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General introduction  

 

Every two seconds, someone in the world experiences stroke 

[1]: an acute injury occurring in the brain caused by ischemia or 

haemorrhage. Stroke is one of the leading causes of long-term 

motor disability [2] and, as such, directly impacts on daily living 

activities. Therefore, identifying new strategies to recover 

motor function is a central goal of clinical research.  

Driven by advances in technological areas, in the last years the 

approach to the post-stroke function restore has moved from 

the physical rehabilitation to the evidence-based neurological 

rehabilitation. The latter has its foundations in the principles of 

neuroplasticity, involved in growth as well as after acquired 

brain injury.  

Brain-Computer Interface (BCI) technology offers the possibility 

to detect, monitor and eventually modulate brain activity. The 

potential of guiding altered brain activity back to a physiological 

condition through BCI and the assumption that this recovery of 

brain activity leads to the restoration of behaviour [3] is the key 

element for the use of BCI systems for therapeutic purposes.  
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To bridge the gap between research-oriented methodology in 

BCI design and the usability of a system in the clinical realm 

requires efforts towards BCI signal processing procedures that 

would optimize the balance between system accuracy and 

usability. My PhD thesis focuses on this issue. The aim is to 

propose new algorithms and signal processing procedures that, 

by combining physiological and engineering approaches, can 

provide the basis for designing more usable BCI systems to 

support post-stroke motor recovery.  

 

 

 

 

 

 

 

 

 



 

21 
 

Chapter 1  
Brain-Computer Interfaces for post-stroke 
functional motor recovery  

 

A brain-computer interface (BCI) is a system that measures 

central nervous system (CNS) activity and converts it into 

artificial output that replaces, restores, enhances, supplements 

or improves natural CNS output and thereby changes the 

ongoing interactions between the CNS and its external or 

internal environment [4].  

My research activities focused on BCIs based on the 

electrophysiological phenomena occurring in the brain and 

recorded from the scalp (electroencephalography, EEG). 

Specifically, these BCI systems record the EEG signals, extract 

specific measures (features) from them and real-time convert 

them into output that act upon the outside world or the body 

itself (Figure 1).  

During the last decades, different approaches have been 

proposed in BCI technology. A possible classification can be 

based on the control features used: single (brain) feature or 

multiple (brain-brain, brain-others) features.   



 

22 
 

 

 

Figure 1 - Overview of a BCI system. EEG signals, acquired from the scalp, 

are processed and analysed to extract specific signal features. These 

features are translated into commands that operate a device or feedbacks 

provided to the subject. 

Single feature BCIs  

Single feature BCIs are distinguished by the particular EEG (i.e. 

brain) feature that they use to control the system. This work 

focused on sensorimotor-rhythms and movement-related 

cortical potentials BCIs.   

Sensorimotor-rhythms BCI  

Sensorimotor rhythms (SMRs) are oscillations in the electric 

field recorded over the sensorimotor cortex. They typically fall 

into two major frequency bands: µ (8-12 Hz) and β (18-30 Hz). 

Voluntary movements are associated with µ and β event-related 

desynchronization (reduction in rhythmic activity related to an 

internally or externally paced event) localized over 

sensorimotor cortex [4] that can be measured using non-

invasive BCIs (i.e. EEG-based BCIs).  

SIGNAL
ACQUISITION AND

PROCESSING

FEATURE
EXTRACTION

FEATURE
TRANSLATION OUTPUT
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Since mental practice in the form of movement imagination 

(MI) engages areas of the brain that govern movement 

execution, it has long been envisaged as a cognitive strategy to 

enhance post-stroke motor recovery [5]. Such reiterated 

engagement of motor areas is intended to influence brain 

plasticity phenomena, improving functional outcomes [6]. In 

this view, the combination of MI practice by means of SMRs-

based BCI technology allows the access of the MI content under 

controlled conditions [7] thus, revealing the rehabilitative 

potential of MI. 

At IRCCS Santa Lucia Foundation (Rome, Italy) the 

multidisciplinary team (neuroscientists, bioengineers and 

clinical rehabilitation experts) of the Neuroelectrical Imaging 

and BCI Lab conceptualized and developed a BCI prototype to 

support hand MI training in stroke patients [8]. The core of the 

device is a non-invasive EEG- based BCI which allows 

quantitative and controlled monitoring and reinforcement of 

EEG patterns generated by MI and provides patients with an 

ecologically enriched feedback: a realistic virtual representation 

of their own hands. At the same time, feedback about the 

patient’s MI performance is provided to the therapist on a 

separate screen. This allows the therapist to monitor the 

patient’s success in imagining the task and provide additional 
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feedback via verbal instructions/encouragement, resembling 

the setting of a traditional motor rehabilitation session.  

To prove the clinical efficacy in improving hand functional 

motor recovery of the approach a randomized controlled 

clinical trial was performed [9]. Twenty-eight subacute 

unilateral, first ever stroke patients were recruited and randomly 

assigned to receive (as adjunctive to conventional 

physiotherapy) either a 1-month of MI-based BCI training or the 

same MI training with no (contingent) feedback (i.e., with no 

BCI-assisted). All patients were trained to perform MI of the 

affected hand movements, grasping and finger extension. 

Control EEG features for BCI training were selected by an expert 

neurophysiologist from the central and centroparietal 

electrodes located over the affected hemisphere that had 

shown desynchronization patterns (i.e. a decrease in spectral 

power) at EEG relevant (because modulated by the task) 

sensorimotor frequency. Reinforce the individual EEG patterns 

of reactivity that most resembled the physiological activation 

was the aim pursued through the BCI training. At completion of 

training, the BCI group showed a significantly greater 

improvement (Figure 2, left panel) in Fugl-Mayer scores [10], 

also accompanied by a significant increase of EEG motor-

related oscillatory activity over the lesioned hemisphere. 
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The prototype in [9], engineered and implemented as an all-in-

one BCI-supported MI training station, called Promotoer (Figure 

2, right panel), is currently employed as add-on to standard 

therapy in one of the rehabilitation wards of IRCCS Santa Lucia 

Foundation (Rome, Italy).  

 

Figure 2 - Left Panel: [9] Bar diagram of the effectiveness of clinical 

outcome measures, Fugl–Meyer Assessment (FMA), Medical Research 

Council scale for muscle strength (MRC), National Institute of Health 

Stroke Scale (NIHSS), in the 2 groups (BCI and no-BCI-assisted groups ). 

Asterisks mark significant differences between groups (independent-

samples t test, p< 0.05). Right panel: The all-in-one BCI-supported MI 

training station, Promotoer, installed in a ward of the IRCCS Santa Lucia 

Foundation (Rome, Italy). 

Movement-related cortical potentials BCI  

Movement-related cortical potentials (MRCPs) are low 

frequency potentials associated with the planning and the 

execution of voluntary movements and measurable over the 
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sensorimotor cortex. They forerun the onset of actually 

executed movements as well as imagined movements [11] and 

occur both in cue-based or self-paced voluntary movements.  

Since 2 seconds before the movement onset, indeed, a negative 

deflection (Figure 3) can be observed in the EEG signal; its peak 

of maximal negativity occurs closeness the onset of the 

movement [12]. The negative deflection consists of the 

readiness potential and the motor potential, associated with the 

planning/preparation [13] and the execution of the movement, 

respectively. The rebound phase, occurring after the peak of 

maximum negativity and also known as a movement-

monitoring potential, is, instead, associated with the movement 

precision [14].  

Since the initial negative phase of the MRCP can be detected 

before the onset of executed and imagined movements, MRCPs 

have been exploited to design rehabilitative protocols based on 

the principle of Hebbian associativity. According to Hebb, 

synapses that experience correlated activation of two different 

inputs are strengthened, whereas those weakened by 

uncorrelated activity are lost [15].  
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Figure 3 - Amplitude (µV) of the movement-related cortical 

potential (MRCP) as function of time (s): 0s corresponds to the movement 

onset. BP1 and BP2 are, respectively, early and late Bereitschaftspotential 

(readiness potential), MP, motor potential, and MMP, movement-

monitoring potential. 

This approach, implemented as a brain state-dependent 

peripherical stimulation protocol, was demonstrated to induce 

significant plasticity of the damaged cortex in stroke patients, 

translating directly into a functional improvement [16]. Briefly, 

once the MRCP was detected, the artificial activation of 

somatosensory afferents that project onto the motor cortex 

was triggered by means of non-invasive direct nerve 

stimulation. Peripheral nerve stimulation was timed to arrive at 

the motor cortex during the peak negative phase of the 

movement-related cortical potentials, inducing a causal relation 
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between the sensory signals arising from muscles involved in 

the movement and the physiologically generated brain wave 

during the movement imagination, attempt or execution. Only if 

the stimulation arrives during the peak negative deflection of 

the potential, it can lead to significant increasing in cortical 

excitability [17] and improvement in motor function.  

Multiple features BCI  

Recently, novel approaches based on more than one features 

have been proposed in BCI field. According to a recent review 

[18], information from 

▪ two features of the brain signal,  

▪ two different brain imaging methods,  

▪ one feature of the brain signal and other physiological 

signal, 

▪ one feature of the brain signal and another conventional 

input  

has been combined in the framework of the so-called hybrid 

BCI.  
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In this thesis the combination of brain activity (i.e. EEG) and 

muscular activity recorded by the surface electromyography 

(EMG) is the meaning of the word hybrid BCI.  

Hybrid EEG-EMG BCIs have been proposed in several BCI 

applications for communication or substitution: the signals can 

be fused as one input to the classifier or used independently, to 

ultimately increase the accuracy of the control [18], [19], [20], 

[21], [22].  

In rehabilitative contexts, hybrid BCIs can combine residual 

EMG activity with motor-related brain activation and provide a 

contingent reward which aims at re-establishing the link 

between the CNS and the periphery that is disrupted by the 

stroke [23]. It has been shown that even in severely paralysed 

patients the residual EMG activity induced by motor attempt 

can be reinforced via a MI-based BCI training and then reliably 

used as a control signal in a further stage of rehabilitation [24]. 

Therefore, a modular approach, including different bioelectrical 

signals (EEG only, EEG combined with EMG) according to the 

patients’ residual abilities and to the stage of recovery, could be 

envisaged. 

  



 

30 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

31 
 

Chapter 2  
BCI technology translation to clinical realm  

 

The research activity of three-years PhD program has been 

conducted in cooperation with the Neuroelectrical Imaging and 

Brain-Computer Interface Laboratory of the IRCCS Santa Lucia 

Foundation (Rome, Italy). It took advantage from the 

stimulating discussion with clinical experts (therapists and 

neurophysiologists). Therefore, in the context of supporting 

medicine (i.e. rehabilitative intervention post-stroke) with 

engineering methods, at the same time inspired by the 

physiological approaches, the fundamentals of this PhD thesis 

find the basis.  
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Thesis aim  

Developing a flexible, usable and affordable BCI-driven device 

for post-stroke motor rehabilitation, that reinforces both brain 

patterns and residual muscular ability is the main goal of my 

project.  

In this view two sub-goals were planned: 

▪ investigate if improvements (new algorithms or new 

signal processing procedures) in the main blocks of the 

BCI system (pre-processing, feature extraction and 

translation, separately considered) can bring 

advantages in term of usability and affordability 

requirements;  

▪ implement a procedure to analyse the residual muscle 

activity collected from stroke patients and extract the 

electromyographic features able to describe the good 

muscular recovery during rehabilitative intervention and 

follow each patient along the motor recovery process. 

From this point of view, the new device could be flexible 

and adaptable to different patients with variable 

degrees of impairment.  
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Thesis outline  

The thesis consists of four main chapters.  

In chapter 3, two studies will be presented and synthetically 

discussed. The first will introduce a new approach to the pre-

processing of BCI data and compare it with the gold standard 

procedures applied to analyse EEG data collected during SMRs-

based BCI protocol. The second will assess the impact of 

results obtained in the first study on BCI data collected from 

subacute stroke subjects performing hand MI tasks.  

In chapter 4, one of the key points of the SMRs-BCI-assisted MI 

training will be investigated: the feature selection. The 

semiautomatic method developed to support the procedure will 

be described and compared with the current (manual) 

procedure applied by neurophysiologists.  

After having investigated two first blocks of the BCI systems 

(signal pre-processing and feature extraction/selection), the 

impact of adaptive learning in the classification step will be 

assessed. In Chapter 5, three adaptive algorithms will be briefly 

described and compared with no-adaptive approach. While the 

key point of the SMRs-based BCI-assisted MI training in [9] is 

that the control feature doesn’t change because its selection 
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and control is crucial for the rehabilitative purpose, there are 

some applications (i.e. MRCP detection) in which the efficacy 

of the rehabilitative intervention depends also on the ability of 

the BCI technology to adapt its parameters in time to comply 

the physiological changes occurring in the brain. For this 

reason, the study about adaptive learning was conducted on 

data collected from healthy subjects while performing the ankle 

dorsiflexion (typical task of MRCP-based BCI protocols).  

In chapter 6, a preliminary analysis of EMG signals from 12 

stroke patients will be performed. Changes in affected upper 

limb EMG pattern, after both stroke event and rehabilitative 

intervention, will be assessed to take inspiration to design the 

new EMG feature to control hybrid EEG-EMG BCI.  

General conclusion will summarize the main key points of this 

PhD thesis.  
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Chapter 3  
New approaches to BCI data pre-processing  
  

Introduction  

Spatial filters are generally designed to enhance sensitivity to 

particular brain sources, to improve source localization and/or 

to suppress artefacts. Most commonly, spatial filters are 

selected as a linear combination (i.e. weighted sums) of 

channels. There are several approaches for determining the set 

of spatial filter weights. These approaches fall into two major 

classes: data-independent and data-dependent spatial filters 

[4]. Data-independent spatial filters typically use fixed geometry 

relationships to determine the spatial-filter weights: they are 

based on physical consideration regarding how EEG signals 

travel through the skin and skull. Data-dependent spatial filters 

determine the weights directly from each BCI user’s data; they 

can be classified into unsupervised data-driven (i.e. principal 

component analysis, PCA, or independent component analysis, 

ICA) and supervised data-driven filters (i.e. common spatial 

pattern, CSP) [25].  
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The proper selection of the spatial filter depends on the location 

and extent of the control signal and of the various sources of 

EEG or non-EEG noise.  

In sensorimotor rhythms-based BCIs several approaches have 

already been proposed. Although recent studies propose the 

EEG data pre-processing by mean the CSP filter [26], [27], the 

surface Laplacian and the common average reference (CAR) 

are still among the most employed filters since they enhance 

the focal activity from the local sources and reduce the widely 

distributed activity [28]. Moreover, concerning the two 

variations of the Laplacian filter, i.e. the large and the small 

Laplacian, it appears that they are the best filters in target 

prediction and source identification, respectively [29].  

This chapter focuses on data-independent spatial filters and 

proposes a new approach to the spatial filtering step in 

sensorimotor rhythms-based BCI that includes  

▪ the introduction of bipolar derivations (commonly used 

in clinical EEG),  

▪ the simultaneous use of more spatial filters,  

▪ the relation between spatial filters and cortical regions.  
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Two studies were carried out: the first (Neurophysiological-

based signal processing) aimed to investigate and characterize 

the proposed approach, the second aimed to evaluate the result 

impact on the SMRs-based BCI technology in supporting post-

stroke motor rehabilitation.  

Neurophysiological-based signal processing  

EEG data, previously collected from thirty-nine healthy subjects 

during the motor execution and imagination of hand and feet 

movements, were analysed to compare the 

a) performance of different spatial filters (commonly used 

spatial filters and bipolar derivations) as a function of 

the cortical region elicited by the experimental task, 

b) performance of the spatial filters, previously considered, 

and that obtained by pooling information coming from 

different spatial filters together.  

Materials and Methods  

Data Collection  

EEG data were collected from thirty-nine healthy subjects 

according the protocol and the procedure in [30]. Before the 
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inclusion in the study, approved by the IRCCS Santa Lucia 

Foundation (Rome, Italy) ethics committee, each subject gave 

written informed consent. 

Briefly, EEG data were collected from 58, 59 or 61 electrodes 

assembled on a cap (according to an extension of the 10-20 

International System, referenced to both ear lobes), amplified 

and sampled at 200 Hz (per channel) by a commercial EEG 

system (BrainAmp, Brain Products GmbH, Germany).  

Subjects were comfortably seated in a reclining chair in a dimly 

lit room and instructed to minimize muscular, 

electrooculographic and blink activity. Subjects were asked to 

execute (first run) and imagine (second run) movements of 

both their hands (opening and closing) or feet (ankle 

dorsiflexion) upon the appearance (randomly) on the screen of 

top or bottom targets, respectively. The sequence was repeated 

three times for a total of six runs. Each trial (30 trials for each 

run) began when a target appeared on a side of the screen 

(Figure 4). The trial lasted 5.8 seconds, with the inter-trial 

interval of 1.8 seconds.  
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Figure 4 - Example of subject interface: subjects performed the execution 

or imagination (acquired in separate runs) of the ankle dorsiflexion (foot 

movement) when the target appeared in the bottom side of the interface. 

User interface designed by BCI2000 [31] software system. 

Data Analysis  

EEG data were offline analysed: band-pass filtered (0.1-70 Hz) 

with a forth order Butterworth filter and notch filtered at 50 Hz. 

The following spatial filters, conventional ear reference, 

common average reference, two Laplacian derivations (small 

and large) [28] and two bipolar derivations (longitudinal and 

transversal), were considered. In the bipolar derivations 

(applied via software) each voltage difference was computed 

between two channels, longitudinally subtracting e.g. FCz from 

Fz and transversely subtracting e.g. Cz from C1.  

After the spatial filtering step, EEG data were divided into 

epochs 1 second long. The spectral analysis was performed on 

task epochs employing the maximum entropy method (16th 

order model, 2 Hz resolution, considering no overlapped 

epochs) [32]. All possible features (one for each couple 
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channel-frequency bin) in a reasonable range (i.e., 0-36 Hz) 

were extracted and analysed. A feature vector (spectral 

amplitude at each bin for each channel) was extracted from 

each epoch.  

For the aim (a) movement execution runs were analysed. Since 

it was a SMRs-based BCI protocol, the analysis was constrained 

to features belonging to the sensorimotor strip (FC, C and CP 

channels) in the range from 7 Hz to 31 Hz (relevant 

frequencies). Moreover, hands opening/closing and feet flexion 

engage separate areas of the sensorimotor strip, different from 

both anatomical and functional point of view. Therefore, two 

scalp regions were considered: the hand area defined as the 

area containing FC, C and CP electrodes in all their even and odd 

positions (bilateral area); the feet area defined as the area 

containing electrodes placed on the midline, e.g. FCz.  

Features belonging to each area were the input for the stepwise 

regression [33] whereby the subset of features and weights, 

optimal to build an effective regression model to evaluate the 

relationship between the features and the dependent variable 

(here equivalent to subject’s movement), was identified. The 

maximum number of features to be selected by the stepwise 

regression algorithm was set, for all feature domain (one 
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domain for each spatial filter), to eight accordingly to the results 

obtained in a preliminary study (not reported in this thesis). The 

latter aimed to compute the optimal number of features above 

which the classification performance average (across tasks 

and subjects) didn’t grow in a significant way. Results showed 

that increasing the number of features (above eight) did not 

result in significantly better performance values.  

A linear approach (stepwise linear discriminant analysis, 

SWLDA, [34]), based on the combination of features and 

weights returned by the stepwise regression, was applied for 

the classification of the EEG epochs. A 15-fold cross-validation 

design was implemented and classification performance in 

term of the area under the Receiver Operating Characteristic 

(ROC) [35] curve were assessed for each feature domain (one 

for each spatial filter applied).  

For the aim (b) execution and imagination runs were analysed. 

Only twenty-eight subjects performed both executed and 

imagined movements. For this analysis, features from both 

hand and foot areas were considered together as a single 

feature domain. Therefore, the analysis included six feature 

domains, each one extracted from EEG signals pre-processed 

by one of six filters earlier defined, and a new feature domain 
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obtained by pooling EEG features from longitudinal and 

transversal bipolar filters together. The performance 

assessment followed the same stages in (a).  

Statistical Analysis  

For each spatial filter, the Shapiro-Wilk test was applied to 

assess the normality of the performance value distribution. To 

investigate the performance of different spatial filters in relation 

to the scalp area (aim a), classification performances (in 

movement execution runs) were analysed by means an ANOVA 

statistical design, the repeated measures two-way analysis of 

variance: six levels (six filters earlier listed) for the spatial filter 

factor, two levels (hands and feet) for the area factor.   

To the aim (b), classification performances were analysed by 

means the two-way ANOVA statistical test (repeated 

measures): seven levels for the filter factor (6 filters listed 

earlier and the new filter obtained combining longitudinal and 

transversal bipolar filters information) and two levels for the 

modality factor (movement execution and imagination). The 

Tukey HSD post hoc analysis was conducted to assess pairwise 

differences. For all statistical analysis, threshold for statistical 

significance was set to p < 0.05. All results are presented as 

mean ± SE (standard error) across subjects. 
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Results  

Figure 5 shows the classification performances (area under the 

ROC curve) of the considered spatial filters as a function of the 

cortical region elicited by the experimental task. The repeated 

measures two-way ANOVA revealed a significant effect of both 

spatial filter (F=24.85, p < 0.01) and scalp area (F=17.73, p < 

0.01) factors and a significant area–filter interaction (F=7.43, p 

< 0.01). 

All spatial filters perform better than the ear-reference method 

confirming the results in [28]: common average reference and 

large surface Laplacian spatial filters are significantly superior 

to the ear-reference method. Filter EEG signals by means of 

transversal/longitudinal bipolar filters isn’t different from not 

applying filters if hand/feet areas are considered, respectively. 

Moreover, while longitudinal bipolar filter shows performances 

as good as the common average reference for the hand scalp 

area, the transversal bipolar filter seems, on average, 

outperforms the common average reference and even the small 

Laplacian derivation in feet area. 
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Figure 5 - Classification performances (area under the ROC curve) are 

expressed as mean ± SE (standard error, n=39 healthy subjects) and 

computed for each spatial filter: ear reference (RAW), common average 

reference (CAR), longitudinal bipolar (loBIP) and transversal bipolar (trBIP) 

filters, surface Laplacian in its small (sLAP) and large (lLAP) derivation. 

Asterisks (*) mark significantly different pairs identified by the post hoc 

test. Features used in the classification step were selected from the hand 

(blue) and the foot (red) scalp areas by means the stepwise regression. The 

differences pointed out in the post-hoc test are marked accordingly. 

Although the figure does not report (to not reduce the figure readability) the 

comparison between RAW and others filters, all filters differ from ear-

reference, except for the trBIP/ loBIP in the hands /feet scalp area, 

respectively. 
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Figure 6 shows the classification performances (area under the 

ROC curve) of the considered spatial filters as a function of the 

task  modality (movement executed or imagined). The repeated 

measures two-way ANOVA revealed a significant effect of both 

spatial filter (F=19.98, p < 0.01) and modality (F=45.96, p<0.01) 

factors and no significant filter-modality interaction (F=2.03, p= 

0.064).  

The results confirm the findings in [29]: the large surface 

Laplacian is one of the best spatial filtering approach in target 

prediction. Pooling EEG features from longitudinal and 

transversal bipolar filters together seems, on average, perform 

better than each spatial filter considered individually. However, 

while longitudinal and transversal bipolar filters significantly 

differ from large surface Laplacian, no significant differences 

appear between the two Laplacian derivations (small and large) 

and the new domain (lo+tr)BIP, even when movements were 

imagined. Moreover, in the latter, even if each bipolar filter 

doesn’t statistically differ from the ear-reference spatial filter, 

pooling bipolar domains together outperforms the RAW filter. 
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Figure 6 - Classification performances (area under the ROC curve) are 

expressed as mean ± SE (standard error, n=28 healthy subjects) and 

computed for each spatial filter: ear reference (RAW), common average 

reference (CAR), longitudinal bipolar (loBIP) and transversal bipolar (trBIP) 

filters, surface Laplacian in its small (sLAP) and large (lLAP) derivation and 

the filter obtained by pooling EEG features from bipolar domains together 

(lo+tr)BIP. Asterisks (*) mark significantly different pairs identified by the 

post hoc test. The evaluation was performed for the executed (green) and 

imagined (light blue) movement runs. The differences pointed out in the 

post-hoc test are marked accordingly. Although the figure does not report 

the comparison between RAW and others filters, all filters differ from ear-

reference when the movement was executed. 
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As a proof of concept, in Table 1 are presented features 

selected in the new domain (obtained pooling EEG features 

from bipolar filters together) and those selected in the small 

Laplacian domain for three subjects (same classification 

performances for both spatial filters). Results suggest a 

reduction of the number of electrodes needed to extract the 

features passing from the small Laplacian filter to the new 

domain.   
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Table 1 - List of the features (feature: channel-frequency) selected in small 

surface Laplacian (sLAP) and (lo+tr)BIP feature domains. No statistical 

difference for this pair of filters from the previous analysis (aim b). Three 

representative subjects (S01, S02, S03) were considered for the comparison. 

The classification performances, for each subject, are the same for both 

filters. Channels positions are conformed with 10-20 International System. 

Each channel indicated in sLAP is the central electrode of the difference (e.g., 

C3 is the central electrode: the surface Laplacian involved its neighbors C1, 

C5, FC3, CP3). NE is the number of electrodes needed to realize the hardware 

montage.  

 

 S01 S02 S03 

 sLAP (lo+tr)BIP sLAP (lo+tr)BIP sLAP (lo+tr)BIP 

 chan – freq (Hz) chan – freq (Hz) chan – freq (Hz) chan – freq (Hz) chan – freq (Hz) chan – freq (Hz) 

1 C3 11 FC3-C3 11 CP4 11 FC4-C4 11 C4 13 FC3-C3 13 

2 Cz 27 Cz-C2 13 CPz 25 CP4-P4 25 CP3 13 C2-C4 13 

3 C4 13 Cz-CPz 29 C4 25 CPz-Cz 25 Cz 25 F5-FC5 17 

4 C4 21 CPz-Pz 21 C3 13 C1-Cz 11 C6 11 TP7-CP5 27 

5 Cz 21 FC3-C3 17 C2 29 CP3-P3 27 FC5 29 FC6-C6 13 

6 FC3 31 FC1-C1 11 FC3 15 CP1-CPz 25 C3 13 C1-Cz 25 

7 FC2 25 FC4-C4 21 CP4 25 FC4-C4 25 CP3 15 FC4-FC6 31 

8 CP6 13 C1-Cz 11 Cz 27 F5-FC5 19 C6 27 CPz-CP2 29 

NE 21 10 22 12 22 15 
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Discussion  

Spatial filtering is a crucial step to ensure optimal BCI system 

performances. In this study the spatial filters (data independent 

spatial filters) commonly used in BCI control were compared 

with filters commonly used in EEG clinical application (e.g., 

bipolar filters). Moreover, the relation between performances 

shown by several (BCI and clinical gold standard) spatial filters 

and the sensorimotor strip areas, engaged in different 

movements, was investigated. Consider scalp areas separately 

(i.e., hands area and feet area) highlights interesting differences 

(e.g., from longitudinal and transversal bipolar in the feet area) 

that haven’t emerged considering features in the whole 

sensorimotor strip. Moreover, if on the one hand the 

longitudinal filtering doesn’t significantly differ from the gold 

standard filters (surface Laplacian) in the hand area, on the 

other hand the same trend is shown by the transversal filtering 

in the feet area, carrying to hypothesize a relationship between 

the direction of the bipolar filter yielding the highest 

performance and the specific cortical region elicited by the 

experimental task. The identification of the best spatial filter 

could be, therefore, related to the scalp area (its anatomical and 

functional properties) of interest and thus, improving 

performance can be pursued using specific filters for specific 
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areas. Further analysis will be oriented to investigate the reason 

why transversal bipolar filter shows better performance in the 

feet area. In addition, these findings require a consolidation by 

exploring their use with other motor tasks (different from hand 

opening/closing and feet flexion) and/or imagined movements.  

Integrating feature information or, specifically, pooling EEG 

features from bipolar (longitudinal and transversal) filters 

together, improves (on average) the classification performance 

respect to that obtained considering each domain individually. 

No differences were found between the performance obtained 

by the integrated approach and those obtained by the surface 

Laplacian filters (i.e., the gold standard when scalp areas were 

considered all together). Moreover, a preliminary comparison of 

the number of electrodes needed to realize the hardware 

montage, containing just the appropriate features selected for 

the rehabilitation, suggests that the use of a new integrated 

approach for feature extraction has the potential to reduce 

setup time and, therefore, enhance the usability of the BCI 

technology.   
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Impact on SMRs-based BCIs stroke rehabilitation  

In the previous study, we observed that in a cursor control task 

(hand vs foot movement) processing hand scalp-area EEG data 

with longitudinal bipolar filters (loBIP) returns better 

classification performances than those of the transversal 

bipolar filters (trBIP). Hypothesizing that the former would 

return better results in all hand movement-based paradigms, we 

aimed at comparing 

a) the classification performance of commonly used 

spatial filters, bipolar filters and the combination of both 

bipolar filters obtained by pooling EEG features together,  

b) the number of electrodes needed as consequence of the 

spatial filter choice,  

analysing EEG data collected from fifteen subacute stroke 

subjects during the imagination of hand movements (vs rest).  
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Materials and Methods  

Data Collection  

EEG data were collected from fifteen stroke subjects according 

the procedure and the protocol in Appendix B. Briefly, EEG data 

were collected from 61 electrodes assembled on an electrode 

cap according to an extension of the 10–20 International 

System, sampled at 200 Hz and notch filtered (50 Hz). All 

subjects were trained to perform the motor imagery of the hand 

movements (grasping and finger extension) with their 

unaffected and affected upper limbs (recorded in separate 

runs). Each run comprised 30 trials (15±1 rest, 15±1 motor 

imagery). The total duration of each trial was 7 seconds.  

Data Analysis  

Ocular artefacts were removed by independent component 

analysis [36]. EEG signal intervals containing artefacts 

(muscular, environmental) were identified, using a semi-

automatic procedure, based on the definition of a voltage 

threshold, and discarded.   

Recordings collected during the motor imagery of grasping and 

finger extension were concatenated. To consider the same 

number of samples for each condition (rest or task), the last 4 
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seconds of each trial were considered (i.e. while in rest trials 

subjects were in rest condition for 7 seconds, in task trials 3 

seconds in rest condition come before 4 seconds of movement, 

see Figure in appendix B to detailed explanation). 

For aim (a) the following spatial filters were considered: CAR61 

(CAR computed on all recorded channels); CAR31 (CAR on 31 

electrodes, FC-C-CP-P-PO); lLAP (large surface Laplacian); 

loBIP (interelectrode distance: 3 rows, e.g. FCz-Pz); trBIP 

(interelectrode distance: 2 columns, e.g. Cz-C3) and (lo+tr)BIP 

(pooled features).  

EEG data collected in each experimental condition (unaffected 

hand MI and affected hand MI) were divided into epochs 1 

second long and spectral features (spectral amplitude at each 

bin for each EEG channel) were extracted using the maximum 

entropy method (16th order model, 2 Hz resolution, no overlap) 

[32]. Given the specific motor rehabilitation context, spectral 

features belonging to the sensorimotor strip in the contralateral 

area to the hand involved in the task and in the range from 7 Hz 

to 25 Hz were used for the classification (step-wise linear 

discriminant analysis [34], [37]). Classification performances in 

term of area under the Receiver Operating Characteristic (ROC) 
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[35] curve were assessed using a 20-fold cross-validation 

design.  

For aim (b) for each spatial filter the minimum number of 

physical electrodes that would be needed to extract the 

features identified by the stepwise algorithm in (a) as the best 

set required by the classifier was computed. Specifically, for 

each feature domain (one for each spatial filter) the stepwise 

method selected among the subset of features coherent with 

the specific application (SMRs-based BCI to support motor 

rehabilitation protocols) the statistically significant features to 

use for the classification step. The number of electrodes to 

record EEG data needed to extract those features was 

computed. 

Statistical Analysis  

Shapiro-Wilk tests were applied to assess the normality of the 

performance value distribution. To investigate the 

performances of different spatial filters, classification 

performances were analysed by repeated measures one-way 

analysis of variance (ANOVA). The Tukey HSD post hoc analysis 

was applied to assess pairwise differences. The threshold for 

statistical significance was set to p<0.05. Results are presented 

as mean ± SE (standard error). 
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Results  

Statistical analysis revealed, in each condition, a significant 

effect of the spatial filter factor (F (5, 70)= 4.35, p <0.01 

unaffected hand, F (5, 70) = 2.42, p=0.04 affected hand). Figure 

7 shows the statistical analysis output and post-hoc test 

results. All spatial filters showed average classification 

performances higher than 0.8, with a similar trend for 

unaffected and affected hand. Common average reference 

spatial filter performed as well as the large surface Laplacian 

confirming, although in a different task, the result in [28]. 

Longitudinal bipolar filter performed as well as the common 

average reference and the surface Laplacian spatial filters. The 

statistical differences, pointed out by the post-hoc test, 

confirmed the results of the previous study. Pooling EEG 

features from both longitudinal and transversal bipolar filters 

together led to a significant better result than the transversal 

bipolar filter and, on average, than that of the surface Laplacian.  
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Figure 7 - Classification performances (area under the ROC curve values) 

are expressed as mean ± SE (standard error; n=15 patients) and computed 

for each spatial filters: common average reference on all recorded 

channels (CAR61), common average reference on 31 channels (CAR31), 

large surface Laplacian (LAP), longitudinal bipolar filters (loBIP), 

transversal bipolar (trBIP) filters and that obtained by pooling EEG features 

from bipolar domains together (lo+tr)BIP. Asterisks (*) mark significantly 

different pairs identified by the post hoc test. Red and green markers refer 

to the motor imagery of unaffected and affected hand respectively. 
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In Figure 8 the number of electrodes needed to extract the 

features required by the trained classifier are illustrated. Apply 

the common average reference requires all collected channels 

(61 EEG electrodes). Consider a “smaller” version of the 

common average reference, including electrodes in centre-

parietal scalp area, didn’t differ in term of classification 

performance from the whole configuration, even if fewer 

number of electrodes is required. Even if the surface Laplacian, 

the longitudinal bipolar and the combined spatial filter did not 

differ among them (Figure 7), the longitudinal bipolar filter 

seems the best filter to reduce the number of EEG electrodes.  
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Figure 8 - Box plots of the number of electrodes needed to collect EEG 

signals and extract from them the features required by the classifier to 

reach the performance shown in Figure. Common average reference on all 

recorded channels (CAR61), common average reference on 31 channels 

(CAR31), large surface Laplacian (LAP), longitudinal bipolar filters (loBIP), 

transversal bipolar (trBIP) filters and that obtained by pooling EEG features 

from bipolar domains together (lo+tr)BIP are the spatial filters applied on 

EEG data collected while subjects performed hand movements with their 

unaffected (red) and affected (green) hand. 
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Discussion  

Results suggest that the classification performances of 

longitudinal bipolar filter (commonly used in the clinical EEG) 

are as high as common average reference (the most frequently 

used). Moreover, the former required a significantly lower 

number of physical EEG electrodes to compute the features 

needed by the trained classifier. Among bipolar filters, 

longitudinal bipolar filter performed better than transversal 

bipolar filter, confirming the results shown in the previous study 

about the relationship between the direction of the bipolar filter 

(e.g. longitudinal rather than transversal bipolar) and the 

specific cortical region elicited by each experimental task (e.g. 

hand MI). Pooling EEG features, extracted applying both 

longitudinal and transversal bipolar filters, together yielded 

significantly higher classification results than those of the 

transversal but it didn’t improve the good longitudinal bipolar 

filter performance suggesting that information from the 

transversal bipolar derivations was considered by the classifier 

redundant information. 
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Main message  

Minimizing the number of electrodes is key to transfer BCIs to 

clinical use, making them more affordable (lower equipment 

cost), more efficient (reduced setup time), and more usable 

(less burden for therapist and patient). The optimization of the 

signal processing procedure is a crucial step to achieve this 

goal, while preserving the effectiveness (accuracy) of the 

output.  

The relation between the direction of the bipolar filter and the 

specific cortical region elicited by each experimental task 

suggests that useful information for optimal feature extraction 

in SMRs-based BCIs can be obtained taking into account 

neurophysiological aspects.  

Though the marginal improvement in classification 

performances of longitudinal bipolar filters over common 

average reference (most frequently used) does not reach 

statistical significance, the significant reduction of the number 

of electrodes needed for the longitudinal bipolar filters 

suggests that the new approach, based on bipolar signals-

based feature extraction, has the potential to enhance the 

usability of the BCI technology in post-stroke motor 

rehabilitation of the upper limb. 
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Chapter 4  
Semiautomatic-physiologically-driven BCI 
control parameter selection  
 

Introduction  

SMRs-based-BCI-assisted motor imagery training has been 

demonstrated to be effective in post-stroke motor recovery of 

the upper limb function. Through BCI training, the researchers 

aimed to reinforce the individual EEG pattern of reactivity that 

most resembled the physiological activation that was relevant 

to movement imagination of the affected hand [9]. Reinforce a 

specific pattern (related to MI) meant provide patients with a 

feedback related to a specific sensorimotor activity (frequency 

content) located in a certain sensorimotor area and, therefore, 

choose appropriate BCI control parameters (EEG features). 

In the study presented by Pichiorri et al. [9], EEG features, 

channels and frequencies, were identified according to a 

manual procedure (following EEG data analysis of the 

calibration session). Namely, neurologists and/or therapists 

identified the features taking into account neurophysiological 

evidence and rehabilitation principles: relevant control features 

were selected from the central and centroparietal electrodes 
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that were distributed only over the affected hemisphere that 

showed desynchronization patterns (i.e., a decrease in spectral 

power) at EEG frequencies that were typical for the modulation 

of sensorimotor rhythms. The selection was based on the 

visualization of matrices obtained from the features’ statistical 

comparison between two conditions (motor imagery task and 

rest).  

In that way, the procedure is highly dependent on the operator 

and is not suitable for the majority of therapists because it 

requires experience for visualizing patterns of 

desynchronization in that form and specific neurophysiological 

knowledge. To overcome these limitations, we developed a 

semiautomatic method to select control features that 

combines both machine learning and physiological 

approaches.  

Feature selection is a crucial step in BCI, since it directly 

impacts on the system performance. It allows to exclude 

redundant features or those not related to the mental states 

targeted by the BCI, to reduce possible overtraining effects, 

increase the computational efficiency of the classifier. Feature 

selection methods can be categorized in three approaches: 

filter, wrapper and embedded approaches. Filters methods rely 
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on measure of relation between each feature and the target 

class. They are classifier-independent and very fast (linear 

complexity) but they may lead to a selection of redundant 

features. Wrapper and embedded approaches overcome this 

limitation but needed a longer computation time. Wrapper 

methods select a subset of features and evaluate the subset 

effectiveness observing the performance of the classifier 

trained and tested by those features. Embedded methods 

merge the feature selection and the evaluation in a unique 

process (e.g. the decision tree or the stepwise linear 

discriminant analysis) [25]. In SMRs-based BCIs the maximal 

mutual information algorithms [38], the recursive feature 

elimination algorithms based on the training of a support vector 

machine classifier [39] and the genetic algorithms [40] have 

been proposed as feature selection methods in both binary and 

multi-class classification. Moreover, other procedures [41], 

based on the stepwise multiple regression, have been applied 

to periodically update the features used to control cursor 

movement across training sessions.  

Due to the good results obtained by the stepwise regression 

and because in our design a linear classifier (fast and simple 

from the in interpretative point of view) would have been 

preferred, we chose to found our methods on an embedded 
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(supervised) feature selection method as the stepwise linear 

discriminant analysis.  

The inclusion of neurophysiological constraints is the key of our 

improvement. Moreover, in view of a wider employ of the BCI-

based rehabilitation in stroke, a user-friendly graphical 

interface, GUIDER, was developed to guide the operator in the 

feature selection procedure, giving him the possibility to 

interact with the algorithm to define new additional 

physiological constraints for the selection procedure.  

In the overview [42] of publicly available software platforms for 

BCIs, the presented tool might match needs of rehabilitation 

BCI researchers orientated to a translational approach, from 

machine learning to physiology and vice-versa. 

After a brief description of the method and the GUIDER tool, this 

chapter proposes the comparison of the manual procedure (by 

skilled user) and the guided procedure (by the developed 

method) in term of both selected features and classification 

performances.  
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Materials and Methods  

GUIDER - User interface description and operating procedure  

GUIDER is a graphical user interface (GUI) for semiautomatic 

and physiologically driven EEG features selection. It was 

designed and developed in MATLAB R2015a (The MathWorks, 

Inc., Natick, Massachusetts, USA). GUIDER (Figure 9) allows 

users to interact with BCI data through a graphic interface 

without needing to use MATLAB syntax. 

Specifically, it allows to (i) import BCI data and montage files, 

(ii) process EEG data applying spatial and frequency filtering, 

(iii) extract EEG spectral features, (iv) visualize the EEG patterns 

of desynchronization in the form of statistical index matrices.  

The operator can choose which feature selection to apply. 

Three feature selection modalities are allowed by GUIDER, each 

for a specific user skill and experience level in BCI data analysis 

and in rehabilitative protocol principles.   
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Figure 9 - GUIDER interface 

Choosing the  

▪ Guided modality, the operator has to flag just the 

affected hemisphere (to involve in the rehabilitation 

program) and EEG channels (all belonging to the 

sensorimotor strip) to include in the analysis performed 

by the developed method; 

▪ Semi-Guided modality, the operator has to define 

topographical constrains for the developed automatic 

method, drawing some areas into the statistical matrix;  
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▪ Manual modality, the operator chooses to identify the 

EEG feature directly from the visual inspection of the 

statistical matrix.  

GUIDER returns three files, a text file, an excel file and an 

external parameter file (ready to be loaded on BCI2000 [31] 

system for the BCI training session). All files contain 

information about selected features and their weights 

(assigned by the automatic method).  

GUIDER was designed according to the principles of the user-

centred design approach [43]. Neurologists, therapists and no-

skilled users were enrolled and involved in all stages of the 

project in order to understand user specific requirements, the 

whole user experience and the context of use. In each meeting 

the evaluation of the usability, effectiveness and efficiency of 

the tool provided the bases for the discussion between 

developer and users.  

GUIDER – semiautomatic, physiologically-driven BCI control 

parameters selection method  

Since the rehabilitative approach, proposed in [9], aimed to 

reinforce the individual EEG pattern that most resembled the 

physiological activation, relevant to movement imagination of 
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the affected hand, our feature selection method includes 

physiological constraints related to the spectral and spatial 

distribution of the sensorimotor activity elicited by the motor 

imagery task in the calibration session (preliminary to the BCI 

training). While spatial (topographic) constraints in the affected 

hemisphere can be defined by the user through the Guided or 

the Semi-Guided procedures, spectral constraints are fixed in 

the range [7 25] Hz because of the frequency bands (µ and β) 

that characterize the sensorimotor rhythms. In this way, 

physiological constraint definition aims to take into account 

neurophysiological evidence and rehabilitation principles, 

according to which the control features have been the same for 

all BCI training sessions.  

The algorithm is based on the stepwise regression [33]. It 

identifies an optimal subset of predictor variables (i.e. the 

features) and assigns weights to them in order to build an 

effective regression model to evaluate the relationship between 

the predictors and the dependent variable (here equivalent to 

subject’s intention, e.g. task vs rest). Starting with an empty 

model, for each iteration the algorithm  

a) adds (or removes since the third iteration) a feature to 

(from) the classification model in order to obtain a 
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combination of features ensuring a good classification 

performance; 

b) checks if an EEG pattern of synchronization or 

desynchronization occurs for that feature (discarding it 

if a synchronization pattern occurs),  

c) checks if there is a common characteristic (i.e. same 

EEG channel or frequency) between the new feature and 

the features already included in the model. If exists and 

it is the EEG channel, the algorithm includes the feature 

in the model, not increasing the counter that stops the 

algorithm when the maximum number of physical 

electrodes available in the training setup is reached.  

The algorithm stops when, adding features, the accuracy of the 

model doesn’t improve in the statistical sense.  

In the following study, the comparison between manual and 

guided procedures is presented.  

For the feature selection step both manual and guided 

procedures were applied using the developed tool (GUIDER). 

Because the manual procedure requires experience in BCI field 

and specific neurophysiological knowledge, an expert 

neurophysiologist was enrolled to run the procedure. To run the 
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guided procedure a no-skilled user was enrolled and instructed 

for each dataset (one for each stroke subject) to flag the 

hemisphere affected and all EEG channels available in the 

interface (i.e. FC, C and CP). The same datasets were presented 

to the users.  

Features selected by the expert neurophysiologist and by the 

no-skilled user were collected and used to compute offline 

(later respect to the feature selection process) the 

classification performance.   

Data Collection  

For the feature selection step, EEG data, collected during the 

Pre-Intervention session from thirteen stroke subjects (who 

received the BCI-assisted MI training intervention, see appendix 

B for further details) according the procedure and the protocol 

in Appendix B (Pre-Intervention assessment), were analysed. 

Briefly, EEG data were collected from 61 electrodes assembled 

on an electrode cap according to an extension of the 10–20 

International System, sampled at 200 Hz and notch filtered (50 

Hz). All subjects were trained to perform the motor imagery of 

the hand movements (grasping and finger extension, recorded 

in separate sessions) with their affected upper limb. Each run 
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comprised 30 trials (15±1 rest, 15±1 motor imagery). The total 

duration of each trial was 7 seconds.  

For the classification performance assessment, to reproduce 

the most realistic scenario of the rehabilitation program EEG 

data recorded during the first training session (planned later 

respect to the calibration session) were analysed. EEG data 

were collected from the same subjects previously considered, 

according to the procedure and protocol in Appendix B, 

Intervention assessment. Briefly, EEG data were recorded from 

31 electrodes distributed over the scalp centroparietal region. 

All data were sampled at 200 Hz. The training session 

comprised two runs (one for each motor imagery task, grasping 

and finger extension). Each run comprised 20 trials and each 

trial included a rest period of 4 seconds and a task period of 

maximally 10 seconds. During the task period, patients were 

asked to perform only the MI of the affected hand [44]. 

Data Analysis  

For both aims (feature selection and classification performance 

assessment) runs collected during the motor imagery of 

grasping and finger extension were concatenated.  

For the feature selection step, GUIDER was programmed to 
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▪ filter EEG signals by the common average reference 

spatial filter; 

▪ segment EEG signals in epochs 1 second long; 

▪ extract for each epoch spectral features (spectral 

amplitude at each bin for each channel) using the 

maximum entropy method (16th order model, 2 Hz 

resolution, no overlap) [32]; 

▪ assess modulation induced on a specific feature by the 

task, computing for each feature the coefficient of 

determination R-square;  

▪ plot EEG patterns of desynchronization in the form of 

statistical index matrix.  

For each dataset, a matrix was presented to the user. To 

compare the procedures, we defined as two the maximum 

number of valid EEG features and programmed GUIDER 

accordingly (for the guided procedure). For the manual 

procedure the expert neurophysiologist was invited to select 

two features and assign them weights.  

For the classification performance assessment, EEG data 

collected during the first training session were analysed offline 
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according to a similar procedure (common average reference 

spatial filtering, segmentation and spectral feature extraction 

using the maximum entropy method). The output of the linear 

combination of the selected features and weights (separately 

for both manual and guided procedures) was used to compute 

the Receiver Operating Characteristic (ROC) curve [35]. The 

area under the ROC curve was the index used to assess the 

classification performance.  

Statistical analysis  

After having assessed the normality of the performance value 

distributions (Shapiro-Wilk tests), classification performance 

values (manual vs guided procedure) were compared by a 

paired-samples t-test. The threshold for statistical significance 

was set to p<0.05.  

Results  

Figure 10 shows a typical graphic output of GUIDER: it displays 

(subject #7) the R-square values of all features (61 channels 

and 18 frequency bins) after the common average reference 

(CAR) filtering.  
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Figure 10 - R-square matrix (channels and frequency intervals) obtained 

from EEG data collected during the Pre-intervention session from a 

subacute stroke subject with right-sided lesions (subject #7). The red 

(channels CP4 and C4 at 9 Hz) and yellow rectangles (channels CP2 and 

C4 at 9 Hz and 11 Hz, respectively) are features selected by an expert 

neurophysiologist (manual procedure) and no-skilled user (guided 

procedure), respectively. 
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The relevant control features selected, just basing on the R-

square matrix visualization by an expert neurophysiologist and 

those identified by the guided procedure (based on the 

developed method), are reported in Table 2. For most of 

subjects (except #6, #7, #8, #10) both procedures returned the 

same first feature in term of both topographic and spectral 

characteristics. Since the developed method ranked features 

according the statistical significance, the neurophysiologic was 

asked to apply a similar procedure, identifying as first the most 

important feature. For the subject #2 the similarity of 

topographic characteristic (i.e. C2) coexisted with a different 

spectral characterization (21 Hz instead of 23 Hz). 
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Table 2 - BCI control features identified from EEG data collected in the Pre-

intervention session (for all subjects) by an expert neurophysiologist (manual 

procedure) and by a no-skilled user (guided procedure). For each feature, EEG 

channel and frequency are reported in the left and right columns for the 

manual and guided procedures, respectively. 

 

ID 
Hemisphere 

affected 

Control 

features 

Manual procedure Guided procedure 

EEG 

channel 

Frequency 

(Hz) 

EEG 

channel 

Frequency 

(Hz) 

#1 Right 
1 CP4 17 CP4 17 

2 C6 11 C6 9 

#2 Right 
1 C2 23 C2 21 

2 CP2 23 Cz 25 

#3 Left 
1 C1 9 C1 9 

2 CP3 9 FC3 9 

#4 Left 
1 C3 13 C3 13 

2 CP3 13 Cz 19 

#5 Right 
1 C4 9 C4 9 

2 CP4 9 FC4 15 

#6 Right 
1 C2 15 Cz 15 

2 CP2 7 CPz 25 

#7 Right 
1 CP4 9 CP2 9 

2 C4 9 C4 11 

#8 Left 
1 CP5 5 CP3 7 

2 C5 5 C1 7 

#9 Left 
1 C3 9 C3 9 

2 C5 9 FCz 25 

#10 Left 
1 FCz 17 C1 7 

2 C3 17 FCz 17 

#11 Left 
1 C3 7 C3 7 

2 C5 11 FC1 15 

#12 Left 
1 C1 7 C1 7 

2 CP1 5 C3 17 

#13  Right 
1 C4 19 C4 19 

2 CP4 19 C6 7 
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Conversely, for the subject #6 the same spectral content (15 

Hz) was significant for two neighbour EEG channels (i.e. C2 and 

Cz). Two possible trends were summarized in subject #7: first 

and second features similar from the spectral point of view (9 

Hz) and topographical point of view, respectively. The first 

feature selected by the expert user became the second in the 

guided feature selection, for the subject #10. Summarizing, all 

features were coherent with the rehabilitative principles in 

terms of both topographic and spectral characteristics.  

Figure 11 shows, for each dataset, the classification 

performances obtained using features selected by the expert 

neurophysiologist (manual procedure) and by the no-skilled 

user supported by the semi-automatic method (guided 

procedure). No significant differences were found between two 

procedures (p=0.13).  

For both procedures, classification performances, on average 

0.70 manual procedure, 0.69 guided procedure, were not as 

good as those that would have been obtained applying a k-fold 

cross-validation approach to data collected in the same session 

(e.g. chapter 3). 
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Figure 11 - For each subject (13 subacute stroke subjects) classification 

performance values obtained with features selected by manual (grey) and 

guided (green) procedures. 

 

Using the second BCI training session could provide better 

results since the first training session could be considered a 

preliminary session where subjects become familiar with the 

experimental protocol and the kinesthetic imagination of the 

motor task.  

However, when classification performances were higher than 

0.7 the manual procedure seemed to outperform the guided 

procedure (not in statistical sense). Conversely when poor 

classification performances were reached the guided 

procedure returned better results. The subject #8 was the 

exception in term of both classification performance and 
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selected features. Indeed, basing on the EEG pattern 

visualization, it seemed that the pattern at 5 Hz conformed 

better to the expected pattern than that at 7 Hz, leading to better 

performances.  

Discussion  

Identifying the optimal control features is a milestone in 

rehabilitation protocols supported by BCI technology. In 

contrast to other fields of application where optimal cursor 

control is pursued, in a rehabilitation context the aim is to 

reinforce the appropriate sensorimotor activation in terms of 

both topographic and spectral characteristics. Therefore, the 

feature selection procedure requires knowledge coming from 

neurophysiology and rehabilitation principles as well as 

expertise in visualizing pattern of desynchronization in the form 

of statistical index matrices. The manual procedure is highly 

dependent on the operator and is currently restricted to 

researchers with experience in the BCI field. Therefore, the aim 

of GUIDER is twofold: first, to reduce the intra- and inter- 

operator variability of feature selection supporting the 

procedure also with a semiautomatic method but without giving 

up to neurophysiological principles that characterize the 

rehabilitation; second, to facilitate this procedure for therapists 
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without experience with BCIs. GUIDER could be, therefore, a 

(user-friendly) tool to support even non-expert users in the 

reproducible identification of control features, since it 

considers both neurophysiological and machine learning 

approaches.  

However, in view of a wider employ of GUIDER, several 

limitations must be addressed in the near future, e.g. the 

implementation in MATLAB environment, which is subjected to 

licensing issue.    

The results suggest that the features identified by the guided 

procedure are close to those chosen by experienced operators 

(manual procedure). Furthermore, both procedure’s outputs are 

congruent with the physiological evidences. Moreover, in terms 

of classification performance, no statistical differences are 

found between the procedures. Hence, the choices of 

neurologists could be reproducible by a semiautomatic method 

that includes the operator and his neurophysiological 

knowledge in the procedure. Reproducibility is, indeed, a 

prerequisite for planning large multi-centric clinical trials, 

including a larger number of patients with several different 

operators, ensuring the comparability of BCI results among 

centres and thus increasing the generalizability of the results.  
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Main message  

The introduction of GUIDER and its application in the BCI 

rehabilitation context suggest that it is feasible to support the 

professional end-users such as therapist/clinicians, who are 

not necessarily expert in BCI field, in the EEG feature selection 

yet according to evidence-based rehabilitation principles.  

GUIDER employs a semiautomatic method and takes into 

account neurophysiological evidence and rehabilitation 

principles. Performances are as good as manual selection, and 

GUIDER allows reproducibility of the procedure. The latter is a 

prerequisite for planning large multi-centric clinical trials, 

including a larger number of patients with several different 

operators, ensuring the comparability of BCI results among 

centres and thus increasing the generalizability of the results.  
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Chapter 5  
Adaptive learning in BCIs  
 

Introduction  

Brain state-dependent peripherical stimulation protocol induces 

significant plasticity of the damaged cortex in stroke patients, 

translating directly into improved functions [16]. The timing 

between the peripherical stimulation and the physiologically 

generated brain waves is the core of this approach to the motor 

rehabilitation post-stroke. Therefore, the early detection of the 

intended action (by MRCPs) in relation to the task onset is a key 

point.  

In the last ten years, several methods for the MRCP detection 

have been developed based on the matched filter [45], the 

independent component analysis [46] , the locality preserving 

projections [47]. Recent studies have proposed the application 

of manifold learning methods to the MRCP detection. As 

demonstrated in [48], one of them, i.e. the Locality Sensitive 

Discriminant Analysis (LSDA), outperforms the method based 

on the locality preserving projection, resulting in more accurate 

and low-latency motor intention detection.  
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All proposed approaches analyse EEG data, recorded in the 

calibration session, to construct a transformation matrix later 

used to classify new EEG data. Therefore, there is neither 

adaptation after the initial training step nor exploitation of the 

new EEG data collected during the session.  

Because of the continuously change in the brain activity 

occurring at the baseline but also during the task, current 

algorithms could become increasingly inefficient in 

applications if no-further calibration step is planned. Although 

adaptive learning has been successfully introduced in EEG [25], 

[49] and EMG [50] detection, at my knowledge there hasn’t been 

any methodological transfer to MRCP detection. 

This chapter proposes three adaptive learning methods based 

on LSDA [48]. The proposed algorithms constantly updated the 

model parameters of the MRCP detector to adapt to the 

subject’s MRCP characteristics over time and use. This was 

achieved by exploiting EEG data collected in each task 

repetition and properly re-labelled basing on the force signal 

(recorded during the task): both past noise and MRCP 

observations were used to update the detector parameters.  

Compare non-adaptive approach and three adaptive 

approaches, considering even the effect of the dataset size 
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used for the initial calibration, was the main aim of this work. 

Preliminarily, a study aimed to identify the best set of 

parameters to analyse EEG signals that minimizes the number 

of false positive detection was conducted.   

Materials and Methods  

Data Collection  

Six healthy volunteers (males aged 20-28 years) with no 

previous history of neuromuscular disorders or lower limb 

pathology participated in the study. The data collection was 

held at Prof. J. Rothwell’s Physiology and Pathophysiology of 

Human Motor Control Laboratory, Institute of Neurology, 

University College London (London, UK).  

EEG, EMG and force data were simultaneously recorded: a 

trigger signal was used to synchronise the recordings. EEG data 

were collected from 64 electrodes assembled on an active-

electrode cap (Brain Products GmbH, Germany) according to an 

extension of the 10-20 International System, amplified and 

sampled at 5000 Hz (per channel) by a commercial EEG system 

(BrainAmp, Brain Products GmbH, Germany). EEG recording 

were referenced at FCz and the ground electrode was 

positioned at Fpz. The skin was properly prepared and 
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impedance electrode-skin was adjusted to be below 5kΩ by 

filling the electrodes with an electrolytic gel. Surface EMG data 

were collected in bipolar fashion from a grid of 64 electrodes 

with 8mm inter-electrode distance (OT Bioelettronica, Turin, 

Italy) placed on the tibialis anterior muscle. The skin in the 

proximity of the muscle was shaved, lightly abraded and 

cleaned. EMG signals were band-pass filtered (10-500 Hz) and 

sampled at 2048 Hz (Quattrocento, OT Bioelettronica, Turin, 

Italy). The force signal was recorded from a force transducer 

mounted on a pedal, sampled at 2048 Hz and collected as 

auxiliary input by the amplifier used for the EMG signal 

collection.  

The subject was seated in a comfortable chair and his right foot 

was fixed to a customized pedal. The experimental session 

started with the collection of the maximum voluntary 

contraction (MVC) force. Two MVC recordings were performed 

and the highest force value was used as reference. Each subject 

was instructed to perform four types of cue-based ankle 

dorsiflexion reaching the same target force (60% of MVC [51]). 

The types of dorsiflexion differed from each other for the 

movement speed: slow, medium, fast and ballistic i.e. 3s, 2s, 1s 

and as soon as possible in reaching the target force level. The 

visual cue gave the subject feedback on the speed of his 
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movements guiding the subject to perform the movement 

correctly (Figure 12). A preliminary training phase was also 

included to let the subject familiarize with the experimental 

procedure. For each task (e.g. ballistic task) the subject was 

trained to perform 25 isometric ankle dorsi-flexions. To reduce 

artefact contamination, the subject was invited to minimize 

muscular movements not involved in the task. Before each 

recording, EEG and EMG signals were visually inspected by the 

operator.  
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Figure 12 - Visual cue for the experimental task. After 5 seconds of rest, 

subject had to follow the force outline performing the ankle dorsiflexion 

and reaching the target force (60 ± 5 percentage of his maximum voluntary 

contraction, MVC) in ballistic fashion or in 1s (fast), 2s (medium), 3s (slow), 

before going back in the rest position. Each trial began when a cursor 

appeared in the left bottom side of the screen. The cursor moved on the 

line toward the right side at constant velocity. Its vertical position depended 

on the signal detected by the force transducer. 

Data Analysis  

EEG data were down sampled to 2048 Hz (i.e. the EMG data and 

force sampling frequency) and band-pass filtered from 0.05 to 

2 Hz [52] with a 2nd order digital Butterworth filter in the forward 

and reverse direction. Because of the cortical region elicited by 

the ankle dorsiflexion only F3, Fz, F4, C3, Cz, C4, P3, Pz, P4 

electrode positions were considered. To compensate for the 

resolution of scalp EEG, a large surface Laplacian spatial filter 

1s

60 % MVC  5 % MVC

Rest (~ 5s) Rest (~ 5s)
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was applied [45]. The EEG derivation, obtained according the 

expression  

𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝐶𝐶𝐶𝐶 −  
(𝐹𝐹3 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹4 + 𝐶𝐶3 + 𝐶𝐶4 + 𝑃𝑃3 + 𝑃𝑃𝑃𝑃 + 𝑃𝑃4)

8                                                    (5.1) 

was segmented in trials (repetitions of the experimental task) 

accordingly to the cue-based paradigm. Trials containing 

instrumental artefacts, identified by the visual inspection, were 

removed from the analysis. On average, 23 trials were analysed 

for each subject. Force signal was low-pass filtered at 3 Hz and 

analysed to identify the movement onset. For each trial, the 

movement onset was detected when all values of the force 

signal in a window 0.2s long exceeded the threshold th, defined 

as 𝑡𝑡ℎ = µ + ℎ × 𝜎𝜎  ( mean µ and standard deviation σ of the 

force signal in a window 1s long of the rest phase, h=3) and 

validated by visual inspection.  

LSDA-based MRCP detector  

LSDA [53] is a discriminant manifold learning method, useful 

when there is no sufficient training samples. In the latter cases, 

local structure is generally more important than global structure 

for discriminant analysis. By discovering the local manifold 

structure, LSDA finds the projection which maximizes the 

margin between data points from different classes at each local 
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area. Specifically, the data points are mapped into a subspace 

in which the nearby points with the same label are close to each 

other while the nearby points with different labels are far apart. 

The found linear transformation matrix (to map the high-

dimensional data in a low-feature space) preservers the local 

neighbourhood information as well as the global discriminant 

information of the data. 

Figure 13 shows the LSDA-based MRCP detection pipeline.  

 

 
 

Figure 13 - The LSDA-based MRCP detection pipeline. Upper panel Training 

step: Transformation matrix (W) was computed applying LSDA algorithm 

to the training dataset. Lower panel Testing step: After the dimensionality 

reduction (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑊𝑊′ × 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) , a k-nearest 

neighbors (k-NN) classifier returned the predicted labels, finally post-

processed.  

 

EEG signals were segmented in two classes: MRCP signal 

intervals and noise signal intervals.  

LSDA W 
(transformation matrix)

Training 
Dataset 

Testing 
Dataset 

Dimensionality 
reduction

K-NN 
classifier

Label Post-
Processor

Predicted
labels
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In the segmentation process the following parameters were 

considered: 

▪ duration of the segmentation time window 

▪ first/last window labelled as MRCP (respect to the force 

onset)  

▪ first/last window labelled as Noise (respect to the force 

onset) 

▪ time window shift for MRCP training dataset 

▪ time window shift for Noise training dataset 

▪ time window shift for testing dataset 

▪ k parameter of the nearest neighbors classifier.  

EEG data were then split in two parts: one part used for the 

training step (training dataset) and the other used for the testing 

step (testing dataset). EEG segmented data belonging to the 

training dataset were the input of the LSDA algorithm. The 

transformation matrix W, found applying LSDA algorithm 

(parameters setting β=0.1 and k= 10) to the training dataset ( 

Figure 13 upper panel), was multiplied by the testing dataset to 

reduce its dimensionality (from the initial feature space 
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dimension to 30, algorithm default value). Testing projections 

were classified using a k-nearest neighbors classifier [48]. The 

predicted label vector was post-processed by a shifting window 

0.3s long. If the algorithm had classified as MRCPs at least two-

thirds of the shifting window considered, an MRCP was 

detected.  

To assess the performance of the MRCP detection pipeline two 

indices were computed,   

▪ True Detection Rate (TDR), ratio of the number of task 

repetitions correctly detected to the total number of 

performed repetitions. More specifically, the true 

detection index (numerator of the TDR formula) was 

increased if the latency of the MRCP detection was in 

the interval [-0.8s 0.8s] respect to the onset detected by 

the force transducer. After MRCP detection, the 

classification was suspended for 3s (congruously with 

the duration of the MRCP evolution): in the associative-

BCI at that time the nerve is stimulated and no further 

action is required from the classifier;  

▪ False Positive per minute, FP/min, number of noise 

observations predicted as MRCPs in one minute long 

recording. As in TDR, after an MRCP had been detected 



 

93 
 

(even if a false positive) classification was suspended 

for 3 seconds.  

Parameter optimization study  

To investigate the befitting set of parameters that discriminated 

MRCP and Noise windows, preliminary tests were performed 

using the LSDA-based MRCP detector. All possible 

combinations of the parameter values were tested according to 

the procedure reported in the previous section and, for each 

subject and for each combination, performance indices were 

computed and analysed. In Table 3, for each parameter the set 

of admissible values tested. For the preliminary study, thirty 

percent of trials were used for the training step [48], the other 

part for the testing. 

For each parameter set, the average performance value (TDR, 

FP/minute) across subjects was estimated and plotted on the 

Receiver Operating Characteristic space [35]. The point (one for 

each parameter setting) that minimized the FP/minute index, 

holding TDR over 70%, has been considered the point 

corresponding to the best set of parameters to discriminate 

MRCP and noise. The resulting set of parameters was then used 

for the comparison between non-adaptive algorithm and 

adaptive-algorithms.  



 

94 
 

Table 3 - Parameters and corresponding values tested in the MRCP detection 

model 

Parameters Tested values 

duration of the segmentation time 
window (s) 

1.5 2.0 [48] 2.5 3 3.5 

starting point of the first window 
labelled as MRCP respect to the force 
onset (s) 

-3 -2.5 -2 [48]   

ending point of the last window 
labelled as MRCP respect to the force 
onset (s) 

0.5     

Starting and ending point of the 
windows labelled as Noise respect to 
the force onset (s) 

[-5 -2.5] U [1.5 5] 

time window shift for MRCP training 
dataset (s) 

0.05 [48] 0.1    

time window shift for noise training 
dataset (s) 

0.05 [48] 0.1    

time window shift for testing dataset 
(s) 

0.05 [48] 0.1    

k parameter of the nearest neighbors 
classifier 

1 2 3 4 5 

 

Adaptive algorithms for MRCP detection  

Three methods to adapt the model parameters of the MRCP 

detector were proposed and compared with no-adaptive 

approach. All methods are based on the LSDA, successfully 

used in [48] to detect MRCPs. All algorithms were trained with 

the same number of trials. While the non-adaptive algorithm 

(LSDA) did not change its parameters in time, the adaptive 
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methods modified their parameters repetition by repetition (trial 

by trial). The proposed scheme tried to simulate what happens 

in the online experimental protocol (cue-based). Once each task 

repetition had performed, EEG signal collected was segmented 

(according to the training dataset segmentation parameters) 

and properly relabelled based on the onset information 

collected from the force transducer. Both new observations 

(MRCPs and noise) were the input for the adaptive methods. All 

adaptive algorithms received the same new samples as input. 

The adaptive methods proposed are 

▪ Locality Sensitive Discriminant Analysis followed by the 

Incremental updating of Linear Discriminant Analysis 

(LDSA + iLDA), Figure 14 upper panel; the linear 

transformation matrix (W) was computed one time, 

applied to the testing dataset to obtain testing 

projections. The latter were the input for the incremental 

Linear Discriminant Analysis [54] that updated its 

parameters every time new samples had been collected;  

▪ Incremental updating of Locality Sensitive Discriminant 

Analysis (iLSDA), Figure 14 middle panel; every time new 

samples had been collected, the linear transformation 
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matrix (W) was re-computed and applied to new testing 

data; 

▪ Incremental updating of Locality Sensitive Discriminant 

Analysis followed by the Linear Discriminant Analysis 

(iLSDA+LDA), Figure 14 lower panel; every time new 

samples had been collected the linear transformation 

matrix (W) was re-computed and applied to the new 

testing data, whose dimensionality was further reduced 

by the LDA algorithm.  

Classification, post-processing and performance assessment 

have been consistent with those used in the LSDA-based MCRP 

detector (Figure 13).  
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Figure 14 - Adaptive algorithm flowcharts. (Upper panel) LSDA followed by the 

incremental updating of the linear discriminant analysis (LSDA + iLDA), every 

time new EEG samples are collected, they update the parameters of the iLDA 

algorithm. (Middle panel) incremental LSDA (iLSDA), every time new EEG 

samples are collected, the linear transformation matrix (W) is re-computed 

and applied to new testing data. (Lower panel) incremental LSDA followed by 

the linear discriminant analysis (iLSDA+LDA), every time new samples are 

collected the linear transformation matrix (W) is re-computed and applied to 

the new testing data, which dimensionality is further reduced by LDA 

algorithm. For each panel, training data is used to compute the transformation 
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matrix by means the LSDA algorithm. Testing data are multiplied by the 

transformation matrix (W) to obtained the testing projections. The k-NN 

classifier and the label post-processor work as in the basic LSDA (Figure 13). 

All algorithms returned the predicted labels which were post-processed to 

compute performance indices. 

MRCP detection algorithm comparison  

For each method (non-adaptive LSDA and adaptive-algorithms) 

the whole procedure (Figures 13 and 14) was applied nine times 

to assess the effect of the initial training dataset size, from 10% 

to 90% (10% step)  of the number of repetitions available for 

each subject. For each subject, classifier and training dataset 

size, two performance indices were computed: True Detection 

Rate (TDR) and False positive per minute (FP/min).  

To investigate the performance of the LSDA algorithm as 

function of the percentage of repetitions (trials) used for the 

initial training, performance indices, True Detection Rate and 

False Positive per minute, were analysed by the repeated 

measure one-way analysis of variance (ANOVA). The Tukey 

HSD post hoc analysis was applied to assess pairwise 

differences. The threshold for statistical significance was set to 

p<0.05. All results are presented as mean ± SE (standard error). 
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Although it would have been very interesting to analyse the 

results obtained by means the repeated measures two-way 

ANOVA to investigate differences among algorithms and 

training dataset size and their interaction, the violation of the 

main hypotheses and the dimension of the sample (6 subjects) 

did not allow to apply the statistical design. Tables were used 

to compare the results. For each subject we identified the best 

classifier as the one that achieved good performance (high TDR 

and low FP/min) in most of the evaluated conditions.  

For the best classifier (one for each subject) the median value 

(and the inter-quartile range, IQR) of the latency between the 

MRCP and the movement onset (detected from the force 

transducer) was computed. Negative (positive) values 

corresponded to MRCPs detected before (after) the real 

movement onset. Since all latencies have been referred to the 

movement onset, eventually positive latencies (MRCPs 

detected after the movement onset) would have affected the 

average value, used as main measure, resulting, therefore, in 

values very close to movement onset (0s) but not 

representative of the latency distribution.  

Additionally, for the best classifiers the time required by the 

algorithm to update the parameters and perform one 
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classification, called running time, was computed and 

presented as mean ± standard deviation across trials. For 

conciseness, latency and running time were reported for each 

algorithm and subject only in the case of thirty percent of trials 

used for the initial training of the classifier.  

Results  

Results obtained in ballistic task are reported in this thesis. The 

following parameter values resulted the best set (according to 

the criterion defined in the paragraph Materials and Methods) 

to correctly detect MRCPs and reduce false positive detection: 

duration of the segmentation time window 2.5s,  first and last 

time point labelled as MRCP respect to the force onset [-2.5 

0.5]s, time window shift for MRCPs training dataset 0.05s, time 

window shift for noise training dataset 0.05s, time window shift 

for testing dataset 0.05s, k parameter of the nearest neighbors 

classifier, 2.   

Figure 15 shows the performance indices, True Detection Rate 

and false detection per minute, of the LSDA algorithm (no-

adaptive algorithm) as a function of the percentage of trials 

used to train the classifier. The repeated measures ANOVA did 

not reveal a significant effect of the percentage of trial factor 

on the true detection rate index (F=1.70, p=0.13). The same 
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statistical design revealed a significant effect of the percentage 

of trial factor on the false positive per minute index (F=3.74, 

p=0.002). For the latter the post-hoc test pointed out 

statistically significant differences between the classifier 

trained from the 10% of the dataset and those trained from 

larger dataset.  

 

Figure 15 - True detection rate, TDR, (Left axis) and False Positive per 

minute, FP/minute, (Right axis), presented as mean ± SE (standard error, 6 

subjects), as a function of the percentage of EEG data used for the initial 

training of the algorithm LSDA, locality sensitive discriminant analysis. 

Although not confirmed by the statistical approach, the TDR 

index highlighted a similar trend: train the classifier with more 

samples (trials, i.e. repetitions of the task) increases the 

performance of the model, i.e. increase the ability to correctly 
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identify MRCP events (increasing in TDR) and to prevent false 

detection (decreasing in FP per minute).  

Results, obtained applying the non-adaptive algorithm (LSDA) 

and considering the same amount of EEG data of that 

considered by Lin et al. in [48], matched those in [48] for the 

executed task (0.82 ± 0.14). Specifically, thirty percent of data 

used by Lin for the training of the classifier were equivalent to 

the forty percent of data used in this study. Even though 

subjects performed the ankle dorsiflexion as in this study, there 

are many differences among the studies: different experimental 

protocol, the number of task repetitions (fifty in [48] and at most 

twenty-five in our protocol) and the set of parameters used in 

MRCP detection. Moreover, they applied a 3-fold cross-

validation approach that we could not use because the time 

sequence among trials is a basic requirement to explore the 

adaptive algorithms. 

The high value of the standard error in both true detection rate 

and false positive per minute indices confirmed existing 

differences among subjects. Moreover, since at most twenty-

five trials were available for each subject and since to test the 

adaptive algorithms we needed many trials, we decided to 

consider all trials available: no trials were discarded. The visual 
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inspection highlighted differences among trials (e.g. above all 

trials in ending part of the recording). Failures in the detection 

of those trials or detections too early or too late respect to the 

movement onset put down the performance of the classifier 

(Figure 16) and, therefore, the average across subjects (e.g. 

TDR at 70% in Figure 15).  

Adaptive classifiers were developed to deal with EEG non-

stationarity in order to track changes in EEG properties over 

time [25]. The adaptive algorithms proposed, implemented and 

tested are based on the LSDA algorithm proposed by Lin et al. 

in [48]. Tables 4-9 report the results, in terms of true detection 

rate and false positive per minute indices, for each subject and 

each dataset used for the initial training of the classifier with 

the best performing classifier typed in bold. While LSDA + LDA, 

iLSDA and iLSDA+LDA adapted the model parameters time by 

time (trials by trials), LSDA is the basic classifier as proposed in 

[48]. For each subject, the best classifier was identified by 

means the global score (sum of that in each performance index) 

achieved by each algorithm.  
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Figure 16 - (Left Panel) True detection rate, TDR, computed for the subject 

S01 and presented as a function of the percentage of EEG data used for 

the initial training of the algorithm LSDA, locality sensitive discriminant 

analysis. (Right Panel) Amplitude (µV) of the movement-related cortical 

potential (MRCP) as function of time (s) for each trial (25 trials). Train the 

model from eighty percent of trials (20 trials) and test by the last five trials 

has resulted in a minimum of the TDR curve (Left panel, TDR=0.4). Last five 

trials (e.g. trials 23 and 24) showed features different from the previous 

trials: they were identified 1.2s before the movement onset and, because 

of the constraints defined for the specific application, their detection did 

not increase the count of the true detection to eventually compute the true 

detection rate. 

For the subject S01 (Table 4), detecting MRCPs by means the 

LSDA classifier did not return high performance in terms of true 

detections (TDR= 0.64 on average). As expected, use 90% of 

trials to train the classifier showed the best performance 

(TDR=1.00, FP/min =0.0). About TDR index, the adaptive 

algorithm iLSDA outperformed the no-adaptive LSDA: no effect 

of the initial training set size was observed. 
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Table 4 - Performance indices, True Detection Rate, TDR, and False Positive 

per minute, FP/min, for subject S01. Indices were computed for each 

percentage of EEG data used for the initial training of the algorithms.  

Algorithms: locality sensitive discriminant analysis (LSDA), LSDA followed by 

the incremental updating of the linear discriminant analysis (LSDA + iLDA), 

incremental LSDA (iLSDA), incremental LSDA followed by the linear 

discriminant analysis (iLSDA+LDA). For each performance index and 

percentage of the training set for the initial training of each algorithm, the best 

classifiers are typed in bold. The score achieved by each classifier, for each 

performance index, is reported in the last row of the table.  

 

  LSDA  LSDA + iLDA  iLSDA  iLSDA+LDA 

  TDR FP/min  TDR FP/min  TDR FP/min  TDR FP/min 

10%  0.65 2.1  0.70 3.7  0.78 1.3  0.65 3.7 

20%  0.71 1.4  0.57 3.1  0.76 1.4  0.67 3.7 

30%  0.61 1.3  0.67 3.3  0.78 1.3  0.72 3.3 

40%  0.69 1.1  0.88 3.8  0.81 1.5  0.81 3.4 

50%  0.69 1.4  0.69 3.2  0.77 1.9  0.77 3.2 

60%  0.50 2.4  0.70 2.4  0.70 1.8  0.70 3.0 

70%  0.50 1.5  0.75 3.0  0.63 2.3  0.63 3.0 

80%  0.40 1.2  0.80 3.6  0.60 2.4  0.40 2.4 

90%  1.00 0.0  0.67 0.0  1.00 0.0  0.33 0.0 

  1/9 7/9  4/9 1/9  6/9 5/9  2/9 1/9 
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Conversely, similar performance has been reached in terms of 

FP per minute. LSDA and iLSDA reached same performance 

when ninety percent of trials had been used to train the 

classifier: perhaps just two trials were not enough to show and 

exploit the adaptive strategy of the iLSDA.  Nevertheless, the 

iLSDA algorithm achieved good performance (TDR=0.78, 

FP/min=1.3) ever since the model had been trained from three 

trials (continuous recording long 30 seconds). The same effect 

illustrated in Figure 15 emerged and impacted also on adaptive 

algorithms: the early detection put down classifier 

performance.  

For the subject S02 (Table 5), detecting MRCPs by means the 

LSDA classifier resulted in good performance (TDR= 0.9, 

FP/min=1.5, on average) as well as by means the adaptive 

algorithms. Nevertheless, for equal performance (TDR= 0.95, 

FP/min=1.1), the LSDA algorithm needed seven trials 

(continuous recording long 1 minute and 10 seconds), while the 

adaptive algorithm (e.g. iLSDA) just two trials (continuous 

recording long 20 seconds) to train the model. No differences 

were found among adaptive algorithms. 
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Table 5 - Performance indices, True Detection Rate, TDR, and False Positive 

per minute, FP/min, for subject S02. Indices were computed for each 

percentage of EEG data used for the initial training of the algorithms.  

Algorithms: locality sensitive discriminant analysis (LSDA), LSDA followed by 

the incremental updating of the linear discriminant analysis (LSDA + iLDA), 

incremental LSDA (iLSDA), incremental LSDA followed by the linear 

discriminant analysis (iLSDA+LDA). For each performance index and 

percentage of the training set for the initial training of each algorithm, the best 

classifiers are typed in bold. The score achieved by each classifier, for each 

performance index, is reported in the last row of the table. 

 

  LSDA  LSDA + iLDA  iLSDA  iLSDA+LDA 

  TDR FP/min  TDR FP/min  TDR FP/min  TDR FP/min 

10%  0.91 2.2  0.91 1.9  0.95 1.1  0.91 2.2 

20%  0.89 1.0  0.95 1.6  0.95 1.3  0.95 2.2 

30%  0.94 1.1  0.94 2.1  0.94 1.4  0.94 2.1 

40%  0.86 0.4  0.93 1.7  0.93 1.3  0.93 1.3 

50%  0.83 0.5  0.92 1.5  0.92 1.5  0.92 1.0 

60%  0.80 1.2  0.90 1.8  0.90 1.8  0.90 1.2 

70%  0.86 1.7  0.86 0.0  0.86 1.7  0.86 0.9 

80%  1.00 2.4  1.00 1.2  1.00 2.4  1.00 1.2 

90%  1.00 3.0  1.00 3.0  1.00 3.0  1.00 3.0 

  4/9 6/9  8/9 3/9  9/9 2/9  8/9 3/9 
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For the subject S03 (Table 6), the LSDA+iLDA algorithm 

outperformed the no-adaptive algorithm. Although train the 

LSDA model with five trials (20% dataset size) resulted in good 

classification performance (TDR= 0.95, FP/min=0.6), similar 

performance had been achieved by the LSDA+iLDA algorithm 

using two trials (TDR= 0.91, FP/min=1.4) for the initial training 

of the classifier. Train the whole model, trial by trial, (iLSDA 

algorithm strategy) seemed to be effective in the reduction of 

false positive per minute. As reported for the subject S01, the 

constraints for the latency of the MRCP detection (fixed to 

increase the count of the true detections) put down the 

performance for all algorithms when the models had been 

trained with ninety percent of data.  

For the subject S04 (Table 7), the iLSDA algorithm 

outperformed the no-adaptive algorithm in terms of TDR and 

the same approach followed by the linear discriminant analysis 

(iLSDA+LDA) resulted in optimal False Positive per minute 

index. No differences were found among classifiers when the 

model had been trained with more than fifteen trials (70% 

dataset size). Good results could be reached training the model 

with 2 trials (10% dataset size) and applying the adaptive 

strategy. 
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Table 6 - Performance indices, True Detection Rate, TDR, and False Positive 

per minute, FP/min, for subject S03. Indices were computed for each 

percentage of EEG data used for the initial training of the algorithms.  

Algorithms: locality sensitive discriminant analysis (LSDA), LSDA followed by 

the incremental updating of the linear discriminant analysis (LSDA + iLDA), 

incremental LSDA (iLSDA), incremental LSDA followed by the linear 

discriminant analysis (iLSDA+LDA). For each performance index and 

percentage of the training set for the initial training of each algorithm, the best 

classifiers are typed in bold. The score achieved by each classifier, for each 

performance index, is reported in the last row of the table. 

 

  LSDA  LSDA + iLDA  iLSDA  iLSDA+LDA 

  TDR FP/min  TDR FP/min  TDR FP/min  TDR FP/min 

10%  0.59 5.7  0.91 1.4  0.82 0.8  0.73 3.3 

20%  0.95 0.6  0.95 0.6  0.89 0.3  0.79 2.5 

30%  0.88 1.4  0.94 0.4  0.88 0.4  0.76 2.8 

40%  0.93 1.7  0.93 0.4  0.86 0.4  0.71 2.6 

50%  1.00 1.5  0.92 1.0  0.83 0.5  0.67 2.5 

60%  0.90 1.2  0.90 0.0  0.80 0.6  0.60 2.4 

70%  0.86 0.0  0.86 0.0  0.71 0.0  0.43 1.7 

80%  0.80 0.0  0.80 0.0  0.60 0.0  0.20 0.0 

90%  0.50 0.0  0.50 0.0  0.50 0.0  0.50 0.0 

  7/9 3/9  8/9 6/9  1/9 8/9  1/9 2/9 
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Table 7 - Performance indices, True Detection Rate, TDR, and False Positive 

per minute, FP/min, for subject S04. Indices were computed for each 

percentage of EEG data used for the initial training of the algorithms.  

Algorithms: locality sensitive discriminant analysis (LSDA), LSDA followed by 

the incremental updating of the linear discriminant analysis (LSDA + iLDA), 

incremental LSDA (iLSDA), incremental LSDA followed by the linear 

discriminant analysis (iLSDA+LDA). For each performance index and 

percentage of the training set for the initial training of each algorithm, the best 

classifiers are typed in bold. The score achieved by each classifier, for each 

performance index, is reported in the last row of the table. 

 

  LSDA  LSDA + iLDA  iLSDA  iLSDA+LDA 

  TDR FP/min  TDR FP/min  TDR FP/min  TDR FP/min 

10%  0.60 1.8  0.80 1.5  0.80 0.9  0.80 0.6 

20%  0.83 0.3  0.72 1.0  0.83 0.7  0.78 0.3 

30%  0.87 0.4  0.67 1.6  0.87 0.8  0.80 0.0 

40%  0.92 0.5  0.77 0.9  0.92 0.9  0.92 0.0 

50%  0.82 1.1  0.73 1.6  0.91 1.1  0.91 0.0 

60%  0.89 0.7  0.67 2.0  0.89 0.7  0.89 0.0 

70%  1.00 0.0  0.86 0.0  1.00 0.0  1.00 0.0 

80%  1.00 0.0  1.00 0.0  1.00 0.0  1.00 0.0 

90%  1.00 0.0  1.00 0.0  1.00 0.0  1.00 0.0 

  7/9 4/9  1/9 3/9  9/9 3/9  7/9 9/9 
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For the subject S05 (Table 8), the iLSDA+LDA algorithm 

outperformed the no-adaptive algorithm in terms of TDR (0.86 

vs 0.71 on average), excepted for the training step with four 

trials (20% dataset size). Conversely, no differences were found 

in terms of False positive per minute among algorithms (except 

the best one in TDR). Training the model with two trials (10% 

dataset size) and applying the adaptive strategy of iLSDA or 

iLSDA+LDA allowed to achieve better results than those 

obtained not considering any adaptation (TDR=0.44, 

FP/min=6.3).  

For the subject S06 (Table 9), the LSDA+iLDA algorithm 

improved performance in terms of both true detection rate and 

false positive per minute. Applying the adaptive strategy 

seemed to be resolutive in both MRCP detection and reduction 

of samples required for the initial training of the classifier. All 

classifiers reached the same performance training the models 

with most of EEG data (over 80% dataset size).  
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Table 8 - Performance indices, True Detection Rate, TDR, and False Positive 

per minute, FP/min, for subject S05. Indices were computed for each 

percentage of EEG data used for the initial training of the algorithms.  

Algorithms: locality sensitive discriminant analysis (LSDA), LSDA followed by 

the incremental updating of the linear discriminant analysis (LSDA + iLDA), 

incremental LSDA (iLSDA), incremental LSDA followed by the linear 

discriminant analysis (iLSDA+LDA). For each performance index and 

percentage of the training set for the initial training of each algorithm, the best 

classifiers are typed in bold. The score achieved by each classifier, for each 

performance index, is reported in the last row of the table. 

 

  LSDA  LSDA + iLDA  iLSDA  iLSDA+LDA 

  TDR FP/min  TDR FP/min  TDR FP/min  TDR FP/min 

10%  0.44 6.3  0.72 2.0  0.83 2.7  0.83 2.7 

20%  0.94 1.9  0.81 2.3  0.88 2.6  0.81 2.6 

30%  0.79 3.0  0.79 2.1  0.86 2.6  0.86 2.6 

40%  0.75 3.5  0.83 3.0  0.83 2.5  0.92 3.0 

50%  0.70 3.6  0.80 3.6  0.80 3.0  0.90 3.6 

60%  0.63 3.0  0.88 3.8  0.75 3.0  0.88 3.8 

70%  0.67 3.0  0.83 2.0  0.67 3.0  0.83 4.0 

80%  0.50 3.0  0.50 3.0  0.50 3.0  0.75 4.5 

90%  1.00 0.0  0.50 0.0  1.00 0.0  1.00 3.0 

  2/9 4/9  2/9 5/9  3/9 5/9  8/9 0/9 
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Table 9 - Performance indices, True Detection Rate, TDR, and False Positive 

per minute, FP/min, for subject S06. Indices were computed for each 

percentage of EEG data used for the initial training of the algorithms.  

Algorithms: locality sensitive discriminant analysis (LSDA), LSDA followed by 

the incremental updating of the linear discriminant analysis (LSDA + iLDA), 

incremental LSDA (iLSDA), incremental LSDA followed by the linear 

discriminant analysis (iLSDA+LDA). For each performance index and 

percentage of the training set for the initial training of each algorithm, the best 

classifiers are typed in bold. The score achieved by each classifier, for each 

performance index, is reported in the last row of the table. 

 

  LSDA  LSDA + iLDA  iLSDA  iLSDA+LDA 

  TDR FP/min  TDR FP/min  TDR FP/min  TDR FP/min 

10%  0.54 4.0  0.96 1.8  0.83 3.0  0.88 2.5 

20%  0.64 4.1  0.95 1.6  0.82 3.0  0.86 2.2 

30%  0.63 3.2  0.95 1.3  0.79 2.8  0.84 1.9 

40%  0.63 3.0  1.00 1.5  0.81 3.0  0.88 2.3 

50%  0.62 3.2  1.00 1.4  0.85 2.8  0.92 2.3 

60%  0.73 2.7  0.91 1.6  0.82 3.3  0.91 2.7 

70%  0.38 4.5  1.00 2.3  0.75 4.5  0.88 3.8 

80%  1.00 2.4  1.00 2.4  1.00 2.4  0.80 3.6 

90%  1.00 2.0  1.00 2.0  1.00 2.0  1.00 2.0 

  2/9 2/9  9/9 9/9  2/9 2/9  2/9 1/9 
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Since the latency in the MRCP detection is a key point in the 

rehabilitative protocol based on Hebbian theory, we needed to 

consider them as further performance index of the classifiers. 

For each subject the latency in MRCP detection for the LSDA 

algorithm and for the corresponding best classifier is reported 

in Table 10. In both LSDA and adaptive algorithms the MRCP 

detection has anticipated the real movement onset, confirming 

the possibility to detect in real-time the MRCP before the 

movement onset and, therefore, to apply the proposed 

algorithms in the context of the associative-BCI.  

Table 11 presents for each subject and algorithm the mean 

runtime (across trials) to perform the parameter adaptation and 

the classification. As expected train again the whole model by 

means the LSDA (i.e. iLSDA) required more time than other 

algorithms.  
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Table 10 - Latency (expressed in seconds) in MRCP detection computed for 

each subject and for the LSDA algorithm (no-adaptive algorithm) and the best 

algorithm identified. Algorithms: locality sensitive discriminant analysis 

(LSDA), LSDA followed by the incremental updating of the linear discriminant 

analysis (LSDA + iLDA), incremental LSDA (iLSDA), incremental LSDA 

followed by the linear discriminant analysis (iLSDA+LDA). Results are 

presented as median value and inter-quartile range (IQR). Values below zero 

mean that the detections predate the movement onset (detected by the force 

transducer). 

 

  LSDA  LSDA + iLDA  iLSDA  iLSDA+LDA 

  Median IQR  Median IQR  Median IQR  Median IQR 

S01  -0.11 0.30     -0.16 0.35    

S02  -0.06 0.27  0.01 0.32  -0.16 0.35  -0.01 0.37 

S03  -0.06 0.24  -0.03 0.30       

S04  -0.16 0.27        -0.06 0.15 

S05  -0.21 0.42     -0.18 0.65  -0.18 0.70 

S06  -0.21 0.52  -0.16 0.25       
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Table 11 - Runtime (expressed in seconds) of each adaptive algorithm, 

presented as mean ± standard deviation (across trials). In the computation 

the time required for the initial training of the model based on LSDA were not 

considered. Algorithms: locality sensitive discriminant analysis (LSDA), LSDA 

followed by the incremental updating of the linear discriminant analysis (LSDA 

+ iLDA), incremental LSDA (iLSDA), incremental LSDA followed by the linear 

discriminant analysis (iLSDA+LDA). 

 

  LSDA  LSDA + 
iLDA  iLSDA  iLSDA+LDA 

S01      0.67 ± 0.18    

S02    0.03 ± 0.01  0.41 ± 0.17  0.25 ± 0.09 

S03    0.03 ± 0.01       

S04          0.20 ± 0.07 

S05       0.26 ± 0.10  0.17 ± 0.07 

S06    0.03 ± 0.00       
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Discussion  

To identify MRCPs with low-latency detection and good 

performances is essential in the context of BCIs based on the 

Hebbian principles. The approach proposed in this study aimed 

to overcome the limitations related to the physiological change 

occurring in time in the EEG signal, since these limitations 

impact on the use of BCI systems in rehabilitative protocols. 

Introduce adaptive learning methods in MRCP detection could 

represent a solution for the specific aim.  

In this study we proposed, implemented and tested three 

adaptive algorithms. The latter are based on the LSDA algorithm 

proposed by Lin et al. in [48]. Considering the same validation 

approach (i.e. same number of trials used to train the detection 

model) we obtained in our dataset results (TDR ~80%) 

comparable to those obtained in [48] for LSDA approach. 

Including in the analysis all trials (no trials removal) reduced in 

some cases the performance of the algorithm, but, in view of an 

exploration of the efficacy of adaptive learning in MRCP 

detection, this could be considered an optimal scenario to test 

the performance of those approaches.  

The application of adaptive strategies improved the 

performance of the LSDA algorithm. Considering each classifier 
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trained (for each subject) from ten percent of trials, we 

observed an improvement of performance indices, true 

detection rate (𝑇𝑇𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 0.62,  𝑇𝑇𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0.87, mean 

across subjects), and an effective reduction in false positive 

detection per minute (𝐹𝐹𝐹𝐹/𝑚𝑚𝑚𝑚𝑚𝑚𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 3.7, 𝐹𝐹𝐹𝐹/𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 1.5, 

mean across subjects). Therefore, more MRCPs were properly 

detected and less noise samples were misclassified. Although 

no conclusive result could be provided about the best algorithm 

suitable for all subjects, the best single-subject algorithm filled 

the main requirements: high true detection rate, low false 

positive detection per minute, fast and low latency MRCP 

detection. All adapted algorithms, indeed, were able to detect 

MRCPs before the real movement onset, i.e. before any 

changes in EMG or force signal occurred. Moreover, all adaptive 

algorithms achieved good performances even though few 

samples had been used for the initial training step. In this way 

these approaches might remarkably reduce the time needed for 

the calibration of the system (20-30 seconds in adaptive 

algorithms vs more than 1 minute for the non-adaptive 

algorithm), directly impacting on patients in terms of 

preparation time before starting to use the BCI and increase of 

number of rehabilitative session.   
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Further studies are needed to increase the sample dimension, 

currently limited to six subjects, and the number of trials 

(repetitions of the task) recorded for each subject. An ongoing 

single-subject analysis on EEG data collected during two 

sessions (1 hour apart), each one consisted in thirty trials, is 

revealing that adaptive learning approach has the potential to 

be a promising approach to take on also changes occurring 

inter-sessions.  

Finally, we decided to approach the investigation of adaptive 

learning methods in MRCP detection analysing EEG data 

collected during foot movements, since the effectiveness of the 

associative-BCI in the treatment of lower limb of stroke patients 

has already been validated in [16], but future works will be 

definitely targeted to transfer the methodology in protocols 

involving stroke patient upper limb.  

Main message  

The introduction of adaptive learning algorithms in the MRCP 

detection has the potential to reduce the calibration time of BCI 

system, directly impacting on the usability of the associative-

BCI in post-stroke motor rehabilitation.  
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Chapter 6  
Electromyographic features in hybrid BCIs  
 

Introduction  

Hybrid BCIs in post-stroke motor rehabilitation combine 

residual EMG activity with motor-related brain activation and 

provide a contingent reward which aims at re-establishing the 

link between the CNS and the periphery that is disrupted by the 

stroke [23].  

The integration of residual EMG activity in BCI design for post-

stroke motor rehabilitation requires some important clinical 

implications to be considered. Clear examples are the spasticity 

(i.e., an abnormal increment of the physiologic muscular 

resistance to passive/active movements) and the abnormal 

muscular synergies (i.e., abnormal functional recruitment of 

patterns of muscles) that are extremely common in post-stroke 

patients [55]. In this respect, the rehabilitative principle of 

promoting good plasticity and, thus, efficient functional 

recovery applies also to the muscular training/engagement 

possible operated by a hybrid BCI. 
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Several EMG features (e.g. amplitude of EMG signal of the 

target muscle) could be theoretically employed as well as 

several ways of combining EMG activity with brain derived 

activity to drive the BCI system can be hypothesized (e.g. a 

measure of cortico-muscular coherence). No consensus exists 

yet on these aspects and further studies are needed to define 

crucial aspects such as the “close-to-normal” EMG patterns to 

be reinforced or trained while discouraging those provoking 

spasticity and/or pathological synergies to eventually ensure a 

BCI mediated optimal re-establishment of brain-to-periphery 

connections.  

Many studies dealt with the characterization of EMG activity 

after stroke in affected and/or unaffected upper limbs 

considering different task (i.e. reaching task, finger 

movements), different patients (i.e. chronic stroke patients) or 

different methods (i.e. motor unit decomposition [56], [57], [58], 

autoencoders [59], non-negative matrix factorization [60], [61], 

[62]). However, if the first method requires more complex set-

up (i.e. high density EMG), for the last, literature provides 

contrasting results that do not allow to unequivocally clarify the 

effects of the injury and recovery mechanisms on the 

coordinated activity of muscle groups.  
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This chapter proposes a preliminary longitudinal study based 

on the analysis of the most frequently used features of EMG 

signals collected during simple tasks (hand opening and 

closing) accomplished by both affected and unaffected upper 

limbs in stroke patients before and after a rehabilitative 

intervention (i.e. BCI-supported MI-training). All patients, 

considered in this study, showed a clinical improvement after 

the rehabilitative intervention.  

The main aim was to investigate if simple features (known to 

be modified by the stroke) provide information about the 

recovery mechanism post-stroke and, therefore, have to be 

considered in the designing of a new EMG signal feature related 

to good motor recovery after stroke, useful to control an hybrid 

BCI.  
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Materials and Methods  

Data Collection  

EMG signals from the flexor and extensor digitorum, long head 

of the biceps brachii, lateral head of the triceps brachii, lateral 

deltoid and pectoralis major muscles (Figure 17) of the affected 

and unaffected upper limbs were collected from twelve 

subacute stroke subjects according the procedure and the 

protocol in Appendix B.  

 

Figure 17 - Muscles recorded during the experimental protocol from both 

upper limbs (unaffected and affected). 

Briefly, in both Pre- and Post- intervention sessions, subjects 

were instructed by the therapist to execute (or attempt) the 

hand opening and closing using their unaffected and affected 

upper limbs (all combinations recorded in separate runs). In 

each run, subjects were asked to perform 15 ±1 repetitions 

(trials) of the task. Each trial comprised 3 seconds of rest and 
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4 seconds of task (in 4s subjects had to start and complete the 

movement).  

A set of specific functional scales was administered before and 

after the intervention. Three outcome measures (Table 12) were 

included in the clinical assessment: the arm section of the 

Fugl–Meyer Assessment (FMA), the upper limb section of the 

Medical Research Council scale for muscle strength (MRC) and 

the upper limb section of the MAS for spasticity. The same 

operator performed the clinical assessment in Pre- and Post- 

intervention session. 
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Table 12 - Demographic and clinical characteristics of stroke patients.  For 

each patient sex (M, male; F, female), age (in years), time from event (in 

months), event description, affected hemisphere (R, right; L, left), clinical 

evaluations in term of Medical Research Council (MRC) Scale for muscle 

Strength, Modified Ashworth Scale (MAS) for spasticity, Fugl-Meyer 

Assessment (FMA) Scale, evaluated in Pre-intervention session (top row) and 

Post-intervention session (bottom row). 

 

ID Sex 
(M/F) 

Age 
(years) 

Event 
(months) 

Event 
description 

Hemisphere 
affected MRC MAS FMA 

#1 M 47 1 Subcortical 
ischemic L 50 4 15 

52 5 18 

#2 M 62 1 Subcortical 
haemorrhagic L 

67 0 40 
73 0 54 

#3 M 65 1 Cortical 
ischemic L 

70 0 43 
77 0 57 

#4 F 71 1 Subcortical 
ischemic R 

76 0 59 
69 0 62 

#5 M 58 1 Subcortical 
ischemic R 

63 0 35 
68 0 43 

#6 F 50 1 Ischemic R 
43 0 8 
69 1 45 

#7 F 75 2 Subcortical 
ischemic L 

56 5 31 
72 3 58 

#8 F 62 2 Subcortical 
haemorrhagic L 

55 2 17 
68 4 42 

#9 F 82 2 Cortical 
ischemic R 

59 0 20 
70 2 47 

#10 M 58 3 Subcortical 
ischemic L 

60 6 29 
62 8 32 

#11 M 52 3 Subcortical 
ischemic R 

49 3 10 
55 3 17 

#12 M 76 4 Subcortical 
ischemic R 

51 0 10 
52 0 13 

NOTE: Medical Research Council (MRC) Scale for muscle strength, upper limbs, ranging from 0 (most affected) 

to 80 (least affected); Modified Ashworth Scale (MAS) for spasticity in the upper limb joints, ranging from 0 (least 

affected) to 24 (most affected); Fugl-Meyer Assessment (FMA) scale, upper limb section, ranging from 0 (most 

affected) to 66 (least affected).  
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Data Analysis  

For each subject, the EMG signals collected during the 

execution of the experimental tasks (hand opening and closing) 

with  

▪ the unaffected upper limb in Pre-intervention session, 

from unaffected upper limb muscles 

▪ the affected upper limb in Pre-intervention session, from 

both upper limb muscles 

▪ the affected upper limb in Post-intervention session, 

from both upper limb muscles 

were analysed. 

EMG signals were offline bipolarized, digitally high-pass filtered 

(20 Hz [63], cut-off frequency,  second-order zero-lag 

Butterworth digital filter) and notch filtered to remove the power 

line interference (50 Hz). EMG recordings (only those 

contaminated from the electrocardiographic, ECG, signal) were 

pre-processed using the method proposed by Willingenburg et 

al. [64] to remove ECG contribute. For each dataset the 

procedure was validated by the operator, who had also visually 

inspected the EMG signals to identify signals corresponding to 
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missing contacts. Bad trials (in term of both task repetitions 

and muscles) were eliminated from the later analysis. 

Therefore, for each subject different number of trials (less than 

fifteen) and number of muscles were considered.  

Time Domain Univariate Analysis  

For each subject, session (Pre- and Post- intervention), task 

(opening and closing hand), upper limb (affected and 

unaffected) and muscle, the onset time of the muscle 

contraction has been computed for each trial (repetition of the 

task). As shown in [65], indeed, the delay of initiation of muscle 

contractions between the affected and unaffected upper limbs 

is a significant feature in stroke patients.  

The method proposed by Solnik et al. [66], based on the 

combination of Teager-Kaiser energy operator and threshold 

algorithm [67], was applied (baseline window 1s long) and 

adjusted to match the dataset characteristics: baseline window 

was computed trials by trials and amplitude threshold was set 

to h=6 [68]. Procedure results have been validated by the 

operator visual inspection. Onset time values of forearm 

muscles (extensor and flexor digitorum) were analysed: 

subjects’ upper limb placement and experimental task (that had 
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elicited the activation of both muscles for most of subjects) 

made reasonable the comparison.  

For each task (hand opening/closing), muscle (extensor and 

flexor digitorum) and condition (unaffected upper limb in the 

Pre-intervention session, affected upper limb in both Pre- and 

Post-intervention sessions) the median of onset time values 

was chosen as the emblematic value of each distribution. Since 

the pathological condition would not have allowed subjects to 

perform the movement in the same fashion, outliers would have 

influence on the mean value. Single-subject and group analysis 

were conducted to investigate changes in the onset time value 

both as stroke (alterations between unaffected and affected 

muscle in Pre-intervention session) and as rehabilitative 

(recovery of the affected muscles between Pre-intervention and 

Post-intervention sessions) result.  

Amplitude Domain Univariate Analysis  

EMG signals were full-wave rectified and low-pass filtered (1 Hz 

cut-off frequency, second-order zero-lag Butterworth digital 

filter) to obtain the envelopes.  

To extract amplitude indices to compare sessions (unaffected 

muscles in the Pre-intervention session, affected muscles in the 
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Pre-intervention session and affected muscles in the Post-

intervention session) we needed to normalize EMG signals to a 

value obtained from a reference contraction. Since maximum 

voluntary contractions (MVCs) were not available, a 

submaximal voluntary contraction was computed for each 

muscle and subject according to the procedure described 

below: 

▪ flexor digitorum muscle, submaximal voluntary 

contraction was computed analysing data collected 

from the unaffected upper limb flexor digitorum muscle 

during the hand closing task (flexor digitorum muscle is 

the agonist muscle in hand closing task);  

▪ extensor digitorum muscle, submaximal voluntary 

contraction was computed analysing data collected 

from the unaffected upper limb extensor digitorum 

muscle during the hand opening task (extensor 

digitorum muscle is the agonist muscle in hand opening 

task); 

For each trial the root-mean-square (RMS) value of the EMG 

signal (moving window 0.05 s long [69]) was computed.  The 

95° percentile of the intra- and inter-trial RMS values was 

considered as the reference value for the normalization step.  
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After normalizing the envelopes of forearm muscles by the 

submaximal voluntary contraction values, maximum activation 

level and baseline activation level were computed for each trial 

as, respectively, the 95° and 5° percentile of the normalized 

envelope.  

Spatial Domain Univariate Analysis  

To investigate if proximal muscles were involved in simple 

tasks (hand opening and closing), the results of the time 

domain univariate analysis were further post-processed. The 

percentage of trials (respect to the total number of trials 

analysed for each subject) in which activation had been 

detected was computed for each muscle.  

To analyse results and compare them in the conditions of 

interest (task performed with the unaffected upper limb in Pre-

intervention session, task performed with the affected upper 

limb in both Pre- and Post- intervention sessions) a spatio-

condition representation was designed. For each task and 

subject, the representation included the number of activations 

of each muscle (x-axis) for each condition (y-axis). For each 

point (muscle-condition) a circle, diameter proportional to the 

number of activation written inside as percentage of the total 
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number of trials, was plotted. Colours were related to the upper 

limb segment to which muscles belong.  

For the spatial analysis only five subjects were considered.  The 

other subjects were removed from the analysis because there 

were no good quality signals available for all considered 

muscles and sessions.  

Statistical Analysis  

Statistical analysis was performed to investigate global 

characteristic of the experimental group. Since the group 

analysis might not provide statistical evidence because of the 

differences intra-group and the few patients who performed 

movements with the affected upper limb (in Pre-intervention 

session), single-subject analysis results were used to explain 

trend not statistically confirmed.  

Onset time and activation level values were analysed to assess 

differences among the conditions: unaffected upper limb in Pre-

intervention session, affected upper limb in Pre-intervention 

session and affected upper limb in Post-intervention session. 

Shapiro-Wilk test was applied to assess the normality of the 

data distribution. To investigate differences among the 

conditions as a function of the muscle (flexor digitorum and 



 

133 
 

extensor digitorum muscles), a repeated measures two-way 

analysis of variance (ANOVA) design was employed as 

statistical design. The Tukey HSD post hoc analysis was 

applied to assess pairwise differences. The threshold for 

statistical significance was set to p<0.05. Results are presented 

as mean ± SE (standard error). 

Results  

Time Domain Univariate Analysis  

Figure 18 shows for each task (hand opening and closing) the 

onset time of the muscle contraction, presented as mean ± SE 

(across subjects), evaluated for unaffected and affected flexor 

and extensor digitorum muscles in the Pre-intervention session 

and for affected muscles in the Post-intervention session. 

Subjects with residual motor ability (muscular activation 

detectable by the applied algorithm, see section Time Domain 

Univariate Analysis in Materials and Methods paragraph) were 

considered for the group statistical analysis.  

Shapiro-Wilk tests confirmed the possibility of analysing data 

using parametric statistical design (i.e. ANOVA). For the 

opening task (8 subjects), the repeated measures two-way 

ANOVA revealed a significant effect of both session-side 
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(F=3.765, p=0.049) and muscle (F= 9.532, p= 0.018) main 

factors and no significant interaction factor (F=3.661, p= 

0.053). For the closing task (7 subjects), the repeated measures 

two-way ANOVA did not reveal a significant effect of either  

session-side main factor (F=1.459, p=0.271) or muscle (F= 

0.020, p= 0.891) main factor and no significant interaction 

between the session-side and muscle factors (F=0.523, p= 

0.605). 

  

Figure 18 - Onset Time of the muscle contraction measured (in seconds) 

respect to the beginning of each repetition of the task. Results are 

presented as mean ± SE (standard error) across subjects and evaluated for 

each condition, unaffected upper limb muscles in Pre-intervention session 

(Pre-Unaffected), affected upper limb muscles in Pre-intervention session 

(Pre-Affected), affected upper limb muscles in Post-intervention session 

(Post-Affected) and for each muscle, flexor digitorum (Flex Dig, in blue) and 

extensor digitorum (Ext Dig, in green). Left panel: Hand opening. Right 

panel: Hand closing. 
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Results confirmed the findings in [65] about the delay initiation 

of muscular contraction between affected (Pre-intervention 

session) and unaffected (Pre-intervention session) upper limb 

muscles. In hand opening task, the post-hoc test pointed out the 

significant statistical difference existing in flexor digitorum 

muscle onset time (flexor digitorum muscle is a stabilizing 

muscle for the specific task) between the unaffected and the 

affected side (p=0.04).  Moreover, following a similar approach 

to that proposed in [65], the onset time delay between affected 

and unaffected flexor digitorum muscle was resulted to be 

correlated (correlation coefficient= 0.64) with the level of 

impairment (MRC in Pre-intervention session).  

In hand closing task there was a trend (not statistically 

supported) consistent with the findings in [65]: both agonist 

(flexor digitorum muscle) and stabilizing (extensor digitorum 

muscle) muscles of the affected side have been activated later 

than those of the unaffected side. Single-subject analysis (not 

reported in the thesis for conciseness) provides information to 

explain the statistical results: two subjects (subjects #7 and #8, 

seven in total) exhibited an opposite trend (respect to that 

expected result) in the comparison unaffected and affected 

side Pre-intervention. Further investigations including 

behavioural and clinical evaluations could clarify the relation 
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between the impairment and the delay in onset time of 

muscular contraction.  

Moreover, the increasing trend of the onset time value in the 

comparison between unaffected and affected muscles (Pre-

intervention) has been turned into a decreasing trend of the 

onset value when the comparison between Pre-intervention 

session affected muscles and Post-intervention session 

affected muscles was considered. More specifically, in hand 

opening task, Tukey post-hoc test pointed out (p=0.05) a 

statistically significant difference for the stabilizing muscle that 

not only anticipated its activation respect to the Pre-intervention 

session but reached also a value, on average, closer than that 

of the unaffected upper limb in the Pre-intervention session. 

The anticipation of the onset time in Post-intervention session 

respect to the Pre-intervention session for the stabilizing 

affected muscle, expressed in percentage respect to onset time 

in the Pre-intervention session, seemed to be correlated 

(coefficient of correlation 0.54) with the difference in clinical 

evaluations (i.e. MRC) assessed in the Pre-intervention and 

Post-intervention sessions.  

The similar trend (anticipation respect to the affected condition 

Pre-intervention) was observed (even though not statistically 
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confirmed) in the hand closing task for both stabilizing and 

agonist muscles. Single-subject analysis revealed that subjects 

(i.e. #7 and #9), who showed a different trend between muscles, 

e.g. delayed onset time for stabilizing muscle and anticipated 

onset time for agonist muscle in the comparison Pre-Post 

intervention of the affected side, have been characterized by the 

similar clinical assessment in the Pre-intervention session, i.e. 

MRC evaluation equal to 56 (subject #7) and 59 (subject #9). 

Moreover, “small” clinical improvements coincided with no 

significant alteration of the onset time in the affected side 

muscles (subject #11, MRC scale assessment 49 in Pre- and 55 

in Post- intervention sessions, FMA scale assessment 10 in Pre- 

and 17 in Post-intervention sessions).  

The relation existing between flexor and extensor digitorum 

muscles was also investigated and confirmed by the significant 

main effect pointed out by the ANOVA results for the hand 

opening task: the activation of the extensor digitorum muscle 

(agonist muscle in the specific task) foreran the activation of 

the flexor digitorum (most affected by the stroke). The 

anticipation trend was consistent in all conditions evaluated, 

providing us general information about the characterization of 

the simple task considered. Single-subject analysis pointed out 

interesting considerations for four subjects. For subjects #9 e 
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#4 in post-intervention session the activation sequence, altered 

in the affected upper limb in the Pre-intervention session in term 

of simultaneous activation (#9) and pre-activation (#4) of the 

stabilizing respect to the agonist muscle) returned toward a 

sequence more similar to other subjects (i.e. agonist activation 

foreruns the stabilizing muscle activation). Moreover, for 

subjects #1 and #6, who in the first assessment (Pre-

intervention session) did not show muscle activation, there was 

an improvement in term of muscles recruitment and proper 

timing sequence between extensor and flexor digitorum. While 

subject #6 (𝑀𝑀𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 −  𝑀𝑀𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃 = 26) has activated extensor 

before the flexor muscle, subject #1 , who exhibited a lower 

improvement (𝑀𝑀𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 −  𝑀𝑀𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃 = 2), has simultaneously 

activated agonist and stabilizing muscles.  

In hand closing task no effect of the muscle factor was pointed 

out by the statistical analysis. Single-subject analysis revealed 

variability intra- and inter-subjects in term of both anticipation 

and delay of the stabilizing muscles respect to the agonist 

muscles.  

Some useful information was provided from the analysis of the 

delay respect to the visual cue: even if therapists instructed 

subjects to perform the movement when the cursor crossed the 
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boundary between the black and the green space (3s after the 

start of each trial), the anticipation of the onset time respect to 

the cue was consistently observed in all conditions (for agonist 

muscles in both tasks). Two exceptions: subjects #1 and #12 in 

Post-intervention session started the muscle contraction after 

the cue.  

Amplitude Domain Univariate Analysis  

Figure 19 shows for each task (hand opening and closing) the 

maximum activation level, presented as mean ± SE (across 

subjects), evaluated for both unaffected and affected upper 

limb (flexor and extensor digitorum muscles) in the Pre-

intervention session and for affected upper limb in the Post-

intervention session.  

Shapiro-Wilk tests confirmed the possibility of analysing data 

using parametric statistical design (i.e. ANOVA). For the 

opening task (10 subjects) repeated measures two-way ANOVA 

revealed significant effect for the session-side factor (F=6.239, 

p=0.009); muscle factor (F=0.229, p=0.644) and interaction 

factor (F= 0.419, p=0.664). For the closing task (11 subjects) 

repeated measures two-way ANOVA revealed a significant 

effect for the muscle factor (F=5.627, p=0.039); session-side 
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factor (F=0.859, p=0.439) and interaction factor (F= 2.449, 

p=0.112).  

  

Figure 19 - Maximum activation level (normalized value, see Materials and 

Methods paragraph for the procedure), presented as mean ± SE (standard 

error) across subjects, evaluated for each condition, unaffected upper limb 

muscle in Pre-intervention session (Pre-Unaffected), affected upper limb 

muscle in Pre-intervention session (Pre-Affected), affected upper limb 

muscle in Post-intervention session (Post-Affected) and muscles, flexor 

digitorum (Flex Dig, in blue) and extensor digitorum (Ext Dig, in green). Left 

panel: Hand opening task. Right panel: Hand closing task. 

In hand opening task Tukey post-hoc test pointed out 

significant statistical difference for both muscles between the 

unaffected and affected side in term of maximum activation 

level evaluated in Pre-intervention session, confirming, although 

in different task and muscles, the impact of stroke alterations 

on the maximum activation level found in [70]. 

Pre-Unaffected Pre-Affected Post-Affected

Session-Side

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

M
ax

im
um

 a
ct

iv
at

io
n 

le
ve

l

Pre-Unaffected Pre-Affected Post-Affected

Session-Side

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

M
ax

im
um

 a
ct

iv
at

io
n 

le
ve

l

 Flex Dig
 Ext Dig



 

141 
 

The extensor digitorum muscle showed the same trend, even if 

not statistically supported, in the hand closing task. On the other 

hand, in the flexor digitorum muscle (agonist muscle for the 

specific task) the increasing average value of the maximum 

activation level (respect to the unaffected side condition) 

coincided also with an increasing value for the standard error 

than that observed in other session-side conditions and 

muscles.   

After the rehabilitative intervention (post-intervention ) the 

maximum activation level increased in the forearm muscles of 

the affected upper limb (except for the subject #12 for whom 

clinical evaluations confirmed a poor recovery in term of both 

MRC and FMA evaluations). Group heterogeneity did not allow 

to provide statistical proof of single-subject analysis results. In 

a similar fashion, the average activation level for stabilizing 

muscle increased in hand closing task. The large standard error 

in the affected flexor muscle after the intervention than that of 

the extensor muscle confirmed different behaviours in subjects 

for the flexor digitorum muscle. The significant main effect of 

the muscle factor in the hand closing task confirmed the higher 

contribute of flexor muscle in the hand closing than that of the 

extensor muscle. In the hand opening task no-significant 
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muscle factor effect suggested the similar contribute of agonist 

and stabilizing muscles in that task.  

Figure 20 shows for each task (hand opening and closing) the 

baseline activation level, presented as mean ± SE (across 

subjects), evaluated for both unaffected and affected upper 

limb (flexor and extensor digitorum muscles) in the Pre-

intervention session and for affected upper limb in the Post-

intervention session.  

In the opening task (10 subjects) as well as in the closing task 

(11 subjects) repeated measures two-way ANOVA did not 

reveal statistical differences: session-side factor (F=1.746, 

p=0.203, opening; F=0.338, p=0.717, closing), muscle factor 

(F=4.145, p=0.072, opening; F=4.042, p=0.072, closing) and 

interaction factor (F=1.035, p=0.375, opening; F=2.166, 

p=0.141, closing). 
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Figure 20 - Baseline activation level (normalized value, see Materials and 

Methods paragraph for the procedure), presented as mean ± SE (standard 

error) across subjects, evaluated for each condition, unaffected upper limb 

muscle in Pre-intervention session (Pre-Unaffected), affected upper limb 

muscle in Pre-intervention session (Pre-Affected), affected upper limb 

muscle in Post-intervention session (Post-Affected) and muscles, flexor 

digitorum (Flex Dig, in blue) and extensor digitorum (Ext Dig, in green). Left 

panel: Hand opening task. Right panel: Hand closing task. 

Although statistical analysis did not reveal a statistical effect of 

the muscle factor: the baseline activation level is higher in flexor 

digitorum muscle than in extensor digitorum. Moreover, 

differences across subjects (proved by the larger standard error 

in flexor than in extensor muscles) did not suggest alterations 

related to the affected upper limb or condition before and/or 

after intervention. 
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On the other hand for extensor digitorum muscles, even if not 

strongly verify from the statistical point of view, the single-

subject analysis revealed decreasing/increasing trends passing 

from un-affected limb to affected limb in Pre-intervention 

session and from Pre- to Post- intervention in the affected upper 

limb respectively (exception #8 and #12 in closing and #8 in 

opening).  

Spatial Domain Univariate Analysis  

Figures 21 and 22 show some results of the analysis in the 

spatial domain. Understanding if muscles different from 

forearm muscles were involved in the simple hand opening and 

closing task was the main goal of this analysis. Therefore, each 

representation (one for each subject and task) shows muscles 

recruited while the subject performed the task with the 

unaffected upper limb during the Pre-intervention session, the 

affected upper limb during Pre- and Post-intervention sessions. 

Both subjects (#5 and #11) are right-hemisphere lesioned, 

therefore, right and left were, respectively, the unaffected and 

affected upper limbs.  

Both subjects exhibited activations of proximal muscles even 

during the task execution with the unaffected hand. More 

specifically, while subject #5 has recruited biceps brachii during 
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the hand closing and triceps brachii during the hand opening 

task, subject #11 has recruited in any case the biceps brachii. 

In the Pre-intervention session to execute the affected hand 

opening and closing tasks the subject #5 has activated flexor 

and extensor muscles of the affected upper limb as well as 

those of the unaffected upper limb. Rehabilitative intervention 

resulted in the reduction in number of activations of muscles of 

the unaffected limb during the affected limb movement.  

Subject #11, different in term of clinical assessment from the 

subject #5, showed strong (in term of number of trials in which 

muscles have been activated) activation of the unaffected 

upper limb during the task performed with the affected upper 

limb. The map suggests the effectiveness of the rehabilitation 

in term of reduction of the unaffected muscle activations. 

Rehabilitation did not change the spatial distribution of muscles 

involved in the task executed with the affected limb: distal and 

proximal muscles have been activated also after the 

rehabilitative intervention. 
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Figure 21 - Spatio-condition representation of the hand opening task. 

Number of activations, as percentage of the total number of repetitions, 

evaluated for the muscle reported on x-axis in the condition reported on y-

axis. Three conditions have been considered (from bottom to top, 

movement executed with unaffected upper limb in Pre-intervention 

session, with affected upper limb in both Pre- and Post-intervention 

sessions). For each point (muscle-condition) the diameter of the circle is 

proportional to the number of activations in the circle. Colours correspond 

to the upper limb segment to which muscles belong (green forearm, yellow 

arm, red shoulder, light blue unaffected limb during task executed with the 

affected upper limb). Upper panel Subject #5. Lower panel Subject #11. 
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Figure 22 - Spatio-condition representation of the hand closing task. 

Number of activations, as percentage of the total number of repetitions, 

evaluated for the muscle reported on x-axis in the condition reported on y-

axis. Three conditions have been considered (from bottom to top, 

movement executed with unaffected upper limb in Pre-intervention 

session, with affected upper limb in both Pre- and Post-intervention 

sessions). For each point (muscle-condition) the diameter of the circle is 

proportional to the number of activations in the circle. Colours correspond 

to the upper limb segment to which muscles belong (green forearm, yellow 

arm, red shoulder, light blue unaffected limb during task executed with the 

affected upper limb). Upper panel Subject #5. Lower panel Subject #11. 
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Discussion  

Promoting motor function recovery is the main goal of post-

stroke rehabilitation. Reinforcing voluntary contraction 

reflecting correct muscle activation and discouraging 

pathological synergies are the core of the EMG approach 

proposed by this work in the context of hybrid EEG-EMG BCIs. 

This preliminary study aimed to explore the meaning of the 

expression “correct muscle activation” to ultimately identify 

descriptors to include in the definition of the electromyographic 

feature reflecting the “good recovery”. In this view EMG data 

from subacute stroke subjects collected before and after the 

rehabilitative intervention in [9] were analysed to assess stroke 

alterations (difference in EMG pattern between unaffected and 

affected upper limb while performing simple movement i.e. 

hand opening and closing) and to characterize post-stroke 

recovery considering the difference in EMG pattern between 

affected upper limb before and after the rehabilitative 

intervention.  

Stroke impacts on time and amplitude electromyographic 

features. Results presented in this thesis suggest that also 

simple tasks such as hand opening and closing are affected 

from changes caused by stroke. Specifically, stabilizing 
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muscles (i.e. flexor digitorum in hand opening task and 

extensor digitorum in hand closing task) were more affected by 

the injury than agonist muscles in terms of delay of the onset 

time of muscle contractions respect to that observed in 

unaffected side. Agonist and stabilizing muscle resulted 

impaired by stroke in terms of reduction of the maximum 

activation level in hand opening task confirming the difficulty 

that stroke survivors experience in extending fingers and 

thumb.  

The anticipation of onset time of muscle contraction and the 

increasing value of the maximum activation level (comparing 

the affected muscles between Pre- and Post- rehabilitative 

intervention sessions) seem to be features of motor recovery 

(the latter already proved by clinical assessment). Further 

studies will be needed to assess if it is recovery or just inter-

session variability. In addition, move towards the feature values 

of the unaffected hand highlights the open issue linked to the 

meaning of good recovery in terms of likeness with the 

unaffected hand of each stroke subject or with healthy subjects. 

Stroke impacts on the muscles recruited to perform motor 

tasks too. Even if also in the unaffected hand movements 

proximal muscles seem to be enrolled to perform the task, 
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stroke subjects engage more muscles as well in the affected as 

in the unaffected upper limbs while performing movements 

with the affected hand. Discussion is currently open with expert 

neurophysiologists to understand if e.g. the reduction in 

activations of muscles from the unaffected side might be 

guessed a significant feature to monitor the recovery.   

Current works are focused on the simultaneously analysis of 

more muscles, considering both time and amplitude features. 

Even if many couples of muscles (to better understand the 

meaning of pathological synergy) will be subjected to my 

investigation, I am focusing on flexor and extensor digitorum 

muscles, trying to overcome the actual shortcomings related to 

the definition of baseline for the onset time detector and the 

submaximal voluntary contraction.  

To date differences among subjects, enrolled at different time 

from the stroke event and heterogeneous from the clinical point 

of view, as well as the lack availability of all muscles for all 

subjects did not lead to conclusive evidences.  
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Main message  

Stroke impacts on the features of the electromyographic 

signals, altering performance in daily life activities. Consider 

both time and amplitude features in the designing of a new 

feature for an hybrid EEG-EMG BCI system could provide 

information about recovery. The simultaneous collection of 

signals from both distal and proximal muscles could highlight 

useful elements to discourage pathological synergies.  
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General Conclusion  

Transfer BCIs to clinical realm requires making them more 

affordable, more efficient, and more usable. This PhD thesis 

proposed new algorithms and signal processing procedure to 

fulfil these requirements. Specifically, it introduced 

▪ a new physiologically-driven approach to the pre-

processing of BCI data that allows to reduce the number 

of EEG electrodes to collect (lower equipment cost, 

reduced setup up, less burden for therapist and patient),  

▪ a new semiautomatic physiologically-driven method to 

support professional end-users, not necessarily expert 

in BCI field, in the EEG feature selection for SMRs-BCI 

training according to evidence-based rehabilitation 

principles (wider employment of the technology),  

▪ adaptive learning algorithms in MRCPs detection that 

allow to reduce the calibration time (less burden for the 

patient, more treatment sessions),  

▪ new elements to design a new control feature for the 

hybrid EEG-EMG BCI able to describe good functional 

recovery.  
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Appendix A - General software information  

The analysis, presented in the thesis, were performed in the 

MATLAB environment (The MathWorks, Inc., Natick, 

Massachusetts, USA) by customized scripts. Statistical 

analyses were performed by STATISTICA (Stat Soft. Inc., Tulsa, 

Oklahoma, USA).  
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Appendix B - Stroke patients dataset  
 

Stroke patient data, analysed in the PhD thesis, were previously 

collected in the context of the randomized controlled trial in [9]. 

The study was approved by the IRCCS Santa Lucia Foundation 

(Rome, Italy) ethics board (Prot. CE/AG4-PROG.244-105) and 

written informed consent was obtained for each patient.  

The main characteristics of the dataset are shown below.  

Participants 

Twenty-eight stroke patients were enrolled from those admitted 

to three stroke neurorehabilitation units of the Santa Lucia 

Foundation. All subjects were evaluated from the clinical point 

of view, as described in [9], and following inclusion criteria were 

applied:  

▪ a history of first-ever unilateral, cortical, subcortical, or 

mixed stroke, caused by ischemia or haemorrhage that 

occurred 6 weeks to 6 months prior to study inclusion; 

▪ hemiplegia/hemiparesis caused by the stroke;  

▪ age between 18 and 80 years.  
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Exclusion criteria were the presence of chronic disabling 

diseases, such as orthopaedic injuries that could impair 

reaching or grasping; spasticity of the shoulder, elbow, or wrist, 

scored 4 or 5 on the Modified Ashworth Scale (MAS) and a Mini-

Mental State Examination score less than 24. Subjects with 

severe hemispatial neglect, severe aphasia, and apraxia were 

excluded [9].  

Intervention 

All patients received the standard treatment for stroke in terms 

of medical care and rehabilitation for approximately 3 hours per 

day.  

Fourteen patients received BCI-supported therapy; thus, the 

intervention was intended as add-on therapy. This group of 

patients received 1 month of BCI-supported MI training with 3 

weekly sessions. The other group received equally intensive MI 

training without BCI assistance. Patients were assigned to BCI-

assisted MI training or no-BCI assisted MI training interventions 

by blind randomized allocation.  
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Experimental protocol 

Pre- and Post-Intervention assessment 

All subjects were evaluated before (in this work called Pre) and 

after (Post) the interventions (see Intervention section). In all 

subjects an extensive neurophysiological assessment was 

conducted by high-density EEG. EMG signals were 

simultaneously collected from upper limb muscles of twelve 

subjects.  

During the acquisition all subjects were comfortably seated in 

an armchair in a dimly lit room with their upper limbs resting on 

a desk. Visual cues were presented on a screen on the desk.  

The sessions (Pre and Post) were divided into runs. Each run 

comprised 30 trials (15±1 rest, 15±1 experimental task). Each 

run was dedicated to a specific task that involved subject’s 

unaffected or affected hand. The total trial duration was 7 

seconds with an inter-trial interval of 3.5 seconds. Each trial 

began with a cursor appearing in the lower centre of the screen 

and moving on a line toward the top at constant velocity. During 

the rest trial no target appeared on the screen. In the 

experimental task trials, a green rectangle appeared at the top 

of the screen; its width was 100% of the screen width and its 
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height approximately equal to 57% of that of the screen 

(occupying the last 4 seconds of the cursor’s trajectory, i.e. of 

the trial). The subject was instructed to start the experimental 

task when the cursor reached the green rectangle and continue 

it until the end of its trajectory (Figure 23).  

 

Figure 23 - Subject interface, implemented in BCI2000 [31], that guides 

subjects in the run. Left panel, Rest trial. Right panel, task trial. The patient 

was instructed to start the experimental task when the cursor reached the 

green rectangle and continue it until the end of its trajectory. 

During the rest trials, subjects were asked to watch the cursor’s 

movement on the screen. During the experimental task trials, 

subjects were instructed by the therapist to perform the 

movement imagery (kinesthetic MI) or the movement execution 

(attempt of execution) of the grasping (hand closing) or finger 

extension (hand opening) movement with their unaffected or 

affected upper limb. Each combination was acquired in a 

separate run.  
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Intervention assessment 

The neurophysiological assessment of subjects who received 

the BCI-supported MI training intervention was conducted by 

high-density EEG. During the acquisition subjects were seated 

on a comfortable chair (or directly on their wheelchair) with their 

hands and forearms resting on a desk. Each training session 

comprised four or eight runs (20 trials for each run) depending 

on the subject’s physical ability. Each trial included a rest period 

of 4 seconds and a task period of maximally 10 seconds. During 

the task period, subjects were asked to perform only the 

grasping or finger extension (acquired in separate runs) 

movement imagination of the paralyzed hand [44].  

Experimental set-up 

Pre- and Post-Intervention assessment 

Scalp EEG potentials were collected from 61 electrodes, 

assembled on an electrode cap (according to an extension of 

the 10–20 International System, linked ears reference, mastoid 

ground) and bandpass filtered between 0.1 and 70Hz. EMG 

signals were collected from 12 muscles (6 muscles for each 

upper limb): flexor and extensor digitorum, long head of the 

biceps brachii, lateral head of the triceps brachii, lateral deltoid 
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and pectoralis major. For each muscle two surface electrodes 

were placed on the muscle belly (inter-electrode distance range 

[30-50] mm). Signals were recorded in monopolar fashion 

(reference electrode placed on the elbow lateral epicondylitis). 

All signals were digitalized at 200 Hz and amplified by a 

commercial EEG system (BrainAmp; Brain Products, Gilching, 

Germany). 

Intervention assessment 

Scalp EEG potentials were collected from 31 electrodes 

distributed over the scalp centre-parietal regions (FC5, FC3, 

FC1, FCz, FC2, FC4, FC6, C5, C3, C1, Cz, C2, C4, C6, CP5, CP3, 

CP1, CPz, CP2, CP4, CP6, P5, P3, P1, Pz, P2, P4, P6, PO3, POz, 

PO4), digitalized at 200 Hz and amplified by a commercial EEG 

system [44]. 
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