical phenomena detected in the experiments, namely:

strong peaks of pressure and temperature, shockwave emission and liquid jet

formation.

In the first chapter, an introduction to vapor bubble nucleation will be

given, with particular emphasis on cavitation. The main features of the

phenomenon are exposed as well as the technological implications. Further-

more a brief overview on the state of art and about the importance of using

mesoscale approaches in this context will be illustrated.

The second chapter retraces a detailed description of the Van der Walls

diffuse interface approach. In the first sections the thermodynamics of a non-

homogeneous system is recalled, deriving a thermodynamically consistent

equations of motion for a multiphase system. In this context, I proposed a

general expression to uniquely identify the solid-fluid contact angle, relating

the solid-fluid free energy contributions with the bulk properties of the fluid.

Furthermore a rare event technique (String Method) is coupled with the

phase field description to address the bubble nucleation rate.

The third chapter recalls the Einstein theory of hydrodynamic fluctua-

tions, focusing on capillary fluids. Starting from the probability density

functional, under the hypothesis of small fluctuations, the field correlations

of a Van der Walls fluid are obtained in a closed form. The celebrated fluc-

tuation dissipation theorem is than derived in a phase field context, leading
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to the Landau-Lifshitz-Navier-Stokes (LLNS) equations for a capillary fluid.

These equations are used to address the vapor bubble nucleation in a meta-

stable liquid. Furthermore, I derived a new set of stochastic equations for

nucleation, arising from a spherical version of LLNS.

The fourth chapter is focused on the numerical analysis of the LLNS

equations, highlighting the principal numerical issues in capillary and sto-

chastic equations. The first sections concern the numerical analysis of the

deterministic part of the equations, while the other ones are focused on the

stochastic part.

Chapter 5 is devoted to draw the conclusions about this research activity,

its implications and further possible developments.

The remaining chapters report the papers I published on high-impact

peer-review journals. In particular in Chapter 6 the Van der Waals diffuse

interface model is exploited to address the dynamics of a cavitation nanobub-

ble near solid boundary, and in Chapter 7 the same diffuse interface model

is coupled with a fluctuating hydrodynamic theory to study the vapor bub-

ble homogeneous nucleation. Chapter 8 report the model extension to study

heterogeneous nucleation (paper in preparation).

Finally, since the present PhD project is framed in an interdisciplina-

ry context between engineering and physics, in the appendices are retraced

the main features of mathematical techniques that are commonly known in

the statistical physics community and not entirely taken for granted in the

engineering one.

During my PhD work an international collaboration with Dr. X. Noblin

from the “Institut de Physique de Nice”lead to the publication of paper con-

cerning the acoustics of a micro-confined cavitation bubble [127]. In addition
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Capitolo 1

Introduction

The fundamental aspect underlying the phase change inception draws simila-

rities in a very large number of applications such as vapor bubble cavitation

on propeller blades and on turbines, ice formation on aircrafts, drying or

de-foaming procedures in the food industry, solidification in material science

and alloy production. The variety of technological applications combined

with the complex nature of the phenomenon make nucleation a stimulant

research area. The main challenging aspect concerning nucleation is its mul-

tiscale nature, ranging from the molecular scale up to the hydrodynamic one.

From an experimental point of view, quantitative measurements during the

phase change inception are not easy to perform, due to the wide spectrum

of space-time scales to be investigated. This issue represents also a great

challenge for theoreticians who need to develop consistent multiscale models

to correctly capture the critical features of the nucleation phenomenon.

This Chapter is devoted to the presentation of the peculiar aspects of

nucleation, with particular attention to the nucleation of vapor bubbles

in liquids. The main features of the liquid vapor phase transition will be

highlighted, as well as the possible technological implications.
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1.1 The impact of nucleation phenomena in na-

ture and technological applications

Nucleation is the “incipit” in the formation of a new thermodynamic pha-

se, representing the precursor of phase transformation. In particular, the

liquid-vapor phase transition can be achieved by two different mechanism:

by increasing the temperature up to the boiling threshold, or by decreasing

the pressure below the vapor pressure. We will refer to these two processes

as boiling and cavitation, respectively. The qualitative mechanism during

cavitation of water flowing at ambient conditions, for example, is simple:

vapor nuclei locally appear where the liquid accelerates and its pressure de-

creases. Inside these bubbles the pressure is as low as the vapor pressure

(that at ambient temperature is about 2.3kPa) hence they can survive, and

even grow, as long as they remain in the liquid low pressure regions. Howe-

ver, when the flow transports them in a region with higher pressure, they

suddenly become unstable and collapse. Vapor bubble implosion is a very

complicated physical phenomenon, which comprises large bubble deforma-

tion and topological changes, shockwave emission and propagation through

the liquid, phase transition to and from supercritical conditions [60], and in-

tense pressure and temperature peaks on the order of dozens GPa and 104K,

respectively, [111]. The aforementioned effects are considered the main cause

of damage that is observed on the ship propellers, hydraulic turbines, diesel

engines [17, 14, 120].

Nowadays cavitation is also exploited as a positive source of damage in

different areas of applied sciences, for instance in medicine SWL (shock wa-

ve lithotripsy) it is used to comminute kidney and gall stones with acoustic

16



waves and HIFU (high intensity focused ultrasound) for tumor treatment

and other surgical applications [27, 29, 70]. In biochemistry applications the

vorticity induced during the last stage of bubble collapse is being used to

enhance mixing [89], furthermore manipulation of cavitation nuclei is em-

ployed in drugs and genetic material delivery, e.g., to enhance biological

barrier layer permeability [38, 114] . Concerning nuclei manipulation, liposo-

mes and microbubbles are designed with a variety of contents, structures and

appendage in order to carry drugs to the target site. Drug can be incorpora-

ted by themselves, or if insoluble in water, within the lipid layer. After the

bubbles/liposomes have reached the specific site, cavitation can be triggered

by using ultrasound or laser-pulses. Hence by controlling liquid-jet formation

or shockwave emission cell membrane poration (the so-called sonoporation)

can be achieved. Recently gene-loaded structures have been used for DNA

injection without destroying effects on the cell[19]. In a completely different

context cavitation devices have been developed for the treatment of water

pollution [1]. In wastewater treatment, the combined mechanical, thermal

and chemical effects of bubble collapse are exploited. In particular the pro-

duction of free radicals [134] is found to enhance enhances the oxidation of

contaminants in water.

Another example of the cavitation occurrence is the phenomenon of crac-

king knuckles which have been recently theorized to derive from cavitation

bubbles formed into synovial liquid within articulations. According to some

authors osteoarthritis can be caused by repeated cavitation events occurring

into joints when they are subjected to traction stress [140].

The crucial issue, and the important challenge, is to obtain quantitative

information on all the different aspects involved in cavitation. An appropria-
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te investigation down to the smallest length and time scale is needed in order

to capture all the macroscopic effects. From an experimental point of view,

quantitative measurements of relevant physical observables in cavitation are

not easy to perform, due to the reduced space-time scales on which the phe-

nomenon occurs (ns/µs in terms of time and nm/µm in terms of space), thus

developing theoretical and numerical models is crucial in order to achieve a

quantitative understanding of cavitation. On the other hand developing a

fully consistent theory is still a great challenge for theoreticians. Concerning

the bubble dynamics, the first mathematical model was developed by Lord

Rayleigh in 1917 and subsequently improved by M. Plesset [118]. Raylei-

gh studied the dynamics of a bubble in an incompressible liquid under the

assumption of spherical symmetry. He modeled the bubble interface as a ma-

thematical, zero-thickness discontinuity, obtaining an evolution equation for

the bubble radius. This model has proven to be very useful for predicting the

time evolution of the gas pressure inside the bubble, the bubble oscillations,

and an overview of the approximate dynamics of the collapse. However the

model is not able to predict many other phenomena that characterise cavi-

tation: starting from the nucleation phase up to the reabsorption. The main

limitations of these sharp interface models emerge when the diffused nature

of the vapour-liquid interface becomes important. This typically happens

when the size of the bubble is comparable with the vapor-liquid interface

thickness, like e.g. in the case of nanobubbles during nucleation inception,

and during the last stages of bubble collapse. More complete models are

required in these cases to correctly follow the dynamics down to the smallest

relevant scales. One possible solution is relaxing the assumption of sharp

interface, by adopting, e.g., a phase field approach, to be discussed in full

18



detail in Chapter 2.

Figura 1.1: The sketch qualitatively describes the state of matter as a
function of pressure and temperature. The S-zone represent the solid state,
the L-zone the liquid one and the V-zone the vapor phase.

1.2 Metastability and Phase Transitions

Let us now focus on the thermodynamic aspects of the liquid-vapour phase

transition analysing the phase diagram in Fig.1.1. Starting from the liquid

state, evaporation and cavitation are represented by the red and the blue

paths, respectively. This description is however oversimplified and a much

more rigorous analysis of these processes is needed for a complete under-

standing of the phase transition in liquids [41]. In fact, after reaching the

boiling temperature or the vapour pressure, the liquid can remain trapped

near coexistence line for a long time (depending on the level of overheating
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or stretching). The reason is that bubble nucleation is an activated process

that needs to surmount the free energy barrier separating the liquid and the

vapor states. As a consequence the system can remain trapped in a me-

tastable state, unless the barrier vanishes altogether, i.e. the system is at

the so-called spinodal conditions where the transition does not require an

activation energy (spinodal decomposition).

Figura 1.2: The sketch qualitatively describes the energetic configurations
of a thermodynamic system as a function of a generic reaction coordinate
X. The states 1, 2, 3 represent the metastable, the critical and the stable
configurations respectively.

In order to better explain this important point, it is worth focusing on

a one dimensional system, whose free energy ⌦ is sketched in Fig. 1.2 as a

function of a reaction coordinate X. The state X1 is a metastable state,

because it is living at the energetic level ⌦1, which corresponds to a relative
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minimum of the free energy landscape. This “peculiar” state is not the

thermodynamic equilibrium state that the system is expected to reach on

the long time scale which corresponds to the absolute free energy minimum,

X3. Nevertheless, the system could remain trapped for a very long time

around X1. In fact, an amount of energy greater than �⌦⇤ = ⌦2 � ⌦1,

with ⌦2 the energy value of the transition state X2, is needed to bring the

system to thermodynamic equilibrium. In thermally activated process the

energy is provided by thermal fluctuations. In this case the life time ⌧ of

the metastable state is related to the energy barrier as ⌧ / exp(�⌦⇤
/kB✓),

suggesting the definition of metastability as a stability limited over time.

There are many metastable systems in nature. One of the most popular

is carbon in the diamond phase at ambient conditions that could undergo,

in principle, the diamond-graphite phase transition. In standard conditions,

the stable form of carbon is graphite. However the life time of diamond is so

long that diamond can remain stable for million years [137, 7]. Metastability

could be observed also in supercooled water [106, 103], (e.g freezing rain, icing

aircraft) or in emulsions and colloids [85, 48], and in mechanical systems,

for instance when dealing with avalanches [68], and more in general with

sandpile-like systems [24].

Let us now focus on metastable liquids and liquid-vapor phase transition

at constant temperature (cavitation). Figure 1.3 provides the phase diagram

of a Lennard-Jones fluid [75] with binodal and the spinodal lines reported in

the inset. In the ⇢� ✓ plane, the binodal line is identified as the set of points

having same temperature, chemical potential and pressure, blu and azure

lines in the inset. The spinodal points are identified along isotherms where

@p/@⇢ = 0. They are represented by the red and orange lines. All the states
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Figura 1.3: Phase diagram for the Lennard-Jones EoS[75]. In the main plot
the isotherm ✓ = 1.25 and the iso-chemical potential µ = µsat with the sa-
turation value are reported with dashed and dash-dotted lines, respectively.
The saturation densities are identified as the two points with equal tempe-
rature, chemical potential and pressure; the red circle represent the vapor
saturation point and the orange circle the liquid one. The other two circles,
blue and light blue, represent the spinodal points, vapor and liquid respecti-
vely, identified on the isotherm where @p/@⇢ = 0. In the inset the loci of all
the saturation and spinodal points at different temperatures are reported in
the ⇢� ✓ plane.

in the regions comprised between binodals and spinodals are metastable (i.e.

drops and bubbles can nucleate in the metastable regions on the left (vapour)

and on the right (liquid) of the diagram, respectively).

Metastable liquid is represented by a point placed between the orange

and azure line, and it is separated from its stable state (homogeneous vapor
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phase), by an energy barrier that must be surmounted to bring the system

in the new phase. This occurs due to thermal fluctuations, which, starting

from an ideally homogeneous liquid phase, eventually induce the formation

of vapour nuclei. After the nuclei reach a critical size, they start expanding

surrounded by their mother phase, in a complex non-equilibrium process,

leading the system to decompose in two different phases.

Depending on thermodynamic conditions, the time needed for the occur-

rence of a sufficiently intense fluctuation event able to produce a supercritical

nucleus can be very long. For this reason, nucleation can be seen as a rare

event. The relevance of thermal fluctuations underlines the microscopic na-

ture of the phenomenon. However, despite its origin is to be definitely found

at the atomistic level, nucleation takes place on temporal scales which, due

to the rare event issue, is several order of magnitude greater than the mole-

cular characteristic time. Moreover, in many cases the interest is centred on

systems of macroscopic size.

The presence of impurities or dissolved gas strongly lowers the energy

barrier and facilitates bubble formation. The presence of solid boundaries

makes a similar effect. In fact the energy needed to form a vapour bubble

on a solid surface depends on the contact angle and, as explained in the

next section, it can be considerably lower than it is in a bulk phase. This is

the reason why it is so common to observe cavitation in water at pressures

considerably larger than the extreme cavitation limit of ultra-pure water

which can sustain 1 kbar tensions [10]. Moreover recent experimental works

have highlighted how the wettability of ultra-smooth surfaces can strongly

influence the onset temperature of pool boiling in superheated liquids [26,

25, 100].
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Several theoretical models have been proposed in order to estimate the

energy barrier and the nucleation rate, i.e. the number of nucleated bubble

per unit time and volume, both in homogeneous and heterogeneous (near

extraneous boundaries) conditions. The classical nucleation theory (CNT)

[18], poses the basis for the understanding of the phenomena, and it may be

easily extended to the non-homogeneous case [147], as recalled in Sec. 1.3.

The major contribution to the work to create a vapour bubble into a me-

tastable liquid is the positive work needed to create the bubble surface. Its

value is related to the surface tension and to the surface extension. The

counteracting contribution is the energy released to transform the liquid into

the stable vapour phase. Its value is related to the difference between the

vapour pressure and the ambient pressure and it is proportional to the bub-

ble volume. The (algebraic) sum of these two contributions gives the total

work needed to create a bubble of a given radius. At small radii the surface

contribution prevails up to a critical bubble radius where the needed work is

maximum and then the negative volume contribution becomes stronger and

the work start decreasing. This maximum work corresponds to the energy

barrier that must be overcome to create a vapor region.

1.3 Classical Nucleation theory

Classical nucleation theory (CNT) [80, 28, 147] provides the fundamental

understanding of bubble nucleation in a metastable liquid, both for homoge-

nous (bubble forming in the bulk liquid) and heterogenous conditions (bub-

ble forming in contact with an extraneous phase, typically a solid with given

geometry and chemical properties). The simplest example of heterogenous

nucleation is a vapor bubble nucleating on a flat solid surface at fixed contact
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angle �. The free energy of a spherical cup laying on a flat solid wall,

⌦ (R,�) = ��pVV (R,�) + �LVALV (R,�) +

+ �SVASV (R,�) + �LSALS (R,�) , (1.1)

depends on the vapor-liquid pressure jump�p = pV �pL (the Laplace pressu-

re), the bubble volume VV , the area of liquid-vapor ALV , solid-vapor ASV and

liquid-solid ALS interfaces and the respective surface energies �LV , �SV , �LS.

Introducing the equilibrium (or Young) contact angle � = cos�1(�LS �

�SV )/�LV ) (see the sketch in Fig. 1.4, where, at variance with the stan-

dard convention, the angle is measured from the vapor-solid interface, i.e.

� > ⇡/2 means hydrophilic) allows for re-expressing the relevant geometric

quantities as ASV = ⇡R
2 sin2

�, ALV = 2⇡R2(1 � cos�), ALS = Aw � ASV ,

VV (R,�) = VV (R, ⇡) (�), where is Aw the total surface of the solid wall and

 (�) = 1/4(1� cos�)2(2 + cos�). As � ! ⇡ the free energy reduces to the

homogeneous case. Thus, starting from a homogeneous metastable liquid and

denoting by �⌦hom = ��pVV (R, ⇡) + �LVALV (R, ⇡) the free energy spent

for a spherical bubble of radius R in the bulk liquid, the energy required to

form a spherical cup at the wall reads

�⌦ (R,�) = �⌦hom (R) (�) . (1.2)

The free energy consists of two contribution, one associated with volume

terms and decreasing like R
3 with increasing bubble radius and the other

depending on the surface area which increases with like the square of the

bubble radius. The free-energy attains a maximum, the critical state, at the

critical radius R
⇤.

R
⇤ =

2�LV
�p

, (1.3)
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Figura 1.4: Left panel: bubble sketch illustrating the equilibrium contact
angle � and the bubble radius R. Right panel: CNT prediction of free-energy
profiles for different contact angle �, the continuous line corresponds to the
homogeneous case (� = ⇡), the dotted lines represent the heterogeneous case.

The corresponding free energy barrier is

�⌦⇤ = �⌦ (R⇤
,�) = �⌦⇤

hom (�) =
16

3
⇡
�
3

LV

�p2
 (�) . (1.4)

The critical radius is the same both for heterogeneous and homogenous nu-

cleation. On the opposite, the barrier �⌦⇤ for heterogenous nucleation is

lower than �⌦hom ( (�)  1). Clearly, for trivial geometrical reasons, also

the critical volume V
⇤ = 4/3⇡R⇤3 (�) is smaller for the heterogeneous case.

As an example let us compare the work needed to form a vapour bubble in

the bulk of the liquid phase �⌦hom (homogeneous nucleation) with the work

needed to form a vapour bubble on a flat solid surface �⌦het (heterogeneous

nucleation) by assuming, for the sake of simplicity, the contact angle � = ⇡/2.

It is straightforward to realize that�⌦hom = 2�⌦het, since the critical bubble

is expected to be a perfect half of the one in homogeneous condition. It

follows that the probability of observing a nucleated bubble on a solid surface
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is significantly larger than the probability of observing a vapour bubble in

the bulk.

1.3.1 The Blander and Katz Nucleation Rates

The crucial observable in the nucleation process is the nucleation rate, i.e.

the normalized number of super-critical bubbles formed per unit time. In

the heterogeneous context the normalization is per unit surface (as opposed

to unit volume used in homogeneous conditions). The expression for the

nucleation rates[18, 41] are

JBK = nL

r
2�LV
⇡m

exp

✓
�
�⌦⇤

kB✓

◆
, (1.5)

concerning the homogeneous nucleation, and

JBK = n
2/3
L

(1� cos�)

2

r
2�LV
⇡m

exp

✓
�
�⌦⇤

kB✓

◆
, (1.6)

for the heterogeneous one, where nL is the liquid number density and m the

mass of the liquid molecule.

Equations (1.5–1.6) represent the famous Blander and Katz expressions

for the nucleation rates in the CNT context. They are commonly used as a

reference theory in nucleation.

1.3.2 The Kramers theory

Kramers theory [83] provides the mean time ⌧ for the diffusion across a barrier

(mean first passage time) of a random walker trapped in the metastable basin

of a given potential. Let us denote B ⇢ S the metastable basin where S is

the space of the states for the physical system (each trajectory X(t) 2 S).
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In the present context the random walker is assumed to obey the Langevin

equation
dX

dt
= µ (X) + (2D)1/2⇠(t) , (1.7)

where ⇠ is delta-correlated process, h⇠(t) ⌦ ⇠
T (t

0
)i = �(t � t

0
) with D the

diffusion tensor. Let us denote P (X, t|Y, t0) the transition probability from

the state Y at the time t0 to the state X at the time t. It obeys the Fokker

Planck equation (see Appendix B for details)

@P (X, t|Y, t0)

@t
= �FP (X, t|Y, t0) , (1.8)

where

F =
@

@X
· µ (X)�

@

@X
⌦

@

@X
: D , (1.9)

is the Fokker Planck operator.

Eq. 1.8 must be complemented with initial and boundary conditions, that

in the context of barrier crossing problems can be assumed to be

P (X, t0|Y, t0) = � (X�Y) X 2 B ,

P (X, t|Y, t0) = 0 X 2 @B ,

in other words @B is an absorbing boundary.

The probability that the trajectory X is still contained in the basin B,

or equivalently, the probability that the mean first passage time ⌧(Y) (time

required to reach @B starting from Y) is greater than the current time t, can

be easily evaluated as

⇧ (t|Y, t0) =

Z

B

P (X, t|Y, t0) dX = Pr (⌧(Y) > t) =

Z
+1

t

⇡ (⌧ |Y) d⌧ ,

(1.10)
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with ⇡ (⌧ |Y) the probability density distribution of the first passage times.

Thus the mean value of ⌧ is

h⌧ (Y)i =

Z
+1

0

⌧ ⇡ (⌧ |Y) d⌧ = �

Z
+1

0

⌧
@⇧ (⌧ |Y, 0)

@⌧
d⌧ , (1.11)

that, after integrating by parts provides

h⌧ (Y)i =

Z
+1

0

d⌧

Z

B

P (X, ⌧ |Y, 0) dX . (1.12)

Since Y is the starting state for the random walker X, the governing equation

for the mean first passage time, will be related to the Kolmogorov Backward

equation, in fact by applying the adjoint of the operator F to the Eq. 1.12

one finds

F
†
h⌧ (Y)i = �

Z
+1

0

d⌧

Z

B

@P (X, ⌧ |Y, 0)

@⌧
dX , (1.13)

where Eq. C.13 in Appendix B has been enforced, and the stationary condi-

tions are invoked P (X, t|Y, t0) = P (X, t� t0|Y, 0). So, the Eq. 1.13 can be

integrated, by using Eq. 1.10 leading to

F
†
h⌧ (X)i = 1 , (1.14)

representing a differential equation for the mean first passage time, with the

boundary condition h⌧ (X)i = 0 on @B.

In the light of above general description, for a one dimensional physical

system, moving in a bistable potential ⌦(X), according to the equation

dX

dt
= �

d⌦

dX
+
p

2D⇠(t) , (1.15)

a simple equation for h⌧i can be deduced by enforcing Eq. 1.14,

�
d⌦

dX

d

dX
h⌧ (X)i+D

d
2

dX2
h⌧ (X)i+ 1 = 0 , (1.16)
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By multiplying both sides of Eq. 1.16 by the integrating factor exp(��⌦)/D,

the equation is rearranged as
d

dX

✓
exp (��⌦)

dh⌧(X)i

dX

◆
= �

1

D
exp (��⌦) , (1.17)

with � = 1/kB✓.

Hence by initialising the system in the metastable basin [, the mean time

required to reach the saddle point in the unstable basin \, is obtained by

integrating Eq. 1.17, leading to

h⌧i =

Z

[

exp

✓
�
⌦(X)

kB✓

◆
dX

Z

\

1

D
exp

✓
⌦(X)

kB✓

◆
dX . (1.18)

The relationship between barrier crossing and nucleation, becomes evident

when one considers the free energy of a vapor bubble in a surrounding liquid,

as prescribed by CNT. In fact by imposing the potential ⌦ = �⌦ in Eq. 1.2,

the mean time required to form a critical bubble can be evaluated by solving

Eq. 1.18.

Here for the sake of simplicity a simple approximation of Eq. 1.14 based

on the Laplace’s method is reported. This method provides accurate results

for high barriers. Alternatively a numerical approach should be adopted.

The approximation is

⌧ =
1

D⇤
exp

✓
�⌦⇤

kB✓

◆Z
+1

�1

dr exp

✓
�
1

2

�

kB✓
r
2

◆�2
, (1.19)

with � = d
2�⌦/dR2

|R=0 = 8⇡�LV (�). The RHS of Eq. (1.19) is a Gaussian

integral that is easily calculated providing

⌧ (�) =
1

D⇤

kB✓

4 (�)�LV
exp

✓
�⌦⇤

kB✓

◆
. (1.20)

The diffusion coefficient D
⇤ = kB✓/16µ⇡R⇤ as evaluated in [101], by enfor-

cing the fluctuation dissipation balance for the overdamped Rayleigh-Plasset

equation, where µ is the fluid viscosity.
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Once ⌧ is evaluated, the nucleation rate may be estimated as [12, 55]

Jhom =
nL

⌧ (⇡)
, (1.21)

for the homogeneous case, and

Jhet =
n
2/3
L

⌧ (�)
, (1.22)

for the heterogeneous one.

1.4 Modelling Thermal Fluctuations at the Con-

tinuum Level

As discussed in the previous sections, a suitable modelling of thermal fluctua-

tions is crucial to address nucleation, and in general multiphase flow involving

spontaneous phase transformations. For this reason a brief description of the

theory of hydrodynamic fluctuations at the continuum level is included in

the present Introduction.

At the molecular scale, even in conditions of thermodynamic equilibrium,

the fluids exhibits a stochastic behaviour. In fact, going down below the

micrometer scale, the effects of thermal fluctuations play a dominant role in

the dynamics of the system. As a consequence, a suitable description of me-

soscale fluid dynamics must include thermal fluctuations. Such fluctuations

have been experimentally investigated by light and neutron scattering [15].

Since the pioneering work of Landau and Lifshitz (1958, 1959) [84] several

models, describing the hydrodynamic fluctuations at the continuum level,

have been developed [61, 152, 104, 124]. In the literature these approaches

are grouped under the name of "Fluctuating Hydrodynamics". The main
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idea of Lifshitz and Landau theory is to treat the thermodynamic fluxes as

stochastic processes. As prescribed by the thermodynamics of irreversible

processes, at macroscopic level, thermodynamic fluxes are the expression of

microscopic molecular degrees of freedom of the thermodynamic system. Un-

der this respect dissipation in fluids can be seen as macroscopic manifestation

of the energy transfer arising from random molecular collisions [40]. Thus

at mesoscopic scale, thermodynamic fluxes have to be modeled as stochastic

tensor fields, whose statistical properties can be inferred by enforcing the

fluctuation-dissipation-balance (FDB). Since the eminent work of Einstein on

the theory of equilibrium thermal fluctuations [57], other investigators have

analised the statistical fluctuation by considering the entropy as the proba-

bility functional of the fluctuations [61, 123, 124]. Each fluctuation results

in an entropy deviation from the equilibrium value (the maximum value).

Evidently, every large deviation from the equilibrium conditions (resulting

for a great fluctuation) will have a very small probability of occurrence.

Once a suitable probability distribution functional of the fluctuations is

available, a stochastic process reproducing such equilibrium statistical pro-

perties can be appropriately defined. In this context, the fluctuating hydro-

dynamics equations can be seen as a set of stochastic processes reproducing

the Einstein-Boltzmann probability distribution for the fields, whose deter-

ministic part is represented by the Navier-Stokes equations. In principle

the theory of fluctuating hydrodynamics has been derived for the linearised

Navier-Stokes equations, and as such, it can be considered valid only for

small fluctuations. However some important works have advanced the theo-

ry to the non-linear regime [132, 133, 142], highlighting several differences

with respect to the linear one. In particular the study of one dimensional
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non-linear stochastic Burgers equations provides connections with the KPZ

scaling behavior [78], and the Levy distribution. In addition, non-linear ver-

sion of FDB are well know [136], as well as stochastic equations for non-linear

hydrodynamics [59]. These theories, far away from equilibrium, provide cri-

tical changes in the field statistics, resulting in long-ranged correlations also

in stationary non equilibrium conditions, like, e.g. in the Rayleigh-Bernard

problem [39]. More commonly, the extension of the theory to the non-linear

case, is based on the assumption on the local-equilibrium [21, 40]. This as-

sumption implies that in a non-equilibrium condition, the expressions for the

fluctuation statistics of a system in equilibrium continue to be valid, by sub-

stituting the equilibrium values with the local values of the hydrodynamic

fields. Starting from the pioneering work of Garcia et al. [65], in recent years

there has been an exponential increase of numerical methods for fluctuating

hydrodynamics equations [54, 46, 11, 53, 13]. These models not only play

an important role in the physics of fluids, but their predictive power can be

useful to improve some of the latest nanotechnologies. For instance the mo-

deling of thermal fluctuations is crucial in the design of flow micro-devices

[47, 20], in the study of biological systems, such as lipid membranes [107], in

the theory of Brownian engines and in the development of artificial molecular

motors prototypes [115]. Inspired by organic devices able to convert chemi-

cal into mechanical energy by means of thermal noise, devices operating with

the same principles have been theorised. For instance, the cell division is a

mechanical process, driven by the chemical energy released during the ATP

hydrolysis , with much higher efficiency than the common operating machi-

nes. Actually RNA and DNA polymerase can be seen as molecular motors.

In addition, thermal fluctuations play also an important role in the breakup
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of droplets in nano jets [105, 56, 77].

1.5 Beyond Classical Nucleation Theory

In the previous sections, the main features of nucleation have been described,

highlighting the fundamental physical aspects. The CNT poses the founda-

tions for basic understanding, however it still lacks some crucial features.

More sophisticated theories like density functional theory (DFT) [113, 91],

interesting extensions [95, 101], and molecular dynamics (MD) simulations

can give more precise estimates of the barriers and can correct some mis–

prediction of CNT. Such methods are extremely powerful in stationary condi-

tions and need to be coupled to specialized techniques, like the string method

[148], to study the nucleation events and the transition path [67].

Often, depending on the thermodynamic conditions, the time to be awai-

ted to observe the nucleation event is so long and its probability is so small

that the phenomenon is labeled as a “rare events”. In particular this time

grows exponentially as the energy barrier [83]. For this reason, in the last

decades there have been several works addressing nucleation by the means of

rare-event techniques [3, 4, 22, 42]. Forward Flux Sampling (FFS) explores

a series of interfaces placed between an initial and final states to calculate

rate constants and transition paths, both in equilibrium and nonequilibrium

systems driven by stochastic dynamics. Transition Path Sampling (TPS)

perturbs random paths in the space of configurations –as in Monte Carlo

walks– by accepting or rejecting configurations to reconstruct the correct

path probability. Alternatively the study of nucleation processes is almost

uniquely addressed by direct molecular dynamics simulations [6, 49], which

for a large part of the real systems are often computationally too expensive,
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limiting its application to very small domains, often far from the technologi-

cal applications. In addition molecular dynamics simulations are not able to

capture the hydrodynamics effects, crucial for the next phases of the nuclea-

tion process. These aspects suggest the adoption of mesoscale models for the

study of nucleation in its entirety, starting from the phase change inception

up to the macroscopic motion.

Promising approaches are based on phase field models, having as order

parameter the mass density itself. In stationary conditions they recover the

DFT descriptions with a squared-gradient approximation of the excess energy

[92]. The phase field models have the advantage of being easily extended to

unsteady situations, enabling the full description of both the thermodynamic

and the fluid dynamics fields [96, 99, 97]. The model, in its original form,

is deterministic and cannot capture spontaneous nucleation originated by

thermal fluctuations, in absence of external forcing. To this purpose, the

theory of fluctuating hydrodynamic [40, 33] represents the natural framework

to embed thermal fluctuations inside the phase field description, and also it

has been recently stressed as the theory can be used to formulate dynamical

theory of nucleation [93], providing stochastic equations for the evolution of

order parameter and a formalism to evaluate the nucleation pathways.

During my PhD research, I developed a novel mesoscale approach, based

on a diffuse interface description of the two-phase vapor-liquid system em-

bedded with thermal fluctuations through a fluctuating hydrodynamics mo-

deling. The model has been used to address vapor bubble nucleation in both

homogeneous [63, 64] and heterogeneous case (see Chapter 7). This mesosca-

le approach offers a good level of accuracy (as exposed in the next sections)

at a very cheap computational cost compared to other techniques, providing
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the possibility of dealing with macroscopic system. The typical size of the

simulated system on a small computational cluster (200⇥200⇥200 nm3, cor-

responding to a system of order 108 atomistic particles) is comparable with

one of the largest MD simulations [49] on a tier-0 machine. Moreover the

simulated time is here Tmax ⇠ µs to be compared with the MD Tmax ⇠ ns.

The enormous difference between the two time extensions allows us to ad-

dress the simultaneous nucleation of several vapor bubbles, their expansion,

coalescence and, at variance with most of the available methods dealing with

quasi-static conditions, the resulting excitation of the macroscopic velocity

field. These hydrodynamic effects –not easily detectable with conventional

techniques– have a great influence on the nucleation dynamics, specially for

closed systems [63], where "bubble crowding" strongly affects the nucleation

rate. The above approach has been extended also to address heterogeneous

vapor bubble nucleation, showing its applicability even when dealing with

more complex physical systems, e.g., vapor bubble nucleation on solid surface

having different wetting properties (see Chaper 8).
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Capitolo 2

Diffuse interface models

Aim of this chapter is to introduce the diffuse interface approach that will be

exploited in the present thesis. The chapter will start discussing the general

thermodynamic description of the two-phase, liquid-vapour systems, and will

analyse with great detail the particular case of the Van der Waals model, the

so-called “square-gradient approximation”. The resulting model provides a

mesoscale description of the liquid-vapour system, enabling a robust charac-

terisation of the interfacial properties, namely the interface thickness and the

surface tension, down to the nanometer length scale.

The presence of a confining solid surface with different wetting properties

can be also taken into account with this approach. In this context I propose

a general expression to uniquely identify the solid-fluid contact angle, rela-

ting the solid-fluid free energy contributions with the bulk properties of the

fluid. This model recovers the classical Young-Laplace equilibrium wetting

condition and the prescribed expressions for the diffused contact line in the

context of the famous Cahn-Hilliard phase field approach for binary flows.

Successively, the governing equation of multiphase systems enodowed with

capillarity will be derived in details, by choosing a thermodynamic consistent
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constitutive relationship between thermodynamic forces and thermodynamic

fluxes. During my research I exploited this model to address the collapse of a

cavitation bubble near a solid boundary, showing an unprecedented descrip-

tion of interfacial flows, that naturally takes into account topology modifica-

tion and phase changes (both vapour/liquid and vapour/supercritical fluid

transformations).

In order to deal with the rare event issue described in the Introduction

which, of course, is still present in the proposed mesoscale description, the

diffuse interface model will be coupled with the string method, one of the

specialised rare event techniques, in order to extract the free energy barriers

and the transition paths during both homogeneous and heterogeneous vapour

bubble nucleation.

2.1 Thermodynamic of non-homogeneous systems

Let us briefly describe the thermodynamic equilibrium of a two-phase sy-

stem, focusing on a closed system with fixed temperature and volume. Van

der Waals was the first to recognise that a description of the Helmholtz free

energy based only on the local values of temperature and phase indicators

was not sufficient to describe the internal structure of a transition zone se-

parating two different phases. Indeed he showed how a local description

of the free energy provides a separating interface having zero-thickness and

zero surface tension. Thus, in order to describe to thermodynamics of a

non-homogeneous system, in which the different phases are separated by a

smooth transition zone, a non-local term (depending on the spatial gradients

of the phase indicator) should be added to the free energy of the system. In

modern terminology, the non-local terms in the free energy can be justified in
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the context of Density Functional Theory, see Lutsko ([91, 92]) for a detailed

derivation and related comments. Accounting for the presence of a solid wall

in contact with the fluid, the general form of the (Helmholtz) free-energy

functional F as a function of the temperature ✓ and a phase indicator �

takes the form

F [�, ✓] =

Z

V

fb (�, ✓) + fs (r�, ...,r�⌦ ...⌦r�) dV +

Z

@V

fw (�, ✓) dS ,

(2.1)

where fb is the homogeneous bulk free-energy contribution, fw is related to

solid-fluid interactions and fs is the gradient contribution, depending on the

spatial gradients of the phase indicator �. At fixed temperature ✓ = ✓0 the

equilibrium condition is reached when the first variation of the functional 2.1

with respect to the phase indicator � is zero, leading to the Euler-Lagrange

equation

�F

��
=

@fb

@�
+

NX

k=1

(�1)k r(k) :
@fs

@

⇣
r(k)�

⌘ = 0 , (2.2)

where the superscript ⇤(k) on the differential operator r denotes rank k ten-

sor operator defined as the n-fold tensor product of r with itself. Eq. 2.2 is a

partial differential equation for the equilibrium profile of the phase indicator

� with boundary conditions

@fw

@�
+ g (r�, ...,r�⌦ ...⌦r�,n) = 0 , (2.3)

with n as a unit normal on the domain V and g is a function arising from the

boundary terms when integrating by parts. The boundary conditions arise,

in fact, from the extremality condition on the free-energy functional, due the
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presence of the solid-fluid interactions described by the free-energy boundary

term.

It is worth stressing that the existence of a smooth equilibrium configu-

ration �eq of two distinct phases, i.e. a diffuse interface separating them,

originates from the presence of the gradient contribution to the free energy.

2.2 The Van der Waals approach

In the last part of XIX century scientists were starting to recognise that the

separation surface between two thermodynamic phases could have a finite

thickness. Van der Waals, based on phenomenological assumptions, proposed

a gradient theory that led him to predict the interface thickness of a fluid

near the critical point. In the framework of a general phase field theory, Van

der Waals assumes the density field as the relevant phase indicator, and the

density gradient square norm as a surface contribution basically localised at

the liquid-vapour interface where the density gradient is large (see. Eq. 2.4

below). The model is extremely powerful both for steady and unsteady

conditions, providing a robust description of interfacial flows that naturally

accounts for topology modification of the regions occupied by the two phases

and the phase change between them [96, 98]. Since in this initial illustration

of the model the focus is on the properties of the fluid irrespective of the

solid walls it may be in contact with, like e.g. surface tension, interface

thickness and the constitutive relationship for thermodynamic fluxes, for the

time being the solid-liquid free energy contribution is neglected. It will be

taken up again in some detail in the forthcoming sections.

For a closed system, with a given mass M0, the constrained Helmholtz

free-energy of a two phase flow in the Van der Waals gradient approximation
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[45, 72, 5] is:

Fc[⇢, ✓] = F [⇢, ✓] + l

✓
M0 �

Z

V

⇢dV

◆
=

Z

V

fdV + l

✓
M0 �

Z

V

⇢dV

◆
=

=

Z

V

✓
fb (⇢, ✓) +

�

2
r⇢ ·r⇢

◆
dV + l

✓
M0 �

Z

V

⇢dV

◆
, (2.4)

where l is a Lagrange multiplier, f = fb + �/2|r⇢|
2 with fb (⇢, ✓) the classi-

cal Helmholtz free energy density per unit volume of the homogeneous fluid

at temperature ✓ and mass density ⇢. The coefficient �(⇢, ✓), in general a

function of the thermodynamic state, embodies all the information on the

interfacial properties of the liquid-vapour system (i.e. surface tension and in-

terface thickness). At given temperature, equilibrium is characterized by the

minimum of the free energy functional (2.4), where variations are performed

with respect to the density distribution ⇢ assumed to be the proper phase de-

scriptor for the liquid-vapour phase transition. The relevant Euler-Lagrange

equation is

µ
b
c �r · (�r⇢)� l = 0 , (2.5)

where the temperature is constrained to be constant, ✓ = const, µ
b
c =

@fb/@⇢|✓ is the classical chemical potential, and the Lagrange multiplier is

identified as l = µ
b
c � r · (�r⇢) = µc(⇢eq) = µeq evaluated at the equili-

brium density field. The equation defines a generalised chemical potential

µc = µ
b
c �r · (�r⇢) that must be constant at equilibrium.

The consequence of the above equilibrium conditions is better illustrated

in the simple case of a single planar liquid-vapour interface separating the two

bulk, homogenous phase (liquid and vapour, respectively). The only direction

of inhomogeneity is s and a constant � is assumed. The constant temperature

appears in the problem as a parameter and will not be further mentioned
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throughout the present section. Hence, determining the equilibrium density

distribution amounts to finding a solution of

µc = µ
b
c(⇢)� �

d
2
⇢

ds2
= µeq . (2.6)

The boundary conditions for this second order ordinary differential equation

are obtained by evaluating the generalised chemical potential far away on the

two sides of the interface, namely in the bulk liquid and bulk vapour where

d⇢/ds = 0. It follows µeq = µ
b
c(⇢V ) = µ

b
c(⇢L).

The solution of Eq. (2.6) is readily obtained by multiplying through by

d⇢/ds and integrating between ⇢1 = ⇢V and ⇢,

wb(⇢)� wb(⇢V ) =
�

2

✓
d⇢

ds

◆2

, (2.7)

where wb(⇢) = fb(⇢) � µeq⇢. Equation (2.7) shows that wb has the same

value in both the bulk phases, where the spatial derivative of mass density

vanishes: wb(⇢L) = wb(⇢V ).

The grand potential, defined as the Legendre transform of the free energy,

⌦ = F �

Z

V

⇢
�F

�⇢
dV =

Z

V

wdV , (2.8)

has the density (actual grand potential density)

w[⇢] = f � µc⇢ = fb +
�

2

✓
d⇢

ds

◆2

�

✓
µ
b
c � �

d
2
⇢

ds2

◆
⇢ , (2.9)

implying that, in the bulk, w = wb, i.e. wb is the bulk grand potential density.

Given the form of wb(⇢), the solution of Eq. (2.7) provides the (implicit

expression for the) equilibrium density profile ⇢(s):

s =

r
�

2

Z ⇢

⇢v

d⇢p
wb(⇢)� wb(⇢V )

+ const . (2.10)
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Eq. (2.10) provides the equilibrium density profile characterized by two bulk

regions separated by a thin layer. The layer thickness can be estimated as

✏ =
⇢L � ⇢V

d⇢/ds|max
. (2.11)

The equilibrium condition, Eq. (2.7), provides the interface thickness in terms

of the bulk grand potential density wb(⇢) and of the parameter �,

✏ = (⇢L � ⇢V )

s
�

2 [wb(⇢̄)� wb(⇢V )]
, (2.12)

without explicitly addressing the density profile. ⇢̄ is the density correspon-

ding to the maximum of d⇢/ds, achieved where dwb/d⇢ = 0, in Eq. (2.7).

The surface tension can be defined as the excess (actual) grand potential

density,

� =

Z Si

�1

(w[⇢]� w[⇢V ]) ds+

Z
1

Si

(w[⇢]� w[⇢L]) ds = (2.13)

=

Z
1

�1

(w[⇢]� w[⇢V ]) ds,

where Si is the position of the Gibbs dividing surface, whose precise value

is ininfluential since w[⇢V ] = w[⇢L] (we stress that, e.g., w[⇢V ] should be

interpreted as the functional (2.9) evaluated at the constant density field

⇢V ). Given the definition of w[⇢], Eq. (2.9), and exploiting the equilibrium

condition for the chemical potential, Eq. (2.6), it follows that

� =

Z
1

�1

"
fb +

1

2
�

✓
d⇢

ds

◆2

� µeq⇢� wb(⇢V )

#
ds = (2.14)

=

Z
1

�1

"
wb +

1

2
�

✓
d⇢

ds

◆2

� wb(⇢V )

#
ds .
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Using Eq. (2.7) one finds

� =

Z
+1

�1

�

✓
d⇢

ds

◆2

ds =

Z ⇢L

⇢V

�
d⇢

ds
d⇢ = (2.15)

=

Z ⇢L

⇢V

p
2� (wb(⇢)� wb(⇢V )) d⇢ ,

where the second expression can be evaluated with no a priori knowledge of

the equilibrium density profile. It worths stressing that, as for the interface

thickness, the surface tension only depends on the form of the bulk grand po-

tential density wb(⇢) in the density range between the two equilibrium values,

[⇢V ; ⇢L], and on the parameter �. Figure 2.1 reports the comparison between

the diffuse interface prediction of surface tension and molecular dynamics

simulations, for a Lennard-Jones fluid. A constant value of � was assumed

to reproduce the simulation data. It is evident how the Van der Waals model

is able to capture the temperature dependence of surface tension. Of course,

equation (2.7) applied to the two adjoining bulk regions where d⇢/ds = 0

implies the mechanical equilibrium condition p(⇢L) = p(⇢V ), where

p = �
@f̂b

@v
= �

@fb/⇢

@v
= ⇢µ

b
c � fb (2.16)

is the classical thermodynamic pressure, f̂b = fb/⇢ the specific bulk free

energy, and v = 1/⇢ the specific volume. Indeed Eq. (2.7) implies wb(⇢V ) =

wb(⇢L), which corresponds to the equality of the pressures given that p =

�wb.

2.3 Solid-Fluid Free Energy

In order to describe a non-homogeneous liquid-vapour system interacting

with a solid surface, I again start from the Van der Waals square gradient

approximation of the (Helmoholtz) free energy functional,
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Figura 2.1: Comparison between the temperature dependen-
ce of the surface tension obtained through Eq. (2.15), when using
the Lennard-Jones EoS [75], and the benchmark data provided
at the url https://www.nist.gov/mml/csd/chemical-informatics-research-
group/lennard-jones-fluid-properties. The value of the capillary coefficient is
fixed to �m

2
/(�5

✏) = 5.224. The results are presented in a non-dimensional
form, taking as reference values the Lennard-Jones parameters.
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Figura 2.2: Bubble sketch illustrating both geometrical and wetting
properties.

Fc [⇢, ✓] =

Z

V

dV

✓
fb (⇢, ✓) +

1

2
�r⇢ ·r⇢

◆
+l

✓
M0 �

Z

V

⇢dV

◆
+

Z

@V

dSfw (⇢, ✓) .

(2.17)

For the sake of uniformity with the previous section, I address the equilibrium

problem in the canonical ensemble, i.e. at constant mass, volume and tem-

perature, but the generalization to the microcanonical ensemble (constant

mass, volume, energy) is straightforward and is addressed in Chapter 8. By

minimising the free-energy, it follows that, in equilibrium, temperature and

(generalized) chemical potential µc must be constant, as expected,

✓ = const = ✓eq (2.18)

µc = µ
b
c � �r

2
⇢ = const = µ

eq
c . (2.19)
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Furthermore the boundary term gives rise to the additional requirement
✓
�r⇢ · n̂+

@fw

@⇢

◆ ����
@V

= 0 , (2.20)

where n̂ is the outward normal, to be read as a (non-linear) boundary condi-

tion for the density. The free energy contribution fw arises from the fluid-wall

interactions and accounts for the wetting properties of the surface. In order

to come up with a model fw, I deduced an analytic form that generalises an

approach that has been already used to describe two immiscible fluids, see

e.g [126, 71].

The analytic form of fw is constructed by observing that the equilibrium

contact angle � is related to the inhomogeneity direction ŝ as ŝ · n̂ = � cos�,

(see Fig. 2.2), and the density gradient is r⇢ = d⇢/ds ŝ, so that Eq. 2.20

reads
dfw

d⇢
� �

d⇢

ds
cos� = 0 , (2.21)

the above equation can be integrated by using Eq. 2.7 providing

fw(⇢) = cos�

Z ⇢

⇢V

p
2� (wb (⇢̃)� wb (⇢V )) d⇢̃ + fw (⇢V ) . (2.22)

The analytic form of fw recovers the physical evidence that for a pure vapor

of density ⇢V in contact with the wall, the free-energy should be given by

the solid-vapor surface tension, fw(⇢V ) = �SV . Similarly, for a pure liquid

of density ⇢L, fw(⇢L) = �LS. These aspects become even more evident by

enforcing Eq. 2.15, leading to

fw(⇢L) = �LS = �LV cos�+ �SV , (2.23)

the famous Young equilibrium wetting condition.

Using the expression (2.22), @fw/@⇢ ⌘ 0 in both stable liquid and sta-

ble vapor. In this case Eq. (2.20) is tantamount to enforcing zero normal
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derivative for the density outside coexistence and metastable regions and

assigning the contact angle � otherwise, i.e. in the small region where the

finite thickness liquid-vapour interface meets the wall. In fact Eq. (2.21) pro-

vides a uniquely defined relationship between contact angle and the normal

derivative of the density, confirming that the surface energy fw encodes the

wetting properties of the wall. In addition, when a pure liquid in metastable

state is in contact with the wall, the model provides a wall normal strati-

fied density profile, in which the density is higher toward the solid surface,

for a hydrophilic wall, and is lower for a hydrophobic one. In Fig. 2.3 the

equilibrium density profiles are reported as a function of the wall normal z,

showing the depletion or absorption layering of the liquid in proximity of the

solid surfaces, as commonly detected [34, 74] in MD simulations. As evident,

the density profiles are not monotonic, foretelling the existence of an exten-

ded region near walls where ⇢(z) < ⇢b for hydrophilic interactions (� > ⇡/2)

and ⇢(z) > ⇢b for hydrophobic ones. Such behaviour is consistent with the

constant mass constraint which characterises closed systems. These aspects

play an important role in heterogeneous nucleation, inasmuch bubble forma-

tion is favoured on hydrophobic walls and discouraged on hydrophilic ones.

Such qualitative statement is corroborated both by energetic considerations

and by fluctuating hydrodynamics simulations of spontaneous heterogeneous

bubble nucleation to be discussed in forthcoming sections (see Chapter 8).

2.4 The String method: energy barriers and

the critical bubble

During my PhD research, I coupled the diffuse interface description together

with a rare-event technique (the string method), in order to obtain the cri-
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Figura 2.3: Spatial density distribution in wall normal direction z. The den-
sity values are normalized with mean bulk density ⇢b, the normal coordinate
z is normalized with the total domain lenght Lz. Two walls with the same
wetting properties are located at z = 0 and z = Lz. The different profiles
refer to different contact angle �.

tical configurations of the bubbles both in homogeneous and heterogeneous

nucleation. The procedure was successfully exploited by Ren [122] to study

the wetting transition on structured hydrophobic walls for a Cahn-Hillard

binary fluid. In this work, it is extended to study vapour bubble nucleation,

for a Van der Waals diffuse interface model.

The minimisation of the free energy functional (2.4), stating that the ge-

neralised chemical potential µc = µ
b
c(⇢)� �r

2
⇢ must be constant and equal

to the external chemical potential µext, allows the evaluation of the equili-

brium density profiles at the different thermodynamic conditions. Clearly, in

49



thermodynamic conditions where either the liquid or the vapour are stable,

constant chemical potential corresponds to a homogeneous phase. When the

liquid or the vapour are metastable instead three solutions at constant che-

mical potential are found: i) the homogeneous vapour; ii) the homogeneous

liquid; iii) a two-phase solution with a spherical (critical) nucleus of a given

radius (vapour/liquid in the case of bubble/droplet, respectively), the critical

nucleus being surrounded by the metastable phase.

Dealing with nucleation, the non-trivial solution of case (iii), ⇢(r) =

⇢crit(r) where the critical bubble is surrounded by the metastable liquid at

⇢ = ⇢
met
L , ✓ = ✓̄ and µc(⇢met

L , ✓̄) = µ
met is particularly significant. The solution

⇢(r) = ⇢crit(r) is found by solving the non linear Euler-Lagrange equation of

the functional 2.4 which, in spherical coordinates and at fixed temperature,

reads

µ
b
c(⇢, ✓̄)�

�

r2

@

@r

✓
r
2
@⇢

@r

◆
= µ

met
. (2.24)

The critical bubble, ⇢c(r), is an unstable solution of Eq. (2.24) which requires

specialised numerical techniques. In this work the powerful string method is

applied [149] which, as additional information, identifies the minimum energy

path (MEP) joining the metastable fluid (e.g. the liquid) to the fluid (e.g.

the vapour ensuing form cavitation). Since our interest here in mainly on

cavitation, the problem is specified as a liquid in metastable conditions inside

a domain of fixed volume. The stable state will correspond to the presence

of an equilibrium bubble enclosed by the liquid contained in the domain.

Please note that at fixed volume, mass and temperature the stable state is

in fact a vapor bubble surrounded by the liquid phase. The MEP can be

visualised as the continuous sequence of density configurations, ⇢(r,↵), the

system assumes when transitioning from the metastable to the stable state,
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where ↵ is a suitably defined parameter along the path. The distance between

two configurations is expressed as

�` =

s
1

V

Z
�⇢2(r)dV (2.25)

and defines the arclength along the path. The discrete form of the path,

consisting of a finite number of configurations, is called the string. The

string method numerically approximates this path starting from an initial

set of Ns configurations {⇢k(r)}. The head of the string (k = 1) is initialised

as a uniform density field corresponding to the uniform metastable liquid

⇢(r) = ⇢
met
L ; the tail (k = Ns) is initialised as a guessed tanh-density profile

adjoining the liquid and the vapour density to approximate a vapour bubble.

All the intermediate images on the string are obtained by interpolation of

these two density fields with respect to the above defined arclength. The

algorithm used for relaxing the string to its final configuration, follows two

steps:

1) All the images ⇢k(r) are evolved over one pseudo-time-step�⌧ following

the steepest-descent algorithm (over-damped regime)

@⇢

@⌧
= µ

met
�


µ
b
c(⇢)�

�

r2

@

@r

✓
r
2
@⇢

@r

◆�
. (2.26)

2) The images are redistributed along the string following a reparametri-

zation procedure by equal arclength. The algorithm is arrested when

the string converges within a prescribed error.

It is worthwhile noting that the transition path geometry depends in general

on the relaxation dynamics used to evolve the string. In an over-damped re-

gime, steepest descent relaxation (Eq. 2.26), could still be used as a reference
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theory, as often done in the current literature. In this context the string con-

verges to the MEP connecting the local minimum to the saddle point, that

under the above assumption is also the most probable transition path [122] .

However critical cluster as well as the energy barriers do not depend on the

relaxation dynamics. The density profile of the critical nucleus, plotted in

panel of Fig. (2.4) at different metastable conditions, allows the evaluation

of the critical radius, by following the relation [44]

R
⇤ =

Z
1

0

r(@⇢c/@r)
2
r
2 dr

Z
1

0

(@⇢c/@r)
2
r
2 dr

, (2.27)

and the evaluation of the energy barrier

�⌦⇤ =

Z
1

0

�
f(⇢c(r))� f(⇢met

L )� µ
met
⇥
⇢c(r)� ⇢

met
L

⇤ 
4⇡r2dr , (2.28)

defined as the difference in grand potential ⌦ between the critical nucleus

and the metastable liquid.

The results of the string method are compared in Tab. 2.1 with tho-

se obtained by classical nucleation theory (CNT) which yields the estimate

�⌦⇤CNT = 4/3⇡�R2

c . The data show that CNT underestimates the energy

barrier at high temperature while overestimates it near the spinodal [31].

In Fig. 2.4 the critical density profiles as evaluated from the string method

are reported for different temperatures. In The thermodynamic conditions

considered here a significant zone of transitions is detected, confirming the

importance of considering a phase field approach when dealing with phase

transitions, specially for high temperatures and near spinodal conditions. In

addition, the energy landscape for a specific thermodynamic condition ⇢L =

0.47 and ✓ = 1.25 is reported in Fig. 2.5 as a function of the bubble radius.
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Figura 2.4: Density profiles of the critical nuclei, evaluated with the string
method, at different thermodynamic conditions of the metastable liquid. The
results are presented in a non-dimensional form, taking as reference values
the Lennard-Jones parameters.
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✓0 ⇢
met
L R

⇤
R

⇤CNT �⌦⇤
/✓0 �⌦⇤CNT

/✓0

1.25 0.45 12.04 8.07 2.99 12.89
1.25 0.46 11.16 8.42 11.21 14.05
1.25 0.47 11.85 9.17 22.81 16.67
1.25 0.48 14.18 10.64 43.5 22.41
1.20 0.51 8.28 6.35 19.20 18.13
1.20 0.52 8.79 6.93 33.58 21.60

Tabella 2.1: Comparison between CNT and the string method applied to the
Diffuse Interface model. Critical radii and (Landau) free energy barriers �⌦⇤

for bubble nucleation from the liquid. The discrepancy close to the spinodal
and at higher temperature are well known from the literature.

The free energy profile shown in Fig. 2.5, differs by the CNT prediction not

only for the energy barrier value (see Table 2.1), but also for the curvatures

in both metastable and transition basins.

2.5 Navier-Stokes equation with capillarity

Since my PhD project combined statistical thermodynamics of nucleation and

dynamics of nucleated bubbles, an appropriate description of the macroscopic

motion is needed. The present section is devoted to the latter issue and

describes the hydrodynamics of two phase systems.

Hydrodynamics is governed by the conservation equations for mass ⇢,

momentum ⇢u, and total energy E

@⇢

@t
+r · (⇢u) = 0 , (2.29)

@⇢u

@t
+r · (⇢u⌦ u) = r ·⌃ , (2.30)

@E

@t
+r · (uE) = r · [⌃ · u� q] . (2.31)

54



R/R*

∆
Ω

/∆
Ω

*

0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2 Energy Barrier String
Energy Barrier CNT

Figura 2.5: Free energy profile as a function of the bubble radius as evaluated
by string method (solid line) and CNT (dotted line). All quantities are
normalized with their critical values, i.e. energy barrier �⌦⇤ and R

⇤.
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System (2.29 – 2.31) needs to be complemented with thermodynamically

consistent constitutive relations for the stress tensor ⌃ and the energy flux

q. Their derivation is outlined below for the simplest case of constant �,

following the general approach for non-equilibrium processes described in

[37].

It is instrumental to rewrite the energy equation in terms of specific in-

ternal energy U , obtained by subtracting the equation for the kinetic energy

from Eq. (2.31)

⇢
DU

Dt
= ⌃ : ru�r · q , (2.32)

where D/Dt = @/@t + u · r is the material derivative. By definition U =

f̂ + ✓ ⌘, with f̂ = f/⇢ the specific Helmholtz free energy and ⌘ the specific

entropy. The total derivative of U reads

dU =
@f̂

@⇢
d⇢+

@f̂

@r⇢
· dr⇢+ ✓d⌘ . (2.33)

The partial derivatives of the specific free energy can be derived from its

definition, Eq. (2.4), and from the definition of the thermodynamic pressure,

Eq. (2.16). Explicitly, one finds

DU

Dt
=

1

⇢2

✓
p�

�

2
|r⇢|

2

◆
D⇢

Dt
+ ✓

D⌘

Dt
+

�

⇢
r⇢ ·

Dr⇢

Dt
. (2.34)

The material derivative of the density gradient (last term in the RHS of

Eq. (2.34)) can be evaluated by applying the gradient operator to the

equation of mass conservation, Eq. (2.29):

�

⇢
r⇢ ·

Dr⇢

Dt
= �

�

⇢
r⇢ ·r (⇢r · u)�

�

⇢
r⇢⌦r⇢ : ru . (2.35)

After substitution of Eqs. (2.29, 2.34, 2.35) into Eq. (2.32), a few more ele-

mentary manipulations allow to write the evolution equation for the entropy
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as

⇢
D⌘

Dt
= r ·

✓
�⇢r⇢r · u� q

✓

◆
+

1

✓2
[�⇢r⇢r · u� q] ·r✓ + (2.36)

+
1

✓


⌃+

✓
p�

�

2
|r⇢|

2
� ⇢r · (�r⇢)

◆
I+ �r⇢⌦r⇢

�
: ru .

The term under divergence defines the entropy flux. The remaining terms

define the entropy production. Since the entropy production must be positive

definite in terms of the thermodynamic forces (Clausius-Duhem inequality),

the sum of the other two contributions on the right hand side is required

to be positive. In fact by using the so-called Curie principle [37], one can

show that each single term should be positive. Assuming linear dependence

of thermodynamic fluxes – terms in square brackets in (2.36) – on thermo-

dynamic forces [37], namely r✓ and ru, leads to identify the stress tensor

with the following expression,

⌃ =

✓
�p+

�

2
|r⇢|

2 + ⇢r · (�r⇢)

◆
I+

� �r⇢⌦r⇢+ µ

�
ru+ruT

�
�

2

3
r · uI

�
, (2.37)

where the usual viscous terms with µ > 0 in the last line are the source

of mechanical irreversibility (for the sake of simplicity we have assumed the

second viscosity coefficient equal to �2µ/3). Concerning the energy flux,

positive entropy production, second line in Eq. (2.36), calls for

q = �⇢r⇢r · u� kr✓ , (2.38)

where k > 0 is the thermal conductivity.

It is worth noting that the spatial inhomogeneities of the density field

(related to the surface tension), strongly influence the dynamics of the two
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phase system. In particular the density gradients modify the structure of

thermodynamic fluxes, providing for instance shear stresses, even when the

fluid is at rest (u = 0). From a mechanical point of view these features are

not detected in simple continua, e.g. Cauchy continua, and are framed in the

general context of second gradient continua [44, 9].
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Capitolo 3

Fluctuating Hydrodynamics

This chapter will introduce the theory of fluctuating hydrodynamics, focu-

sing on capillary fluids. It will be shown how capillarity induces different

correlations for the density field, with respect to simple Newtonian fluids.

Under the assumption of small fluctuations, the probability functional of the

field fluctuations turns out to be Gaussian and the correlation tensor can be

evaluated in a closed form by solving Gaussian path integrals. Once the pro-

bability functional of equilibrium thermal fluctuations has been determined,

a set of stochastic processes (Langevin equations) is designed to reproduce

the same statistical properties. The stochastic partial differential equations

we are arriving at have the Navier-Stokes equations with capillarity descri-

bed in Chapter 2 as deterministic part. The random part accounts for the

fluctuating components of the thermodynamic fluxes which are expressed by

a Gaussian white noise acted upon by suitable operators in order to enforce

the fluctuation dissipation balance.
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3.1 Thermal fluctuations for a capillary fluid at

equilibrium

As anticipated in the previous sections, in order to achieve a suitable de-

scription of fluids at mesoscopic scale the effects of thermal fluctuations have

to be included in the classical hydrodynamic equations. The aim of this

chapter is to retrace the theory of fluctuating hydrodynamics, extending the

Landau-Lifshitz approach to the phase field context.

The static correlation functions of a thermodynamic system in equilibrium

can be evaluated from the entropy deviation �S from its equilibrium value

S0. For single component systems �S can be expressed as a functional of

fluctuating fields of mass density, �⇢(x, t), velocity, �v(x, t), and temperature,

�✓(x, t)

�S = S � S0 = �S [�⇢, �v, �✓] =

Z

V

[s (x, t)� s0] dV , (3.1)

where the integration is over the system volume V , s (x, t) is the entropy

density per unit volume, and s0 is its equilibrium value, (i.e. S0 is the entropy

maximum). The actual entropy maximum must respect the constraint of

given total mass (M0) and given total energy (E0), if we are interested in

the study of closed and isolated systems. Hence the correct functional to be

maximized at equilibrium is the constrained entropy �Sc expressed as

�Sc = �S + k1

✓
M0 �

Z

V

⇢ dV

◆
+ k2

✓
E0 �

Z

V

e dV

◆
, (3.2)

where k1 and k2 are two Lagrange multipliers. In order to describe the

two phase liquid-vapour system the famous Van der Waals square gradient

approximation of the free energy functional is adopted

F [⇢, ✓] =

Z

V

dV

✓
fb (⇢, ✓) +

1

2
�r⇢ ·r⇢

◆
, (3.3)
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where, again, fb is the classical bulk free energy density and � is the capillary

coefficient, controlling both the surface tension and the interface thickness.

The entropy S as a functional of the density and temperature fields is the

functional derivative of the free energy with respect to temperature

S [⇢, ✓] =

Z

V

�
�F

�✓
dV =

Z

V

�
@fb

@✓
dV =

Z

V

sb(⇢, ✓) dV , (3.4)

where the second equality holds if � does not depend on temperature, and

the last identity follows by the classical definition of the bulk entropy density

sb, i.e. the entropy density of the homogeneous pahse. Thus the constrained

functional in Eq. (3.2) reads

�Sc = �Sb + k1

✓
M0 �

Z

V

⇢ dV

◆
+ k2

✓
E0 � U �

Z

V

1

2
⇢v · v dV

◆
, (3.5)

where the internal energy functional U is defined in terms of free energy as

U = F �

Z
dV

�F

�✓
✓ =

Z

V

dV

✓
ub (⇢, ✓) +

1

2
�r⇢ ·r⇢

◆
, (3.6)

with ub = fb � ✓@fb/@✓ where the bulk internal energy density. The two

Lagrange multipliers k1 and k2 are found by imposing that the first variation

of the functional in Eq. (3.5) evaluated in the equilibrium state, must be

zero:

��Sc [⇢0, 0, ✓0] = 0, (3.7)

The above equation leads to k1 = �µc 0/✓0, k2 = 1/✓0, where µc 0 is the

equilibrium chemical potential, µb = @fb/@⇢ is the bulk chemical poten-

tial. For small fluctuations, the entropy functional can be expanded in

a Taylor series around the equilibrium value with respect to the variables

61



U = (⇢,r⇢, . . . ,r
n
⇢, ✓,v)T as follows

�Sc =

Z

V

�sc(⇢,r⇢, . . . ,r
n
⇢, ✓,v) dV = (3.8)

=

Z

V

dV

"
X

i

@�sc

@Ui

����
0

�Ui +
1

2

X

i,j

@
2�sc

@Ui@Uj

����
0

�Ui�Uj + . . .

#

All terms appearing in the right hand side of Eq. (3.8) can be rearranged

in terms of suitable thermodynamic coefficients and of the fluctuations of

density, temperature and velocity, e.g.

dsb =
1

✓
dub �

µb

✓
d⇢ , (3.9)

dub = ⇢cvd✓ +

✓
µb + ✓

@sb

@⇢

����
✓

◆
d⇢ ,

dµb =
c
2

T

⇢
d⇢+

 
1

⇢

@p

@✓

����
⇢

�
sb

⇢

!
d✓ ,

where cv is the specific heat at constant specific volume, cT the isothermal

speed of sound, p the pressure.

Assuming that the fluid is very close to equilibrium and the fluctuations

are small with respect to the mean value, the entropy functional can be

approximated by a quadratic form in the fluctuating fields,

�Sc ' �
1

2

Z

V

dV


c
2

T0

✓0⇢0
�⇢

2
�

�

✓0
�⇢
�
r

2
�⇢
�
+

⇢0

✓0
�v · �v +

⇢0cv0

✓
2

0

�✓
2

�
. (3.10)

For future reference, it is worth expressing the above integral as

�Sc ' �
1

2

Z

V

Z

V

dVxdVx̃

⇢
�v(x)

⇢0

✓0
� (x� x̃) · �v(x̃)+

+�⇢(x)


c
2

T0

✓0⇢0
� (x� x̃)�

�

✓0
r

2

x� (x� x̃)

�
�⇢(x̃)+

+�✓(x)
⇢0cv0

✓
2

0

� (x� x̃) �✓(x̃)

�
, (3.11)
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where integration by parts is used twice to move the Laplacian r
2 from the

density to the Dirac delta function. Eq. (3.11) can be rewritten in operator

form as

�Sc = �
1

2

Z

V

�†
H� dV , (3.12)

where � = (�⇢, �v, �✓) is the vector of the the fluctuating fields and H is a

diagonal, positive definite matrix operator

�(x) = (H�) (x) =

Z

V

H(x, x̃)�(x̃)dVx̃ =

Z

V

Ĥ(x)�(x� x̃)�(x̃)dVx̃ ,

(3.13)

where

Ĥ(x) =

0

@
Ĥ�⇢�⇢ 0 0
0 IĤ�v�v 0
0 0 Ĥ�✓�✓

1

A =

0

BBBB@

c
2

T0

✓0⇢0
�

�

✓0
r

2

x 0 0

0
⇢0

✓0
I 0

0 0
⇢0cv0

✓
2

0

1

CCCCA

involves differential operators and I is the 3⇥ 3 identity matrix. Note that,

indeed the Laplace operator �r
2 appearing in the first line, which is in gene-

ral non-negative, is strictly positive under the constraint of mass conservation

since the mean spatial density fluctuation is identically zero.

Under these assumptions the more general probability distribution func-

tional for the fluctuating fields � [58]

Peq [�] =
1

Z
exp

✓
�Sc

kB

◆
, (3.14)

can be rewritten by using the second order approximation, Eq. (3.12),

Peq [�] =
1

Z
exp

✓
�

1

2kB

Z

V

�†
H� dV

◆
, (3.15)

which can be factorized since Ĥ is diagonal

Peq[�] = P�⇢[�⇢]P�v[�v]P�✓[�✓] , (3.16)
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with

P�⇢ =
1

Z�⇢
exp


�

1

2kB

Z Z
dxdx0

�⇢(x)H�⇢�⇢�(x� x0)�⇢(x0)

�
, (3.17)

P�v =
1

Z�v
exp


�

1

2kB

Z Z
dxdx0

�vT (x)H�v�v�(x� x0)�v(x0)

�
,(3.18)

P�✓ =
1

Z�✓
exp


�

1

2kB

Z Z
dxdx0

�✓(x)H�✓�✓�(x� x0)�✓(x0)

�
, (3.19)

and is normalized by the constant Z

Z =

Z
D�⇢D�vD�✓ exp

✓
�

1

2kB

Z

V

�†
H� dV

◆
= Z�⇢Z�vZ�✓ . (3.20)

The generic correlation function

C�(x) = h�⌦�†
i = (3.21)

=
1

Z

Z
D�⇢D�vD�✓�⌦�† exp

✓
1

kB

Z

V

�sc(�⇢, �v, �✓) dV

◆

can now be evaluated in closed form by integrating Gaussian path integrals.

To this end it is helpful to resort to the characteristic functional [136] of the

pdf which, for a generic process X(x), is

�[�] =

Z
DX P [X] exp

✓Z
� (x)X (x) dVx

◆
. (3.22)

For a Gaussian process governed by the pdf

P [X] =
1

Z
exp

✓Z
�
1

2
X(x)A(x, x̃)X(x̃)dVxdVx̃

◆

the characteristic functional reduces to

�[�] =

Z
DX exp


�
1

2

Z Z
dx̂dx̃X (x̂)A (x̂, x̃)X (x̃) +

Z
� (x̂)X (x̂) dx̂

�
,(3.23)
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and is easily evaluated by completing the square (see Appendix A) as

�[�] = �[0] exp

✓
1

2

Z Z
dx̂dx̃� (x̂) G (x̂, x̃) � (x̃)

◆
, (3.24)

where

G (x̂, x̃) = A
�1 (x̂, x̃) (3.25)

(we stress that A is the kernel of an operator A, such that A
�1 should be

understood as the kernel of the inverse A
�1). The two-point correlation can

be written in terms of the characteristic functional as

CXX (x̂, x̃) = hX (x̂)X (x̃)i = (3.26)

=

✓
1

�[0]

�

�� (x̂)

�

�� (x̃)
�[�]

◆

�=0

= G (x̂, x̃) .

In the present case, Eq. (3.15), the kernel of the operator A is given by

A (x̂, x̃) =
1

kB
Ĥ� (x̂� x̃) , (3.27)

implying the equation
Z

A(x,x00)G (x00
,x0) dVx00 = (3.28)

1

kB

Z
Ĥ�(x� x00)G (x00

,x0) dVx00 = Û�(x� x0) ,

which, written in terms of operators, corresponds to the equation AA
�1 = U ,

with U the identity operator on the space of fluctuations. Û is the identity

matrix acting on the five-dimensional tangent space at a given position x,

�(x) = (�⇢(x), �v(x), �✓(x)).

In particular, since the matrix Ĥ is diagonal, the �⇢ �⇢ component of the

above equation is
Z

A�⇢�⇢(x,x
00)G�⇢�⇢ (x

00
,x0) dVx00 = (3.29)

k�1

B

Z ✓
c
2

T

✓0⇢0
�

�

✓0
r

2

x

◆
�(x� x00)

�
G�⇢�⇢ (x

00
,x0) dVx00 = �(x� x0).
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After integration by parts, Eq. (3.29) reads

c
2

T

✓0⇢0kB
G�⇢�⇢ (x̂, x̃)�

�

✓0kB
r

2

x̂G�⇢�⇢ (x̂, x̃) = � (x̂� x̃) (3.30)

After Fourier transformation the equation becomes

Ĝ (k) +
�⇢0

c
2

T

k · k Ĝ (k) =
⇢0kB✓0
c
2

T

, (3.31)

allowing to express the solution (the Green’s function for the Helmholtz

equation) as

G�⇢�⇢ (x̂, x̃) =

Z
dk

kB⇢0✓0
c
2

T + ⇢0�k · k
e
ik·(x̂�x̃)

. (3.32)

Explicitly performing the inverse Fourier transform yields

G�⇢�⇢ (x̂, x̃) = C�⇢�⇢ (x̂, x̃) =
kB✓0

4⇡� |x̂� x̃|
exp

0

@� |x̂� x̃|

s
c
2

T

⇢0�

1

A , (3.33)

where we have recognised that G = C�, Eq. (3.26). The same procedure

can be used to reconstruct the entire correlation tensor C� = h� ⌦ �†
i,

Eqs. (3.34-3.37):

C� =

0

@
C�⇢�⇢ 0 0
0 C�v�v 0
0 0 C�✓�✓

1

A , (3.34)

with

C�⇢�⇢ =
kB✓0

4⇡� |x̂� x̃|
exp

0

@� |x̂� x̃|

s
c
2

T

⇢0�

1

A , (3.35)

C�v�v =
kB✓0

⇢0
I� (x̂� x̃) , (3.36)

C�✓�✓ =
kB✓

2

0

⇢0cv
� (x̂� x̃) . (3.37)

It can be deduced that, in the Gaussian approximation, the equilibrium

correlations for velocity and temperature are short-ranged (delta-correlated

in space, actually) and the cross-correlation of the fluctuating fields are zero.
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3.1.1 Static structure factor

An important quantity in the theory of liquids is the Fourier transform of

the correlation tensor, the so called static structure factor. In particular the

density structure factor, defined as

S(k) = h�⇢(k)�⇢⇤(k)i (3.38)

assumes a key role, both from an experimental [15] and a numerical [54]

point of view. In Eq. (3.38) �⇢(k) is the Fourier transform of the density

fluctuation

�⇢(k) =

Z
dxe�ik·x(⇢(x)� h⇢i) (3.39)

with h⇢i being the bulk mean density and the symbol ⇤ denoting the com-

plex conjugate. For a single component fluid with capillarity, the Fourier

transform of the density correlation can be deduced from the spatial density

correlation Eq. (3.35), by enforcing the Wiener-Khinchin theorem as:

S(k) =

Z
dxe�ik·x

h�⇢(x̂)�⇢(x̃)i =
h⇢i kB✓

c2T + h⇢i�k · k
. (3.40)

3.2 Fluctuation dissipation balance

To correctly model the stochastic fluxes (stress tensor and heat flux) one

needs to use the fluctuation-dissipation theorem which is worthwhile recalling

here in the context of the Navier-Stokes system for a capillary fluid. For the

sake of clarity, the full calculation is illustrated first for the one-dimensional

case. Apart from some attention needed to deal with the vector counterpart,

generalisation to the three dimensional case is straightforward, and it will be

postponed to the next section.
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The system of equations presented in Chapter 2 (eqs.(2.29 – 2.31)) can

be rewritten in the 1D case as

@t⇢+ @x (⇢v) = 0 , (3.41)

@t (⇢v) + @x (⇢v) = �@xp+ µ@xxv + @x

✓
�
�

2
@x⇢@x⇢+ ⇢�@xx⇢

◆
+ �vWv ,

⇢cv (@t✓ + v@x✓) = �✓
@p

@✓
@xv + k@xx✓ + µ (@xv)

2 + �✓W✓ + �vWv@xv ,

where, for the ease of calculation the energy equation is here expressed in

terms of temperature. In the equations µ is the dynamic viscosity, k is the

thermal conductivity and the terms �vWv and �✓W✓ represent the stochastic

forcing. W is a standard Wiener process and �v/✓ two suitable operators that

will be later identified by means of fluctuation-dissipation balance.

The above system of equations can be linearized around the mean solution

{⇢0, 0, ✓0}. Such linearization provides a set of stochastic partial differential

equations, whose equilibrium (statistically stationary) solution is a Gaussian

field. The linearized system can be formally expressed in the form

@t� = L�+ f , (3.42)

where L is the linearized Navier-Stokes operator with capillarity which reads

L =

0

BBB@

0 �⇢0@x 0

�
c
2

T

⇢0
@x + �@xxx

µ

⇢0
@xx �

1

⇢0
@✓p@x

0 �
✓0

⇢0cv
@✓p@x

k

⇢0cv
@xx

1

CCCA
. (3.43)

f(x, t) is a Gaussian vector process (with three components, in the case of

Eq. (3.42)) whose correlation is

hf(x̃, s)⌦ f †(x̂, q)i = Q(x̃, x̂)�(s� q) , (3.44)
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with Q(x̃, x̂) a matrix depending on x̃ and x̂. Note that delta-correlation in

time is explicitly assumed. The stochastic forcing f is related to the standard

Wiener process Wdt = dB by the linear relationship

f = KW , (3.45)

where W = {W⇢,Wv,W✓}
T is a Gaussian delta correlated process characte-

rized by the correlation

hW(ỹ, s)⌦W(ŷ, q)i = I�(ỹ � ŷ)�(s� q) , (3.46)

and

K =

0

BB@

0 0 0

0
�v

⇢0
0

0 0 �
�✓

⇢0cv

1

CCA (3.47)

is a linear operator acting on the noise.

The solution of Eq. (3.42) is formally expressed as [36]

� (x, t) =

Z t

0

e
L(t�s)f(s) ds+ e

Lt�0 , (3.48)

where the last term which keeps memory of the initial conditions vanishes

for large times. Consequently the equilibrium correlation is

h�(x̃, t)⌦�†(x̂, t)i =

Z t

0

e
L(t�s)Q e

L†
(t�s)

ds , (3.49)

where Q was introduced in Eq. (3.44) above. The integral can be performed

in closed form assuming the existence of a Hermitian non singular operator

E�1 such that the operator Q can be decomposed as

Q = �LE�1
� E�1L†

. (3.50)
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With this position the integrand appearing in Eq. (3.49) is the exact deriva-

tive with respect to the delay time s of eL(t�s)E�1
e
L†

(t�s). Hence Eq. (3.49)

leads to

lim
t!1

h�⌦�†
i = E�1 = C� , (3.51)

hence the operator E�1 exists indeed and coincides with the correlation

matrix C�, see Eq. (3.34).

Given the expression for Q, Eq. (3.50), and the identity E�1 = C� it

follows

Q = �
�
LC� +C�L†

�
=
�
M+M†

�
= 2kBO , (3.52)

where M = �LC� and O is called the Onsager matrix. Relationship (3.52) is

the form the celebrated fluctuation-dissipation balance takes for the present

system. Highlighting the connection between the intensity of the fluctua-

tions and dissipation mechanisms. The physical interpretation is that, in

thermodynamic equilibrium, the response of a system to a perturbation is

equivalent to the one provided by spontaneous fluctuation. So that one can

infer non-equilibrium properties for a physical system looking at equilibrium

properties.

The unknown operators �v/✓ can be finally identified by enforcing the

fluctuation-dissipation balance Eq. (3.52), by introducing Eqs. (3.44) and

(3.45),

Q(x̃, x̂)�(s� q) = KhWW†
iK† = 2kBO�(s� q) , (3.53)

KK† = 2kBO = �
�
LC� +C�L†

�
= M+M†

. (3.54)
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The explicit calculation of the right hand side of this equation, where L and

C� are known from Eq. (3.43) and (3.34), respectively, provides

M =

0

BBBB@

0 kB✓0@x [�(x� x̂)] 0

kB✓0@x [�(x� x̂)] �
µ0kB✓0

⇢
2

0

@xx [�(x� x̂)]
kB✓20
⇢
2

0
cv

@✓p@x [�(x� x̂)]

0
kB✓20
⇢
2

0
cv

@✓p@x [�(x� x̂)] �
kkB✓20
⇢
2

0
c2v

@xx [�(x� x̂)]

1

CCCCA
,

The expression for the Hermitian conjugate matrix is immediately obtained

by taking the transpose of the real matrix M after considering that even dif-

ferential operators are self-adjoint (@†

xx = @xx) while odd one are skew-adjoint

(@†

x = �@x). Summing together M and its hermitian conjugate Eq. (3.54)

becomes

M+M† = KK† =

0

BBBB@

0 0 0

0 �
2µ0kB✓0

⇢
2

0

@xx [� (x� x̂)] 0

0 0 �
2kkB✓20
⇢
2

0
c2v

@xx [� (x� x̂)]

1

CCCCA
.(3.55)

So, that

�v�v
† = �2µkB✓0@x̂x̂� (x̂� x̃) (3.56)

�✓�✓
† = �2kkB✓0

2
@x̂x̂� (x̂� x̃) , (3.57)

providing the explicit expressions

�vWv =
p
2µkB✓0 @xWv (3.58)

�✓W✓ =
p

2kkB✓0
2
@xW✓ . (3.59)

The above results can be directly proved by choosing the form of the operator

�v = �
p
2µkB✓@x̂� (x̂� x̃), in fact

�v�v
† (x̂� x̃) = 2µkB✓

Z
@x̂� (x̂� y) @y� (x̃� y) dy (3.60)
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and the action of the operator �v on the Wiener process Wv reads

�vWv (x, t) = �

p
2µkB✓

Z
@x̂� (x̂� x)Wv (x̂, t) dx̂ =

p
2µkB✓0 @xWv (x, t) .

(3.61)

3.2.1 Restating the LLNS equations with capillarity in
terms of entropy functional

In the present section is reported a particularly impressive form of Langevin

equation, having as a drift term a linear functional acting on the entropy

deviation. This formulation provides a link between the fluctuation probabi-

lity distributions (the entropy functional) and the dynamics of the physical

system. In fact, as common in the linear non-equilibrium thermodynamics,

the thermodynamic forces are defined as the functional derivatives of the en-

tropy (see Eq. (3.12), with respect to the conjugate field �, that under the

hypothesis of Gaussian fluctuations read

Y =
��Sc

��
= �H� , (3.62)

suggesting (see [12] for details) the analogy with Hookean springs, in which

Y acts as returning force enforcing to restore che thermodynamic equilibrium

at maximum entropy.

As exposed in the previous sections, the thermodynamic force Y is re-

lated with the fluctuation through the correlation tensor as Y = �C�1 �,

providing the equality MY = L�.

Thus, after enforcing the FDB Eq. (3.52), the equation of motion (3.42)

can be rewritten in the form

@t� = M
��Sc

��
+
p

2M1/2
H

W , (3.63)
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where MH = 1/2(M+M†) = kB O is the Hermitian part of M and the ope-

ration (·)1/2 has to be intended in the functional sense, i.e., M1/2
H

M†1/2
H

= MH.

The Eq. (3.63) admits as static probability distribution P [�] = Z
�1 exp(�Sc/kB),

as evident as stationary solution of Fokker-Planck equation, see Eq. (C.8) in

Appendix B.

In fact the stationary probability distribution P [�] obeys to
✓

�

��
·M

��Sc

��
�

�

��
⌦

�

��
: MH

◆
P [�] = 0 , (3.64)

that after imposing as P [�] = Z
�1 exp(�Sc/kB), yields


(MH �M) :

�

��
⌦

�

��

�
P [�]

kB
+


(MH �M) :

�

��
⌦

��Sc

��

�
P [�] = 0 ,

(3.65)

so that

MSH :

�

��
⌦

�

��

�
P [�]

kB
+


MSH :

�

��
⌦

��Sc

��

�
P [�] = 0 , (3.66)

the latter identity is satisfied since MSH = 1/2 (M�MH) is a skew-Hermitian

operator double contracted with two Hermitian ones.

3.2.2 FDB for the 3D system

In this section, the derivation of the FDB is retraced for a 3D system. As sho-

wn in the previous subsection, the Liftshitz -Landau-Navier-Stokes equations

can be formally written as

@t� = L�+ f . (3.67)

For a 3D system, the linearised differential operator L is now rewritten as

L =

0

BBBB@

0 �⇢0r· 0

�
c
2

T

⇢0
r+ �rr

2
µ

⇢0

✓
r

2 +
1

3
rr·

◆
�

1

⇢0
@✓pr

0 �
✓0

⇢0cv
@✓pr·

k

⇢0cv
r

2

1

CCCCA
. (3.68)
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The stochastic force f = KW is obtained through the linear operator K

K =

0

BB@

0 0 0

0
�v

⇢0
0

0 0 �
�✓

⇢0cv

1

CCA (3.69)

as exposed for 1D case (see Eq. 3.41), acting on the Gaussian delta correlated

process W. In three dmensions �v is a 3 ⇥ 3 matrix whose components are

scalar linear operators to be determined.

For the present system W = {W⇢,Wv,W✓}
T , where Wv =

�
Wvx ,Wvy ,Wvz

�T .

It is worth remembering that the process W is characterized by the correla-

tion

hW(ỹ, s)⌦W(ŷ, q)i = I�(ỹ � ŷ)�(s� q) , (3.70)

in which I is now, a (5⇥ 5) identity matrix in the space of W.

After discussing the specific structure of the operators appearing in Eq. (3.67)

and following the procedure illustrated in the previous part of the present

section for the one dimensional problem, it is straightforward to show that

the FDB for the 3D system takes the form

Q = �
�
LC� +C�L†

�
=
�
M+M†

�
= 2kBO . (3.71)

By using the new expression for L given in Eq. (3.68) and correlation matrix

C� for the 3D system, Eq. (3.34), respectively, one finds

M =

0

@
0 m12 0

m21 m22 m23

0 m32 m33

1

A .

The entries of the matrix M are

m12 = m12 = kB✓0r� (x� x̂) , (3.72)
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m23 = m32 =
kB✓20
⇢
2

0
cv

@✓pr� (x� x̂) , (3.73)

m22 = �
µ0kB✓0

⇢
2

0

✓
Ir2 +

1

3
r⌦r

◆
� (x� x̂) , (3.74)

m33 = �
kB✓20k

⇢
2

0
c2v

r
2
� (x� x̂) . (3.75)

Thus, the sum of M and its hermitian conjugate M† provides the explicit

expression for the square of the unknown matrix operator K, Eq. (3.69), i.e.

the explicit form of the FDB,

KK† = M+M† =

0

@
0 0 0
0 2m22 0
0 0 2m33

1

A . (3.76)

Determining K amounts to solve the system of equations (3.76) satisfied

component-wise,

�✓�
†

✓ = �2kB✓
2

0
kr

2
� (x̂� x̃) , (3.77)

�v ⌦ �
†

v = �2µ0kB✓0

✓
Ir2 +

1

3
r⌦r

◆
� (x̂� x̃) . (3.78)

Providing an explicit expression for the stochastic fluxes (denoted by the

prefix � before the deterministic counterpart)

�⌃ =
p

2µ0kB✓0W̃v �
1

3

p
2µkB✓Tr

⇣
W̃v

⌘
I, (3.79)

�q =
q
2kkB✓20W✓ . (3.80)

Where W̃v =
⇣
Wv + (Wv)

T
⌘
/
p
2 is a stochastic symmetric tensor field,

and W✓ is a stochastic vector, with the following statistical properties

⌦
W

v
↵�(x̂, t̂)W

v
��(x̃, t̃)

↵
= �↵�����(x̂� x̃)�(t̂� t̃), (3.81)

⌦
W

✓
↵(x̂, t̂)W

✓
�(x̃, t̃)

↵
= �↵��(x̂� x̃)�(t̂� t̃) . (3.82)
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It can be easily shown that expressions (3.79), (3.80) are consistent with the

equations (3.77),(3.78), in fact

h�✓W✓W
†

✓�
†

✓i = hrx̂ · �q (x̂, t)rx̃ · �q (x̃, t)i = �2kB✓
2

0
kr

2
� (x̂� x̃) ,(3.83)

and

h�vWv ⌦W†

v�
†

vi = hrx̂ · �⌃ (x̂, t)⌦rx̃ · �⌃ (x̃, t)i = (3.84)

= �2µ0kB✓0

✓
Ir2 +

1

3
r⌦r

◆
� (x̂� x̃)

The covariance of the stochastic process corresponding to the stress is

⌦
�⌃(x̂, t̂)⌦ �⌃†(x̃, t̃)

↵
= Q⌃

�(x̂� x̃)�(t̂� t̃), (3.85)

with

Q⌃
↵�⌫⌘ = 2kB✓µ

✓
�↵⌫��⌘ + �↵⌘��⌫ �

2

3
�↵��⌫⌘

◆
. (3.86)

Analogously, the covariance of the fluctuating heat-flux is

⌦
�q(x̂, t̂)⌦ �q†(x̃, t̃)

↵
= Qq

�(x̂� x̃)�(t̂� t̃), (3.87)

with

Qq
↵� = 2kB✓

2
k�↵� . (3.88)

It is worth noting that the correlation between thermodynamic force of diffe-

rent tensor rank is zero, consistently with the Curie-Prigogine principle i.e.

(
⌦
�q†(x̃, t̃)⌦ �⌃(x̂, t̂)

↵
= 0).

Finally, combining these results all together yields the Landau-Lifshitz-

Navier-Stokes. The evolution of the system is driven by stochastic tensor

fields, with statistical properties defined by the fluctuation-dissipation balan-

ce (FDB), which force the deterministic part of the operator. The ensuing
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balance equations for mass, momentum and energy read

@⇢

@t
+r · (⇢u) = 0 , (3.89)

@⇢u

@t
+r · (⇢u⌦ u) = r ·⌃+r · �⌃ ,

@E

@t
+r · (uE) = r · (⌃ · u� q) +r · (�⌃ · u� �q) ,

where u is the fluid velocity, E is the total energy density, E = U +1/2⇢|u|2

with U the internal energy density. In the momentum and energy equa-

tions, ⌃ and q are the classical deterministic stress tensor and energy flux,

respectively, defined as

⌃ =


�p+

�

2
|r⇢|

2 + �⇢r · (�r⇢)

�
I� �r⇢⌦r⇢+

µ


(ru+ruT )�

2

3
r · u I

�
, (3.90)

q = �⇢r⇢r · u� kr✓ . (3.91)

3.3 FDB for wall bounded systems

Wall bounded systems differ from unbounded systems under several respects.

This makes a short clarification concerning fluctuation dissipation balance

for wall-bounded systems worthwhile. For the sake of simplicity the focus

will be an a simple one dimensional problem –the stochastic linear diffusion

problem– with generic boundary conditions. Let c(x, t) be a scalar field, L

a self-adjoint differential operator and K a skew-adjoint one

The dynamics of c is represented by the following stochastic equation

@c

@t
= Lc+

p

2KW , (3.92)
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Figura 3.1: Staggered grid: scalar fields like c are defined at cell center, and
vector fields like W are defined on the cell faces. The field cells are colored
in dark gray, and the ghost cells in light gray. Black circles and rhombus
represent the spatial collocation of the field c.

where W is a Weiner process with statistical properties to be determined

by enforcing the fluctuation dissipation balance. Assuming c as a Gaussian,

delta-correlated process (hc(x̂, t̂)c(x̃, t̃)i = �(x̂ � x̃)�(t̂ � t̃)), the procedure

previously discussed leads to (see Eq. 3.54)

L = �KhWW †
iK†

. (3.93)

The model problem Eq. (3.94) is now specified assuming L to be the Lapla-

cian r
2 operator and K the divergence operator r·. For periodic boundary

conditions Eq. 3.93 is automatically satisfied if hWW †
i = U , where U is the

identity operator on the space of fluctuations.

In presence of different boundary conditions, however, the structure of the

noise W needs to be changed to preserve the balance prescribed in Eq. 3.93.

This problem has been successfully addressed by Donev et al in [52],

where a simple recipe has been provided to modify the noise structure in the

discretized equations preserving the fluctuation dissipation balance. Here the

procedure is retraced for a staggered grid. The discrete form of Eq. 3.94 on

a staggered grid reads
dc

dt
= Lc+

p

2KW , (3.94)
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where c = (c0, c1, . . . , cn�1) is a n-dimensional vector, collecting the n values

of the scalar field c(x, t), W = (W�1/2,W1/2, . . . ,Wn�1/2) is the (n + 1)-

dimensional vector of the the stochastic process W (x, t). L and K are the

discrete versions of Laplacian and divergence operators. In particular, for a

staggered grid K is represented by a rectangular (n⇥ n+ 1) matrix defined

as

K = �x
�1

0

BBBBB@

�1 1 0 . . .

0 �1 1 . . .

0 0 �1 . . .

...
...

... . . .
. . . . . . �1 1

1

CCCCCA
, (3.95)

and the discrete laplacian L is represented by a square (n⇥n) matrix defined

as

L = �x
�2

0

BBBBB@

↵� 2 1 0 . . .

1 �2 1 . . .

0 1 �2 . . .

...
...

... . . .
. . . . . . 1 ↵� 2

1

CCCCCA
, (3.96)

where �x is the constant grid space, and ↵ is an integer number depending

of the boundary conditions, i.e. ↵ = 1 for Neumann BC and ↵ = �1 for

Dirichlet ones. It is important to stress here that the adjoint of the discrete

divergence operator is the discrete gradient. By taking the product of discrete

divergence and discrete gradient it is clear that the discrete Laplacian is

recovered, at least at all internal grid nodes.

Let us come to the discrete version of the fluctuation dissipation balance

in Eq. (3.93) which reads

L = �KhWW T
iKT

. (3.97)
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Evidently, assuming hWW T
i to coincide with the identity matrix, as expec-

ted from a delta correlated process, shows that the discrete FDB is satisfied at

internal boundary points. The correlations at boundary points need however

to be modified. An additional degree of freedom, � in the following equation,

can be added to accomodate the discrete FDB, introducing a generalised form

of noise correlation

hWW T
i =

0

BBBBB@

� 0 0 . . .

0 1 0 . . .

0 0 1 . . .

...
...

... . . .
. . . . . . 0 �

1

CCCCCA
. (3.98)

By multiplying the matrix in Eq. (3.97) one obtains � = 1�↵. This procedure

shows that, by modifying the nature of the noise one can have the discrete

FDB satisfied also in presence of non trivial boundary conditions. As a

comment, it could be stressed that this procedure is significantly less elegant

that the more clean approach available for bulk systems, since it lacks full

generality, being based on a specific discrete form of the equations. However

we are working on a general approach to address the fluctuation dissipation

balance for LLNS equations with capillarity for wall bounded systems.

3.4 Spherical Formulation of Fluctuating Hy-

drodynamics Equations and its application

to nucleation process

This section is devoted to the spherical formulation of the LLNS equations, in

particular is presented a procedure developed in collaboration with Davide

Cocco during his master thesis, I was Co-Advisor, and it is adapted from

a paper in preparation. This approach provides an equivalent noise term
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forcing the momentum balance equation. Such simplified model could be

particular useful when dealing with thermally activated processes since it

provides a set stochastic equations for the fields as a function of the reaction

coordinate (the radius of the cluster of the new phase).

Spherical symmetry is a reasonable assumption when searching for sim-

plified models. For instance it is always assumed in CNT, see Introduction

and recent work by Lutsko where a systematic hierarchy of increasingly sim-

plified nucleation models is derived from a general theory based on DFT

[94]. Quite naturally the reaction coordinate representing the progress of the

phase transition in a spherically symmetric model can be selected to be the

radius of the nucleus (see Lutsko [93] for discussion on the topic and the

alternative solution of assuming the mass of the nucleus as the most appro-

priate reaction coordinate). A reduced model that takes into account only

“averaged” information as a function of the bubble radius, is expected to

be able able to capture the main features of the nucleation process and the

subsequent bubble evolution, at a substantially cheaper computational cost,

(see however the paper by Valeriani at al. [146], showing from molecular

dynamics supplemented with suitable rare event techniques that the shape

of actual cavitation nuclei can hardly be classified as spherical.)

Concerning stochastic systems, the assumption of spherical symmetry,

seems to be quite strong, since the random flux breaks this symmetry of the

system. However stochastic spherical models, like e.g. stochastic Rayleigh-

Plesset equation, have been already considered to address nucleation [90,

101].

As anticipated, a more systematic approach, was developed by Lutsko

in [93], where the dynamical equations have been averaged on a spherical
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shell, to directly obtain an evolution equation for the order parameter of the

system. Here as a preliminary study, the spherical symmetry is taken as an

assumption.

Let us start from the capillary Navier-Stokes equations in spherical sym-

metry, reported here for the isothermal case, for the sake of simplicity
@⇢

@t
+

1

r2

@

@r

�
r
2p
�
= 0, (3.99)

@p

@t
+

1

r2

@

@r

�
r
2pu
�
= rS

·⌃S
· r̂+rS

· �⌃S
· r̂ , (3.100)

where u(r, t) is the radial velocity, p(r, t) = ⇢(r, t)u(r, t) the fluid momentum

density, ⌃S = �p0I + ⌧
S is the stress tensor and r̂ the radial unit vector.

The superscript S denotes that spherical polar base coordinates are used. In

order to express the tensor appearing in RHS of Eq. (3.100) (known in the

Cartesian representation in the basis B = {ex, ey, ez} , so far) into the new

base spanned by the spherical-polar basis B
S = {er, e✓, e'} , we used the

orthogonal transformations

⌃S
pq = B

B
S
!B

pk B
B
S
!B

ql ⌃kl �⌃S
pq = B

B
S
!B

pk B
B
S
!B

ql �⌃kl , (3.101)

where the transformation matrix BB
S
!B is an orthogonal (3⇥ 3) matrix,

whose entries are

BBS!B =

0

@
sin ✓ cos' sin ✓ sin' cos ✓
cos ✓ cos' cos ✓ sin' � sin ✓
� sin� cos� 0

1

A . (3.102)

so that the coordinate transformation is accomplished by rotating the Car-

tesian basis, i.e. B
B
S
!B

ik B
B
S
!B

jk = �ij. The above transformation lead to the

following expressions for the non vanishing components of the deterministic

stress tensor

⌧
S
rr = �

"
�
1

2

✓
@⇢

@r

◆2

+
⇢

r2

@

@r

✓
r
2
@⇢

@r

◆#
+ 2µ


@u

@r
�

1

3r2
�
r
2
u
��

, (3.103)
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⌧
S
✓✓ = �

"
1

2

✓
@⇢

@r

◆2

+
⇢

r2

@

@r

✓
r
2
@⇢

@r

◆#
+ 2µ


u

r
�

1

3r2
�
r
2
u
��

, (3.104)

and, the radial component (the only non-vanishing one under spherical sym-

metry) of its divergence of the fluxes reads

rS
·⌃S

· r̂ = �
@p0

@r
+

1

r2

@

@r

�
r
2
⌧rr

�
�

2⌧✓✓
r

. (3.105)

Analogously, the stochastic contributions reduce to the three diagonal terms

�⌃rr, �⌃✓✓, �⌃��, such that the divergence on the stochastic stress is

rS
· �⌃S

· r̂ =
1

r2

@

@r

�
r
2
�⌃rr

�
�

�⌃✓✓

r
�

�⌃''

r
. (3.106)

The correlations in the spherical representation are deduced from those kno-

wn in Cartesian coordinates, see Eq. (3.86), by enforcing transformation rules

(3.101),

h�⌃S
mn(x̂, t̂)�⌃

S
pq(x̃, t̃)i = I

✓
�mp�nq + �mq�np �

2

3
�mn�pq

◆
, (3.107)

with I = 2µkB✓�(x̂ � x̃)�(t̂ � t̃) , and m,n, p, q = r, ✓,'. Explicitly, the

relevant correlations are

h�⌃S
rr(x̂, t̂)�⌃

S
rr(x̃, t̃)i = h�⌃S

✓✓(x̂, t̂)�⌃
S
✓✓(x̃, t̃)i = h�⌃S

''(x̂, t̂)�⌃
S
''(x̃, t̃)i =

4

3
I ,

(3.108)

h�⌃S
rr(x̂, t̂)�⌃

S
✓✓(x̃, t̃)i = h�⌃S

rr(x̂, t̂)�⌃
S
''(x̃, t̃)i = h�⌃S

✓✓(x̂, t̂)�⌃
S
''(x̃, t̃)i = �

2

3
I .

(3.109)

The procedure to be followed to obtain the stochastic equation for the

spherically symmetric system consists in the integration of the Eqs. (3.99,

3.100) on a sphere of radius R to obtain a new set of stochastic processes,

whose stochastic contribution will be modified by defining an equivalent noise

term.
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In the light of the above procedure mass conservation equation Eq. (3.99)

reads

@

@t

Z

r<R

⇢(r, t)dV +

Z

r<R

1

r2

@

@r

�
r
2p(r, t)

�
dV = 0 , (3.110)

leading to
@M

@t
(R, t) + 4⇡R2p (R, t) = 0 , (3.111)

where M(R, t) is the fluid mass inside the sphere of radius R.

Concerning the momentum equation, the same procedure applied to Eq. (3.100)

leads to

@P

@t
(R, t) + 4⇡R2p (R, t) u (R, t) = � (R, t) + �� (R, t) , (3.112)

where P(R, t) is the total fluid momentum inside the sphere of radius R. The

two terms on the RHS of are

� (R, t) =

Z

r<R

rS
·⌃S

· r̂dV , �� (R, t) =

Z

r<R

rS
· �⌃S

· r̂dV , (3.113)

respectively.

Let us focus on the stochastic term ��. Since the angular terms �⌃✓✓ and

�⌃'' are two Gaussian processes with the correlations given by Eq.s (3.108,

3.109), it is useful to define the new Gaussian process �⌃�� = �⌃✓✓+�⌃'', so

that h�⌃��(x̂, t̂)�⌃��(x̃, t̃)i = 4/3I, thus the stochastic force is decomposed

as

�� (R, t) =

Z

r<R

1

r2

@

@r

�
r
2
�⌃rr

�
dV �

Z

r<R

�⌃��

r
dV = ��r (R, t)+��� (R, t) .

(3.114)

The simplest way to proceed is by introducing a stochastic process equi-

valent to process Eq. (3.114). To this purpose we need the correlations of
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��,

h��(R̂, t̂)��(R̃, t̃)i =
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dV̂ dṼ
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� 2
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@

@r̂

�
r̂
2
�⌃rr(r̂, t̂)

� 1
r̃
�⌃��(r̃, t̃) +

+

Z

r̂<R̂
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dV̂ dṼ
1

r̂
�⌃��(r̂, t̂)

1

r̃
�⌃��(r̃, t̃) . (3.115)

After some algebra one finds

h��(R̂, t̂)��(R̃, t̃)i = (3.116)

=
16⇡

3
Z

 
R̂

2
�(R̂� R̃) +

Z R̂

0

Z R̃

0

�(r̂ � r̃)dr̂dr̃ + 2

Z R̃

0

R̂�(R̂� r̃)dr̃

!
,

with Z = 2µkB✓�(t̂� t̃). It is now easy to show that the process

��⇤ (R, t) =

Z R

0

@

@r
(↵(r)⇠(r, t)) dr +

Z R

0

�⇠(r, t)dr , (3.117)

expressed in terms of the Weiner process ⇠, h⇠(r̂, t̂)⇠(r̃, t̃)i = �(r̂� r̃)�(t̂� t̃),

is statistically equivalent to �� in Eq. (3.112), provided � = (32/3⇡kBµ✓),

↵ = R�.

To summarise, the evolution equations for the mass and momentum

contained in a sphere of generic radius R can be written as

@M (R, t)

@t
+ 4⇡R2p (R, t) = 0 , (3.118)

@P (R, t)

@t
+ 4⇡R2p (R, t) u (R, t) = � (R, t) + ��⇤ (R, t) . (3.119)

Equivalently, by taking the R-derivative of both equations, a correspon-

ding local form is obtained as

@⇢

@t
+

1

R2

@

@R

�
R

2p
�
= 0 , (3.120)
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2pu
�
=

1

R2

@
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�
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2⌃rr

�
�2

⌧✓✓

R
+

1

4⇡R2


@

@R
(↵(R)⇠(R, t)) + �⇠(R, t)

�
.

(3.121)

Eqs. (3.120, 3.122) are the spherically symmetric form of the LLNS equa-

tions in spherical symmetry. Their main advantage is that only one stochastic

process ⇠(r, t) is involved (clearly the FDB is already satisfied). The model

allows for the numerical modelling of spherical cluster nucleation – starting

from the very appearance of the phase formation up to the consequent hy-

drodynamic motion – at very cheap computational cost, in comparison with

the three dimensional case.

The model is validated by numerically evaluating the correlations of the

radial velocity field and comparing them with their theoretical predictions.

The general procedure needed to obtain the correlations will be explained in

detail in Chapter 4, where the effect of numerical discretisation is fully taken

into account. The procedure is based on expressing the probability density

function in terms of the entropy functional, Section 3, and Eq. (4.20) for

further detail. This leads to

h�u(R)�u(R)i =
kB✓0

4⇡⇢0�r
R

�2
, (3.122)

with ⇢0 the mean density, �r the step of the numerical grid, and ✓0 the

temperature. Figure 3.2 compares the theoretical prediction for the discrete

model with the numerical simulation focusing on the velocity variance. The

agreement between theory and numerics is rather good, confirming that the

FDB is preserved.

After validation, the model can be exploited to deal with vapour bubble

nucleation. Starting from the metastable state (uniform liquid) the evolution

of the system is followed by numerically integrating Eqs. (3.120, 3.122) up
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Figura 3.2: Velocity variance as a function of the radius R, the red li-
ne represent the theoretical prediction and the blue circles the numerical
calculation.

to the eventual stable state (specifically, a vapour bubble surrounded by

liquid in a confined system). The density profiles (broken lines) are plotted

in Fig.3.3 for different time instants along the transition up to the final

equilibrium state (black solid line). As explained in Chapter 2, the most

probable transition path, (under the assumption of over-damped regime),

and the critical state in particular, can be evaluated in parallel using the

string method. This provides access to the critical density profile and the

energy barrier (see Fig. 2.4 and Fig. 2.5 in Chapter 2). The red line in the

figure is the critical density profile from the string. In the stochastic system,

starting from the homogeneous liquid phase (the dotted dark green line),

thermal fluctuations lead to the formation of a vapour nucleus. In proximity

of the nucleation time –roughly t = 30000 for the specific case reported in

Fig. 3.3 – the density profile obtained by time integration of the stochastic
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Figura 3.3: Density profiles as a function of radial distance r, the criti-
cal profiles (red line) is evaluated with the string method. The other ones
represent the numerical results.

system matches quite well the critical profile provided by the string. In these

thermodynamic condition the process conform precisely to the notion of a

thermally activated transition. Indeed, reaching the activated (transition)

state requires quite some time. After the critical state has been reached the

successive dynamics is comparatively much faster, requiring a dimensionless

time of 103 to be completed as compared to the tenfold time, 104, required

to form the critical nucleus.

The simulations allow to evaluate the mean first passage time h⌧i, from

the metastable(uniform liquid) to the critical state (when the critical densi-

ty profile is reached). Numerical results are compared with the theoretical

prediction of Kramers theory, showing an agreement, in particular far from

the spinodal limit, that can be considered quite reasonable, if the simplifying

assumption of theory are considered. In order to be as fair as possible in
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theoretical prediction.

the comparison, Kramers theory (summarised in Chapter 1) has been used

in the context of the diffuse interface approach. This boils down to using the

potential (free-energy) obtained from the string method, �⌦(R) = �⌦s(R)

(see Fig. 2.5), as energy landscape in the theory. The integral providing

Kramers first passage time,

h⌧i =

Z

[

exp

✓
�
�⌦(R)

kB✓

◆
dR

Z

\

1

D
exp

✓
�⌦(R)

kB✓

◆
dR , (3.123)

is numerically evaluated. In order to do so, a further modelling assumption is

needed to estimate the diffusion coefficient. In the present case, the diffusion

coefficient, D⇤ = kB✓/16µ⇡R⇤, has been estimated in correspondence with

the critical state following Menzl, et al in [101], i.e. by enforcing the fluc-

tuation dissipation balance on the stochastic over-damped Rayleigh-Plesset

equation.
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Capitolo 4

Numerical Analysis of the LLNS
Equations with capillarity

This Chapter is devoted to the numerical analysis of stochastic partial dif-

ferential equations arising from the diffuse interface model endowed with

thermal fluctuations. In particular a general overview on the deterministic

part of the equations is given, stressing the numerical challenges characteri-

sing the proposed approach to multiphase flows. Subsequently the stochastic

contribution will be addressed in detail, focusing on the preservation of the

statistical properties of the system in the discretised form of the equations.

The validation of the numerical algorithm is performed by comparing theo-

retical and numerical equilibrium properties, e.g the static structure factor

and the static probability distribution, of the macroscopic field.

4.1 The deterministic equations

The system of equations to be solved (2.29 – 2.31) must to be coupled with

a suitable equation of state. The van der Waals EoS has been exploited

to study the collapse of cavitation nanobubbles, since it qualitatively well
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represents the behavior of the most common fluids. Conversely, an EoS

recovering the physical properties of a Lennard Jones fluid has been used in

the bubble nucleation simulations, in order to directly compare the results

with Molecular Dynamics simulations available from literature.

The numerical solution of the system of equations (2.29 – 2.31) is challen-

ging due to a combination of different physical phenomena, which all require

a different specialized numerical techniques. Apart from the extremely thin

liquid-vapor interface that requires a high numerical resolution, the system

supports i) the emission and the propagation of shock waves; ii) viscous dif-

fusion and capillary dispersion; iii) phase change and transition to and from

supercritical conditions.

4.1.1 The different mathematical features of the equa-
tions

In the system of the equations (2.29 – 2.31) both hyperbolic features (Euler

equations) and diffusive and dispersive behavior induced by viscosity and ca-

pillarity (Navier-Stokes-Kortweeg equations) are present. Moreover, at least

for the van der Waals equation of state, a region of the thermodynamic pha-

se space exists where @p0/@⇢|⌘ < 0. As well known, in ordinary conditions,

this derivative defines the square of the sound speed, implying that where

c
2
< 0 hyperbolic behavior changes into parabolic, see Fig. 4.1 for an expla-

natory diagram. From a numerical point of view, compressibility and shock

wave propagation would suggest the adoption of specialized shock-capturing

methods, like the Essentially Non Oscillatory schemes, or their Weighted

WENO extension [130]. Unfortunately these schemes fail when the system

explores a thermodynamic unstable state (certainly it happens in a two pha-
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Figura 4.1: Phase diagram in the p � ⇢ plane. In the zone (I) where p > pc

and ✓ > ✓c the fluid is in supercritical state. Zone (II), characterized by
p < pc but ✓ > ✓c, is the gas region. Conversely, zone (III) where p > pc but
✓ < ✓c is the compressible-liquid region. In zone (IV) and (V) the fluid is
in liquid or vapor state, respectively. Under the binodal curve, which repre-
sent the saturation conditions, we find zones (VI) and (VII) of metastable
liquid and metastable vapor state, respectively. The spinodal curve, defined
as @p/@⇢|✓ = 0, separates the metastable regions from the unstable region
(VIII). Finally, in subset of the unstable region, zone (IX), c2 = @p/@⇢|⌘ < 0,
i.e. the sound speed becomes imaginary.
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se system due to the diffuse interface). The strategy conceived to deal with

this complex mathematical structure, is based on two basic ingredients: 1)

Identification of the hyperbolic part of the operator and its extension to the

parabolic region where c2 < 0; 2) Operator splitting into hyperbolic and non-

hyperbolic part. For convenience, these two ingredients will be discussed in

revers order.

4.1.2 Operator splitting strategy

As discussed in Chapter 2, the state of the system is identified by three

basic, conserved fields, namely mass, momentum and total energy density,

to be collectively addressed here as the state vector U(x, t) = (⇢, ⇢u, E)T .

Formally system (2.29 – 2.31) can be written as

@U
@t

= N [U] = He [U] + P [U] ,

where He is the extension to the whole phase space of the hyperbolic part of

the operator and P = N�He is defined accordingly. The explicit expressions

of the two operators He and P will be provided below. After the operator

is split as explained, the state vector can be evolved in time exploiting a

solution strategy in terms of Strang splitting [135]. Denoting FN (t) the full

propagator such that

U(t+ ⌧) = FN (⌧)U(t) ,

for small ⌧ we can approximate

FN (⌧) = FP(⌧/4)FHe(⌧/2)FP(⌧/4)

where FP(⌧) is the propagator of system

@U
@t

= P [U] ,
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while FHe(⌧) is defined by

@U
@t

= He [U] .

Strang splitting allows for using different algorithms, specialized for each

component of the system. The algorithms we selected are a third order

WENO [130] scheme for the hyperbolic part and a second order accurate,

centered finite difference scheme for the parabolic part. We performed the

time integration of the hyperbolic part with a full explicit, third-order TVD

Runge-Kutta scheme. The parabolic operator is advanced in time with a

mixed, implicit-explicit scheme, where the linear terms (viscous stress and

heat flux) are treated implicitly in order to increase the stability limit. In the

region of phase space where the sound speed is well defined, the hyperbolic

step is

@⇢

@t
= �r · (⇢u) , (4.1)

@⇢u

@t
= �r · (⇢u⌦ u+ pI) , (4.2)

@E0

@t
= �r · [u (E0 + p)]�

@ (⇢Uc)

@t
. (4.3)

where E0 = ⇢ (U0 + 1/2|u|2) is the total energy density deprived of the capil-

lary contribution, which reproduces the classical Euler equation. The capil-

lary contribution to the energy (⇢Uc) is treated as an explicit forcing term

depending on the density gradient. Here, as already stated, a van der Waals

fluid is assumed in the equations of state. The parabolic part of the operator
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corresponds to

@⇢

@t
= 0 , (4.4)

@⇢u

@t
= r · ⌧ , (4.5)

@E

@t
= r ·

✓
�
1

2
�|r⇢|

2u+ ⌧ · u� q

◆
, (4.6)

where the capillary contribution (first term in the right hand side of the

equation for E) has been included in the energy flux. In the coexistence

region below the binodal (or coexistence curve, Fig. 4.1), which contains

the region where c
2
< 0, a Maxwell-like rule is used. Using the additivity of

specific volume and entropy, mass density and specific entropy can be written

as

1

⇢
= (1� ↵)

1

⇢V (✓)
+ ↵

1

⇢L(✓)

⌘sat = (1� ↵)⌘V (✓) + ↵⌘L(✓)

where subscript L and V denote pure liquid and vapor at the given tempe-

rature. The above relations can be inverted to yield

↵ = ↵(⇢, ⌘sat)

✓ = ✓(⇢, ⌘sat) .

For the mixture of vapor and liquid, the saturation pressure depends only on

temperature, such that

psat = psat(✓) = psat(⇢, ⌘sat) .

This expression allows to extract the sound speed as

c
2

sat =
@psat

@⇢

���
⌘sat

> 0
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whose final expression is

c
2

sat =

✓
dpsat
d✓

◆2

⇢2

✓
d⌘L

d✓
+

1

⇢
2

L

dpsat

d✓

d⇢L

d✓
�

⇢� ⇢L

⇢⇢L

d
2
psat

d✓2

◆ . (4.7)

The interested reader is referred to [102] for details on the thermodynamic

derivation of the sound speed for the mixture.

In fact, the actual pressure differs from the saturation pressure,

p = p(✓, ⇢) = psat(✓) + �p(✓, ⇢) ,

to the extent that c
2 = @p/@⇢|⌘ may become negative. We stress however

that c2sat > 0, thereby allowing to identify the hyperbolic part of the evolution

operator in the region below the binodal (which includes the region where

c
2
< 0).

Concerning the energy density, we consistently address the energy of the

liquid-vapor mixture,

Esat = 1/2⇢|u|2 + ⇢ [(1� ↵)UV + ↵UL] .

Again, the actual energy is

E = Esat + �E .

With the above position, the split system in the region below the binodal

reads

@⇢

@t
= �r · (⇢u) , (4.8)

@⇢u

@t
= �r · (⇢u⌦ u+ psatI) , (4.9)

@Esat

@t
= �r · [ru (Esat + psat)]�

@�E

@t
, (4.10)
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for the hyperbolic part and

@⇢

@t
= 0 , (4.11)

@⇢u

@t
= �r�p+r · ⌧ , (4.12)

@E

@t
= r · [�u (�E + �p) + ⌧ · u� q] , (4.13)

for the parabolic part, respectively.

We stress that the definitions of the operators given separately for the

two regions of phase space join continuously at the binodal curve.

4.2 The stochastic equations

The system of equations (3.89) has been discretized in the spirit of the me-

thod of lines, consisting in two stages: the first stage concerns the spatial

discretization, the second one is focused on the temporal integrator. Concer-

ning the spatial discretization it is worth stressing that the different physi-

cal phenomena described by the LLNS system ask for specialized numerical

techniques. A crucial point to be addressed is the correct reproduction of

the system statistical properties, in particular the adopted numerical scheme

need to be consistent with the fluctuation-dissipation balance. A necessa-

ry condition for this restriction is that the mathematical properties of the

relevant continuum differential operators are conserved in the discrete formu-

lation [8]. Eqs. (3.89) have been discretized on a equi-spaced staggered grid,

following [54]. Due to staggering, scalar fields, like density, e.g., are located

at the cell center while components of vector fields in a given direction are

located at the center of the perpendicular face (see Fig.3.1 in Chapter 3 for

details).
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4.2.1 Thermal fluctuations for a capillary fluid at equi-
librium in a discrete system

Before discussing the numerical results, it is worth remembering the stati-

stical properties of fluctuations in equilibrium state, that will be used as

benchmark for the numerical validation. In Chapter 3 the Einstein theory

of fluctuations has been recalled. Here the main results are shortly repor-

ted for the reader convenience. By assuming that the fluid is very close

to equilibrium and the fluctuations are small with respect to the mean va-

lue, the entropy functional can be approximated by a quadratic form in the

fluctuating fields,

�Sc ' �
1

2

Z

V

dV
c
2

T0

✓0⇢0
�⇢

2
�

�

✓0
�⇢
�
r

2
�⇢
�
+

⇢0

✓0
�u · �u+

⇢0cv0

✓
2

0

�✓
2
. (4.14)

The probability distribution functional for the fluctuating fields � = (�⇢, �u, �✓)

is

Peq [�] =
1

Z
exp

✓
�Sc

kB

◆
, (4.15)

hence the correlation tensor takes the fosllowing quadratic form

C�(x) = h�⌦�†
i =

Z
D�⇢D�uD�✓�⌦�†

Peq dV , (4.16)

and can be evaluated in closed form by elementary techniques for Gaussian

path integrals.

The discrete correlations are evaluated by dividing the system in cubic

cells Vn of volume �V = �x
3, such that the set V is written as V =

SN
n=1

Vn

and Vn \ Vm = ; if m 6= n, i.e. the subsets Vn form a partition of V . The

discrete fields are defined at each cell as the space-average of the continuum

fields over that volume, i.e. letting Un = (⇢n,un, ✓n) be the discrete field at
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a generic grid cell n, one has

Un (t) =
1

�V

Z

Vn

dV Un (x, t) . (4.17)

It is worth stressing that the system of equations Eq. (3.89), can be linea-

rized around the mean value of the hydrodynamic fields, providing in a di-

scretized form, a set of Ito’s stochastic ordinary differential equations for the

fluctuations �n = Un � hUni as

d�n (t) = Lnm�m dt+KnmdBm , (4.18)

where the first term of RHS of Eq. (4.18) is the discrete form of the deter-

ministic terms in the linearised Eq. (3.89), and the second one corresponds

to the stochastic contributions. The operators Lnm,Knm are block matrices

acting on all the N five dimensional vectors �n , dBn. The stochastic con-

tributions are constructed to reproduce the probability distribution of the

fluctuating fields that, in the discrete limit, reads (see Eq. (4.14))

Peq (�n) =
1

Z
exp

✓
�Sc

kB

◆
=

1

Z
exp

"
�
�V

2kB

NX

l,m

�l Hlm �m

#
.(4.19)

The corresponding covariance matrix is

h�l ⌦�mi =
1

Z

Z NY

n=1

d
5�n �l�m Peq (�n) =

kB

�V
H

�1

lm .

To be more explicit, the set of fluctuating fields �n have been collected in a

5N -dimensional vector, and H is a 5N ⇥ 5N block matrix defined as

H =

0

BB@

h ⇥13 ⇥11

⇥31

⇢0

✓0
I33 ⇥31

⇥11 ⇥13

⇢0cv

✓
2

0

I11

1

CCA (4.20)
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with I11 and I33 are N ⇥N and 3N ⇥3N identity matrices, respectively, and

⇥pq are pN ⇥ qN zero-matrices, with all zero entries. Particular attention

must be paid to the term h = c
2

T0
�V I11/✓0⇢0���V/✓0L, that for a capillary

fluids induces long-ranged correlations due to the presence of the discrete

Laplacian operator L (instead of the classical delta-correlation for simple

fluids).

After rearranging the fluctuating fields as above, the covariance matrix

(discrete Green’s function) is easily evaluated by solving the multidimensio-

nal Gaussian integral. The procedure yields the statistical properties of the

discretised equations,

h�⇢l�⇢mi = Z
�1

�⇢

Z NY

n=1

d�n�l�m exp

"
�
�V

2kB

NX

l,m=1

�l hlm�m

#
=

=
kB

�V
h�1

lm , (4.21)

h�ul�umi = Z
�1

�v

Z 3NY

n=1

d�n�l�m exp

"
�
�V ⇢0

2kB✓0

3NX

l,m=1

�l �lm�m

#
=

=
kB✓0

⇢0�V
�lm , (4.22)

h�✓l�✓mi = Z
�1

�✓

Z NY

n=1

d�n�l�m exp

"
�
�V ⇢0cv

2kB✓20

NX

l,m=1

�l �lm�m

#

=
kB✓

2

0

⇢0cv�V
�lm . (4.23)

In other words, in the theory of (discrete) fluctuating hydrodynamics the

fluctuating fields are a set of Gaussian stochastic processes, with zero mean

and the variance given by Eq. (4.21,4.22,4.23). It is worthwhile noting as all

the fields are mutually statistically independent (h�u�⇢i = 0, for example).

Also, the density field is not delta-correlated due to the presence of capillarity.
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4.2.2 Discrete static structure factor and weak conver-
gence analysis

As already discussed in Sec.3.1.1 a relevant quantity both from the ex-

perimental and the numerical point of view is the static structure factor

(see.Eq. 3.40). Here we report the comparison of the density static structure

factor, which is the Fourier transform of the static correlation function C�⇢�⇢

in Eq. (3.35). In the discrete limit, the theoretical static structure factor

reads

Figura 4.2: Left panel: Static structure factor comparison for a capillary
fluid in a 3D system. We report the relative error e = |Sf � St|/St between
the theoretical prediction and numerical calculation for each wavenumbers
kx, ky, kz in the Fourier space. Right panel: Error of the density variance
at different simulation time steps. As expected, the error follows a square
power law e / �t

2.

St(kd) =
⇢0kB✓0

c
2

T + ⇢0�kd · kd
, (4.24)

where

kd · kd =

✓
sin (kx�x/2)

�x/2

◆2

+

✓
sin (ky�y/2)

�y/2

◆2

+

✓
sin (kz�z/2)

�z/2

◆2

(4.25)
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is the discrete version of the square norm of k, arising from the discrete

laplacian operator in Fourier space [33]. The numerical value of the density

structure factor is calculated, following its definition, as

Sf (kd) = h�⇢(kd)�⇢
⇤(kd)i . (4.26)

As shown in the left panel of Fig. 4.2, the numerical results are in very good

agreement with the theoretical prediction. In particular the relative error

e is almost everywhere less than 2 � 3% in the field, except for the small

wavenumbers, due to the slow convergence of low wavelength modes [33].

Nevertheless, even in the latter case, the relative error is lower then 10%.

As a second test, we compared the variance of velocity and temperature

fluctuations. In particular, the velocity fluctuations must reproduce the

celebrated equipartition theorem, here reported in the discretized version:

h�u · �ui = 3
kB✓0

⇢0�V
, (4.27)

⌦
�✓

2
↵
=

kB✓
2

0

⇢0cv�V
. (4.28)

The values reported in Tab. 4.1 clearly show a perfect matching between

numerical results and theoretical expectation.

Variances Theoretical prediction Numerical value Error %
h�u

2

xi 1.3333 · 10�4 1.3332 · 10�4 0.01
h�u

2

yi 1.3333 · 10�4 1.3331 · 10�4 0.02
h�u

2

zi 1.3333 · 10�4 1.3335 · 10�4 0.02
h�✓

2
i 5.8361 · 10�5 5.8443 · 10�5 0.15

Tabella 4.1: Numerical temperature and velocity variances in comparison
with theoretical values.

As a last test, we validated the accuracy of our time integration method.

We performed the time evolution by means of a second order Runge Kutta
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scheme [46]. We compared the numerical error, e, on the variance of density

fluctuations h�⇢(x)2i at different time steps �t with respect to h�⇢(x)2iopt

obtained with our finest integration step �t = 10�4

e =
|h�⇢(x)2i � h�⇢(x)2iopt|

h�⇢(x)2iopt
, (4.29)

where the average is evaluated as 1/(T V )
R T

0

R
V �⇢(x)2 dV dt with the time

window T fixed as T = 100 LJ units. The right panel of Fig. 4.2 clearly show

the expected power law, e / �t
2 as expected for the weak convergence of

such stochastic pde [46]. All these tests ensure that the numerical scheme

correctly reproduce the statistical properties of the system, i.e. the numerics

preserves the fluctuation-dissipation balance in the discretised equations.

4.2.3 Static Probability Distributions

In Fig. 4.3 we report the comparison between the theoretical probability

distribution functions of density and temperature, and the numerical calcu-

lation. Figure 4.4 provides the comparison between the numerical and theo-

retical normalised mean kinetic energy. Since the fields un(⇢0�V/kB✓0)1/2 are

normally distributed Gaussian stochastic processes, the mean kinetic energy

normalised with 1/2kB✓ must be a Chi-squared stochastic process with mean

value 3. For the generic fluctuating field � the numerical variance is compu-

ted as 1/TV
R T

0

R
V �(x, t)2 dV dt, where the time window is set to T = 100t.

As shown in Figs. (4.3,4.4) numerical results are in very good agreement with

the theoretical prediction. This ensures that the numerical scheme is able to

reproduce the statistical properties of the system.
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Figura 4.3: Probability distribution functions for density and temperature
fields, the red lines represent the theoretical predictions (Gaussian distri-
butions) and the blue circles the numerical calculations. The results are
presented in an non dimensional form, according to Lennard-Jones units.
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Figura 4.4: Probability distribution functions of the kinetic energy K =
1/2⇢0�V (hu · ui) normalized with kB✓/2, the red line represent the theore-
tical prediction ( Chi-squared distribution) and the blue circle the numerical
calculation. The results are presented in an non dimensional form, according
to Lennard-Jones units.
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Capitolo 5

Conclusion and Perspectives

In these PhD thesis a mesoscale model based on the Van der Waals diffuse

interface approach endowed with thermal fluctuations has been developed to

address cavitation in its entirety, starting from the nuclei formation (nuclea-

tion) up to the macroscopic motion (bubble dynamics). In order to describe

spontaneous nucleation, two crucial aspects have been addressed. The first

aspect concerns the thermodynamics of two-phase system. For this purpo-

se a diffuse interface (DI) description has been adopted. The results show

a correct modeling of phase change, latent heat release, compressibility as

well as surface tension effects. The second one consists in modeling thermal

fluctuation, addressed by fluctuating hydrodynamics (FH). The FH theory

was developed for simple fluids in the eminent work of Landau and Lifshi-

tz. That approach has been extended in this thesis to the diffuse interface

context for capillary fluids. The model has been used to numerically address

vapor bubble nucleation both in homogeneous and heterogeneous conditions.

The calculated nucleation rates are favorably compared with state of the art

simulations. Concerning the comparison with classical approaches (CNT,

string method, Kramers theory) it is found that the simultaneous nucleation

107



of several bubbles strongly affects the nucleation rate, providing different

view point with respect to the single-bubble models.

However the nucleation rate in the initial phase is only mildly affected

by the simultaneous presence of newly nucleated bubbles and compared fa-

vourably with the available results of large scale MD simulations. From a

computational point of view, the present technique has revealed extremely

more cheap than traditional MD simulations, allowing the analysis of the ve-

ry long bubble expansion stage where bubble-bubble interaction (coalescence

and collapse) events turn out to determine the eventual bubble size distribu-

tion. In order to complete the analysis, a spherical version of the model is pro-

posed, particularly useful when dealing with homogeneous nucleation, where

is is reasonable (and common) to assume a spherical shape for nucleation

embryos. The reduced model is able to reproduce the Einstein-Boltzmann

probability distribution for fluctuations and well agrees with Kramers theory

in predicting the mean first passage time.

The model has great potential also for use in a pure deterministic setting,

showing a very accurate description of the hydrodynamics of multiphase sy-

stems. In particular, it has been exploited to study the collapse of a cavita-

tion nanobubble near a solid boundary, showing an accurate reproduction of

physical phenomena observed in the experiments, namely: strong peaks of

pressure and temperature, shockwave emission and liquid jet formation.

In addition the Van der Walls model coupled with the a rare event tech-

nique (the string method) was used to evaluate critical cluster and energy

barriers. This method has been used under the hypothesis of over-damped

regime, where the MEP is also the most probable path for the gradient

dynamics (Allen Cahn equation). Notwithstanding the path geometry the
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system follows when transitioning from the metastable basin to the saddle

point, could be considerably different with respect to an over-damped regi-

me. Since inertial effects could be crucial. Thus, determining most probable

path from FH simulations, where inertial effects are considered , is a very

interesting perspective, and I am presently presenting this as an interesting

perspective objective for future work. Finally the most probable path could

be also determined for the simplified spherical model we developed.

The encouraging results obtained with the present mesoscale model, sti-

mulate its exploitation in more complex conditions. For instance, developing

a multi-species systems is crucial in liquid-vapour nucleation, since the pre-

sence of dissolved gases and impurities is unavoidable and always detected

in common liquids, e.g. water. The extension of the present model to multi-

species system consists in more or less straightforward generalisation of the

Helmholtz free energy both in its bulk part (depending on the density of

all the species involved) and in the capillary term (depending on a capillary

tensor and on the spatial gradients of all species). The model can be im-

mediately and directly coupled to macroscopic flows address nucleation in

dynamic environments –like the engineering contexts where cavitation pro-

cess usually occurs– focusing on nucleation rates and bubble interactions. A

little further ahead fluctuating hydrodynamics can be extended to the phase

field crystal framework, to address solidification dynamics at mesoscale level.

As final remark, I would like to point out an apparent conceptual incon-

sistency of Van der Waals theory when dealing with multiphase systems. In

fact, the diffuse interface model is derived from gradient expansion of exact

DFT expressions, under the assumption small density gradients on molecu-

lar length scales. This hypothesis is reasonable when studying fluids at high
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temperatures (the cases in force in this thesis), where the transition zone

between the two different phases is characterized by a smooth interface. Ho-

wever, its validity in more general contexts is not so evident, since the widths

of the derived interfaces are often only a few molecular diameters in extent.

These problems are also detected in phase field theory for crystallization,

where it is supposed to describe localization of the density onto molecular-

scale. Onto these length scales, molecular correlation effects can be crucial

in modeling fluids, showing the need of more sophisticated theories, namely

microscopic DFT models. Unfortunately, such microscopic theories are often

unaffordable in many cases in terms of computational resources. For this

reasons, at the expense of generality, the efficiency of the Van der Waals mo-

del in the description of both the phase change inception and macroscopic

motion, seems to be a fair compromise. Nevertheless, the theoretical advance

in phase field approaches will be crucial in continuum models of multiphase

systems.

In conclusion, we believe that the work done with this thesis could be

useful in the development of innovative continuum formulation for thermally

activated processes.
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Capitolo 6

Shock-induced collapse of a vapor
nanobubble near solid boundaries

The deterministic diffuse interface approach described in Chapter 2 has been

used to address the collapse of a cavitation nano bubble in proximity of a solid

wall. The method was found to be suitable in the description of the complex

mechanisms behind the cavitation collapse, namely: topology modification,

phase changes also in supercritical regime, shockwave emission, liquid jet

formation. Qualitatively reproducing the existing experimental observations.

The simulated system –consisting of a pure van der Waals fluid– is ini-

tialized with a vapor bubble of radius Req in equilibrium with a surrounding

liquid, and placed at a distance z0 from the wall. The collapse is triggered

by an impinging shockwave, that as soon as it touches the bubble causes its

collapse. Several initial condition have been investigated, by changing both

the bubble initial wall distance and the intensity of the triggering shockwa-

ve. Overall the bubble dynamics is characterized by a sequence of rebounds

during which many complex physical phenomena are detected. In particular

when the bubble reaches its minimum volume extreme values of temperatu-

re and pressure are detected, these peaks are considered the forerunners of
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Figura 6.1: Simulation snapshot during bubble collapse.

the shockwave emission. The emitted shockwave strong interacts with the

dynamics following the collapse stage, especially when the collapsing bub-

bles are very close to the solid boundaries. In addition the presence of the

wall and the triggering collapse mechanism, determine the breaking of the

spherical symmetry in the system, leading, for sufficiently strong intensity of

the incoming shock wave, to the poration of the bubble and the formation

of a toroidal structure surrounding a liquid nano jet, as it is highlighted in

Fig.6.1 representing the latter phase.

Intense peaks of pressure and temperatures are found also at the wall,

confirming that the strong localized loading combined with the jet impinging

the wall is a potential source of substrate damage induced by the cavitation.
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The complete results have been published on IJMF (Volume

84, September 2016, Pages 34-45), and are reported here with the

permission of the authors.

abstract

The collapse of a nano-bubble near a solid wall is addressed here exploiting a

phase field model recently used to describe the process in free space. Bubble

collapse is triggered by a normal shock wave in the liquid. The dynamics

is explored for different bubble wall normal distances and triggering shock

intensities. Overall the dynamics is characterized by a sequence of collapses

and rebounds of the pure vapor bubble accompanied by the emission of shock

waves in the liquid. The shocks are reflected by the wall to impinge back

on the re-expanding bubble. The presence of the wall and the impinging

shock wave break the symmetry of the system, leading, for sufficiently strong

intensity of the incoming shock wave, to the poration of the bubble and the

formation of an annular structure and a liquid jet. Intense peaks of pressure

and temperatures are found also at the wall, confirming that the strong

localized loading combined with the jet impinging the wall is a potential

source of substrate damage induced by the cavitation.

Introduction

The collapse of vapor bubbles near solid boundaries has been deeply inve-

stigated in the last century. The triggering episode goes back to the finding

of the destructive effects of cavitation phenomena on the propellers of the

great ocean liners at the beginning of the XXth century. Similar effects ha-
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ve been observed successively on the blade of big hydraulic machines like

turbines and pumps [131, 88]. Only recently, due to the increasing impact

of the micro and nano technologies, the attention from millimeter-size bub-

bles has shifted downwards, toward micro or sub-micro bubbles. Indeed in

microfluidic devices, the so called lab on a chip, cavitation phenomena can

be employed for microfluidic pumping [50], to enhance mixing by means of

vorticity generation during the final stage of bubble collapse and for surfa-

ce cleaning purposes [112]. Cavitation bubbles are also used in advanced

medical procedures like high intensity focused ultrasound (HIFU) and extra-

corporeal shock wave lithotripsy (ESWL) [35] to enhance drug delivery or

increase local heat deposition deep within the body, to control localized cell

membrane poration [125], and to comminute kidney stones [151]. Moreover,

the use of femtosecond lasers, generating nanometric bubbles, has recently

found important applications in nanosurgery of cells and tissues [144, 145].

The experimental investigation has played the most important part in

the understanding of bubble-wall interactions, so far. The improvements in

the bubble generation techniques led to cleaner and better reproducible data,

starting from the kinetic impulse technique [14]. This approach suffers from

the disadvantage that the bubble must be located before the application of

the impulse. Successively the problem of localization has been overcome by

means of the generation of the bubble by using an electric spark [108, 139].

As a drawback, the electrodes perturb the bubble motion in the last stage of

the collapse. At the moment, the best bubble generation technique is, proba-

bly, the non-intrusive pulsed-laser discharge [143] that can focus an intense

local heating and vaporization of the liquid through application of a ther-

mal impulse. The visualization of the bubble dynamics can be performed by
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illuminating the scene with diffuse backlighting [16] and by means of high-

speed cameras, up to 20 million frames per second [111]. More recently, the

µ-PIV technique has been used to measure the flow field during the bubble

collapse [125]. The experiments allowed the visualization of the jet formation

during the bubble collapse near solid surfaces and the assessment of the role

of shock-wave emission, jet-wall interaction and chemical effects on cavita-

tion damage [14, 120]. Notwithstanding the extreme frame-rate of modern

cameras, the complete and detailed description of thermo-acoustic and flow

fields, is still lacking. The temperature and pressure inside the bubble at

the collapse instant is not easily accessible with non-intrusive measuremen-

ts. The pressure indeed can be only extrapolated by measuring it with an

hydrophone at some distance from the bubble and by assuming a classical

1/r decay [87]. The temperature instead can be estimated by matching a

blackbody radiation with the measured spectrum of the emitted light upon

collapse [60].

On the other hand, the mathematical modeling of cavitation is still a

great challenge. The cornerstone in the theory of bubble dynamics was the

pioneering work of Lord Rayleigh [121] who described the collapse of a bub-

ble immersed in a unbounded incompressible liquid. Despite the significant

simplifying assumptions, the correspondence with experimental results is still

impressive. The model has been successively refined by taking into account

compressibility effects in the liquid [81, 69] and the presence of a dilute gas

in the bubble. These refined models provided an estimate of the pressure

peaks reached inside the bubble on the order of hundred times the pressure

of the liquid environment. Numerical simulations and more complex analysis

followed [117, 119, 129] in order to describe the effect of a nearby bounda-
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ry. Different numerical techniques have been used in order to capture the

interfacial dynamics, ranging from the Boundary Element Method (BEM)

for irrotational conditions [16] to the Arbitrary Lagrangian Eulerian (ALE)

schemes [138, 51]. Recently more sophisticated models have been proposed to

gain new insights on the effects of dissolved gas and phase change [2] and to

obtain a deeper knowledge in fascinating phenomena like sonoluminescence

[30]. Of particular interest is the diffuse interface approach which enables a

natural description of interfacial flows, changes of topology, vapor/liquid and

vapor/supercritical fluid phase changes which have been shown to be crucial

for the correct description of the final stages of the bubble collapse [96].

In this work we will exploit the diffuse interface model to numerically

investigate the collapse of a sub-micron vapor bubble near solid boundaries.

The effect of the initial bubble-wall distance will be analyzed and the vi-

sualization of the entire flow and thermo-acoustic fields will be provided.

Particular attention will be paid to the stress distribution on the solid wall

and we will address the role of the different pressure waves on cavitation

damage.

The paper is organized as follows: in § 1 the diffuse interface model and

the relevant conservation equations is derived; § 2 provides details on the

numerical scheme and describes the numerical setting of the simulations;

finally, the results of the numerical experiments will be discussed in § 3 to

finally draw conclusions and provide final comments in the last § 4.

Mathematical model

Thermodynamics of non-homogeneous systems We exploit an un-

steady diffuse interface description [5] of the multiphase flow in a domain
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D based on the van der Waals gradient approximation of the free energy

functional F [⇢, ✓] [45, 72]:

F [⇢, ✓] =

Z

D

f̂dV =

Z

D

✓
f̂0 (⇢, ✓) +

�

2
|r⇢|

2

◆
dV , (6.1)

where f̂ = f̂0 + �/2|r⇢|
2 with f̂0 (⇢, ✓) the classical Helmholtz free energy

density per unit volume of the homogeneous fluid at temperature ✓ and mass

density ⇢. The coefficient �(⇢, ✓), in general function of the thermodynamic

state, embodies all the information on the interfacial properties of the liquid-

vapor system (i.e. surface tension and interface thickness). In particular, for

a van der Waals fluid, the free energy reads

f̂0 (⇢, ✓) = R̄⇢✓


�1 + log

✓
⇢K ✓

1/�

1� b⇢

◆�
� a⇢

2
, (6.2)

with � = R̄/cv, R̄ the gas constant, cv the constant volume specific heat,

a and b the van der Waals coefficients and K a constant related to the de

Broglie length [150].

Equilibrium conditions The present paragraph summarizes, for the rea-

der convenience, results concerning thermodynamic equilibrium for systems

described by the free energy functional (6.1). Although well known to spe-

cialists, we deemed useful to present a short summary to rationalize this

classical material which is hardly described comprehensively in literature,

[73].

At given temperature, equilibrium is characterized by the minimum of the

free energy functional in Eq. (6.1), where variations are performed with re-

spect to the density distribution ⇢. The evaluation of the functional derivative

leads to the following equilibrium condition:

µ
0

c �r · (�r⇢) = const , (6.3)
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where the temperature is constrained to be constant, ✓ = const, and µ
0

c =

@f̂0/@⇢|✓ is the classical chemical potential. The equation defines a gene-

ralized chemical potential µc = µ
0

c � r · (�r⇢) that must be constant at

equilibrium.

The consequence of the above equilibrium conditions is better illustra-

ted in the simple case of a planar interface, where the only direction of

inhomogeneity is x, under the assumption of constant �. The constant tem-

perature appears in the equilibrium problem as a parameter and will not be

further mentioned throughout the present section. Hence, determining the

equilibrium density distribution amounts to finding a solution of

µc = µ
0

c(⇢)� �d
2
⇢/dx

2 = µeq , (6.4)

where the chemical potential in the bulk fluid (the vapor phase, say), far

from the interface where d⇢/dx = 0, determines the constant µeq = µ
0

c(⇢V ) =

µ
0

c(⇢L). By multiplying Eq. (8.16) by d⇢/dx and integrating between ⇢1 = ⇢V

and ⇢, leads to

ŵ0(⇢)� ŵ0(⇢V ) =
�

2

✓
d⇢

dx

◆2

, (6.5)

where ŵ0(⇢) = f̂0(⇢) � µeq⇢. Equation (6.5) shows that ŵ0 has the same

value in both the bulk phases, where the spatial derivative of mass density

vanishes: ŵ0(⇢L) = ŵ0(⇢V ).

The grand potential, defined as the Legendre transform of the free energy,

⌦ = F �

Z

D

⇢
�F

�⇢
dV =

Z

D

ŵdV , (6.6)

has the density (actual grand potential density)

ŵ[⇢] =f̂ � µc⇢ = f̂0 +
�

2

✓
d⇢

dx

◆2

�

✓
µ
0

c � �
d
2
⇢

dx2

◆
⇢ , (6.7)
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implying that, in the bulk, ŵ = ŵ0, i.e. ŵ0 is the bulk grand potential density.

Given the form of ŵ0(⇢), the solution of Eq. (6.5) provides the equilibrium

density profile ⇢(x):

x =

r
�

2

Z ⇢

⇢v

d⇢p
w0(⇢)� w0(⇢V )

+ const . (6.8)

Eq. (6.8) provides the equilibrium density profile characterized by two bulk

regions separated by a thin layer. The layer thickness can be estimated as

✏ =
⇢L � ⇢V

d⇢/dx|max
. (6.9)

The equilibrium condition, Eq. (6.5), provides the interface thickness in terms

of the bulk grand potential density ŵ0(⇢) and of the parameter �,

✏ = (⇢L � ⇢V )

s
�

2 [ŵ0(⇢̄)� ŵ0(⇢V )]
, (6.10)

without explicitly addressing the density profile. ⇢̄ is the density correspon-

ding to the maximum of d⇢/dx, achieved where dŵ0/d⇢ = 0, Eq. (6.5).

The surface tension can be defined as the excess (actual) grand potential

density,

� =

Z xi

�1

(ŵ[⇢]� ŵ[⇢V ]) dx +

Z
1

xi

(ŵ[⇢]� ŵ[⇢L]) dx =

Z
1

�1

(ŵ[⇢]� ŵ[⇢V ]) dx , (6.11)

where xi is the position of the Gibbs dividing surface, whose precise value

is not influential since ŵ[⇢V ] = ŵ[⇢L] (we stress that, e.g., ŵ[⇢V ] should be

interpreted as the functional (6.7) evaluated on the constant density ⇢V ). Gi-

ven the definition of ŵ[⇢], Eq. (6.7), and exploiting the equilibrium condition
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for the chemical potential, Eq. (6.4), it follows that

� =

Z
1

�1

"
f̂0 +

1

2
�

✓
d⇢

dx

◆2

� µeq⇢� ŵ0(⇢V )

#
dx =

Z
1

�1

"
ŵ0 +

1

2
�

✓
d⇢

dx

◆2

� ŵ0(⇢V )

#
dx . (6.12)

Using Eq. (6.5) one finds

� =

Z
+1

�1

�

✓
d⇢

dx

◆2

dx =

Z ⇢L

⇢V

�
d⇢

dx
d⇢ =

Z ⇢L

⇢V

p
2� (ŵ0(⇢)� ŵ0(⇢V )) d⇢ , (6.13)

where the second expression can be evaluated with no a priori knowledge

of the equilibrium density profile. We observe that, as for the interface

thickness, the surface tension only depends on the form of the bulk grand

potential density ŵ0(⇢) in the density range between the two equilibrium

values, [⇢V ; ⇢L], and on the parameter �.

Equation (6.5) applied to the two bulk regions where d⇢/dx = 0 implies

the mechanical equilibrium condition p0(⇢L) = p0(⇢V ), where

p0 = �
@f0

@v
= �

@f̂0/⇢

@v
= ⇢µ

0

c � f̂0 (6.14)

is the classical thermodynamic pressure, f0 = f̂0/⇢ the specific bulk free

energy, and v = 1/⇢ the specific volume. Indeed Eq. (6.5) implies ŵ0(⇢V ) =

ŵ0(⇢L), which corresponds to the equality of the pressures given that p0 =

�ŵ0.

Equations of motion The dynamics of the inhomogeneous system is de-

scribed by the conservation equations for mass ⇢, momentum ⇢u, and total
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energy E densities of
@⇢

@t
+r · (⇢u) = 0 , (6.15)

@⇢u

@t
+r · (⇢u⌦ u) = r · ⌧ , (6.16)

@E

@t
+r · (uE) = r · [⌧ · u� qe] . (6.17)

The system (6.15 – 6.17) needs to be complemented with thermodynamically

consistent constitutive relations for the stress tensor ⌧ and the energy flux

qe. Their derivation is outlined below for the simplest case of constant �,

following the general approach for non-equilibrium processes described in

[37].

It is instrumental to rewrite the energy equation in terms of specific in-

ternal energy U , obtained by subtracting the equation for the kinetic energy

from Eq. (6.17)

⇢
DU

Dt
= ⌧ : ru�r · qe , (6.18)

where D/Dt = @/@t + u · r is the material derivative. By definition U =

f + ✓ ⌘, with f = f̂/⇢ the specific Helmholtz free energy and ⌘ the specific

entropy. The total derivative of U reads

dU =
@f

@⇢
d⇢+

@f

@r⇢
· dr⇢+ ✓d⌘ . (6.19)

The partial derivatives of the specific free energy can be derived from its

definition, Eq. (6.1), and from the definition of the thermodynamic pressure,

Eq. (6.14). Explicitly, one finds

DU

Dt
=

1

⇢2

✓
p0 �

�

2
|r⇢|

2

◆
D⇢

Dt
+ ✓

D⌘

Dt
+

�

⇢
r⇢ ·

Dr⇢

Dt
.
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The material derivative of the density gradient (last term in the RHS of

Eq. (6.20)) can be evaluated by applying the gradient operator to the equa-

tion of mass conservation, Eq. (6.15):

�

⇢
r⇢ ·

Dr⇢

Dt
= �

�

⇢
r⇢ ·r (⇢r · u)�

�

⇢
r⇢⌦r⇢ : ru . (6.20)

After substitution of Eqs. (6.15, 6.20, 6.20) into Eq. (6.18), a few more ele-

mentary manipulations allow to write the evolution equation for the entropy

as

⇢
D⌘

Dt
= r ·

✓
�⇢r⇢r · u� qe

✓

◆
+

+
1

✓2
[�⇢r⇢r · u� qe] ·r✓ +

+
1

✓


⌧ +

✓
p0 �

�

2
|r⇢|

2
� ⇢r · (�r⇢)

◆
I+

�r⇢⌦r⇢

�
: ru . (6.21)

The term under divergence defines the entropy flux. Since the entropy

production must be positive definite in terms of the thermodynamic for-

ces (Clausius-Duhem inequality), the other two contributions on the right

hand side are required to be positive. Assuming linear dependence of ther-

modynamic fluxes – terms in square brackets in (6.21) – on thermodynamic

forces – r✓ and ru – leads to identify the stress tensor with the following

expression,

⌧ = �p0I +⌃

=

✓
�p0 +

�

2
|r⇢|

2 + ⇢r · (�r⇢)

◆
I

��r⇢⌦r⇢+

+µ

�
ru+ruT

�
�

2

3
r · uI

�
, (6.22)
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where the usual viscous terms with µ > 0 in the last line are the source

of mechanical irreversibility (for the sake of simplicity we have assumed the

second viscosity coefficient equal to �2µ/3). Concerning the energy flux,

positive entropy production, second line in Eq. (6.21), calls for

qe = �⇢r⇢r · u� kr✓ , (6.23)

where k > 0 is the thermal conductivity.

Hereafter we assume constant values for µ and k and we adopt the van

der Waals free energy density f̂0, Eq. (6.2), to obtain

p0 = R̄
⇢✓

1� b⇢
� a⇢

2
, (6.24)

U =
R̄

�
✓ � a⇢+

�

2⇢
|r⇢|

2
, (6.25)

where the last term corresponds to the capillary contribution to the internal

energy, Uc =
�

2⇢
|r⇢|

2.

Dimensionless parameters By introducing the dimensionless (or redu-

ced) variables

⇢
⇤ = ⇢/⇢c , p

⇤ = p/pc , ✓
⇤ = ✓/✓c ,

where

⇢c =
1

3b
, pc =

a

27b2
, ✓c =

8a

27R̄b

are the critical values of density, pressure and temperature, respectively, the

caloric and thermal equations of state take the form

E
⇤ =

8

3�
⇢
⇤
✓
⇤
� 3⇢⇤2 +

1

2
⇢
⇤
|u⇤

|
2 +

+
1

2
C |r⇤

⇢
⇤
|
2
, (6.26)

p
⇤

0
=

8✓⇤⇢⇤

3� ⇢⇤
� 3⇢⇤2 , (6.27)
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where uR =
p

pc/⇢c is a reference velocity and LR is a reference length.

Time is made dimensionless with respect to the reference time tR = LR/uR.

C = �⇢
2

c/(pcL
2

R) is a dimensionless parameter quantifying the relevance of

capillary stress to the dynamics.

For the reader’s convenience, the constitutive laws are rewritten in dimen-

sionless variables to highlight the relevant control parameters. The asterisk

(⇤) is hereafter suppressed for the ease of notation:

⌧ =

✓
�p0 +

C

2
|r⇢|

2 + C⇢r
2
⇢

◆
I � Cr⇢⌦r⇢+

+
1

Re

�
ru+ruT

�
�

2

3
r · uI

�
, (6.28)

qe = C ⇢r⇢r · u�
1

RePr
r✓ . (6.29)

Re = LR
p
pc⇢c/µ is a Reynolds number based on critical quantities and

Pr = 3µR̄/(8k) is the analogous for a van der Waals fluid of the familiar

Prandtl number.

Algorithms & solution techniques

The numerical solution of the system of equations (6.15 – 6.17) is challenging

due to a combination of different physical phenomena, which all require a

specialized numerical technique.

Apart from the extremely thin liquid-vapor interface that requires a high

numerical resolution, the system supports i) the propagation of shock waves;

ii) viscous diffusion and capillary dispersion; iii) phase change and transition

to and from supercritical conditions.

From a numerical point of view, compressibility and shock wave propaga-

tion would suggest the adoption of specialized shock-capturing methods, like
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Figura 6.2: Phase diagram in the p � ⇢ plane. In the zone (I) where p > pc

and ✓ > ✓c the fluid is in supercritical state. Zone (II), characterized by
p < pc but ✓ > ✓c, is the gas region. Conversely, zone (III) where p > pc but
✓ < ✓c is the compressible-liquid region. In zone (IV) and (V) the fluid is
in liquid or vapor state, respectively. Under the binodal curve, which repre-
sent the saturation conditions, we find zones (VI) and (VII) of metastable
liquid and metastable vapor state, respectively. The spinodal curve, defined
as @p/@⇢|✓ = 0, separates the metastable regions from the unstable region
(VIII). Finally, in subset of the unstable region, zone (IX), c2 = @p/@⇢|⌘ < 0,
i.e. the sound speed becomes imaginary.

the Essentially Non Oscillatory schemes, or their Weighted WENO extension

[130]. However hyperbolic features conflict with the diffusive and dispersive

behavior induced by viscosity and capillarity. Moreover, at least for the van

der Waals equation of state, (6.27), a region of the thermodynamic phase

space exists where @p0/@⇢|⌘ < 0. As well known, in ordinary conditions, this

derivative defines the square of the sound speed, implying that where c
2
< 0

hyperbolic behavior changes into parabolic, see Fig. 6.2 for an explanatory

diagram. The strategy conceived to deal with this complex mathematical

structure, is based on two basic ingredients: 1) Identification of the hyper-

bolic part of the operator and its extension to the parabolic region where
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c
2
< 0; 2) Operator splitting into hyperbolic and non-hyperbolic part. For

convenience, these two ingredients will be discussed in revers order.

Operator splitting As discussed in § 1, the state of the system is iden-

tified by three basic, conserved fields, namely mass, momentum and to-

tal energy density, to be collectively addressed here as the state vector

U(x, t) = (⇢, ⇢u, E)T . Formally system (6.15 – 6.17) can be written as

@U
@t

= N [U] = He [U] + P [U] ,

where He is the extension to the whole phase space of the hyperbolic part of

the operator and P = N�He is defined accordingly. The explicit expressions

of the two operators He and P will be provided below. After the operator

is split as explained, the state vector can be evolved in time exploiting a

solution strategy in terms of Strang splitting [135]. Denoting FN (t) the full

propagator such that

U(t+ ⌧) = FN (⌧)U(t) ,

for small ⌧ we can approximate

FN (⌧) = FP(⌧/4)FHe(⌧/2)FP(⌧/4)

where FP(⌧) is the propagator of system

@U
@t

= P [U] ,

while FHe(⌧) is defined by

@U
@t

= He [U] .

Strang splitting allows for using different algorithms, specialized for each

component of the system. The algorithms we selected are a third order
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WENO [130] scheme for the hyperbolic part and a second order accurate,

centered finite difference scheme for the parabolic part. We performed the

time integration of the hyperbolic part with a full explicit, third-order TVD

Runge-Kutta scheme. The parabolic operator is advanced in time with a

mixed, implicit-explicit scheme, where the linear terms (viscous stress and

heat flux) are treated implicitly in order to increase the stability limit.

Definition of the operators above the binodal In the region of phase

space where the sound speed is well defined, the hyperbolic step is

@⇢

@t
= �r · (⇢u) , (6.30)

@⇢u

@t
= �r · (⇢u⌦ u+ p0I) , (6.31)

@E0

@t
= �r · [u (E0 + p0)]�

@ (⇢Uc)

@t
. (6.32)

where E0 = ⇢ (U0 + 1/2|u|2) is the total energy density deprived of the capil-

lary contribution, which reproduces the classical Euler equation. The capil-

lary contribution to the energy (⇢Uc) is treated as an explicit forcing term

depending on the density gradient. Here, as already stated, a van der Waals

fluid is assumed in the equations of state. The parabolic part of the operator

corresponds to

@⇢

@t
= 0 , (6.33)

@⇢u

@t
= r ·⌃ , (6.34)

@E

@t
= r ·

✓
�
1

2
�|r⇢|

2u+⌃ · u� qe

◆
, (6.35)

where the capillary contribution (first term in the right hand side of the

equation for E) has been included in the energy flux.
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Definition of the operators below the binodal In the coexistence re-

gion below the binodal (or coexistence curve, Fig. 6.2), which contains the

region where c
2
< 0, a Maxwell-like rule is used. Using the additivity of spe-

cific volume and entropy, mass density and specific entropy can be written

as

1

⇢
= (1� ↵)

1

⇢V (✓)
+ ↵

1

⇢L(✓)

⌘sat = (1� ↵)⌘V (✓) + ↵⌘L(✓)

where subscript L and V denote pure liquid and vapor at the given tempe-

rature. The above relations can be inverted to yield

↵ = ↵(⇢, ⌘sat)

✓ = ✓(⇢, ⌘sat) .

For the mixture of vapor and liquid, the saturation pressure depends only on

temperature, such that

psat = psat(✓) = psat(⇢, ⌘sat) .

This expression allows to extract the sound speed as

c
2

sat =
@psat

@⇢

���
⌘sat

> 0

whose final expression is

c
2

sat =

✓
dpsat
d✓

◆2

⇢2

✓
d⌘L
d✓

+
1

⇢
2

L

dpsat
d✓

d⇢L
d✓

�
⇢� ⇢L

⇢⇢L

d2
psat

d✓2

◆ . (6.36)

The interested reader is referred to [102] for details on the thermodynamic

derivation of the sound speed for the mixture.
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In fact, the actual pressure differs from the saturation pressure,

p0 = p0(✓, ⇢) = psat(✓) + �p(✓, ⇢) ,

to the extent that c
2 = @p/@⇢|⌘ may become negative. We stress however

that c2sat > 0, thereby allowing to identify the hyperbolic part of the evolution

operator in the region below the binodal (which includes the region where

c
2
< 0).

Concerning the energy density, we consistently address the energy of the

liquid-vapor mixture,

Esat = 1/2⇢|u|2 + ⇢ [(1� ↵)UV + ↵UL] .

Again, the actual energy is

E = Esat + �E .

With the above position, the split system in the region below the binodal

reads

@⇢

@t
= �r · (⇢u) , (6.37)

@⇢u

@t
= �r · (⇢u⌦ u+ psatI) , (6.38)

@Esat

@t
= �r · [u (Esat + psat)]�

@�E

@t
, (6.39)

for the hyperbolic part and

@⇢

@t
= 0 , (6.40)

@⇢u

@t
= �r�p+r ·⌃ , (6.41)

@E

@t
= r · [�u (�E + �p) +⌃ · u� qe] , (6.42)
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for the parabolic part, respectively.

We stress that the definitions of the operators given separately for the

two regions of phase space join continuously at the binodal curve.

Thermodynamic state of the liquid-vapor mixture Concerning the

thermodynamics of the homogeneous vapor-liquid mixture below the binodal,

the saturation densities ⇢V (✓) and ⇢L(✓), are evaluated as follows. Given the

state of the system in terms of density and temperature, the corresponding

chemical potential is

µ
0

c =
8

3
✓


⇢

3� ⇢
� log

✓
K (3� ⇢)✓1/�

3⇢

◆�
� 6⇢ . (6.43)

Chemical, thermal and mechanical equilibrium require equality of tempera-

ture, ✓V = ✓L = ✓, pressure, pV = pL, and chemical potential µ0

V = µ
0

L. After

some algebra, one ends up with the following non-linear 2x2 system for ⇢L

and ⇢V

8✓⇢L
3� ⇢L

� 3⇢2L =
8✓⇢V
3� ⇢V

� 3⇢2V ,

✓


3 (⇢L � ⇢V )

(3� ⇢L) (3� ⇢V )
+ log

✓
⇢L (3� ⇢V )

⇢V (3� ⇢L)

◆�
=

=
9

4
(⇢L � ⇢V ) ,

which is solved by a standard Newton algorithm.

Simulations setup All the simulations have been performed using an axi-

symmetric code, exploiting cylindrical symmetry, see the sketch in Fig. 6.3.

The system is initialized with a vapor bubble of radius Req centered in z0,

the distance between the wall and the bubble center. The effect of the initial

distance is analyzed by performing 5 simulations at different z0. The vapor
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Figura 6.3: Sketch of the simulation setup.

bubble is in equilibrium with the confining liquid at temperature ✓/✓c = 0.6.

A shock wave with intensity I = (p2 � p1)/p1, with p2 and p1 the pressure

in the perturbed and the unperturbed state, respectively, is initialized to hit

the bubble and trigger the collapse. In most of the results to be discussed,

I = 75. A further case at I = 400 is also considered, to highlight the destabi-

lizing effect of the impinging shock intensity. The fluid domain has dimension

4Req ⇥ 4Req and has been discretized with a uniform grid 2048⇥ 2048. The

mesh influence has been analyzed by comparing the bubble evolution on a

coarser mesh, 1024 ⇥ 1024. Since the results are nearly indistinguishable,

only those obtained with the finer mesh has been produced here since the

accuracy, in particular during the final stage of the collapse, is expected to

be slightly better. An adaptive timestep, ranging from 10�5 down to 10�8,
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has been used during the simulations to comply with stability and accuracy

requirements. In particular, the smaller ones are used during the collapse

stage, when the shockwaves are formed, in order to follow the large and fa-

st changes experienced by the field. Selecting LR = Req, the dimensionless

parameters of the simulations are: Re = 50, Pr = 0.2 and C = 1.6 ⇥ 10�4.

These values correspond, e.g., to a bubble radius order of 100nm with typical

viscosity, thermal conductivity, surface tension and critical values of water.

Results and discussions

Overall, the dynamics of the bubble is characterized by a sequence of re-

bounds, as shown by the plots of bubble volume vs time reported in Fig. 6.4

for different wall normal distances of the bubble and for the triggering shock

strength I = 75. Generically, the first collapse phase (volume decreasing in

time), is only slightly affected by the initial wall distance. After the mini-

mum volume is reached, a plateau is observed. It will be shown to be related

to the interaction of the bubble with the shock wave which is emitted when

the collapse is arrested and is successively reflected back by the wall. After

the shock/bubble interaction is completed, the bubble starts expanding up

to a maximum volume, which is systematically lower than the initial value.

The process ends with the full condensation of the bubble.

Equilibrium vapor bubble Before discussing in detail the actual dyna-

mics observed in the simulations, it may be instrumental to identify the effect

of a compression on an equilibrium bubble. Given the temperature, a system

formed by a vapor bubble in equilibrium with the liquid should satisfy the
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Figura 6.4: Time evolution of the bubble volume for different initial wall–
bubble distance z0. The initial distance does not substantially affect the
bubble dynamic during the first collapse, indeed the collapse time remains
unaltered in all the numerical experiments. The characteristic frequency of
collapse and re-expansion is not a function of the initial position. Conversely,
the dynamic of the re-expansion and of the successive collapses is influenced
by the initial position in a non trivial way. In the inset it is reported the
comparison between the shock-induced collapse near a wall (the solid red
curve, z0 = 1.3) and in free space (dotted black curve) where the bubble
does not experience a volume plateau after the collapse.

conditions of constant chemical potential, Eq. (8.16),

µ
0

c(⇢L, ✓) = µeq

µ
0

c(⇢V , ✓) = µeq ,

where the equilibrium state is parametrized by ✓ and µeq, and the chemical

potential for a van der Waals fluid is explicitly provided in Eq. (6.43).
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Figura 6.5: Illustration of the iso-chemical potential (black curves), isotherm
(red curve, ✓̄ = 0.6) and isobar (blue curve) for a van der Waals equation of
state in the ⇢–p plane. The range of very low densities is enlarged in the top
inset. The equilibrium properties (same chemical potential, temperature and
pressure) identify the saturation densities (⇢V sat and ⇢Lsat) as the intersection
of the iso-chemical potential µsat (thicker black curve) and the isotherm and
isobar. The two colored regions span the chemical potential values where
a vapor bubble (light blue) or a liquid drop (light red) can be found as a
metastable equilibrium condition for the fluid system. In the bottom inset
the effect of reducing the liquid pressure, pL, under the saturation value on
the equilibrium pressure difference, �p, between the vapor bubble and the
external liquid, is plotted for different fixed temperatures. The corresponding
bubble radius can be obtained by the classical Young-Laplace equation.

The equilibrium conditions are described in Fig. 6.5, where a constant

chemical potential line, thin solid line, is plotted in the ⇢� p plane. An iso-

therm is also reported as a red solid line. The intersection of the two curves
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determines three points in the plane. The low density one corresponds to the

vapor, ⇢V , pV , and is hardly visible on the scale of the plot, see the enlar-

gement on the upper part of the figure. The intersection at largest density

corresponds to the liquid, ⇢L, pL. The third intersection, at intermediate

density ⇢
spi
V (✓) < ⇢un < ⇢

spi
L (✓), always belongs to the unstable region of the

phase space, below the spinodal, see Fig. 6.2. The region of the phase space

where the above three intersections exist is shown by the colored band in the

figure. More specifically, denoted by µ
spi
L (✓) and µ

spi
V (✓) the chemical poten-

tial at the liquid and vapor spinodal, the condition µ
spi
L (✓) < µeq < µ

spi
V (✓)

defines the relevant range of chemical potential. Outside the colored band,

only one intersection is found, corresponding to vapor or liquid, according to

the condition µeq < µ
spi
L or µeq > µ

spi
V , respectively.

The pressure, of the vapor, say, is recovered from the pressure equation

of state (6.24), in combination with the expression for the chemical potential

Eq. (6.43), to yield pV = pV (µeq, ✓). The chemical potential at saturation,

black thick line in Fig. 6.5, is such that pV (µsat, ✓) = pL(µsat, ✓) = psat(✓).

As a property of the solution, pL 7 pV when µeq 7 µsat. It follows that, in

order to have a bubble (pV > pL), the chemical potential must be smaller

than the saturation value, µspi
L < µeq < µsat, light blue band in Fig. 6.5. In

this case the vapor is stable (i.e. the vapor point is above the binodal) and

the liquid is metastable (liquid between binodal and spinodal). The other

case, µspi
V > µeq > µsat, corresponds to a drop of stable liquid in metastable

vapor (light red band in the figure).

By inverting the relationship pL = pL(µeq, ✓) and inserting it in the ex-

pression for vapor pressure, pV = pV (µeq, ✓), allows to express the pressure
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difference between vapor and liquid as a function of the liquid pressure,

�p = pV � pL = f(pL, ✓) ,

where �p > 0 (vapor bubble) when pL < psat. This relation, illustrated in

the lower inset of Fig. 6.5 for several temperatures, is hardly distinguishable

from a straight line on the adopted scale. Since µ
spi
L < µeq < µsat, the

corresponding range of liquid pressure is p
spi
L < pL < psat(✓), where p

spi
L

is the pressure at the liquid spinodal. When the liquid pressure belongs

to the allotted interval, the equilibrium radius of the bubble can then be

estimated by using the Young-Laplace equation, Req = 2�/�p (the exact

solution requires solving the corresponding problem in the phase field context

[45]).

Let us consider the bubble-liquid system in equilibrium with a given pres-

sure pL in the liquid. Assume the liquid is now compressed to a new state,

p
0

L = pL+ �pL. If the compression is such that p0L < psat, the bubble will find

a new equilibrium condition, with a new pressure p
0

V and a new radius R
0

eq.

A counterintuitive effect is that, under compression of the liquid, the radius

of the new equilibrium bubble increases. This is opposite to the behavior

expected from a gas bubble, and is explained by the inset of Fig. 6.5 where

the pressure jump across the interface is shown to be a decreasing function of

the liquid pressure. A little more though immediately provides the clue for

understanding this behavior. In fact, increasing the pressure, the liquid gets

closer to saturation conditions, implying that also the vapor inside the bub-

ble approaches saturation, see the inset of Fig. 6.5. The consequence is that

the pressure difference �p between vapor and liquid decreases, leading to a

larger equilibrium radius as a consequence of the Young-Laplace equation.
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Figura 6.6: Snapshots during the evolution of a collapsing bub-
ble with z0 = 1.3. The sequence runs from left to right and
from top to bottom and is not uniformly spaced in time (t =
0, 2.237, 2.261, 2.28, 2.316, 2.376, 2.527, 4.152, 6.407, 7.474, 7.683, 7.736). The
grey tones from darker to lighter represent the density field from smaller
(vapor phase) to higher (liquid phase). The black lines are Schlieren-like
iso-lines obtained as S = exp(�|rp0|/|rp0|max). The drawn iso-levels are
S = 0.9 and S = 1 in order to highlight the regions with the highest pressure
gradients, i.e. the vapor-liquid interface and the shockwaves.
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If the compression exceeds the saturation pressure, no vapor bubble can

exist in equilibrium with the compressed liquid: in this case the vapor conden-

ses altogether, and the new equilibrium state corresponds to a single phase,

pure liquid. Our interest here is focused on the non equilibrium process that

leads to such eventual condensation, when the compression is associated to

a shock wave in the liquid impinging the vapor bubble. In order to achieve

full condensation the shock wave amplitude p2 � p1 should be larger than

psat � p1, i.e. I > psat/p1 � 1, where p1 is the liquid pressure in equilibrium

with the initial vapor bubble.

Non-equilibrium process Experiments on laser induced bubbles in water

[109] show that energy deposition by a focused laser beam leads to a fast local

vaporization and the compression of the liquid. By measuring the speed of

the shock wave, the authors could find the intensity of the shock wave as a

function of the energy of the laser pulse. It is found that pressures in excess

of 10GPa are easily excited in water at standard conditions. Clearly the

strength of the shock wave decreases with the distance from the focusing

point, confirming that almost planar waves can easily be generated in the

liquid with the intensity we are using here to trigger the collapse of the

bubble (I 2 [75, 400]).

The evolution of the vapor bubble is represented in Figs. 6.6-6.7 for two

different initial wall distances, z0 = 1.3 and z0 = 1.9, respectively. The weak

impinging shockwave and the proximity of the wall is not sufficient to imme-

diately break the spherical symmetry and to produce the classical liquid jet

that porates the bubble, clearly observed in millimeter-bubble experiments

[14, 86, 112]. At sub-micron scale the surface tension is, in fact, predominant
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Figura 6.7: Snapshots during the evolution of a col-
lapsing bubble with z0 = 1.9 taken at times t =
0, 2.266, 2.319, 2.395, 2.399, 2.771, 4.545, 4.627, 7.04, 7.533, 7.736, 9.482. The
grey tones and the iso-lines are the same of Fig. 6.6.

and preserves the nearly spherical shape during the first part of the evolu-

tion. Symmetry breaking eventually occurs when the bubble shrinks to its

minimum volume and a non-spherical shockwave is emitted. By comparing

Figs. 6.6 and 6.7, the asymmetry is stronger for the bubble closer to the wall,
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Figura 6.8: Snapshots during the evolution of a collapsing bubble with z0 =
2.2 and a trigger shockwave with intensity I = 400. The time instants
correspond to t = 0, 0.948, 0.985, 1.007, 1.068, 1.156, 1.766, 2.36, 2.822. The
grey tones and the iso-lines are the same of Fig. 6.6. The stronger impinging
shock initiates the liquid jet formation and leads to the bubble poration.

where, instead of being more or less spherical, the shockwave produced at

collapse consists of two curved shock fronts that propagate toward and away

from the wall. The former is eventually reflected by the solid wall and strikes

again the re-expanding bubble. During this stage the bubble becomes flatter

(elongated in the radial direction) and moves toward the wall. The expansion

stage is strongly affected by the bubble–wall distance, with the closest bubble

(Fig. 6.6) touching the wall and the farthest one (e.g. in Fig. 6.7) remaining

detached. During the bubble expansion, the liquid in the thin layer between

142



vapor and wall is compressed and a new shockwave is observed, third row

of Fig. 6.7. This sequence of events completely breaks the spherical sym-

metry, thereby reducing the strength of the successive collapse. Eventually,

the field becomes more and more complex, until dissipation prevails. It is

worth noting that, at a qualitative level, the configuration of the shock waves

compares very well with results found in experiments in similar conditions,

[139]. It should be stressed however that in the experiments the bubble is

usually much larger, typically millimeter size. However femtosecond lasers

allow to generate nano-sized bubbles, see [145].

Increasing the strength of the impinging shockwave, liquid-jet formation

is observed. In Fig. 6.8 the evolution of the vapor bubble triggered by a

shockwave of intensity I = 400 is represented up to the first re-expansion

stage. The shape of the collapsing bubble becomes much flatter than observed

at weaker shock strengths and the strong vorticity generated at the periphery

of the bubble gives rise to the bubble poration by inducing a liquid jet focused

toward the wall. In the third row of Fig. 6.8, during the re-expansion stage,

the bubble acquires an annular shape and the liquid jet impinges the wall

and produces a radial flow.

A direct comparison of the flow induced by the bubble collapse at different

strengths of the triggering shockwave is reported in Fig. 6.9. The liquid jet

directed toward the wall is more pronounced for I = 400 and the flow is

strong enough to pierce the bubble leading to an annular shape. In fact,

although a wall-directed flow is observed also in the case of the weaker initial

shockwave, at I = 75 the bubble is not flat enough to be pierced by the liquid

jet and the overall effect reduces to a displacement of the bubble toward the

wall.
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Figura 6.9: Comparison of the flow fields for two different shock intensities.
On the left the case I = 400 where it is apparent the liquid jet formation.
On the right the case I = 75. The plotted vectors are not at the maximum
grid resolution to increase the clearness of the figure.

A crucial aspects of the phenomenology is the transition to supercritical

conditions during the last stage of the collapse [96]. The formation of an

incondensable phase prevents the complete collapse of the bubble, reverting

the motion to an outward expansion. Overall, a sequence of oscillations sets

in, as shown in Fig. 6.4, where the quantity reported on the ordinate is

the volume of the non-liquid phase in the system (vapor and supercritical

phases). During each successive collapse, the vapor is compressed and its

temperature raises locally bringing the system in supercritical conditions.

As already anticipated, Fig. 6.4, the volume during the first collapse stage

is almost independent of the bubble-wall distance. On the contrary, the re-
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expansion stage is affected by the initial position. The following dynamics is

affected by the complex interactions between the reflected shockwaves and

the bubble motion. The time of the successive collapses are slightly different

for the different cases (differences up to 10%) and the maximum volume

achieved after the second re-expansion is not monotonous with z0. In the

inset of Fig. 6.4 we compare the volume evolution of a shock-induced collapse

in free space (black dotted curve) with the one near the wall (red solid curve,

z0 = 1.3). The overall dynamics is again a series of collapses and rebounds

but, after each collapse, the bubble in free space does not experience the

volume plateau which is an effect of the interaction between the re-expanding

bubble and the shockwave reflected back by the wall. The reflected shock

counteracts the re-expansion and keeps the bubble small for a longer time.

The eccentricity of the bubble, e = a/b, where a is the semi-axis in the

z-direction and b is the other semi-axis of the ellipsoid with the same volume

of the bubble, V = 4⇡ab2/3, can be used to quantify the change in bubble

shape, with e < 1 for a flat bubble (elongated in the radial direction). The

time evolution of the eccentricity is reported in Fig. 6.10, for several initial

distances z0.

Let us focus on the first collapse stage. As anticipated, during the initial

phase of the first collapse, all the bubbles remain almost spherical. The

initial distance affects, instead, the shape in the final part of the collapse in

such a way that the farther bubbles take a flatter shape (e < 1) while the

closer ones get slightly elongated toward the wall (e > 1) . This trend is

the consequence of two counteracting effects of the triggering shockwave. On

one hand the impinging shock flattens the bubble during the collapse. On

the other hand the bubble-shock interaction weakens the pressure wave and

145



t

e

0 2 4 6 80

0.5

1

1.5

2

2.5

3

z0=1.3
z0=1.6
z0=1.9
z0=2.2
z0=2.5

Figura 6.10: Time evolution of eccentricity for different initial distance. The
first stage of the collapse is substantially spherical for all the initial distances.
The break of symmetry occurs during the final stage of the collapse with the
nearest bubble (red curve in the online version) that slightly extends toward
the wall while the others in the radial direction. During the shock-interaction
stage all the bubbles assumes a pronounced flat shape and remains elongated
in the radial direction through all the re-expansion phase. The more drastic
change of topology occurs during the second collapse when all the bubbles
rapidly invert the elongation toward the wall.

slows it down locally in the region occupied by the bubble (see the second and

third snapshots in the first row of Fig. 6.8). Its reflection at the wall produces

a non-uniform shockwave impinging again the bubble. The reflected shock

is now more intense on the sides than on the center of the bubble thereby

enhancing the elongation in the z-direction. The effect is clearly more intense

for bubbles closer to the wall.

After the first collapse, up to the re-expansion stage, all the bubbles

146



t

z c

0 2 4 6 8 10 120

1

2

3

4

5

z0=1.3
z0=1.6
z0=1.9
z0=2.2
z0=2.5

r

z
0 0.5 1 1.50

0.5

1

1.5

r

z

0 0.5 1 1.50

0.5

1

1.5

Figura 6.11: Evolution of the position of the bubble center. The faster
migration toward the wall occurs between the collapse and the re-expansion
stages when the flow produced during the bubble collapse is stronger and
convects the bubble. The two snapshots in the insets show the velocity
vectors in two different stages: on the left it is highlighted the axial flow
during the bubble migration, while on the right it is shown the characteristic
quasi-radial flow during the re-expansion phase that stops the axial motion
of the bubble.

flatten as a consequence of the radial flow occurring near the wall. The

second collapse is characterized by a rapid reduction of the radial semi-axis b

(see the third and the forth rows of Fig. 6.7) and therefore by a quick increase

of the eccentricity as a consequence of the local high curvature at the equator

of the bubble in association with surface tension.

The flow produced during the bubble collapse and the consequent bubble

motion is investigated in Fig. 6.11 showing the position of bubble center of

mass, zc. A strong axial flow, clearly visible in the inset on the left, is produ-
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ced near the bubble axis during the collapse stage. This flow is responsible

for the bubble migration toward the wall after the collapse (t > 2). Overall,

despite the difference in lengthscale, the observed phenomenology is entirely

consistent with the experimental observations on millimeter bubbles reported

in [116]. During the re-expansion stage the flow is directed radially outward

(inset on the right), stopping the bubble motion toward the wall. The subse-

quent collapse regenerates the axial flow and the bubble approaches the wall

again.

Shockwaves and jets formed during bubble collapse are associated with

intense pressure and temperature peaks. At each time instant maximum

pressure and temperature are recorded and reported in the plots of Fig. 6.12

and 6.13, respectively. The first peak, both in pressure and temperature,

occurs at the end of the first collapse stage, when the bubble stops shrinking.

This peak is the strongest one for a bubble collapsing in free space [96].

Figure 6.12 shows that the end of the first collapse is the instant of maximum

pressure also for most cases of bubbles collapsing near the wall. However

there are conditions where a successive peak exceeds by far the first one.

When it occurs, such extremely intense pressure peak is due to the bubble

experiencing the second collapse after it translated to get in touch with the

wall, see the snapshots in the last row of Fig. 6.6. It may even happen that an

intermediate pressure peak occurs between the first and the second collapse.

When present, this is due to the expansion of the bubble at a suitable distance

to the wall that generates a compression of the fluid between bubble and wall

(third row of Fig. 6.7). As already commented, the increase in the triggering

shock intensity leads to bubble poration and jet development. Interestingly,

at the moment of jet formation, a peak in the pressure field is observed, inset

148



t

p/
p c V

0 2 4 6 8 10 120

200

400

600

800

1000

1200

1400

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
z0=1.3
z0=1.6
z0=1.9
z0=2.2
z0=2.5
V(z0=2.5)

t

p/
p c V

0 2 4 6 8 10 120

200

400

600

800

1000

1200

1400

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
z0=1.3
z0=1.6
z0=1.9
z0=2.2
z0=2.5
V(z0=2.5)

t

p/
p c V

0 2 4 6 8 10 120

200

400

600

800

1000

1200

1400

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
z0=1.3
z0=1.6
z0=1.9
z0=2.2
z0=2.5
V(z0=2.5) t

p/
p c V

0 0.5 1 1.5 2 2.5
0

100

200

300

400

0

1

2

3

4

I=400
V(z0=2.2)

Figura 6.12: Time evolution of the maximum pressure recorded in the whole
fluid domain for the five different initial wall-bubble distances. As a reference
the dotted curve reports the bubble volume evolution. The most intense
pressure peaks are observed when the bubble reaches its minimum volume.
In the case of z0 = 1.3, the maximum value is reached at the second collapse
because the bubble is pinned on the solid boundary and its collapse is more
intense. Of particular interest are the pressure peaks observed during the re-
expansion stage for the cases z0 = 1.6 and z0 = 2.2 which are related to the
compression of the liquid film between the bubble and the wall, as explained
in the text. In the inset we report the time evolution of the maximum
pressure in the case with the higher triggering shock intensity.

of figure 6.12. The origin of the pressure peak is purely hydrodynamical, since

no corresponding temperature peak occurs, see inset of figure 6.13. Since the

jet-induced pressure peak is comparable with that of the shock, the present

results seems to confirm the high damaging potential of the jetting phase.

The collapsing bubble induces a strong stress on the solid wall. Figu-
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Figura 6.13: Time evolution of maximum temperature recorded in the whole
fluid domain. As well as the pressure peaks, the temperature reaches the
local maxima when the collapse is completed. Again, it is possible to observe
a temperature peak during the re-expansion stage, but it is less apparent
than its pressure equivalent. In the inset we report the time evolution of the
maximum pressure in the case I = 400.

re 6.14 reports the envelope of the pressure maxima at the wall for different

initial bubble positions. The inset illustrates the way the envelope is con-

structed from instantaneous pressure distributions at the wall at successive

time instants. By comparing with the pressure maxima in the field, Fig. 6.12,

it is clear that the pressure at the wall is much weaker than the maximum

inside the field. Nevertheless the typical pressure at the wall is very large,

order ten times the critical pressure of the fluid. For water, this would cor-

respond to a pressure in the order of 200MPa, a figure which compares well

with experimental measurements on collapsing bubbles near solid walls [139].
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Figura 6.14: Spatial evolution of the maximum pressure values recorded on
the wall during propagation of the shock wave for each initial condition. The
pressure values are decreasing with increasing of initial bubble distance from
the wall. It’s possible to observe that for the bubbles placed at distances
closer to the wall the shape of the envelope varies strongly due to interaction
with the shockwave reflection. Inset: Radial evolution of the pressure range
recorded on the wall for initial condition z0 = 2.2. The different dotted lines
correspond to different time instants and the purple line corresponds to the
envelope of the maximum pressure values.

Concerning the temperature at the wall, in the present conditions extreme

values were never experienced, except in cases where the collapsing bubble

came in direct contact with the wall.
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pmax/pc ✓max/✓c

spherical 3⇥ 105 708
shock induced - no wall 175.16 3.29

shock induced - near wall 384 8.22

Tabella 6.1: Comparison of the maximum pressure and temperature reached
during the first collapse in three different geometrical configurations. In all
the cases the overpressure that triggers the collapse is of intensity I = 75.
The data shown as representative of the shock induced collapse in proximity
of the wall is referred to the case with z0 = 1.6.

Conclusions

We have numerically studied the collapse of a pure vapor nanobubble near

a solid boundary by applying a diffuse interface approach. The model is

specially suitable to describe in a consistent and unified way the complex

phenomena occurring during cavitation, namely: phase change, latent heat

release, shock wave formation and propagation, transition to supercritical

conditions. Like in the case of spherically symmetric collapse, a pure vapor

bubble is found to collapse with a sequence of volume oscillations, associated

to a sequence of successive collapses which are arrested and inverted by the

formation of the incondensable, supercritical phase due to compression and

latent heat release. In comparison with symmetric collapse, the peak pressu-

res and temperature are significantly lower in the case of aspherical bubble

collapse, see Table 6.1. Interestingly, the peak pressure for shock wave indu-

ced collapse in free space leads to even lower pressure and temperatures in

comparison with those reached when the collapse is triggered near the wall.

This indicates that the wall, by confining the radial expansion of the bubble

and reflecting the triggering shock enhances the peak pressure level. Despite

the pressure peak realized at the wall is significantly lower than the maxima
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found inside the field, still large level of stress is transferred to the wall, as

potential source of damage. A strong jet is found when the triggering shock

strength is sufficiently large. In fact, jet impingement on the wall is often

quoted as a concurrent cause of material damage [139].

It is worthwhile noting that the peak pressure and temperature levels

obtained in the present simulations are expected to overestimate the experi-

mental values. The reason is the simple equation of state used to make the

computations more easily affordable. In particular, a pressure equation equa-

tion of state better suited to model a real fluid could help to reduce the peak

temperature and pressure values. Moreover, unless extremely weak forcing

is used to initiate the bubble collapse, the large temperatures reached inside

the bubble are expected to lead to dissociation and ionization phenomena,

which concur in substantially limiting the peak temperature.

A further aspect to be considered for future works is the presence of

dissolved gas in the liquid to reproduce the condition of partially gas-filled

cavitation bubbles that are more commonly found in applications.
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Capitolo 7

Thermally activated vapor bubble
nucleation:
the Landau–Lifshitz/Van der
Waals approach

In this work a the stochastic approach described in Chapter 3 is exploited to

study the homogeneous nucleation process. In particular, the liquid-vapor

spontaneous phase transition is addressed in a closed system (NVE ensem-

ble) for a Lennard-Jones fluid, initialized in a metastable state (metastable

liquid). Starting from a homogeneous liquid phase, thermal fluctuations lead

the system to spontaneously decompose in two different phases, and ove-

rall the nucleation dynamics can be framed in three different phases. The

initial phase (nucleating phase) is characterized by a linear growth of the

bubble number in time (i.e. at a constant nucleation rate). The second

phase (collapsing phase) depicting the first part of the expansion stage, and

is characterized by a rapidly decreasing number of bubbles mainly due to

collapse. Finally, the last phase (slowly expanding phase), preceding the new

equilibrium state for the system, is governed by the long-time dynamics of
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Thermally - activated
multi-bubble nucleation

Expansion

Coalescence

Figura 7.1: Simulation snapshots illustrating the different phases of the
nucleation dynamics.

the multi-bubble system. These aspects are clearly summarized in Fig.7.1,

representing the different phases we discussed above. The evaluation of the

bubble nucleation rates, showed good agreement has been found with MD

simulations and with more conventional techniques. Furthermore, in compa-

rison with more classical approaches, this methodology allows to deal with

much larger systems observed for a much longer times, otherwise not possible

with even the most advanced atomistic models, providing the possibility of

observing the long term dynamics of the metastable system, up to the bubble

coalescence and expansion stages.
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The complete results have been published on PRF (PHYSICAL

REVIEW FLUIDS 3, 053604 (2018)), and are reported here with

the permission of the authors.

Note: for the sake of brevity the appendices of the paper are not reported,

however all the details required are reported in Chapter 3.

abstract

Vapor bubbles are formed in liquids by two mechanisms: evaporation (tempe-

rature above the boiling threshold) and cavitation (pressure below the vapor

pressure). The liquid resists in these metastable (overheating and tensile,

respectively) states for a long time since bubble nucleation is an activated

process that needs to surmount the free energy barrier separating the liquid

and the vapor states. The bubble nucleation rate is difficult to assess and,

typically, only for extremely small systems treated at atomistic level of de-

tail. In this work a powerful approach, based on a continuum diffuse interface

modeling of the two-phase fluid embedded with thermal fluctuations (Fluc-

tuating Hydrodynamics) is exploited to study the nucleation process in ho-

mogeneous conditions, evaluating the bubble nucleation rates and following

the long term dynamics of the metastable system, up to the bubble coale-

scence and expansion stages. In comparison with more classical approaches,

this methodology allows on the one hand to deal with much larger systems

observed for a much longer times than possible with even the most advanced

atomistic models. On the other it extends continuum formulations to ther-

mally activated processes, impossible to deal with in a purely determinist

setting.
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Introduction

Thermal fluctuations play a dominant role in the dynamics of fluid systems

below the micrometer scale. Their effects are significant in, e.g., the smallest

micro-fluidic devices [47, 20] or in biological systems such as lipid membranes

[107], for Brownian engines and in artificial molecular motors [115]. They are

crucial for thermally activated processes such as nucleation, the precursor of

the phase change in metastable systems. Nucleation is directly connected to

the phenomenon of bubble cavitation [28] and of freezing rain [32], to cite a

few. There, thermal fluctuations allow to overcome the energy barriers for

phase transitions [76, 79, 90]. Depending on the thermodynamic conditions,

the nucleation time may be exceedingly long, the so-called “rare-event” issue.

Classical nucleation theory (CNT) [18] provides the basic understanding of

the phenomenon which is nowadays addressed through more sophisticated

models like density functional theory (DFT) [113, 92] or by means of mole-

cular dynamics (MD) simulations [49]. These approaches need to be coupled

to specialized techniques for rare events, like the string method [148], the

forward flux sampling [4] and the transition path sampling [23], to relia-

bly evaluate the nucleation barrier and determine the transition path [67].

For many real systems they are often computationally too expensive and

therefore limited to very small domains.

Here we adopt a mesoscopic continuum approach, embedding stochastic

fluctuations, for the numerical simulation of thermally activated bubble nu-

cleation. Since the pioneering work of Landau and Lifshitz (1958, 1959) [84]

several works contributed to the growing field of “Fluctuating Hydrodyna-

mics” (FH) [61]. More recently the theoretical effort has been followed by a
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flourishing of highly specialized numerical methods for the treatment of the

stochastic contributions [54, 46, 11, 53]. The present model is based on a

diffuse interface [141] description of the two–phase vapor–liquid system [96]

similar to the one recently exploited by Chaudhri et al. [33] to address the

spinodal decomposition. The thermodynamic range of applicability of this

approach is subjected to some restrictions: i) at the very first stage of nuclea-

tion the vapor nucleii, smaller than the critical size, need to be numerically

resolved; analogously, ii) the thin liquid-vapor interface needs to be captured

for the correct evaluation of the capillary stresses; iii) fluctuating hydrodyna-

mics predicts that the fluctuation intensity grows with the inverse cell volume,

�V , leading to intense fluctuations, contrary to the assumption of weak noise

needed to derive the model (
p

h�f 2i/hfi ⌧ 1). Notwithstanding these re-

strictions, where it can be applied, this mesoscale approach offers a good level

of accuracy (as will be shown when discussing the results) at a very cheap

computational cost compared to other techniques. The typical size of the

system we simulate on a small computational cluster (200⇥ 200⇥ 200 nm3,

corresponding to a system of order 108 atomistic particles) is comparable

with one of the largest MD simulations [6] on a tier-0 machine. Moreover the

simulated time is here Tmax ⇠ µs to be compared with the MD Tmax ⇠ ns.

The enormous difference between the two time extensions allows us to ad-

dress the simultaneous nucleation of several vapor bubbles, their expansion,

coalescence and, at variance with most of the available methods dealing with

quasi-static conditions, the resulting excitation of the macroscopic velocity

field.

The approach we follow basically amounts to directly solving the equa-
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tion of motion for the capillary system endowed with thermal fluctuations.

In order to interpret the results, a reference nucleation theory is needed. In

literature classical nucleation theory (CNT) is the standard choice [18]. In

CNT, the two phase system comprising an isolated bubble immersed in the

metastable liquid is described by the so-called sharp-interface model where,

at fixed temperature, the density field is piecewise continuous, with the densi-

ty of the liquid outside and that of vapor inside the bubble. CNT determines

the size of the critical bubble, corresponding to the transition state. It may

happen that the size of the critical bubble is so small to be comparable with

the physical thickness of the interface. In such conditions the predictions of

CNT can be inaccurate. In order to consider a nucleation theory consistent

with our diffuse interface approach, which takes into account the actual thic-

kness of the interface, a more sophisticated theory is needed. Hence, beside

CNT, we will use the so-called string method applied to the diffuse interfa-

ce model to identify the critical state and the transition path leading from

the metastable liquid to the cavitated vapor. The two reference nucleation

theories will be used to interpret the results of the direct simulation of the

nucleation process. In such comparison, one should take in mind that the

actual process we simulate is typically significantly more complex than as-

sumed in the reference theories. In particular, at least three effects which

are neglected in the ordinary approaches are taken into consideration by our

simulations: i) several bubbles are simultaneously present in the system; ii)

there is a dynamical interaction between the bubbles; iii) temperature is a

field, which may fluctuate in time and space due to several reasons, namely

the stochastic forcing itself, and, more significantly, the intrinsic dynamics of

the bubbles, including expansion, compression and latent heat release, all of
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which are comprised in our description.

The paper is structured as follows: in Section II we discuss the mathema-

tical aspects of the two-phase modeling. First, in Section II.1 we address the

Diffuse Interface approach exploited to describe vapor–liquid systems em-

bedded with capillarity effects. A purely thermodynamic analysis allow us

to obtain important informations about the properties of critical nucleii, in

particular the critical bubble radius and the energy barrier required for the

transition from the metastable liquid to the nucleated vapor bubble. The

issue is addressed through the application of the string method [149] illustra-

ted in Section II.2. In Section II.3 we introduce Fluctuating Hydrodynamics

in the context of the Diffuse Interface approach. The model consists in a

set of stochastic partial differential equations (SPDE). The specialist aspects

are derived in full details in Appendix A and B, respectively devoted to a

discussion of the equilibrium statistical properties of the fluctuating field and

to the specific form the Fluctuation-Dissipation balance takes in the present

context. Section III deals with the numerical simulations. More specifically,

Subsection III.1 illustrates the properties of the numerical scheme and Sub-

section III.2 addresses bubble nucleation results, with particular attention to

nucleation rate, bubble volume distribution and bubble–bubble interaction

effects during the process. Finally Section IV is devoted to the conclusions

and to the open problems in the field.
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Mathematical Model

Diffuse Interface approach for vapor–liquid systems

The diffuse interface modeling adopted here has a strict relationship with

more fundamental atomistic approaches, since it is based on a suitable ap-

proximation of the free energy functional derived in DFT [92]. It dates back

to the famous Van der Waals square gradient approximation of the Helmholtz

free energy functional

F [⇢, ✓] =

Z

V

f dV =

Z

V

✓
fb (⇢, ✓) +

1

2
�r⇢ ·r⇢

◆
dV , (7.1)

where fb is the classical bulk free energy density, expressed as a function of

density ⇢ and temperature ✓. � is the capillarity coefficient that controls

the (equilibrium) surface tension � and interface thickness. In particular the

temperature dependent surface tension can be obtained as [98, 92]

�(✓) =

Z ⇢satl (✓)

⇢satv (✓)

p
2� [fb(⇢, ✓)� fb(⇢satv (✓), ✓)� µb(⇢, ✓)⇢+ µsat(✓)⇢satv (✓)]d⇢ ,

(7.2)

with µb = @fb/@⇢|✓ the bulk chemical potential and the superscript sat de-

noting saturation conditions. In this work we will compare our numerical si-

mulations with results obtained with Molecular Dynamics of Lennard-Jones

fluids, hence for a fairy comparison we adopted as bulk free energy fb(⇢, ✓) the

modified Benedict-Webb-Rubin equation of states (MBWR EoS) that well

reproduces the thermodynamic properties of an LJ fluid [75]. All quantities

are made dimensionless according to ⇢
⇤ = ⇢/⇢r, ✓⇤ = ✓/✓r, by introducing as

reference quantities the parameters of the LJ potential, � = 3.4 ⇥ 10�10 m

as length, ✏ = 1.65 ⇥ 10�21 J as energy, m = 6.63 ⇥ 10�26 kg as mass and

✓r = ✏/kB as temperature. In the left panel of Fig. 7.2 we compared the tem-
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Figura 7.2: Left panel: Comparison between the temperature de-
pendence of the surface tension obtained through Eq. (7.2), when
using the Lennard-Jones EoS [75], and the benchmark data provi-
ded at the url https://www.nist.gov/mml/csd/chemical-informatics-research-
group/lennard-jones-fluid-properties. The value of the capillary coefficient
is fixed to �m

2
/(�5

✏) = 5.224. Right panel: Density profiles of the criti-
cal nucleii, evaluated with the string method, at different thermodynamic
conditions of the metastable liquid.

perature dependence of the surface tension obtained through application of

Eq. (7.2) coupled with the MBWR EoS, and some benchmark values obtained

through Monte Carlo simulations. In order to reproduce the benchmark re-

sults we fixed the value of the capillary coefficient to �
⇤ = �m

2
/(�5

✏) = 5.224.

It is worthwhile stressing that a constant coefficient is sufficient to reproduce

the correct temperature dependence of the surface tension. Hereafter the

symbol ⇤ will be omitted to simplify notation.

Transition path and the critical bubble

The minimization of the free energy functional (7.1), stating that the gene-

ralized chemical potential µc = µ
b
c(⇢) � �r

2
⇢ must be constant and equal
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to the external chemical potential µext, allows the evaluation of the equili-

brium density profiles at the different thermodynamic conditions. Clearly,

in thermodynamic conditions where either the liquid or the vapor are stable,

constant chemical potential corresponds to a homogeneous phase. When the

liquid or the vapor are metastable instead three solutions at constant che-

mical potential are found: i) the homogeneous vapor; ii) the homogeneous

liquid; iii) a two-phase solution with a spherical (critical) nucleus of a given

radius (vapor/liquid in the case of bubble/droplet, respectively), the critical

nucleus being surrounded by the metastable phase.

Dealing with nucleation, the non-trivial solution of case (iii), ⇢(r) =

⇢crit(r) where the critical bubble is surrounded by the metastable liquid at

⇢ = ⇢
met
L , ✓ = ✓̄ and µc(⇢met

L , ✓̄) = µ
met is particularly significant. The solution

⇢(r) = ⇢crit(r) is found by solving the non linear Euler-Lagrange equation of

the functional 7.1 which, in spherical coordinates and at fixed temperature,

reads

µ
b
c(⇢, ✓̄)�

�

r2

@

@r

✓
r
2
@⇢

@r

◆
= µ

met
. (7.3)

The critical bubble, ⇢c(r), is an unstable solution of Eq. (7.3) which requires

specialized numerical techniques. In this work we applied the powerful string

method [149] which, as a by-product, identifies the transition path joining the

metastable liquid to the cavitated (stable) vapor. The transition path can

be visualized as the continuous sequence of density configurations, ⇢(r,↵),

the system assumes when transitioning from the metastable to the stable

state, where ↵ is a suitably defined parameter along the path. The distance

between two configurations is expressed as

�` =

s
1

V

Z
�⇢2(r)dV (7.4)
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and defines the arclength along the path. The discrete form of the path,

consisting of a finite number of configurations, is called the string. The

string method numerically approximates the transition path starting from

an initial set of Ns configurations {⇢
k(r)}, which form the initial guess for

the discretized transition path. The head of the string (k = 1) is initialized

as a uniform density field corresponding to the uniform metastable liquid

⇢(r) = ⇢
met
L ; the tail (k = Ns) is initialized as a guessed tanh-density profile

adjoining the liquid and the vapor density to approximate a vapor bubble. All

the intermediate images on the string are obtained by interpolation of these

two density fields with respect to the above defined arclength. The algorithm

used to relax the string to its final configuration corresponding to the actual

transition path follows two steps. 1) All the images ⇢
k(r) are evolved over

one pseudo-timestep �⌧ following the steepest-descent algorithm

@⇢

@⌧
= µ

met
�


µ
b
c(⇢)�

�

r2

@

@r

✓
r
2
@⇢

@r

◆�
. (7.5)

2) The images are redistributed along the string following a reparametriza-

tion procedure by equal arclength. The algorithm is arrested when the string

converges within a prescribed error.

The density profile of the critical nucleus, plotted in the right panel of

Fig. (7.2) at different metastable conditions, allows the evaluation of the

critical radius, by following the relation [43]

Rc =

Z
1

0

r(@⇢c/@r)
2
r
2 dr

Z
1

0

(@⇢c/@r)r
2 dr

, (7.6)

and the evaluation of the energy barrier

g�⌦ =

Z
1

0

�
f(⇢c(r))� f(⇢met

L )� µ
met
⇥
⇢c(r)� ⇢

met
L

⇤ 
4⇡r2dr , (7.7)
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defined as the difference in grand potential ⌦ between the critical nucleus

and the metastable liquid.

The results of the string method are compared in Tab. 7.1 with tho-

se obtained by classical nucleation theory (CNT) which yields the estimate
g�⌦

CNT
= 4/3⇡�R2

c . The data show that CNT underestimates the energy

barrier at high temperature while overestimates it near the spinodal [31].

✓0 ⇢
met
L Rc R

CNT
c

g�⌦/✓0 g�⌦
CNT

/✓0

1.25 0.45 12.04 8.07 2.99 12.89
1.25 0.46 11.16 8.42 11.21 14.05
1.25 0.47 11.85 9.17 22.81 16.67
1.25 0.48 14.18 10.64 43.5 22.41
1.20 0.51 8.28 6.35 19.20 18.13
1.20 0.52 8.79 6.93 33.58 21.60

Tabella 7.1: Comparison between CNT and the string method applied to the
Diffuse Interface model. Critical radii and (Landau) free energy barriers g�⌦
for bubble nucleation from the liquid. The discrepancy close to the spinodal
and at higher temperature are well known from the literature.

Fluctuating Hydrodynamics: the Landau–Lifshitz/Navier–
Stokes model embedded with capillarity

The deterministic time evolution of the two–phase, vapor–liquid, system

obeys mass, momentum and energy conservation. The thermodynamic con-

siderations of Section II.1 embed capillary effects in the equilibrium model.

Following the procedure of non-equilibrium thermodynamics, [37], which can

be nowadays considered a standard approach, the description is straightfor-

wardly extended to dynamic conditions. New stress and energy flux contribu-

tions arise from the capillary term in the free energy (Eq. 7.1). In particular
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(see [98, 72] for the detailed derivation) the stress tensor reads

⌃ =


�p+

�

2
|r⇢|

2 + �⇢r · (�r⇢)

�
I��r⇢⌦r⇢+µ


(ru+ruT )�

2

3
r · u I

�
,

(7.8)

with p = �⇢
2
@(fb/⇢)/@⇢ = fb�µ

b
c⇢ the pressure and µ the dynamic viscosity.

The energy flux entering the energy equation is augmented with a capillarity

term which adds to the standard Fourier contribution,

q = �⇢r⇢r · u� kr✓ , (7.9)

with k the thermal conductivity.

Thermal fluctuations needs to be included in the classical hydrodynamic

equations in order to describe fluid motion at mesoscopic scale. Based on

phenomenological arguments, the theory of fluctuating hydrodynamics has

been originally developed by Landau and Lifshitz (1958, 1959)[84] to be la-

ter framed in the general contest of stochastic processes [61]. Landau and

Lifshitz’s original idea was to treat the thermodynamic fluxes, namely stress

tensor and energy flux, as stochastic processes. As prescribed by the ther-

modynamics of irreversible processes at macroscopic level, thermodynamic

fluxes are the expression of microscopic molecular degrees of freedom of the

thermodynamic system. Under this respect dissipation in fluids can be seen

as the macroscopic manifestation of the energy transfer arising from random

molecular interactions. Thus at mesoscopic scale, thermodynamic fluxes ha-

ve to be modeled as stochastic tensor fields, whose statistical properties can

be inferred by enforcing the fluctuation-dissipation balance (FDB) .

The detailed derivation of the stochastic contributions is postponed to ap-

pendices A-B. Here we summarise the main aspects of the model. The sto-

chastic evolution of the system is described by the conservation laws of mass,
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momentum and energy,

@⇢

@t
+r · (⇢u) = 0 , (7.10)

@⇢u

@t
+r · (⇢u⌦ u) = r ·⌃+r · �⌃ ,

@E

@t
+r · (uE) = r · (⌃ · u� q) +r · (�⌃ · u� �q) ,

where u is the fluid velocity, E is the total energy density, E = U+1/2⇢|u|2+

1/2�|r⇢|
2, with U the internal energy density. In the momentum and energy

equations, ⌃ and q are the classical deterministic stress tensor and energy

flux, respectively, defined in Eqs. (7.8, 7.9) while the terms with the pre-

fix � are the stochastic parts, required to satisfy the FDB. Enforcing the

fluctuation-dissipation balance, the covariance of the stochastic fluxes follows

as

h�⌃(x̂, t̂)⌦ �⌃†(x̃, t̃)i = Q⌃
�(x̂� x̃)�(t̂� t̃) , (7.11)

and

h�q(x̂, t̂)⌦ �q†(x̃, t̃)i = Qq
�(x̂� x̃)�(t̂� t̃) , (7.12)

where Q⌃
↵�⌫⌘ = 2kB✓µ (�↵⌫��⌘ + �↵⌘��⌫ � 2/3�↵��⌫⌘) and Qq

↵� = 2kB✓2k�↵�,

with kB the Boltzmann constant. Thanks to the Curie-Prigogine principle

[37], the cross-correlation between different tensor rank fluxes vanishes, i.e.

(
⌦
�q†(x̃, t̃)⌦ �⌃(x̂, t̂)

↵
= 0).

Even in equilibrium conditions, thermal noise forces the different fields to

fluctuate. The complete (equilibrium) correlation tensor C�(r̂, r̃) = h�(r̂)⌦

�†(r̃)i, with the field fluctuations organised in a 5-component vector �(r) =

{�⇢(r), �u(r), �✓(r)}, is found to be, Appendix A,

C�(r̂, r̃) =

0

@
C�⇢�⇢ 0 0
0 C�u�u 0
0 0 C�✓�✓

1

A , (7.13)
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with

C�⇢�⇢(r̂, r̃) =
kB✓0

4⇡� |r̂� r̃|
exp

0

@� |r̂� r̃|

s
c
2

T

⇢0�

1

A , (7.14)

C�u�u(r̂, r̃) =
kB✓0

⇢0
I� (r̂� r̃) , (7.15)

C�✓�✓(r̂, r̃) =
kB✓

2

0

⇢0cv
� (r̂� r̃) . (7.16)

In these equations ⇢0 and ✓0 are the equilibrium density and temperature,

respectively, c2T = @p/@⇢|T the isothermal speed of sound, and cv the specific

heat at constant volume. It is worth noting that the spatial correlation of

density fluctuations arise from the long range capillary interactions and is

not spatially �-correlated as usual in simple fluids [40].

Results and Discussion

Stochastic pde’s and numerical integration

System (7.10) has been discretised in the spirit of the method of lines, which

consists of two stages: spatial discretisation and temporal integration, respec-

tively. Concerning spatial discretisation, the different physical phenomena

described by the LLNS system ask for specialised numerical techniques. A

crucial point is the correct reproduction of the statistical properties at the

discrete level [8], consistency with fluctuation-dissipation balance in particu-

lar. Eqs. (7.10) have been discretised on a uniformly spaced staggered grid,

following [54]. Due to staggering, scalar fields, like e.g. density, are located

at the cell center while components of vector fields in a given direction are

located at the center of the perpendicular face.

The numerical scheme has been validated by comparing the numerical

equilibrium static correlations with the theoretical ones in the discretized
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Figura 7.3: Left panel: Static structure factor comparison for a capillary
fluid in a 3D system. We report the relative error e = |Sf � St|/St between
the theoretical prediction and numerical calculation for each wavenumbers
kx, ky, kz in the Fourier space. Right panel: Error of the density variance
at different simulation time steps. As expected, the error follows a square
power law e / �t

2.

equations. Here we report the comparison of the density static structure

factor, which is the Fourier transform of the static correlation function C�⇢�⇢

in Eq. (7.14). In the discrete limit, the theoretical static structure factor

reads

St(kd) =
⇢0kB✓0

c
2

T + ⇢0�kd · kd
, (7.17)

where

kd · kd =

✓
sin (kx�x/2)

�x/2

◆2

+

✓
sin (ky�y/2)

�y/2

◆2

+

✓
sin (kz�z/2)

�z/2

◆2

(7.18)

is the discrete version of the square norm of k, arising from the discrete

Laplacian operator in Fourier space [33]. The numerical estimate of the

density structure factor is calculated, following its definition, as

Sf (kd) = h�⇢(kd)�⇢
⇤(kd)i , (7.19)
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where dependency on the wavenumber implicitly denotes Fourier componen-

ts. As shown in the left panel of Fig. 7.3, numerical results are in very good

agreement with the theoretical prediction. In particular the relative error

e is almost everywhere less than 2 � 3% in the field, except for the small

wavenumbers, due to the slow convergence of low wavelength modes [33].

Nevertheless, even in the latter case, the relative error is less then 10%.

As a second test, we compared the variance of velocity and temperature

fluctuations. In particular, the velocity fluctuations must reproduce the

celebrated equipartition theorem, here reported in the discretes version:

h�u · �ui = 3
kB✓0

⇢0�V
, (7.20)

⌦
�✓

2
↵
=

kB✓
2

0

⇢0cv�V
. (7.21)

The values reported in Tab. 7.2 clearly show a perfect matching between

numerical results and theoretical expectation.

Variances Theoretical prediction Numerical value Error %
h�u

2

xi 1.3333 · 10�4 1.3332 · 10�4 0.01
h�u

2

yi 1.3333 · 10�4 1.3331 · 10�4 0.02
h�u

2

zi 1.3333 · 10�4 1.3335 · 10�4 0.02
h�✓

2
i 5.8361 · 10�5 5.8443 · 10�5 0.15

Tabella 7.2: Numerical temperature and velocity variances in comparison
with theoretical values.

As a last test, we validated the accuracy of our time integration method.

We performed the time evolution by means of a second order Runge Kutta

scheme [46]. We compared the numerical error, e, on the variance of density

fluctuations h�⇢(x)2i at different time steps �t with respect to h�⇢(x)2iopt
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obtained with our finest integration step �t = 10�4

e =
|h�⇢(x)2i � h�⇢(x)2iopt|

h�⇢(x)2iopt
, (7.22)

where the average is evaluated as 1/(T V )
R T

0

R
V �⇢(x)2 dV dt with the time

window T fixed as T = 100 LJ units. The right panel of Fig. 7.3 clearly

shows the expected power law, e / �t
2.

All these tests ensure that the numerical scheme correctly reproduces the

statistical properties of the system, i.e. the fluctuation-dissipation balance is

preserved in the discretised equations.

The dynamics of vapor bubble nucleation

Bubble nucleation is investigated in a metastable liquid enclosed in a cubic

box with periodic boundary conditions, with fixed volume, total mass and

energy (NVE). The equation of state (EoS) we use, which can be chosen freely

among available models, e.g. van der Waals or IAPWS [82] EoS for water,

corresponds to a Lennard-Jones (LJ) fluid [75] to allow direct comparison

with MD simulations. The system volume V = 6003 has been discretised on

a uniform grid with 50 cells per direction. After a convergence analysis we

found that the chosen grid size, �x = 12, is sufficient for a reliable simulation

in these thermodynamic conditions. Moreover, thanks to the extension of the

simulated domain ten runs for each condition, with different values of the seed

employed to generate random numbers, provide a well converged statistics.

Among the different conditions we have investigated, we mainly focus he-

re on the initial temperature ✓0 = 1.25 at changing bulk density to explore

the corresponding metastable range ⇢L 2 [⇢spin, ⇢sat] = [0.44, 0.51], where

⇢sat and ⇢spin are the saturation and spinodal densities, respectively. A few
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snapshots of the evolution for two different initial conditions are shown in

the left panels of Fig.s 7.4 and 7.5. Starting from a homogeneous metastable

liquid phase, the fluctuations lead the system to spontaneously nucleate va-

por bubbles. The nucleii start out with a complex, far from spherical, shape,

see, e.g., [49]. Roughly, when they happen to reach a size larger than critical

they typically expand. Eventually, after a long and complex dynamics whe-

re bubbles expand and coalesce, stable equilibrium conditions are reached.

The existence of such equilibrium is due to the constraint on volume and

mass of the system. Note that, most often, nucleation is addressed in the

grand-canonical ensemble, where volume and chemical potential are speci-

fied. The eventual configuration is characterized by several vapor bubbles in

equilibrium with the surrounding liquid. The case at ⇢L = 0.46, the closest

one to the spinodal we considered here, is the most populated, Fig. 7.4 in

comparison with Fig. 7.5. This system has a barrier lower than those further

from the spinodal (see Tab. 7.1), hence it nucleates faster. The initial (me-

tastable) thermodynamic condition also influences the number and typical

Figura 7.4: Left panel: bubble configurations along nucleation (⇢ =
0.46, ✓0 = 1.25), from left to right t = 400, t = 2000, t = 25000. Anima-
tion available in Supplemental Material [128]. Right panel: bubble number
evolution (red symbols) and number of coalescence events (blue line).
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Figura 7.5: Same as Figure 7.4 at ⇢ = 0.48, ✓0 = 1.25. Snapshots taken at
t = 2000, t = 11000, t = 230000. The bubble number vs time in the right
panel is fitted by the dotted red line for better readability.

dimension of the bubbles in the final stage, right panels of Fig.s 7.4 and 7.5

providing the bubble number Nb as a function of time. A tracking procedure

has been put forward to follow the evolution of the distinct bubbles. By

monitoring bubble volume, mass, center of mass and its velocity, the trac-

king algorithm allows for detecting coalescence events. The actual number of

collisions between bubbles Ñcoll evaluated at each time step is characterized

by a highly discontinuous fingerprint. We smoothed the curve with a Gaus-

sian kernel with standard deviation of order 50 time units to extract more

robust indications. The time evolution of the bubble number Nb, Fig.s 7.4

and 7.5, presents three main phases: i) the initial nucleating phase – when

Nb grows linearly with time (i.e. at a constant nucleation rate); ii) the col-

lapsing phase during the first part of the expansion stage – characterized by

a rapidly decreasing number of bubbles mainly due to collapse; and iii) a

slowly expanding phase characterizing the long-time dynamics of the multi-

bubble system. The smoothed number of collisions Ncoll, plotted with the

blue line in the figures, shows a strong correlation with the number of bub-
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Figura 7.6: Left panel: Volume history of the bubbles surviving the entire si-
mulation (⇢ = 0.46 and ✓0 = 1.25). Intense coalescence events, characterized
by a sudden volume jump, are identified in the red curves. The correspon-
ding volumes are shown by the red dots in the inset providing the V � Vcoll

scatter plot, where Vcoll is the volume acquired by coalescence. The large-
st bubbles experienced intense coalescence events. Right panel: Probability
distribution function f(V ) of the bubble volumes during the nucleation, at
different times (✓0 = 1.25, ⇢ = 0.46, critical volume Vc = 4445).

bles throughout the nucleating phase and the collapsing phase. Nucleating

and collapsing phases are characterized by a competing-growth mechanism

[?] due to the constraints of constant mass and volume, explaining the hi-

gh number of supercritical bubble collapses. The coalescence events start

being less and less probable during the slowly-expanding phase. The inset of

the Fig. 7.4 zooms into this phase showing that isolated collision events still

occurr, contributing to important acceleration toward the final equilibrium

condition.

The volume history of the distinct bubbles (in particular those survi-

ved up to the last time investigated) have been plotted in the left panel of

Fig. 7.6. Among the different bubble evolutions, we highlighted in red the
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volume histories of those bubbles that experienced intense coalescence events,

characterized by a sudden increase in volume. It is apparent that the larger

bubbles gained substantial part of their volume by coalescence. To substan-

tiate this impression, for each bubble in the last configuration, the sum of

the volumes acquired by coalescence throughout the whole evolution, Vcoll,

was calculated, inset of left Fig. 7.6. The present mesoscale approach allows

to access the statistics of bubble dimensions. The probability distribution

function of bubble volumes f(V ) is plotted in the right panel of Fig. 7.6.

During both the nucleating and collapsing phases the pdf is sharply peaked

at small volumes, of the order of 2–4 Vc. The successive bubble expansion

phase is substantially slower and calls for a much longer observation time

to detect a significant growth (green dash-dotted curve at t = 34000). The

intense coalescence events explain the presence of the second peak in the pdf

at very large volume (black curve in the inset on the right panel of Fig. 7.6

at t = 163760).

The initial nucleating stage, where the bubble number increases linear-

ly, gives access to the nucleation rate J in terms of bubbles formed per

unit time and volume. It is here calculated as the slope of the linear fit

to the curves of Fig.s 7.4 and 7.5 near the origin. The results are plotted

in Fig. 8.6 which also provides a direct comparison with some MD simu-

lations [49, 110]. The values agree comfortably well with molecular dyna-

mic simulations in the NVE ensemble. As common in literature, the pre-

sent results are compared also with CNT prediction for the nucleation ra-

te, JCNT = nL

p
2�/m⇡ exp(�g�⌦

CNT
/kB✓), where nL is the liquid number

density. The expression of the energy barrier was already explicitly given

in Section II.2 while the pre-exponential factor is taken in the classical form
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Figura 7.7: Left panel: Comparison of the nucleation rate obtained via FH
simulations (red squares at ✓0 = 1.25 and blue squares at ✓0 = 1.20) with
respect to CNT predictions (green circles at ✓0 = 1.25 and purple circles
at ✓0 = 1.20). The inset shows the comparison with other authors. Right
panel: Time evolution of the number of supercritical bubbles Nb and the
total collapsed supercritical bubble Nc up to time instant t. The number of
bubbles is rescaled with the maximum number of bubble observed during the
simulation, Nmax, which correspond to Nmax = 458 in the thermodynamic
condition with ⇢L = 0.46 and Nmax = 52 in the case with ⇢L = 0.48. The
time is shifted and rescaled in such a way that all the curves start when the
first bubble appears, at t = ts, and finish when Nmax is reached, at t = tmax.

proposed by Blander and Katz [18], and already used in [49] as a reference

for a large number of MD simulations. It is worth noting that the energy

barriers estimated from CNT and from the string method (Table 7.1) are

strongly based on the assumption that only a single bubble can nucleate. As

already discussed when commenting on the coalescence events, in the ther-

modynamic conditions we studied the effects of bubble-bubble interaction are

instead crucial to understand the full dynamics of the bubble evolution. In

particular, the conditions assumed in our present simulations and in the MD

177



simulations used for comparison correspond instead to given system volume,

energy and mass – NVE ensemble – and the system is free to simultaneously

nucleate several bubbles. The consequence of fixing the mass of the system

is that the larger is the overall volume of the different bubbles that are si-

multaneously nucleated the more the liquid is compressed. As a result the

nucleation process is discouraged. To further substantiate the importance

of this point we evaluated the number of collapsed bubble after crossing the

critical size. The total number, up to the current time, is plotted in the right

panel of Fig. 7.7 labeled as Nc. If no collapse occurred, the total number of

bubbles in the system would have been Ntot = Nb + Nc and the rate would

have been larger by roughly a factor 15.

Conclusions

In conclusion, the FH approach together with a diffuse interface modeling of

the multiphase system have been exploited to study homogeneous nucleation

of vapor bubbles in metastable liquids. We evaluated the nucleation rate

and compared it favorably with state of the art simulations. Concerning the

comparison with classical approaches, CNT and the string method for the

diffused interface model, we found that the simultaneous nucleation of seve-

ral bubbles has a strong effect on the nucleation rate, that is found to be

altered with respect to the above single-bubble models. The present techni-

que has revealed extremely cheaper with respect to MD simulations, allowing

the analysis of the very long bubble expansion stage where bubble-bubble in-

teraction/coalescence events turn out to determine the eventual bubble size

distribution. The accurate results and the efficiency of the modeling encou-
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rage the exploitation for more complex conditions, like e.g. heterogeneous

nucleation and multi-species systems, and could pave the way for the deve-

lopment of innovative continuum formulation to address thermally activated

processes.
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Capitolo 8

A Mesoscale Model for
Heterogeneous Nucleation

In this work, the mesoscale fluctuating diffuse interface model described in

the previous chapters was extended to wall bounded systems, and subsequen-

tly exploited to address heterogeneous nucleation. We numerically evaluate

the nucleation rates for different thermodynamic conditions and different wall

wetting properties. Dealing with wall wettability, calls for a thermodynamic

consistent model of the solid-wall free energy, to this end its mathematical

form was found, univocally relating the contact angle with the bulk proper-

ties of the fluid. Furthermore, the model foresees depletion or absorption

layering of the liquid in proximity of the solid surfaces, as commonly detec-

ted in MD simulations. These aspects play a crucial role in heterogeneous

nucleation, showing unusual effects. In particular for moderately hydrophilic

walls, homogeneous nucleation seems to be the most probable event, due to

the liquid accumulation to the wall.

As a simple comparison, we compare our numerical results, with classical

nucleation theory, both with Blander and Katz approach and with Kramers

theory. For weakly hydrophilic/hydrophobic surfaces, a good agreement with
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classical theory, is found. In particular with Kramers theory, here formulated

for heterogeneous nucleation.

What follows is the paper in preparation.

Introduction

The effects of thermal fluctuations are relevant in the dynamics of fluid sy-

stems below the micrometer scale. Hence a fluid dynamic model addressed to

capture the phenomena at mesoscopic scales must embed this crucial aspect,

hence calling for a suitable description of stochastic fluctuations. Starting

from the eminent work of Landau and Lifshitz (1958, 1959) [84] several

models have been developed to embed thermal fluctuations in continuum

mechanics equations [61] contributing to the growing field of “Fluctuating

Hydrodynamics”. In the last decades the mathematical modeling has been

followed by an exponential increase of numerical methods for the correct eva-

luation of the stochastic contributions [54, 46, 11, 53]. The comprehension

of the effects of thermal fluctuations in a mesoscale system not only play an

important role in physics of fluids, but a deep understanding of these pheno-

mena is necessary for the progress of some of the latest nanotechnology. For

instance a suitable modeling of stochastic fluctuations is crucial in the desi-

gn of flow-driven micro-devices, or in the study of biological systems, such

as lipid membranes [107], or even in the theory of Brownian engines and in

the development of artificial molecular motors prototypes [115, 47]. Another

problem with a huge theoretical and technological impact is the phenomenon

of nucleation, the precursor of the phase change in metastable systems. This

problem is strongly connected to the phenomenon of bubble cavitation [28]

and of freezing rain [32], to cite a few. In fact thermal fluctuations allow
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to overcome the energy barriers for phase transitions [76, 79, 90]. Before di-

scussing the mathematical model, it is worth to remember the main features

of nucleation in liquid system. A liquid held at atmospheric pressure can be

heated up to a temperature far beyond its boiling point. In this condition

the liquid is called superheated, or more generally metastable. Metastability

can be obtained analogously by decreasing isothermally the pressure under

its saturation value. At low enough temperature – at ambient temperature

in the case of water, e.g. – the liquid can be stretched down to negative

pressure, the so called tensile condition. When the liquid is in metastable

conditions a vapor bubble can nucleate with a probability related to the level

or superheating or stretching and we refer to the nucleation event as boiling

or cavitation, respectively [28]. Bubble nucleation is an activated process,

since an amount of energy is needed to overcome the activation barrier. The

presence of impurity or dissolved gas nuclei strongly lowers the energy barrier

and simplifies the bubble formation, as well as the presence of solid boun-

daries. In fact the energy needed to form a vapor bubble on a solid surface

depends on the contact angle, and as explained in the next section it can

be significant lower than its counterpart in a bulk phase. This is the reason

why it is extremely easy to experience a cavitation event in water at non-

extremely negative pressures even if it has been proven [10] that ultra-pure

water can sustain 1 kbar tensions. Moreover recent experimental works have

highlighted how the wettability of ultra-smooth surface can strongly influence

the onset temperature of pool boiling in superheated liquids [26, 25, 100].

Several theoretical models have been proposed in order to estimate the

energy barrier and the nucleation rate, both in homogeneous and heteroge-

neous (near boundaries) conditions. The classical nucleation theory (CNT)
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[18], poses the basis for the understanding of the phenomena, and it may

be easily extended to the non-homogeneous case [147], as recalled in Sec.II.

More sophisticated theories like density functional theory (DFT) [113] or

molecular dynamics (MD) simulations can give more precise estimates of the

barriers and can correct some mis–prediction of the CNT. Both the methods

are extremely powerful in stationary conditions and need to be coupled to

specialized techniques, like the string method [148], to study the nucleation

events and the transition path [67]. Another promising approach is to use a

phase field model where the order parameter is the mass density itself. In sta-

tionary conditions it recovers the DFT description with a squared-gradient

approximation of the excess energy [92]. The phase field model has the ad-

vantage of being easily extended to unsteady situations, enabling the full

description of both the thermodynamic and the fluid dynamics fields [96].

The model, in its original form, is deterministic and cannot capture sponta-

neous nucleation originated by thermal fluctuations, in absence of external

forcing. To this purpose, the theory of fluctuating hydrodynamic [40, 33]

represents the natural framework to embed thermal fluctuations inside the

phase field description. Recently a novel approach in the context of conti-

nuum mechanics, based on a diffuse interface description of the two-phase

vapor-liquid system embedded with thermal fluctuations through a fluctua-

ting hydrodynamics modeling, has been used to address bubble nucleation

process [63, 64] in the homegeneous case. Aim of this work is to extend our

previous works to the study of heterogeneous nucleation, in particular, here

we studied the spontaneous vapor bubble nucleation in a metastable liquid in

presence of solid boundaries. The heterogeneous nucleation has been addres-

sed by the means of diffuse interface fluctuating model, and we numerically

184



evaluate the nucleation rates for different wall wetting properties. An analy-

tic form of the solid-wall free energy is derived, relating its expression with

the thermodynamics of the bulk phase and the contact angle with the spatial

derivative of the density.

As a simple comparison, we compare our numerical results, with clas-

sical nucleation theory, both with Blander and Katz approach and with

Kramers theory. For weakly hydrophilic/hydrophobic surfaces, we found

a good agreement with classical theory, in particular with Kramers theory,

here formulated for heterogeneous nucleation.

Classical Nucleation Theory

Classical nucleation theory (CNT) [80, 28, 147] provides the fundamental

understanding of bubble nucleation in a metastable liquid, both for homo-

genous (bubble forming in the bulk liquid)) and heterogenous conditions

(bubble forming in contact with an extraneous phase, typically a solid with

given geometry and chemical properties). The simplest example of heteroge-

nous nucleation is a vapor bubble nucleating on a flat solid surface at fixed

contact angle �.

The free energy of a spherical cup laying on a flat solid wall,

⌦ (R,�) = ��pVV (R,�) + �LVALV (R,�) +

+ �SVASV (R,�) + �LSALS (R,�) , (8.1)

depends on the vapor-liquid pressure jump�p = pV �pL (the Laplace pressu-

re), the bubble volume VV , the area of liquid-vapor ALV , solid-vapor ASV and

liquid-solid ALS interfaces and the respective surface energies �LV , �SV , �LS.

Introducing the equilibrium (or Young) contact angle � = cos�1(�LS �
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Figura 8.1: Left panel: bubble sketch illustrating the equilibrium contact
angle � and the bubble radius R. Right panel: CNT prediction of free-energy
profiles for different contact angle �, the continuous line corresponds to the
homogeneous case (� = ⇡), the dotted lines represent the heterogeneous case.

�SV )/�LV ) (see the sketch in fig. 8.1, where, at variance with the stan-

dard convention, the angle is measured from the vapor-solid interface, i.e.

� > ⇡/2 means hydrophilic) allows for re-expressing the relevant geometric

quantities as ASV = ⇡R
2 sin2

�, ALV = 2⇡R2(1 � cos�), ALS = Aw � ASV ,

VV (R,�) = VV (R, ⇡) (�), where is Aw the total surface of the solid wall

and  (�) = 1/4(1 � cos�)2(2 + cos�). As � ! ⇡ the free energy reduces

to the homogeneous case. Thus, starting from a homogeneous metastable

liquid and denoting by �⌦hom = ��pVV (R, ⇡) + �LVALV (R, ⇡) spent for a

spherical bubble of radius R in the bulk liquid, the energy required to form

a spherical cup at the wall reads

�⌦ (R,�) = �⌦hom (R) (�) . (8.2)

The free energy consists of two contribution, one associated with volume

terms and decreasing like R
3 with increasing bubble radius and the other

depending on the surface area which increases with like the square of the

bubble radius. The free-energy attains a maximum, the critical state, at the
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critical radius R
⇤.

R
⇤ =

2�LV
�p

, (8.3)

The corresponding free energy barrier is

�⌦⇤ = �⌦ (R⇤
,�) = �⌦⇤

hom (�) =
16

3
⇡
�
3

LV

�p2
 (�) . (8.4)

The critical radius is the same both for heterogeneous and homogenous nu-

cleation. On the opposite, the barrier �⌦⇤ for heterogenous nucleation is

lower than �⌦hom ( (�)  1). Clearly, for trivial geometrical reasons, also

the critical volume V
⇤ = 4/3⇡R⇤3 (�) is smaller for the heterogeneous case.

The crucial observable in the nucleation process is the nucleation rate,

i.e. the normalized number of super-critical bubbles formed per unit time. In

the heterogeneous context the normalization is per unit surface (as opposed

to unit volume used in homogeneous conditions). The expression for the

nucleation rate[18, 41] is

JBK = n
2/3
L

(1� cos�)

2

r
2�LV
⇡m

exp

✓
�
�⌦⇤

kB✓

◆
, (8.5)

where nL is the liquid number density and m the mass of the liquid molecule.

Kramers theory [83] provides the mean time ⌧ for the diffusion across a barrier

(mean first passage time) of a random walker trapped in the metastable

basin of a given potential. In the present context the random walker is the

nucleating bubble which is assumed to obey a Langevin equation [101] with

free energy given by eq. (8.4). The resulting expression is

⌧ (�) =
1

D⇤

kB✓

4 (�)�LV
exp

✓
�⌦⇤

kB✓

◆
. (8.6)

The diffusion coefficient in correspondence with the critical state[101] is D⇤ =

kB✓/16µ⇡R⇤, where µ is the fluid viscosity, providing the estimate

Jhet =
nL

2/3

⌧
= nL

2/3 (�)�LV
4µ⇡R⇤

exp

✓
�
�⌦⇤

kB✓

◆
(8.7)
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for the nucleation rate[12, 55].

Thermodynamics of non-homogeneous systems

in contact with a solid surface

In order to describe a non-homogeneous liquid-vapor system interacting with

a solid surface, we adopted the Van der Waals square gradient approximation

of the (Helmoholtz) free energy functional,

F [⇢, ✓] =

Z

V

dV

✓
fb (⇢, ✓) +

1

2
�r⇢ ·r⇢

◆
+

Z

@V

dSfw (⇢, ✓) , (8.8)

where fb is the classical bulk free energy density and � is the capillary

coefficient, controlling both the surface tension and the interface thickness.

The free energy contribution fw arises from the fluid-wall interactions and

accounts for the wetting properties of the surface.

The entropy functional S is obtained as the functional derivative of the

free energy with respect to temperature

S [⇢, ✓] =

Z

V

�
�F

�✓
dV = (8.9)

= �

Z

V

@fb

@✓
dV �

Z

@V

@fw

@✓
dS

=

Z

V

sb (⇢, ✓) dV +

Z

@V

sw(⇢, ✓) dS ,

where the third equality holds for a temperature-independent �. The la-

st identity follows from the definition of the bulk entropy density sb after

introducing the surface entropy density sw. For a closed and isolated ther-

modynamic system of given energy E0 and mass M0, the constrained entropy

functional (Sc) reads

Sc = S + l1

✓
M0 �

Z

V

⇢ dV

◆
+ l2 (E0 � U) , (8.10)
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where l1 and l2 are two Lagrange multipliers and the internal energy U is

U = F + ✓S =

Z

V

u (⇢,r⇢, ✓) dV + Uw [⇢, ✓] (8.11)

=

Z

V

dV

✓
ub (⇢, ✓) +

1

2
�r⇢ ·r⇢

◆
dV +

Z

@V

fw + ✓sw dS ,

with ub = fb � ✓@fb/@✓. By maximizing the entropy,

�Sc [⇢, ✓] = �

Z

V

(sb � l2u (⇢,r⇢, ✓)� l1⇢) dV +

+ �

Z

@V

[sw � l2 (fw + ✓sw)] dS = 0 , (8.12)

the Lagrange multipliers are identified as l1 = �(µb
c��r

2
⇢)/✓ and l2 = 1/✓,

where µ
b
c is the bulk chemical potential. It follows that, in equilibrium,

temperature and (generalized) chemical potential µc must be constant, as

well known,

✓ = const = ✓eq (8.13)

µc = µ
b
c � �r

2
⇢ = const = µ

eq
c . (8.14)

Furthermore the boundary term gives rise to the additional requirement
✓
�r⇢ · n̂+

@fw

@⇢

◆ ����
@V

= 0 , (8.15)

where n̂ is the outward normal, to be read as a (non-linear) boundary

condition for the density.

The above equilibrium conditions provide a relationship between the spa-

tial density distribution and the thermodynamic properties of the system.

Such relationship is here illustrated for an interface whose direction of in-

homogeneity is ŝ, under the assumption of constant �. In order to evaluate

the equilibrium density profile, the equilibrium condition Eq. 8.14 is enforced
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along the direction ŝ

µc = µ
b
c(⇢, ✓)� �

d
2
⇢

ds2
= µeq , (8.16)

by multiplying Eq. 8.16 by d⇢/ds and integrating between ⇢1 = ⇢V and ⇢,

one has

wb(⇢, ✓)� wb(⇢V (✓)) =
�

2

✓
d⇢

ds

◆2

, (8.17)

with wb = fb�µeq⇢ is the bulk Landau free energy density (Grand Potential).

The grand potential is defined as the Legendre transform of the free

energy,

⌦ = F �

Z

V

⇢
�F

�⇢
dV =

Z

V

wdV , (8.18)

where w = fb + �r⇢ ·r⇢+ µc⇢ is the actual grand potential density.

The surface tension can be defined as the excess (actual) grand potential

density,

�LS =

Z Si

�1

(w[⇢, ✓]� w[⇢V ]) ds+ (8.19)

+

Z
1

Si

(w[⇢, ✓]� w[⇢L]) ds =

Z
1

�1

(w[⇢, ✓]� w[⇢V ]) ds,

where Si denotes the position of the Gibbs dividing surface. The definition

of w[⇢], Eq. 8.18, and the equilibrium condition Eq. 8.16, provide

�LS =

Z
1

�1

"
fb +

1

2
�

✓
d⇢

ds

◆2

� µeq⇢� wb(⇢V )

#
ds =

=

Z
1

�1

"
wb +

1

2
�

✓
d⇢

ds

◆2

� wb(⇢V )

#
ds . (8.20)

Using Eq. (8.17) one finds

�LS =

Z
+1

�1

�

✓
d⇢

ds

◆2

ds =

Z ⇢L

⇢V

p
2� (wb(⇢, ✓)� wb(⇢V )) d⇢ , (8.21)
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Figura 8.2: Bubble sketch illustrating both geometrical and wetting
properties.

It is worth stressing that, the surface tension only depends on bulk grand

potential density wb(⇢, ✓), and on the value of the capillary coefficient �.

For fw we deduced an analytic form that generalizes the well known

approach used to describe two immiscible fluids, see e.g [126, 71].

The analytic form of fw is constructed by observing that the equilibrium

contact angle � is related to the inhomogeneity direction ŝ as ŝ · n̂ = � cos�,

(see Fig. 8.2), and the density gradient is r⇢ = d⇢/ds ŝ, so that Eq. 8.15

reads
dfw

d⇢
� �

d⇢

ds
cos� = 0 , (8.22)

the above equation can be integrated by using Eq. 8.17 providing

fw(⇢, ✓) = cos�

Z ⇢

⇢V

p
2� (wb (⇢̃, ✓)� wb (⇢V )) d⇢̃ + fw (⇢V ) . (8.23)

The analytic form of fw recovers the physical evidence that for a pure vapor

of density ⇢V in contact with the wall, the free-energy should be given by

the solid-vapor surface tension, fw(⇢V ) = �SV , Similarly, for a pure liquid

of density ⇢L, fw(⇢L) = �LS. These aspects become even more evident by

191



enforcing Eq. 8.21, leading to

fw(⇢L) = �LS = �LV cos�+ �SV , (8.24)

that is well known in CNT context.

Using the model expression (8.23), @fw/@⇢ ⌘ 0 outside the coexistence

and metastable regions. In this case eq. (8.15) is tantamount to enforcing

zero normal derivative for the density outside these regions and assigning the

contact angle � in the otherwise, i.e. in the small but finite thickness region

of the wall separating the liquid from the vapor. In addition, when a pure

liquid in metastable state is in contact with the wall, the model provides a

wall normal stratified density profile, in which the density is higher toward

the solid surface, for a hydrophilic wall, and is lower for a hydrophobic one.

Depletion or absorption layering of the liquid in proximity of the solid surfa-

ces, as commonly detected [34, 74] in MD simulations. The density profiles

do not show monotonic trend upon the wall normal direction, foretelling for

hydrophilic walls, a wide area (near the solid surface) in which the local den-

sity is lower than its mean value (� > ⇡/2). Clearly hydrophobic surfaces

show the opposite behavior. These aspects play an important role in hete-

rogeneous nucleation, inasmuch they stimulate the bubble formation on the

hydrophobic walls as well as discourage it on hydrophilic surface. Such qua-

litative statement is corroborated both by energetic considerations and by

fluctuating hydrodynamics simulations of spontaneous heterogeneous bubble

nucleation. As discussed in Sec.VIII.
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Landau-Lifshitz-Navier-Stokes equations with ca-

pillarity

The dynamics of the mesoscopic system of our interest is governed by a

system of equation expressing mass, momentum and energy conservation,

with the addition of stochastic contributions (Lifshitz-Landau-Navier-Stokes

equations with capillarity LLNS):

@⇢

@t
+r · (⇢u) = 0 , (8.25)

@⇢u

@t
+r · (⇢u⌦ u) = �rp+r ·⌃+r · �⌃ ,

@E

@t
+r · (uE) = r · (�pu+ u ·⌃� q) +

+r · (u · �⌃� �q) ,

where E is the total energy density, E = U + 1/2⇢|u|2 + 1/2|r⇢|
2, with U

the internal energy density. In the momentum and energy equations respec-

tively, ⌃ and q are the classical deterministic stress tensor and energy flux,

respectively, and where the terms with the prefix � are the stochastic parts,

whose statistical properties will be inferred from the fluctuation-dissipation

theorem. For a simple one-component Newtonian fluid embedded with capil-

larity (the free energy functional is expressed as in eq. 8.8) the stress tensor

⌃ and the energy flux q can be easily deduced by standard non-equilibrium

thermodynamic methods [98]:

⌃ =

✓
�

2
|r⇢|

2 + ⇢r · (�r⇢)

◆
I � �r⇢⌦r⇢+

+µ

�
ru+ruT

�
�

2

3
r · uI

�
, (8.26)
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q = �⇢r⇢r · u� kr✓. (8.27)

In order to infer the statistical properties of the stochastic fluxes, it must

be enforced the fluctuation-dissipation balance (FDB). We here report only

the major results and we refer to [64] for the complete details. By means of

the FDB the covariance of the stochastic process can be written as

⌦
�⌃(x̂, t̂)⌦ �⌃†(x̃, t̃)

↵
= Q⌃

�(x̂� x̃)�(t̂� t̃), (8.28)

with

Q⌃
↵�⌫⌘ = 2kB✓µ

✓
�↵⌫��⌘ + �↵⌘��⌫ �

2

3
�↵��⌫⌘

◆
, (8.29)

concerning the viscous stress tensor, and

⌦
�q(x̂, t̂)⌦ �q†(x̃, t̃)

↵
= Qq

�(x̂� x̃)�(t̂� t̃), (8.30)

with

Qq
↵� = 2kB✓

2
k�↵� , (8.31)

concerning the heat flux. Moreover it is worth noting that the correlation

between thermodynamic force of different tensor rank has to be zero due

to the Curie-Prigogine principle i.e. (
⌦
�q†(x̃, t̃)⌦ �⌃(x̂, t̂)

↵
= 0). Thus in

the theory of fluctuating hydrodynamics, the effect of thermal fluctuation

appears directly in the Navier-Stokes equations as an “external” force arising

from the fluctuating part of the thermodynamic fluxes.

From an operative point of view it is more convenient to re-express the

stochastic contributions in terms of the standard Wiener process as

�⌃ =
p

2µkB✓W̃ v �
1

3

p
2µkB✓Tr

⇣
W̃ v

⌘
I, (8.32)

�q =
p

2kkB✓2W̃E . (8.33)
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W̃ v =
⇣
W v + (W v)T

⌘
/
p
2 is a stochastic symmetric tensor field, and W̃E

is a stochastic vector, with the following statistical properties

⌦
W

v
↵�(x̂, t̂)W

v
��(x̃, t̃)

↵
= �↵�����(x̂� x̃)�(t̂� t̃), (8.34)

⌦
W

E
↵(x̂, t̂)W

E
�(x̃, t̃)

↵
= �↵��(x̂� x̃)�(t̂� t̃) . (8.35)

Particular attention must be paid on the boundary conditions for the

system of equations (8.25), here we use no-slip condition for the fluid velocity

at the solid surface and adiabatic walls, i.e. ⇢u|@V = 0, @✓/@n = 0 and

@⇢/@n|@V = g(✓,�) concerning the density field. Where the function g =

� cos�
p

2/� (wb (⇢, ✓)� wb (⇢V )) is positive for an hydrophilic wall and is

negative for an hydrophobic one, see eq.(8.23). In addition in order to satisfy

the FDB in the presence of the solid boundaries we follow the procedure

suggested in ([11, 52]), that provide a simple recipe to deal with stochastic

fluxes when non-periodic boundary conditions are needed, in particular has

been showed that the variance of the stochastic processes W on the wall

has to be modified as hWW i|@V = ↵, where ↵ = 2 for Neumann boundary

conditions and ↵ = 0 for Dirichlet ones, this ensures the preservation of the

FDB in the discretized equations.

Equation of State

Two more relations are needed in order to close the system of equations (8.25),

i.e. the equations of state that relates the thermodynamic pressure and the

internal energy to the density and temperature, p = p(⇢, ✓), U = U(⇢, ✓).

These two equations both follow by choosing a suitable free energy density

fb = fb(⇢, ✓) in eq. (8.8). In this work we choose an expression that recover

the properties of a Lennard-Jones fluid [75]. The final expressions are too
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Figura 8.3: Phase diagram for the Lennard-Jones EoS[75]. In the main plot
the isotherm ✓ = 1.25 and the iso-chemical potential µ = µsat with the sa-
turation value are reported with dashed and dash-dotted lines, respectively.
The saturation densities are identified as the two points with equal tempe-
rature, chemical potential and pressure; the red circle represent the vapor
saturation point and the orange circle the liquid one. The other two circles,
blue and light blue, represent the spinodal points, vapor and liquid respecti-
vely, identified on the isotherm where @p/@⇢ = 0. In the inset the loci of all
the saturation and spinodal points at different temperatures are reported in
the ⇢� ✓ plane.
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cumbersome to be repeated here, but it is interesting to discuss some of

the crucial features that allow the description of a two phase, vapor–liquid,

system. The thermodynamic states placed between the saturation and the

spinodal lines in the inset of Fig. 8.3 represent the metastable states for

vapor and liquid phase respectively. In particular when the thermodynamic

state of a fluid is placed in such sets, a nucleus of new phase (vapor bubble

in the region of metastable liquid, and liquid droplet in metastable vapor)

can nucleate with a probability related to the distance from boundary of the

phase diagram, i.e. the probability is high close to the spinodal lines and is

low toward the binodal states.

Bubble-Nucleation Simulations

The heterogeneous vapor bubble nucleation is here studied by means of the

LLNS system of equations presented in the previous sections. In particular

bubble nucleation is investigated in a metastable liquid enclosed in a box with

periodic boundary conditions in x � y directions, and two flat solid surface

otherwise. The fluid is characterized by an equation of state that recover the

properties of a Lennard-Jones fluid [75].

By introducing the following reference quantities � = 3.4 ⇥ 10�10
m

as length, ✏ = 1.65 ⇥ 10�21
J as energy, m = 6.63 ⇥ 10�26

kg as mass,

Ur = (✏/m)1/2 as velocity, Tr = �/Ur as time, ✓r = ✏/kB as temperature,

µr =
p
m✏/�

2 as shear viscosity, cvr = mkB as specific heat at constant

volume and kr = µrcvr as thermal conductivity; the dimensionless fields are

defined as ⇢
⇤ = ⇢/⇢r, ✓⇤ = ✓/✓r, u⇤ = u/Ur.
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Hence the dimensionless fluxes (eq. 8.26, 8.27, 8.32, 8.33) read

⌃⇤ =

✓
C

2
|r

⇤
⇢
⇤
|
2 + ⇢

⇤
r

⇤
· (Cr

⇤
⇢
⇤)

◆
I � Cr

⇤
⇢
⇤
⌦r

⇤
⇢
⇤ + µ

⇤

�
r

⇤u⇤ +ruT⇤
�
�

2

3
r

⇤
· u⇤I

�
,

q⇤ = C⇢
⇤
r

⇤
⇢
⇤
r

⇤
· u⇤

� k
⇤
r

⇤
✓
⇤
,

�⌃⇤ =

r
2µ⇤

✓
⇤

�V ⇤�t⇤
W v⇤

�
1

3

r
2µ⇤

✓
⇤

�V ⇤�t⇤
Tr (W v⇤) I ,

�q⇤ =

r
2k⇤

✓
⇤2

�V ⇤�t⇤
WE⇤

,

where C = �⇢r/�
2
U

2

r is a capillary number, fixed in our simulations as C =

5.244, to reproduce the exact value of surface tension expected for a Lennard-

Jones fluid [75], as expleined in the previous section. The system volume

V
⇤ = 750⇥ 750⇥ 500 has been discretized on a equi-spaced grid, containing

50 cells in z-direction and 75 in x� y.

Several metastable conditions have been investigated and here we re-

port in detail the results of four different simulations at initial temperature

✓
⇤ = ✓

⇤

eq = 1.25 and different bulk densities ⇢
⇤

L = 0.47 , 0.475 , 0.48 , 0.485;

for which nucleation is observed almost only near solid boundaries. In fact,

this mesoscale approach allows for exploring very large system (in compari-

son with molecular dynamics simulations) and for a very long time, for this

reason it possible to observe also homogeneous nucleation even though the

higher barrier of the homogenous case. The metastable range of densities

is ⇢
⇤

L 2
⇥
⇢
⇤

sat, ⇢
⇤

spin

⇤
= [0.44, 0.51], where ⇢

⇤

sat and ⇢
⇤

spin are the dimensionless

saturation and spinodal densities, respectively. Only ten runs for each simu-

lation have been carried out in order to perform statistical averages of the

results since the macroscopical observables, like the nucleation rates, have

demonstrated to be statistically robust.
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For a detailed explanation of bubble identification procedure, we refer to

[64].

A few snapshots of the system evolution in the different metastable con-

ditions are shown in the top pannels of Fig.s 8.4,8.5. Starting from a ho-

mogeneous liquid phase, the hydrodynamic fluctuations lead the system to

spontaneously decompose in two different phases. The vapor nucleii starts

forming with a complex shape, far from a spherical one, as observed in other

works [49]. After reaching the critical size, they start expanding up to a sta-

ble equilibrium state. This new thermodynamic state is characterized by the

presence of several stable vapor bubbles in equilibrium with the surrounding

liquid. The number and the dimension of the bubbles in the latter stage is

strictly connected with the initial metastable condition, as evident on the

left of panels in Fig.s 8.4,8.5.

t

N
B
(t

)

0 100000 200000
0

20

40

60

80

100

ρ = 0.475

a

b

c d

Figura 8.4: Left panel: snapshots during the nucleation process in the ther-
modynamic condition ⇢

⇤ = 0.475 ✓
⇤ = 1.25, the snapshots are taken at time

t
⇤ = 60000, t⇤ = 80000, t⇤ = 240000, t⇤ = 264000. Right panel: number of

stable bubble vs time for the aforementioned thermodynamic condition.

In the right of the panels in Fig.s 8.4,8.5 we report a quantitative analysis
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of the time evolution of the number of vapor nucleii that exceed the critical

size. The same two different metastable conditions of the snapshots reported

in Fig.s 8.4,8.5 are here analyzed. The linking between the snapshots and

the observable NB(t) is marked in Fig.s 8.4,8.5 through the letters a, b, c, d.

Similarly to the homogeneous [64], the dynamics of the system can be

divided in three main stages: during the first one the number of bubble in-

creases almost linearly with time (with a constant rate); when the system

is populated enough, the second stage consists in the expansion-coalescence

dynamics when the nucleii increase their size up to the equilibrium radius

and some of them coalesce with neighboring bubbles. Furthermore the smal-

lest nucleii start collapsing due to the liquid compression. During the third

stage the system reach a more stable thermodynamic condition, in which a

small number of stable vapor bubbles are in equilibrium with the surroun-

ding compressed liquid. As shown in Fig. 8.4, the metastable condition at

⇢L = 0.475, which, among those we have considered, is one of closest one

to the spinodal– hence the one with lower energy barrier to be overcome to

nucleate bubbles – leads to a more populated system and clearly shows more

frequent coalescence events. At ⇢L = 0.485, instead, only the expansion of

the bubbles is observed after reaching an almost stable number of bubbles.

The analysis of the first stage of the dynamics, when the number of bub-

ble increases, gives access to another crucial observable, the nucleation rate

J
⇤, representing the number of bubbles formed per unit time and per unit

area. From an operative point of view, the nucleation rate is here calculated

as the slope of the linear fit of the initial part of the curves in fig. 8.5, as

suggested in [49]. The calculated nucleation rates at different metastable

conditions are compared in fig. 8.6 with the theoretical predictions given by
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Figura 8.5: Left panel: snapshots during the nucleation process in the ther-
modynamic condition ⇢

⇤ = 0.485 ✓
⇤ = 1.25, the snapshots are taken at time

t
⇤ = 180000, t⇤ = 1900, t⇤ = 280000, t⇤ = 360000. Right panel: number of

stable bubble vs time for the aforementioned thermodynamic condition.

the Kramers theory applied to classical nucleation theory (CNTK), and the

Blander and Katz CNT formulation, formulated here in heterogeneous case,

see Sec. I for details. Despite the strong assumptions in CNT, the rates

calculated with our numerical simulations are slightly smaller than predicted

by classical theory, in particular when compared with the Krames approach,

as exposed for the homogeneous case in [64, 49] and also in the heteroge-

neous case in [110], particularly for higher temperatures. This discrepancy

is mostly related to the overcrowding of bubbles in the system [62], in fact

as evident in fig. 8.6 the theoretical predicted rates are more precise as the

system is less populated. Furthermore as already mentioned before, since the

system dimensions are relevant, several nucleation event are detected also in

the bulk liquid, in the latter case the imposed mass constrain leads the li-

quid to compress, inhibiting the nucleation process. These aspects has been

quantitative evaluated in the homogeneous case, by evaluating the number
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Figura 8.6: Nucleation rate comparison between fluctuating hydrodyna-
mics numerical results (blue squares FH), Blander and Katz rate predictions
(green delta CNTBK) and Kramers theory (red circles CNTK) at different
metastable conditions.

of coalescence and collapse events, showing how the hydrodynamic effects

are crucial in the dynamics of the system and strongly affect the nucleation

rate [64]. For the specific thermodynamic condition ✓
⇤ = 1.25 , ⇢⇤ = 0.48,

for which the majority of nucleation events are detected on the solid surface,

we analyze the wetting influence on the nucleation rate. We perform seve-

ral numerical simulation, by changing the chemistry of the surface, spanning

from hydrophobic conditions (cos(�) > 0) to hydrophilic ones (cos(�) < 0).

As expected according to energy barrier considerations, the nucleation rate

increase when the contact angle decrease, as it is evident in Fig. 8.7, and the

numerical results agree with the classical theoretical predictions, especially

with Kramers theory. However the qualitative accordance with the classical

theory is detected only when considering weakly hydrophilic walls, in fact
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Figura 8.7: Nucleation rate comparison between fluctuating hydrodynamics
numerical results (blue squares FH), Blander and Katz rate predictions (green
delta CNTBK) and Kramers theory (red circles CNTK) for different wall
wettabilities.

as � increases the nucleation events are detected mostly in the bulk phase,

despite the presence of solid surfaces, as evident in Fig. 8.9.

In Fig. 8.8 is reported the number of stable bubbles detected on the walls

as a function of time. The left panel shows the number of bubbles nucleated

on the walls, the right one the totality of the bubbles nucleated in the do-

main. It is evident how, by increasing the contact angle, the heterogeneous

nucleation events decrease drastically, but several bubbles are formed in the

bulk liquid. In particular, for � > �crit with �crit ⇡ 120� almost all nu-

cleation events are homogeneous. This unexpected behavior can be justified

according to two different considerations: 1) for a thermodynamic point of

view, the hydrophilic nature of the surfaces involves accumulation of liquid

to the wall, providing strongly disincentivizing of vapor nuclei in these zo-
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nes, 2) In addition, for hydrophilic surfaces, heterogeneous and homogeneous

nucleation barriers are comparable, but the number of nucleation size in the

bulk phase is greater than the one on the walls, making the homogeneous

nucleation probability higher with respect to the heterogeneous one.
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Figura 8.8: Number of supercritical bubbles vs time. The different curves
refer to different contact angles �. In the left panel is reported the number
of bubbles detected on the walls, on the right the total number of bubble
detected in the domain.
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Figura 8.9: Snapshots during the nucleation process in the thermodynamic
condition ⇢

⇤ = 0.48 ✓
⇤ = 1.25 for different contact angles.
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Appendice A

Gaussian Path Integrals

Let us consider a characteristic functional

�[�] =

Z
Dx exp


�
1

2

Z Z
dr̂dr̃ x (r̂) A (r̂, r̃) x (r̃) +

Z
� (r̂) x (r̂) dr̂

�
,

(A.1)

we aim to evaluate it by using an appropriate coordinate transformation. Let

Â be an Hermitian bounded operator on a Hilbert space H defined as

Âv (r̂) =

Z
A (r̂, r̃) v (r̃) dr̃ , (A.2)

Since Â is Hermitian, an orthonormal basis exists B of H consisting of

eigenfunctions of Â, such that

Âv
µ (r̂) =

Z
A (r̂, r̃) vµ (r̃) dr̃ = !µv

µ (r̂) , (A.3)

Z
v
µ (r̃) v⌫ (r̃) dr̃ = �

µ⌫
, (A.4)

where !µ are real eigenvalues and the eigenfunction v
µ are orthonormal.

Hence the representation of the functions x(r̂),�(r̂) are

x (r̂) =
X

µ

aµv
µ (r̂) , � (r̂) =

X

µ

bµv
µ (r̂) , (A.5)

207



furthermore, the integration measure is

Dx = det

✓
�x (r̂)

�a�

◆Y

�

da� =
Y

�

da� , (A.6)

where det
✓
�x (r̂)

�a�

◆
= 1 due to orthonormal transformation (isometry). Thus

the representation of � [�] onto the functional basis B reads

� [b] =

Z Y

�

da� exp

"
�
1

2

Z Z X

µ,⌫

aµv
µ (r̂)A (r̂, r̃) a⌫v

⌫ (r̃) dr̂dr̃+

Z X

µ,⌫

bµv
µ (r̂) a⌫v

⌫ (r̂) dr̂

#
,

� [b] =

Z Y

�

da� exp

"
�
1

2

Z X

µ,⌫

aµv
µ (r̂) Âv

⌫ (r̃) dr̂+
X

µ

bµaµ

#
, (A.7)

� [b] =

Z Y

�

da� exp

"
�
1

2

X

µ

�
a
2

µ!µ � bµaµ

�
#
,

� [b] =
Y

µ

Z
+1

�1

daµ exp


�
1

2
!µa

2

µ + bµaµ

�
, (A.8)

The last integral can be evaluated by completing the square in the integrand

exponent, this procedure leads to

� [b] = � [0]
Y

µ

exp


1

2
!
�1

µ b
2

µ

�
= �[0] exp


1

2

Z Z
dr̂dr̃� (r̂) G (r̂, r̃) � (r̃)

�
,

(A.9)

where � [0] =
Q

µ !µ, and Ĝ = Â�1. Indeed, let Ĝ be the inverse of the

operator Â, by multiplying both sides of Eq. (A.3) by the operator Ĝ one

has

Ĝv
µ (r̂) =

Z
G (r̂,̃r) vµ (r̃) dr̃ =

1

!µ
v
µ (r̂) , (A.10)

hence the eigenvalues of Ĝ are
1

!µ
. So that, the integral

Z Z
dr̃dr̂� (r̂)G (r̂,̃r)� (r̃) , (A.11)
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can be written as Z Z
dr̃dr̂� (r̂)G (r̂,̃r)� (r̃) , (A.12)

Z Z
dr̃dr̂

X

µ,⌫

bµv
µ (r̂)G (r̂,̃r) b⌫v

⌫ (r̃) , (A.13)

Z
dr̂
X

µ,⌫

bµv
µ (r̂)

1

!⌫
b⌫v

⌫ (r̂) =
X

µ

b
2

µ

1

!µ
, (A.14)

and so
X

µ

b
2

µ

1

!µ
=

Z Z
dr̂dr̃� (r̂) G (r̂, r̃) � (r̃) . (A.15)

The latter equation is known as Parseval’s identity.
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Appendice B

Ito Stochastic Integration

In this appendix the main features of the stochastic calculus are retraced for

the reader’s convenience, focusing on the Ito interpretation. For the reader

interested in further deepening the search of stochastic calculus see [66].

Let us consider a continuous function g(t) on the bounded interval S =

[a, b], and a partition of S into n small subintervals sj = [tj, tj�1], such that

�j = tj � tj�1, the Riemann-Stieltjes integral is defined as

Z b

a

g(t)dF (t) = lim
n!1

nX

j=1

g (tj�1) (F (tj)� F (tj�1)) , (B.1)

if the function F is a function of bounded variation, i.e.

lim
n!1

nX

j=1

| (F (tj)� F (tj�1)) | < 1 . (B.2)

Any differentiable function has a finite variation, so that, it is a function

of bounded variation. Roughly when considering single variable functions,

and a point moving on its graphic, the functions of bounded variation are

those having a finite trajectory onto a generic subset of the graphic. Hence,

although represented by a continuous function, it should be intuitive that a
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Brownian path can not be of bounded variation, since it shows rapid varia-

tions on infinitesimal subintervals. More rigorously, the probability that the

first derivative with respect to the generic time instant t does not exist is

equal to 1, or

P

"
lim
n!1

nX

j=1

| (B (tj)� B (tj�1)) | = 1

#
= 1 , (B.3)

where B(t) is a Wiener process, having the following properties

• B(0) = 0 almost surely,

• hB(t)B(t+ ⌧)i = 0 (independent increment),

• B(t)� B(t+ ⌧) ⇠ N (0, ⌧),

• B(t) is almost surely continuous.

As a consequence, it is not possible to directly define the integral
Z t

0

H(s)dB(s) (B.4)

in a Riemann-Stieltjes sense.

However, after defining the mean square limit of the following partial

sums, as

ms� lim
n!1

Sn
def
=

*
lim
n!1

"
nX

j=1

�S(tj)� h�Si

#2+
(B.5)

it is possible to define the Ito stochastic integral of a function H(t) as
Z t

0

H(s)dB(s) = ms� lim
n!1

nX

j=1

H (tj�1) [B (tj)� B (tj�1)] . (B.6)

Before providing an example of stochastic integration according to the Ito

rules, it is useful to remember an important notable special sum, often used
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when performing stochastic integration. The sum consists in a sequence of

Brownian increment as
nX

j=1

⌦
[B (tj)� B (tj�1)]

2
↵
� t = 0 , (B.7)

because the sequence B (tj)�B (tj�1) is normally distributed with zero mean

and variance t/n, i.e. h(B (tj)� B (tj�1))
2
i = t/n.

Let us evaluate the following stochastic integral by simply applying the

definition Eq. B.6
Z t

0

B(s)dB(s) = ms� lim
n!1

nX

j=1

B (tj�1) [B (tj)� B (tj�1)] = (B.8)

=
1

2
B(t)2 �

1

2
lim
n!1

*(
nX

j=1

[B (tj)� B (tj�1)]
2
� t

)2+
,

where the relationship Eq. B.7 has been used, and the last term of the RHS

of Eq. B.8 can be written as
*(

nX

j=1

[B (tj)� B (tj�1)]
2
� t

)2+
=

*
nX

j=1

[B (tj)� B (tj�1)]
4

+
+ (B.9)

+

*
2

nX

j=1

nX

k<j

[B (tj)� B (tj�1)]
2 [B (tk)� B (tk�1)]

2

+
+

� 2t

*
nX

j=1

[B (tj)� B (tj�1)]
2

+
+ t

2
,

by enforcing the statistical properties of the Gaussian increments one has

lim
n!1

*(
nX

j=1

[B (tj)� B (tj�1)]
2
� t

)2+
= (B.10)

= lim
n!1


3t2

n
+

n(n� 1)

n
t
2
� t

2

�
= 0 ,
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thus

ms� lim
n!1

nX

j=1

[B (tj)� B (tj�1)]
2 = t , (B.11)

providing
Z t

0

B(s)dB(s) =
1

2
B(t)2 �

1

2
t
2
. (B.12)

The result obtained in Eq. B.12 is evidently in contrast with the usual

Riemann-Stieltjes rule, in which the term 1/2t2 does not appear. In the Ito

integrals this term arises from the fact that |B (tj) � B (tj�1) | is always of

order t1/2, so that, the second order terms do not vanish when performing the

limit. It is also evident from Eq. B.10 as the Ito integral definition provides

the following equality
Z t

0

(dB(s))2 = t =) dB
2 = dt . (B.13)

After introducing the stochastic integral, we can define an Ito process as

H = {H(t), t � 0} solving

H(t) = H(0) +

Z t

0

µ (H(s), s) ds+

Z t

0

� (H(s), s) dB(s) , (B.14)

or equivalently

dH(t) = µ (H(s), s) dt+ � (H(s), s) dB(s) , (B.15)

where µ and � are the drift and the diffusion terms, respectively.

The general differentiation rules in Ito calculus are described by the Ito’s

lemma, that is retraced here for a generic single variable function, and it

will be recalled in the next section for a multidimensional case. Let us con-

sider a twice-differentiable scalar function f (H, t), the second order Taylor
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expansion reads

df(H, t) =
@f

@t
dt+

@f

@H
dH +

@
2
f

@H@t
dHdt+

1

2

@
2
f

@t2
dt

2 +
1

2

@
2
f

@H2
dH

2 + o
�
t
3/2
�
,

(B.16)

by substituting as dH the Eq. B.15 and by performing the limit for dt ! 0,

since dB
2
⇠ dt one has

df(H, t) =


@f

@t
+ µ

@f

@H
+

�
2

2

@
2
f

@H2

�
dt+ �

@f

@H
, (B.17)

that represents an Ito process for the function f(H, t).
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Appendice C

Backward-Forward Kolmogorov
Equations

Let us consider a multi-dimensional Ito process driven by the standard Wie-

ner process B

dX = µ (X, t) dt+ � (X, t) dB . (C.1)

where X = (X1, X2, ..., XN)
T is a collection of Ito processes, µ = (µ1, µ2, ..., µN)

T

a drift vector, and ��
T = 2D a N ⇥ N diffusion matrix. For any twice-

differentiable function � (X, t) Ito’s lemma yields (see Eq. B.17)

d� =


@�

@t
+

@�

@X↵
µ↵ +D↵�

@
2�

@X↵@X�

�
dt+

@�

@X↵
�↵�dB� , (C.2)

Let  be a compactly supported function on a set I,  (X, t) 2 C
1

0
(I),

I = (t0, T ), Ito’s lemma provides

 (Y, t0)� (XT , T ) =

Z T

t0


@ 

@t
+

@ 

@X↵
µ↵ +D↵�

@
2 

@X↵@X�

�
dt+

Z T

t0

@ 

@X↵
�↵�dB� ,

(C.3)

since hdB�(X, t)|Y, t0i = 0 and  (X, t) has compact support in I, by mul-

tiplying Eq. (C.3) by the transition probability P (X, t|Y, t0) and integrating
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on its support one has
Z T

t0

Z

RN

dX dt


@ 

@t
+

@ 

@x↵
µ↵ +D↵�

@
2 

@x↵@x�

�
P (x, t|x0, 0) = 0 . (C.4)

After changing the order of integration Eq. (C.4), can be integrated by parts

twice to get
Z

RN

Z T

t0

dX dt


@P

@t
+

@

@X↵
(µ↵P )�

@
2

@X↵@X�
(D↵�P )

�
 (X, t) = 0 . (C.5)

Since Eq. (C.5) holds 8 (x, t) 2 C
1

0
(I) , we get the following evolution

equation for the transition probability P (X, t|Y, t0)

@P (X, t|Y, t0)

@t
= �

@

@X↵
(µ↵P (X, t|Y, t0)) +

@
2

@X↵@X�
(D↵�P (X, t|Y, t0)) .

(C.6)

The above equation represent the temporal evolution of the transition pro-

bability P (X, t|Y, t0) starting from the state Y at the time t0 < t forward in

time, and it is called Forward Kolmogorov Equation (also known as Fokker-

Planck equation in the physics community). After defining the operator

F

F =
@

@X
· µ (X)�

@

@X
⌦

@

@X
: D , (C.7)

Eq. (C.6) can be rewritten in operator form as
@P (X, t|Y, t0)

@t
= �FP (X, t|Y, t0) . (C.8)

Its formal solution is found to be

P (X, t|Y, t0) = exp [�F (t� t0)]P (X, t0|Y, t0) . (C.9)

We now wish to derive an evolution equation for the transition probability

starting from the time t > t0 backward in time. Let us considering the state

Z at the time q such that t 2 (t0, q). The Chapman-Kolmogorov equation

P (Z, q|Y, t0) =

Z
P (Z, q|X, t)P (X, t|Y, t0) dX , (C.10)

218



can be differentiated with respect to the time t leading to
Z

@P (Z, q|X, t)

@t
P (X, t|Y, t0)� P (Z, q|X, t)

@P (X, t|Y, t0)

@t
dX , (C.11)

since P (Z, q|Y, t0) does not depend on time t.

Using relationship (C.8) on the second term and integrating by parts

make the adjoint operator F † appear, leading to the new form of Eq. (C.10)
Z 

@P (Z, q|X, t)

@t
� F

†
P (Z, q|X, t)

�
P (X, t|Y, t0) dX = 0 , (C.12)

where we stress that q > t. Since the transition (or conditional probability)

is positive, Eq. (C.12) leads to the so-called Backward Kolmogorov Equation

@P (Z, q|X, t)

@t
� F

†
P (Z, q|X, t) = 0 . (C.13)

The backward equation, and has the following informal interpretation: given

state of the system Z at a future time q, the transition probability distribution

evolves with respect to the current time t according to the Eq. (C.13), by

imposing the terminal condition and by integrating backward in time.
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Appendice D

Bubble Kinematics

In this section a procedure to extract some geometric and kinematic pro-

perties of the bubbles and to track their motion into the macroscopic fluid

dynamic fields is developed, using a diffuse interface approach. Let us con-

sider the evolution of a density iso-surface ⇢ [(x (⌘, t) , t)] = ⇢0, representing

a bubble interface, in the reference configuration x = x (⌘, t). The time

derivative reads

d

dt
⇢ [(x (⌘, t) , t)] =

@⇢

@t
+ ẋ ·r⇢ = 0, (D.1)

and iso-surface velocity

w (x, t) := ẋ = �
@⇢

@t

r⇢

r⇢ ·r⇢
. (D.2)

Let � (x, t) be a generic physical quantity related to the bubble Bi, its

evolution reads

�̇ =
d

dt

Z

Bi(t)

� (x, t) dV =
d

dt

Z

B⌘
i

� (x (⌘, t) , t)J⌘
dV

⌘

=

Z

Bi(t)

D
(w)

Dt
�+ �r ·w dV , (D.3)
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where D(w)
/Dt = @/@t+w·r is the material derivative, having w as velocity

field, and J⌘ is the Jacobian determinant of the map x = x (⌘, t), whose time

derivative is J̇⌘ = J⌘
r ·w.

For each bubble, let us define the peculiar velocity w
0
i (x, t) := wi (x, t)�

u (x, t), where u (x, t) is the macroscopic velocity field, and let MBi be the

mass of the i-th bubble in the liquid. The evolution equation of the bubble

masses can be obtained from eq. (D.3) by replacing � (x, t) = ⇢ (x, t), and by

enforcing the total mass conservation of the fluid, i.e. @⇢/@t+r · (⇢u) = 0.

The bubble mass variations are

ṀBi =
d

dt

Z

Bi(t)

⇢ (x, t) dV =

I

@Bi(t)

⇢ (x, t) w
0

i (x, t) · n dS , (D.4)

where Bi(t) are the regions of the space occupied by the bubbles Bi. For

each bubble, the velocity of the center of mass is evaluated as

Ẋgi =
1

MBi

d

dt

Z

Bi(t)

x⇢ (x, t) dV �
ṀBi

MBi

Xgi . (D.5)

By evaluating the first term of the RHS of eq. (D.5) as above in eq. (D.3)

one has

Ẋgi =
1

MBi

Z

Bi(t)

⇢ (x, t)u (x, t)�r ·Gi (x, t,Xgi) dV , (D.6)

where the second order tensor Gi (x, t,Xgi), arising from the density gradient

in the field, turns out to be

Gi (x, t,Xgi) = ⇢ (x, t) (x�Xgi)⌦

✓
@⇢

@t

r⇢

r⇢ ·r⇢
� u (x, t)

◆
. (D.7)

Similarly the time derivative of the bubble volumes reads

V̇Bi =

I

@Bi(t)

w
0

i (x, t) · n dS . (D.8)
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The above procedure is implemented in an algorithm to identify the di-

stinct bubbles, and to evaluate their physical properties, and has been used

in [64], to follow the nucleated bubble (see Chapter 6 for details).

223



224



Bibliografia

[1] Yusuf G Adewuyi. Sonochemistry in environmental remediation. 1.

combinative and hybrid sonophotochemical oxidation processes for the

treatment of pollutants in water. Environmental science & technology,

39(10):3409–3420, 2005.

[2] I Akhatov, O Lindau, A Topolnikov, R Mettin, N Vakhitova, and

W Lauterborn. Collapse and rebound of a laser-induced cavitation

bubble. Physics of Fluids, 13(10):2805–2819, 2001.

[3] Rosalind J Allen, Daan Frenkel, and Pieter Rein ten Wolde. Simulating

rare events in equilibrium or nonequilibrium stochastic systems. The

Journal of chemical physics, 124(2):024102, 2006.

[4] Rosalind J Allen, Chantal Valeriani, and Pieter Rein ten Wolde. For-

ward flux sampling for rare event simulations. Journal of physics:

Condensed matter, 21(46):463102, 2009.

[5] DM Anderson, GB McFadden, and AA Wheeler. Diffuse-interface

methods in fluid mechanics. Annual Review of Fluid Mechanics,

30(1):139–165, 1998.

225



[6] Raymond Angélil, Jürg Diemand, Kyoko K Tanaka, and Hidekazu

Tanaka. Bubble evolution and properties in homogeneous nucleation

simulations. Physical review E, 90(6):063301, 2014.

[7] John C Angus and Cliff C Hayman. Low-pressure, metastable growth

of diamond and" diamondlike" phases. Science, 241(4868):913–921,

1988.

[8] Paul J Atzberger. Spatially adaptive stochastic numerical methods

for intrinsic fluctuations in reaction–diffusion systems. Journal of

Computational Physics, 229(9):3474–3501, 2010.

[9] Nicolas Auffray, Francesco dell?Isola, Victor A Eremeyev, Angela

Madeo, and Giuseppe Rosi. Analytical continuum mechanics à la

hamilton–piola least action principle for second gradient continua and

capillary fluids. Mathematics and Mechanics of Solids, 20(4):375–417,

2015.

[10] Mouna El Mekki Azouzi, Claire Ramboz, Jean-François Lenain, and

Frédéric Caupin. A coherent picture of water at extreme negative

pressure. Nature Physics, 9(1):38–41, 2013.

[11] Florencio Balboa, John B Bell, Rafael Delgado-Buscalioni, Aleksandar

Donev, Thomas G Fai, Boyce E Griffith, and Charles S Peskin. Stag-

gered schemes for fluctuating hydrodynamics. Multiscale Modeling &

Simulation, 10(4):1369–1408, 2012.

[12] Jean-Louis Barrat and Jean-Pierre Hansen. Basic concepts for simple

and complex liquids. Cambridge University Press, 2003.

226



[13] John B Bell, Alejandro L Garcia, and Sarah A Williams. Computatio-

nal fluctuating fluid dynamics. ESAIM: Mathematical Modelling and

Numerical Analysis, 44(5):1085–1105, 2010.

[14] T. B. Benjamin and A. T. Ellis. The collapse of cavitation bubbles and

the pressures thereby produced against solid boundaries. Philosophical

transactions of the Royal Society of London. Series A, Mathematical

and physical sciences, 260(1110):221–240, 1966.

[15] Bruce J Berne and Robert Pecora. Dynamic light scattering: with

applications to chemistry, biology, and physics. Courier Corporation,

1976.

[16] John R Blake and DC Gibson. Growth and collapse of a vapour cavity

near a free surface. Journal of Fluid Mechanics, 111:123–140, 1981.

[17] John R Blake and DC Gibson. Cavitation bubbles near boundaries.

Annual review of fluid mechanics, 19(1):99–123, 1987.

[18] Milton Blander and Joseph L Katz. Bubble nucleation in liquids.

AIChE Journal, 21(5):833–848, 1975.

[19] Martin JK Blomley, Jennifer C Cooke, Evan C Unger, Mark J Mo-

naghan, and David O Cosgrove. Science, medicine, and the future:

Microbubble contrast agents: a new era in ultrasound. BMJ: British

Medical Journal, 322(7296):1222, 2001.

[20] Lydéric Bocquet and Elisabeth Charlaix. Nanofluidics, from bulk to

interfaces. Chemical Society Reviews, 39(3):1073–1095, 2010.

227



[21] NN Bogoliubov. Nn bogoliubov, j. phys.(moscow) 10, 256 (1946). J.

Phys.(Moscow), 10:256, 1946.

[22] Peter G Bolhuis, David Chandler, Christoph Dellago, and Phillip L

Geissler. Transition path sampling: Throwing ropes over rough

mountain passes, in the dark. Annual review of physical chemistry,

53(1):291–318, 2002.

[23] Peter G Bolhuis, David Chandler, Christoph Dellago, and Phillip L

Geissler. Transition path sampling: Throwing ropes over rough

mountain passes, in the dark. Annual review of physical chemistry,

53(1):291–318, 2002.

[24] J-P Bouchaud, ME Cates, J Ravi Prakash, and SF Edwards. Hystere-

sis and metastability in a continuum sandpile model. Physical review

letters, 74(11):1982, 1995.

[25] Benoit Bourdon, Emilie Bertrand, Paolo Di Marco, Marco Marengo,

Romain Rioboo, and Joël De Coninck. Wettability influence on the

onset temperature of pool boiling: Experimental evidence onto ultra-

smooth surfaces. Advances in colloid and interface science, 221:34–40,

2015.

[26] Benoit Bourdon, Romain Rioboo, Marco Marengo, Emmanuel Gosse-

lin, and Joël De Coninck. Influence of the wettability on the boiling

onset. Langmuir, 28(2):1618–1624, 2012.

[27] Christopher E Brennen. Cavitation in biological and bioengineering

contexts. 2003.

228



[28] Christopher E Brennen. Cavitation and bubble dynamics. Cambridge

University Press, 2013.

[29] Christopher Earls Brennen. Cavitation in medicine. Interface Focus,

5(5):20150022, 2015.

[30] Michael P Brenner, Sascha Hilgenfeldt, and Detlef Lohse. Single-bubble

sonoluminescence. Reviews of Modern Physics, 74(2):425, 2002.

[31] John W Cahn and John E Hilliard. Free energy of a nonuniform system.

iii. nucleation in a two-component incompressible fluid. The Journal

of chemical physics, 31(3):688–699, 1959.

[32] Liangliang Cao, Andrew K Jones, Vinod K Sikka, Jianzhong Wu,

and Di Gao. Anti-icing superhydrophobic coatings. Langmuir,

25(21):12444–12448, 2009.

[33] Anuj Chaudhri, John B Bell, Alejandro L Garcia, and Aleksandar

Donev. Modeling multiphase flow using fluctuating hydrodynamics.

Physical Review E, 90(3):033014, 2014.

[34] Niharendu Choudhury and B Montgomery Pettitt. On the mechani-

sm of hydrophobic association of nanoscopic solutes. Journal of the

American Chemical Society, 127(10):3556–3567, 2005.

[35] Constantin C Coussios and Ronald A Roy. Applications of acoustics

and cavitation to noninvasive therapy and drug delivery. Annual Review

of Fluid Mechanics, 40:395–420, 2008.

[36] Giuseppe Da Prato. Kolmogorov equations for stochastic PDEs.

Birkhäuser, 2012.

229



[37] Sybren Ruurds De Groot and Peter Mazur. Non-equilibrium

thermodynamics. Courier Dover Publications, 2013.

[38] R De Luca, G Silvani, C Scognamiglio, G Sinibaldi, G Peruzzi, M Chi-

nappi, MF Kiani, and CM Casciola. Towards cavitation-enhanced per-

meability in blood vessel on a chip. In AIP Conference Proceedings,

volume 1873, page 020010. AIP Publishing, 2017.

[39] JM Ortiz de Zárate, F Peluso, and JV Sengers. Nonequilibrium fluc-

tuations in the rayleigh-bénard problem for binary fluid mixtures. The

European Physical Journal E, 15(3):319–333, 2004.

[40] Jose M Ortiz De Zarate and Jan V Sengers. Hydrodynamic fluctuations

in fluids and fluid mixtures. Elsevier, 2006.

[41] Pablo G Debenedetti. Metastable liquids: concepts and principles.

Princeton University Press, 1996.

[42] Christoph Dellago and Peter G Bolhuis. Transition path sampling and

other advanced simulation techniques for rare events. In Advanced

Computer Simulation Approaches for Soft Matter Sciences III, pages

167–233. Springer, 2009.

[43] F Dell’Isola, H Gouin, and G Rotoli. Nucleation of spherical shell-like

interfaces by second gradient theory: Numerical simulations. European

Journal of Mechanics, B/Fluids, 15(4):545–568, 1996.

[44] Francesco Dell’Isola, Henri Gouin, and Giacomo Rotoli. Nucleation

of spherical shell-like interfaces by second gradient theory: numerical

simulations. arXiv preprint arXiv:0906.1897, 2009.

230



[45] Francesco Dell’Isola, Henri Gouin, Pierre Seppecher, et al. Radius

and surface tension of microscopic bubbles by second gradient theo-

ry. Comptes Rendus de l Académie des Sciences-Series IIB-Mechanics,

320, 1995.

[46] Steven Delong, Boyce E Griffith, Eric Vanden-Eijnden, and Aleksandar

Donev. Temporal integrators for fluctuating hydrodynamics. Physical

Review E, 87(3):033302, 2013.

[47] François Detcheverry and Lydéric Bocquet. Thermal fluctuations in

nanofluidic transport. Physical review letters, 109(2):024501, 2012.

[48] Sylvain Deville, Eric Maire, Guillaume Bernard-Granger, Audrey La-

salle, Agnès Bogner, Catherine Gauthier, Jérôme Leloup, and Christian

Guizard. Metastable and unstable cellular solidification of colloidal

suspensions. Nature materials, 8(12):966, 2009.

[49] Jürg Diemand, Raymond Angélil, Kyoko K Tanaka, and Hidekazu Ta-

naka. Direct simulations of homogeneous bubble nucleation: Agree-

ment with classical nucleation theory and no local hot spots. Physical

review E, 90(5):052407, 2014.

[50] Rory Dijkink and Claus-Dieter Ohl. Laser-induced cavitation based

micropump. Lab on a Chip, 8(10):1676–1681, 2008.

[51] Zhong Ding and SM Gracewski. The behaviour of a gas cavity impacted

by a weak or strong shock wave. Journal of Fluid Mechanics, 309:183–

209, 1996.

231



[52] Aleksandar Donev, John B Bell, Alejandro L Garcia, and Berni J Alder.

A hybrid particle-continuum method for hydrodynamics of complex

fluids. Multiscale Modeling & Simulation, 8(3):871–911, 2010.

[53] Aleksandar Donev, Andy Nonaka, Yifei Sun, Thomas Fai, Alejandro

Garcia, and John Bell. Low mach number fluctuating hydrodynamics

of diffusively mixing fluids. Communications in Applied Mathematics

and Computational Science, 9(1):47–105, 2014.

[54] Aleksandar Donev, Eric Vanden-Eijnden, Alejandro Garcia, and John

Bell. On the accuracy of finite-volume schemes for fluctuating hydrody-

namics. Communications in Applied Mathematics and Computational

Science, 5(2):149–197, 2010.

[55] Miguel A Durán-Olivencia and James F Lutsko. Unification of classical

nucleation theories via a unified itô-stratonovich stochastic equation.

Physical Review E, 92(3):032407, 2015.

[56] Jens Eggers. Dynamics of liquid nanojets. Physical review letters,

89(8):084502, 2002.

[57] Albert Einstein. Theorie der opaleszenz von homogenen flüssigkeiten

und flüssigkeitsgemischen in der nähe des kritischen zustandes. Annalen

der Physik, 338(16):1275–1298, 1910.

[58] Albert Einstein. Investigations on the Theory of the Brownian

Movement. Courier Corporation, 1956.

[59] Pep Español. Stochastic differential equations for non-linear

hydrodynamics. arXiv preprint cond-mat/9705183, 1997.

232



[60] David J Flannigan and Kenneth S Suslick. Plasma formation and

temperature measurement during single-bubble cavitation. Nature,

434(7029):52–55, 2005.

[61] Ronald Forrest Fox and George E Uhlenbeck. Contributions to non-

equilibrium thermodynamics. i. theory of hydrodynamical fluctuations.

Physics of Fluids (1958-1988), 13(8):1893–1902, 1970.

[62] Mirko Gallo, Francesco Magaletti, and Carlo M Casciola. Phase

field/fluctuating hydrodynamics approach for bubble nucleation. In

ICHMT DIGITAL LIBRARY ONLINE. Begel House Inc., 2018.

[63] Mirko Gallo, Francesco Magaletti, and Carlo Massimo Casciola. Fluc-

tuating hydrodynamics as a tool to investigate nucleation of cavita-

tion bubbles. International Journal of Computational Methods and

Experimental Measurements, 6(2):345–357, 2017.

[64] Mirko Gallo, Francesco Magaletti, and Carlo Massimo Casciola. Ther-

mally activated vapor bubble nucleation: The landau-lifshitz–van der

waals approach. Phys. Rev. Fluids, 3:053604, May 2018.

[65] Alejandro L Garcia, M Malek Mansour, George C Lie, and Enri-

co Cementi. Numerical integration of the fluctuating hydrodynamic

equations. Journal of statistical physics, 47(1-2):209–228, 1987.

[66] Crispin Gardiner. Stochastic methods, volume 4. springer Berlin, 2009.

[67] Alberto Giacomello, Simone Meloni, Mauro Chinappi, and Carlo Mas-

simo Casciola. Cassie–baxter and wenzel states on a nanostructu-

red surface: phase diagram, metastabilities, and transition mechanism

233



by atomistic free energy calculations. Langmuir, 28(29):10764–10772,

2012.

[68] Joachim Heierli. Solitary fracture waves in metastable snow strati-

fications. Journal of Geophysical Research: Earth Surface, 110(F2),

2005.

[69] Robert Hickling and Milton S Plesset. Collapse and rebound of a

spherical bubble in water. Physics of Fluids (1958-1988), 7(1):7–14,

1964.

[70] Stuart Ibsen, Carolyn E Schutt, and Sadik Esener. Microbubble-

mediated ultrasound therapy: a review of its potential in cancer

treatment. Drug design, development and therapy, 7:375, 2013.

[71] David Jacqmin. Contact-line dynamics of a diffuse fluid interface.

Journal of Fluid Mechanics, 402:57–88, 2000.

[72] D Jamet, O Lebaigue, N Coutris, and JM Delhaye. The second gradient

method for the direct numerical simulation of liquid–vapor flows with

phase change. Journal of Computational Physics, 169(2):624–651, 2001.

[73] Didier Jamet. Etude des potentialités de la théorie du second gradient

pour la simulation numérique directe des écoulements liquide-vapeur

avec changement de phase. PhD thesis, 1998.

[74] Jiří Jane?ek and Roland R Netz. Interfacial water at hydrophobic

and hydrophilic surfaces: Depletion versus adsorption. Langmuir,

23(16):8417–8429, 2007.

234



[75] J Karl Johnson, John A Zollweg, and Keith E Gubbins. The lennard-

jones equation of state revisited. Molecular Physics, 78(3):591–618,

1993.

[76] SF Jones, GM Evans, and KP Galvin. Bubble nucleation from gas

cavities?a review. Advances in colloid and interface science, 80(1):27–

50, 1999.

[77] Wei Kang and Uzi Landman. Universality crossover of the pinch-off

shape profiles of collapsing liquid nanobridges in vacuum and gaseous

environments. Physical Review Letters, 98(6):064504, 2007.

[78] Mehran Kardar, Giorgio Parisi, and Yi-Cheng Zhang. Dynamic scaling

of growing interfaces. Physical Review Letters, 56(9):889, 1986.

[79] D Kashchiev and GM Van Rosmalen. Review: nucleation in solutions

revisited. Crystal Research and Technology, 38(7-8):555–574, 2003.

[80] Dimo Kashchiev. Nucleation. Elsevier, 2000.

[81] Joseph B Keller and Ignace I Kolodner. Damping of underwater explo-

sion bubble oscillations. Journal of Applied physics, 27(10):1152–1161,

1956.

[82] J Kestin, JV Sengers, B Kamgar-Parsi, and JMH Levelt Sengers. Ther-

mophysical properties of fluid h2o. Journal of Physical and Chemical

Reference Data, 13(1):175–183, 1984.

[83] Hendrik Anthony Kramers. Brownian motion in a field of force and

the diffusion model of chemical reactions. Physica, 7(4):284–304, 1940.

235



[84] LD Landau and EM Lifshitz. Statistical physics, vol. 5. Course of

theoretical physics, 30, 1980.

[85] Amy E Larsen and David G Grier. Like-charge attractions in

metastable colloidal crystallites. Nature, 385(6613):230, 1997.

[86] W Lauterborn and H Bolle. Experimental investigations of cavitation-

bubble collapse in the neighbourhood of a solid boundary. Journal of

Fluid Mechanics, 72(02):391–399, 1975.

[87] Werner Lauterborn and Alfred Vogel. Shock wave emission by laser

generated bubbles. In Bubble Dynamics and Shock Waves, pages 67–

103. Springer, 2013.

[88] T Leighton. The acoustic bubble. Academic press, 2012.

[89] Robin Hui Liu, Ralf Lenigk, Roberta L Druyor-Sanchez, Jianing Yang,

and Piotr Grodzinski. Hybridization enhancement using cavitation

microstreaming. Analytical Chemistry, 75(8):1911–1917, 2003.

[90] Detlef Lohse and Andrea Prosperetti. Homogeneous nucleation: Pat-

ching the way from the macroscopic to the nanoscopic description.

Proceedings of the National Academy of Sciences, 113(48):13549–13550,

2016.

[91] James F Lutsko. Density functional theory of inhomogeneous liquids.

ii. a fundamental measure approach. The Journal of chemical physics,

128(18):184711, 2008.

236



[92] James F Lutsko. Density functional theory of inhomogeneous liquids.

iv. squared-gradient approximation and classical nucleation theory. The

Journal of chemical physics, 134(16):164501, 2011.

[93] James F Lutsko. A dynamical theory of nucleation for colloids and

macromolecules. The Journal of chemical physics, 136(3):034509, 2012.

[94] James F Lutsko. Systematically extending classical nucleation theory.

New Journal of Physics, 2018.

[95] James F Lutsko and Miguel A Durán-Olivencia. A two-parameter ex-

tension of classical nucleation theory. Journal of Physics: Condensed

Matter, 27(23):235101, 2015.

[96] F Magaletti, L Marino, and CM Casciola. Shock wave formation in the

collapse of a vapor nanobubble. Physical Review Letters, 114(6):064501,

2015.

[97] Francesco Magaletti, Mirko Gallo, Luca Marino, and Carlo Massimo

Casciola. Dynamics of a vapor nanobubble collapsing near a solid boun-

dary. In Journal of Physics: Conference Series, volume 656, page

012012. IOP Publishing, 2015.

[98] Francesco Magaletti, Mirko Gallo, Luca Marino, and Carlo Massimo

Casciola. Shock-induced collapse of a vapor nanobubble near solid

boundaries. International Journal of Multiphase Flow, 84:34–45, 2016.

[99] Francesco Magaletti, Luca Marino, and Carlo Massimo Casciola. Dif-

fuse interface modeling of a radial vapor bubble collapse. In Journal of

237



Physics: Conference Series, volume 656, page 012028. IOP Publishing,

2015.

[100] Ileana Malavasi, Bernard Bourdon, Paolo Di Marco, Joël De Co-

ninck, and Marco Marengo. Appearance of a low superheat ?quasi-

leidenfrost? regime for boiling on superhydrophobic surfaces. In-

ternational Communications in Heat and Mass Transfer, 63:1–7,

2015.

[101] Georg Menzl, Miguel A Gonzalez, Philipp Geiger, Frédéric Caupin,

José LF Abascal, Chantal Valeriani, and Christoph Dellago. Molecular

mechanism for cavitation in water under tension. Proceedings of the

National Academy of Sciences, 113(48):13582–13587, 2016.

[102] EE Michaelides and KL Zissis. Velocity of sound in two-phase mixtures.

International Journal of Heat and Fluid Flow, 4(2):79–84, 1983.

[103] Emily B Moore and Valeria Molinero. Structural transformation in

supercooled water controls the crystallization rate of ice. Nature,

479(7374):506, 2011.

[104] VG Morozov. On the langevin formalism for nonlinear and nonequi-

librium hydrodynamic fluctuations. Physica A: Statistical Mechanics

and its Applications, 126(3):443–460, 1984.

[105] Michael Moseler and Uzi Landman. Formation, stability, and breakup

of nanojets. Science, 289(5482):1165–1169, 2000.

[106] Daniel M Murphy and Thomas Koop. Review of the vapour pressu-

res of ice and supercooled water for atmospheric applications. Quar-

238



terly Journal of the Royal Meteorological Society: A journal of the

atmospheric sciences, applied meteorology and physical oceanography,

131(608):1539–1565, 2005.

[107] Ali Naji, Paul J Atzberger, and Frank LH Brown. Hybrid elastic and

discrete-particle approach to biomembrane dynamics with application

to the mobility of curved integral membrane proteins. Physical review

letters, 102(13):138102, 2009.

[108] Charl F Naudé and Albert T Ellis. On the mechanism of cavitation

damage by nonhemispherical cavities collapsing in contact with a solid

boundary. Journal of Fluids Engineering, 83(4):648–656, 1961.

[109] Joachim Noack and Alfred Vogel. Single-shot spatially resolved cha-

racterization of laser-induced shock waves in water. Applied Optics,

37(19):4092–4099, 1998.

[110] Brian R. Novak, Edward J. Maginn, and Mark J. McCready. Com-

parison of heterogeneous and homogeneous bubble nucleation using

molecular simulations. Phys. Rev. B, 75:085413, Feb 2007.

[111] C-D Ohl, A Philipp, and W Lauterborn. Cavitation bubble collapse

studied at 20 million frames per second. Annalen der Physik, 507(1):26–

34, 1995.

[112] Claus-Dieter Ohl, Manish Arora, Rory Dijkink, Vaibhav Janve, and

Detlef Lohse. Surface cleaning from laser-induced cavitation bubbles.

Applied Physics Letters, 89(7):074102, 2006.

239



[113] David W Oxtoby and R Evans. Nonclassical nucleation theory for the

gas–liquid transition. The Journal of chemical physics, 89(12):7521–

7530, 1988.

[114] Giovanna Peruzzi, Giorgia Sinibaldi, Giulia Silvani, Giancarlo Ruoc-

co, and Carlo Massimo Casciola. Perspectives on cavitation enhanced

endothelial layer permeability. Colloids and Surfaces B: Biointerfaces,

168:83–93, 2018.

[115] Charles S Peskin, Garrett M Odell, and George F Oster. Cellular

motions and thermal fluctuations: the brownian ratchet. Biophysical

journal, 65(1):316, 1993.

[116] A Philipp and W Lauterborn. Cavitation erosion by single

laser-produced bubbles. Journal of Fluid Mechanics, 361:75–116, 1998.

[117] Milton S Plesset and Richard B Chapman. Collapse of an initially sphe-

rical vapour cavity in the neighbourhood of a solid boundary. Journal

of Fluid Mechanics, 47(02):283–290, 1971.

[118] Milton S Plesset and Andrea Prosperetti. Bubble dynamics and

cavitation. Annual review of fluid mechanics, 9(1):145–185, 1977.

[119] Milton S Plesset and Andrea Prosperetti. Bubble dynamics and

cavitation. Annual Review of Fluid Mechanics, 9(1):145–185, 1977.

[120] MS Plesset and AT Ellis. On the mechanism of cavitation damage.

Transactions of the ASME, 77:1055–1064, 1955.

240



[121] Lord Rayleigh. Viii. on the pressure developed in a liquid during the

collapse of a spherical cavity. The London, Edinburgh, and Dublin

Philosophical Magazine and Journal of Science, 34(200):94–98, 1917.

[122] Weiqing Ren. Wetting transition on patterned surfaces: transition

states and energy barriers. Langmuir, 30(10):2879–2885, 2014.

[123] JM Rubí. Fluctuations around equilibrium. In Recent Developments

in Nonequilibrium Thermodynamics, pages 233–266. Springer, 1984.

[124] JM Rubı and P Mazur. Nonequilibrium thermodynamics and hy-

drodynamic fluctuations. Physica A: Statistical Mechanics and its

Applications, 276(3):477–488, 2000.

[125] GN Sankin, F Yuan, and P Zhong. Pulsating tandem microbubble

for localized and directional single-cell membrane poration. Physical

Review Letters, 105(7):078101, 2010.

[126] Paolo Sartori, Damiano Quagliati, Silvia Varagnolo, Matteo Pierno,

Giampaolo Mistura, Francesco Magaletti, and Carlo Massimo Casciola.

Drop motion induced by vertical vibrations. New Journal of Physics,

17(11):113017, 2015.

[127] Chiara Scognamiglio, Francesco Magaletti, Yaroslava Izmaylov, Mir-

ko Gallo, Carlo Massimo Casciola, and Xavier Noblin. The detailed

acoustic signature of a micro-confined cavitation bubble. Soft matter,

2018.

[128] see Supplemental Material at http://correct.site.url for details.

see.

241

http://correct.site.url


[129] A Shima and Y Sato. The collapse of a spheroidal bubble near a solid

wall. Journal de Mecanique, 20(2):253–271, 1981.

[130] Chi-Wang Shu. Essentially non-oscillatory and weighted essentially

non-oscillatory schemes for hyperbolic conservation laws. Springer,

1998.

[131] D Silberrad. Propeller erosion. Engineering, pages 33–35, 1912.

[132] Herbert Spohn. Nonlinear fluctuating hydrodynamics for anharmonic

chains. Journal of Statistical Physics, 154(5):1191–1227, 2014.

[133] Herbert Spohn and Gabriel Stoltz. Nonlinear fluctuating hydrodyna-

mics in one dimension: the case of two conserved fields. Journal of

Statistical Physics, 160(4):861–884, 2015.

[134] Brian D Storey and Andrew J Szeri. Water vapour, sonoluminescence

and sonochemistry. In Proceedings of the Royal Society of London A:

Mathematical, Physical and Engineering Sciences, volume 456, pages

1685–1709. The Royal Society, 2000.

[135] Gilbert Strang. On the construction and comparison of difference

schemes. SIAM Journal on Numerical Analysis, 5(3):506–517, 1968.

[136] Rouslan L Stratonovich. Nonlinear nonequilibrium thermodynamics

I: linear and nonlinear fluctuation-dissipation theorems, volume 57.

Springer Science & Business Media, 2012.

[137] H_M Strong and RE Hanneman. Crystallization of diamond and

graphite. The Journal of Chemical Physics, 46(9):3668–3676, 1967.

242



[138] Robert E Tipton, Daniel J Steinberg, and Yukio Tomita. Bubble ex-

pension and collapse near a rigid wall. JSME international journal. Ser.

2, Fluids engineering, heat transfer, power, combustion, thermophysical

properties, 35(1):67–75, 1992.

[139] Y Tomita and A Shima. Mechanisms of impulsive pressure genera-

tion and damage pit formation by bubble collapse. Journal of Fluid

Mechanics, 169:535–564, 1986.

[140] A Unsworth, D Dowson, and V Wright. ’cracking joints’. a bioenginee-

ring study of cavitation in the metacarpophalangeal joint. Annals of

the rheumatic diseases, 30(4):348, 1971.

[141] JD Van der Waals. The thermodynamic theory of capillarity under the

hypothesis of a continuous variation of density. Journal of Statistical

Physics, 20(2):200–244, 1979.

[142] W Van Saarloos, D Bedeaux, and P Mazur. Non-linear hydrodynamic

fluctuations around equilibrium. Physica A: Statistical Mechanics and

its Applications, 110(1-2):147–170, 1982.

[143] A Vogel, W Lauterborn, and R Timm. Optical and acoustic investiga-

tions of the dynamics of laser-produced cavitation bubbles near a solid

boundary. Journal of Fluid Mechanics, 206:299–338, 1989.

[144] A Vogel, J Noack, G Hüttman, and G Paltauf. Mechanisms of fem-

tosecond laser nanosurgery of cells and tissues. Applied Physics B,

81(8):1015–1047, 2005.

243



[145] Alfred Vogel, Norbert Linz, Sebastian Freidank, and Günther Paltauf.

Femtosecond-laser-induced nanocavitation in water: implications for

optical breakdown threshold and cell surgery. Physical Review Letters,

100(3):038102, 2008.

[146] Zun-Jing Wang, Chantal Valeriani, and Daan Frenkel. Homogeneous

bubble nucleation driven by local hot spots: A molecular dynamics

study. The Journal of Physical Chemistry B, 113(12):3776–3784, 2008.

[147] CA Ward, WR Johnson, RD Venter, S Ho, TW Forest, and WD Fraser.

Heterogeneous bubble nucleation and conditions for growth in a liquid–

gas system of constant mass and volume. Journal of Applied Physics,

54(4):1833–1843, 1983.

[148] E Weinan, Weiqing Ren, and Eric Vanden-Eijnden. String method for

the study of rare events. Physical Review B, 66(5):052301, 2002.

[149] E Weinan, Weiqing Ren, and Eric Vanden-Eijnden. Simplified and

improved string method for computing the minimum energy paths in

barrier-crossing events. Journal of Chemical Physics, 126(16):164103,

2007.

[150] Nanrong Zhao, Andrea Mentrelli, Tommaso Ruggeri, and Masaru Su-

giyama. Admissible shock waves and shock-induced phase transitions

in a van der waals fluid. Physics of Fluids, 23:086101, 2011.

[151] Songlin Zhu, Franklin H Cocks, Glenn M Preminger, and Pei Zhong.

The role of stress waves and cavitation in stone comminution in shock

wave lithotripsy. Ultrasound in Medicine & Biology, 28(5):661–671,

2002.

244



[152] DN Zubarev and VG Morozov. Statistical mechanics of nonlinear

hydrodynamic fluctuations. Physica A: Statistical Mechanics and its

Applications, 120(3):411–467, 1983.

245


	Abstract
	Overview
	Introduction
	Nucleation Overview
	Metastability and Phase Transitions
	Classical Nucleation theory
	The Blander and Katz Nucleation Rates
	The Kramers theory

	Thermal Fluctuations at Continuum Level
	Beyond Classical Nucleation Theory

	Diffuse interface models
	Thermodynamic of non-homogeneous systems
	The Van der Waals approach
	Solid-Fluid Free Energy
	The String Method
	Navier-Stokes equation with capillarity

	Fluctuating Hydrodynamics
	Equilibrium Thermal Fluctuations
	Static structure factor

	Fluctuation dissipation balance
	Restating the LLNS equations with capillarity in terms of entropy functional
	FDB for the 3D system

	FDB for wall bounded systems
	Spherical Formulation of Fluctuating Hydrodynamics Equations and its application to nucleation process

	Numerical Analysis of the LLNS Equations with capillarity
	The deterministic equations
	The different mathematical features of the equations
	Operator splitting strategy

	The stochastic equations
	Thermal fluctuations for a capillary fluid at equilibrium in a discrete system
	Discrete static structure factor and weak convergence analysis
	Static Probability Distributions


	Conclusion and Perspectives
	Acknowledgments
	Papers
	Shock-induced collapse of a vapor nanobubble near solid boundaries
	Thermally activated vapor bubble nucleation:  the Landau–Lifshitz/Van der Waals approach
	A Mesoscale Model for Heterogeneous Nucleation
	Appendices
	Gaussian Path Integrals
	Ito Stochastic Integration
	Backward-Forward Kolmogorov Equations
	Bubble Kinematics
	Bibliography

