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Abstract

Network data are any relational data recorded among a group of individuals,
the nodes. When multiple relations are recorded among the same set of nodes, a
more complex object arises, which we refer to as “multidimensional network”, or
“multiplex”, where different relations corresponding to different networks.
In the past, statistical analysis of networks has mainly focused on single-relation
network data, referring to a single relation of interest. Only in recent years statistical
models specifically tailored for multiplex data begun to be developed. In this context,
only a few works have been introduced in the literature with the aim at extending
the latent space modeling framework to multiplex data. Such framework postulates
that nodes may be characterized by latent positions in a p-dimensional Euclidean
space and that the presence/absence of an edge between any two nodes depends
on such positions. When considering multidimensional network data, latent space
models can help capture the associations between the nodes and summarize the
observed structure in the different networks composing a multiplex.
This dissertation discusses some latent space models for multidimensional network
data, to account for different features that observed multiplex data may present.
A first proposal allows to jointly represent the different networks into a single
latent space, so that average similarities between the nodes may be captured as
proximities in such space. A second work introduces a class of latent space models
with node-specific effects, in order to deal with different degrees of heterogeneity
within and between networks in multiplex data, corresponding to different types
of node-specific behaviours. A third work addresses the issue of clustering of the
nodes in the latent space, a frequently observed feature in many real world network
and multidimensional network data. Here, clusters of nodes in the latent space
correspond to communities of nodes in the multiplex.
The proposed models are illustrated both via simulation studies and real world
applications, to study their perfomances and abilities.
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Chapter 1

Introduction

In the last decades, statisticians showed an increasing interest raised in the
analysis of network data, and a large variety of models has been developed for this
task. In the beginning, network analysis was deeply linked with social network
analysis, as first network data were collected and analysed by quantitative social
scientists (Jacob Moreno and Helen Jennings, 1930). Nowadays, network data
come from many other different fields: biology, telecommunications, economic and
behavioural sciences, and so on. While first models focused mainly on studying global
network properties and network summary statistics behaviour, more recent ones
have also migrated to the analysis of single relationships. Indeed, many modelling
techniques have been proposed: from visualization to link prediction, a lot of different
approaches have been developed. In particular, recent developments in network
analysis focused on feasible representations of the complex dependency structure
present in network data, by means of latent variables. Also, in the last years
statisticians started to focus on more complex types of network data, as for example
networks arising from different measurements or measurements repeated trough time
on the same sample of units. Such data are called multidimensional network data,
and their study is a flourishing area in network analysis.
The purpose of this chapter is to introduce the reader to the main concepts in
network analysis and, in particular, in latent variable models for network data. First,
basic notation that will be used throughout the dissertation will be introduced,
together with a description of some well known and widely used exploratory and
summary statistics to characterize observed networks. Then, we will introduce some
of the first approaches proposed in the literature to network data, that have paved
the way to modern network analysis. Last, we will discuss latent space models for
network data, their principal forms and main assumptions. The final part of this
chapter will give a brief summary of the dissertation structure.

1.1 Single and multidimensional networks

Any relational data observed for a group of units form a network. As networks
can be represented by means of graph theory, units in the data are often referred to
as nodes. Any relation that exists between any two nodes is represented by an edge
linking the pair (referred to as a dyad). More formally, we may represent a network
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as the realization of a random graph G:

G = (V,E),

where V is the set of the nodes and E that of the edges. We will denote the
cardinality of V by n, which is the number of nodes, indexed by i, j = 1, . . . , n. A
general edge may be denoted by eij .
Depending on the type of relation being recorded, the set of edges may be charac-
terized in different ways. One major distinction is whether the edges are valued or
not:

• Binary edges appear when the relation that is being measured can either
be present or not. Therefore, an edge is present between two nodes if the
relation is present, otherwise it is not. A typical example of binary edges could
be that of a network where a group of people, the nodes, are asked to state
whether or not they consider other units in the sample as friend; a declaration
of friendship would correspond to an edge. A network having binary edges
is called binary network and may be represented via an adjacency matrix Y,
with dimension n× n and general element

yi,j =
{

1 if an edge exists between node i and j,
0 else.

• Weighted edges, instead, arise when the relation being recorded is valued.
In this context, what is of interest is the strength of the relation between the
nodes, represented by the values associated with the edges. Depending on what
is being measured, the weights may be discrete or continuous, positive, negative
or both. A typical example would be that of telephone networks. Suppose
that, for the same group of people in the previous example, we recorded the
number of calls between any two of them in a given period of time. Here, the
strength of the relation between two nodes is represented by the number of
phone calls they made: the higher, the grater. Of course, if a dyad (i, j) does
not have any phone call, the weight associated with the corresponding edge is
0. A network with weighted edges is called weighted network.

The presence of an edge between a dyad (a couple of nodes), or the potential weight
associated with it, does not tell the whole story. Indeed, it may be relevant to
check whether the presence of an edge between nodes (i, j) is accompanied with the
presence of an edge between (j, i). Indeed, edges may have a direction, as not all
relations are reciprocal, and we can distinguish them in:

• Undirected edges, when the relation is reciprocal. For example, if one was
recording kinships among a group of people in a village, the fact that person i
is related with j implies that also j is related with i. This reciprocity is called
symmetry and network exhibiting such characteristic are called symmetric
networks.
Similar to symmetry is the reflexivity property. This indicates a node that
interacts with itself, that is, yii = 1 in binary networks or a non null weight
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associated with eii in weighted networks. Such a property may be observed in
some biological networks, for example in protein-protein interaction networks,
but is quite rare in social network data.

• Directed edges represent relations which potentially have a direction. For
example, a friendship network may have directed edges, as the fact that node i
thinks that j is a friend does not imply the opposite. A network with directed
edges is called asymmetrical.
For asymmetrical networks, it may be of interest to consider the number of
mutual edges between dyads, that is ∑i<j yijyji. The presence of an high
quantity of mutual links in asymmetrical networks would denote that most of
the dyads exhibit some reciprocity, on the opposite, a low mutuality would
denote a low value, or the absence, of reciprocity.

From this moment on, in this introduction, we will focus on binary networks, as the
present thesis develops model for such type of network data. For a richer review of
weighted networks, see for example Wasserman and Faust, 1994.
Note that, potentially, a network with n nodes may have a maximum number of
edges equal to n2, if the network is reflexive, or a maximum of n(n− 1) edges if it is
not. A non-reflexive network can be either{

dense or complete if ∑n
i=1

∑n
j≤i yij = n(n− 1),

sparse if ∑n
i=1

∑n
j≤i yij < n(n− 1).

However, complete networks are quite hard to encounter in practice and, therefore,
are usually of low interest. In general, a binary network may be called dense if
almost all the entries of the corresponding adjacency matrix are 1 and sparse when,
on the opposite, almost all of them are 0. An index of sparsity is the density, which
computes the ratio between the number of observed edges and the maximum possible
number of edges in a network; values of this index close to 0 denote sparsity, while
values close to 1 indicate a dense network.
At a more local level, the number of edges corresponding to each node is a first
indicator of how nodes interact with each other; this behaviour may be captured by
looking at the nodes’sdegree. The degree d(i) of node i basically counts how many
edges are incident with it. In symmetric networks, it may be defined equivalently
either looking at the columns or at the rows of the network adjacency matrix Y:

d(i) =
n∑
j=1

yij =
n∑
j=1

yji.

Instead, in asymmetric matrix, rows and columns convey different informations
regarding the behaviour of a node. By convention, we will state that a given row
i collects edges going out of node i, edges that node i is sending, while column i
collects edges entering node i, which the node is receiving. Then, we might define
the out-degree dout(i) and the in-degree din(i) of node i as:

dout(i) =
n∑
j=1

yij , din(i) =
n∑
j=1

yji.
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Different network data may have different degree distributions din(i), dout(i),
i = 1, . . . , n, which can be used to characterize the network. For example, some
networks may have homogeneous degree distributions, with all degrees having similar
values. Other networks may have a small group of nodes with an high degree and
the rest with only a few connections.

a c

d b

Figure 1.1. Graphical example of asymmetrical binary network, with 4 nodes and 5 edges.

Figure 1.1 provides an example of a network, which has n = 4 nodes and 6 directed
edges. In this example, the in-degrees and out-degrees distributions are mostly inho-
mogeneous, with dout(a) = 3, dout(b) = 2, dout(c) = 1, dout(d) = 0 and din(a) = 0,
din(b) = 1, din(c) = 2, din(d) = 3. Node a is the most active of the 4, with an
out-degree of 3, but it is not popular at all, as the in-degree is null. The concepts of
popularity and of activity, referred to the propensity of nodes to receive/send many
links, will be further discussed in the next section and in Chapter 2, as a way to
characterize the individual nodes behaviours.
Notice that one may not only look at dyadic relations, but at higher order ones
as well; triangles, for example, are configurations arising when a group of three
nodes (i, j, l) are all interacting with one another. The number and position of
the edges may also be used to define other summary statistics, as for example
centrality statistics, denoting the importance of each node in a network, in terms
of its relevance in determining the observed structure. For different definitions of
centrality, network statistics and other basic characterization of network data we
refer to Salter-Townshend et al., 2012 and Wasserman and Faust, 1994.

1.1.1 Multidimensional networks

The type of network data we have defined in the previous section is the most
simple one, where a single relation is recorded among a same group of nodes. However,
sometimes it may be the case that multiple relations are recorded among the same
group of nodes. Then, the corresponding network is referred to as multidimensional
network or multiplex. A binary multidimensional network may be represented by
a collection of adjacency matrices Y = {Y(1), . . . ,Y(K)}, with k = 1, . . . ,K. The
index k denotes the kth relation recorded on the n nodes, represented by the kth

network, or view. The kth adjacency matrix has general entry

y
(k)
i,j =

{
1 if an edge exists between node i and j in the kth network,
0 if not.
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a c

d b

a c

d b

a c

d b

k = 1 k = 2 k = 3

Figure 1.2. Graphical example of an asymmetrical binary multidimensional network, with
4 nodes and 3 views.

The summary statistics defined in the previous section for single network data may
be computed for the views of a multiplex as well. Also, the same characterization in
terms of types of edges and relations, binary, weighted, etc., still holds. Figure 1.2
represents, as an example, an asymmetrical binary multidimensional network, with 4
nodes and 3 views. These 3 networks could correspond, for example, to data collected
among 4 people working together, who were asked whether they were friends (k = 1),
if they worked well together (k = 2) and if they considered another person reliable
(k = 3). As it can be seen from the picture, different relations correspond to different
configurations in the views. Thus, multidimensional networks convey a variable
information regarding the nodes of interest. The different views, when analysed all
together, may bring interesting insights on the relational structure among the nodes,
not captured by the analyses of the single networks alone. Indeed, in the previous
example, if the research question was how do the co-workers interact?, considering
jointly the different relations would give a richer picture on the interactions. Also,
when the number of observed networks increases, analysing the multiplex as a single
object may be a more parsimonious approach, when compared to K separate single
network analyses.
A particular case of multidimensional network is represented by dynamic networks,
which are defined by the recording of the same relation trough time, over the same
set of nodes. One example could be that of a class of students, followed from the
first year of studies until the last one, recording friendship relationships each year.
As students spend more time together, new friendships may begin and old ones may
end; analysing such an evolution may be of interest.

Until now, we have introduced some basics concepts and definitions regarding
single and multidimensional network data. In the following section, we will discuss
some of the main tasks arising when attempting to model such data. Further, we
will briefly present the classical models developed for network data, their purposes,
characteristics and limitations.

1.2 Models for network data

As mentioned before, network data record relations among a group of units,
the nodes, and, for modelling purposes, an observed network may be assumed to
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be the realization of a random graph. Hence, to better understand networks, one
may aim at reconstructing the process that lead to their observed realizations. In
other words, one may aim at modelling the edge probabilities pij underlying a given
network Y, that is, the probabilities of observing an edge between nodes (i, j),
i, j = 1, . . . , n. Do edges probabilities depend on the dyad or are they constant over
the whole network? Is there a node that has a higher probability than others to
send links? What do these probabilities depend on? These questions, and many
others, drove the definition of different stochastic models for network data, with
different aims and hypotheses. As in other branches of statistics, there is no “true”
model to analyse network data; the choice among competing models mainly depends
on the purposes of the analysis, and, of course, the data at hand. A factor that
may determine the choice of a particular model is its computational complexity.
Network data are high dimensional by nature, as, for example, even a “small”, non
reflexive, network with “only” n = 50 nodes, has potentially 50(50− 1) = 2450 edges;
the computational burden increases quadratically with the number of nodes, which
sometimes makes complex models unfeasible. Also, with multidimensional networks
the computational complexity is additionally increased by the extra dimension given
by the number of views. On the other hand, another task arising with network data
is that such complex objects may be the realisations of highly dependent random
variables. Therefore, simple models may prove unable to represent network data,
and more sophisticated representations should be considered. This trade-off between
faithful representation and feasible estimation is a key issue when dealing with
network data. Below, we will provide a synthetic summary of the main classes of
models developed in network analysis to model edge probabilities and briefly discuss
them. We may consider:

• Erdös-Rényi model. Proposed by the homonymous authors in 1959 (Erdős
and Rényi, 1959), this first model is the simplest of all, as it assumes inde-
pendent and constant edge probabilities across the network. Although its
simplicity makes it computationally feasible to fit and various theoretical
results regarding it are available, its over simplistic assumptions make it often
inappropriate to describe real world network data. However the Erdös-Rényi
model is still a reference model in network analysis and sometimes it may be
useful to compare different representations from more complex models.

• p1 model. Introduced by Holland and Leinhardt, 1981, this model still
assumes independence between edges, but removes the assumption of constant
edge probabilities. Indeed, it postulates that edge probabilities are function
of some summary statistics (number of nodes, out-/in-degrees and number of
mutual links between dyads) and four types of parameters. Such parameters
capture the base rate for edge probabilities, the sender/receiver propensities of
the nodes, and the level of mutuality in the network. The p1 model introduces
the concepts of sender/receiver propensities of the nodes, in this context
denoted by productivity/attractiveness. Such characterizations have been
later recovered and adapted in different other models, often proving to be
quite useful to feasibly represent nodes individual behaviour in asymmetrical
networks.
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• p2 model. This model is an extension of the p1 model, proposed by Duijn,
Snijders, and Zijlstra, 2004, where sender and receiver effects are modelled as
additive random effects and covariates may be included in the specification
of the model for the edge probabilities. The inclusion of covariates is a
relevant step forward in network analysis, as it allows to explain an observed
network using node-specific external information, other than with the summary
statistics alone. Covariates account for homophily by attributes, that is, nodes
with similar attributes may be more likely to link. However, the selection of
covariates relevant to the analysis may prove to be a difficult task; covariates
alone may not be capable to capture the whole dependence structure underlying
network data.

• p∗ model or ERGM (exponential Random Graph Models). This class of
models represent an extension of Markov Graphs, proposed by Frank and
Strauss, 1986, where it is assumed that possible edges between disjoint pairs
of nodes are assumed to be independent, conditional on the rest of the graph.
Thus, Markov Graphs introduce the idea of conditional independence between
the edges, overcoming the independence hypothesis of previous models. ERGM
builds on Markov Graphs and postulate that edge probabilities are of an
exponential family form, and are also parametric functions of some summary
statistics. A new feature of p∗ models is based on the introduction of a number
of triangles statistic when modelling edge probabilities, as a way to account
for transitivity. Transitivity is a characteristic of many real network data,
which may be expressed as “a friend of mine is a friend of mine”. Higher
order statistics can be considered as well when modelling edge probabilities,
increasing the complexity of the model. Some basic references can be found in
Wasserman and Pattison, 1996 and Robins et al., 2006.

• Latent variable models.This class of models aim at explaining the observed
connections in a network by means of some unobserved, latent variable. In
general, this broad class of models studies edge probabilities via an additional
layer of modelling, that is the layer of the latent variable(s); edges are assumed
to be independent conditional on some parametric function of the latent
variable(s). As in Markov Graphs, the conditional independence assumption
allows to better model the complex structure of network data, while the latent
variable(s) introduces flexibility in the analysis. The two main sub-classes that
have been proposed in the literature are:

– Stochastic Block models. This class of models is an extension of
blockmodelling, a non-stochastic approach for clustering of network data.
Block models assume that a network can be decomposed into a set of G
clusters, C1, . . . , CG. Interactions within and between such clusters can be
explained by a set of blocks, B11, B12, . . . , BGG. In block models, nodes
are assigned to the same cluster if they are equivalent with respect to a
given criterion. Usually, such criterion is determined by some external
source of information, as for example sex in a student network or party
membership in political network data. As node labels may not always
be available, stochastic block models (Holland, Laskey, and Leinhardt,
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1983; Nowicki and Snijders, 2001; Snijders and Nowicki, 1997) treat them
as latent variables. In its basic formulation, two nodes belonging to the
same cluster are considered stochastically equivalent. Edge probabilities
for the dyads (i, j), i, j = 1, . . . , n, are assumed to be conditionally
independent given the cluster membership of the nodes. Stochastic block
models are a valid approach to parsimoniously cluster network data, as
n × n edge probabilities can be summarized by G2 blocks. However,
using such blocks prevents from accounting node-specific variability in
modelling edge probabilities. An extension of such models that introduces
more flexibility in the modelling of edge probabilities is the Mixed
Membership Stochastic Block model by Airoldi et al., 2008. In this
framework, the membership of a node may change with respect to the
nodes it is interacting with.

– Latent Space models. This class of models, introduced by Hoff,
Raftery, and Handcock, 2002, assume that nodes have latent positions in
a p−dimensional Euclidean space. Edge probabilities pij depend on the
latent positions of node i and j, i, j = 1, . . . , n, and edges are assumed to
be independent conditionally on such positions. More specifically, edge
probabilities depend on some function of the latent coordinates, which
is normally assumed to be the Euclidean distance; however, different
specifications may be considered as well. We will discuss the principal
ones in the next section.
As this thesis mainly focuses on latent space models, in the following
section we provide a brief description of the main latent space models
developed for single and multidimensional network data.

1.3 Latent space models
Latent space models, introduced by Hoff, Raftery, and Handcock, 2002, postulate

that edges are independent conditional on some function of the node-specific unknown
positions (coordinates), z1, . . . ,zn, generally assumed to be normally distributed,
in an unobserved p−dimensional Euclidean space. The basic model assumes that
such a function is the Euclidean distance function, d(zi, zj) = dij : nodes close in the
latent space have an high probability to link in the network. Thus, edge probability
is an inverse function of the distance between the nodes in the latent space. This
assumption easily allows to account for reciprocity, as the distance between node
i and j is symmetric. Further, it allows to deal with transitivity, as if node i and
j are close and j is close to node l, then also i and l may be close. The density of
a network is modelled via an intercept parameter which regulates the effect of the
distances in the latent space on the edge probabilities. Also, in most formulations of
the latent space model, edge probabilities are assumed to be a logistic function of
the latent positions and some other parameters. Edge covariates can be included in
the specification too, therefore also homophily by attributes can be accounted for.
Alternatives to the Euclidean distance have been proposed in the literature; in
particular the most relevant ones are:

• Squared Euclidean distance. Proposed by Gollini and Murphy, 2016, this
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function provides with the same latent space representation of the network
as that of the Euclidean distance. However, the squared Euclidean distance,
d2
ij , allows to heavily penalize those edge probabilities corresponding to great

distances in the latent space and less those corresponding to small distances.
Such feature may prove to be useful when performing inference on the latent
coordinates, as it allows to better discriminate between close and far positions.

• Projection model. This latent space model was proposed by Hoff, Raftery,
and Handcock, 2002 as an alternative to the distance model. It postulates
that edge probabilities pij , i, j = 1, . . . , n, are a function of the ratio of the
inner product between the latent coordinates zi and zj to the norm of either
zi and zj . When the interest is in modelling the edge receiving propensity
of each node, it is assumed that pij ∝ z′izj/‖zj‖, instead, when the interest
is in modelling the edge sending propensity, pij ∝ z′izj/‖zi‖. While distance
based latent space models produce symmetric edge probability matrices, the
projection model does not, as node-specific effects ‖zi‖ regulate the impact
of the latent distances in the edge probabilities. Thus, this model accounts
for something similar to sender or receiver effects, but it does not allow to
separate the interpretation of such effects from that of the inner product of
the latent coordinates. The inner product, which is symmetric, may account
for reciprocity in network data.

• Multiplicative model. The multiplicative latent space model, introduced by
Hoff, 2005, assumes that edge probability are a function of the inner product
of the latent coordinates, as well as of other network parameters. As the inner
product between coordinates zi and zj depends on their distances from the
origin of the space, a latent space representation arising from a multiplicative
model has different interpretation from that of the Euclidean distance model.
As an example, we report in Figure 1.3 a latent space representation, with
p = 2, of a network with n = 4 nodes. By graphical inspection, we may derive
that z1 and z2 are exactly as close as z3 and z4; indeed, d(1, 2) = d(3, 4) = 1.41.
In Euclidean distance latent space model we may interpret this equal closeness
as an equal degree of similarity between the dyads (1, 2) and (3, 4). However,
such an interpretation would not be correct in the multiplicative model as
z′1z2 = 2.75 6= z′3z4 = 5.75. Latent coordinates z3 and z4 are further from the
origin then z1 and z2, and thus the dyads (1, 2) and (3, 4) interact differently.
Hence, when the aim is at representing node similarities in the latent space,
distance models seem to be providing with a more easily interpretable solution.
Also, the coordinates of nodes 3 and 4, z3 and z4, are equidistant from that of
nodes 1 and 2. Indeed, the Euclidean distances, d(1, 3) = d(1, 4) = 1.58 and
d(2, 3) = d(2, 4) = 2.92, capture it and give the idea that node 3 and 4 interact
in the same way with node 1 and node 2. This same interpretation does not
hold with a multiplicative latent space model, as, for example, node 3 has an
higher probability to interact with node 1 than node 4, as z′1z3 = 5.00 while
z′1z4 = 2.50.
A feature of the multiplicative model is that it guarantees, via the inner
product, that, given any three nodes i, j, l with latent coordinates zi, zj , zl,
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either sign(z′izj) = sign(z′jzl) = sign(z′lzi) = 1, or sign(z′izj) = 1 and
sign(z′jzl) = sign(z′lzi) = 0, where 1 denotes positive sign and 0 negative
sign. Such feature enforces a strong notion of transitivity in the latent space.
Indeed, given any node i, any two nodes (j, l) interacting with it have to
interact between themselves with a behaviour dictated by node i. For example,
if node i “relates” with both nodes j and l, then nodes j and l should relate as
well. The allowed relationships are of the form “a friend of mine is a friend of
mine” and “an enemy of a friend of mine is my enemy”. The configuration “an
enemy of a friend of mine is a friend of mine” can not be represented. Instead,
the distance model poses no explicit restriction on the relation between the
distances between any three points, other than the usual triangular inequality,
d(i, j) ≤ d(i, l) + d(l, j).
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Figure 1.3. Two examples of a latent space representation of a network.

• Latent space models based on ultrametrics. Schweinberger and Snijders, 2003
consider a latent space build on an ultrametric. The ultrametric imposes
stronger relations between the nodes than those imposed by the Euclidean
distance. In particular, given a function d(·) and two nodes i, j, we have that
d(i, j) ≤ max[d(i, l), d(l, j)] ≤ d(i, l) + d(l, j), for any other node l. The first,
more restrictive, bound is encountered when the function is an ultrametric, the
second when it is a metric (as it is the case with the Euclidean distance). In
particular, the ultrametric condition implies that all the triangles are isosceles;
there could not be all different values of the ultrametric function computed
between any dyads, and this corresponds to at least two equal edge probabilities
pij , plr.
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Due to the complex structure of network data, latent space models for networks
have been always estimated within a Bayesian framework by adopting a Gaussian
representation for the latent coordinates. The two main approaches are standard
MCMC algorithms, which usually provide faithful estimates but have potentially
long computational times, and variational Bayes algorithm, whose estimation is quite
fast but often suffers from numerical instability problems. The trade-off between
feasible computational times and reliability of the estimates is crucial and should
always be considered when choosing the inferential approach to be used for model
estimation.

1.3.1 Latent space models for multidimensional networks

A couple of decades ago, analysing multidimensional network data corresponded
to find a way to aggregate the views into a single one, and then analyse the
“collapsed” network with standard models available for single networks. Some well
known datasets in single networks literature, as for example the “Zachary karate
club” dataset, are the result of such an “aggregation”. After these first attempts
in multiplexes modelling, models specifically designed to deal with multiple views
have been developed. In particular, in the context of latent space models, while the
majority of the models have been designed specifically for single networks, several
latent space models tailored to multidimensional networks have been proposed.
Among such models, a distinction has to be made between latent space models
for multidimensional network data and those for dynamic network data. Indeed,
latent space models for dynamic networks assume temporal dependence between the
networks and aim at capturing the potential evolution of the latent space trough time.
An example is the modelling framework developed by Sarkar and Moore, 2005, later
extended by Sewell and Chen, 2015, where it is assumed that node-specific latent
coordinates evolve trough time, that is through the subsequent networks, following
a first order Markov process. The dynamic component in the data is addressed,
and the latent spaces serve to capture and visualize changes of the interactions
between the nodes through time. The modelling framework proposed by Sewell
and Chen, 2015 is quite flexible and allows also to model, with small adjustments,
weighted network data or clustering tendencies in dynamic network data. Up to our
knowledge, latent space models for dynamic networks with “longer memory” have
not yet been proposed. For a more detailed descriptions of latent space models for
dynamic network data, we refer to Kim et al., 2018.
Differently from dynamic networks, views in multiplex data can not be modelled by
using a predetermined structure; no consequentiality can be assumed between the
networks, and neither any pre-specified association rule. Thus, different aims can be
pursued when modelling multidimensional network data. We may summarize such
aims into, at least, three different questions:

1. How do the nodes interact at a single view level?

2. Are the node-specific behaviours in the networks somehow associated?

3. Is there any common tendency in the node-specific behaviours across the views?
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Depending on the data at hand and the modelling purposes, we may be interested
in only one of the above questions, two of them or all three. Single views node
interactions have usually been modelled via single-network latent spaces. Basic
models as the one proposed by Sweet, Thomas, and Junker, 2013 do not consider any
“higher level” structure beyond the single-network level, but other authors proposed
different ways to address the global node behaviours. One example is that of the
model by Salter-Townshend and McCormick, 2017, which aims at capturing the
associations between single network latent spaces, corresponding to different views
in the multiplex, by means of association parameters defined for each couple of
networks. Such a model can be quite useful when the purpose is to synthetically
capture which views are similar or dissimilar. However, when the number of views
is high, this approach does not provide an easily interpretable insight on the overall
structure underlying the observed multidimensional network. A different approach
has been proposed by Gollini and Murphy, 2016, who proposes to combine the
information coming from different networks assuming that these have been generated
by a joint latent space. Such a framework permits to have a look both at node-
specific coordinates in the single networks and in the global (joint) representation.
For a more detailed description of the model by Gollini and Murphy, 2016, we refer
to the corresponding paper and to Appendix D. Later, single-network latent spaces
are summarized by Durante, Dunson, and Vogelstein, 2017, which assumes that
the K different views have been generated by a mixture of H ≤ K latent spaces.
Motivated by a K = 42 views brain multiplex, such framework may be useful when
the number of networks is quite high. Indeed, as networks are “units” belonging to
the H mixture components, few network-units correspond to a component, and this
could be a too small sample size for a mixture model. All of the above models have
been derived in the context of binary multidimensional network data.
The following section will give an overview of the remaining chapters and appendixes.

1.4 Chapter summaries

Chapter 2 presents an extension of the latent space model by Hoff, Raftery, and
Handcock, 2002 to model multidimensional network data. The proposed model
structure aims to capture shared similarities between the nodes in a single latent
space, when different networks are assumed to be different realizations of a single
underlying phenomenon. The model is used to describe the potential affinities
between competing Countries in the Eurovision Song Contest during the period
1998-2015, with the aim to verify whether the observed votes exchange was influenced
by such affinities.
The contents of Chapter 2 have been developed with Prof. Marco Alfò and Prof.
Thomas Brendan Murphy, and are reported in a paper which has been accepted for
publication in the Annals of Applied Statistics, see D’Angelo, Murphy, and Alfò,
2018. Also, the proposed model structure has been implemented in the R package
spaceNet, available on CRAN (https://CRAN.R-project.org/package=spaceNet).
Chapter 3 introduces a novel class of latent space models for multidimensional network
data analysis, which allows for node-specific effects. A parsimonious representation
of the multiplex may be obtained, as a single latent space is employed to describe

https://CRAN.R-project.org/package=spaceNet 
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the overall shared similarities between the nodes, while asymmetrical node features
are captured by the node-specific effects. Various types of node-specific effects may
be specified, in order to model different degrees of heterogeneity in nodes behaviours,
both within and between networks.
The contents of Chapter 3 have been developed with Prof. Marco Alfò and Prof.
Thomas Brendan Murphy, and are reported in a paper which is currently under first
revision in Social Networks, see D’Angelo, Alfò, and Murphy, 2018.
Chapter 4 presents a latent space model for network and multidimensional network
data, which enables clustering of the nodes in the latent space. Clusters in the latent
space correspond to communities of nodes in the multiplex, with clustering being a
phenomenon which often arise in many observed network data, especially in social
networks. Clustering structures are modelled using an infinite mixture distribution
framework, which allows to perform joint inference on the number of clusters and the
cluster parameters. The performance of the proposed method is illustrated through
an application to Vickers multiplex data (Vickers and Chan, 1981), which represent
different social relations among a group of students.
Chapter 4 is a pre-print and its content have been developed with Dr. Michael Fop
and Prof. Marco Alfò.
All the models developed in Chapters 2-4 have been developed within a Bayesian
hierarchical framework, with inference on model parameters being carried out via
MCMC algorithms.
Appendices A-C report the supplementary materials for Chapters 2-4.
Last, Appendix D presents a different approach to estimate the lsjm model by
Gollini and Murphy, 2016, where inference is carried out via an MCMC algorithm,
instead of a Variational algorithm. In this Appendix, we prove that using a different
procedure for model estimation we may obtain higher quality estimates. Also, we
propose a comparison with the model developed in Chapter 2. Such model may be
seen as a parsimonious version of the model by Gollini and Murphy, 2016, where the
common latent space is used to represent the joint latent space of the lsjm model.
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Chapter 2

Latent Space Models for
Multidimensional Networks

2.1 Introduction

The Eurovision Song Contest is a popular TV show, held since 1956, that takes
place every year with participants from the countries member of the European
Broadcasting Union. The competition has undergone several modifications through
years and the number of participants has increased, together with the popularity
of the show. Since its beginning, countries had to express their preferences for the
competing songs through a voting system; representatives vote only for the songs
that meet their tastes. Despite that, many issues of bias in the voting system have
been raised during the years (Yair, 1995). In the press and the literature, it has
often been claimed that votes are not only the expression of preferences for the
songs, but for the performing countries themselves. Therefore, it has been claimed
that the exchange of votes is not random but rather it is determined by some kind
of similarity: the more two countries are close according to an unknown proximity
measure, the more they will tend to vote for each other.
The exchange of votes in the Eurovision contest can be represented by means of
a network, where the countries represent the nodes and the votes are recorded as
edges. More specifically, within each annual edition of the Contest, the data may be
represented in the form of an adjacency matrix Y, with generic element yij = 1 if a
representative of country i votes for a song by a performer from the jth country and 0
otherwise, where i, j = 1, . . . , n indexes countries. Network data can be represented
by means of graph theory. More formally, a network is thought to be the realization
of a graph G(N,E), where N denotes the set of nodes and E the set of edges. The
number of observed nodes and edges will be denoted, respectively, by |N | = n and
|E| = e. Generally, the law generating the observed networks is unknown and several
different models have been proposed to describe such complex structures. Erdős and
Rényi, 1959 and Erdős and Rényi, 1960 modelled arch formation in a network as
arising from a random process: each dyad (i, j) is independent and the probability
of forming a link is constant over the network. This first model was generalized,
both relaxing the assumption of constant edge probability over the network and the
assumption of independence of the dyads. Holland and Leinhardt, 1981 with models
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p1 and p2 kept the assumption of independence among the dyads but increased
the number of parameters describing edge probabilities, to take into account the
attractiveness of a node (the highest the value the highest the probability for this
node to be connected with others) and the mutuality (the propensity of forming
symmetric relations). The independence assumption on the dyads was then relaxed
via the introduction of Markov graphs by Frank and Strauss, 1986, attempting to
model triangular relations in a network. Later on p∗ models or ERGMs (Exponential
Random Graph models) have extended the work done by Frank and Strauss, 1986
introducing differnet summary statistics, see for example Krivitsky et al., 2009 and
Robins et al., 2007. A different approach is the so-called stochastic block model, which
attempts to decompose the nodes in different sub-groups, see Holland, Laskey, and
Leinhardt, 1983, Airoldi et al., 2008. In its basic formulation, nodes within a group
have the same probability of forming edges, while this probability changes among
groups. Hoff, Raftery, and Handcock, 2002 added an extra layer of dependence: the
observed edge formation process is assumed to be a function of nodes’ coordinates
in a (low-dimensional) latent space. Two different specifications are considered, the
distance model, where the latent space is euclidean, and the projection model, where
it is bilinear. The model by Hoff, Raftery, and Handcock, 2002 has been extended
to perform clustering on the latent nodes’ coordinates by Handcock, Raftery, and
Tantrum, 2007. A generalization of the projection model by Hoff, Raftery, and
Handcock, 2002 is the multiplicative latent space model by Hoff, 2005, designed to
capture certain types of third-order dependence patterns in the network. Another
approach that makes use of latent variables has been proposed by Snijders and
Nowicki, 1997. This model is based on the stochastic block model by Holland, Laskey,
and Leinhardt, 1983, where latent variables are introduced in the determination of
the nodes’ group memberships. A more exhaustive review of models for statistical
network analysis can be found in Goldenberg et al., 2010, Salter-Townshend et al.,
2012 and Murphy, 2015.
The models presented above refer to single networks, that is, in the present context,
to the modelling of one single edition of the Eurovision Song Contest or a summary
of several editions. If a group of editions of the Contest is considered, many
replications of the adjacency matrices, representing the preferences expressed by
countries towards others, are available. Therefore, the data can be described by
a multidimensional network (or multiplex), Y = (Y(1), . . . ,Y(K)), which may be
thought of as the realization of a collection of graphs G = (G(1), . . . , G(K)), where
k = 1, . . . ,K indexes editions. The generic graph G(k) = (N,E(k)) has the same
set of nodes N as the others (K − 1) graphs in the collection (the participants to
the group of editions), but potentially different set of edges E(k) (the preferences
expressed in each edition). Hence, a multidimensional network describes different
(independent) realizations of a relation among the same group of nodes. Different
models have been developed to deal with this kind of data. Fienberg, Meyer, and
Wasserman, 1985 adapted a log linear model to the context of multiplex data. Greene
and Cunningham, 2013 proposed to summarize the information coming from all the
different networks (views) aggregating them into a single one. Sweet, Thomas, and
Junker, 2013 proposed a Hierarchical Latent Space model, which generalizes network
latent space models to a collection of networks. The joint multiplex distribution
factorizes into single network distributions, which are modelled independently and
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inference is carried out via MCMC. Gollini and Murphy, 2016 extended the latent
space model in Hoff, Raftery, and Handcock, 2002 to multiplex data, assuming
that the edge probabilities are function of a single latent variable. To estimate the
joint latent space coordinates, they propose to use a variational Bayes algorithm
and decompose the posterior distribution, fitting a different latent space to each
network. Then, the separate estimates are employed to recover the joint latent space.
The multiplicative latent space model was extended by Hoff, 2015 to the context of
multidimensional networks. In that case, each network in the multiplex is modelled
with its own latent space, independently from the others. Salter-Townshend and
McCormick, 2017 proposed a method to jointly model the structure within a network
and the correlation among networks via a Multivariate Bernoulli model. Another
approach developed to describe the (marginal) correlation among different networks
in a multiplex has been proposed by Butts and Carley, 2005. Hoff, 2011 proposed
to model multiplex data as multiway arrays and applied low-rank factorization to
infer the underlying structure. Durante, Dunson, and Vogelstein, 2017 proposed a
Bayesian non-parametric approach to latent space modelling, where clustering is
performed on the latent space dimensions in order to discriminate the most relevant
ones for each view.
The present work aims at recovering the similarities among countries, modelling
the exchange of votes during several editions of the Eurovision Song Contest. We
adopt a framework similar to that of Gollini and Murphy, 2016 and we consider
the projection of the countries into a common latent space. Similarities among
countries are then expressed in terms of distances in this latent space. We introduce
network-specific coefficient parameters to weight the relevance of the latent space in
the determination of edge probabilities in each network. We consider the editions
that took place after the introduction of the televoting system and focus on the
period 1998-2015. Further, we consider geographical and cultural covariates in the
analysis.
The paper is organised as follows. Section 2.2 summarizes the history of the
Eurovision Song Contest together with the principal works on the subject (section
2.2.1) and presents the analysed data (section 2.2.2). Latent space models for network
data are introduced in section 2.3 and the proposed model is outlined in section 2.3.1.
Model estimation is discussed in section 2.4. Further issues are discussed in section
2.5, such as model identifiability (section 2.5.1), missing data (section 2.5.2) and the
introduction of edge-specific covariates (section 2.5.3). The application is presented
in section 2.6 and the results are discussed in section 2.7. A large scale simulation
study is outlined in section 2.8, where also the main findings are reported. Section
2.9 presents the results of a comparison between the proposed model and the lsjm
by (Gollini and Murphy, 2016). We conclude with some discussion in section 2.10.

2.2 The Eurovision Song Contest

2.2.1 History of the contest and previous works on the subject

The Eurovision Song Contest, held since 1956, is a TV singing competition where
the participant countries are members of the EBU (European Broadcasting Union).
Despite its name, the European Broadcasting Union includes both European and
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non European countries. Indeed, Eurovision’s fame has spread all over the world
during the last years and it has been broadcast from South America to Australia. It
is the non-sportive TV program with the largest audience in the world and one of
the oldest ones (Lynch, 2015).
From its first edition, where only seven countries competed, there have been several
changes in the number of participants, the voting system and the structure of the
competition. Due to the increasing popularity of the program, many countries have
been included in the contest. The current structure of the contest consists of two
preliminary stages used to select the finalists, followed by the final stage for the title.
The voting system has been modified several times, in the voting procedure and the
grading scheme. In the early years of the competition, a jury elected the winning
song. Later, the system has been supported by televoting 1, introduced in 1998 in
all the competing countries. As for the grading scheme, it is positional2 since 1962,
but the method used to rank the countries has been modified across the different
editions. From 1975 to 2015, each country had to express its top ten preferences
ranking them from the most to the least favourite using the following scores: 12, 10,
8, 7, 6, 5, 4, 3, 2, 1. Each country had to vote exactly ten others, could not vote for
itself and each grade could be used only once. At the end, the country receiving
the highest overall score would have won the competition. A restriction has been
imposed on the lyrics in the past, as the participants were required to perform a
song written in their national language. However, this rule was definitively abolished
after 1998.
Every year, both the singer and the song representing a country change, making
each edition of the Eurovision independent from the previous one. Indeed, the
structure of the competition is built in such a way that the past results will not
influence the future performances. Countries should vote only according to their
tastes and, as musical evaluation has no objective criteria, the voting results should
not depend on the countries themselves, but only on the songs. However, this claim
was often doubted, especially after the introduction of televoting. Several issues
have been raised on the voting system, which was said to be biased. The first paper
investigating the presence of bias in the voting system is Yair, 1995. This work
considers voting relations among 22 of the 24 countries competing in the period 1975-
1992 and claims that, according to their voting preferences, they can be clustered in
three regional blocks: Mediterranean, Western and Northern. Countries tend to vote
for others from the same block, hence following a non-objective (non-democratic)
behaviour. However, the paper does not provide an in-depth statistical evaluation
of the results. The author supports the theory that the geographic location of
a country may influence its voting behaviour. This assumption has been further
investigated by Fenn et al., 2006; in this work, the dynamic evolution of votes
exchanged in the competition 1992 to 2003 has been analysed, with the aim at
looking for sub-groups of countries. The sub-groups found are not fully explained by

1Televoting is a voting method conducted by telephone. The organizers of the event provide the
audience with telephone numbers associated with the different participants. The rankings are then
determined by the number of calls/SMS that each contestant receives.

2Positional voting is a ranked voting system where a list of candidates has to be ordered by
voters. Rankings of different voters are converted into points and cumulated in scores, associated
with each contestant. The one receiving the highest final score wins.
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the geographical positions of the countries. Clerides and Stengos, 2006 developed
an econometric framework to analyse the data and arrived to similar conclusions,
in the sense that the authors do not find any “strategic” vote exchange in the
period 1981-2005. Saavedraa, Efstathioua, and Reed-Tsochasb, 2007 investigated the
structural properties of the dynamic network for the period 1984-2003 via q-analysis
and found that clustering arises mainly between countries closed to each other in
a geographical sense. Spierdijk and Vellekoop, 2006 applied multilevel models to
look for the influence of geographic and cultural factors in the vote exchange from
1975 to 2003 and found that these do not explain the behaviour of all the competing
countries. Ginsburgh and Noury, 2008 claim that having a similar culture may
influence the votes expressed by a country. Cultural proximity, as well as geographic
proximity and migration flows in the period 1998-2012 have been investigated as
sources of bias by Blangiardo and Baio, 2014. The authors discovered the presence
of a mild positive bias among few couples of countries but no evidence of a negative
bias overall. Mantzaris, Rein, and Hopkins, 2018 analysed the editions 1975-2005
searching for couples of countries exhibiting preferential voting. They investigate
the hypothesis of random allocation in the votes, and found some evidence that
geographic proximity is influential up to an extent; however, many countries do not
tend to vote according to such a rule.
The aforementioned works show that there has been a growing interest in the
structure underlying votes exchange in the Eurovision Song Contest during the past
twenty years. The authors investigated the influence of social, geographical, cultural
and political factors on the mechanism forming preferences and agree that, at least
to some extent, these components may be relevant. However, none of the factors
above is able to explain satisfactorily the votes exchanged in the competition for the
last years.

2.2.2 Data

The assumption that the exchange of votes is driven by similarities among coun-
tries may be reasonable. However, similarities among countries might not coincide
with social, geographical, cultural and political factors that can be explicitly mea-
sured. In fact, there could be some unobservable (latent) factors influencing such
a process. The aim of this work is at recovering the underlying latent similarities
among countries. The idea is that the more two countries are similar, the more they
will tend to vote for each other. To recover recurrent voting patterns, we need to
examine a collection of editions. In particular, we focus on years subsequent to the
introduction of the televoting system, 1998-2015. We assume that the televoting
preferences reflect the preferences of the whole population, and that they are more
representative when compared to the jury opinions alone. We do not consider years
2016 and 2017 because the voting system was again modified in that period. In
fact, in the period from 1998 to 2015, votes given by the jury and by televoting
were jointly considered: the final top ten for each country was determined looking
at the intersection of the most voted songs by the two sources. From 2016 onwards,
the final preferences expressed by each country are given by the union of the ten
favourites of the jury and the ten favourites of the televoting. That is, in the last
two years of the competition, each country could elicit more than ten preferences.
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In the period 1998-2015, the countries were allowed to sing in any language and
most of the songs were in English. The period we consider is homogeneous both
with respect to the voting system and (for the large part) to the language used in
the performance. Subsequent editions of the Eurovision are assumed not to depend
on one another, as the singer and the song performed change every year without
any pre-determined criteria. This assumption allows us to consider the exchange of
votes in different editions of the contest as replications of the same phenomenon,
which is the expression of musical appreciation between couples of countries. These
different replications of preferences among countries will then be used to recover the
similarities. Indeed, the basic assumption is that the more two countries are similar,
the more they tend to vote for one another through the editions.
In each edition, the votes exchanged among the countries can be described by a
network, where nodes represent the countries. As we are interested in the exchange
of votes and not in the final ranking, an edge going from country i to country j will
denote that i has j in its top ten. Vice versa, the edge will be from j to i if the
latter has been voted by the j. Indeed, recall that although the grading scheme is
positional, each country can express a limited amount of preferences r = 10 in the
analysed period. Rosen, 1972 proved that when sampling r units from a population
of size3 n, if r << n, the first r units are independent with respect to the extraction
order. As our interest lies in modelling the exchange of votes and not in determining
the winner in each edition, we can treat the networks as binary, without much loss
of information. An alternative approach, designed for contexts where the ranking
scale is equally spaced, may be found in Hoff, 2015.
The resulting network is then directed, acyclic (as countries can not vote for them-
selves) and un-weighted. If we consider a group of editions for the contest, we will
have a collection of networks, defined on the same group of countries (see paragraph
2.5.2), and this object is indeed a multidimensional network. The following section
introduces a general modelling framework for such data.

2.3 Latent space models for multidimensional networks

Latent space models have been introduced by Hoff, Raftery, and Handcock,
2002 with the aim at reducing the complexity typical to the dependence structure
in network data. This purpose is achieved via geometric projection of the nodes
onto a low dimensional space. The probability of observing an edge between two
nodes is assumed to be a function of the unknown nodes’ coordinates in the latent
space. Conditionally on the set of latent positions, the observed binary indicators
are assumed to be independent across networks. Hoff, Raftery, and Handcock, 2002
distinguish between distance and projection latent space models, depending on the
choice of the function that summarizes the latent coordinates. The distance model
assumes that this is indeed a distance function. Gollini and Murphy, 2016 extended
the distance model described by Hoff, Raftery, and Handcock, 2002 to the case of
multiplex data, with the introduction of a so called Latent Space Joint Model (lsjm
in the following). In that context, the probability of an edge in a given network
depends on a specific latent space and a network specific intercept. The latent spaces

3In the present context, n = 48 is the number of countries that country i can potentially vote.
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Figure 2.1. Latent space representations of a network with 3 nodes.

(one for each network) are thought to be realizations of a common latent space,
which captures the average latent coordinates of the nodes and is behind all the
networks. The variational approach used to estimate model parameters is fast but
suffers from computational issues when the dimension of the multiplex is relatively
high, either in the number of nodes n or in the number of networks K.
The present work builds on the model of Gollini and Murphy, 2016 with the aim at
recovering the similarities among the countries participating in the Eurovision Song
Contest. As our interest lies in recovering such similarities, rather than modelling
observed ranks, the choice of a distance latent space model to reconstruct the network
is quite appropriate. However, distances correspond to symmetric relations, which is
a characteristic of similarity measures. Figure 2.1 shows an example for the latent
space representation of a 3 nodes network. Node z3 in space A has been moved
in space B, so that d(A)

13 < d
(B)
13 and d(A)

23 < d
(B)
23 . In our model, this correspond to

a higher probability to observe a link between node 1 and 3 (or node 1 and 2) in
space A when compared to space B. The distances in the latent space are scaled
by a network specific coefficient, to weight the influence of the latent space in the
determination of the votes for a given edition of the Contest. The lowest the value
of this coefficient, the more the structure of edge probabilities resembles a random
graph in this edition. This could lead to reject the claim that the votes patterns for
the Eurovision contest are biased by some pre-existing preferences among countries.
The latent space is taken to have dimension p = 2, to allow for a graphical visualiza-
tion and for a comparison of the estimated latent coordinates with the geographical
positions (latitude and longitude) for the analysed countries. In this way we may be
able to tell whether the latent configuration obtained resembles the geographical one
and, if so, we may conclude that the position of a country on the map is indeed of
some relevance in the competition. However, the choice of p is still an open problem
in the literature and for other applications the choice of p = 2 could be suboptimal.
The model, formulated in section 2.3.1, also allows for the introduction of edge-
specific covariates. In the present application, we use cultural covariates, such as
the presence of a common language among a couple of participants (countries), to
see whether these contribute to the formation of preferences. The multidimensional
network is defined on all the countries that took part at least once in the Eurovision
in the period 1998-2015, see section 2.5.2 for details.
The set collection of adjacency matrices will be denoted by
Y =

{
Y(1), . . . ,Y(K)}. The generic element of each matrix, y(k)

ij , in the collec-
tion is binary, with y

(k)
ij = 1 if there is an edge from node i to node j in the kth
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network, y(k)
ij = 0 else. Indexes i, j = 1, . . . , n are used to denote nodes in the

network (countries) and index k = 1, . . . ,K refers to the K different networks in
the multiplex.

2.3.1 The proposed model

Given the assumptions made in section 2.3 and following Hoff, Raftery, and
Handcock, 2002 and Gollini and Murphy, 2016, the probability of observing an edge
between node i and node j in the kth network of the multiplex is given by:

Pr
(
y

(k)
ij = 1 | Ω(k), d(zi, zj)

)
=

exp
{
α(k) − β(k)d(zi, zj)

}
1 + exp

{
α(k) − β(k)d(zi, zj)

} = p
(k)
ij (2.1)

where Ω =
(
Ω(1), . . . ,Ω(K)) =

(
α(1), . . . , α(K), β(1), . . . , β(K)) is the set of model

parameters.
Following Gollini and Murphy, 2016, the function d(·, ·) is taken to be the squared
Euclidean distance, that is d(zi, zj) = ∑p

l=1
(
zil − zjl)2 = dij . The distance matrix

will be denoted by D. This choice of the distance function allows to penalize more
heavily the probability of an edge linking two nodes that are far apart in the latent
space when compared to one linking two closer nodes. Therefore, the latent space
part of the model will push towards a non-random structure for the matrix of edge
probabilities.
The edge-probability matrices are symmetric, that is p(k)

ij = p
(k)
ji . As already

mentioned, this choice is driven by the fact that we are interested in estimating
similarities between the countries, and, therefore, we need to impose a symmetric
relation between dyads (i, j) and (j, i). If we decide to also model explicitely
node-specific characteristics, by means of row and column effects, we could define
non-symmetric edge probabilitiy matrices. Hoff, 2015 showed that, if we compute the
sample variance and correlation of the row and column means deviations from the
overall mean in the observed adjacency matrices, we can empirically evaluate the row
and column effects. However, note that, in the Eurovision networks, the out-degree is
fixed by construction and there is no variability in the row means, and no correlation
between the row and column effects are present. Also, the variability of the column
effects is very low (0.02 on average). Therefore we decide not to consider row and
column-specific effects and have symmetric probability matrices. Last, note that
our model does not imply that a network generated from it is undirected. Indeed,
symmetric probability matrices can, and usually do, generate directed networks, as
the edge-draws are independently conducted.
Each view is associated with a couple of network-specific parameters: β(k) and α(k),
with k = 1, . . . ,K. Differently from Gollini and Murphy, 2016, we introduce the
scaling coefficient β(k) to weight the influence of latent space for the kth network on
the determination of edge probabilities. This parametrization is particularly suited
for the Eurovision application, as it helps to address the eventual presence of bias in
the exchange of votes. Indeed, if in the kth network β(k) ≈ 0, edge probabilities do
not depend on the latent structure, and edges form randomly. On the contrary, when
β(k) > 0, the latent structure will impact the edges formation. If these coefficients
are estimated to be non-null for all the networks, or most of them, the latent space
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has a constant influence in determining the structure of the observed multiplex.
According to the assumption that the probability of observing an edge decreases
with growing distances, the constraint β(k) ≥ 0 must be imposed. As the coefficient
is bounded and can not take negative values, it follows that the lowest the value of
β(k), the closer the structure of the network will be to a random graph. That is, if
β(k) = 0, we have:

p
(k)
ij =

exp
{
α(k)}

1 + exp
{
α(k)} = p

(k)
RG,

and the model for the kth network reduces to a random graph (Erdős and Rényi,
1959) with edge probability p(k)

RG. Thus, the coefficient β(k), when it is different from
zero, can only decrease the edge probability values with increasing distances. In other
words, edge probabilities are bounded from above by p(k)

RG. To counterbalance the
effect of the coefficient, the intercept parameter α(k) is bounded as well so that the
graph corresponding to p(k)

RG is not disconnected. Indeed, according to the properties
of random graphs (Erdős and Rényi, 1960), if p(k)

RG > (1−ε) log(n)
n , the graph will

almost surely be connected. Taking ε = 0, as n→∞, this property can be expressed
in terms of α(k) as:

α(k) > log
(

log(n)
n− log(n)

)
= LB

(
α(k)) = LB(α).

Thus, the lower bound LB(α) is independent of k = 1, . . . ,K, as the node set is
constant across the multidimensional network. Defining a lower bound prevents from
assigning large negative values to the intercept parameters. Indeed, if α(k) is too low,
the effect of the latent distances would be dominated by the intercept parameter,
even if this effect is relevant (β(k) > 0). That is, large negative values of α(k) in
equation 2.1 would correspond to edge probabilities tending to 0 and numerically
undistinguishable. In such case, two distinct matrices of edge probabilities having
elements p(k)

ij ≈ 0 would lead numerically to the same likelihood.

2.4 Parameter estimation

2.4.1 Likelihood and posterior

Given the model for the edge probabilities defined in equation (2.1), the likelihood
function for the model is a product of Kn(n− 1) terms:

L
(
Ω,D | Y

)
=

K∏
k=1

n∏
i=1

∏
j 6=i

(
p

(k)
ij

)y(k)
ij
(
1− p(k)

ij

)1−y(k)
ij
, (2.2)

and the corresponding log-likelihood is:

`
(
Ω, D | Y

)
=

K∑
k=1

n∑
i=1

∑
j 6=i

`
(k)
ij

=
K∑
k=1

n∑
i=1

∑
j 6=i

y
(k)
ij

(
α(k) − β(k)dij

)
− log

(
1 + exp

{
α(k) − β(k)dij

}) (2.3)
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As the matrices of edge probabilities are symmetric for all the analysed networks,
one could equivalently consider only their upper or lower triangular part, and the
number of terms to be considered in the product for the likelihood reduces to K

(n
2
)
.

Similarly to Gollini and Murphy, 2016 and Handcock, Raftery, and Tantrum, 2007,
we adopt a Bayesian approach to estimate the model. As in Gollini and Murphy, 2016,
the latent coordinates are assumed to be independent random variables distributed
according to a standard p-variate Gaussian distribution: zi ∼ MVNp

(
0, I
)
. In the

present context, the dimension of the multivariate Gaussian is fixed to p = 2 (see
section 2.3).
The parameter space for the intercepts and the coefficients is bounded, as described
in paragraph 2.3.1. For this reason, the prior distributions for these parameters
are described by truncated Gaussian distributions. As no a priori information is
available on their relationship, they are assumed to be independent, both within
and across the networks:α(k) ∼ N[

LB(α),∞
](µα, σ2

α

)
and β(k) ∼ N[

0,∞
](µβ , σ2

β

)
.

The unknown µα, σ2
α, µβ, σ

2
β play the role of nuisance parameters. Indeed, their

value is of no interest but their specification is relevant, as they determine the
solutions for the parameters of interest, α(k) and β(k). Given their relevant role in the
model, we decided to estimate these parameters, to avoid subjective specifications
of their values. For this purpose, an extra layer is introduced in the model, as
described in Figure 2.2, leading to a hierarchical structure. The prior distributions
specified for the nuisance parameters are: µα|σ2

α ∼ N[
LB(α),∞

](mα, τασ
2
α

)
, σ2

α ∼ Invχ2
να ,

µβ |σ2
β ∼ N[

0,∞
](mβ , τβσ

2
β

)
and σ2

β ∼ Invχ2
νβ
.

The distributions for the nuisance parameters depend on a set of hyperparameters
η =

(
να, νβ, τα, τβ

)
, that have to be specified. However, their choice is not as

influential as the nuisance parameters to get estimates of α(k) and β(k); in the
following, we will present some criteria for the determination of η that were found
to work well in practice. The posterior distribution is therefore defined by:

P
(
α, β, z, µα, µβ, σ2

α, σ
2
β|Y

)
=L

(
α, β, z|Y

)
π
(
z
)
π
(
α|µα, σ2

α

)
π
(
µα|σ2

α, τα
)

π
(
σ2
α|να

)
π
(
β|µβ, σ2

β

)
π
(
µβ|σ2

β, τβ
)
π
(
σ2
β|νβ

) (2.4)

The posterior distributions for the parameters α(k), β(k) and for the latent coordi-
nates are not available in closed form. To obtain parameter estimates, proposal

y

α β

z

µα σ2
α

µβ σ2
β

Figure 2.2. Hierarchy structure of the model.
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distributions have been developed and are presented in the supplementary material,
together with the distributions of the nuisance parameters.

2.4.2 The algorithm for parameter estimation

Estimation of model parameters is carried out using a Markov Chain Monte Carlo
based approach. A detailed specification of the full conditional and the proposal
distributions can be found in the supplementary material. Within each iteration
of the chain, the nuisance parameters are updated from the corresponding full
conditional; updated estimates for the intercepts, the coefficients and the latent
coordinates are then proposed. The updates for the intercept α(k) and the scaling
coefficient β(k) in each network are jointly carried out, as it was empirically found
that they may be correlated. The joint updating scheme helps improving the speed
of convergence, while the latent coordinates are updated separately and sequentially.
Indeed, it could be the case that the current estimates for a subset of the latent
positions have already converged, while the remaining zi’s are still far from the "true"
values. Jointly updating the z as block would not respond to the need to adjust just
the mislocated coordinates; separate updating has been found to be a better strategy.
After the set of latent coordinates has been updated at a given iteration of the
algorithm, it has to be compared with the set of estimates obtained at the previous
iteration. Since the likelihood in equation (2.2) considers the distances between the
latent coordinates, it is invariant to rotation or translation of the latent positions zi.
Therefore, it has to be ensured that the current set is not a "rigid" transformation of
the previous ones, to prevent from non-optimal stationary solutions for the latent
coordinates. To achieve such aim, Procrustes (Dryden and Mardia, 1999) correlation
is computed and the current configuration is discharged if the value is above a certain
threshold, fixed to be 0.85. The choice of this value, that ranges in [0, 1] is arbitrary
and should reflect the presence of high correlation. Values of the threshold above
0.80 have been found to work well in practice. The supplementary material reports
the pseudo-code describing the estimation procedure.
Before starting the algorithm, the set of hyperparameters η needs to be defined. The
degrees of freedom of the Inverse Chi-squared prior distribution for the variance
parameters σ2

α and σ2
β are fixed to να = νβ = 3, as values in the range [2, 6] have been

tried and it has been found that the different specifications do not have substantial
impact on the parameter estimates. The variance-scale hyperparameters are set to
be τα = τβ = K−1

K , so that the means of the proposal distributions for µα and µβ
reduce to the corrected sample means (see the supplementary material).
Starting values for the distances are taken to be the geodesic distances between
the nodes in a randomly chosen network of the multiplex. From these distances,
and for a fixed value for p, starting values for the latent coordinates are computed
via multidimensional scaling as in Hoff, Raftery, and Handcock, 2002 and the
starting values for the distances are obtained taking the squared Euclidean distances
between the starting values for the latent coordinates. These are then used to model,
via logistic regression, the adjacency matrices. The corresponding estimates for
intercepts and scaling coefficients are taken to be the starting values for α and β. If
these starting values fall outside the bounds specified for the parameters, they are
replaced by these bounds. The nuisance parameters µα and µβ are initialized as the
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sample means of the initial estimates for α and β, respectively. In a similar fashion,
σ2
α and σ2

β are initialised as the sample variances of α and β.

2.5 Further issues

2.5.1 Identifiability

As it can be easily noticed, the likelihood in equation (2.2) is invariant to linear
transformations of the scaling coefficients. Indeed, for some constant c,

α(k) − β(k)dij = α(k) − β(k)

c
(dijc) = α(k) − β(k)?d?ij , k = 1, . . . ,K.

For this reason, the coefficient for the reference network is fixed to β(r) = 1 (index r
denotes the reference network). The role of β parameters is to scale the distances
and, therefore, the corresponding values are meaningful only when compared with
each other given the reference. Thus, we have no loss of information in fixing β(r) = 1.
A further identifiability issue is:

α(r) − dij = (α(r) + c)− (dij + c) = α(r)? − d?ij .

To overcome this further issue, also the intercept α(r) for the reference network needs
to be fixed. As the intercept term defines an upper bound for the edge probabilities
in the corresponding network, the value chosen for α(r) should not underestimate
this bound. We propose to fix it accordingly to the observed density in the network.
More specifically, let us consider the expected value for the edge probability in
network r:

p̄(r) = E
[ n∑
i=1

∑
j 6=i

P
(
y

(r)
ij = 1 | Ω(r),D

)]
= E

[
n∑
i=1

∑
j 6=i

exp
{
α(r) − dij

}
1 + exp

{
α(r) − dij

}].
A naive empirical approximation to this value, which is not available in closed form,
is given by

p̄(r) ' E
[
n∑
i=1

∑
j 6=i

exp
{
α(r) − 2

}
1 + exp

{
α(r) − 2

}] =
exp

{
α(r) − 2

}
1 + exp

{
α(r) − 2

} ,
where the distances have been replaced by the constant 2 as this value is the
mean empirical distance among coordinates simulated form a standard Gaussian
distribution. This leads to:

α̂(r) = log
( ˆ̄p(r)

1− ˆ̄p(r)

)
+ 2,

where p̄(r) is ˆ̄p(r) = ∑n
i=1

∑
j 6=i y

(r)
ij /

(
n(n− 1)

)
. Thus, α̂(r), or any number greater

than α̂(r), can be used as a fixed value for the intercept in the reference network.
As to the choice of the reference network, we may consider a network that is of
particular interest. Alternatively, if there is no reason to prefer a network, a randomly
chosen one can be selected. In the present work, for ease of interpretation of the
results, the first (in terms of time) network of the multiplex has been set as the
reference network.



2.5 Further issues 27

2.5.2 The issue of “non participating” countries

Due to the increasing popularity that Eurovision gained over the years, many
countries have requested to participate in the contest and have been accepted. With
increasing number of participants, preliminary stages had to be introduced to select
a smaller sub-group of countries accessing to the final, where they compete for the
title. The winner of the previous edition enters the final straightforwardly, while
the remaining countries have to compete in the qualifications round. Therefore,
the selection of the finalists in the kth edition does not depend on the results in
the previous edition, apart from the specific case mentioned before. With the
introduction of semi-finals, countries that do not make it to the last stage are allowed
to vote for their favourite ten participants in the final. Their participation is passive,
as they can vote but can not receive votes. Further, several countries have abandoned
the competition for years, for a series of reasons. The pre-selection process, the
presence of passive countries and the drop outs imply that the set of participants in
two consecutive editions may not be exactly the same. However, the phenomena
mentioned above are structural and, for that reason, we decided not to treat them
as a missing values problem.
To model non participant (absent) countries, we define the set of nodes N in a more
general way, as the set of countries that have voted at least once in the considered
period. We can rewrite the log-likelihood as:

`
(
Ω,D | Y

)
=

K∑
k=1

n∑
i=1

∑
j 6=i

h
(k)
ij `

(k)
ij , (2.5)

where h(k)
ij is an indicator variable, with h(k)

ij = 1 if the ith node was present in the
kth edition and could have voted for node j; while h(k)

ij = 0 implies that the ith node
was not allowed to vote for node j in the kth edition. Let us denote as H(k) the
binary matrix indicating whether or not a country was present in the kth edition.
The rows of the H(k) matrix denote whether the corresponding countries may vote
at the kth occasion; more formally, if ∑n

j=1 hij = 0, then the ith node was absent
from that specific edition of the contest. Instead, the columns of H(k) refer to the
possibility of being voted for the corresponding countries. That is, if h(k)

ji = 1 the
ith node has been voted in the kth edition.

2.5.3 Covariates

Edge-specific covariates can be considered in the application. In the current
application, all the used covariates do not depend on the specific network of the
multiplex. From an exploratory analysis (see Figure 2.4) we could see that the
association between the covariates and the different adjacency matrices was slightly
varying over time. Therefore, in the current empirical application, we have considered
constant effects, in the spirit of model parsimony. Of course, one could have had
assumed that the effects of the covariates may vary over time. The implementation
of such model would be straightforward.
Each covariate is stored in a n × n matrix, that will be denoted by Xf , where
f = 1, . . . , F is the index for the set of F covariates. To maintain the characterization
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of the intercept term, the effect of the covariates is taken to be inversely related to
edge probabilities (see section 2.6). Therefore, the effect associated to each covariate
will be characterized in a similar fashion to the scaling coefficients β(k), k = 1, . . . ,K
(see the supplementary material). That is, the edge probability in equation (2.1) is
modified to the following:

P
(
y

(k)
ij = 1 | α(k), β(k), dij , λ,xij

)
=

exp
{
α(k) − β(k)dij −

∑F
l=1 λlxijl

}
1 + exp

{
α(k) − β(k)dij −

∑F
l=1 λlxijl

} (2.6)

The proposal distribution to update the λl’s is derived in the supplementary material,
where we also suggest how to modify the proposal distributions for the other
parameters when considering covariates.

2.6 The Eurovision song contest data
We considered 18 different editions of the Eurovison Song Contest, from 1998

to 2015. In this period, two major changes have occurred in the structure of the
program, due to the growing number of countries willing to participate in the show.
First, in 2004, a semi-final stage was added to select participants. In 2008, after the
50th anniversary of the competition, the event was rebuilt and two semi final stages
were introduced. Countries that participate to the semi-finals are entitled to vote
in the final, even if they have not qualified. Of course, the songs that do not go
to the final can not compete for the title and can not receive any vote in the final.
The voting structure in the final induced by the introduction of qualifying stages is
modelled by the auxiliary variables h(k)

ij , defined in section 2.5.2. During the period
1998-2015, a total of n = 49 countries took part to the competition. After 2004,
on average, 14 countries were completely absent(not voting nor competing). A list
of the 49 countries and their ISO3 codes is given in the supplementary material.
Figures 2.3 describe some features of the 18 networks. In particular, in Figure 2.3(a)
we give an overview of countries’ participation per year, distinguishing the role that
each country had in a given edition: absent (A), present but can not be voted (Pa)
or fully present (Pp). It is easy to see from the plot that some countries, such as
the UK or France, have been constantly present to the competition, while others
had only made some sporadic appearances. Monaco for example competed from
2004 to 2006, but never made it to the final. Figure 2.3(b) reports the values for the
association in the exchanging of votes between two different editions, measured by
the index:

A(k,l) =
∑n
i,j I

(
h

(k)
ij y

(k)
ij = h

(l)
ij y

(l)
ij

)
∑n
i,j I

(
h

(k)
ij y

(k)
ij = h

(l)
ij y

(l)
ij

)
+∑n

i,j I
(
h

(k)
ij y

(k)
ij 6= h

(l)
ij y

(l)
ij

) .
The index above is limited between 0 and 1 and the values observed for the data

range from 0.4 to 0.8. However, there seems to be evidence that countries tend to
repeat their patterns of votes through the analysed editions. The plots in 2.3(c) and
2.3(d) represent the number of joint participations for each couple of countries in
the period 1998-2015 and the average number of votes they have exchanged while
competing together. The matrix in 2.3(d) is not symmetric and the ith row shows
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(b) Association between adjacency ma-
trices.
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(c) Number of times two countries have
jointly participated to the com-
petition, with null values in the
diagonal (N).
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Figure 2.3. Eurovision data: some exploratory statistics.

the average number of votes that country i gave to others. Instead, the jth column
reports the average number of votes that country j has received from the other
participants. The last plot shows that many couples consistently voted/avoided to
vote for the same group of countries, regardless of the edition.
At a second stage, covariates have been included in the analysis, similarly to what
has been done by Blangiardo and Baio, 2014, Spierdijk and Vellekoop, 2006, in
order to see whether the vote exchanges in the period could be, at least partially,
explained by “cultural” factors. The covariates we considered are listed below:
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Figure 2.4. Covariates.

1. The log geographic distance between two countries (X1). These distances were
computed using the coordinates of the centroids of each country, obtained from
https://developers.google.com/public-data/docs/canonical/countries_csv;
the centroids have been estimated considering latitude and longitude of the
main cities of each country.

2. The presence of a border common to a couple of countries (X2). To maintain
the characterization of the intercept, this information is coded as a binary
variable that takes value 0 if there is a common border and 1 otherwise.

3. The presence of a common official language (X3). This information is coded
as a binary variable that takes value 0 if they share the official language and 1
otherwise.

4. The fact that two countries share a major language, defined as a language
spoken at least by 9% of the population (X4). This information is coded as a
binary variable that takes value 0 if two countries share a major language and
1 if not.

5. The presence of a common past “history” shared by two countries (X5), they
were colonized by the same country, they belonged to the same country, etc.
This information is coded as a binary variable that takes value 0 if two countries
share a common past and 1 otherwise.

Figure 2.4 describes the association between the covariates and the adjacency
matrices. The plot in 2.4(a) displays the association between the set of binary
covariates X2 to X5, measured by the index:

A(Y(k),Xl) =
∑n
i,j I

(
h

(k)
ij y

(k)
ij = 1− xl,i,j

)
∑n
i,j I

(
h

(k)
ij y

(k)
ij = 1− xl,i,j

)
+∑n

i,j I
(
h

(k)
ij y

(k)
ij 6= 1− xl,i,j

) .

https://developers.google.com/public-data/docs/canonical/countries_csv
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The set of covariates which seems to be most relevant, when compared to the others,
is the one indicating the sharing of a border (X2). The values for the different
associations are quite constant over time, slightly increasing with the introduction
of the semi-final stage. This leads to assume that the influence of the covariates
on the edge probabilities is quite constant with editions. Figure 2.4(b) reports
the boxplots for the couple

(
adjacency matrix, log X1

)
. We can not find, at least

visually, no evidence of association between the distances and the presence of an
arch in the adjacency matrix (that is, a vote). However, for each year, if we look at
the median geographic distance for the block where an arch is present, we observe
that this is usually lower than the one of the complementary block. Regressing the
adjacency matrices on the log-geographic distances gives a negative estimate for
every edition. That supports the claim that the geographic distances are indeed
negatively correlated with the propensity to vote for a country.
Last, two sub-periods, 1998-2007 and 2008-2015, will be analysed separately, to
check for large changes in the latent space position of a country according to the
analysed years. That is, the analysis of the two sub-periods would give an idea
on the stability of the average coordinates in the latent space recovered for the fill
interval 1998-2015.
The set of covariates X2 −X5 have been collected from the CEPII database, http:
//www.cepii.fr/CEPII/en/welcome.asp, while the analysed data are available at
http://eschome.net/.

2.7 Results
The following models have been considered in the analysis

1. Model 1 : covariates not included;

2. Model 2 : covariates X1 −X5 included;

3. Model 3 : log-geographic distance included (X1);

4. Model 4 : information on shared borders included (X2);

5. Model 5 : no latent space (β(k) = 0 ∀k) and covariate X2 included;

6. Model 6 : random graph model (no covariates and β(k) = 0 ∀k).

Models 5 and 6 have been estimated to test an additional layer in the modelling
structure (the latent space). Each model was estimated running the MCMC algorithm
for 50000 iterations, with a burn in of 5000 iterations. The intercept parameter in
the first network was fixed to α(1) = 0, as p̂(1) ≈ 0.11 4 and β(1) = 1. The estimated
models have been compared using the Deviance Information Criterion (DIC) (see
Spiegelhalter et al., 2002):

DIC = D(Θ̂) + 2(D̄(Θ)−D(Θ̂))
4The intercept in the reference network is fixed as

α̂(1) = log
( 0.11

1− 0.11

)
+ 2 ' −0.09 ≈ 0

.

http://www.cepii.fr/CEPII/en/welcome.asp
http://www.cepii.fr/CEPII/en/welcome.asp
http://eschome.net/
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Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
DIC 19584.12 19494.74 19461.52 19412.12 23340.84 23899.62

Table 2.1. DIC values for fitted models.

Year α̂ sd(α) β̂ sd(β) Year α̂ sd(α) β̂ sd(β)
1998 0 - 1 - 2007 1.15 0.15 0.92 0.14
1999 0.72 0.18 0.36 0.14 2008 1.01 0.16 0.92 0.15
2000 0.89 0.18 0.67 0.15 2009 0.66 0.17 0.49 0.14
2001 0.58 0.17 0.22 0.12 2010 0.69 0.15 0.54 0.12
2002 0.77 0.19 0.47 0.15 2011 0.84 0.17 0.70 0.15
2003 0.81 0.16 0.80 0.16 2012 0.79 0.15 0.75 0.14
2004 0.82 0.18 0.59 0.16 2013 0.76 0.16 0.73 0.13
2005 0.86 0.16 0.65 0.13 2014 0.57 0.16 0.48 0.13
2006 0.76 0.17 0.50 0.16 2015 0.91 0.16 1.01 0.17

Table 2.2. Model parameters: estimated averages and standard deviations, 1998-2015.

where D(Θ) = −2 logL(Θ) and Θ = (Ω,D, λ). The deviance term D(Θ̂) is com-
puted with the posterior estimates, while D̄(Θ) is the mean deviance of the posterior
distribution. The best model is the one with the lowest value of the DIC, see Table
2.1. According to such criteria, Model 4 is found to be the best one, including
both the latent space and the information on shared borders. The hypothesis of
a random mechanism determining the exchange of votes can then be discarded in
favour of a more complex solution. In fact, similarities among countries, described
by distances in a latent space, play a substantial role in the formation process
for observed preferences. Indeed, under Model 4, the scaling coefficient estimates
associated to the latent space distances are quite high in each edition, see Table 2.2.
The covariate X2 seems to be the only one relevant in the analysis. Indeed, the
estimated coefficients associated with the other edge covariates in model 2 were all
close to 0, which supports the model choice via the deviance information criterion.
The Procrustes correlations among the latent space estimated under model 1 and
model 2 is quite high, namely 0.975. That is because the matrix of covariates X2
acts like a fixed effect on the edge probabilities, with a decreasing effect when no
common border is present between two countries. Therefore, the introduction of the
set of covariates X2 does not seem to have a direct effect on the latent distances
between the nodes. The mean of the posterior estimate for the effect λ associated
with the border covariate is 0.60 with a standard deviation of 0.10.
Figures 2.5, 2.6 and 2.7 show the estimates obtained under model 2 for the latent
positions, the distances and the posterior distribution for the parameters of interest.
Figure 2.5a reports the posterior means for the country latent coordinates (reported
with their ISO3 codes, see the supplementary material) together with the corre-
sponding standard deviations. Note that the model does not necessarily place in the
center of the latent space those countries that have been most successful throughout
the editions. Indeed, for example, Sweden and Denmark won the largest number
of titles in the analysed period, respectively 3 and 2 titles. However, Denmark is
not in the origin, but it is rather placed close to a group of countries from northern
Europe. If we look at a specific country, its neighbours on the latent space are
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the countries that were estimated to be more similar in tastes, expressed in terms
of voting exchange patterns. The latent space presents a number of denser zones,
that partly resemble northern Europe, eastern Europe and North Eastern Europe.
However, these subgroups are not completely faithful to the geographic locations of
countries, as, for example, Spain is closer to Romania than to Portugal or France.
We should notice that Romanians defines one of the major immigrant group in Spain,
as well as Latvians is one of the largest immigrant group in Ireland. Therefore,
some of the geographical misplacements within the sub-groups in the latent space
may be also explained in terms of migration flows. However, the message is that
geographical locations can not fully explain the observed votes exchange. Indeed,
Figures 2.6 and 2.8 show the presence of large differences when we compare estimated
and geographical distances. In particular, for a given country i, the rows of the
matrices in Figure 2.8 represent the intersection between its r nearest neighbours in
the latent space (we denote this set as LNi,r) and its r closer neighbours in terms of
geographical distances (GNi,r); we consider the values r = 1, 2, 3, 5, 10, 15. Given
the number of neighbours r, the average5 and the maximum number of common
neighbour countries is reported in Table 2.3. The table confirms what was already
visible from Figure 2.8: there is weak association between the coordinates in the
latent space and the geographical ones. A similar comparison can be made with the
information on the shared border. Given a country i, let us define r∗i the number
of bordering countries, LNi,r∗i

the r∗ nearest neighbours in the latent space and
CNi,r∗i

the set of bordering countries of node i. The average number of geographical
bordering countries that are also neighbouring in the latent space6 is 0.11, where
r̂∗ ≈ 4. This low association between bordering countries and closest countries in the
latent space confirms that X2 is only partially relevant to the description of votes’
exchange in the contest. Figure 2.9 reports the matrix of the intersections between
the sets of neighbours LNi,r∗i

and CNi,r∗i
, for 1998-2015. Bulgaria, Lithuania and

Serbia and Montenegro are the countries that tend to vote more their bordering
countries. Indeed, their closest countries in the latent space are often countries with
which they share a border ( |LNi,r∗i

∩ CNi,r∗i
|/r∗i ≥ 0.5). In general, there is no

strong association between the presence of a border and the closeness in the latent
space. The estimated values for the network intercept parameters are quite similar
for the different networks corresponding to the editions in the period 1998-2015
(Figure 2.7). Indeed, the voting rule (in the Eurovision song contest) for that period
required that participating countries vote for exactly 10 others, which implied a fixed
outdegree for each node in the corresponding networks. The observed densities are
then quite similar and this is reflected in similar estimates for the α(k) parameters,
which define the upper bound for the edge probabilities in a given network.
The estimated values for the posterior means of the network-specific scaling pa-

5the average number of common neighbours is given by:∑n

i=1 |LNi,r ∩GNi,r|
rn

6this average is given by: ∑n

i=1 |LNi,r∗
i
∩ CNi,r∗

i
|

r∗i n
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r = 1 r = 2 r = 3 r = 5 r = 10 r = 15
average number 0.06 0.11 0.14 0.21 0.37 0.47
maximum number 1 1 2 3 8 12

Table 2.3. Average and maximum number of intersections of the set of the closest latent
positions and the closest geographical positions.
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Figure 2.5. Estimated latent positions 1998-2015. The legend reports the probabilities
corresponding to a distance of 0.2 in the latent space, years 1998, 2004
and 2008. The values refer to the case of x2,ij = 0, within the brackets are
reported the values for x2,ij = 1.

rameters β(k) range from 0.22 in year 2001, to 1.01 in year 2015. As none of
these parameters is estimated to be 0, the latent space is found to always play
a role in the formation of observed networks. However, its influence depends on
the dimension/magnitude of the scaling parameter β(k). In 2001 this role is quite
limited, as it is in 1999. In the last network the influence of the latent space is the
greatest (β(18) = 1.01), and it is similar to the one in the first edition (β(1) = 1).
We have estimated the same model with different networks set as reference, and no
substantial changes were observed in the pattern of the estimated scaling coefficients.
Also, the estimated latent spaces were highly correlated with the one presented
here. The supplementary material reports the results for the analysis of the two
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Figure 2.6. Estimated distances between couple of countries, 1998-2015.

Figure 2.7. Boxplots for model parameter estimates and the coefficient for X2, 1998-2015.

sub-periods 1998-2007 and 2008-2015. The model considered for the sub-periods
does not include any covariates, as the interest lays primarily in recovering the latent
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(b) neigh = 2
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(c) neigh = 3
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(e) neigh = 10
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Figure 2.8. Intersections of the set of neighbours LNi,r and GNi,r, 1998-2015

coordinates. The findings confirmed a weak correspondence between the estimated
latent position of a country and its actual latitude and longitude coordinates on
the globe. A direct comparison of the latent space estimated for 1998-2015 to that
estimated for 1998-2007 and 2008-2015 is not available, as the number of countries
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Figure 2.9. Intersection of the set of neighbours LNi,r∗
i
and CNi,r∗

i
, 1998-2015. On the

left column, in brackets, are reported the values of r∗i .

is different. Indeed, not all the participants in 1998-2015 were also participant in
both of the sub-periods. Just to give an example, Italy rejoined the competition in
2011, after being absent in the period 1998-2007. The multidimensional networks
for the sub-periods can not include the same set of nodes of the period 1998-2015.
Indeed, countries completely absent from the competition, in a given sub-period,
correspond to isolated nodes, and the pairwise distances from present countries are
not be identifiable, as they are potentially infinite. Also, removing present countries
to match the node set of the two sub-periods is not a valid option, as it would alter
the voting structure. Although some of the distances vary with respect to those in
the longer period 1998-2015, the sub-groups observed in figure 2.5 are still present.
For example, Northern Europe countries tend always to be closer to each other, as
well as Eastern Europe countries do.

2.8 A simulation study

A simulation study has been considered to test the proposed model. In particular,
simulations have been exploited to assess the large-sample behaviour the parameters
estimates, when the dimensionK of the multiplex is large, and to verify the robustness
in the latent coordinates estimates with respect to different underlying distributions.
In all the different scenarios, the reference was taken to be the first network of the
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multiplex and the reference parameters have been fixed to β(1) = 1 and α(1) = 0 (as
in the application). The intercepts and the scaling coefficients have been simulated
from their prior distributions (see section 2.4.1), with σ2

α = σ2
β = 1, µα = µβ = 0.

Four simulation scenarios have been defined, divided in two blocks:

• Block I This block has been built to test the large-sample behaviour and the
robustness of parameter estimates when the latent coordinates distribution is
far from Gaussianity. Indeed, not all the observed data might be well described
by latent Gaussian coordinates. Within each scenario in the block, we have
considered 4 types of multidimensional networks, with a relatively small K
but an increasing number of nodes:

1. n = 25 and K = 3,
2. n = 50 and K = 3,
3. n = 50 and K = 5,
4. n = 100 and K = 3.

The values for the scaling parameters and the intercepts are constants in
scenarios I-III, conditionally on the type of multiplex considered.

– Scenario I: the latent coordinates have been simulated from a bivariate
normal distribution (the prior distribution used in the model).

– Scenario II: the latent coordinates have been simulated from a mixture
of bivariate normal distributions, where the number of components was
set to G ≈ n/7. The mean vector for each group has been simulated
from a standard bivariate normal distribution and the covariance matrices
are diagonal with elements randomly sampled in the interval (0.1, 1).
This scenario corresponds to the case of data representing different kind
of relations among separate groups of nodes/communities. Indeed, the
probability for node i in group c to link with node j will be higher if j ∈ c
as well.

– Scenario III: the latent coordinates have been simulated from a standard
bivariate Hotelling’s T 2 distribution with 4 degree of freedom. This
scenario allows for some nodes to be located far from the center in the
latent space. Thus, this case reflects the presence of inactive/semi-inactive
nodes in the network, that tend to interact poorly with the rest of the
network.

• Block II This block has been built to test the large-sample properties of the
parameter estimates when the number of networks K is large. That is, the
case of the application considered in the present application.

– Scenario IV: the latent coordinates are simulated according to the
bivariate Gaussian distribution specified in section 2.4.1. Multiplexes
with different size have been simulated:
1. K = 10 and n = 50,
2. K = 20 and n = 50,
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3. K = 30 and n = 50.

In all the considered scenarios, we treated both the case where all the nodes are
present in each network (denoted by P ) and the case where some of the nodes are
absent in some networks (denoted by A) (see section 2.5.2). In the second case, the
missing data process resembles the one observed in the Eurovision data with respect
to the average number of absent nodes per network and the number of absences for
each node. The reference network was taken to be the first of the multiplex and the
corresponding parameters have been fixed to β(1) = 1 and α(1) = 0 (the values in the
application). The latent coordinates, the intercepts and the scaling parameters have
been simulated from their prior distributions (see section 2.4.1), with σ2

α = σ2
β = 1,

µα = µβ = 0.

2.8.1 Results

To estimate the model on the simulated data (Block I and Block II), we
fixed να = νβ = 3, τα = τβ = (K − 1)/K, α(1) = 0 and β(1) = 1 (see section
2.4.2 for details). Each model was estimated 10 times, performing 40000 MCMC
iterations and discarding the first 5000. The parameter estimates were consistent
with the simulated values in all different scenarios and the estimates for the latent
coordinates have been found to be robust to misspecifications of the corresponding
distribution. In the supplementary material we present in details the results for
the different scenarios. Boxplots and tables with mean and standard deviations for
the parameter estimates are presented, as well as mean and standard deviation of
the procrustes correlation between the estimated and the simulated latent space
coordinates. Overall, the proposed method returns reliable estimates for the true
parameter values. The simulated values fall within the 95% credible interval built on
the posterior distributions, with a couple of exceptions that occur when the number
of networks increases. However, in these cases, the true magnitude of the value is
always recovered, as the estimates are still quite close to the actual simulated values.
The simulated latent spaces are always recovered with high correlation, even in the
stressed scenarios, I and II. There is no substantial difference in estimates for cases
P and A. Thus, the absence of some of the nodes in some networks of the multiplex
does not impact the estimation of the latent position estimates.

2.9 Comparison with the lsjm model

The lsjm model by Gollini and Murphy, 2016 considers a mean latent space,
which originates the network-specific latent coordinates. To compare the two models,
we have simulated different types of multiplex, fixing β(k) = 1 for k = 1, . . . ,K, that
is, according to the lsjm. The simulated multidimensional networks come from the
following scenarios:

1. A sparse multiplex with n = 50, K = 3 and α = (−0.66,−0.70,−0.54),

2. A multiplex with n = 70, K = 2 and α = (−0.73,−1.12),

3. A small, denser multiplex with n = 25, K = 3 and α = (0, 1.02, 0.28).
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Simulating from the model presented in this work (which will be referred to as lsmmn)
when all the coefficients are fixed to 1 corresponds to simulating from the latent space
joint model when all the network-specific latent spaces are the same. Therefore, in
the present setting, the two models can be compared. Both the lsjm and the lsmmn
models have been estimated 10 times for each of the simulated multidimensional
networks. The lsjm is estimated using the R package lvm4net (https://cran.
r-project.org/web/packages/lvm4net). In the supplementary material we report
the results of such a comparison. As it can be derived by looking at the supplementary
material, the model we propose outperforms the lsjm both in the quality of parameter
estimates and in recovering the latent coordinates.

2.10 Discussion
In the present work, we have introduced a general and flexible model for the

analysis of multidimensional networks (multiplexes). In particular, the model is
defined to recover similarities among the nodes when the structure of the observed
networks is complex and there is not a clear information on which external in-
formation can be used to explain the observed patterns. The model extends the
latent space model by Hoff, Raftery, and Handcock, 2002 and the latent space joint
model by Gollini and Murphy, 2016 with the introduction of network-specific scaling
parameters representing the impact of the latent space on the edge-probabilities.
When these coefficients are null, the model reduces to a random graph model for
multidimensional networks. Moreover, missing data and edge-specific covariates are
considered. A hierarchical Bayesian approach is employed to define the model and
its estimation is carried out via MCMC. We have defined hyperprior distributions
for the hyperparameters of the model, to avoid subjective specifications. The latent
coordinates allow for an efficient visualization of the network, a well desired feature
for large multidimensional networks.
The model has been applied to the votes exchanged among countries in a popular TV
show, the Eurovision Song Contest, from 1998 to 2015. Cultural and geographical
covariates have been included in the analysis and only the presence of a shared
boarder between two countries was found to be relevant to explain observed voting
patterns. The recovered similarities among the participants in the period 1998-2015
have been found to resemble only partially the corresponding geographical locations.
Indeed, exploratory analysis displays a group structure among the nodes in the latent
space which does not completely agree with geographical criteria. These findings
sustain the claim of bias in the voting structure observed in the Eurovision, which,
however, can not be attributed to geographical reasons alone.
In the simulation study we have applied the proposed model to a large varieties of
multidimensional networks and successfully recovered the latent coordinates and the
network-specific parameters. That has proved the ability of the model to recover
the (latent) association structure among the nodes in a multiplex, also when the
number of networks is large.
The latent space model for multivariate networks is implemented in the R pack-
age spaceNet and it is available on CRAN (https://CRAN.R-project.org/package=
spaceNet).

https://cran.r-project.org/web/packages/lvm4net
https://cran.r-project.org/web/packages/lvm4net
https://CRAN.R-project.org/package=spaceNet 
https://CRAN.R-project.org/package=spaceNet 
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Chapter 3

Modelling Heterogeneity in
Latent Space Models for
Multidimensional Networks

3.1 Introduction

Relational data can be, and often are, represented in the form of networks.
In an observed network, dyadic relations of interest are coded as edges between
nodes. When multiple relations are recorded among the same group of nodes, a
multidimensional network (multiplex) is observed. Instead, if the same relation
is observed through time on the same set of nodes, a dynamic network can be
defined. Observed network data, either uni-dimensional or multidimensional, can
exhibit different characteristics, and these may directly influence their structure.
A frequently studied one is transitivity, which refers to whether the relation being
represented in the network is, up to some extent, transitive. Roughly speaking,
transitivity in social networks can described by the “a friend of my friend is my
friend” phenomenon. A popular way to model such a feature is through latent space
models, first introduced by Hoff, Raftery, and Handcock, 2002. The basic idea is
to represent the nodes in a low-dimensional, unobserved, space, postulating that
the probability of observing an edge in the network depend on the positions of the
nodes in such a space. Different latent space approaches have been proposed in the
literature, either based on metrics, see Hoff, Raftery, and Handcock, 2002, Hoff,
2005, or on ultrametrics, see Schweinberger and Snijders, 2003. Among metric latent
spaces, models based on the Euclidean distance are likely the most widespread, as
they produce easily interpretable representations of the networks while being flexible
enough to describe a large variety of network data. Alternatives to distance-based
latent space model are the projection, Hoff, Raftery, and Handcock, 2002, and
the multiplicative latent space model, Hoff, 2005. Both postulate that the edge
probabilities depend on the inner products of the latent coordinates. Such models
address transitivity differently from distance models, as they also incorporate in
the latent space representation of the nodes also the “direction” of the relation,
see Hoff, Raftery, and Handcock, 2002. Extensions of the latent space models
to multidimensional networks are those described by Gollini and Murphy, 2016,
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Salter-Townshend and McCormick, 2017, Hoff, 2011 and D’Angelo, Murphy, and
Alfò, 2018. Sewell and Chen, 2015 introduce a latent space model for dynamic binary
networks, and later have extended it to include weighted dynamic networks, see
Sewell and Chen, 2016. Durante and Dunson, 2016 developed a framework based on
a dynamic latent space model to describe dynamic networks of face-to-face individual
contacts.
Another interesting feature is that of degree heterogeneity, which refers to the
propensity of some nodes to send/receive more edges than others. Holland and
Leinhardt, 1981 proposed the so called “p1” model, where node-specific sender and
receiver effects are treated as random effects. Duijn, Snijders, and Zijlstra, 2004
developed the “p2” model, an extension of the “p1” model, where node-specific
attributes are introduced in the form of covariates, together with the sender/receiver
random effects. Other extensions of the basic model are that by Hoff, 2003 and Hoff,
2005, that bring together sender/receiver effects and latent space representations
for a single network. Part of this framework was later extended by Krivitsky et al.,
2009, to allow for clustering of the nodes in the latent space. In the context of
dynamic networks, Sewell and Chen, 2015 model the overall sender/receiver effect in
the networks, investigating whether activity (sending links) or popularity (receiving
links) is more important when the edge formation process is considered.
Starting with latent space models, we develop a latent space approach based on
the Euclidean distance to model transitivity and heterogeneity in multidimensional
networks. Our aim is to extend the model by D’Angelo, Murphy, and Alfò, 2018 to
account for degree heterogeneity while modelling different levels of complexity in
multidimensional networks. Indeed, multidimensional networks data are complex in
two directions: the number of nodes and the number of views. A model that aims at
describing the interactions between the actors in such a high dimensional complex
should explain the view-specific features, while being parsimonious with respect to
the number of parameters. For this purpose, we model transitivity via a single latent
space, common to the whole multiplex, assuming that the distances in such a space
represent the overall association between the nodes. Heterogeneity across different
view will be addressed introducing node-specific sender/receiver parameters, that
will account both for intra(-) and inter(-) networks degree heterogeneity.
The paper is organized as follows: in Section 3.2 we introduce more formally the
concept of multidimensional networks and define the proposed class of models for
directed multiplexes. Section 3.3 provides with the details of the estimation procedure
and discusses issues of model identifiability. Section 3.4 describes the proposed class of
models for the particular case of undirected multidimensional networks. A simulation
study is conducted is Section 3.5, to investigate the properties of the proposed class
of models, and to study the performance of a novel heuristic procedure for model
selection. Then, an application on FAO trade data is presented in Section 3.6. Last,
we conclude with a discussion in Section 3.7.
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3.2 The collection of latent space models for directed
multiplexes

A binary multidimensional network (multiplex) Y is a complex object defined by
a collection of networks (also known as views). These networks can be represented
by n × n adjacency matrices

{
y(1), . . . , y(K)} = Y, where the index k = 1, . . . ,K

indicates the different views. The entries in each matrix (kth network) can take
two values, y(k)

ij = 1 when nodes (i, j) are joined by an edge, and y(k)
ij = 0, when

they are not. Views in a multiplex share the same set of nodes, whose cardinality
is denoted by n. In the present context, nodes will be indexed by i, j = 1, . . . , n.
A multiplex can be either undirected, if y(k)

ij = y
(k)
ji or directed, if the different

adjacency matrices are not symmetric, y(k)
ij 6= y

(k)
ji for at least one (i, j) couple. In

general, many interesting real world multiplexes are directed, and different levels
of “symmetry” can be observed in the adjacency matrices at hand. Notice that,
even if a network is undirected, this does not imply that all the nodes have the
same number of connections, that is, the same degree. Modelling the degree, or, for
directed networks, the out-degree, ∑n

j 6=i y
(k)
ij , and the in-degree, ∑n

j 6=i y
(k)
ji , is a task

that might be of interest in many empirical applications. Indeed, it can help recover
the most influential, or popular, nodes in a network, or the more active ones. Further,
different views might exhibit different levels of heterogeneity in the node-specific
degree distribution. In this sense, multidimensional networks can be heterogeneous
in two directions: within and between the views. In the present work, we introduce a
class of latent space models that address transitivity and view-specific heterogeneity
in the analysis of multiplex data. In this section, we introduce the more general
latent space framework for directed multidimensional networks. Section 3.4 discusses
their restriction to the particular case of undirected multidimensional networks.
Latent space models based on Euclidean distances are based on the assumption that
each node is located into an unobserved p-dimensional Euclidean space; according
to model specification, the probability of observing an edge between the dyad (i, j),
conditionally on the latent coordinates zi, i = 1, . . . , n, of these nodes, does not
depend on the other nodes positions, see Hoff, Raftery, and Handcock, 2002. We
hold these assumptions in our model, together with a further one, as we assume
the probability of a connection between a dyad also depends on its node-specific
propensities to send/receive links. In multidimensional networks, the propensities
may vary with the views, as an actor could be quite popular in a network, without
receiving many edges in another one. Different levels of heterogeneity in edge
probabilities may depend on different levels of heterogeneity in the behaviour of the
nodes in the different networks.
For this purpose, let θ(k)

i and γ(k)
i , i = 1, . . . , n and k = 1, . . . ,K represent the sender

and the receiver parameters for the ith node in the kth network, respectively. These
parameters are introduced in the model specification to describe the propensity of
a given node to send/receive edges, respectively. Then, the probability p(k)

ij of a
connection from node i to node j, in the kth network, depends on the parameters
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θ

(k)
i , γ

(k)
j

)
, through the following model:

p
(k)
ij = P

(
y

(k)
ij = 1 | α(k), β(k), θ

(k)
i , γ

(k)
j , dij

)
=

exp
{
f(α(k), θ

(k)
i , γ

(k)
j )− β(k)dij

}
1 + exp

{
f(α(k), θ

(k)
i , γ

(k)
j )− β(k)dij

}
(3.1)

where α =
(
α(1), . . . , α(K)) and β =

(
β(1), . . . , β(K)) are the sets of network-specific

parameters, while dij is the squared Euclidean distance between node i and node j
in the p-dimensional latent space.
According to the node-specific behaviours, we may define three different scenarios
for each parameter:

• null (N): θ(k)
i = 0 or γ(k)

i = 0, ∀ i = 1, . . . , n , k = 1, . . . ,K;

• constant (C): θ(k)
i = θi or γ(k)

i = γi, ∀ i = 1, . . . , n, k = 1, . . . ,K;

• variable (V): θ(k)
i or γ(k)

i , ∀ i = 1, . . . , n, k = 1, . . . ,K.
Note that we assume the same type of effect (null, constant or variable) for all
the views in the multiplex; hence, if, for example, nodes in the kth network are
assumed to have a constant receiver effect, all the other (K − 1) networks will have
the same effect. While this assumption may seem a stringent one, we may observe
that, in practice, assuming θ(k)

i and γ(k)
i are variable we may have some nodes with

null effects, others with constant effects and the remaining with variable effects.
We further discuss this assumption in Section 3.7. Table 3.1 presents a schematic
taxonomy of the 9 potentially different models arising from the different assumptions
on the sender and receiver effects.
The impact of the sender/receiver effects on the edge probabilities can be made
explicit by defining a collection of network-specific matrices Φ =

(
Φ(1), . . . ,Φ(K)),

with generic element defined by[
φ

(k)
ij

]
=
[
θ

(k)
i + γ

(k)
j

g

]
, (3.2)

where the auxiliary variable g is defined as follows:

g =


0 if both effects are absent,
1 if only one effect is present,
2 if both effects are present.

(3.3)

γ
(k)
j

0 γj γ
(k)
j

N C V

θ
(k)
i

0 N NN NC NV
θi C CN CC CV
θ

(k)
i V VN VC VV

Table 3.1. The class of models defined by the different assumptions on the sender/receiver
effects.
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We can define the function f(·) as:

f(α(k), θ
(k)
i , γ

(k)
j ) = f

(
α(k)φ

(k)
ij

)
=
(
1− 1g(0)

)
α(k)φ

(k)
ij + 1g(0)α(k). (3.4)

where

1g(0) =
{

1 if g = 0
0 if g 6= 0

.

Equations (3.1), (3.2) and (3.4) explicit the basic modelling assumption; within each
view, the sender and the receiver effects jointly impact the view-specific intercept.
Furthermore, if we assume that

γ
(k)
j , θ

(k)
i ∼ Unif(−1, 1), i, j = 1, . . . , n

we have that, differently from the additive sender and receiver effect specification,
see Krivitsky et al., 2009, and as in standard latent space models, the intercepts α(k)

still correspond, on the logit scale, to the maximum value that edge probabilities in
the networks may achieve. Thus, recalling the definition of φ(k)

ij and of g in equations
(3.2) and (3.3), we may notice that the sender and receiver effects can be considered
as relative. Indeed, inactive (or unpopular) nodes will have a value of the effect
close to −1, while active (or popular) nodes will have a value close to 1. Obviously,
the combined effect φ(k)

ij varies in the same range. Bounding these parameters in
the interval [−1, 1] allows to easily interpret the differences in levels of activity (or
popularity) across nodes. We must also notice that if we allow the φ(k)

ij to be negative
and α(k) < 0, a fundamental problem arises. In fact, if we consider two dyads with
a common node, say (i, j) and (i, l) with φ

(k)
ij < φ

(k)
il < 0, we obtain p

(k)
ij > p

(k)
il

and this would violate the assumption that sender and receiver effects are directly
proportional to edge probabilities. For this reason, we bound the intercept to be
non-negative, α(k) ≥ 0 = LB(α), k = 1, . . . ,K. This constraint does not alter the
interpretation of the intercept and other model parameters; fixing a lower bound for
the intercept does not imply a lower bound for the edge probabilities, as the impact
of the latent space might decrease the effect of the intercept and the sender/receiver
effects.
From equation (3.4), we may also notice that when no sender/receiver effects are
present, the edge probability in (3.1) reduces to the model specification by D’Angelo,
Murphy, and Alfò, 2018 (scenario NN in Table 3.1). For the NN scenario, inference
procedures have already been provided; therefore, in the next section, we will focus
on those scenarios that include at least one effect. For these models, the edge
probability formula presented in equation (3.1) can be rewritten as:

p
(k)
ij =

exp
{
α(k)φ

(k)
ij − β(k)dij

}
1 + exp

{
α(k)φ

(k)
ij − β(k)dij

} (3.5)

3.3 Estimation
We propose a hierarchical Bayesian approach to parameter estimation for the

latent space model proposed in section 3.2. The corresponding (log-)likelihood can
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be derived from equation (3.5),
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The prior distributions for model parameters can be specified as follows:

β(k) ∼ N(0,∞)
(
µβ, σ

2
β

)
, α(k) ∼ N(0,∞)

(
µα, σ

2
α

)
,

zi ∼MVNp

(
0, I

)
, γ

(k)
j , θ

(k)
i ∼ Unif(−1, 1).

Since µβ, µα, σ2
β, σ

2
α are nuisance parameters whose specification could be relevant, we

introduce an extra layer of dependence using the following (hyper) prior distributions:

µr | σ2
r ∼ N(0,∞)

(
mr, τrσ

2
r

)
, σ2

r ∼ Invχ2
νr ,

with r = {α, β}. The hyperparameters mα,mβ, τα, τβ, να, νβ have to be specified
by the user. The constraint β(k) ≥ 0, k = 1, . . . ,K is imposed according to the
assumption that edge probabilities are inversely proportional to the distance between
nodes in the latent space. Figure 3.1 provides a representation of the hierarchical
structure of the proposed model.

3.3.1 Identifiability

As discussed by D’Angelo, Murphy, and Alfò, 2018, to ensure parameter identifia-
bility in the basic latent space model, one out of the K parameters α(k) and β(k) must
be fixed. The corresponding network is then referred to as the “reference” network.
In this context, fixing these two parameters is not enough, as the multiplicative effect
of φ(k)

ij can still cause problems. To avoid such issues, if both effects are present, one
sender and one receiver effect should be fixed in each view, and the corresponding
nodes will be considered as “reference” nodes. However, due to the possible scenarios
for each parameter, we have to give some more details. When the effect is variable,
we propose to choose as reference, in each network, the node (i) with the highest
observed out-degree (or in-degree) and fix θ(k)

i = 1 (respectively γ(k)
i = 1). Instead,

y

α β

zθ

γ

µα σ2
α

µβ σ2
β

Figure 3.1. Hierarchy structure of the model.
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when the effect is constant, we propose to select the node i with the highest observed
mean out-degree (or mean in-degree) and fix θi = 1 (respectively γi = 1). Fixing
the sender/receiver parameter for one node to 1 does not change the interpretation
of the model, as we are most interested in ordering the nodes with respect to the
sender/receiver effects rather than in the parameter estimates.

3.3.2 MCMC algorithm

We propose a MCMC algorithm to estimate parameters for the latent space
model proposed in section 3.2. The algorithm iterates over the model parameters,
the latent coordinates and the nuisance parameters; since full conditionals are
available in closed form only for the latter ones, we use a Metropolis-Hastings step
to update the other estimates. The full conditional distributions for the nuisance
parameters, the proposal distributions for the network-specific parameters and
the latent coordinates are presented in appendix B, together with the proposal
distributions for the sender/receiver parameters. The adopted procedure starts by
simulating a new value for each nuisance parameter; then, it proposes a new value
for the network-specific parameters α(k) and β(k), with a joint MH step on each
network. A further MH step sequentially proposes new latent coordinate values.
As the likelihood in equation (3.6) is invariant to rotations and translations of the
latent coordinates, when a new set of positions is defined, Procrustes transformation
is employed to check whether this new set is just a simple transformation of the
previous solution. If so, the proposed set is discarded in favour of the previous one.
After that, sender/receiver parameters are updated sequentially on the nodes, but
jointly over the different networks via an additional MH step. The joint update is
performed to speed up the calculations, given the high number of model parameters.
When all the effects are updated, a new solution of Φ(k) is available.
The latent coordinates are initialized via multidimensional scaling on the average
geodesic distances calculated over the different networks. Squared Euclidean distances
are then computed on such starting latent positions, and the distances are used to
perform a logistic regression of the adjacency matrices to get starting values for the
intercept and the coefficient estimates α(k) and β(k): Sender and receiver parameters
are initialized in a non-informative way, by fixing them to 0.
Edge specific covariates, either constant or variable across the networks can be easily
incorporated in the proposed framework, for the edge probabilities. Also, the model
can be easily extended to deal with the presence of missing edges/nodes in the data.
The full conditional and proposal distributions for model parameters are presented
in Appendix B for the most general case of missing data and edge-specific covariates.

3.4 Undirected network

In the particular case of undirected networks, out-degrees and in-degrees are iden-
tical for each node, ∑i y

(k)
ij = ∑

i y
(k)
ji ∀i = 1, . . . , n. Therefore, the framework pro-

posed in section 3.2 can be easily modified to deal with undirected multidimensional
networks. In such a context, we have to impose the constrain: θ(k)

i = γ
(k)
i = δ

(k)
i , for

all i = 1, . . . , n. According to such assumption, the edge probability equation (3.5)
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can be rewritten as:
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The effect δ(k)
i , if not null, can either be variable across the different networks, δ(k)

i ,
or constant, δ(k)

i = δi, k = 1, . . . ,K and i = 1, . . . , n. Appendix B provides the
reader with the proposal distributions used to estimate these model parameters.

3.5 Simulations
We defined a simulation study to evaluate the performance of the proposed

estimation procedure for the latent space models, where we examine the behaviour
of the model parameter estimates of the model parameters for models NC, NV, CC,
CV and VV. For each one of the simulated multiplexes, we fit the “true” model, that
is, the model a given multiplex was simulated from. These five models are chosen to
investigate the properties of the estimators when the true scenarios refer to different
numbers of parameters. A first scenario of simulated multidimensional networks,
B1, has dimensions (n = 50,K = 5). A second larger one, B2, has dimensions
similar to those of the multiplex that we analyse in the application, in section 3.6,
namely (n = 50,K = 10).
In both these simulation scenarios, we set α(1) = 2 and β(1) = 1. The prior parameters
are να = νβ = 3, mα = 2, mβ = 0, τα = τβ = (K−1)/K and p = 2. Small variations
of these values have been also tried and did not affect the obtained results. Also,
there are no missing edges in the simulated data. The MCMC algorithm run for
60000 iterations with a burn in of 15000.
Table 3.4 shows the average values of the distance correlation computed between the
simulated and estimated edge probabilities, for all the different networks composing
the multiplexes in scenarios B1 and B2. As we may observe, the correlations are
always high, proving that we are able to recover the edge probabilities with good
quality, regardless of the true model, the view or the multiplex size. Also, last
column of Table 3.4 reports the average values of the Procrustes transformation
between the simulated and the estimated latent space coordinates. As for the edge
probabilities, we see that the latent coordinates are appropriately recovered. To
evaluate the estimates of the sender/receiver parameters in the different models,
we compute, for each network, the Spearman correlation coefficient between the
simulated and the estimated parameters. This coefficient is used as we are mainly
interested in recovering the nodes ordering, with respect to the two estimated effects.
Indeed, sender and receiver parameters vary in a relatively small interval, (−1, 1),
and the exact numerical values might not be of much interest. Table 3.3 reports,
for each network in the simulated multiplexes, the average values of the Spearman
correlation coefficient between the n simulated and estimated receiver parameters,
γ

(k)
i . These values are always much greater than 0.5, with a couple of exceptions for

some networks in the models with higher complexity, that is CV and VV. However, as
we could see from Table 3.4, this does not impact the recovering of edge probabilities.
Table 3.2 reports the average values of the Spearman correlation coefficient between
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the n = 50 simulated and estimated sender parameters, θ(k)
i . The behaviour of

these estimates complies with those of the receiver parameters previously discussed,
proving that the two effects, when both presents, are estimated equally good.
We refer to Appendix B for the α(k) and the β(k) estimates. The intercepts are
recovered within a 95% credible interval, with two limited exceptions which occur
when the simulated values are “extreme”. However, the ordering between the different
intercepts in a given multiplex is always recovered. Instead, the β(k) coefficient tends
to be overestimated. Also in this case, the ordering of coefficients in a multiplex
is correctly recovered. The overestimation of this coefficient may be likely caused
by a corresponding underestimation of the latent distances, as the simulated and
estimated products β(k)dij are always well recovered. Precise point estimates of all
the parameters are quite hard to recover, due to the large number of parameters
in the models. However, the aim of this class of latent space models is to describe
different features of a multiplex by comparing nodes and networks. This intent is
met, as we are always able to recover the corresponding orderings.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

B1

0.65
CC 0.84 0.84 0.84 0.84 0.84 - - - - -
CV 0.90 0.90 0.90 0.90 0.90 - - - - -
VV 0.58 0.57 0.55 0.58 0.59 - - - - -

B2

0.65
CC 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78
CV 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79
VV 0.65 0.66 0.66 0.65 0.66 0.66 0.66 0.66 0.67 0.65

Table 3.2. Simulation study. Spearman correlation between the simulated and the esti-
mated sender effects, by simulation scenario and true model structure.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10
0.65

B1

NC 0.84 0.84 0.84 0.84 0.84 - - - - -
NV 0.85 0.80 0.86 0.92 0.91 - - - - -
CC 0.84 0.84 0.84 0.84 0.84 - - - - -
CV 0.80 0.86 0.81 0.73 0.6 - - - - -
VV 0.67 0.61 0.50 0.64 0.75 - - - - -

0.65

B2

NC 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94
NV 0.92 0.86 0.84 0.74 0.84 0.83 0.92 0.61 0.80 0.79
CC 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84
CV 0.51 0.66 0.83 0.50 0.73 0.82 0.82 0.85 0.61 0.79
VV 0.61 0.48 0.81 0.83 0.86 0.58 0.54 0.57 0.87 0.59

Table 3.3. Simulation study. Spearman correlation index between the simulated and the
estimated receiver effects.
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k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 PC
0.65

B1

NC 0.86 0.84 0.86 0.87 0.85 - - - - - 0.94
NV 0.87 0.87 0.87 0.85 0.86 - - - - - 0.92
CC 0.89 0.89 0.90 0.91 0.87 - - - - - 0.96
CV 0.84 0.81 0.83 0.84 0.85 - - - - - 0.90
VV 0.83 0.81 0.80 0.81 0.81 - - - - - 0.93

0.65

B2

NC 0.89 0.84 0.83 0.83 0.81 0.92 0.84 0.81 0.81 0.82 0.85
NV 0.83 0.80 0.79 0.76 0.81 0.78 0.88 0.71 0.75 0.75 0.93
CC 0.83 0.87 0.91 0.84 0.90 0.91 0.91 0.84 0.86 0.91 0.90
CV 0.75 0.86 0.87 0.76 0.86 0.88 0.87 0.86 0.83 0.87 0.91
VV 0.73 0.72 0.82 0.85 0.88 0.79 0.79 0.79 0.86 0.84 0.90

Table 3.4. Simulation study. Distance correlation between the simulated and the estimated
edge-probabilities. Last column (PC) shows the Procrustes correlation
between the simulated and the estimated latent space coordinates.

3.5.1 An heuristic procedure for model selection

In Section 3.2 we have proposed a class of 9 models for multidimensional networks,
based on 9 different alternatives for the sender/receiver effects in a model for multiplex
data. In general, the issue of model selection can be addressed in two different ways.
A first approach is that of an expert, that has some previous knowledge on the data
and suggests a particular model should be used. A second, more common, approach,
is that of choosing the “best” model by some selection criteria.
Note that, in the present context, the estimation of the nine models, on a specific
observed multiplex may request some (computational) time, especially when the
number of nodes is large.
Hence, it could be good to have some idea on which model to estimate on a priori
basis. In particular, we propose to determine the model to fit on the basis of
the correlations between the observed in-degrees and out-degrees of the networks
in the observed multiplex. The general idea is that computing the correlations
among networks out-degree/in-degree distributions could serve as a proxy of the
heterogeneity within and between the views. Let us denote by S = [sik] the matrix of
the observed out-degrees and by R = [rik] the matrix of the observed in-degrees; both
matrices have dimension n×K, where n is the number of nodes and K the number
of networks. Then, the matrices cor(S) = csk and cor(R) = crk , of dimension K×K,
contain the values of the correlation of the sender/receiver effects between views.
Instead, the matrices cor(ST ) = csi and cor(RT ) = cri , of dimension n× n, include
the correlations of the sender/receiver effects between nodes. Let us now define c̄sk ,
c̄rk , c̄si and c̄ri the mean values among all the cells of the matrices introduced above
and sd(csk), sd(crk), sd(csi) and sd(cri) the corresponding standard deviations. We
propose to use such quantities to choose which type of model has to be estimated,
given an observed multidimensional network, by the heuristic procedure described
in Figure 3.2. Observed multiplexes with similar values of c̄sk and c̄rk , and of c̄si
and c̄ri , could have similar types of sender and receiver effects. On the contrary, a
multiplex that exhibit conflicting values of sender/receiver correlation among views
or among nodes might come from a model where the two effects are of different types.
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In the latter case, the higher the discrepancy between sender and receiver “node”
correlations, the higher the chance that the underlying model has two most different
types of effect, that is, one null and one variable. Whether the most complex effect
is the sender or the receiver one is decided by looking at c̄rk and c̄sk , while the
smallest of the two determines which effect should be the less complex. When the
sender/receiver effects are selected to be of the same type, a low correlation among
views and the presence of variability between the nodes correlations indicate that
the underlying model is the most complex one, the VV model. In a similar way, the
variability between the nodes correlations is used to discriminate between the NN
and the CC models; a low variability, below a threshold ε1, characterizes the NN
model, as no sender/receiver effects modify the influence of the distances on the
edge probabilities. As it can be seen from the scheme in Figure 3.2, this procedure
depends on four thresholds: ε1, ε2, c1 and c2. We tested the performance of the
proposed procedure via a large scale simulation study and the results are presented
in Appendix B. In the simulation setting, we have run the procedure on two groups
of 10000 multidimensional networks. The first multiplex has dimensions (50× 10),
while the second one has dimensions similar to those of the multiplex studied in
the application in Section 3.6, (65× 10). The thresholds have been fixed via cross
validation and are ε1 = 0.12, ε2 = 0.2, c1 = 0.5, c2 = 0.8. The procedure proved
to be fast and to give quite reliable results. Indeed, on average, the “true” model
is chosen 90% of the times. Also, when the heuristic procedure fails to select the
right model, it proposes a model that is “near” the “true” one. For example, when
a multiplex of dimension (65 × 10) is simulated from a VV model, the procedure
returns the VV model 90% of the times and the CC model the other 10%.

3.6 FAO trade data

The application deals with FAO food and agricultural trade data, measuring
annual import/exports between countries. The data are available at the FAO website
(FAOStat, 2013), and the most recent subset refers to 2013. Here we consider the
fruit sub-market, in particular, fresh fruit, as fresh items are the most internationally
traded. For illustrative reasons, we consider a restricted number of fruits, by choosing
10 out of the most commonly consumed and traded goods: “Grapes”, “Watermelons”,
“Apples”, “Oranges”, “Pears”, “Bananas”, “Pineapples”, “Tangerines, mandarins,
clementines, satsuma”, “Plantains” and “Grapefruit (inc. pomelos)”. The original
data register the volume of the trade, that is, the quantity traded among each couple
of countries; however, we focus on the presence/absence of an import/export relation
between couples of countries. Our aim is to verify whether close countries are more
likely to trade, by comparing the estimated latent coordinates of the countries with
the geographical ones. Also, we can address which countries are the most relevant
in the exchange of fruits, via the estimated sender/receiver parameters, and whether
their relevance is constant throughout the different markets. The original number of
trading countries in the data is large, more than 200, but not all of them trade in
all of the markets. Thus, to avoid the presence of isolated node-countries and to
guarantee an easy and feasible representation of the results, we focus on a subgroup
of 64 countries, reported in Table B.1, appendix B. To define such a sub-sample,
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|c̄si − c̄ri | < ε1
|c̄sk − c̄rk | < ε1

TRUE

c̄sk ≤ c1
c̄rk ≤ c1

sd(csi) > ε2
sd(cri) > ε2

FALSE

sd(csi) < ε1
sd(cri) < ε1

TRUE

NN

FALSE

CC

TRUE

VV

FALSE

c̄si < c̄ri

TRUE

c̄sk < c̄rk

TRUE

|c̄ri − c̄si | > ε2(
sd(csi)− sd(cri)

)
≥ ε1

TRUE

VN

FALSE

VC

FALSE

CN

FALSE

c̄sk < c̄rk

TRUE

NC

FALSE

|c̄ri − c̄si | > ε2(
sd(cri)− sd(csi)

)
≥ ε1

TRUE

NV

FALSE

CV

Figure 3.2. Synthetic representation of the heuristic procedure for model selection. The
thresholds have been fixed via a cross validation exercise and are: ε1 = 0.12,
ε2 = 0.2, c1 = 0.5, c2 = 0.8, respectively.

we have considered the median number of countries with which a country trades
(equal to 7) and removed all the countries with a value under the median. We end
up considering a multidimensional networks with the same number of n = 64 nodes
and K = 10 networks.
The observed densities range from 0.10 (Plantains market) to 0.28 (Apples market),
with a mean of 0.20. Also, the associations1 between couples of adjacency matrices
are quite high, ranging in between 0.8 and 0.9, suggesting that countries tend to
import/export fruits from/to a relatively constant set of partners. The observed

1The association between any two adjacency matrices, k, l = 1, . . . ,K, is computed comparing
the total number of concordant cells between the two matrices and the total number of cells:
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out-degrees and in-degrees present a strong association, as it can be seen by looking
at Figure 3.3; thus, the data are a good candidate to test the proposed model.
The heuristic procedure described in Section 3.5.1 suggested to use the VC model.
Indeed, the average Spearman correlation (Figure 3.3) computed among couples
of observed out-degree distribution, 0.73, is lower than the one computed among
couples of observed in-degree distributions, 0.80. However, we fit all the nine models
proposed to the data and compute different model selection criteria, to further
validate the model proposed by the heuristic procedure. The hyper parameters
are fixed as in the simulation setting (Section 3.5), and p = 2 is the dimension of
the latent space, both for plotting reasons and to compare the estimated with the
geographical coordinates. AIC (Akaike, 1974), BIC (Schwarz, 1978) and PWAIC1
(Gelman et al., 2014) agreed with the heuristic procedure in the selection of the VC
model. DIC instead opted for the VV model, the most complex one. Almost all of
the selection criteria used and the heuristic procedure agree in proposing the VC
model. Therefore, here we present only the results of this model for the FAO fruit
trade multidimensional network.
Table 3.5 reports the top three exporting countries, by means of the estimated
sender effects in the different networks. Top exporting are to be interpreted as those
countries that tend to export fruit to a large group of trading partners, conditionally
on the the latent distances to other nodes. Countries appearing as top exporting in
any of the considered fruit markets never show up in the bottom three positions.
Also, some countries tend to be top exporting in more than one market. For example,
Netherlands (NLD) appears seven times in one of the top three positions. Indeed,
Netherlands is amongst the world’s biggest (re-)exporting countries for many fruits
and vegetables (FreshPlaza, 2015b). Also, together with Belgium, it is one of the
major trade hubs for fresh fruits, importing goods from developing countries and
then reselling them (mostly) to the European market (CBI, 2015). Spain (ESP) is
estimated to be among the top three exporting in six markets, and first exporter in
three of them. Contrary to Netherlands, Spain directly grows most of the fruits it
exports; just to give an example, Canary Islands are great pineapples producers. Also,
Spain in 2017 became the world’s largest watermelon exporting country (FreshPlaza,
2018). Italy is often estimated to be among the top three exporters, as it appears
five times in the top three. Something similar happens with the estimated bottom
three positions; some countries are estimated to be bottom exporters in more than
one market. Maldives (MDV) and Kazakhstan (KAZ) appear in the bottom three
positions 7 and 6 times, respectively. Indeed, both countries depend largely on
imports for most fruit requirement (Aquastat, 2011; Food and Drink, 2017). As
for the receiver effects, see Table 3.6, these are constant across the networks, and
Germany (DEU) and Netherlands (NLD) are estimated to be first and second overall
importing countries. Indeed, in 2014, the German market accounted for a third of
the Dutch (re-)export of fresh fruit (CBI, 2015; FreshPlaza, 2015a). Also, Germany
is estimated to be in the top three importers ranking for three markets, always
jointly with Netherlands. The results are coherent with what we observed in the
data. For example, in 2013, Germany is the country that imports from a higher
number of trading partners, while Maldives never export. Also, Netherlands is the
country that mostly export to an higher number of trading partners.
The strong similarity in the sender/receiver behaviour of Germany and Netherlands
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is reflected in the estimates of their latent coordinates, see Figure 3.4; the coordinates
of the two countries almost overlap and are quite close to Belgium, another big
European (re-)exporter. The estimated latent coordinates do not resemble much the
geographical ones; indeed, the Procrustes correlation between the two sets is not high
(0.45). The estimated latent space, Figure 3.4, is characterized by a large number of
Asiatic countries placed in the top-left of the space and the majority of the European
countries in the bottom-right part. United States are placed in between Asiatic and
Oceanic countries. Most of these countries are leading suppliers of fruits for the
United States, thanks to established or pending free trade agreements (Johnson,
2016). The latent space is estimated to be always relevant in the determination of
the edge probabilities, and to have similar effect on the different networks. Indeed,
Table 3.7 shows that the estimated coefficients β(k) range in (1, 1.60); the same
Table displays the estimates of the intercepts in the different networks. All of
the intercepts correspond to high edge probability values, from 0.971 in the first
network, the lowest one, to 0.996 in the eight network, the highest one. Figure 3.5
represents the estimated probabilities in the fruit networks, given some values of the
distances and of the φ(k)

ij coefficients. In particular, the probabilities are computed
for the first (0.53), second (1.36) and third (2.71) quartiles of the distances, and for
φ

(k)
ij = (1, 0.5, 0,−0.5). The plot in Figure 3.5 shows that, even though the latent

space is constant, quite different values of the edge probability correspond to the
same estimated distances, depending on the joint sender/receiver effects and on the
network-specific parameters, α(k) and β(k).
Last, for illustrative purposes, we display the estimated sender/receiver effects of the
countries for the Apples and Pineapples networks (Figure 3.6); as the receiver effects
are constant (y-axis), the plot helps to visualize the different role of each country
in the two markets. Two red lines divide the figure in four quadrants. The first
and third quadrants contain countries whose estimated sender and receiver effects
have same sign.The second (fourth) quadrant displays those countries that have
negative (positive) sender effects and positive (negative) receiver effects. Nineteen
countries change quadrant in the two markets (Apples and Pineapples). For example,
Greece (GRC) and New Zeland (NZL) have both quite an high sender effect in the
apple market, but this effect turns negative when trading Pineapples. In general,
for most countries, the sender effect estimates tend to be lower in the Pineapples
market. Malaysia (MYS) and India (IND) are the only two countries displaying the
opposite behaviour, as their estimated sender effects are higher in the Pineapples
market. Indeed, in 2018, the two countries where both ranked among the world
top 20 Pineapples producers (Worldatlas, 2018). Nonetheless, none of the two is
estimated to be among the top three Pineapples exporting countries in Table 3.5.
However, recall that the sender/receiver estimates are to be interpreted conditionally
on the latent distances and that India and Malaysia are located near the majority of
the Asiatic countries in the latent space, the top-left panel of Figure 3.4. Looking
at the original data, both countries, especially Malaysia, tend to export mainly to
other Asiatic countries, to which they are close in the latent space. That is, an high
probability of trading with Asiatic countries is already guaranteed by the closeness in
the latent space. Then, the “residual” contribution given by the sender effect to the
edge probability does not need to be really high. On the opposite, Thailand tends
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to trade with a larger and more variable group of other countries and, therefore, the
estimated sender effect in the Pineapples market is higher than those of Malaysia
and India.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

Top
1◦ ITA ESP ITA ZAF ESP NLD THA ESP DEU ZAF
2◦ ESP NLD FRA ESP ITA THA NLD NLD NLD NLD
3◦ ZAF ITA NZL EGY NLD DEU DEU ITA IND ESP

Bottom
62◦ KWT QAT KAZ RUS NOR MDV LBN QAT MAR QAT
63◦ RUS MDV MAR KAZ KAZ KAZ MDA NOR NOR MDV
64◦ KAZ HKG MDV MDV MDV MKD KAZ MDV UKR MKD

Table 3.5. Estimated sender effects: top and bottom three exporting countries.

1◦ 2◦ 3◦ 4◦ 5◦ 6◦ . . . 59◦ 60◦ 61◦ 62◦ 63◦ 64◦
DEU NLD BHR SGP DNK POL . . . AUS EGY MAR ZAF PAK IRN
Table 3.6. Estimated receiver effects: top and bottom six importers countries.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

α
mean 3.50 5.10 5.46 5.45 5.29 4.91 5.13 5.50 5.07 5.37
sd - 0.21 0.22 0.22 0.22 0.20 0.21 0.25 0.23 0.23

β
mean 1.00 1.34 1.03 1.18 1.13 1.51 1.17 1.36 1.60 1.31
sd - 0.06 0.04 0.06 0.05 0.06 0.05 0.06 0.08 0.06

Table 3.7. Averages and standard deviations of the estimated posterior distributions for
the intercept and the scale coefficient parameters in the fruit networks.
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Figure 3.3. Fruit multiplex: Pairplots of the observed out- and in-degrees of the networks.
The upper diagonal matrix represents the associations between the observed
out-degrees in any couple of networks, while the lower diagonal refers to the
association between the in-degrees. The values of the Spearman correlation
indexes are reported.
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Figure 3.4. Fruit multiplex. Estimated latent coordinates for the countries. The segments
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3.7 Discussion
In the present work we have introduced a novel class of Euclidean distance latent

space models for multidimensional network data. The models allow to represent
transitivity in a parsimonious way, via a single latent space. Also, different levels of
node-specific degree heterogeneity can be specified. In the spirit of model parsimony,
we assume that the type of sender/receiver effect (“Null”, “Constant” and “Variable”)
is constant across the views. An interesting relaxation of such hypothesis would
be to have the type of effect varying with the networks. Indeed, for example, it
may be that a subset K∗ of the K views has no sender effect, but the remaining
networks have constant sender effect. Finding such sub-groups of networks would
then become a clustering problem, with extra complexity brought by the allocation
of each network to the specific effect-sub-group and the estimation of the number of
clusters, which, however, would be bounded in (1, 3).
Also, we have proposed an heuristic procedure for model selection, that allows
to choose an appropriate model for observed multiplex data without the need to
estimate all the possible models. Thus, the procedure permits to bypass a classical
model selection step. A preventive selection of the model may be convenient in
many real data applications, as model estimation for network data can be quite
(computationally) demanding. The performance of the proposed heuristic procedure
and that of the latent space model have been tested in separate simulation studies
and have proven to give quite good results.
An illustrative application to FAO trade data regarding different fruit trades has
been presented, where our method was able to uncover trade patterns and shared
similarities among different fruit markets. The data may be an interesting research
problem per se, and an interesting extension of the proposed class of models could take
into consideration weighted multiplexes, analysing import/export values or quantities.
However, considering such weighted edges is non trivial, as the distributions of the
exchanged quantities are both right skewed and zero-inflated.
The proposed models will be incorporated shortly in the R package spaceNet, already
available on CRAN.
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Chapter 4

Clustering Multidimensional
Networks via Infinite Mixtures

4.1 Introduction

Network data describe relations and interconnections among n units. Interacting
units are denoted as nodes, while connections are called edges. Well known examples
are social network data, where friendship, approval, admiration, and other social
relations are expressed between individuals and may be modelled to understand how
people interact in certain contexts. Other than in social applications, networks may
be observed in many fields, as for example biology or economics. In general, connec-
tions observed in network data are of difficult visualization and interpretability, due
to the complex nature of networks themselves. Therefore, network analysis methods
mainly focus on reconstructing and explaining the connections observed among the
nodes. Such methods have to deal with the double task of faithfully modelling the
relations between the units, which lead to the observed connections, and of providing
with a feasible and interpretable summary of the data. Observed connections are
modelled stochastically and each pair of nodes, also known as a dyad, is associated to
an edge probability. Edge probabilities describe dyads connection propensity and can
be modelled in many different ways, according to the data at hand or the purpose of
the analysis. First attempts to model network data were built on the assumption of
independence between the edges. Edge probabilities were assumed to be constant, see
(Erdős and Rényi, 1959), or simple functions of some network statistics as in (Duijn,
Snijders, and Zijlstra, 2004; Holland and Leinhardt, 1981). These first models paved
the way for a more in depth analysis of edge formation in network data, where the
edges independence assumption was either reduced or removed and complexity was
added to the specification of edge probabilities (Hoff, Raftery, and Handcock, 2002;
Holland, Laskey, and Leinhardt, 1983; Nowicki and Snijders, 2001; Robins et al.,
2006; Snijders and Nowicki, 1997; Wasserman and Pattison, 1996). Among these
models, the class of latent variable models has gained a growing attention in the
last years. Such models are particularly interesting and meaningful as they explain
the observed interconnection structure in network data by means of latent variables,
which capture the association between the nodes. First latent variable models are
the latent space model by Hoff, Raftery, and Handcock, 2002 and the stochastic
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block model by Holland, Laskey, and Leinhardt, 1983; Snijders and Nowicki, 1997.
The latter may be thought as a latent class analysis model for network data and
it is explicitly designed to model clustering of the nodes. Clustering is a feature
often observed in many real world network data, as nodes may tend to connect
more frequently within given sub-groups. The stochastic block model classifies the
nodes into different sub-groups and provides a framework for modelling the between
cluster interaction structure. Some recent developments on the topic are those by
Signorelli and Wit, 2018, which analyses bill cosponsorships in the Italian Chamber
of Deputies, Bouveyron, Latouche, and Zreik, 2018, which extends the stochastic
block model to the analysis of textual data, and those by Bartolucci, Marino, and
Pandolfi, 2018; Matias, Rebafka, and Villers, 2018, extending the model to dynamic
(longitudinal) network data. Although stochastic block models may synthetically
represent clusters, they fail to represent within cluster transitivity, which refers to
how nodes locally interact. A flexible extension of the stochastic block model which
addresses such issue is the mixed membership stochastic block model by Airoldi
et al., 2008. In this framework, nodes may belong to different clusters, depending
on whom they are interacting with. A different approach is that of model-based
clustering for latent space models, introduced by Handcock, Raftery, and Tantrum,
2007. This framework is based on the class of latent space models, and directly
account for transitivity in network data (Handcock, Raftery, and Tantrum, 2007;
Hoff, Raftery, and Handcock, 2002). Edge probabilities are described as a function
of node positions in an unobserved space, which is responsible for the observed
structure in the network. Such latent positions arise from a mixture distribution,
whose components correspond to clusters in the data, as in standard model-based
clustering framework (Fraley and Raftery, 2002). The original model is estimated
with a MCMC algorithm; Salter-Townshend and Murphy, 2013 re-implemented it
with a variational Bayesian inference approach. An extension to the framework of
latent position cluster model is that by Gormley and Murphy, 2010, which combines
it with a mixture of experts framework. Fosdick et al., 2018 attempt to bridge
stochastic block models and latent position cluster models, using the so-called Latent
Space Stochastic Blockmodel. In this framework, within cluster probabilities are
modelled via a latent space model, while between cluster interactions are expressed
as in stochastic block models.
The number of clusters is often unknown and needs to be inferred from the data.
So far, almost all latent variable-based clustering frameworks proposed for network
data assumed a fixed number of clusters, and then compared models with different
number of clusters via cross validation or model selection criteria. In this context, a
different approach is that by Ryan, Wyse, and Friel, 2017, which allows to estimate
the number of clusters in a network, by analytically integrating out cluster-specific
parameters.
In model based clustering, the problem of selecting the number of clusters often
coincides with that of selecting the number of mixture components. Several ap-
proaches have been proposed to tackle this problem. In a first approach, choosing
the number of mixture components corresponds to selecting the most suitable model
for some observed data. This choice is often based on model selection criteria, used
to compare different models specified according to different number of components.
Various criteria, derived under different modelling assumptions, have been proposed
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in the literature; for a review see McLachlan and Rathnayake, 2014. In principle,
this approach would require to estimate models with all possible number of compo-
nents and then compare them. However, this is often computationally unfeasible,
especially with increasing sample size1. In a Bayesian framework, reversible jump
MCMC algorithms (Green, 1995) allow to make inference on the unknown number
of components, as simulations from the component parameter posterior distributions
are drawn from a space of varying dimensions (Zhang et al., 2004). However, trans-
dimensionality makes reversible jump algorithms quite computationally intensive, for
a solution see e.g. Petris and Tardella, 2003. Also, these algorithms strongly depend
on the modelling framework; different models would require the implementation of
different reversible jump MCMC algorithms. Another approach is that of overfitting
mixture distributions by Malsiner-Walli, Frühwirth-Schnatter, and Grün, 2016. The
authors suggest to estimate the number of mixture components specifying sparse
hierarchical priors on the mixture weights and component parameters. This results
in an overfitting mixture model where superfluous components are emptied during
MCMC sampling. This approach presents a general and straightforward way to
estimate the number of components, which is defined as the most frequent number
of non-empty components visited during MCMC sampling. However, a maximum
number of components, which will later be partially emptied, needs to be specified.
Related to the overfitting mixture distribution approach is that of Dirichlet process
mixture models (Frühwirth-Schnatter and Malsiner-Walli, 2018; Rasmussen, 2000).
Here, the number of components is assumed to be potentially infinite, and the com-
ponent parameters are taken to be the realizations of a Dirichlet process (Antoniak,
1974). Since in the observed sample the number of component is likely finite, joint
inference on the number of components and the mixture distribution parameters
is made possible by the Dirichlet process properties. Differently from overfitting
mixture distributions, the maximum number of components does not need to be
fixed and the number of inferred components may change with samples of different
sizes.
In many situations, the same set of nodes can be characterized by multiple relations,
or the same relation can be recorded over multiple time points. Such setting produces
a more complex type of network data, referred to as multidimensional networks, or
multiplexes. A multiplex is a collection of K n×n networks, or views, where multiple
sets of edges are observed for the same group of nodes. Few works extended the
latent position cluster model to such complex multidimensional network data. In the
particular case of dynamic networks, where the multiplex refers to the same relation
recorded at different time occasions, Sewell and Chen, 2017 extended the work by
Handcock, Raftery, and Tantrum, 2007 to perform clustering in dynamic network
data; also in this context, the number of cluster should be fixed a priori. As already
noted, stochastic block models have already been extended to dynamic network data,
see Matias, Rebafka, and Villers, 2018 or Yang et al., 2011. However, to the authors
knowledge, no specific clustering approach for multidimensional network data has
been proposed in the literature.

1In a network with n nodes, the sample size is n2, which corresponds to the number of potentially
observable edges. Hence, network data computational complexity grows quadratically with the
number of nodes.
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In the present work, we develop an infinite latent position cluster model for single
and multidimensional network data, built within the class of latent space models.
The proposed framework allows to jointly estimate cluster parameters and latent
coordinates without previous specification of the number of clusters. Indeed, this is
taken as a model parameter and inference is performed on it as well. Here, we model
binary (multidimensional) networks, although the clustering method we propose can
be extended to other types of multidimensional network data as well.
Let Y = {Y(1), . . . ,Y(K)} be a multiplex with K networks (views). Each element
Y(k) of Y, k = 1, . . . ,K, is an adjacency matrix of dimension n× n, where n is the
number of nodes in the multiplex. Recall that, in multidimensional network data,
the number of nodes is constant across the views, while the observed edges may
change with the view. Thus, the general element of Y(k) is

y
(k)
ij =

{
1 if nodes i and j are connected in the kth view;
0 else.

When K = 1, the multidimensional network reduces to a single network with n
nodes.
As it is generally done in latent space models, we assume that each node has an
unknown position in a latent p−dimensional Euclidean space. The probability
of observing a connection between nodes i and j is a function of their latent
coordinates. The presence/absence of a connection between node i and j is assumed
to be independent of all other connections in the network, conditional on the latent
coordinates of the two nodes. We build our model within the class of distance latent
space models, which assumes that edge probabilities are a function of the pairwise
distances between the nodes in the latent space. Our choice is driven by the intent of
modelling similarities between nodes in network data, for which distances represent a
good proxy (Hoff, Raftery, and Handcock, 2002). We further assume that the latent
coordinates arise from an infinite mixture of Gaussian distributions, represented in
terms of the Dirichlet process mixture model (Antoniak, 1974; Ferguson, 1973). The
infinite mixture framework allows to treat the number of mixture components G,
and consequently the number of clusters, as a model parameter, on which inference
is performed. Also, component-specific parameters are estimated to characterize the
clusters. The proposed model is estimated within a hierarchical Bayesian framework
and inference is carried out using a MCMC algorithm. Section 4.2 details the infinite
latent position cluster model. Section 4.3 illustrates the estimation procedure, while
some practical issues are discussed in Section 4.4. A simulation study to illustrate
the performances of the proposed model is presented in Section 4.5. In Section 4.6 we
present an application of the model to the analysis of self-reported social interactions
among 7th grade students. We conclude with a final discussion in Section 4.7.

4.2 The model

Before presenting the infinite latent position cluster model, we briefly review the
latent position cluster model by Handcock, Raftery, and Tantrum, 2007, of which
the proposed model provides an extension.
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4.2.1 Latent position cluster model

Model based clustering for social networks was first introduced by Handcock,
Raftery, and Tantrum, 2007, in the context of single network data. This model was
developed to account for clustering of the nodes which could not be explained by
transitivity or homophily by attributes alone (Hoff, Raftery, and Handcock, 2002).
The authors assume that nodes have latent coordinates in a p-dimensional Euclidean
latent space: zi, i = 1, . . . , n. The latent coordinates are taken to be drawn from a
mixture of G spherical Gaussian components,

zi ∼
G∑
g=1

πgMVNp
(
µg, σ

2
gI
)
,

for g = 1, . . . , G, and where πg are the mixture weights, µg the components means
and σ2

g the components variances. The choice of spherical covariance matrices,
σ2
gI, was driven by the fact that in latent space models the likelihood is invariant

to rotations of the latent space. Thus, the authors specified an independence
model for the coordinate system. The choice of the number of components G is a
difficult task in this context, as clustering is performed on unobserved quantities, the
latent coordinates. The authors proposed to address the issue using the Bayesian
Information Criterion (BIC). However, such an approach may result unfeasible when
applying the method to many real world network data. Indeed, in principle, one
should estimate G different models, one for each possible value of the number of
components G ≤ n. This could represent a severe issue, as the computational burden
associated with the implementation of each model grows quadratically with the
number of nodes n. In the next section, we will introduce a latent space approach
for network data based on infinite mixture models (Rasmussen, 2000) to overcome
such an issue.

4.2.2 Infinite latent position cluster model

As in Handcock, Raftery, and Tantrum, 2007, we assume that nodes of the
network lay in a p-dimensional Euclidean latent space. To introduce a clustering
structure, we assume that a node-specific latent coordinates are distributed according
to a mixture of p-variate Gaussian distributions. Adopting an infinite mixture
representation for the latent coordinates,

zi ∼
∞∑
g=1

πgMVNp
(
µg,Σg

)
, (4.1)

we can jointly estimate the unknown number of components G and the component-
specific parameters, µg and Σg, where g = 1, . . . , G denotes the number of compo-
nents. Such an infinite mixture distribution framework is particularly suited for
(multidimensional) network data, as the number of mixture components is bounded
by the number of nodes (Antoniak, 1974). Hence, it is implicitly assumed that the
number of mixture components, can change if new nodes “enter” a network. Such
an assumption is reasonable with network data, as new actors may alter clustering
in the data, depending on how they interact with pre-existing nodes.



66 4. Clustering Multidimensional Networks via Infinite Mixtures

The number of components is only potentially infinite. Indeed, given an observed
n×n network Y, the maximum possible number of components is GMAX = n. Hence,
the number of components is finite in real world applications. Each component is
characterized by two parameters, the mean µg and the covariance matrix Σg, and a
weight πg2, indicating the fraction of nodes belonging to the gth component.
We adopt a distance latent space modelling approach, and assume that the probabil-
ities of an edge associated to the dyad (i, j) are a function of the distance between
couple of nodes i and j. These distances are denoted by dij , i, j = 1, . . . , n and they
are defined as squared Euclidean distances, dij = ||zi − zj ||2, see D’Angelo, Murphy,
and Alfò, 2018; Gollini and Murphy, 2016. The distance matrix, of dimension n× n,
is denoted by D. However, although we develop our proposal and the estimation
procedure considering the squared Euclidean distance, the proposed framework may
be extended to incorporate different specifications for the distance function as well.
In the context of single network data, edge probabilities may be defined as

P
(
yij = 1 | α, β, dij

)
=

exp
{
α− βdij

}
1 + exp

{
α− βdij

} , (4.2)

where α is an intercept capturing the overall connectivity level in the network and
β is a scale coefficient which weights the influence of the latent space on the edge
probabilities3. When β ≈ 0, the latent space is practically irrelevant and the edge
probabilities reduce to those generated by a random graph (D’Angelo, Murphy, and
Alfò, 2018; Erdős and Rényi, 1959).
Following D’Angelo, Murphy, and Alfò, 2018, we extend the model defined in equation
4.2 to multidimensional network data by considering view-specific parameters:

p
(k)
ij = P

(
y

(k)
ij = 1 | α(k), β(k), dij

)
=

exp
{
α(k) − β(k)dij

}
1 + exp

{
α(k) − β(k)dij

} . (4.3)

We assume that a unique latent space representation captures the overall similarities
between the nodes in the multiplex and that network-specific parameters α(k) and
β(k) can modify the effect of the latent space on network-specific edge probabilities3.
These two parameters have the same interpretation as α and β in the model for
a single network, see equation 4.2. In fact, when K = 1, the model in equation
4.3 reduces to that in equation 4.2. In the next section, we provide details on
the estimation procedure for infinite latent position cluster model parameters. We
develop the procedure in the more general case of multiplex data (equation 4.3), but
the procedure is easily reduced to the specific case of unidimensional network data
(equation 4.2).

2Recall that
G∑
g=1

πg = 1

3As in D’Angelo, Murphy, and Alfò, 2018, distance scale coefficients are bound by β(k) ≥ 0,
k = 1, . . . ,K. Also, network intercepts are bound by:

α(k) ≥ log
( log(n)
n− log(n)

)
= LB(α).
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4.3 Model parameters estimation

Based on the edge probability model defined in equation 4.3, we write the
log-likelihood for model parameters as

`
(
α,β,D | Y

)
=

K∑
k=1

n∑
i=1

∑
j 6=i

y
(k)
ij (α(k) − β(k)dij)− log(α(k) − β(k)dij), (4.4)

where α = (α(1), . . . , α(K)) and β = (β(1), . . . , β(K)).
We propose a hierarchical Bayesian approach to estimate model parameters (α,β),
and latent distances D, using a MCMC sampling scheme. Each parameter is as-
sumed to have a prior distribution, whose parameters are unknown. We refer to
these as nuisance parameters. Nuisance parameter values are of no interest but
their specification could be relevant. Instead of fixing a priori such values, we give
nuisance parameters hyper-prior distributions and estimate them as well. Hence,
the parameters of interest depend on nuisance parameters posterior distributions,
controlled by hyperparameters, and not on fixed nuisance parameter values. This
extra variability gives more flexibility in the estimation procedure. The final param-
eter estimates should be less sensible to the specification of hyperparameters than
to that of nuisance parameters. More in details, the logit parameters are modelled
via the following prior/hyper-prior specifications:

α(k) ∼ N[LB(α),∞]
(
µα, σ

2
α

)
, where: µα | σ2

α ∼ N[LB(α),∞]
(
mα, τασ

2
α

)
, σ2

α ∼ Invχ2
να ;

and

β(k) ∼ N[0,∞]
(
µβ, σ

2
β

)
, where: µβ | σ2

β ∼ N[LB(β),∞]
(
mβ, τβσ

2
β

)
, σ2

β ∼ Invχ2
νβ

;

for k = 1, . . . ,K. The set of logit nuisance parameters is φ1 =
(
µα, µβ, σ

2
α, σ

2
β

)
and that of hyperparameters is φ2 =

(
mα,mβ, τα, τβ, να, νβ

)
. Since the estimation

procedure for (α,β) and the corresponding nuisance parameters φ1 do not directly
depend on the latent coordinates, we proceed with estimation using the same
proposal/full conditional distributions derived in D’Angelo, Murphy, and Alfò, 2018.
The estimation of the latent distances in equation 4.4 is not that straightforward.
Each distance dij = ||zi − zj ||2 depends on the latent coordinates for node i and
j, distributed a priori according to equation 4.1. Hence, distances depend on
the clustering of the unknown node coordinates, with no information available
regarding the component parameters or the number of mixture components, which
is (potentially) infinite.
A tractable way to deal with infinite mixture models is to assume that they are the
realization of a Dirichlet process (Antoniak, 1974; Ferguson, 1973; Hjort et al., 2010;
Müller et al., 2015), a stochastic process whose realization is indeed a probability
distribution. This process is characterized by a continuous base distribution S0, the
expected value of the process, and a concentration parameter ψ ≥ 0. Rewriting
equation 4.1 as a Dirichlet process leads to:

zi | µi,Σi ∼MVNp
(
µi,Σi

)
; Ωi ∼ S; S ∼ DP

(
ψ, S0); (4.5)
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for i = 1, . . . , n. Ωi = (µi,Σi) is the set of parameters for the prior distribution of
zi, distributed according to S. Even though S0 is continuous, distributions drawn
around it are almost surely discrete. The degree of discretization depends on the
concentration parameter ψ; the lower the value of ψ, the lower the number of
unique realizations. The discrete nature of the Dirichlet process is what makes it
suitable to describe mixture models. Indeed, in a finite sample of size n, the number
of unique realizations is finite and it can be denoted by G, G ≤ n, indexed by
g = 1, . . . , G. This implies that some of the units come from a common component,
that is some of the latent coordinates zi share the same prior distribution parameters
Ωg, g = 1, . . . , G. The set of parameters Ωg = (µg,Σg), g = 1, . . . , G, corresponds
to the set of component parameters, and the number of finite realizations G is
indeed the number of mixture components. Differently from Handcock, Raftery,
and Tantrum, 2007, see Section 4.2.1, we opt for a more flexible specification of the
component covariance matrices. Indeed, we let the component variances vary across
the latent dimensions,

Σg =


σ2

1g . . . 0
... . . . ...
0 . . . σ2

pg

 I,
in order to capture heterogeneity of the nodes across the latent dimensions and
the components. We decided to address the issue of the latent space rotation
invariance in a different way, as it will be specified further on. The diagonal form
of the component covariances allows us to specify S as a Normal-Inverse Gamma
distribution, where

Ωrg =
(
µrg, σ

2
rg

)
∼ NIG

(
mr, τzσ

2
g , ν1, ν2

)
, r = 1, . . . , p.

We denote the mixture components hyperparameters with ωg = ω = (m, τz, ν1, ν2),
for all g = 1, . . . , G. As for the logit parameters (α,β), an extra layer of dependence
is introduced for a flexible modelling of mixture components and latent coordinates.
The hyperparameter m = (m1, . . . ,mr, . . . ,mp) may be assumed to have standard
multivariate Gaussian distribution, to allow for a more flexible estimation.
Given a sample of dimension n and a number of groups G ≤ n, the sub-groups
of latent coordinates arising from the same component are unknown. These
may be modelled introducing a multinomial cluster label auxiliary variable c =
(c1, . . . , ci, . . . , cn). The ith entry is a G-dimensional binary vector ci = (ci1, . . . , ciG),
whose elements are all 0 except from the gth one, cig = 1, meaning that the ith latent
coordinate comes from the gth component. Using the auxiliary variables ci, we may
rewrite equation 4.1 as

(
zi, ci

)
|µg ,Σg∼

G∏
g=1

[
πgMVNp

(
µg,Σg

)]cig
, (4.6)

for i = 1, . . . , n. Then, given the mixture representation in equation 4.6, we may
rewrite the mixture weights as

πg =
n∑
i=1

cig
n
, g = 1, . . . , G. (4.7)
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The unknown quantities of interest are now the actual number of components
G, the component-specific parameters Ωg, g = 1, . . . , G, and the cluster labels
ci, i = 1, . . . , n. To estimate such quantities, we exploit the Chinese restaurant
representation of the Dirichlet process (Aldous, 1985). Given a set of n units, this
representation may be summarized as follow. Let us suppose we have a group of n
individual entering in a restaurant, one at a time. The first individual enters and
seats at the first table. Then, a second client arrives and may choose to sit with
the first individual or by himself at a different table. Then the third individual
arrives and faces the same choice: either seating at tables already occupied by other
people or choose a new, empty one. The mechanism is repeated for each new person
entering the restaurant, until the nth one. It is straightforward to understand that n
individuals may seat in a number of tables which is G ≤ n. The restaurant tables are
an analogy of the “formation” of mixture components in Dirichlet process Mixture
models. In our context, clients are indeed the latent coordinates zi and the table
choice is coded by the auxiliary variable ci. The “propensity” with which clients
choose to seat at those tables that are already occupied by other people is regulated
by the concentration parameter ψ. The concentration parameter may be chosen a
priori, if some information is available on the number of components G. However,
as here the intent is to perform clustering on unobserved quantities, the latent
coordinates, a subjective specification of the ψ parameter may be too informative.
To incorporate the uncertainty on the concentration parameter in the modelling
framework, we assume that ψ has a Gamma prior distribution, ψ ∼ Γ

(
ξ1, ξ2), see

Müller et al., 2015. To summarize what has been introduced so far, we report in
Figure 4.1 a schematic representation of the hierarchical structure in the proposed
model.
Inference procedures for the Chinese restaurant representation of the Dirichlet
process when the base distribution is a Normal-Inverse Gamma have been widely
studied in the literature, see Hjort et al., 2010; Müller et al., 2015. In particular,
here we adopt the proposal by Bush and MacEachern, 1996 to update the cluster
labels ci and that by Escobar and West, 1995 to update the concentration parameter
ψ.
Given an observed multidimensional network Y with n nodes and K views, the
estimation procedure for the latent space part of the model in equation 4.3 can be
sketched as follows:

1. First, we fix the values for hyperparameters, p, ω and (ξ1, ξ2
)
. We randomly

initialize the other quantities: G, c, (π1, . . . , πG), z, (Ω1, . . . ,Ωg) and ψ.

2. Given the other current parameters, for i = 1, . . . , n, we update sequentially
the latent coordinates zi from their proposal distribution, see Appendix C. To
account for rotation and translation invariance of the latent space, we compute
the value of the Procrustes correlation between the old set of latent coordinates
and the just updated one. If this value is high, the new set of coordinates is
discarded.

3. Given the current parameters and latent coordinates, for i = 1, . . . , n, we up-
date the cluster labels ci, from their full conditional distribution, see Appendix
C.
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4. Given the current parameters and latent coordinates, the number of current
components G is updated computing the length of ci = (ci1, . . . , ciG), together
with the mixture weights πg (see equation 4.7).

5. Given the current parameters and latent coordinates, mixture component
parameters Ωg are updated using the full conditional distributions for µg
and σ2

g , presented in Appendix C. Also, if the hyperparameter m is not fixed
a priori, it is updated from the corresponding full conditional distribution
(Appendix C).

In conclusion, we propose a Metropolis within Gibbs MCMC algorithm which iterates
T times between steps 2− 5 of the above procedure and the update steps for the
logit parameters (α,β) and the corresponding nuisance parameters. The algorithm
is initialized via step 1 of the above procedure. Also, hyperparameters in φ2 are fixed
and starting values for (α,β) and φ1 are specified. A simulation study to investigate
the performance of the proposed estimation procedure is presented in Section 4.3.
Some practical issues arise when estimating the latent position cluster model. Next
session discusses these issues in details, and the approaches we use to address them.

Y

α β z

µα σ2
α

µβ σ2
β

µg Σg cig

DP (ψ, S0)

Figure 4.1. Hierarchy structure of the model.

4.4 Practical implementation details

The model proposed by equations 4.3 and 4.1 and the estimation procedure
proposed in Section 4.3 present a couple of practical issues which need to be addressed.

4.4.1 Model parameters identifiability

The first issue regards the estimation of the logit model parameters. To guarantee
identifiability, a network in a given multiplex has to be taken as reference network,
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and the corresponding parameters (α(k), β(k)) = (α(ref), β(ref)) need to be fixed. We
suggest to set β(ref) = 1. This constraint does not alter the interpretation of the
scale coefficient parameters β(k), as their values are meaningful only when compared
with each other. We propose to choose α(ref) as suggested in D’Angelo, Murphy,
and Alfò, 2018:

α(ref) ≥ log
( ˆ̄p

1− ˆ̄p

)
+ 2, (4.8)

where ˆ̄p = ∑n
i=1

∑
j 6=i y

(ref)
ij /

(
n(n− 1)

)
denotes the observed mean edge probability.

The term 2 on the right side of equation 4.8 is the mean empirical distance among
coordinates simulated from a standard Gaussian distribution. In the present model,
we assume that the prior distribution for the latent coordinates is a mixture of
Gaussian distributions with unknown number of components. Therefore, it is not
possible to empirically estimate the average distance among coordinates. However,
it is reasonable to expect that coordinates drawn from a mixture of Gaussian
distributions will be, on average, further apart than coordinates drawn from a single
Gaussian distribution. The “greater than or equal to” condition in equation 4.8
comes from this last consideration.

4.4.2 Posterior distributions post-processing

A second issue arises from the estimation of the number of mixture components
G, see Section 4.3. At each iteration of the algorithm, the value of G is updated,
possibly leading to G(t) 6= G(s), for some value of the iteration index t, s = 1, . . . , T .
At the end of the estimation procedure, U unique values of G are proposed. We
suggest to select the value associated with the highest posterior probability as the
estimated number of components:

Ĝ = arg max
u

∑T
t=b I[G(t) = u]
(T − b+ 1) , (4.9)

where b is the number of discarded iterations in the burn-in phase. Throughout
the iterations, the multiplicity of the U unique G values explored by the algorithm
leads to different dimensions for the estimates of the cluster labels c(t)

i , i = 1, . . . , n,
and the set of component parameters

(
Ω(t)

1 , . . . ,Ω(t)
g , . . . ,Ω(t)

G

)
. Hence, the posterior

distributions of such quantities need some post-processing procedure, to harmonize
their dimensions. Below, we briefly illustrate the post-processing procedures we have
adopted in this work.

Cluster labels posterior distribution

At the tth iteration of the algorithm, the length of each c(t)
i vector is l(c)(t) = G(t)

(Section 4.3). As the number of estimated components may vary throughout the
iterations, we have that, if G(t) 6= G(s), then l(c)(t) 6= l(c)(s), for s, t = 1, . . . T .
Such length mismatches imply that the cluster label posterior distribution needs
to be post processed in order to get estimates for this variable. To address the
issue, we implement the method adopted by Carmona, Nieto-Barajas, and Canale,
2018 and originally proposed by Dahl, 2006. A collection of n × n co-occurrence
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adjacency matrices, denoted by C(t) is computed, t = b, . . . , T . These matrices
contain a 1 in position (i, j) if nodes i and j are allocated in the same component
at the tth iteration. Further, an average co-occurrence matrix C̄ representing the
“average clustering” is computed, as the Monte Carlo average of all C(t) adjacency
matrices. The C(t) matrix with minimum squared distance from C̄ is selected as the
estimated co-occurrence matrix. Then, the corresponding tth set of cluster labels(
c

(t)
1 , . . . , c

(t)
i , . . . , c

(t)
n
)
is the set of cluster labels estimates

(
ĉ1, . . . , ĉi, . . . , ĉn

)
.

Component parameters posterior distribution

An issue similar to that occurring with cluster labels arises with the posterior
distributions of the component parameters Ωg = (µg,Σg), g = 1, . . . , G. Indeed,
different iterations of the algorithm (Section 4.3) present a different number of
component parameters Ω(t) =

(
Ω(t)

1 , . . . ,Ω(t)
g , . . . ,Ω(t)

G

)
, t = 1, . . . , T . However,

after having estimated the number of components Ĝ (equation 4.9), precisely Ĝ
parameter estimates are needed to describe the components. To solve the prob-
lem, one naive approach may be that of taking in consideration only the set
of T ∗ parameters

(
Ω(t)

1 , . . . ,Ω(t)
g , . . . ,Ω(t)

G

)
for which G(t) = Ĝ. The set would

contain only those Ω(t) with matching dimensions, from which Ĝ Monte Carlo
average estimates Ω̂ =

(
Ω̂1, . . . , Ω̂g, . . . , Ω̂Ĝ

)
could be easily computed. How-

ever, such a naive approach would not take into consideration the information
and the uncertainty brought by those Ω(t) for which G(t) 6= Ĝ. A more suit-
able approach, which is adopted in the present paper, has been proposed by
Frühwirth-Schnatter, 2011. The author proposes a K-means based procedure to
summarize the whole posterior distributions in

(
Ωb, . . . ,ΩT

)
. K-means clustering,

with Ĝ clusters, is performed on the whole distribution of
(
µb, . . . ,µt, . . . ,µT

)
=(

µb1, . . . ,µ
b
g, . . . ,µ

t
g, . . . ,µ

T
1 , . . . ,µ

T
G

)
=
(
µ1, . . . ,µm, . . . ,µM

)
, and this delivers a

classification index Im for the m = 1, . . . ,M posterior draws. The index is then
used to allocate the M posterior draws

(
µ1, . . . ,µm, . . . ,µM

)
to Ĝ posterior distri-

butions, one for each component. Also, a permutation test is performed to order
the draws and ensure a unique labelling. For further details we refer to Frühwirth-
Schnatter, 2011. The same classification index Im, m = 1, . . . ,M is used to reorder
the posterior draws for the component covariance matrices:

(
Σb, . . . ,Σt, . . . ,ΣT

)
=(

Σb
1, . . . ,Σb

g, . . . ,Σt
g, . . . ,ΣT

1 , . . . ,ΣT
G

)
=
(
Σ1, . . . ,Σm, . . . ,ΣM

)
. Last, estimates

Ω̂ =
(
µ̂, Σ̂

)
are computed as Monte Carlo averages of the corresponding ordered

posterior distributions.

4.5 Simulation study

We have designed a simulation study to evaluate the performance of the proposed
infinite mixture model for multiplex data. Our aim is to evaluate the performance
of our approach in recovering the latent coordinates, the number of clusters and
the cluster allocation. Four simulation scenarios have been defined, in order to
analyse the performance of the estimation procedure when different levels of latent
space “complexity” are specified. In all four scenarios, we consider two settings with
(n = 25,K = 3) and (n = 50,K = 5), respectively. For each scenario and each
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dimensionality setting, we generate a bi-dimensional latent space in which positions
are generated from a mixture of G = (2, 3, 4) distributions. For each combination of
scenario type, dimensionality setting and value of G, we replicate the experiment 10
times. First three scenarios are built generating the latent space according to the
assumptions presented in Section 4.2.2. They differ with respect to cluster size and
distance between mixture components. The fourth simulation scenario is built to
analyze the results of the estimation procedure when the model for the latent space
is incorrectly specified. More in details, the scenarios are structured as follows:

• Scenario I. In this first scenario, we aim to evaluate the estimation procedure
when the latent coordinates and the clustering components have been generated
according to the proposed model (equations 4.3 and 4.1) and the components
are of approximately equal size:

– when G = 2, π = (0.5, 0.5). The component sizes ng, g = 1, 2, are
generated from a Multinomial distribution with parameters (n, π);

– when G = 3, π = (0.3̄, 0.3̄, 0.3̄). The component sizes ng, g = 1, 2, 3, are
generated from a Multinomial distribution with parameters (n, π);

– when G = 4, π = (0.25, 0.25, 0.25, 0.25). The component sizes ng, g =
1, 2, 3, 4, are generated from a Multinomial distribution with parameters
(n, π).

Here the clusters are sufficiently separated since, on average, the simulated edge
probability is in the interval (0.40, 0.80) when two nodes belong to the same
cluster, and is below 0.20 when two nodes belong to different clusters. This
scenario corresponds to cohesive and equally proportioned groups, as it could
be the case when recording vote exchanges in bipolar political systems, where
the members of two main parties vote in agreement with their co-members
and not with their opponents.

• Scenario II. As in the first scenario, we have generated the latent coordinates
and the clustering components according to the model specified in equations
4.3 and 4.1, and the same ranges are verified for the within and the between
cluster edge probabilities. However, here we assume that most of the nodes
belong to a single, big component, and the rest is spread into smaller ones:

– when G = 2, π = (0.2, 0.8). The component sizes ng, g = 1, 2, are
generated from a Multinomial distribution with parameters (n, π);

– when G = 3, π = (0.8, 0.1, 0.1). The component sizes ng, g = 1, 2, 3, are
generated from a Multinomial distribution with parameters (n, π);

– when G = 4 π = (0.7, 0.1, 0.1, 0.1). The component sizes ng, g = 1, 2, 3, 4,
are generated from a Multinomial distribution with parameters (n, π).

This scenario represents the case where few sub-groups of units are isolated
from the vast majority of other nodes, at least partially. This could happen, for
example, with data regarding relations among a group of students, where the
majority of them interacts with one another, but a few students are “unsociable”
and only relate to one or two others, as in the Vickers data discussed in Section
4.6.
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• Scenario III. In this scenario, multidimensional networks have been simulated
according to the model specified in equations 4.3 and 4.1. Weights are simulated
from a Uniform distribution, π ∼ U(0.3, 0.8), and then normalized. Component
sizes are generated from a Multinomial distribution with parameters (n, π).
Here, when two nodes belong to the same cluster, the average edge probability
is in the interval (0.40, 0.80). On the other hand, the average edge probability
for two nodes belonging to different clusters is higher than in Scenarios I
and II, as it can take value up to 0.40. Such an increase in between clusters
edge probabilities corresponds to partially overlapping clusters in the latent
space. This situation may appear when some nodes interact quite a lot with
nodes from another cluster (or clusters), even if belonging to the same cluster.
Recalling the example given in Scenario I, this can happen when two parties
in a bipolar system are not that much separated, as some politicians in a given
party may agree with various proposals from the other party.

• Scenario IV. This scenario is built to evaluate the estimation procedure when
the model for the latent space is incorrectly specified. In particular, we simulate
the latent coordinates using a mixture of multivariate non-central Student
t distributions, with 3 degrees of freedom. Component sizes are generated
as in Scenario I. However, here the average edge probability for two nodes
belonging to the same cluster is in the interval (0.15, 0.5). Instead, the average
edge probability is below 0.30 when two nodes belong to different clusters.
The overlap between different components is greater than that in Scenario III;
also, the shapes of the components are different, as the mixture component
distributions are misspecified.
Also, note that a Gaussian and a Student t clustering of the latent coordinates
may return the same edge probabilities, as the edge probabilities ultimately
depend on the distances between the latent positions. Nonetheless, we test
our proposed method in such a misspecified scenario to evaluate up to what
extent latent coordinates and cluster allocations can still be recovered.

For all four scenarios, we have run the MCMC procedure described in Section
4.3 for 60000 iterations, with a burn-in of 10000 iterations. We have set p = 2,
mα = mβ = 0, να = νβ = 3, ν1 = n, ν2 = 1, τα = τβ = τz = 1. Small variations
of these values have been tried but they did not affect substantially the simulation
results. Also, a Jeffreys prior is adopted for the ψ parameter, with the corresponding
hyperparameters set to ξ1 = 1

2 and ξ2 = 1, see Bernardo and Giron, 1998 and
Grazian and Robert, 2015.

4.5.1 Simulation results

As our interest lies in recovering the latent space positions and the clustering
structure, we will primarily focus on such aspects. However, we briefly mention that
the “true” intercept values α(k) are always included within a 99% credible interval,
while the scale coefficients β(k) tend to be overestimated, due to underestimation
of the latent distances. However, the products β(k)dij are well recovered, for i, j =
1, . . . , n and k = 1, . . . ,K. This could be due to the mixture structure which is quite
more complex than a single Gaussian distribution. Figures 4.2-4.5 show the (mean)
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estimated posterior distributions for the number of clusters in the four simulation
scenarios. In the first three scenarios, the “true” number of clusters is always
recovered with a high posterior probability, with exception of Scenario II when
the number of simulated clusters is G = 4. In this case, the estimation procedure
gives no clear hint to distinguish between the solutions corresponding to G = 3 and
G = 4 mixture components. This can be due to the fact that, when G = 4, the
“small sized” groups in Scenario II have approximately size ng = 3, when n = 25,
and ng = 5, when n = 50. When small groups are close, or are close to the “big”
component, it may be hard to distinguish them and a couple of components may be
merged into a single one by the estimation procedure. In scenario IV, the number
of mixture components tend to be overestimated, and there is more uncertainty on
the estimation of G, as more than one value is associated with quite high posterior
probability. However, the number of components is only slightly overestimated, as
the estimation procedure suggests values for G which are close to the simulated
ones. This proves that, even if the model for the latent space is misspecified, our
procedure can still recover rather well the number of clusters.
The results for the estimation of the latent coordinates and the cluster labels are
summarized in Tables 4.1-4.4. In the first three groups of columns, the tables report
the values of the mean and the standard deviation for the Procrustes correlation
between simulated and estimated latent coordinates, for different number of clusters
and multiplex dimensions. Such correlations are always quite high, regardless of
the considered scenario. These results suggest that the proposed estimation method
may be able to recover quite well the latent distances between the nodes, even when
the mixture components are not Gaussian. The last three groups of columns display
the values of the mean and standard deviation for the Adjusted Rand Index (ARI)
(Hubert and Arabie, 1985), computed between the simulated and estimated partition
of the nodes. Values of this index close to 1 correspond to a perfectly recovered
cluster allocation. In Scenarios I, II, and III, the value of ARI is always greater
than 0.85, suggesting that the method is able to reconstruct the latent space and
infer the cluster membership of the nodes. Instead, from Table 4.4 we see that the
values for the ARI in Scenario IV range between 0.3 and 0.48 and that lower ARI
values are associated with higher number of simulated clusters. Even if the ARI
values are much lower than those in other scenarios, they represent quite a good
result considering that the model was incorrectly specified. Indeed, an ARI close to
0.40 still denotes a clustering solution for the nodes which may be considered of an
acceptable quality.

Procrustes correlation Adjusted Rand Index
G = 2 G = 3 G = 4 G = 2 G = 3 G = 4

mean sd mean sd mean sd mean sd mean sd mean sd
n = 25, K = 3 0.96 0.01 0.95 0.02 0.75 0.18 0.99 0.03 0.98 0.04 0.98 0.02
n = 50, K = 5 0.95 0.01 0.95 0.01 0.88 0.15 1.00 0.00 1.00 0.00 0.97 0.01
Table 4.1. Scenario I. Procrustes correlation between estimated and simulated latent spaces

and Adjusted Rand Index for the estimated-simulated cluster labels.
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(a) G = 2 simulated clusters.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of clusters

M
ea

n 
po

st
er

io
r 

pr
ob

ab
ili

ty

n=25, K=3 n=50, K=5

3 5 7 9 11 13 3 5

(b) G = 3 simulated clusters.
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(c) G = 4 simulated clusters.

Figure 4.2. Scenario I. (Mean) estimated posterior distribution for the number of clusters
G.

Procrustes correlation Adjusted Rand Index
G = 2 G = 3 G = 4 G = 2 G = 3 G = 4

mean sd mean sd mean sd mean sd mean sd mean sd
n = 25, K = 3 0.95 0.01 0.92 0.05 0.85 0.14 1.00 0.00 0.91 0.19 0.85 0.19
n = 50, K = 5 0.96 0.01 0.94 0.03 0.85 0.16 0.91 0.23 0.98 0.06 0.89 0.13
Table 4.2. Scenario II. Procrustes correlation between estimated and simulated latent

spaces and Adjusted Rand Index for the estimated-simulated cluster labels.

Procrustes correlation Adjusted Rand Index
G = 2 G = 3 G = 4 G = 2 G = 3 G = 4

mean sd mean sd mean sd mean sd mean sd mean sd
n = 25, K = 3 0.95 0.01 0.97 0.01 0.95 0.02 0.96 0.12 0.99 0.02 0.91 0.12
n = 50, K = 5 0.95 0.02 0.97 0.01 0.97 0.02 0.91 0.11 0.98 0.01 0.85 0.14
Table 4.3. Scenario III. Procrustes correlation between estimated and simulated latent

spaces and Adjusted Rand Index for the estimated-simulated cluster labels.
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(c) G = 4 simulated clusters.

Figure 4.3. Scenario II. (Mean) estimated posterior distribution of the number for clusters
G.

Procrustes correlation Adjusted Rand Index
G = 2 G = 3 G = 4 G = 2 G = 3 G = 4

mean sd mean sd mean sd mean sd mean sd mean sd
n = 25, K = 3 0.74 0.13 0.71 0.20 0.76 0.24 0.48 0.15 0.42 0.17 0.36 0.10
n = 50, K = 5 0.87 0.12 0.69 0.14 0.76 0.13 0.46 0.31 0.40 0.18 0.30 0.16
Table 4.4. Scenario IV. Procrustes correlation between estimated and simulated latent

spaces and Adjusted Rand Index for the estimated-simulated cluster labels.
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(c) G = 4 simulated clusters.

Figure 4.4. Scenario III. (Mean) estimated posterior distribution for the number of clusters
G.
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Figure 4.5. Scenario IV. (Mean) estimated posterior distribution of the number for clusters
G.
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4.6 Vickers multiplex data

To illustrate the proposed model, we propose the re-analysis of the Vickers-Chan
7th Graders multidimensional network. The data were collected by Vickers and
Chan, 1981 and represent K = 3 different social relations among n = 29 seventh
grade students, twelve boys and seventeen girls, in a school in Victoria, Australia.
The analysed relations are:

1. Get on (Y(1)). This network record whether a student declares to get on with
another student;

2. Best friend (Y(2)). This network record whether a student declares to be best
friend with another student;

3. Work with (Y(3)). This network record whether a student declares to like
working with another student;

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1

(a) Get on network.
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(b) Best friend network.
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(c) Work with network.

Figure 4.6. Vickers data. Adjacency matrices for the three networks.

Figure 4.6 shows the three adjacency matrices for the Vickers multiplex data. Nodes
from 1 to 12 are males, while nodes from 13 to 29 are females. Simply by looking at
the data, we may hypothesize the presence of sub-groups of students characterized
by gender. Indeed, if we partition each adjacency matrix in four sub-matrices,
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accordingly to the gender of the students,{
Y(k)
mm = Y(k)

[1:12,1:12], Y(k)
ff = Y(k)

[13:29,13:29], Y(k)
mf = Y(k)

[1:12,13:29], Y(k)
fm = Y(k)

[13:29,1:12]

}
,

and compute the observed density in each sub-matrix,

get on best friend work with
Y(1)
mm Y(1)

ff Y(1)
mf Y(1)

fm Y(2)
mm Y(2)

ff Y(2)
mf Y(2)

fm Y(3)
mm Y(2)

ff Y(3)
mf Y(3)

fm

0.59 0.60 0.40 0.19 0.44 0.35 0.14 0.00 0.44 0.36 0.21 0.00

we see that the density is much higher in sub-matrices composed by students of
the same gender. However, all the three Y(k)

mf sub-matrices have quite high density
values too. Therefore, we may expect clustering of the nodes, but it is hard to tell,
simply by looking at the data, how many clusters we should expect. Are the students
simply separated by gender or not? Are there mixed-gender sub-groups in the data?
Also, the four sub-matrices present similar density values in the three networks,
with the views “best friend” and “work with” having practically identical densities.
Further, the associations computed between couples of adjacency matrices4 are quite
high: A(Y(1),Y(2)) = 0.79, A(Y(1),Y(3)) = 0.77 and A(Y(2),Y(3)) = 0.90. These
last two facts may suggest that a single latent space can be employed to describe
the overall similarities between the students.

4.6.1 Vickers data: results

We have run the MCMC procedure described in Section 4.3 for 60000 iterations,
with a burn-in of 10000 iterations. The hyperparameters have been set as in the
simulation study, see Section 4.5; in particular, the parameters of the Dirichlet prior
were set to ξ1 = 1

2 and ξ2 = 1. Another uninformative prior specification was tested,
ξ1 = ξ2 = 1, with no substantial change in the results. For visualization purposes,
the dimension of the latent space has been set to p = 2.
As it can be seen from Figure 4.7, our procedure estimatedG = 4 mixture components
in the latent space representation of the Vickers data. The posterior probability
associated with this solution is quite high, almost 0.80. To recover cluster labels for
the students, we adopted the post processing procedure by Dahl, 2006, described in
Section 4.4.2. Figure 4.8 shows the average co-occurrence matrix, displaying how
often two nodes have been assigned to the same component, and the final cluster
label matrix, resulting from the post-processing procedure. The assignment of the
nodes to different components is quite clear, as it can be seen from the co-occurrence
matrix. These assignments can be visualized more clearly in the estimated cluster
labels matrix:

1. Green component (g = 1). This component has the largest estimated size, 11,
with 11 out of the 12 male students in Vickers data.

4The association between couple of adjacency matrices is defined as:

A(Y(k),Y(l)) =
∑n

i=1

∑
j 6=i I(y(k)

ij = (y(l)
ij )

n(n− 1) , k, l = 1, . . . ,K.
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2. Orange component (g = 2). This component has the smallest estimate size and
it is the only mixed-gender one. Its elements are male student 9 and female
students 18 and 25.

3. Blue component (g = 3). Most of the female students in Vickers data are
assigned to this component, which has size 10.

4. Purple component (g = 4). The last component has size 5 and contains female
students number 13, 17, 24, 28, 29.

Combining the information coming from the two matrices in Figure 4.8, we see
that, although cluster labels have been assigned quite clearly, there is a bit of
uncertainty regarding a small group of nodes. For example, male student 9 was
often placed with female students in a different component, but never with other
male students. Another example is that of female student number 24, assigned to
the purple component, which has non-null posterior probability of co-occurring with
many other students outside of this component. In general, segmentation by gender
is quite evident. The only estimated mixed-gender component is quite small and
contains students with a low number of links, as it can be seen in Figure 4.6. These
students might have been placed in the same component, “isolated” by the vast
majority of others, due to their “low sociability”. The uncertainty in cluster labels
assignment for some of the nodes is reflected in the posterior distributions of the
component means, displayed in the left plot in Figure 4.9 and obtained using the
procedure by Frühwirth-Schnatter, 2011, described in Section 4.4.2. Indeed, while
the posterior distribution for the green component mean is well separated from the
others, there is some overlap between the orange and the purple component and
between the purple and the blue component. The estimated node latent coordinates
are displayed in the right plot in Figure 4.9. These are coloured by cluster affiliation,
and components are indicated by their estimated means (black dots) and standard
deviations (ellipses). The latent space proximity between some of the components is
reflected in the average estimated edge posterior probabilities within and between
clusters in Table 4.5, for the three Vickers networks. Indeed, between clusters
probability values are higher among the three “female” components, purple, blue
and orange. Higher probability values are estimated in correspondence of the first
network. In the best friend and work with networks the average posterior probability
of observing an edge between a male student of the green component and any other
student from other components is quite low, namely below 0.11. Instead, in these
last two networks the between cluster probabilities for the orange, blue and purple
components remain relatively high, except for the couple orange/blue component.
The average estimated edge posterior probabilities within and between clusters
have been computed using the estimated latent distances and the estimated logit
parameters:

get on best friend work
α β α β α β

mean sd mean sd mean sd mean sd mean sd mean sd
2.50 - 1.00 - 0.53 0.15 1.13 0.10 0.42 0.14 0.89 0.08
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The α and β parameters have been fixed in the first network for identifiability
reasons, as discussed in Section 4.4.1. The values of the estimated intercepts in
the last two networks are much lower than that of the first view, as we could have
expected by looking at observed networks in Figure 4.6. Indeed, the get on network
is much denser than the other two. The β parameters are estimated to be close to 1
in all the three networks. This suggests that the effect of the latent space on the
edge probabilities is quite constant across the different views.
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Figure 4.7. Vickers data. Posterior distributions of the number of clusters.
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(b) Estimated cluster labels.

Figure 4.8. Vickers data. Average co-occurrence of the nodes in the same cluster and
estimated cluster labels.

4.7 Discussion

In this work, we introduced an infinite latent position cluster model for clustering
nodes in multidimensional network data. Our model allows to address transitivity
and clustering in (multidimensional) networks via a latent space representation of
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Figure 4.9. Vickers data. Posterior distributions of component means and estimated latent
coordinates. In the right plot, triangles indicate female students, while
dots correspond to male students.

get on best friend work with
g = 1 g = 2 g = 3 g = 4 g = 1 g = 2 g = 3 g = 4 g = 1 g = 2 g = 3 g = 4

g = 1 0.90 0.29 0.39 0.27 0.55 0.07 0.07 0.04 0.54 0.10 0.11 0.07
g = 2 0.29 0.85 0.12 0.63 0.07 0.45 0.02 0.20 0.10 0.46 0.03 0.24
g = 3 0.39 0.12 0.91 0.67 0.07 0.02 0.58 0.22 0.11 0.03 0.57 0.26
g = 4 0.27 0.63 0.67 0.92 0.04 0.20 0.22 0.60 0.07 0.24 0.26 0.58

Table 4.5. Vickers data. Average estimated edge probabilities within and between clusters.

the nodes, whose coordinates are assumed to be drawn from an infinite mixture of
Gaussian distributions. Differently from existing clustering methods for network
data, thanks to the infinite mixture setting, our proposal performs joint inference
on the latent coordinates, the component parameters, and the number of mixture
components. Model estimation is carried out within a Bayesian hierarchical approach
via a MCMC algorithm, whose performance has been tested in a simulation study
and showed to give results of good quality. Treating the number of component as a
parameter allows to avoid multiple model comparisons. Also, it avoids the problem
of choosing which model selection criterion to adopt for the comparison, which is
not a trivial task. The proposed framework and estimation procedure have been
applied to the well known Vickers multiplex data(Vickers and Chan, 1981). In this
application, our procedure has shown to be useful in capturing and visualizing a
clustering structure in the nodes/students, which could not be identified by looking
at the networks alone. Four sub-groups of students have been detected, correspond-
ing to four components. Cluster allocation appeared to be quite influenced by the
gender of the students, with 11 out of the 12 male students placed in the same
component. However, this was not the only clustering factor, as female students
were split into three different groups: two were large all-female components, while
the remaining one is a small mixed-gender group. One of the all-females groups
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can be considered the cluster of most “sociable” students, as they are close to the
other two main sub-groups. The small component estimated in the Vickers example
is composed by nodes which tend to make only few connections. Indeed, in social
network data there could be some nodes who poorly interact with others and may
not present a clear propensity to cluster. Such nodes are “quasi-isolated” from the
others, as they do not express a clear “social” behaviour. An interesting extension of
the proposed model may be that of accounting for a “quasi-isolated” component in
the mixture, which collects all “quasi-isolated” nodes in (multidimensional) network
data. An interesting consequence of this extra component would be that of removing
the possibility of having components with a single node allocated to it. Indeed,
single-node components would be grouped in a wider “quasi-isolated” one. The other
components would then contain at least two nodes, reducing the number of possible
components from G ≤ n to G ≤ n

2 + 1.
Missing edges and edge-specific covariates may be easily included in the model, as
done in D’Angelo, Murphy, and Alfò, 2018 for example. The inclusion of covariates
would allow to address homophily by attributes, as done in Handcock, Raftery, and
Tantrum, 2007. Also, a more general specification of the component covariance
matrices may be allowed, e.g. by assuming an Inverse Wishart prior distribution
for such terms; only small changes would be needed in the estimation procedure we
have described.
The proposed models will be incorporated shortly in the R package spaceNet
(D’Angelo and Fop, 2018), already available on CRAN.
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Chapter 5

Discussion

This thesis contributes to the current research on latent space modelling of
network and multidimensional network data, where multiple relations are recorded
among the same set of nodes. Chapter 1 provides a general introduction to network
analysis. Earlier models in the area are presented, as well as more recent approaches,
with particular emphasis on the class of latent space models.
Chapters 2-4 discuss novel models for latent space network analysis. In particular,
Chapter 2 extends the latent space network model by Gollini and Murphy, 2016
to analyse voting data from the Eurovision Song Contest. Different editions of
the contest are represented as a set of networks, where nodes are the participating
countries and edges represent votes exchanged between them. The nodes are assumed
to lay in a single Euclidean latent space, common for all the networks. Proximities
between countries in such space are taken to be proxies of countries “cultural”
similarities. The aim is to investigate possible bias in the exchange of votes. To
do so, we estimate the relevance of latent space coordinates in determining the
observed exchanged votes in each network/edition of the contest. Also, estimated
latent coordinates provide a representation of participating countries in terms of
their “cultural locations”, at least in terms of musical preferences expressed through
votes in the Eurovision Song Contest. Edge covariates might be incorporated in the
framework, with geographical and cultural covariates being used for modelling of
the Eurovision data.
Although the model presented in Chapter 2 has been developed focusing on the
Eurovision application, it can have wide applicability to other types of multiplex
data. In particular, it may be applied to multidimensional networks describing
different interactions between subjects or to multiplexes regarding trading relations
between entities (countries, industries, and so on). In general, this model is apt
to capture overall similarities between nodes in a multiplex. For example, latent
coordinates may be proxies of cultural similarities (as in the case of the Eurovision)
or of character affinities (as for human-interaction networks).
Chapter 3 presents an extension to the latent space network model developed in
Chapter 2. In particular, a class of nine latent space models is introduced, to represent
various levels of in-/out-degree variability for networks in multiplex data. These
nine models are characterized in terms of different sender and receiver node effects.
Such effects may be either null, constant or variable across the networks, and they
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characterize nodes behaviours in different views of the multiplex. The idea is that
persistent characteristics of the nodes may be captured through their latent space
representation, while deviations from such characteristics depend on the particular
network nodes have to interact in. We use the sender-receiver parametrization to
model import-export data between countries. Here, different networks correspond to
different sub-markets, and the activity level of each country in a given sub-market
may be captured via its sender/receiver effect. In this context, the latent space
provides a representation of the overall trading relations between countries. This
class of models may be used to analyse all types of multiplex data for which nodes
behaviours in single networks are believed to be variations from their usual “common”
behaviours.
Chapter 4 introduces the “infinite latent position cluster model” for network and
multidimensional network data. Nodes latent coordinates are assumed to arise from
an infinite mixture of Gaussian distributions, where each mixture component in the
latent space represents a group of nodes in the observed multiplex. The infinite
mixture model allows for a flexible characterization of different multiplex data, as the
number of components does not have to be specified in advanced. Also, the number
of components directly depends on the nodes in the data, meaning that new actors
entering the multidimensional network may lead to a different number of estimated
components or to a different characterization of the components. This model is
illustrated via an application to a three-networks multiplex, representing relations
among a class of students. However, it can be applied to all types of network and
multiplex data, whenever a clustering structure is hypothesized for the nodes.
The models introduced in this thesis are all developed in the context of binary
networks/multidimensional networks. It may be of interest to extend them to allow
for weighted edges, see for example Sewell and Chen, 2016 or Hoff, Fosdick, and
Stovel, 2013. Also, in the case of the infinite latent position cluster model, it would
be interesting to introduce a non-Gaussian component, to capture possible anti-
social behaviour of some nodes. Indeed, not all nodes in a network/multiplex may
tend to “group” with others; a non-Gaussian component (for example, a Uniform
component) could help to locate such nodes and to distinguish between “sociable”
and “non-sociable” nodes.
The Bayesian framework is exploited to perform parameter estimation. In particular,
a hierarchical Bayesian approach is adopted to derive MCMC algorithms for all
the models discussed in this thesis. The performances of the proposed algorithms
are investigated through extensive simulation studies. Furthermore, an R package
containing some of these algorithms has been developed, spaceNet, and it is available
on CRAN.
Appendices to the Chapters provide detailed descriptions of the MCMC algorithms,
as well as other details on the proposed models. Last, Appendix D discusses a
re-implementation of the method by Gollini and Murphy, 2016, with an MCMC
algorithm derived as an alternative to the original variational one.
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Appendix A

Appendix to Chapter 2

A.1 Posterior distributions for the parameters

This section will present the full conditional and the proposal distributions
that have been derived from the posterior distribution of the model. For ease of
calculation, the log-posterior distribution is considered:
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Without any loss of information, the latent coordinates are assumed to be univariate.
A generalization to the multivariate case is straightforward and will be considered
when the proposal distribution for the latent positions is introduced.

A.1.1 Nuisance parameters

All the posterior distributions for the nuisance parameters have closed form. In
particular, the variances follow Inverse Gamma distributions

σ2
α|α, µα, τα, να,K ∼ InvΓ

(
rα, Rα

)
; σ2

β|β, µβ, τβ, νβ,K ∼ InvΓ
(
rβ, Rβ

)
,

with parameters:

rx = νx +K + 1
2 , Rx = τx + τx

∑K
k=1(x(k) − µx)2 + µ2

x

2τx
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The mean parameters µα, µβ are distributed as truncated normal distributions:
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A.1.2 Latent positions

In order to derive a proposal distribution for the latent coordinates, only the
terms containing the variables zi in the log-posterior distribution are considered:
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To approximate the logarithmic term in the above equation, let us recall the definition
of the LSE (Log Sum Exponential) function,
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The logarithmic term in the log-posterior part of interest for the latent coordinates
has indeed LSE form, thus it can be bounded between:
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The lower bound is met when only one of the term in the summation is non-zero,
which is the case. Defining the binary variable w(k)

ij as,

w
(k)
ij =

{
1 if α(k) − β(k)dij > 0
0 if α(k) − β(k)dij ≤ 0

,

then the logarithmic term of interest can be approximated using its lower bound.
The log-posterior terms in zi can be approximated as:
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(
−β(k)(z2

i − 2zizj)
)]

=− 1
2z

2
i

[
1 + 2

K∑
k=1

β(k)∑
j 6=i

h
(k)
ij (y(k)

ij − w
(k)
ij )

]
+ zi

[
2

K∑
k=1

β(k)∑
j 6=i

h
(k)
ij (y(k)

ij − w
(k)
ij )zj

]
.



A.1 Posterior distributions for the parameters 91

The last equality returns a quadratic form in zi and could be used to specify a
proposal distribution for the latent coordinates. However, it is not guaranteed that
the quantity multiplying z2

i , which would be the precision of the proposal distribution
for latent position i, is strictly positive. Indeed, defining n(k)

i = ∑
j 6=i y

(k)
ij ,

1 + 2
K∑
k=1

β(k)∑
j 6=i

h
(k)
ij (y(k)

ij − w
(k)
ij ) ≥ min

{
1 + 2

K∑
k=1

β(k)∑
j 6=i

h
(k)
ij (y(k)

ij − w
(k)
ij )

}

∝ 1 + 2
[ K∑
k=1

β(k)n
(k)
i −max

{ K∑
k=1

β(k)∑
j 6=i

w
(k)
ij

}]

= 1 + 2
[ K∑
k=1

β(k)(n(k)
i − (n− 1)

)]
.

In the second row node indicator variables are fixed h(k)
ij = 1. Notice that n(k)

i ≤
n − 1 =⇒

(
n

(k)
i − (n − 1)

)
≤ 0. Hencefor the precision to be strictly positive it

should be that:

min
{

1 + 2
K∑
k=1

β(k)∑
j 6=i

(y(k)
ij − w

(k)
ij )

}
> 0 ⇐⇒ 2

[ K∑
k=1

β(k)(n(k)
i − (n− 1)

)]
> −1

⇐⇒
K∑
k=1

β(k)(n(k)
i − (n− 1)

)
> −1

2 .

One of the coefficient has to be fixed for identifiability issue. Taking β(1) = 1, the
above inequality may be rewritten as:

K∑
k=1

β(k)(n(k)
i − (n− 1)

)
≥

K∑
k=1

β(k)(1− n)

= (1− n) +
K∑
k=2

β(k)(1− n) ≥ −1
2 .

The last inequality holds only when n = 1. This implies that the quantity

1 + 2
K∑
k=1

β(k)∑
j 6=i

h
(k)
ij (y(k)

ij − w
(k)
ij )

may not always be positive. Therefore, an alternative specification for the proposal
precision is needed. The binary variables w(k)

ij can be thought as potential-link
indicator, as they depend on the argument of the numerator in the edge probability.
In that sense, the difference term (y(k)

ij −w
(k)
ij ) can be considered as a measure of the

goodness of link classification. However, the sum of these terms, ∑j 6=i(y
(k)
ij − w

(k)
ij ),

could be null either in presence of perfect classification or in the presence of perfect
misclassification. In fact, ∑j 6=i y

(k)
ij = ∑

j 6=iw
(k)
ij =⇒ ∑

j 6=i(y
(k)
ij − w

(k)
ij ) = 0. To

overcome this problem, the absolute value of the difference is considered. The
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proposal distribution specified for latent coordinate i is then: We can then define
the proposal distribution for the ith latent coordinate as:

z̃i | Y,α,β,D,K ∼ N
(
µz̃i , σ

2
z̃i

)
,

where

µz̃i = σ2
z̃i

(
2

K∑
k=1

β(k)∑
j 6=i

h
(k)
ij

(
y

(k)
ij −w

(k)
ij

)
zj
)
, σ2

z̃i =
(

1+2
K∑
k=1

β(k)∑
j 6=i

h
(k)
ij |y

(k)
ij −w

(k)
ij |
)−1

.

In the case of multivariate latent coordinates, with number of dimensions p, µz̃i
would be a p−dimensional vector and the covariance matrix would be diagonal, with
generic element σ2

z̃i
.

A.1.3 Intercept parameters

The part of interest of the log-posterior distribution to derive a proposal distri-
bution for the intercept terms is:

log
(
P (α(k) | Y,D,H, β(k), µα, σ

2
α, n

)
∝

n∑
i=1

∑
j 6=i

h
(k)
ij

[
y

(k)
ij

(
α(k) − β(k)dij

)
− log

(
1 + exp

{
α(k) − β(k)dij

})]
−1

2
(α(k) − µα)2

σ2
α

.

The logarithmic term is approximate with its second order Taylor expansion around
µα:

log
(
1 + exp

{
α(k) − β(k)dij

})∣∣∣
α(k)=µα

≈ log
(
1 + exp

{
µα − β(k)dij

})
+ (α(k) − µα)

exp
{
µα − β(k)dij

}
1 + exp

{
µα − β(k)dij

}
+ 1

2(α(k) − µα)2 exp
{
µα − β(k)dij

}(
1 + exp

{
µα − β(k)dij

})2 .
Substituting the logarithmic term with its approximation in the log posterior yields
to:

log
(
P (α(k) | Y,D,H, β(k), µα, σ

2
α)
)
∝ −1

2
(α(k) − µα)2

σ2
α

+
n∑
i=1

∑
j 6=i

h
(k)
ij

[
y

(k)
ij α

(k)

− α(k) exp
{
µα − β(k)dij

}
1 + exp

{
µα − β(k)dij

} − 1
2(α(k) − µα)2 exp

{
µα − β(k)dij

}(
1 + exp

{
µα − β(k)dij

})2
]

that is a quadratic form in α(k). Defining E(k) = ∑n
i=1

∑
j 6=i h

(k)
ij y

(k)
ij , the proposal

distribution for intercept α(k) is taken to be:

α̃(k) | Y,D,H, β(k), µα, σ
2
α, n ∼ N

(
µα̃(k) , σ2

α̃(k)

)
,
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with

µα̃(k) = σ2
α̃(k)

{
E(k) −

n∑
i=1

∑
j 6=i

h
(k)
ij exp

{
µα − β(k)dij

}
1 + exp

{
µα − β(k)dij

}}+ µα

σ2
α̃(k) =

{
n∑
i=1

∑
j 6=i

h
(k)
ij exp

{
µα − β(k)dij

}
(
1 + exp

{
µα − β(k)dij

})2 + 1
σ2
α

}−1

.

A.1.4 Coefficient parameters (distances)

The part of interest for the coefficient parameters in the posterior distribution is:

log
(
P (β(k) | Y,D,H, α(k), µβ, σ

2
β, n

)
∝

n∑
i=1

∑
j 6=i

h
(k)
ij

[
y

(k)
ij

(
α(k) − β(k)dij

)
− log

(
1 + exp

{
α(k) − β(k)dij

})]
−1

2
(β(k) − µβ)2

σ2
β

.

The logarithmic term is approximated with its second order Taylor expansion in µβ :

log
(
1 + exp

{
α(k) − β(k)dij

})∣∣∣
β(k)=µβ

≈ log
(
1 + exp

{
α(k) − µβdij

})
− (β(k) − µβ)

dij exp
{
α(k) − µβdij

}
1 + exp

{
α(k) − µβdij

}
+ 1

2(β(k) − µβ)2 d2
ij exp

{
α(k) − µβdij

}(
1 + exp

{
α(k) − µβdij

})2 .
The logarithmic term is replaced with its approximation, leading to:

log
(
P (β(k) | Y,D,H, α(k), µβ, σ

2
β)
)
∝ −1

2
(β(k) − µβ)2

σ2
beta

+
n∑
i=1

∑
j 6=i

h
(k)
ij

[
−y(k)

ij β
(k)dij+

β(k) dij exp
{
α(k) − µβdij

}
1 + exp

{
α(k) − µβdij

} − 1
2(β(k) − µβ)2 d2

ij exp
{
α(k) − µβdij

}(
1 + exp

{
α(k) − µβdij

})2 .
The above expression is quadratic in β(k). Then, the proposal distribution specified
for intercept coefficient k is:

β̃(k) | Y,D,H, α(k), µβ, σ
2
β ∼ N

(
µβ̃(k) , σ

2
β̃(k) , n

)
,

where

µβ̃(k) = σ2
β̃(k)

{
n∑
i=1

∑
j 6=i

h
(k)
ij dij

(
exp

{
α(k) − µβdij

}
1 + exp

{
α(k) − µβdij

} − y(k)
ij

)}
+ µβ,

σ2
β̃(k) =

{
n∑
i=1

∑
j 6=i

h
(k)
ij d

2
ij exp

{
α(k) − µβdij

}
(
1 + exp

{
α(k) − µβdij

})2 + 1
σ2
β

}−1

.
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A.1.5 Coefficient parameters (covariates)

The coefficient parameters of the covariates are assumed to be independent
but not identically distributed. We consider the prior distribution for coefficient
parameter of set of covariates f being:

λf ∼ N[
0,∞
](µλf , σ2

λf

)
The parameters µλf and σ2

λf
are nuisance parameters, distributed as:

µλf |σ
2
λf

∼ N[
0,∞
](mλ, τλσ

2
λf

)
σ2
λf

∼ Invχ2
νλ

Then the log-posterior distribution has to be slightly modified with the introduction
of covariates and the extra parameters:

log
(
P
(
α,β, z, µα, µβ, σ

2
α, σ

2
β,λ, µλ, σ

2
λ|Y,X

))
∝

K∑
k=1

n∑
i=1

∑
j 6=i

h
(k)
ij

[
y

(k)
ij

(
α(k) − β(k)dij

−
F∑
f=1

λfxijf
)
− log

(
1 + exp

{
α(k) − β(k)dij

F∑
f=1

λfxijf
})]

− 1
2

{
n∑
i=1

z2
i +

∑K
k=1(α(k) − µα)2

σ2
α

+
∑K
k=1(β(k) − µβ)2

σ2
β

+K log(σ2
α)

+K log(σ2
β) + log(τασ2

α) + log(τβσ2
β) + µ2

α

τασ2
α

+
µ2
β

τβσ
2
β

+ 1
σ2
α

+ 1
σ2
β

− 1
2

F∑
f=1

(
(λf − µλf )2

σ2
λf

+ log(σ2
λf

) + log(τλσ2
λf

) +
(µλf −mλ)2

τλσ
2
λf

+ 1
σ2
λf

)}

+
(
−να2 − 1

)
log(σ2

α) +
(
−νβ2 − 1

)
log(σ2

β) +
F∑
f=1

(
−
νλf
2 − 1

)
log(σ2

λf
).

Given a set F covariates f , the corresponding nuisance parameters The nuisance
parameters µλf and σ2

λf
are update via the following full conditional distributions:

σ2
λf
| λf , µλf , τλ, νλ ∼ InvΓ

(
νλ + 2

2 ,
τλ + τλ(λf − µλf )2 + µ2

λf

2τλ

)
,

µλf | λf , σ
2
λf
, τλ,mλ ∼ N[

0,∞
](τλλf +mλ

1 + τλ
,
τλσ

2
λf

1 + τλ

)
.

The update of the parameters λf is carried out with a Metropolis-Hastings algorithm,
where the proposal distribution used for the parameter f is derived approximating
the logarithmic term in the log-posterior with its second order Taylor series expansion
in λf = µλf . Then, the proposal distribution for λf is:

λ̃f ∼ N(0,∞)
(
µλ̃f , σ

2
λ̃f

)
,
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where

µλ̃f = σ2
λ̃f

[
K∑
k=1

(
n∑
i=1

∑
j 6=i

xijf exp
(
α(k) − β(k)dij −

∑
l 6=f λlxijl

)
1 + exp

(
α(k) − β(k)dij −

∑
l 6=f λlxijl

) − y(k)
ij xijf

)]
+ µλf ,

σ2
λ̃f

=
{

K∑
k=1

n∑
i=1

∑
j 6=i

x2
ijf exp

(
α(k) − β(k)dij −

∑
l 6=f λlxijl

)
(
1 + exp

(
α(k) − β(k)dij −

∑
l 6=f λlxijl

))2 + 1
σ2
λf

}−1

.

A.1.6 Other proposal distributions

The introduction of covariates in the model requires a convenient adjustment of
the proposal distribution for the latent coordinates, the intercepts and the coefficients.
The proposal distribution for latent position i has the same form as the one shown
in section A.1.2, but the definition of the auxiliary variables w(k)

ij changes in:

w
(k)
ij =

{
1 if α(k) − β(k)dij −

∑F
f=1 λfxijf > 0

0 if α(k) − β(k)dij −
∑F
f=1 λfxijf ≤ 0

,

The mean and variance parameters of the proposal distribution for the intercept
terms α(k) are modified by the introduction of the covariates, while the form of the
distribution is left unchanged:

µα̃(k) = σ2
α̃(k)

{
E(k) −

n∑
i=1

∑
j 6=i

h
(k)
ij exp

{
µα − β(k)dij −

∑F
f=1 λfxijf

}
1 + exp

{
µα − β(k)dij −

∑F
f=1 λfxijf

}}+ µα,

σ2
α̃(k) =

{
n∑
i=1

∑
j 6=i

h
(k)
ij exp

{
µα − β(k)dij −

∑F
f=1 λfxijf

}
(
1 + exp

{
µα − β(k)dij −

∑F
f=1 λfxijf

})2 + 1
σ2
α

}−1

The mean and variance parameters of the proposal distribution for the coefficient
parameters β(k) changes, though the form of the distribution remains the same:

µβ̃(k) = σ2
β̃(k)

{
n∑
i=1

∑
j 6=i

h
(k)
ij dij

(
exp

{
α(k) − µβdij −

∑F
f=1 λfxijf

}
1 + exp

{
α(k) − µβdij −

∑F
f=1 λfxijf

} − y(k)
ij

)}
+ µβ,

σ2
β̃(k) =

{
n∑
i=1

∑
j 6=i

h
(k)
ij d

2
ij exp

{
α(k) − µβdij −

∑F
f=1 λfxijf

}
(
1 + exp

{
α(k) − µβdij −

∑F
f=1 λfxijf

})2 + 1
σ2
β

}−1
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A.2 ISO3 codes

Country name iso3 code Country name iso3 code
Albania ALB Italy ITA
Andorra AND Latvia LVA
Armenia ARM Lithuania LTU
Australia AUS Malta MLT
Austria AUT Moldova MDA
Azerbaijan AZE Monaco MCO
Belarus BLR Montenegro MNE
Belgium BEL Norway NOR
Bosnia and Herzegovina BIH Poland POL
Bulgaria BGR Portugal PRT
Croatia HRV Romania ROU
Cyprus CYP Russia RUS
Czech Republic CZE San Marino SMR
Denmark DNK Serbia SRB
Estonia EST Serbia and Montenegro SCG
Federal Republic of Macedonia MKD Slovakia SVK
Finland FIN Slovenia SVN
France FRA Spain ESP
Georgia GEO Sweden SWE
Germany DEU Switzerland CHE
Greece GRC Netherlands NLD
Hungary HUN Turkey TUR
Iceland ISL Ukraine UKR
Ireland IRL United Kingdom GBR
Israel ISR

Table A.1. Eurovision data: country ISO3 codes.
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A.3 Results for the Eurovision sub-periods

Year α̂ sd(α) β̂ sd(β) Year α̂ sd(α) β̂ sd(β)
1998 0 - 1 - 2003 0.25 0.17 0.79 0.19
1999 0.19 0.17 0.37 0.15 2004 0.31 0.19 0.67 0.21
2000 0.32 0.18 0.62 0.17 2005 0.33 0.16 0.71 0.17
2001 0.01 0.15 0.19 0.12 2006 0.40 0.18 0.76 0.19
2002 0.15 0.19 0.40 0.17 2007 0.63 0.15 1.10 0.18

Table A.2. Eurovision data: estimated averages and standard deviations for the network
parameters in the multiplex 1998-2007.

Year α̂ sd(α) β̂ sd(β) Year α̂ sd(α) β̂ sd(β)
2008 0 - 1 - 2012 0.44 0.14 0.96 0.15
2009 0.21 0.14 0.60 0.13 2013 0.40 0.13 0.93 0.14
2010 0.40 0.14 0.80 0.13 2014 0.28 0.16 0.80 0.16
2011 0.35 0.13 0.77 0.13 2015 0.35 0.12 1.01 0.14

Table A.3. Eurovision data: estimated averages and standard deviations for the network
parameters in the multiplex 2008-2015.
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Figure A.1. Eurovision data: boxplots for the estimates of the logistic parameters, periods
1998-2007 and 2008-2015.
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Figure A.2. Eurovision data: estimated latent positions, periods 1998-2007 and 2008-2015.
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Figure A.3. Eurovision data: estimated distances between couple of countries for the
period 1998-2007.
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Figure A.4. Eurovision data: estimated distances between couple of countries for the
period 2008-2015.
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Figure A.5. Eurovision data: intersections of the set of neighbours LNi,r and GNi,r, for
the period 1998-2007.
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Figure A.6. Eurovision data: estimated distances between couple of countries for the
period 2008-2015.
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(f) neigh = 15

Figure A.7. Eurovision data: intersections of the set of neighbours LNi,r and GNi,r, for
the period 2008-2015.
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A.4 Simulations results

A.4.1 Results for block I

Table A.4. Simulated values for the intercept and the coefficient terms in the multidimen-
sional networks considered in scenarios I-III.

K = 2 K = 3 K = 4 K = 5
Multiplex α β α β α β α β

n = 25,K = 3 −0.22 0.91 0.69 0.22 - - - -
n = 50,K = 3 0.51 0.68 −0.83 0.12 - - - -
n = 100,K = 3 0.21 0.70 −0.74 1.09 - - - -
n = 50,K = 5 1.10 1.36 0.23 0.45 0.47 0.07 −0.52 0.95

First scenario

Table A.5. Multivariate Gaussian latent coordinates. Averages for the estimated logistic
parameters and the procrustes correlation between true and estimated
latent spaces.

α(1) α̂(2) α̂(3) α̂(4) α̂(5) β(1) β̂(2) β̂(3) β̂(4) β̂(5) PC

n = 25,K = 3 0 −0.19 0.63 - - 1 1.00 0.22 - - 0.92 P

0 −0.25 0.78 - - 1 1.00 0.27 - - 0.91 A

n = 50,K = 3 0 0.18 −0.84 - - 1 0.58 0.12 - - 0.91 P

0 0.39 −0.72 - - 1 0.65 0.14 - - 0.96 A

n = 100,K = 3 0 0.09 −0.97 - - 1 0.90 1.32 - - 0.95 P

0 0.16 −0.95 - - 1 0.60 0.85 - - 0.96 A

n = 50,K = 5 0 0.83 0.16 0.60 −0.71 1 1.35 0.48 0.09 1.05 0.97 P

0 0.85 0.15 0.64 −0.73 1 1.39 0.49 0.09 1.01 0.96 A

Table A.6. Multivariate Gaussian latent coordinates. Standard deviations for the esti-
mated logistic parameters and the procrustes correlation between true and
estimated latent spaces.

sd(α̂(2)) sd(α̂(3)) sd(α̂(4)) sd(α̂(5)) sd(β̂(2)) sd(β̂(3)) sd(β̂(4)) sd(β̂(5)) sd(PC)

n = 25, K = 3 0.06 0.04 - - 0.05 0.03 - - 0.02 P

0.02 0.01 - 0.03 0.02 - - 0.05 A

n = 50, K = 3 0.28 0.04 - - 0.11 0.01 - - 0.06 P

0.05 0.02 - - 0.04 0.01 - - 0.01 A

n = 100, K = 3 0.07 0.09 - - 0.06 0.10 - - 0.02 P

0.05 0.06 - 0.05 0.08 - - 0.02 A

n = 50, K = 5 0.08 0.03 0.03 0.04 0.16 0.08 0.01 0.11 0.01 P

0.11 0.04 0.02 0.09 0.16 0.04 0.01 0.13 0.01 A
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Figure A.8. Simulations: first scenario.
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Second scenario

Table A.7. Mixture of multivariate Gaussian distributions latent coordinates. Averages for
the estimated logistic parameters and the procrustes correlation between
true and estimated latent spaces.

α(1) α̂(2) α̂(3) α̂(4) α̂(5) β(1) β̂(2) β̂(3) β̂(4) β̂(5) PC

n = 25, K = 3 0 −0.39 0.58 - - 1 1.24 0.41 - - 0.85 P

0 −0.38 0.60 - - 1 1.26 0.40 - - 0.86 A

n = 50, K = 3 0 0.55 −0.79 - - 1 0.63 0.11 - - 0.93 P

0 0.59 −0.80 - - 1 0.63 0.10 - - 0.93 A

n = 100, K = 3 0 0.10 −0.79 - - 1 0.54 0.91 - - 0.95 P

0 0.12 −0.81 - - 1 0.53 0.91 - - 0.95 A

n = 50, K = 5 0 1.03 0.29 0.56 −0.64 1 1.10 0.39 0.04 0.70 0.95 P

0 1.03 0.24 0.57 −0.7 1 1.13 0.37 0.04 0.68 0.95 A

Table A.8. Mixture of multivariate Gaussian distributions latent coordinates. Standard de-
viations for the estimated logistic parameters and the procrustes correlation
between true and estimated latent spaces.

sd(α̂(2)) sd(α̂(3)) sd(α̂(4)) sd(α̂(5)) sd(β̂(2)) sd(β̂(3)) sd(β̂(4)) sd(β̂(5)) sd(PC)

n = 25, K = 3 0.07 0.15 - - 0.06 0.07 - - 0.17 P

0.08 0.17 - - 0.08 0.6 - - 0.18 A

n = 50, K = 3 0.02 0.01 - - 0.04 0.01 - - 0.02 P

0.06 0.01 - - 0.05 0.01 - - 0.02 A

n = 100, K = 3 0.02 0.03 - - 0.12 0.18 - - 0.01 P

0.02 0.03 - - 0.03 0.05 - - 0.01 A

n = 50, K = 5 0.04 0.02 0.01 0.02 0.09 0.03 0.00 0.06 0.01 P

0.04 0.02 0.01 0.02 0.08 0.03 0.01 0.04 0.02 A
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Figure A.9. Simulations: second scenario.
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A.4.2 Third scenario

Table A.9. Hotelling T squared latent coordinates. Averages for the estimated logistic
parameters and the procrustes correlation between true and estimated
latent spaces.

α(1) α̂(2) α̂(3) α̂(4) α̂(5) β(1) β̂(2) β̂(3) β̂(4) β̂(5) PC

n = 25, K = 3 0 −0.69 0.54 - - 1 1.04 0.27 - - 0.92 P

0 −0.69 0.56 - - 1 1.02 0.26 - - 0.90 A

n = 50, K = 3 0 0.18 −0.82 - - 1 0.51 0.12 - - 0.95 P

0 0.29 −0.74 - - 1 0.59 0.14 - - 0.95 A

n = 100, K = 3 0 0.02 −0.93 - - 1 0.93 1.39 - - 0.80 P

0 0.04 −0.87 - - 1 0.90 1.40 - - 0.80 A

n = 50, K = 5 0 0.47 0.12 0.60 −0.65 1 1.26 0.60 0.11 1.16 0.97 P

0 0.53 0.13 0.58 −0.72 1 1.23 0.56 0.10 1.06 0.96 A

Table A.10. Hotelling T squared latent latent coordinates. Standard deviations for the
estimated logistic parameters and the procrustes correlation between true
and estimated latent spaces.

sd(α̂(2)) sd(α̂(3)) sd(α̂(4)) sd(α̂(5)) sd(β̂(2)) sd(β̂(3)) sd(β̂(4)) sd(β̂(5)) sd(PC)

n = 25, K = 3 0.04 0.03 - - 0.02 0.02 - - 0.02 P

0.04 0.02 - - 0.03 0.01 - - 0.02 A

n = 50, K = 3 0.31 0.10 - - 0.06 0.02 - - 0.02 P

0.04 0.01 - - 0.04 0.01 - - 0.01 A

n = 100, K = 3 0.01 0.01 - - 0.02 0.02 - - 0.02 P

0.01 0.01 - - 0.01 0.02 - - 0.02 A

n = 50, K = 5 0.10 0.03 0.01 0.07 0.08 0.04 0.01 0.08 0.01 P

0.08 0.03 0.02 0.05 0.12 0.06 0.01 0.08 0.01 A
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Figure A.10. Simulations: third scenario.
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A.4.3 Results for block II

Fourth scenario

Table A.11. Simulations: fourth scenario. Procrustes correlation.

K = 10 K = 20 K = 30
P A P A P A

PC 0.97 0.96 0.97 0.97 0.97 0.97
sd(PC) 0.01 0.01 0.01 0.01 0.01 0.01
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Figure A.11. Simulations: fourth scenario, multiplex with n = 50 and K = 10. Estimated
averages and standard deviations for the network parameters.
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Figure A.12. Simulations: fourth scenario, multiplex with n = 50 and K = 20. Estimated
averages and standard deviations for the network parameters.
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Figure A.13. Simulations: fourth scenario, multiplex with n = 50 and K = 30. Estimated
averages and standard deviations for the network parameters.
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A.4.4 Comparison with the lsjm model. Results

Table A.12. Results of the comparison with the lsjm model. Averages and standard
deviations for the estimated intercepts and the procrustes correlation
between true and estimated latent spaces. The acronym lsmmn is used to
indicate the model presented in this work.

α̂(1) α̂(2) α̂(3) sd(α̂(1)) sd(α̂(2)) sd(α̂(3)) PC sd(PC)

n = 50, K = 3 −201.89 −211.10 −193.75 1501.55 1500.95 1496.83 0.46 0.27 lsjm

0 −0.73 −0.64 - 0.04 0.07 0.96 0.01 lsmmn

n = 70, K = 2 −0.84 −1.30 - 0.06 0.06 - 0.79 0.05 lsjm

0 −1.36 - - 0.01 0.85 0.05 lsmmn

n = 25, K = 3 −44.38 15.40 −16.80 360.49 353.41 356.76 0.57 0.31 lsjm

0 0.69 0.26 - 0.08 0.06 0.95 0.05 lsmmn

Concerning the lsjm estimates, the instability in the estimation of the intercept
parameters in the first and third scenario could be caused by similar identifiability
issues as the one described in the paper. The second scenario returns stable and
truthful estimates of the intercept parameters and high correlation on average
between the true and the estimated latent space. The lsmmn model always recovers
a set of latent coordinates which is highly correlated with the simulated one. The
average value for this correlation in the estimates for the second multiplex is lower
than the values estimated for multidimensional network one and three. This could be
due to the presence of only 2 views in the second multiplex, meaning that there are
only two replications of the latent space in the data. The lsmmn model estimated
also the coefficient parameters β(k), which in the simulations have all been set to 1.
The estimates produced for all the three multiplex returned faithful values for the
coefficients, as in all the cases .93 ≤ β̂(k) ≤ 1.05, ∀k. The intercept coefficient in the
first network as been fixed α(1) = 0 to estimate all the three multiplex.
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A.5 Pseudo-code of the mcmc algorithm

Algorithm 1 MCmc for LSM-MN
procedure

Given: Y,K, n, LB(α),H
Fix: η

Initialize: z{0},D{0}, α{0}, β{0}, µ{0}α , µ
{0}
β , σ

2{0}
α , σ

2{0}
β

Fix: α(1){0} = 0, β(1){0} = 1
for iter in 1:niter do

Simulate σ
2{iter}
α from g

(
σ2
α | α{iter−1}, µ

{iter−1}
α , τα, να,K

)
;

Simulate σ
2{iter}
β from g

(
σ2
β | β{iter−1}, µ

{iter−1}
β , τβ, νβ,K

)
;

Simulate µ
{iter}
α from g

(
µα | α{iter−1}, σ

2{iter}
α , τα,K

)
;

Simulate µ
{iter}
β from g

(
µβ | β{iter−1}, σ

2{iter}
β , τβ,K

)
;

for k in 2:K do
Propose α̃(k) from g

(
α(k) | Y,D{iter−1},H, β(k){iter−1}, µ

{iter}
α , σ

2{iter}
α , n

)
;

Propose β̃(k) from g
(
β(k) | Y,D{iter−1},H, α(k){iter−1}, µ

{iter}
β , σ

2{iter}
β , n

)
;

Accept
(
α̃(k), β̃(k)

)
with probability A1

if Accept then
α(k){iter}, β(k){iter} ← α̃(k), β̃(k)

else
α(k){iter}, β(k){iter} ← α(k){iter−1}, β(k){iter−1}

Assign z{old} ← z{iter−1}

for i in 1:n do
Propose z̃i from g

(
zi | Y, α{iter}, β{iter},D{iter−1},K

)
;

Accept z̃i with probability A2
if Accept then

z
{iter}
i ← z̃i

else
z
{iter}
i ← z

{iter−1}
i

if Procrustes Check
(
z{old}, z{iter}

)
== 0 then

z{iter} ← z{iter}
else

z{iter} ← z{iter−1}

If edge-specific covariates are considered, the parameters λf are updated after the
latent positions, with a Metropolis-Hastings step, using their proposal distributions.
The nuisance parameters µλf and σ2

λf
are updated via their full conditional distribu-

tion, right after the update of the nuisance parameters for the prior distributions
of α and β. In addition, the proposal distributions to use for the coordinates, the
coefficients and the intercepts are the ones described in appendix A.1.
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Appendix to Chapter 3

B.1 FAO data
Below, we report the country ISO3 codes for the FAO dataset

Country name iso3 code Country name iso3 code
Australia AUS Malaysia MYS
Austria AUT Maldives MDV
Bahrain BHR Montenegro MNE
Belarus BLR Morocco MAR
Belgium BEL Netherlands NLD
Bosnia and Herzegovina BIH New Zealand NZL
Bulgaria BGR Norway NOR
Canada CAN Oman OMN
Hong Kong HKG Pakistan PAK
China CHN Poland POL
Croatia HRV Portugal PRT
Czech Republic CZE Qatar QAT
Denmark DNK Republic of Korea KOR
Egypt EGY Republic of Moldova MDA
Estonia EST Romania ROU
Finland FIN Russian Federation RUS
France FRA Saudi Arabia SAU
Germany DEU Serbia SRB
Greece GRC Singapore SGP
Hungary HUN Slovakia SVK
India IND Slovenia SVN
Iran IRN South Africa ZAF
Ireland IRL Spain ESP
Italy ITA Sweden SWE
Jordan JOR Switzerland CHE
Kazakhstan KAZ Thailand THA
Kenya KEN Republic of Macedonia MKD
Kuwait KWT Turkey TUR
Latvia LVA Ukraine UKR
Lebanon LBN United Arab Emirates ARE
Lithuania LTU United Kingdom GBR
Luxembourg LUX United States of America USA

Table B.1. Fao data: country ISO3 codes.
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B.2 Estimation: proposal and full conditional distribu-
tions

The log-posterior distribution for the eight models with sender and/or receiver
effect, presented in section 3.2, is proportional to:

log
(
P
(
α,β,θ,γ, z, µα, µβ, σ

2
α, σ

2
β|Y

))
∝

K∑
k=1

n∑
i=1

∑
j 6=i

h
(k)
ij

[
y

(k)
ij

(
α(k)φ

(k)
ij − β

(k)dij −
F∑
f=1

λfxijf
)
− log

(
1 + exp

{
α(k)φ

(k)
ij

− β(k)dij −
F∑
f=1

λfxijf
})]
−1

2

{
n∑
i=1

z2
i +

∑K
k=1(α(k) − µα)2

σ2
α

+
∑K
k=1(β(k) − µβ)2

σ2
β

+K log(σ2
α) +K log(σ2

β) + log(τασ2
α) + log(τβσ2

β) + µ2
α

τασ2
α

+
µ2
β

τβσ
2
β

+ 1
σ2
α

+ 1
σ2
β

+
F∑
f=1

(
(λf − µλf )2

σ2
λf

+ log(σ2
λf

) + log(τλσ2
λf

) +
(µλf − µλ)2

τλσ
2
λf

+ 1
σ2
λf

)}

+
(
−να2 − 1

)
log(σ2

α) +
(
−νβ2 − 1

)
log(σ2

β) +
F∑
f=1

(
−
νλf
2 − 1

)
log(σ2

λf
),

(B.1)

where, without any loss of information, the latent coordinates are assumed to be
univariate.

B.2.1 Nuisance parameters

The variances of the intercept and coefficient parameters have Inverse Gamma
full conditional distributions

σ2
α|α, µα, τα, να,K ∼ InvΓ

(
rα, Rα

)
; σ2

β|β, µβ, τβ, νβ,K ∼ InvΓ
(
rβ, Rβ

)
,

with parameters:

rx = νx +K + 1
2 , Rx = τx + τx

∑K
k=1(x(k) − µx)2 + µ2

x

2τx
.

The nuisance parameters µα, µβ are distributed as truncated normal distributions:

µα|α, σ2
α, τα,mα,K ∼ N[

0,∞
](τα∑K

k=1 α
(k) +mα

1 +Kτα
,

τασ
2
α

1 +Kτα

)
,

µβ|β, σ2
β, τβ,mβ,K ∼ N[

0,∞
](τβ∑K

k=1 β
(k) +mβ

1 +Kτβ
,

τβσ
2
β

1 +Kτβ

)
.
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B.2.2 Latent positions

The proposal distribution for the ith latent coordinate is derived from the log-
posterior distribution of the model in equation B.1. The logarithmic term in the
log-likelihood, which is indeed a LSE function, is approximated with its lower bound.

z̃i | Y,α, θi,γ,β,λ,xi,D,K ∼ N
(
µz̃i , σ

2
z̃iI
)
,

where

µz̃i = σ2
z̃i

(
2

K∑
k=1

β(k)∑
j 6=i

h
(k)
ij

(
y

(k)
ij −w

(k)
ij

)
zj
)
, σ2

z̃i =
(

1+2
K∑
k=1

β(k)∑
j 6=i

h
(k)
ij |y

(k)
ij −w

(k)
ij |
)−1

.

where w(k)
ij is a binary indicator variable, defined as:

w
(k)
ij =

1 if α(k)φ
(k)
ij − β(k)dij −

∑F
f=1 λfxijf > 0

0 if α(k)φ
(k)
ij − β(k)dij −

∑F
f=1 λfxijf ≤ 0

,

B.2.3 Intercept parameters

The proposal distribution for the kth intercept parameter α(k) is derived from
the log-posterior distribution, where the logarithmic term is approximated via its
second order Taylor expansion in α(k) = µα. Defining E(k) = ∑n

i=1
∑
j 6=i h

(k)
ij y

(k)
ij φ

(k)
ij ,

the proposal distribution for intercept α(k) is taken to be:

α̃(k) | Y,D,H, β(k), θ(k), γ(k), λ,X, µα, σ2
α ∼ N

(
µα̃(k) , σ2

α̃(k)

)
,

with

µα̃(k) = σ2
α̃(k)

{
E(k) −

n∑
i=1
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h
(k)
ij φ

(k)
ij exp
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(k)
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f=1 λfxijf

}
1 + exp

{
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(k)
ij − β(k)dij −
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}
}

+ µα,

σ2
α̃(k) =

{
n∑
i=1

∑
j 6=i

h
(k)
ij (φ(k)

ij )2 exp
{
µαφ

(k)
ij − β(k)dij −

∑F
f=1 λfxijf

}
(
1 + exp

{
µαφ

(k)
ij − β(k)dij −

∑F
f=1 λfxijf

})2 + 1
σ2
α

}−1

B.2.4 Coefficient parameters (distances)

The proposal distribution for the kth coefficient parameter β(k) is derived from
the log-posterior distribution, where the logarithmic term is approximated via its
second order Taylor expansion in β(k) = µβ.
Then, the proposal distribution specified for intercept coefficient k is:

β̃(k) | Y,D,H, α(k), θ(k), γ(k), λ,X, µβ, σ2
β ∼ N

(
µβ̃(k) , σ

2
β̃(k) , n

)
,

where

µβ̃(k) = σ2
β̃(k)

{
n∑
i=1

∑
j 6=i

h
(k)
ij dij

(
exp

{
α(k)φ

(k)
ij − µβdij −

∑F
f=1 λfxijf

}
1 + exp

{
α(k)φ

(k)
ij − µβdij −

∑F
f=1 λfxijf

}−y(k)
ij

)}
+µβ,

σ2
β̃(k) =

{
n∑
i=1

∑
j 6=i

h
(k)
ij d

2
ij exp

{
α(k)φ

(k)
ij − µβdij −
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f=1 λfxijf

}
(
1 + exp

{
α(k)φ

(k)
ij − µβdij −
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})2 + 1
σ2
β

}−1
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B.2.5 Coefficient parameters (covariates)

The proposal distribution for λf is:

λ̃f | α,β,λ,γ,θ, µλf , σ
2
λf
,D,H,X,Y ∼ N(0,∞)

(
µλ̃f , σ

2
λ̃f

)
,

where

µλ̃f = σ2
λ̃f

[
K∑
k=1

(
n∑
i=1

∑
j 6=i

xijfh
(k)
ij exp

(
α(k)φ

(k)
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∑
l 6=f λlxijl

)
1 + exp

(
α(k)φ

(k)
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∑
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) −y(k)
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σ2
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=
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h
(k)
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2
ijf exp
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α(k)φ
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(
1 + exp

(
α(k)φ
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))2 + 1
σ2
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}−1

.

B.2.6 Sender and receiver parameters

To define proposal distributions for the sender and receiver parameter, we consider
only the relevant part of the posterior distribution. In particular, we will derive
them from the log-likelihood of the model, that is, the first line of the log-posterior
distribution presented in equation B.1,

K∑
k=1

n∑
i=1

∑
j 6=i

h
(k)
ij

[
y

(k)
ij

(
α(k)φ

(k)
ij −β
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f=1

λfxijf
)
−log

(
1+exp

{
α(k)φ

(k)
ij −β

(k)dij−
F∑
f=1

λfxijf
})]

.

Sender parameters

When the sender effect is variable across the networks, we need to propose a
new value for the i(th) sender parameter in the kth network at the tth iteration of
the MCMC algorithm. We start by approximating the logarithmic term in the
log-likelihood via its second order Taylor’s expansion in θ(k)t

i ≈ θ(k)t−1
i :

log
(
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+ const

.

Then, the logarithmic term is substituted with its approximation. The approximated
log-likelihood is now a quadratic function in θ

(k)t
i , which permits to define the

following proposal distribution

θ̃
(k)t
i | α(k), β(k),λ, γ(k), θ

(k)t−1
i ,D,H,X,Y ∼ N(−1,1)

(
µ
θ̃

(k)t
i

, σ2
θ̃
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)
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where
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Instead, when the sender effect is constant, the logarithmic term in the log-likelihood
is approximated with its second order Taylor’s expansion in θti ≈ θt−1

i a and the
resulting proposal distribution is:

θ̃ti | α,β,λ,γ, θt−1
i ,D,H,X,Y ∼ N(−1,1)

(
µθ̃ti

, σ2
θ̃ti

)
where
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The proposal distribution defined depend on the previous value of the parameter
of interest, as in random walk proposals, but also on the current configuration of
all the other parameters. This allows to explore efficiently the parameter space
for the θ(k)

i s: Indeed, classical random walks are usually slow in the exploration
of the parameter space and, when employed in the estimation procedure of this
class of models, they returned unstable chains. “Correcting” the random walk by
incorporating the past value of the sender parameter of interest in a more complex
parametrization of the proposal distribution has proven to be a valid approach to
estimate these parameters.

Receiver parameters

The proposal distributions for the receiver parameters, both in the variable and
in the constant case, are recovered with the same procedure used to define those of
the sender parameters. The only, obvious, difference is that the logarithmic term of
the log-likelihood is approximated in the receiver parameter. Then, the proposal
distributions for the jth receiver parameter at the tth iteration are:

• If the effect is variable:
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.

• If the effect is constant:

γ̃tj | α,β,λ,θ, γt−1
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(
µγ̃tj

, σ2
γ̃tj

)
where

µγ̃tj
=
[
K∑
k=1

α(k)

g

∑
i 6=j

h
(k)
ij

(
y

(k)
ij −

exp
(
α(k)φt−1

ij − β(k)dij
)

1 + exp
(
α(k)φ

(t−1
ij − β(k)dij

)
)]
σ2
γ̃tj

+ γt−1
j

σ2
γ̃tj

=
[
K∑
k=1

(
α(k)

g

)2∑
i 6=j

h
(k)
ij

(
exp

(
α(k)φt−1

ij − β(k)dij
)

(
1 + exp

(
α(k)φt−1

ij − β(k)dij
))2

)]−1

.

Undirected networks

The proposal distributions for the δ(k)
i parameters, both in the variable and in

the constant case, are recovered with the same procedure used to define those of
the sender and the receiver parameters. This time, the logarithmic term in the
log-likelihood, which this time is defined via the edge probabilities in equation 3.7, is
approximated in the ith parameter. The proposal distributions for the ith parameter
at the tth iteration are:

• If the effect is variable:
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• If the effect is constant:

δ̃ti | α,β,λ, δt−1,D,H,X,Y ∼ N(−1,1)
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Figure B.1. Boxplots of the estimated posterior distributions for the intercept parameters
α(k). Red dots indicate the true, simulated, values of the intercepts.
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Figure B.2. Boxplots of the estimated posterior distributions for the coefficient parameters
β(k). Red dots indicate the true, simulated, values of the coefficients.
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B.4 Heuristic model search

Simulated
NN CN NC CC VN NV VC CV VV

Selected (%)

NN 84 0 0 15 0 0 0 0 1
CN 1 94 0 4 0 0 0 1 0
NC 1 0 95 3 0 0 1 0 0
CC 17 0 0 80 0 0 1 1 1
VN 0 0 0 0 84 0 16 0 0
NV 0 0 0 0 0 84 0 16 0
VC 1 0 0 1 5 0 92 0 1
CV 1 0 0 1 0 5 0 92 1
VV 2 0 0 5 0 0 0 0 93

Table B.2. Block II, n = 50, K = 10. Percentage of time each model is selected by the
Heuristic search.

Simulated
NN CN NC CC VN NV VC CV VV

Selected (%)

NN 81 0 0 19 0 0 0 0 0
CN 0 94 0 6 0 0 0 0 0
NC 0 0 93 6 0 0 1 0 0
CC 11 0 0 89 0 0 0 0 0
VN 0 0 0 0 89 0 11 0 0
NV 0 0 0 0 0 89 0 11 0
VC 0 0 0 1 10 0 89 0 0
CV 0 0 0 1 0 9 0 90 0
VV 0 0 0 10 0 0 0 0 90

Table B.3. Block II, n = 65, K = 10. Percentage of time each model is selected by the
Heuristic search.
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Appendix C

Appendix to Chapter 4

C.1 Proposal and full conditional distributions
This appendix presents the full conditional distributions and the proposal dis-

tributions that have been derived for the latent coordinates and the latent space
parameters, introduced in Sections 4.2.2 and 4.3.

C.1.1 Latent coordinates

To derive a proposal distribution for the latent coordinate zi, i = 1, . . . , n, we
fix the number of components to a constant G, as is the case at each iteration of the
estimation procedure1 illustrated in Section 4.3. Then, from equations 4.3 and 4.1,
it can be easily derived the log posterior distribution for the ith latent coordinate.
Without loss of information, we consider such log posterior for the rth latent space
dimension, r = 1, . . . , p, being proportional to:
n∑
j 6=i

K∑
k=1

[
y

(k)
ij β

(k)dij−log
(
1+exp

{
α(k)−β(k)dij

})]
+log

[ G∑
g=1

πg
1√

2πσ2
rg

exp
{
− 1

2σ2
rg

(zri−µrg)2}]
The double summation term in the above equation is the log-likelihood of the model,
while the other term depends on the ith latent position prior distribution. If we
define

airg = πg
1√

2πσ2
rg

exp
{
− 1

2σ2
rg

(zri − µrg)2} = exp(xirg) ⇔ xirg = log(airg),

we may rewrite the last term in the above log-posterior as an LSE (LogSumExp)
function:

log
[ G∑
g=1

πg
1√

2πσ2
rg

exp
{
− 1

2σ2
rg

(zri − µrg)2}] = log
[ G∑
g=1

exp(xrg)
]
.

This LSE function is bounded:

max
g

{
xir1, . . . , xirG

}
≤ log

[ G∑
g=1

exp(xirg)
]
≤ max

g

{
xir1, . . . , xirG

}
+ log(G),

1For ease of notation, we avoid iteration indexes t = 1, . . . , T .



126 C. Appendix to Chapter 4

that is

max
g

{
log(air1), . . . , log(airG)

}
≤ log

[ G∑
g=1

airg
]
≤ max

g

{
log(air1), . . . , log(airG)

}
+log(G).

Now, note that
log(airg) ∝ −

1
2σ2

rg

(zri − µrg)2 (C.1)

is the log density of a Gaussian distribution with mean µrg and variance σ2
rg. Note also

that, at each iteration of the estimation procedure, maxg
{
log(air1), . . . , log(airG)

}
should be found in correspondence of the gth component, where zi is currently
allocated. Hence, we may approximate the LSE function with its lower bound,
according to equation C.1,

log
[ G∑
g=1

πg
1√

2πσ2
rg

exp
{
− 1

2σ2
rg

(zri − µrg)2}] ≈ − 1
2σ2

rg

(zri − µrg)2,

with cig = 1 and r = 1, . . . , p. Combining this approximation with a similar one of
the log-likelihood term in the first equation (see the appendix results in D’Angelo,
Murphy, and Alfò, 2018, for all r = 1, . . . , p, we may derive the following proposal
distribution for the latent position of a unit in the gth component:

z̃i | · · · ∼ N(µz̃i ,Σz̃i),

with

µz̃i =
(
µ1z̃i , . . . ,µpz̃i

)
; Σz̃i =


σ2

1z̃i . . . 0
... . . . ...
0 . . . σ2

pz̃i

 I,

and

µrz̃i = σ2
rz̃i

[
2

K∑
k=1

β(k)∑
j 6=i

(y(k)
ij −w

(k)
ij )zrj+µrg

]
; σ2

rz̃i =
( 1
σ2
rg

+2
K∑
k=1

β(k)∑
j 6=i
|y(k)
ij −w

(k)
ij |
)−1

,

with w(k)
ij = 1 if α(k) − β(k)dij > 0 and w(k)

ij = 0 otherwise.

C.1.2 Component parameters

The component parameters follow a Dirichlet Process, whose base distribution
is a Normal Inverse Gamma (Section 4.3). The conjugacy allows a straightforward
derivation of the full conditional distributions for µg and Σg, g = 1, . . . , G2:

µrg | · · · ∼ N
(τz∑i∈g zri +mrz

1 + ngτz
,
τzσ

2
rg

1 + ngτz

)
; σ2

rg | · · · ∼ InvΓ
(
xg, Xrg

)
, r = 1, . . . p,

2As done for the latent coordinates, we fix the number of components to a constant G.
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with ng the number of latent coordinates currently allocated in the gth component,
that is ng = πgn. Also,

xg = ng + 1 + 2ν1
2 ; Xrg =

τz
∑
i∈g(zri − µrg)2 + (µrg −mrg)2 + 2τzν2

2τz
.

The components mean and covariance are then:

µg =
(
µ1g, . . . , µpg

)
; Σg =


σ2

1g . . . 0
... . . . ...
0 . . . σ2

pg

 I, g = 1, . . . , G.

If the hyperparameter m = (m1, . . . ,mr, . . . ,mp) is given standard multivariate
Gaussian distribution, it may be updated from the following conditional distribution:

mr | · · · ∼ N

(
G∑
g=1

µrg
σ2
rg

/
(
τz + xr

)
,

τz
τz + xr

)
, r = 1, . . . , p,

with xr = ∑G
g=1

1
σ2
rg
.

C.1.3 Concentration parameter

Following Escobar and West, 1995, the update of the Dirichlet process concen-
tration parameter ψ is performed as follows. Given a fixed value of G,

1. Simulate the latent variable x ∼ BETA(ξ1 + 1, n);

2. Compute π = p
1+p , with p = ξ1+G−1

n(ξ2−log(x) ;

3. Generate a new value of the concentration parameter ψ from:Γ
(
ξ1 +G, ξ2 − log(x)

)
with probability π

Γ
(
ξ1 +G− 1, ξ2 − log(x)

)
with probability 1− π

.

C.1.4 Cluster labels

Given the ith cluster label ci, following Bush and MacEachern, 1996, we may
compute the posterior probability for a the ith latent coordinate to be assigned to
the gth component as:

Pig = Pr(cig = 1 | . . . ) =
{
n
−(i)
g MVNp(zi | µg,Σg) g = 1, . . . , G
ψ
∫
MVNp(zi | µ, σ2)d(µ | σ2)d(σ2) g = G+ 1

,

where G is the current number of components and ng is the number of latent
coordinates in the gth component, discarding the ith one, if present. The above
integral is that of a multivariate Student t distribution:∫

MVNp(zi | µ, σ2)d(µ | σ2)d(σ2) = MVNt2ν1

(
m,

ν2
ν1

(1 + τz)I
)
.
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New cluster label vectors ci, i = 1, . . . , n, are sampled sequentially from multinomial
distributions with probabilities

(
Pi1, . . . , Pig, . . . , PiG

)
. If, for the ith latent coordi-

nate, we have that ci =
(
ci1, . . . , cig, . . . , ciG, ci(G+1)

)
=
(
0, . . . , 0, . . . , 0, 1

)
, a new

component is formed, which includes, for now, only zi. In this case, new component
parameters need to be sampled from the corresponding full conditional distributions,
previously defined. We propose to initialize first µG+1 with zi, than sample a value
for Σ(G+1) and update the value of µ(G+1). Also, to all the other cj vectors, j 6= i

is added a (G+ 1)th 0 element. If instead, cig = 1 for some g ≤ G+ 1, the (G+ 1)th

element is removed from vector ci, to uniform its length with those of other label
vectors. Last, if the update of a vector ci empties a given component g, then the
gth element is removed from all ci vectors, i = 1 . . . , n.
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Appendix D

Estimation of the Latent Space
Joint Model with an MCMC
Approach

D.1 Introduction

In the first chapter we have introduced a latent space model for multidimensional
network data. Even though the model was developed to analyze the Eurovision Song
Contest multiplex, it is quite general and can be used to study other multidimensional
network data. Our model is an extension of the lsjm model by Gollini and Murphy,
2016, where the authors assume a joint latent space underlying the observed multiplex.
In that context, the authors proposed to estimate the node-specific latent coordinates
using a variational EM algorithm, where the joint latent space is approximated
locally in each network. The result is a collection of network-specific latent spaces,
which are then used to represent the association structure observed in the different
views of the multiplex. Hence, a priori, the multiplex is generated by a single latent
space but, a posteriori, this joint space splits in K spaces, one for each network.
Instead, in our model we estimate a single latent space for the whole set of networks
in the multiplex and introduce a network-specific scale coefficient to weight the
influence of the latent space in each network. This coefficient allow us to verify
whether a latent space is really needed to depict the association structure in a
multiplex, or if the latter is just random.
According to the research question at hand, one could choose to use either the model
we propose or the lsjm model. If, for example, one is interested in obtaining a joint
representation of the data and locating the single network-specific variations of the
nodes coordinates, the lsjm model can be useful. On the other hand, when the
interest is at depicting the overall association between the nodes in the multiplex, or
at verifying whether the association is potentially random, the model we propose
seems more appropriate.
In Chapter 2 we have compared the performance of the two models, using synthetic
multiplex data generated from a single latent space with unitary scale coefficients
for all the networks. We found out that the lsjm model, implemented in the lvm4net
package, did very poorly in recovering the latent coordinates, whose estimates were



130D. Estimation of the Latent Space Joint Model with an MCMC Approach

also quite unstable. Such a problem could be the result of the variational approach
rather than ascribed to the model itself. Usually, a variational algorithm is much
faster when compared to a standard MCMC algorithm, but it suffers from high risk
of getting stuck in local optima.
In this appendix, we present a different approach to estimate the lsjm model, where
inference is carried out via an MCMC algorithm. Our formulation of the lsjm slightly
differs from that of Gollini and Murphy, 2016, and we will point out and motivate
such differences in Section D.2. Then, in Section D.3, we explain how to estimate this
model and show the improvements we obtain for the estimates using the simulation
study described in Section D.4.

D.2 Latent Space Joint Model
Let us consider a binary observed multiplex Y = {Y(1), . . . ,Y(K)}, with k =

1, . . . ,K indexing the networks and i, j = 1, . . . , n the nodes. The lsjm model
assumes that the probability of observing an edge between nodes i and j in the kth

network of the multiplex is given by:

P
(
y

(k)
ij = 1 | α(k), zi, zj

)
=

exp
{
α(k) − d(zi, zj)

}
1 + exp

{
α(k) − d(zi, zj)

} = p
(k)
ij , (D.1)

where the function d(·, ·) represents the squared Euclidean distance. To estimate
the parameters and the latent coordinates in this model, Gollini and Murphy, 2016
use a variational inference approach, in which they introduce the variational latent
coordinates z(k)

i , k = 1, . . . ,K. In this way, they recover estimates for both the
overall positions, zi, and the position given in a particular network view, z(k)

i .
To mimic the lsjm, we start by assuming that nodes-specific coordinates vary with
the network, that is, we consider z(k)

i , with k = 1, . . . ,K. Then, we assume that the
probability of observing an edge between nodes i and j in the kth network of the
multiplex is given by:

P
(
y

(k)
ij = 1 | α(k), z

(k)
i , z

(k)
j

)
=

exp
{
α(k) − d(z(k)

i , z
(k)
j )

}
1 + exp

{
α(k) − d(z(k)

i , z
(k)
j )

} = p
(k)
ij , (D.2)

with d(z(k)
i , z

(k)
j ) = ∑p

l=1
(
z

(k)
il − z

(k)
jl )2 = d

(k)
ij , and D(k) the distance matrix in the

kth network. The dimension of the latent space is denoted by p. In this way, each
node is allowed to adapt to the different networks via (potentially) different values of
its network-specific coordinates z(k)

i . To reduce our formulation to that of the lsjm
model, we assume that all the K sets of latent coordinates are generated by a single,
joint, latent space, where each node has “central” coordinate ci. Also, as in Gollini
and Murphy, 2016, we assume that the latent coordinates are normally distributed:

z
(k)
i ∼MVNp

(
ci, σ

2
zI
)
,

with
ci ∼MVNp

(
0, σ2

c I
)
.

Hence, the overall behaviour of the nodes is still captured, via the distances between
the central coordinates in the joint space, collected in a matrix that we denote by C.
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D.2.1 Further issues

Note that, in the particular case of null distances, we obtain

p
(k)
ij =

exp
{
α(k)}

1 + exp
{
α(k)} = pRG,

and the model describes a random graph with edge probability pRG; in this sense,
edge probabilities are bounded from above by pRG. Therefore, as detailed in Chapter
2, to avoid numerical identifiability problem, we bound the intercept parameter α(k)

so that the graph corresponding to pRG is not disconnected:

α(k) > log
(

log(n)
n− log(n)

)
= LB

(
α(k)) = LB(α).

Note that bounding the intercepts, which are not bounded in the approach proposed
by Gollini and Murphy, 2016, does not prevent us from comparing the estimates
of the latent coordinates obtained with the proposed approach and that by Gollini
and Murphy, 2016. Indeed, the intercept parameters do not influence the relative
distances among the nodes in the network-specific spaces and in the joint space. The
estimates of the latent coordinates are still comparable via Procrustes correlation,
which is invariant to translations and rotations of the space.
Note also that by defining the edge probabilities as in equation (D.2), an identifiability
issue arises:

α(k) − d(k)
ij = (α(k) + r)− (d(k)

ij + r) = α(k)? − d(k)?
ij .

To overcome such an issue, a “reference” distance d(k)
ij must be fixed in each network

k. We propose to fix d(k)
ij = d

(k)
12 by imposing z(k)

1 = (0)p and z(k)
2 = (1)p. This

constraint does not prevent us from recovering the distances between the nodes in
the different latent spaces, as we are not interested in the absolute value of such
distances. Indeed, the interest is in the relative distances, that is, in which nodes
are close and which are far apart.

D.3 Parameter estimation
The log-likelihood according to equation (D.2) is:

`
(
α,D | Y

)
=

K∑
k=1

n∑
i=1

∑
j 6=i

y
(k)
ij log

(
exp

{
α(k) − d(k)

ij

}
1 + exp

{
α(k) − d(k)

ij

}
)

+ (1− y(k)
ij ) log

(
1

1 + exp
{
α(k) − d(k)

ij

}
)

=
K∑
k=1

n∑
i=1

∑
j 6=i

y
(k)
ij

(
α(k) − d(k)

ij

)
− log

(
1 + exp

{
α(k) − d(k)

ij

})
(D.3)

The prior distribution for the network intercepts is described by a truncated Gaussian
distribution:

α(k) ∼ N[
LB(α),∞

](µα, σ2
α

)
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The unknown µα, σ
2
α are nuisance parameters. Indeed, their value is of limited

interest but their specification is relevant, as they determine the estimates of α(k),
k = 1, . . . ,K. As done in the model presented in Chapter 2, we decide to estimate
these parameters, via an extra layer of dependence in the model:

µα|σ2
α ∼ N[

LB(α),∞
](mα, τασ

2
α

)
,

σ2
α ∼ Invχ2

να .

The posterior distribution for the model parameters is

P
(
α, z, c, µα, σ

2
α|Y

)
= L

(
α, z|Y

)
π
(
z | c

)
π
(
c
)
π
(
α|µα, σ2

α

)
π
(
µα|σ2

α, τα
)
π
(
σ2
α|να

)
,

(D.4)
and Figure D.1 synthesizes the structure of the model. The nuisance parameters
have full conditional distributions in closed form, which are equivalent to those
we have defined for the model in Chapter 2; they can be found in A.1. Instead,
the posterior distributions for the parameters α(k) are not available in closed form.
However, a proposal distribution for the intercept terms can be derived in a similar
way to what we have done in Chapter 2:

α̃(k) | Y,D,H, µα, σ
2
α ∼ N

(
µα̃(k) , σ2

α̃(k)

)
,

with

µα̃(k) = σ2
α̃(k)

{
E(k) −

n∑
i=1

∑
j 6=i

exp
{
µα − d(k)

ij

}
1 + exp

{
µα − d(k)

ij

}
}

+ µα,

σ2
α̃(k) =

{
n∑
i=1

∑
j 6=i

exp
{
µα − d(k)

ij

}
(
1 + exp

{
µα − d(k)

ij

})2 + 1
σ2
α

}−1

.

with E(k) = ∑n
i=1

∑
j 6=i y

(k)
ij .

Similarly, the posterior distribution for the ith node coordinate can not be expressed
in closed form; however, we can use the following proposal distribution:

z̃i | Y,α,D,K ∼MVNp

(
µz̃i , σ

2
z̃iI
)
,

y

α

z

c

µα σ2
α

Figure D.1. Hierarchy structure of our formulation of the lsjm model.
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where

µz̃i = σ2
z̃i

(
2

K∑
k=1

∑
j 6=i

(
y

(k)
ij − w

(k)
ij

)
zj
)
, σ2

z̃i =
(

1 + 2
K∑
k=1

∑
j 6=i
|y(k)
ij − w

(k)
ij |
)−1

,

and

w
(k)
ij =

1 if α(k) − d(k)
ij > 0

0 if α(k) − d(k)
ij ≤ 0

.

This proposal has been derived according to Appendix A.1. For more details on the
proposal distributions of network-specific intercepts and latent coordinates, we refer
to Appendix A.1.
Last, the posterior distribution for the ith node central coordinate does have closed
form,

ci ∼MVNp
(
µci , σ

2
ciI
)

where

σ2
ci =

(1 + σ2
c

σ2
c

)−1
, µci = σ2

ci

(∑K
k=1 z

(k)
i

σ2
z

)
D.3.1 Algorithm for model estimation

The model parameters are estimated using a Metropolis within Gibbs MCMC
algorithm, subdivided into sequential steps. First, new values for the nuisance
parameters and the joint latent coordinates are sampled from their full conditional
distributions (see Section D.3). Later, the intercepts and the network-specific latent
coordinates are updated via a Metropolis step, using the proposal distributions
defined in Section D.3. At every iteration of the algorithm, we check via Procrustes
correlation whether the new sets of latent coordinates are identical to the old ones
(see Chapter 2).
The hyperparameters {mα, τα, να, σ

2
c , σ

2
z} have to be specified a priori. We propose

to fix the first three, which are the intercept-related nuisance hyperparameters, as
done in Chapter 2. For the variances of the prior distributions for the joint and the
network-specific latent coordinates we assume σ2

c = σ2
z = 1. The last quantity that

needs to be specified is the number of latent dimensions p. As no specific criterion
has jet been proposed in the literature regarding this issue, the specification of p
is left to the researcher, depending on the type of data analysed and the aim of
the analysis. In the present context, we fix p = 2, as we propose to compare in a
simulation setting the performance of our implementation of the lsjm model and
that obtained via the lvm4net package, the R package by Gollini and Murphy, 2016
implementing the variational EM algorithm for lsjm model estimation. Indeed, the
results presented in the paper by Gollini and Murphy, 2016 refer to latent spaces
with p = 2 dimensions. The simulation study is presented in the following section.

D.4 Simulation study
To compare the performance of the two different implementations of the lsjm

model, we have designed the following simulation study. Four different sets of
multiplex data have been simulated:
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1. Scenario 1: 20 multidimensional networks with n = 25 and K = 3;

2. Scenario 2: 20 multidimensional networks with n = 25 and K = 5;

3. Scenario 3: 20 multidimensional networks with n = 50 and K = 5;

4. Scenario 4: 20 multidimensional networks with n = 100 and K = 5.

The different multiplexes have been simulated according to the framework described
in Sections D.2 and D.3, to represent both small multiplex, (n = 25,K = 3) and
(n = 25,K = 5), and moderately big multiplex, (n = 50,K = 5) (n = 50,K = 5).
On the different sets we estimated the following models:

• The lsjm model as implemented in the R package lvm4net. We will denote it
by lvm4net;

• Our version of the lsjm model, as proposed in this appendix. We will denote
it by lsjmMCMC ;

• The latent space model proposed in Chapter 2, as implemented in the R
package spaceNet. We will denote it by spaceNet.

The first two approaches will be compared both for the estimates of the network-
specific latent coordinates z(k)

i and the central-coordinates ci. In particular, it will
be checked how well the two approaches can recover the simulated latent coordinates,
by means of Procrustes correlation between estimated and simulated latent spaces.
The model implemented in spaceNet will be tested in a stressed scenario, that is,
when the observed networks have not been generated by a common latent space
but by network-specific latent spaces, defined by random variations of the common
latent space.
Both types of MCMC algorithms are run for 50000 iteration, with a burn-in of 15000
iterations. The variational EM algorithm in lvm4net is run using its default values
with the first two sets of multiplexes. The last two, bigger, multiplexes required an
adjustment of the tolerance level in the EM algorithm, which was raised from 0.01
to 0.1, as well the variances for the prior distributions of the intercept parameters,
raised from 2 to 40. These adjustments were needed as lower values of the tolerance
level and the variances lead to problems in the estimation of the latent coordinates
covariance matrices, and, consequently, to continuous crushes of the EM algorithm.
Tables D.1, D.2, D.3 and D.4 report the results of this comparison. Our implementa-
tion of the lsjm model always returns faithful estimations of the latent coordinates,
both at a network-specific and at a joint level. The Procrustes correlation values are
always above 0.80 on average and get better as the size of the multiplex increases.
On the contrary, the lsjm model implemented in lvm4net does poorly in recovering
the true latent coordinates, with an average Procrustes correlation always below
0.30. The performances of the lvm4net EM algorithm get worse as the size of the
multiplexes increases, but this could be due to the higher values of the tolerance
level and variance fixed in the estimation.
The spaceNet MCMC algorithm recovered a single latent space for each multidimen-
sional network data, which was then compared with the corresponding simulated
joint latent space c. In all the different scenarios, the spaceNet algorithm always
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recovered a latent space highly correlated with the true joint space (average Pro-
crustes correlations above 0.79), proving that it is actually able to find the common
latent space, even when this is subject to variations at single-network level.

z(1) z(2) z(3) c

lsjmMCMC mean PC 0.86 0.87 0.85 0.83
sd PC 0.08 0.05 0.07 0.07

lvm4net mean PC 0.19 0.22 0.23 0.23
sd PC 0.07 0.06 0.15 0.07

spaceNet mean PC - - - 0.79
sd PC - - - 0.06

Table D.1. Simulated multiplex with n = 25 and K = 3. Mean and standard deviations of
the Procrustes correlations between simulated and estimated latent spaces,
according to the three different approaches.

z(1) z(2) z(3) z(4) z(5) c

lsjmMCMC mean PC 0.82 0.82 0.82 0.81 0.82 0.83
sd PC 0.15 0.14 0.13 0.14 0.15 0.13

lvm4net mean PC 0.23 0.25 0.27 0.23 0.21 0.21
sd PC 0.12 0.09 0.12 0.09 0.08 0.07

spaceNet mean PC - - - - - 0.85
sd PC - - - - - 0.08

Table D.2. Simulated multiplex with n = 25 and K = 5. Mean and standard deviations of
the Procrustes correlations between simulated and estimated latent spaces,
according to the three different approaches.

z(1) z(2) z(3) z(4) z(5) c

lsjmMCMC mean PC 0.92 0.92 0.92 0.91 0.89 0.92
sd PC 0.05 0.02 0.03 0.06 0.10 0.03

lvm4net mean PC 0.13 0.10 0.11 0.11 0.10 0.10
sd PC 0.06 0.04 0.06 0.05 0.05 0.05

spaceNet mean PC - - - - - 0.91
sd PC - - - - - 0.04

Table D.3. Simulated multiplex with n = 50 and K = 5. Mean and standard deviations of
the Procrustes correlations between simulated and estimated latent spaces,
according to the three different approaches.

D.5 Discussion

In the present appendix we have proposed a different implementation of the
lsjm model by Gollini and Murphy, 2016, where parameter estimation is based
on an MCMC algorithm. Our method has been tested in a simulation study and
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z(2) z(2) z(3) z(4) z(5) c

lsjmMCMC mean PC 0.86 0.82 0.83 0.88 0.84 0.84
sd PC 0.09 0.11 0.12 0.06 0.13 0.10

lvm4net mean PC 0.10 0.11 0.10 0.10 0.07 0.11
sd PC 0.04 0.06 0.03 0.03 0.05 0.04

spaceNet mean PC - - - - - 0.90
sd PC - - - - - 0.03

Table D.4. Simulated multiplex with n = 100 and K = 5. Mean and standard deviations of
the Procrustes correlations between simulated and estimated latent spaces,
according to the three different approaches.

returned faithful estimation of the latent coordinates; the original lsjm model, as
implemented in the lvm4net package, proves to be less able to recover the simulated
latent spaces, at a network-specific and a joint level. We have also proved that
the model proposed in Chapter 2 can be seen as a parsimonious version of the
lsjm model, and it proved able to recover the joint space when the networks in the
multiplex have been generated from different latent spaces, defined as a variation of
a common latent space.
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