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Introduction 

Varicocele – the excessive dilatation of the pampiniform venous plexus of the spermatic cord [1] –

is a common finding in males of reproductive age since adolescence. Its prevalence is debated, as 

estimates from different populations yield different results [2]: however, it is usually reported that 

varicocele may occur in up to 15% of all males between 15 and 19 years, with a much lower 

prevalence before puberty [3]. Testicular damage resulting from varicocele has been variably 

associated with reduced testicular volume, impaired spermatogenesis, and increased sperm DNA 

damage [4, 5], although the mechanisms involved are still not completely understood [6]. It is 

therefore unsurprising that it is listed as one of the most frequent causes of male infertility and that 

its prevalence is much higher in infertile men, at 30-40% in primary and 80-85% in secondary 

infertility [7, 8]. 

Existing guidelines propose different approaches on when and how to treat varicocele [9]. Reduced 

ipsilateral testicular size is one of the indications for treatment, above all in adolescents. As 80-90% 

of testicular volume is made up of germ cells within seminiferous tubules, an asymmetrical 

reduction in testicular volume is universally accepted as a sign of testicular damage. Improvements 

in testicular volume [10], sperm parameters [11] and DNA fragmentation [12] have been variably 

reported following surgical treatment of varicocele; however, to our knowledge, no study has yet 

described the long-term effects of percutaneous varicocele embolization on testicular volume or 

function. As this treatment is regularly used in clinical practice [8], we retrospectively assessed 

testicular volume catch-up growth and changes in testicular function during a 12-month follow-up 

in a single center protocol-driven study. 
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Protocol #1: Testicular catch-up growth following percutaneous left 

varicocele repair: results from a 12-months follow-up. 

Introduction 

In the first part of this project, we aimed to assess the effects of percutaneous treatment of 

varicocele on testicular volume. In order to reduce bias, we aimed to exclude from analysis all 

patients with an history of testicular pathology as well as all those subjects with right or bilateral 

varicocele. It is generally accepted that testicular volume is largely influenced by pubertal status 

[13]: before the onset of puberty, immature Sertoli cells are the most represented cell population in 

the testis, whereas germ cells account for more than 70% of adult testicular volume. However, 

changes in testicular volume occur during adult life as well: compensatory hypertrophy of the 

remaining testis occurs following orchiectomy, and administration of exogenous FSH is likewise 

associated with an increase of testicular volume [14]. However, despite anecdotal reports, there is 

no evidence of the possible effects of varicocele treatment on testicular volume. This change has 

definite psychological consequences, but might also be an important predictor of improved 

testicular function in regards to both spermatogenesis and hormone production. 

Materials and methods 

Patients 

We retrospectively assessed data in an electronic database of all patients followed for varicocele in 

our clinic between 2006 and 2016 (Figure 1). Analysis was limited to young adults (age <35 years, 

Figure 2) as we considered that a change in testicular volume following treatment is less likely in 

patients with longstanding varicocele. An increase in testicular size is more commonly observed in 

young subjects, although it has also been reported in adults undergoing surgical varicocele repair 

[15]. Patients with right or bilateral varicocele, or with any diseases known to influence testicular 

volume (orchitis, testicular neoplasms, cryptorchidism, hypogonadism, genetic disorders, testicular 
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torsion) were excluded from the analysis. Patients who were ineligible for or who refused 

percutaneous treatment were excluded, as were those whose internal spermatic veins could not be 

accessed during the procedure and those with recurrent varicocele following treatment. Overall, 114 

patients met the inclusion and follow-up criteria (Figure 1). The patients were followed for up to 12 

months: 36 patients completed all visits (3, 6, and 12 months), while 40 and 38 patients respectively 

skipped one or two intermediate follow-up visits (Table 1). The recruitment strategy took 

advantage of the “Amico Andrologo” permanent nationwide surveillance program of male students 

in their final grade of high-school conducted by the Italian Society of Andrology and Sexual 

Medicine (SIAMS) and supported by the Italian Ministry of Health. 

Protocol 

Since year 2004, all patients admitted to our unit for varicocele treatment have followed a fixed 

internal protocol.  At the time of admission and at all follow-up visits (3, 6, and 12 months), 

patients undergo collection of medical history, physical examination, color Doppler ultrasound (US) 

to assess testicular volume and grade of varicocele, and blood sampling for hormone evaluation. 

During the first visit, after sample collection the patients undergo percutaneous treatment of their 

varicocele, as described below. All US examinations are performed using a Philips IU22 unit 

(Philips, Bothell, WA, USA) with a 7–15 MHz wideband linear transducer. Standardized protocols 

with axial and transverse examinations of the testes are routinely performed [16]. Testicular volume 

is calculated using an ellipsoid formula: length (L) x width (W) x height (H) x 0.52. Rather than 

using a clinical classification for varicocele, a US-based staging system [17] is used in order to 

provide the most information for clinicians while at the same time reducing the risk of skewness 

towards a higher or lower grade (see Supplementary Table 1). 

Percutaneous treatment of varicocele 

All procedures were performed in an outpatient setting using a 4 Fr introducer sheath (Terumo, 

Tokyo, Japan) positioned in a right brachial vein. Catheterization of the left spermatic vein was 

performed with a standard 180 cm 0.035’’ standard glide-wire (Terumo, Tokyo, Japan) with a 
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different 4 Fr angiographic catheter (Sim1, C2, Vertebral) selected as indicated by the patient’s 

individual anatomy. The aim of the catheterization procedure was to position the distal tip of the 

catheter within the internal inguinal ring. Angiography was then performed to exclude the presence 

of collaterals or shunting (e.g. with the ipsilateral iliac vein). Manual compression was applied to 

the distal inguinal channel prior to embolization to prevent distal non-target embolization. Once the 

target vein was completely filled with pure contrast agent, the embolization was performed by 

gently withdrawing the catheter while injecting a mousse of two vials of Lauromacrogol 400 1%. 

Manual compression was then performed to seal the brachial access.  

Statistical analysis 

The statistical analysis was performed by R software (version 3.4.2). Numerical variables were 

summarized as the median [interquartile range, IQR] and mean (standard deviation, SD) as 

appropriate. Normal distribution of data was assessed via the Shapiro-Wilk test of normality. The 

left varicocele grade was expressed as absolute and percent frequency of distribution. Random 

intercept models were assessed with the nlme package to assess changes in left testicular volume 

during follow-up. Significance was set at p <0.05. 

 

Results 

The baseline characteristics of the caseload are presented in Table 1. As reported above, 26 subjects 

(22.81%) had LTH; there was no difference in the mean age between the LTH and no-LTH groups 

(total 22.8±5.4 years; LTH: 22.9±4.8 years, no LTH: 22.8±5.6 years, P=0.953). Grade 3 varicocele 

was the most prevalent in our study population (55 subjects, 48.2%), while similar numbers of 

patients had grade 2 (27 subjects, 23,7%) and grade 4 (32 subjects, 28.1%) varicocele. Left 

testicular volumes at the baseline and during follow-up are shown in Table 2. 

Linear mixed effect (random intercept) models were used to assess the effects of percutaneous 

treatment of left varicocele on left testicular volume. The response variable (i.e. left testicular 

volume) was normally distributed, as assessed by Shapiro-Wilk’s test of normality. The first model 
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included left testicular hypotrophy (LTH), defined on the basis of current literature [17-19] as a 

baseline difference of ≥20% between left and right testicular volume, and its course during follow-

up, in order to evaluate different growth rates between the two groups; the grade of varicocele, age 

at treatment and duration of follow-up were assessed as covariates. The results are shown in Table 

3. 

There was a statistically significant difference in baseline left testicular volume, which was smaller 

in the LTH group (14.5±2.7 ml vs 15.7±3.8 ml, P=0.032). No significant increase was observed in 

left testicular volume after treatment (P=0.448). The grade of varicocele and age at intervention 

also had non-significant effects on testicular volume (P=0.180 and P=0.506 respectively). 

However, the interaction analysis showed that testicular volume increased significantly more in 

LTH than in non-LTH subjects (+0.107 ml/month, P=0.035). 

To exclude potential bias, the model was adjusted for the baseline left testicular volume. The results 

of the second model are reported in Table 4. This model confirmed that during follow-up, testicular 

volume increased at a significantly higher rate in subjects with LTH than in those without LTH 

(+0.114 ml/month, P=0.020), independently of baseline left testicular volume. Furthermore, a 

significant negative effect of age was observed in the expanded model (-0.072 ml/year, P=0.024). 

No significant effects were observed for grade of varicocele: when stratifying, non-significant 

effects were confirmed for more severe degrees of varicocele (grade 3, P=0.604; grade 4, P=0.955). 

At the end of follow-up, as described in Table 2, the left testicular volume in the LTH group was 

similar to that observed in the no-LTH group (LTH: 16.9 ± 3.0 ml, no LTH: 16.5 ± 3.1 ml, 

P=0.565) (Figure 3), and in fact had significantly increased since the baseline (baseline volume: 

14.5 ± 2.7 ml, volume at 12 months: 16.9 ± 3.0 ml, P=0.023) (Figure 4). 

Complications, failure rate and radiation exposure 

No significant complications were reported in our population following the varicocele repair. While 

occasional testicular pain and transitory edema were reported, these data are not mentioned in the 

US report and probably have no bearing on the study outcome. 
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When technical problems occurred during the procedure, members of the Vascular and 

Interventional Radiology Unit usually re-scheduled the intervention for a later date. In these cases, 

we considered the date of the first complete embolization as the baseline for our study. If the 

Radiology Unit had reasons for doubting the efficacy of re-scheduling intervention, the patient was 

either transferred to Urology for surgical treatment or, for more severe cases, closely monitored for 

clinical outcomes. These patients are listed in the flowchart as “Treatment not suggested”. 

Recurrence of varicocele was found in 151 of the 838 men who underwent treatment. These patients 

are listed in the flowchart as “Treatment failed”. 

Radiation exposure was not measured directly. However, the mean duration of exposure to radiation 

was minimized to the extent possible (mean 6.2 minutes, range 3-9 minutes) in order to reduce the 

risks for the patients undergoing the procedure. 

 

Discussion 

The present study is the first to provide a quantitative analysis of catch-up growth in testicular 

volume after percutaneous varicocele embolization in a large homogeneous cohort of young adults 

followed up constantly for one year after treatment.  

If and when to treat varicocele is a recurring dilemma for physicians due to inconsistencies in the 

scientific literature, with guidelines from different scientific societies suggesting different 

approaches to and indications for treatment [9]. The risk of overtreatment should not be 

underestimated [20]. Furthermore, improvements in sperm parameters following treatment often 

reach statistical significance, but have little clinical relevance; sperm quality fluctuates with time 

and, except for those seeking immediate conception, an objective clinical result of the treatment is 

lacking. A surrogate marker of improved testicular function is therefore needed. As reduced 

testicular volume is universally accepted as an indication for treatment, we considered left testicular 

volume as one of the most reliable and objective parameters to be affected by left varicocele, 

consistently with the most recent literature [20]. 
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Our study suggests that subjects with a difference of at least 20% between left and right testicular 

volume are more likely to benefit from treatment of left varicocele, with a monthly increase of 

0.114 ml (95% CI: 0.018 – 0.210) during follow-up. This increase would therefore result in an 

almost 1.37 ml improvement over one year (95% CI 0.221 – 2.516), corresponding to an 

approximately 9.5% increase over the mean baseline volume. Graphical representations of the 

effects on left testicular volume are shown in Figures 3 and 4. 

Our results also show that age is significantly associated with reduced left testicular volume in these 

patients (-0.072 ml/year, P=0.020), possibly suggesting that early intervention should be attempted 

in order to prevent testicular damage. However, despite its statistical significance, whether this 

finding actually has any clinical bearing is a matter of debate. 

Testicular hypotrophy is associated with worse outcomes in terms of sperm quality [21], and 

endocrine impairments have been described in subjects with varicocele [18]. The significant 

increase in testicular volume observed in our study warrants further investigation, as catch-up 

growth might offer a better view of subsequent long-term improvement in the spermatogenetic 

function of the testes [18]. It could also have a positive psychological effect. 

Most reports describe catch-up growth in children only. Ours is the first study to report an increase 

in testicular volume following percutaneous treatment of varicocele. Testicular hypoxia and 

hyperthermia, which have been described in this condition, could increase the production of 

reactive oxygen species; several studies suggest that oxidative stress is associated with germ cell 

apoptosis and is a marker of testicular dysfunction [22-26]. 

This study has some limitations, including its retrospective nature and absence of a control group. 

However, it also offers some unique advantages: just two, highly qualified clinicians performed the 

US in all patients, and a single centre performed all the percutaneous embolization procedures, 

leading to the highly consistent assessment and treatment of the caseload. In addition, the enrolled 

population had a relatively narrow age range (Figure 2) and other conditions affecting testicular 

volumes were excluded. As previously stated, many young adults were diagnosed with varicocele 
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during the “Amico Andrologo” permanent nationwide surveillance program for students in the last 

year of Italian high school. 

Prospective studies assessing the effects of percutaneous varicocele repair should also consider 

several other features, such as number and diameter of varicose veins, changes in testicular 

echotexture, and circulating inflammatory markers, as any improvements in sperm parameters and 

endocrine function might actually be secondary, rather than a direct consequence of treatment. 

 

Conclusions 

Percutaneous treatment of left varicocele leads to a significant increase in ipsilateral testicular 

volume, but only in subjects with a difference of at least 20% between right and left testicular 

volume. Whether this improved testicular size is associated with better outcomes in terms of 

endocrine and reproductive function remains to be established. In any case, early intervention 

should be suggested in order to maximize the improvement. A 12-month follow-up is recommended 

for all young subjects undergoing varicocele repair, as the most clinically evident effects on 

testicular catch-up growth take place in this period. 
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Protocol #2: Endocrine and spermatogenetic function of the hypotrophic 

testis in varicocele patients 

Introduction 

In the second part of this project, we aimed to assess whether varicocele with testicular hypotrophy 

had different patterns of spermatogenetic and/or endocrine function compared to varicocele controls 

without clinically relevant left testicular hypotrophy (LTH). We therefore queried the database from 

both the endocrinology and the seminology lab in order to get the necessary information for all 

selected patients from protocol #1.  

 

Materials and methods 

Patients 

Data from 105 patients from study population were included in analysis (92.1% of protocol #1). 

Once again, patients entered in the study had no other conditions affecting testicular volume.  

Endocrine assessment 

All endocrine parameters were assessed in a dedicated lab. Baseline blood samples were obtained 

from all subjects by antecubital venous puncture in the early morning (7.30-9.00 a.m.) after an 

overnight fast. Samples were centrifuged after 30’ and the serum immediately frozen at -20°C. 

FSH, LH, estradiol (E2) and testosterone (T) were measured in duplicate with chemiluminescent 

microparticle immunoassay (CMIA, Architect System; Abbott Laboratories, IL, USA) with limits 

of detection (LOD) of 0.05 mIU/mL, 0.07 mIU/mL, ≤10 pg/mL and 0.28 nmol/L respectively. 

Intra- and inter-assay coefficients of variation for our laboratory were: 3.6% and 5.4% at 3.2 

mIU/mL (FSH); 3.8 and 5.5% at 4.1 mIU/mL (LH); 5% and 7% at 190 and 600 pg/mL (E2); 2.1% 

and 3.6% at 10.08 nmol/L (T). Serum concentrations of inhibin B were measured by enzyme-linked 
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immunosorbent assay (ELISA) (GEN II, Beckman Coulter laboratories, USA) with LOD of 7.0 

pg/mL, while intra- and inter-assay coefficients of variation were 3.3 % and 7.2 % at 122 pg/mL. 

Semen analysis 

Semen samples were examined by light microscope according to the most recent World Health 

Organization criteria in a high-specialization seminology lab. The fifth edition of the WHO 

guidelines, published in 2010, has been used since its introduction; previously, semen analysis was 

performed following the indications from the fourth edition, published in 1999. Semen samples 

were collected by masturbation directly into a sterile plastic container after 2–7 days of sexual 

abstinence. The following variables were taken into consideration: volume (mL), sperm 

concentration (n/mL), total sperm number (n × 106/ejaculate), progressive motility (%) and 

morphology (% abnormal forms). 

Statistical analysis 

Statistical analysis was performed by R software (version 3.4.2). Numerical variables were 

summarized as the median [interquartile range, IQR] and mean (standard deviation, SD) as 

appropriate. Normal distribution of data was assessed via the Shapiro-Wilk test of normality. Welch 

two sample t-test was used for assessment of the difference between means of the two groups. 

Robust linear regression models were used for assessment of the estimates of all relevant covariates, 

as by results of protocol #1. 

 

Results 

105 subjects were entered in the analysis, among which left testicular hypotrophy was found in 24 

men (22.86%). Baseline characteristics of all subjects are listed in Table 5. No significant 

difference was observed in regards to the age of the two groups (t = -0.46989, df = 37.754, p-value 

= 0.6411) and in regards to the distribution of different grades of varicocele (X-squared = 0.075617, 

df = 2, p-value = 0.9629). Considering our previous findings in regards to the effects of isolated left 

testicular hypotrophy ≥20% (LTH) on volume recovery, we hypothesized a role of this parameter in 
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endocrine and spermatogenetic function of the testis as well. In a two-step approach, we first 

measured whether LTH had a direct effect on several endocrine parameters related to testicular 

function – namely, FSH, LH, E2, T and inhibin B – and on standard parameters of semen analysis 

via Welch two sample t-test; we then performed robust linear regression models in order to reliably 

perform multivariable analysis on possible confounders. 

Results of the direct comparisons between groups are detailed in Table 6. In short, no significant 

effect of LTH was observed on any parameters, except for serum inhibin B (P=0.0493) which was 

significantly higher in subjects without LTH (mean 149.51 ± 71.7 pg/mL) than in subjects with 

LTH (mean 122.76 ± 43.2 pg/mL). 

Robust linear regression models were used for multivariate analysis in order to circumvent possible 

bias resulting from skewness of the data. While in protocol #1 this bias was prevented by the 

repeated measures design, in the present study robust methods were required for non-normally 

distributed response variables. Results from all models are reported in Tables 7 to 16. 

No significant effects were observed for age at intervention, baseline left testicular volume and 

presence of LTH in regards to semen volume (Table 7), total sperm concentration (Table 9), 

atypical morphology (Table 11), FSH (Table 12), LH (Table 13), total T (Table 15) and E2 (Table 

16). 

Presence of LTH and its interaction terms with baseline left testicular volume had significant effects 

in the model for sperm concentration per milliliter (Table 8): presence of LTH had a statistically 

significant markedly negative coefficient (β = -132.676 ± 54.878, P=0.0233), which was “balanced” 

by its interaction terms with baseline left testicular volume (β = 10.832 ± 3.802, P=0.0082). 

Age at intervention had statistically significant effects on progressive motility (β = -0.628 ± 0.23, 

P=0.0075), although this finding doubtfully has any clinical relevance. Furthermore, neither direct, 

nor indirect effects of LTH reached statistical significance in this model (Table 10). 
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Serum inhibin B levels were positively associated with baseline left testicular volume (β = 6.342, 

P=0.0003), although no direct or indirect significant effects of LTH were observed in these regards 

(Table 14). 

Despite not reaching statistical significance, it is worth noting that negative coefficients were found 

in statistical modeling for all semen parameters – except, as predictable, the prevalence of atypical 

morphologies, which showed a positive coefficient. 

An expanded robust linear regression model (Table 17) with FSH as an outcome variable including 

age at intervention, inhibin B, baseline left testicular volume and presence of LTH found significant 

negative effects for inhibin B (β = -0.005 ± 0.002, P=0.0273), with LTH showing positive, yet non-

significant coefficients (β = 0.537 ± 1.651, P=0.0273). 

 

Discussion 

Our results suggest that in subjects with isolated left varicocele the presence of a severe testicular 

hypotrophy (≥20%) is likely to have marginal effects on a priori testicular function. 

Among semen parameters, LTH had significant negative effects on sperm concentration per 

milliliter only, and these effects are actually balanced by baseline left testicular volume, suggesting 

that higher testicular volume is enough to compensate for the concentration loss. In all other 

models, LTH failed to reach statistical significance; however, regression coefficients hint at a 

worsening effect of hypotrophy on all semen parameters. Studies with bigger sample size are much 

needed in these regards. 

These findings might be important in the clinical setting. Presence of severe hypotrophy is easily 

assessable, even without performing ultrasound imaging. Measurements performed by using the 

Prader orchidometry usually overestimate testicular volume in comparison to ultrasound [27-29]; 

however, the difference between left and right testis is easily identifiable with clinical examination, 

and could then be confirmed by ultrasound examination. It has been hypothesized that 

improvements in sperm parameters might occur in patients with testicular asymmetry only [30]. 
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Concerning endocrine correlates of subjects with isolated left varicocele, we only found a 

significant effect for baseline volume in determining serum inhibin levels. Given the delicate 

balance of the hypothalamic-pituitary-gonadal (HPG) axis, these findings require careful 

interpretation. First and foremost, it should be considered that T, the main endocrine product of the 

tests, is secreted by interstitial Leydig cells, which are much more resistant to external stressors than 

germ cells [31]. In males, E2 originates from peripheral aromatization of T, particularly in adipose 

tissue [32]. Several substances might influence the aromatization rates in peripheral tissues, such as 

isoflavones and aromatase inhibitors [33]. Inhibin B is secreted by mature Sertoli cells 

independently of the HPG axis: it is therefore a reliable marker of testicular damage in regards to 

fertility outcomes [34]. FSH and LH are produced by the pituitary gland under direct stimulus from 

the hypothalamus: pulsatile release of gonadotropin-releasing hormone (GnRH) from GnRH 

neurons controls the rate of secretion of both gonadotropins, allowing for fine tuning in their 

secretion. As it is commonplace in endocrine axes, a finely-regulated feedback system allows 

negative control on the secretion of gonadotropins at both the hypothalamic and pituitary levels 

[35]. In these regards, inhibin B seems to be the most important feedback regulator of FSH 

secretion [36], although T and E2 also regulate secretion by the hypothalamus [35]. Furthermore, 

single nucleotide polymorphisms (SNPs) of the FSH-R and FSH-B gene, respectively encoding the 

FSH receptor and for the FSH subunit beta, might lead to different phenotypes of gene expression, 

ultimately affecting testicular size and function [37]. Increased levels of FSH might therefore mirror 

reduced susceptibility to endogenous control or be a consequence of impaired secretion of other 

hormones, such as inhibin B, as an additional stimulus for induction and maintenance of 

spermatogenesis. In our study, subjects with LTH had lower mean levels of inhibin B, although 

FSH levels were not significantly different; furthermore, in the regression model detailed in Table 

12, the effects for baseline left testicular volume, LTH, and their interaction failed to reach 

statistical significance when considering serum FSH as the outcome variable. The expanded model 

including inhibin B as an additional variable (Table 17) showed its significant negative effects on 
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serum FSH, suggesting that the feedback mechanism is preserved in our study population. It is 

therefore possible that administration of exogenous FSH might further stimulate maturation of 

Sertoli cells, improving outcomes independently of varicocele repair. Other markers of testicular 

maturation, such as INSL3 and AMH, might be helpful to understand the exact mechanisms 

involved in this complex interaction, as de-differentiation or impaired maturation of Sertoli cells 

might actually provide additional clues to how varicocele impairs testicular functioning. 

 

Conclusions 

There are minor differences in regards to the endocrine and spermatogenetic testicular function of 

subjects with and without LTH at baseline. The most important finding is undoubtedly the 

difference between serum inhibin B between the two groups: inhibin B is a marker of Sertoli cell 

maturation status, and a significant reduction in its serum concentration is a surrogate marker of de-

differentiation or impaired maturation of Sertoli cells. Evidence from literature also suggest that 

inhibin B levels increase following varicocele repair, once again hinting at functional recovery of 

Sertoli cells. Based on these findings, we can hypothesize that administration of exogenous FSH 

might stimulate maturation of Sertoli cells, therefore improving spermatogenesis. 
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Protocol #3: Effects of percutaneous treatment of left varicocele on 

spermatogenetic and endocrine function of the testis: results from a 12-

month follow-up. 

Introduction 

In the third part of this project, we aimed to assess whether treatment of isolated left varicocele was 

associated with significant improvements in regards to both spermatogenetic and/or endocrine 

function of the testis, additionally distinguishing between subjects with and without (LTH). We 

therefore queried the database from both the endocrinology and the seminology lab in order to get 

the necessary information for all selected patients from protocol #1. No data were collected in 

regards to actual fertility of patients – i.e. no data were entered in the database in regards to actual 

live births in the couple. This is unsurprising, given the young age of most subjects undergoing 

treatment for varicocele. Therefore, sperm parameters were considered as the most viable surrogate 

marker for male fertility. 

 

Materials and methods 

Patients 

Only subjects with a complete assessment at baseline and at the end of follow-up (12-14 months 

after treatment) were selected for more reliable comparisons. Therefore, 77 subjects from protocol 

#1 were entered into data analysis (67.6%). Once again, patients entered in the study had no other 

conditions affecting testicular volume. 

Percutaneous treatment of varicocele.  

See Protocol #1. 

Endocrine assessment 

See Protocol #2. 
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Semen analysis  

See protocol #2. 

Statistical analysis 

Statistical analysis was performed by R software (version 3.4.2). Numerical variables were 

summarized as the median [interquartile range, IQR] and mean (standard deviation, SD) as 

appropriate. Normal distribution of data was assessed via the Shapiro-Wilk test of normality. Welch 

two sample t-test was used for assessment of the difference between means of the two groups. 

Robust linear mixed effect (random intercept) regression models were used for assessment of the 

estimates of all relevant covariates, as by results of protocol #1, with each subjects acting as his 

own control as to reduce bias. 

 

Results 

In the two-step analysis previously described in Protocol #2, we performed direct comparisons 

between all relevant variables at baseline and at the end of follow-up before switching to more 

complex statistical analysis. 

Among the 77 subjects in the study population, 19 had LTH (24.7%). No significant difference was 

observed concerning age (LTH: 23.9±5.1 years, no LTH: 23.1±5.3 years, p-value = 0.55) and 

distribution of varicocele grades (X2= 0.242, df = 2, p-value = 0.886) before intervention. In a direct 

comparison between endocrine and sperm parameters, only inhibin B showed significant changes 

between baseline and end of follow-up (Table 18). The same findings were confirmed when 

repeating the same analysis in both study groups (LTH and no-LTH; data not shown). 

Statistical modeling was then performed for all relevant parameters. All models included correction 

for the baseline values of the outcome variable, as well as the presence of LTH and the change in 

volume (as per results of Protocol #1); furthermore, despite the lack of significant effects on 

testicular volume, we also included grade of left varicocele based on current literature. 
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Baseline values of all the outcome variables showed, as expected, significant effects on the models 

(Tables 19-29). 

The presence of LTH was significantly associated with greater increase in regards to progressive 

sperm motility (β = 7.458 ± 2.672, P=0.007), suggesting that varicocele repair is more likely to 

produce better outcomes in regards to sperm motility in subjects with LTH (Table 22). 

A significant effect of varicocele grade was observed in the model for atypical morphology (Table 

23). Both grade 3 (β = -3.721 ± 1.604, P=0.024) and grade 4 (β = -3.644 ± 1.82, P=0.035) 

varicocele had negative effects on the percentage of spermatozoa with atypical morphology – in 

other words, varicocele repair yielded better outcomes in subjects with higher degrees of varicocele.  

Statistical modeling (Table 24) showed a statistically significant effect of age on serum FSH (β = 

0.163 ± 0.044, P=0.001), and a trend for the effects of increasingly severe grades of varicocele 

which reached statistical significance for grade 4 only (β = 1.181 ± 0.508, P=0.025). 

No significant effects of any variable, except for baseline value of the outcome variable, were 

observed for serum LH, T and E2. 

No significant effects were found in the base model for serum inhibin (Table 26); however, 

following to our results in Protocol #2, we designed a different model, including changes in serum 

FSH as an additional variable (Table 27). In this expanded model, we observed a significant effect 

of the increase in serum FSH (β = 34.2 ± 11.749, P=0.008), although no other effect reached 

statistical significance. 

 

Discussion 

Our results point out that treatment of isolated left varicocele leads to better outcomes in regards to 

the endocrine and spermatogenetic function of the testis. The effects of varicocele repair on sperm 

morphology and in sperm motility are highly significant, although whether they have any clinical 

bearing is a question largely left unanswered. Varicocele treatment is perhaps the most controversial 

topic in the history of male infertility [38], as the most important outcomes – pregnancy rates and 
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live births – are rarely investigated, due to the young age of the population affected. Furthermore, 

the high variability of semen analysis and the chance of spontaneous pregnancies are so high that 

skepticism persists in regards to many treatments [38]. In these regards, we strongly believe that 

while direct effects on male fertility are difficult to assess, several surrogate parameters allow for 

more precise estimate of the effects of varicocele repair on testicular pathophysiology. In Protocol 

#2 we reported the interaction between FSH and E2, both in the general physiology of the HPG axis 

and in our our statistical models; results from Protocol #3 provide further proof of the fine interplay 

mediated by Sertoli cells via production of inhibin B. In fact, during follow-up, a significant 

increase in inhibin B occurs, with a significant positive effect of FSH on the model: this hints at a 

possible effect of FSH on Sertoli cell maturation, ultimately resulting in increased inhibin B levels. 

This finding is consistent with other reports in literature [39-41] describing the effects of varicocele 

and varicocele repair on production of inhibin B. 

It is likely, although our results do not allow for conclusive remarks in this direction, that serum 

inhibin B might be a reliable marker of the residual activity of the testes. It is possible to assume 

that subjects with “healthy” concentrations of inhibin B have adequately achieved Sertoli cell 

maturation, whereas those with low or low-normal concentration might have further benefit from 

varicocele repair. FSH is at the same time the stimulus for Sertoli cell maturation, and a marker for 

germ cell failure: a rapid increase in serum FSH following treatment, when associated with an 

increase in testicular volume, hints at an enhanced response from the HPG axis. Once again, studies 

aimed at assessing the maturation status of Sertoli cells in different grades of varicocele might allow 

more solid conclusions in these regards. 

The small sample size of the study population is an important limitation to this study. However, 

both the endocrinology and the seminology labs are highly specialized, therefore providing reliable 

results; likewise, as stated in Protocol #1, there is little risk of interobserver variation, as all 

ultrasound exams were performed by just two, highly qualified clinicians. 



 22 

Conclusions 

In subjects with isolated left varicocele, percutaneous treatment does not dramatically change 

fertility outcomes, despite some minor, yet statistically significant improvements in some surrogate 

markers. However, our study highlighted how inhibin B levels are affected by varicocele; this is 

most likely the result of a persisting insult to the Sertoli cell population, as demonstrated by the 

sudden increase in inhibin B during follow-up. Furthermore, during follow-up, positive effects of 

serum FSH are observed on serum inhibin B, suggesting that the rapid increase in FSH levels 

observed in more severe forms of varicocele might actually be a stimulus, rather than a marker of 

testicular failure.  
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Protocol #4: AMH and INSL3 as markers of testicular maturation status 

and their role in testicular and systemic conditions. 

Introduction 

Testicular functions include spermatogenesis and hormone production – both largely dependent on 

the integrity of the hypothalamic-pituitary-gonadal (HPG) function and of the testis itself. It is 

textbook knowledge that GnRH is secreted by hypothalamic GnRH-secreting neurons into the 

hypophyseal portal circulation; from here, GnRH reaches the anterior pituitary, where it induces 

release of the two gonadotropins LH and FSH by binding to its receptor on the surface of 

gonadotrope cells [42]. Secretion of GnRH is pulsatile: frequency and amplitude of each pulse 

affect the pituitary response, and change dramatically during life [42]. In males, FSH and LH act on 

specific receptors predominantly expressed in the testis: receptors for FSH are mostly expressed by 

Sertoli cells, whereas Leydig cells express LH receptors. The binding of LH to its receptor on 

Leydig cells induces T synthesis by increased activity of the desmolase enzyme [43]; similarly, 

FSH binds to its receptor on Sertoli cells, activating several pathways ultimately needed for 

supporting spermatogenesis [44-46]. An intra-testicular paracrine role has been clearly identified for 

T, suggesting that its binding to the androgen receptor is the key stimulus for successful 

spermatogenesis[47]. On the contrary, the role of FSH has been somewhat questioned in the last 

few years: studies in men with polymorphisms in the genes for either the β chain of the FSH 

molecule (FSHB) or the FSH receptor (FSHR) have shown that clinical phenotypes may differ, 

ranging from azoospermia [48] to normal sperm counts [37]. A different approach to the hormonal 

regulation of spermatogenesis seems to suggest that in mammals, as a result of evolutionary 

changes, FSH is acting as an anti-apoptotic factor, rather than a proliferative signal for Sertoli 

cells[47].  



 24 

Germ cells do not express receptors for either FSH or androgens, therefore suggesting that the effect 

on spermatogenesis is mediated through Sertoli cells via production of other hormones acting in a 

paracrine, autocrine or endocrine fashion. Sertoli cells express the androgen receptor (AR) and it is 

well-established that adequate levels of intratesticular T are required for successful 

spermatogenesis. Sertoli cells also express the receptor for AMH (AMHR-II): however, these 

receptors have also been found in Leydig cells of the human testis [49], suggesting a more complex 

interplay between the two cellular populations. 

 

AMH 

Regulation of AMH expression 

Anti-Müllerian hormone (AMH), previously described as Müllerian inhibiting substance, is a 140 

kD homodymeric disulfide-linked glycoprotein belonging to the TGF-β superfamily [50] and 

secreted in males by Sertoli cells. Expression of AMH is largely dependent on the maturation status 

of Sertoli cells, as shown by the changes in AMH concentration during fetal life, before puberty and 

in adults. Sertoli cells produce high quantities of AMH during fetal life, but undergo dramatic 

changes in both their structure and function approaching puberty, when they ultimately shift their 

pattern of protein expression and establish tight junctions. In the fetal male gonad, SOX9 acts as a 

trigger for expression, which is then regulated by different factors including SF1, WT1 and FSH 

[51], independently of FSH and LH. At a later stage of gestation, FSH induces production of AMH 

by immature Sertoli cells. Following birth, AMH concentrations mirror the delicate balance 

between the stimulating effects of FSH and the inhibiting effects of T. During puberty, the 

increasing levels of intra-testicular T inhibit AMH secretion, possibly by inducing maturation of 

Sertoli cells rather than by direct action. The maturation process throughout pubertal development 

is accompanied by morphological changes of Sertoli cells and reflected by distinct changes in 

histosceleton architecture identified by immunohistochemical markers [52-54]. Once Sertoli cell 

reach their maturation serum concentrations of AMH undergo a rapid decline; however, AMH is 
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preferentially released in the seminiferous tubules, where it reaches far greater concentrations than 

in the serum [55]. The AMH exerts its function on the target tissues by binding to its receptor 

(AMHR-II), which is expressed on Sertoli and Leydig cells, as well as on the paramesonephric 

ducts[55].  

In females, AMH is produced by granulosa cells of the preantral and small antral follicles and is 

therefore detectable in serum only before menopause. Inconsistent findings have emerged from 

studies investigating the effects of conditions such as vitamin D deficiency, obesity and smoking on 

AMH secretion[56]. Several studies have shown a direct effect of AMH in the pathogenesis of 

polycystic ovary syndrome (PCOS) [57] and effects on the progeny of AMH-treated mice have 

been recently elucidated, suggesting a possible mechanism of trans-generational transmission [58]. 

AMH in testicular pathophysiology 

In the early stages of fetal life, the interaction between AMH and its receptor induces a change in 

the morphology of the Müllerian duct mesenchyme, ultimately resulting in apoptosis in the cells of 

paramesonephric ducts and regression of internal female genitalia (Müllerian ducts, uterus, 

fallopian tubes and upper vagina) [59, 60]. At the same time, T stimulates differentiation of the 

Wolffian ducts into vas deferens, epididymis and seminal vesicles. It should be therefore expected 

that AMH is among the key hormones involved in sex differentiation: mutations in either AMH or 

AMHR-II result in a rare condition defined Persistent Müllerian Duct Syndrome (PMDS), in which 

derivatives of Müllerian ducts are seen in phenotypically normal 46,XY male subjects. This 

condition is the result of masculinizing effects from endogenous T, which affects Wolffian ducts, 

and absent pro-apoptotic effects on the Müllerian ducts. 

Measurement of AMH might be helpful in discerning bilateral cryptorchidism from anorchia. In 

fact, as Sertoli and granulosa cells are the only source of AMH, pre-pubertal females should have 

undetectable AMH levels; therefore, measurable concentrations of AMH are strongly suggestive of 

the presence of testicular tissue. Likewise, serum AMH is a valid and reliable tool for differential 

diagnosis between congenital hypogonadotropic hypogonadism and constitutional delay in growth 
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and puberty [61]. In the pre-pubertal testis Sertoli cells are the most prevalent and the most active 

cell population [13], and as such markers of their development are more reliable than those 

associated with Leydig cell function [62]. Subjects with delayed puberty show normal AMH levels 

for their age, while patients with congenital hypogonadotropic hypogonadism have markedly 

reduced AMH as a result of impaired development of Sertoli cells [63]. 

In Klinefelter patients, normal levels of serum AMH, inhibin B and FSH are observed until late 

puberty [13, 64], with a subsequent decline possibly from hyalinization of seminiferous tubules. In 

these subjects, chances of sperm retrieval via mTESE (microdissection testicular sperm extraction) 

are largely dependent on spermatogenetic maturity – therefore suggesting that markers of Leydig 

cell development, as well as age, should be considered more reliable predictors than AMH and 

Inhibin B [65]. 

Exogenous FSH administration, as currently used in the treatment of infertile males, is associated 

with an increase in serum AMH [66], possibly as a result of enhanced gonadal function. However, 

hCG administration inhibits AMH secretion from Sertoli cells, whether alone or in combination 

with FSH [67, 68]. This effect is possibly the result of the increased intra-testicular concentration of 

T due to hCG, and fits nicely with evidence suggesting that priming with FSH improves testicular 

function [69-71]. 

Serum AMH is positively correlated with testicular volume and negatively correlated with serum 

FSH, but only in men with history of testicular maldescent [72], possibly proving the presence of 

persisting damage and functional de-differentiation of Sertoli cells [73]. Several reports suggest 

lower levels of AMH in children with bilateral or unilateral cryptorchidism [61, 74], providing 

further confirmation of this theory; similarly, testicular dysgenesis syndrome has been associated 

with disruption in Sertoli cell maturation, a phenomenon which might contribute to the functional 

impairment of the Sertoli cell and therefore to reduced AMH secretion [75]. 

Modifications of Sertoli cell structure and patterns of protein expression in most forms of cancer 

also provide an explanation in regards to the changes in serum AMH detectable in patients with 
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testicular tumors [13, 76]. So far, however, AMH is most commonly recognized as a marker for 

granulosa cell tumors of the ovary [77, 78], and most recent reports concerning its validity in the 

diagnosis of Sertoli cell tumors mostly come from animal models [79, 80]. New findings also 

suggest a possible role for serum AMH and the AMH-to-T ratio as independent predictor 

biomarkers for successful sperm retrieval at microTESE [81]. 

Few studies have assessed the relationship between varicocele and AMH. A single study [82] found 

increased serum AMH levels in adolescent males with varicocele compared to healthy controls, 

whereas another study on adult men found no significant difference compared to controls in regards 

to serum AMH, but found lower concentration of AMH in the spermatic veins of varicocele patients 

[83]. While more solid evidence concerning decreased inhibin B in patients with varicocele 

suggests a negative effect on Sertoli cell development, the paucity of studies on the association 

between AMH and varicocele does not allow drawing conclusions in these regards. 

 

INSL3 

Regulation of INSL3 expression 

INSL3 is a “neohormone” – i.e., an adaptation of the endocrine system, stemming from the 

increasingly complex regulations of reproduction resulting from evolution [84]. Production of 

INSL3 occurs exclusively in mammalian Leydig cells: in fact, INSL3 is undetectable in anorchid 

men [85, 86]. INSL3 is constitutively secreted by Leydig cells without direct acute regulation by the 

HPG axis, therefore being a marker of Leydig cell function and differentiation status [87]. It is 

therefore unsurprising that INSL3 expression closely mirrors the patterns of Leydig cell activity and 

population size, with a transient increase during fetal life, a second peak occurring roughly 3 

months after birth (“mini-puberty”) and a third increase during puberty [88], which ultimately leads 

to persisting high concentrations during adult life [85] with a slight reduction in older age [89]. 

Although acute regulation of the HPG axis is not involved in INSL3 expression, it should be noted 

that LH stimulation is needed for Leydig cells differentiation and measurable levels of INSL3 after 
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pubertal development: further proof of this comes from treatment of congenital hypogonadotropic 

hypogonadism, as men undergoing testosterone replacement treatment (TRT) show undetectable 

INSL3 levels whereas a significant increase in INSL3 is observed in patients treated with hCG [90]. 

As the differentiating effect of LH on the Leydig cell is conserved during adult life as well, reduced 

INSL3 levels are observed following suppression of the HPG axis [91]. Autocrine and paracrine 

factors have also been considered in the regulation of INSL3 expression: T and E2 possibly regulate 

transcription of the INSL3 gene by binding to their receptors, respectively stimulating and inhibiting 

the transcription factors SF1 and NUR77 [85, 92]. 

INSL3 in testicular pathophysiology 

INSL3 binds to its receptor RXFP2, mainly expressed on germ cells and Leydig cells. There is solid 

evidence supporting a role for INSL3 in the transabdominal phase of testicular descent [85], as cells 

of the gubernacular bulb express RXFP2; when INSL3 binds to RXFP2, the following cascade of 

events in the cell causes thickening of the bulb, effectively “anchoring” the testis in the inguinal 

region, next to the abdominal wall [85]. The following phases of testicular descent likely require 

both INSL3/RXFP2 and T/AR interaction [93]. Mutations in the INSL3 or RXFP2 genes are 

associated with cryptorchidism, but they only account for a small percentage of cases[94]. 

 

Beyond reproduction: extra-gonadal pathophysiology of AMH and INSL3  

AMH has been largely considered in recent times as a valid marker for ovarian reserve [95], 

whereas no function has been attributed to it in adult males despite detectable serum levels. Some 

reports have suggested a possible role for AMH in cardiovascular prevention in elderly men [96, 

97], as well as in Klinefelter pre-pubertal boys [98] and in premenopausal women [99]: these results 

require further confirmation, but are plausible given that AMH has been identified as a potent 

regulator of TGF-β/BMP signaling [100], which is in turn involved in vascular development [101, 

102]. 
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The most known function of INSL3, as previously stated, involves testicular descent. However, the 

expression of INSL3 occurs throughout all adult life – therefore suggesting that INSL3 might 

actually be involved in other conditions. Further proof of an endocrine role for INSL comes from 

identification of RXFP2 in several other organs, including thyroid, seminal vesicles, kidney, brain 

and bone marrow. 

It has been hypothesized that some of the defining features of male hypogonadism might actually be 

the result of reduced INSL3 levels, or at least that low INSL3 might contribute to signs and 

symptoms of male hypogonadism, such as muscle wasting [103, 104]. Impaired bone mineral 

density was the first clinical finding described in association with inactivating mutations in the 

humans [105]. This hypothesis seemed valid, considering the common origin of both T and INSL3 

– the Leydig cell – and the identification of RXFP2 on osteoblasts: following studies confirmed a 

role for INSL3 in bone remodeling, as receptor activation stimulates osteoblast proliferation and 

bone anabolic activity while at the same time influencing osteoclastogenesis [103]. Furthermore, 

lower levels of INSL3 have been described in Klinefelter patients compared to healthy controls 

[106, 107] and negatively correlated with sclerostin, an osteocyte-specific protein with anti-anabolic 

effects on bone formation. 

INSL3 has proven useful as a surrogate marker of endocrine disruption. Studies in rodent models 

have proven downregulation of Insl3 gene expression in the fetal testis following administration of 

diethylstilbestrol (DES) to pregnant mice [108]. This finding corroborates the clinical finding that 

associated cryptorchidism with administration of DES to pregnant mothers (“blacklisted” by the 

FDA in the early 1970s, but widely used before that). 

 

Conclusions 

It is currently clear that Leydig and Sertoli cells are able to influence the endocrine milieu of the 

testes by several pathways (Figure 5) and affecting also exocrine testicular function. In these 

regards, functions of AMH and INSL3 are only beginning to emerge. It is accepted that both 
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hormones are involved in sexual differentiation: mutations of AMH or its receptor lead to 

persistence of the Müllerian duct, whereas reduction in INSL3 levels account for a small, but 

relevant, percentage of cases of cryptorchidism. So far, INSL3 and AMH have prevalently been 

considered for differential diagnosis as reliable markers of maturation of Leydig and Sertoli cells 

(Table 30). The role of both INSL3 and AMH in several conditions, such as varicocele, has only 

marginally been hinted at. Furthermore, effects of AMH and INSL3 extend beyond gonadal range: 

symptoms of male hypogonadism have been often associated with decline in serum INSL3 levels, 

and reduced AMH concentrations have been correlated with worse cardiovascular conditions.  
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Tables and figures 

Table 1. Demographics of the study population for protocol #1. 

 Total LTH: No LTH: Yes 

N 114 88 26 

Age (years)    
Median [IQR] 20.5 [19-27.5] 20.5 [19-28] 20.5 [20-25.2] 

Mean (SD) 22.8 (5.4) 22.8 (5.6) 22.9 (4.8) 

Grade of left varicocele    

Grade 2 27 (23.7%) 20 (22.7%) 7 (26.9%) 
Grade 3 55 (48.2%) 42 (47.7%) 13 (50%) 

Grade 4 32 (28.1%) 26 (29.6%) 6 (23.1%) 
§Left testicular hypotrophy (>20% difference between left and right testicular volume) 

 

Table 2. Left testicular volume in mL as assessed by testicular ultrasound at baseline and during 

follow-up. 

 Total §LTH: No §LTH: Yes 

Baseline (n=114)    
Mean (SD) 15.4 (3.6) 15.7 (3.8) 14.5 (2.7) 

3 months (n=91)    

Mean (SD) 15.9 (3.2) 16.2 (3.4) 14.9 (2.3) 
6 months (n=82)    

Mean (SD) 16.9 (3.8) 17.2 (3.8) 15.0 (2.6) 

12 months (n=69)    

Mean (SD) 16.6 (3.0) 16.5 (3.1) 16.9 (3.0) 
§Left testicular hypotrophy (>20% difference between left and right testicular volume) 

  



 32 

Table 3. Random intercept model for testicular volume increase. 

 β P 

(Intercept) 11.657 <0.001 
Age (years) 0.039 0.506 

Grade of left varicocele 1.210 0.180 

LTH§ (yes) -1.388 0.088 

Time (months) -0.018 0.448 
LTH§ (yes): Time (months) 0.107 0.035 

§Left testicular hypotrophy (>20% difference between left and right testicular volume) 

 
Table 4. Expanded random intercept model for testicular volume increase. 

 β P 

(Intercept) 5.908 <0.001 

Baseline left testicular volume (ml) 0.784 <0.001 

Age (years) -0.072 0.024 
Grade of left varicocele   

Grade 2 Ref.  

Grade 3 -0.216 0.604 

Grade 4 0.027 0.955 
LTH§ (yes) -0.426 0.409 

Time (months) -0.020 0.395 

LTH§ (yes): Time (months) 0.114 0.020 
§Left testicular hypotrophy (>20% difference between left and right testicular volume 
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Table 5. Baseline characteristics of subjects included in protocol #2. Data entered as median [IQR] 

or mean (SD) as appropriate. 

 Study population 

N 105 
Age (years)  

Median [IQR] 20 [19 – 28] 

Mean (SD) 22.8 (5.427) 

Grade of left varicocele  
Grade 2 27 (25.7%) 

Grade 3 50 (47.6%) 

Grade 4 28 (26.7%) 
Semen analysis  

Volume (ml) 3.20 [2.5 – 4] 

pH 7.40 [7.30 – 7.50] 
Sperm concentration per ml (x106) 56.5 [30 – 81.2] 

Total sperm concentration (x106) 180.8 [98.1 – 272.2] 

Progressive motility (%) 50 [40 – 55] 

Atypical morphology (%) 79.5 [76 – 85] 
Endocrine parameters  

FSH (mIU/mL) 2.76 [2.07 – 3.91] 

LH (mIU/mL) 3.08 [2.48 – 4.03] 
E2 (pg/mL) 27.1 [21.2 – 33.0] 

Inhibin B (pg/mL) 144 [106 – 176] 

Total testosterone (nmol/L) 22.4 [18.6 – 26.4] 
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Table 6. Subjects included in protocol #2: comparison between baseline parameters of testicular 

endocrine and spermatogenetic function. Welch two sample t-test used for numeric variables; 

Pearson’s chi-squared test used for categorical variables. 

 LTH§: No LTH§: Yes P 

N 81 24  
Age (years)    

Median [IQR] 20 [19 – 28] 20 [19 – 26.8]  

Mean (SD) 22.8 (5.58) 23.0 (4.98) 0.6411 
Grade of left varicocele    

Grade 2 21 (25.9%) 6 (25%) 

0.9629 Grade 3 38 (46.9%) 12 (50%) 

Grade 4 22 (27.2%) 6 (25%) 
Semen analysis    

Volume (ml) 3.35 [2.5 – 4.0] 3.05 [2.65 – 3.4] 0.0804 

pH 7.40 [7.40 – 7.50] 7.35 [7.3 – 7.47] 0.0504 
Sperm concentration per ml (x106) 53.5 [30.5 – 77.8] 68.5 [31 – 110] 0.1895 

Total sperm concentration (x106) 173 [92.4 – 270.7] 204 [113.2 – 321.1] 0.3529 

Progressive motility (%) 50 [40 – 55] 50 [40 – 55] 0.8562 

Atypical morphology (%) 80 [76.5 – 85] 78.5 [74 – 85.8] 0.7417 
Endocrine parameters    

FSH (mIU/mL) 2.87 [2.05 – 3.93] 2.58 [2.13 – 3.48] 0.7838 

LH (mIU/mL) 3.00 [2.39 – 3.60] 3.23 [2.73 – 4.84] 0.1795 
E2 (pg/mL) 27.0 [21.5 – 31.0] 31 [19.5 – 38.5] 0.2934 

Inhibin B (pg/mL) 148 [110.5 – 187.2] 127 [105 – 147.5] 0.0493 

Total testosterone (nmol/L) 21.5 [18.3 – 26.2] 23.8 [21.9 – 26.9] 0.4318 
§Left testicular hypotrophy (>20% difference between left and right testicular volume) 
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Table 7. Robust linear regression model for semen volume at baseline. 

 β SE P 
(Intercept) 2.923 0.818 0.0005 

Baseline left testicular volume (ml) 0.032 0.041 0.4475 

LTH§ (yes) -0.119 1.69 0.9429 

Age at intervention (years) -0.004 0.024 0.8536 

LTH§ (yes): baseline left testicular volume (ml) -0.005 0.117 0.9655 
§Left testicular hypotrophy (>20% difference between left and right testicular volume) 

 

Table 8. Robust linear regression model for sperm concentration (per ml) at baseline. 

 β SE P 
(Intercept) 62.724 26.548 0.0208 

Baseline left testicular volume (ml) 0.681 1.335 0.6111 

LTH§ (yes) -132.676 54.878 0.0233 

Age at intervention (years) -0.804 0.775 0.2979 

LTH§ (yes): baseline left testicular volume (ml) 10.832 3.802 0.0082 
§Left testicular hypotrophy (>20% difference between left and right testicular volume) 

 

Table 9. Robust linear regression model for total sperm concentration at baseline. 

 β SE P 
(Intercept) 177.751 83.641 0.0402 

Baseline left testicular volume (ml) 4.216 4.206 0.3276 

LTH§ (yes) -287.389 172.893 0.1022 

Age at intervention (years) -2.683 2.443 0.2726 

LTH§ (yes): baseline left testicular volume (ml) 23.802 11.979 0.0512 
§Left testicular hypotrophy (>20% difference between left and right testicular volume)   



 36 

Table 10. Robust linear regression model for progressive motility at baseline. 

 β SE P 
(Intercept) 56.969 7.828 0.0001 

Baseline left testicular volume (ml) 0.237 0.393 0.5473 

LTH§ (yes) -14.136 16.152 0.387 

Age at intervention (years) -0.628 0.23 0.0075 

LTH§ (yes): baseline left testicular volume (ml) 1.048 1.122 0.3545 
§Left testicular hypotrophy (>20% difference between left and right testicular volume) 

 

Table 11. Robust linear regression model for atypical morphology at baseline. 

 β SE P 
(Intercept) 84.08 4.51 0.0001 

Baseline left testicular volume (ml) -0.152 0.227 0.5017 

LTH§ (yes) 11.396 9.322 0.2169 

Age at intervention (years) -0.054 0.132 0.683 

LTH§ (yes): baseline left testicular volume (ml) -0.912 0.646 0.1537 
§Left testicular hypotrophy (>20% difference between left and right testicular volume) 

 

Table 12. Robust linear regression model for serum FSH at baseline. 

 β SE P 
(Intercept) 2.97 0.932 0.0022 

Baseline left testicular volume (ml) -0.071 0.049 0.1449 

LTH§ (yes) 0.193 1.915 0.922 

Age at intervention (years) 0.049 0.029 0.1022 

LTH§ (yes): baseline left testicular volume (ml) -0.039 0.132 0.7769 
§Left testicular hypotrophy (>20% difference between left and right testicular volume) 
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Table 13. Robust linear regression model for serum LH at baseline. 

 β SE P 
(Intercept) 3.59 0.768 0.0001 

Baseline left testicular volume (ml) -0.034 0.041 0.4027 

LTH§ (yes) 1.776 1.601 0.264 

Age at intervention (years) 0.003 0.024 0.9093 

LTH§ (yes): baseline left testicular volume (ml) -0.09 0.11 0.4061 
§Left testicular hypotrophy (>20% difference between left and right testicular volume) 

 

Table 14. Robust linear regression model for serum inhibin B at baseline. 

 β SE P 
(Intercept) 81.966 35.052 0.0211 

Baseline left testicular volume (ml) 6.342 1.711 0.0003 

LTH§ (yes) 79.309 67.695 0.2478 

Age at intervention (years) -1.568 1.097 0.1534 

LTH§ (yes): baseline left testicular volume (ml) -6.333 4.649 0.1793 
§Left testicular hypotrophy (>20% difference between left and right testicular volume) 

 

Table 15. Robust linear regression model for serum total testosterone at baseline. 

 β SE P 
(Intercept) 20.087 3.794 0.0001 

Baseline left testicular volume (ml) 0.088 0.202 0.666 

LTH§ (yes) 5.878 7.972 0.4699 

Age at intervention (years) 0.033 0.12 0.7824 

LTH§ (yes): baseline left testicular volume (ml) -0.271 0.546 0.6235 
§Left testicular hypotrophy (>20% difference between left and right testicular volume) 
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Table 16. Robust linear regression model for serum total estradiol at baseline. 

 β SE P 
(Intercept) 25.81 7.14 0.0006 

Baseline left testicular volume (ml) -0.123 0.384 0.7491 

LTH§ (yes) -5.926 14.518 0.6846 

Age at intervention (years) 0.119 0.231 0.6081 

LTH§ (yes): baseline left testicular volume (ml) 0.595 0.985 0.5466 
§Left testicular hypotrophy (>20% difference between left and right testicular volume) 

 

Table 17. Robust linear regression model for serum FSH at baseline, adjusted for serum baseline 

inhibin B. 

 β SE P 
(Intercept) 3.436 0.895 0.0003 

Baseline left testicular volume (ml) -0.047 0.045 0.2953 

LTH§ (yes) 0.537 1.651 0.7526 

Age at intervention (years) 0.047 0.028 0.0966 

Serum baseline inhibin B (pg/mL) -0.005 0.002 0.0273 

LTH§ (yes): baseline left testicular volume (ml) -0.084 0.114 0.480 
§Left testicular hypotrophy (>20% difference between left and right testicular volume) 
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Table 18. Subjects included in protocol #3: comparison between baseline and end-of-follow-up 

parameters of testicular endocrine and spermatogenetic function. Data expressed as median [IQR]. 

Welch two sample t-test used for numeric variables. 

 Baseline End of follow-up P 

Semen analysis    
Volume (ml) 3.2 [2.5 – 4] 3 [2.5 – 3.95] 0.574 

Sperm concentration per ml (x106) 58 [30 – 87.5] 65.5 [37.8 – 95] 0.314 

Total sperm concentration (x106) 176 [92.4 – 273] 200 [140 – 280] 0.327 
Progressive motility (%) 50 [35 – 55] 50 [40 – 55] 0.322 

Atypical morphology (%) 80 [75 – 85] 79.5 [77 – 87] 0.41 

Endocrine parameters    

FSH (mIU/mL) 2.73 [2.02 – 3.92] 2.64 [1.92 – 3.68] 0.857 
LH (mIU/mL) 3.03[2.46 – 3.58] 3.07 [2.18 – 4.08] 0.737 

E2 (pg/mL) 28 [20 – 34] 27 [22 – 33] 0.338 

Inhibin B (pg/mL) 144 [109 – 170] 165 [142 – 199] 0.005 
Total testosterone (nmol/L) 22.4 [18.3 – 26.0] 23.9 [19 – 26.8] 0.469 

§Left testicular hypotrophy (>20% difference between left and right testicular volume) 

 

Table 19. Robust linear regression model for semen volume during follow-up. 

 β SE P 
(Intercept) 1.952 0.861 0.027 

Baseline left testicular volume (ml) 0.444 0.083 0.001 

LTH§ (yes) -0.384 0.329 0.248 

Left testicular volume change (+1 ml) -0.017 0.065 0.791 

Age at intervention (years) 0.003 0.029 0.920 

Grade of left varicocele    

Grade 2 Ref.   

Grade 3 -0.249 0.343 0.470 

Grade 4 -0.141 0.382 0.712 
§Left testicular hypotrophy (>20% difference between left and right testicular volume) 
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Table 20. Robust linear regression model for sperm concentration (per ml) during follow-up. 

 β SE P 
(Intercept) 17.015 33.801 0.617 

Baseline sperm concentration (106/ml) 0.726 0.115 0.001 

LTH§ (yes) 0.756 13.638 0.956 

Left testicular volume change (+1 ml) 0.245 2.671 0.927 

Age at intervention (years) 0.43 1.179 0.717 

Grade of left varicocele    

Grade 2 Ref.   

Grade 3 -1.224 14.46 0.933 

Grade 4 3.512 16.104 0.828 
§Left testicular hypotrophy (>20% difference between left and right testicular volume) 

 

Table 21. Robust linear regression model for total sperm concentration during follow-up. 

 β SE P 
(Intercept) 38.365 123.278 0.757 

Baseline total sperm concentration (106) 0.633 0.144 0.001 

LTH§ (yes) 7.207 49.706 0.885 

Left testicular volume change (+1 ml) 2.398 9.694 0.806 

Age at intervention (years) 1.849 4.295 0.669 

Grade of left varicocele    

Grade 2 Ref.   

Grade 3 25.6 52.294 0.626 

Grade 4 34.755 59.208 0.56 
§Left testicular hypotrophy (>20% difference between left and right testicular volume)  
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Table 22. Robust linear regression model for sperm progressive motility during follow-up. 

 β SE P 
(Intercept) 18.08 7.588 0.021 

Baseline sperm progressive motility (%) 0.646 0.075 0.001 

LTH§ (yes) 7.458 2.672 0.007 

Left testicular volume change (+1 ml) -0.271 0.528 0.61 

Age at intervention (years) -0.062 0.238 0.795 

Grade of left varicocele    

Grade 2 Ref.   

Grade 3 2.554 2.892 0.381 

Grade 4 -1.388 3.194 0.665 
§Left testicular hypotrophy (>20% difference between left and right testicular volume) 

 

Table 23. Robust linear regression model for atypical morphology during follow-up. 

 β SE P 
(Intercept) 44.173 8.275 0.001 

Baseline atypical morphology (%) 0.514 0.084 0.001 

LTH§ (yes) -1.095 1.526 0.476 

Left testicular volume change (+1 ml) -0.009 0.295 0.976 

Age at intervention (years) -0.056 0.13 0.667 

Grade of left varicocele    

Grade 2 Ref.   

Grade 3 -3.721 1.604 0.024 

Grade 4 -3.644 1.82 0.035 
§Left testicular hypotrophy (>20% difference between left and right testicular volume) 
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Table 24. Robust linear regression model for serum FSH during follow-up. 

 β SE P 
(Intercept) -3.66 1.245 0.005 

Baseline serum FSH (mUI/mL) 0.804 0.11 0.001 

LTH§ (yes) -0.687 0.453 0.136 

Left testicular volume change (+1 ml) 0.2 0.102 0.055 

Age at intervention (years) 0.163 0.044 0.001 

Grade of left varicocele    

Grade 2 Ref.   

Grade 3 0.632 0.467 0.183 

Grade 4 1.181 0.508 0.025 
§Left testicular hypotrophy (>20% difference between left and right testicular volume) 

 

Table 25. Robust linear regression model for serum LH during follow-up. 
 
 β SE P 
(Intercept) 0.384 1.331 0.774 

Baseline serum LH (mUI/mL) 0.514 0.136 0.001 

LTH§ (yes) -0.355 0.419 0.401 

Left testicular volume change (+1 ml) 0.1 0.097 0.309 

Age at intervention (years) 0.034 0.041 0.411 

Grade of left varicocele    

Grade 2 Ref.   

Grade 3 0.274 0.428 0.524 

Grade 4 0.892 0.472 0.065 
§Left testicular hypotrophy (>20% difference between left and right testicular volume) 
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Table 26. Robust linear regression model for serum inhibin B during follow-up. 

 β SE P 
(Intercept) 129.23 48.631 0.011 

Baseline serum inhibin B (pg/ml) 0.567 0.104 0.001 

LTH§ (yes) -9.89 16.053 0.541 

Left testicular volume change (+1 ml) 6.275 3.893 0.115 

Age at intervention (years) -1.938 1.819 0.293 

Grade of left varicocele    

Grade 2 Ref.   

Grade 3 -6.636 17.158 0.701 

Grade 4 -8.582 20.944 0.684 
§Left testicular hypotrophy (>20% difference between left and right testicular volume) 

 

Table 27. Robust linear regression model for serum inhibin B during follow-up, adjusted for 

increase in serum FSH. 

 β SE P 
(Intercept) 117.908 45.19 0.013 

Baseline serum inhibin B (pg/ml) 0.607 0.094 0.001 

LTH§ (yes) -15.942 13.717 0.257 

Left testicular volume change (+1 ml) 3.402 3.366 0.321 

FSH change (+1 mUI/mL) 34.2 11.749 0.008 

Age at intervention (years) -1.568 1.629 0.335 

Grade of left varicocele    

Grade 2 Ref.   

Grade 3 -2.959 14.74 0.842 

Grade 4 -3.94 17.98 0.828 
§Left testicular hypotrophy (>20% difference between left and right testicular volume) 
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Table 28. Robust linear regression model for serum total testosterone during follow-up. 

 β SE P 
(Intercept) 6.872 5.487 0.217 

Baseline serum testosterone (nmol/L) 0.591 0.115 0.001 

LTH§ (yes) 3.346 1.779 0.066 

Left testicular volume change (+1 ml) 0.299 0.391 0.448 

Age at intervention (years) 0.031 0.167 0.853 

Grade of left varicocele    

Grade 2 Ref.   

Grade 3 2.384 1.802 0.192 

Grade 4 1.694 2.066 0.416 
§Left testicular hypotrophy (>20% difference between left and right testicular volume) 

 
Table 29. Robust linear regression model for serum total estradiol during follow-up. 

 β SE P 
(Intercept) 28.183 11.053 0.015 

Baseline serum estradiol (pg/mL) 0.151 0.146 0.309 

LTH§ (yes) 3.64 3.623 0.321 

Left testicular volume change (+1 ml) 0.004 0.848 0.996 

Age at intervention (years) -0.063 0.364 0.863 

Grade of left varicocele    

Grade 2 Ref.   

Grade 3 -2.579 3.769 0.498 

Grade 4 -6.062 3.857 0.124 
§Left testicular hypotrophy (>20% difference between left and right testicular volume) 
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Table 30. Reference values for AMH and INSL3 by age. Adapted from Edelsztein et al [13] and 

Ferlin et al [88]. 

Age Serum AMH Serum INSL3 
pmol/l ng/ml pg/ml 

<14 days 250–1000 35–140 - 
15 days – 6 months 400–1500 55–210 - 
6 months – 2 years 600–2300 85–320 - 
2–9 years 400–1800 55–250 - 
9–18 years:    
   Tanner 1 250–1400 35–200 10.3–19.8 
   Tanner 2 70–1000 10–140 30.6–43.7 
   Tanner 3 30–400 4–55 74.3–92.8 
   Tanner 4 30–160 4–22 85.5–150.0 
   Tanner 5 30–150 4–21 100.1–145.8 
Adults 25–130 3–18 493.1–643.5 
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Figure 1. Flowchart detailing the process of patient retrieval from our electronic database. Several 

patients had more than one condition affecting testicular volume. 
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Figure 2. Histogram detailing age distribution in the study population (n = 114).  
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Figure 3. Changes in left testicular volume following percutaneous treatment of left varicocele. 

Each line represents a single patient; the red line describes the mean. 
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Figure 4. Graphical representation of changes in left testicular volume following percutaneous 

treatment of left varicocele in patients with left testicular hypotrophy. Boxplots describe the median 

and interquartile range; the red dot is the mean. Wilcoxon rank-sum test was used to assess the 

statistical difference between the means. 
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Figure 5. Testicular endocrine function before and after testicular maturity. 
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Supplementary Table 1. Ultrasound classification of varicocele according to the Ultrasound of the 

Testis for the Andrologist – Morphological and Functional Atlas [17]. Modified with permission of 

the Authors. 

  
Revisited classification 

(Dubin-Solbiati) 

Corresponding 

to Dubin 

 B-Mode Reflux  

Grade 1 
Dilated vessel (>2.5 mm) in 

inguinal region only 

Inguinal reflux only during 

Valsalva manoeuvre (lasting 

2–3 s) 
Grade 1 

Grade 2 
Supra-testicular vessel 

dilation (>3 mm) 

Supra-testicular reflux only 

during Valsalva manoeuvre, 

lasting more than 3 s  

Grade 3 
Supra- and peritesticular 

vessel dilation (>3 mm) 

Supra- and peritesticular 

reflux at rest which increases 

during Valsalva manoeuvre, 

lasting more than 3 s  

Grade 2 

Grade 4 

Peritesticular vessel dilation 

with further dilation during 

functional manoeuvre, 

testicular hypotrophy 

Peritesticular reflux at rest 

which may or may not 

increase during Valsalva 

manoeuvre 

Grade 3 

Grade 5 

Peritesticular vessel dilation 

that does not increase with 

functional manoeuvre or 

intratesticular vessels and 

testicular hypotrophy 

Peritesticular reflux at rest 

which increases minimally 

during Valsalva manoeuvre 

or dilated intratesticular 

vessels which refill with 

Valsalva manoeuvre 
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