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Feedforwarding under sampling
Mattia Mattioni1, Salvatore Monaco1 and Dorothée Normand-Cyrot2

Abstract— The paper deals with stabilization of feedforward mul-
tiple cascade dynamics under sampling. It is shown that u-average
passivity concepts and Lyapunov methods can be profitably ex-
ploited to provide a systematic sampled-data design procedure.
The proposed methodology recalls the continuous-time feedfor-
warding steps and can be applied under the same assumptions
as those set over the continuous-time cascade dynamics. The final
sampled feedback is carried out through a three steps procedure
that involves iterative passivation and stabilization in the u-average
sense. Constructive aspects are developed to compute approx-
imate solutions which are indeed implemented in practice. An
example is worked out with comparative simulations with respect
to usual sampled-and-hold implementations.

Index Terms— Nonlinear systems, Sampled data control,
Algebraic/geometric methods, Stability of NL systems

I. INTRODUCTION

S INCE the very first work on backstepping [1], nonlinear construc-
tive control has been providing a prolific field of investigation for

stabilizing nonlinear systems admitting suitable triangular structures
( [2]–[4]). The consequent feedback control laws are rather easy to
compute and yield robustness in closed loop as usual when relying
upon Lyapunov-based methodologies.

Forwarding based-design has been introduced as the dual of back-
stepping for dynamics in the so-called feedforward form ( [5]–[9]).
The design exploits the cascade structure for defining a Lyapunov
function via the construction of a suitable cross-term dominating
all the terms with nondefinite sign; then, passivity arguments are
used to achieve stabilization in closed loop. When specified over
strict-feedforward structures, such a procedure recovers the idea
of recursively introducing a state component which integrates the
other ones ( [5], [10]). Intriguing connections with stabilization over
invariant sets can also be set in the framework of Immersion and
Invariance [11]. This class of cascade systems embeds a lot of cases
from different scenarios so allowing a constructive design even in
more practical situations also involving output-feedback control (e.g.,
[12]–[17]).

All of this concerns continuous-time dynamics while a very few
works have been addressing the problem in discrete time. In this
case, things get complicated because of the loss of a geometrical
framework sustaining the evolutions and the need to handle complex
algebraic equations in the control variable. Solutions for classes of
strict-feedback dynamics have been proposed in [18]–[21] while,
more recently, some families of feedforward structures have been
addressed in [22], [23].

In between, a challenging perspective is provided by the sampled-
data scenario ( [24]–[28]); namely, when the control is piecewise
constant and measures are available at the sampling instants only. In
this context, stabilization of cascade systems at large cannot proceed
along the same lines as in continuous time. As a matter of fact,
in most cases (e.g., [29], [30] for strict-feedback dynamics), the
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cascade structure is destroyed by sampling so hardly compromising
the iterative nature of the design. A particular case is provided by
upper triangular (feedforward) dynamics that indeed preserve the
cascade structure under sampling. Though, applying the feedfor-
warding procedure presented in [22], [23] for purely discrete-time
systems might be quite conservative as it does not take advantage
of the properties yielded by the original continuous-time plant. In
addition, further assumptions other than the continuous-time ones
are needed. Some works have been proposed when restricting to
classes of feedforward dynamics or when considering sample-and-
hold solutions. In [31] the authors consider feedforward systems that
are minimum phase with respect to a given output and basically work
out the design in continuous time; implementation is then performed
through usual emulation by proving its efficacy under sampling for
small values of the sampling period. Similar results are in [32], [33]
where the authors also provide an explicit bound to the sampling
period preserving stability in closed loop.

To the best of the authors’ knowledge, a unifying framework for
forwarding design under sampling exploiting the hybrid nature of
the overall system is still missing. Thus, the present paper aims
at bridging this gap. Roughly speaking, the approach we propose
goes beyond the idea of looking for control solutions (parameterized
by the sampling period) reproducing the same performances as in
continuous time. As a matter of fact, the design relies upon the
definition of a feedback solution that is still parameterized by the
sampling period but designed over new δ -dependent performance
criteria and exploiting the properties inferred from the continuous-
time ones. The case of u-average passivity [34] represents a paradigm
of this new family of strategies also to deal with incremental-like
properties that are essential for the iterative nature of the design.

Specifically, the sampled-data design requires no extra assumptions
than the continuous-time one and proceeds in three steps over a suit-
able two-block dynamics. First, a preliminary sampled-data feedback
asymptotically stabilizing the lower component is described; then, a
new δ -dependent Lyapunov function is constructed over the closed-
loop double cascade dynamics which is also shown to be stable;
finally, asymptotic stabilization of the whole two-block system is
achieved via u-average passivity around a nominal feedback solution.
The overall control law is inferred by iterating the over mentioned
design procedure over multiple cascade feedforward connection.

Preliminary results are in [35] with respect to two block cascaded
case when assuming, in continuous time, the first element of the
dynamics to possess a globally asymptotically stable and locally
exponentially stable equilibrium in free evolution. Here, this assump-
tion is weakened so enabling the extension of the result to multiple
cascade interconnections.

The reminder of the paper follows. First, basics on sampled-
data systems are given in Section III. Then, the continuous-time
feedforwarding procedure is recalled in Section IV where the problem
is settled as well. In Section V the sampled-data forwarding design
is detailed on an elementary two blocks cascade interconnection. Its
extension to the general case is provided in Section VI. Constructive
aspects are developed in Section VII to work out an executive way
of computing approximate solutions for practical implementation
issues. An example is carried out in Section VIII with comparative
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simulations. Section IX concludes the paper. For the sake of space,
the proofs of the results have been omitted although they can be
found in [36].

II. NOTATIONS AND DEFINITIONS

MU denotes the space of measurable and locally bounded functions
u : R+ → U, with U ⊆ R and MI

U the space of measurable and
locally bounded functions u : I → U, with I ⊂ R+. The set Uδ =
{u ∈ MU s.t. u(t) = uk, ∀t ∈ [kδ ,(k + 1)δ [ and k ≥ 0} denotes the
set of piecewise constant functions over time intervals of length δ , a
finite time interval δ ∈]0,T [. Maps are assumed smooth and vector
fields complete. Given a vector field f , L f denotes the associated
Lie derivative operator, L f = ∑

n
i=1 fi(·)∇xi with ∇xi =

∂

∂xi
and ∇ =

(∇x1 . . .∇xn). Given two vector fields f and g, we define the Lie
bracket ad f g = (∇g) f − (∇ f )g and iteratively adi

f g = ad f (adi−1
f g)

with ad0
f g = g. Given a mapping H : Rn→R and a constant x̄ ∈Rn,

we denote ∇H(x̄) = ∇H(x)
∣∣
x=x̄. eL f is the usual exponential Lie

series operator, eL f = I+∑i≥1
Li

f
i! so that for any function h : Rn→

Rp, one gets h(eL f Id
∣∣
x) = eL f h(x) = h(x)+∑i≥1

1
i! Li

f h(x) where Id
and I denote respectively the identity function and identity operator.
A function γ(·) : [0,∞)→ [0,∞) is said to be of class K if it is
zero in zero and strictly increasing; if, moreover, it is unbounded,
it is said of class K∞. A function ω(z,ξ ) is said to satisfy a
linear growth property with respect to the first variable if there
exist functions γ1(·),γ2(·) ∈ K differentiable at ξ = 0, such that
‖ω(z,ξ )‖ ≤ γ1(‖ξ‖)‖z‖+ γ2(‖ξ‖). A function R(x,δ ) = O(δ p) is
said of order δ p, p≥ 1 if whenever it is defined it can be written as
R(x,δ ) = δ p−1R̃(x,δ ) and there exist a function θ ∈K∞ and δ ∗ > 0
s. t. ∀δ ≤ δ ∗, |R̃(x,δ )| ≤ θ(δ ).

III. BASICS ON SAMPLED-DATA SYSTEMS

Consider an input-affine dynamics

ẋ(t) = f (x(t))+g(x(t))u(t), x ∈ Rn, u ∈MU (1)

and assume the control piecewise constant over intervals of length δ

(i.e., u∈Uδ ) and measures of the state available only at the sampling
instants t = kδ . In such a context (1) rewrites as the interval dynamics

ẋ(t) = f (x(t))+g(x(t))uk, t ∈ [kδ ,(k+1)δ [. (2)

A. Sampled-data equivalent models

The sampled-data equivalent model to (1) is obtained through
integration of (2) over δ with initial condition xk = x(kδ ). The
associated difference equations get the form of a map Fδ (·,uk) :
Rn×R→ Rn

xk+1 =Fδ (xk,uk) = eδ (L f +ukLg)x
∣∣
xk

(3)

=xk + ∑
i≥1

δ i

i!
Li

f+guk
x
∣∣
xk
.

As well known Fδ (·,u) is nonlinear in the control variable u and
parameterized by the sampling period δ ( [37], [38]). As closed-
form models cannot be exactly computed in general, one makes
reference to approximations by truncating the power series (3) at any
finite order in δ p with p ∈ N. When neglecting the terms in O(δ 2),
one recovers the Euler approximation of (3) xk+1 = xk + δ ( f (xk)+
g(xk)uk) commonly considered in the literature as it indeed preserves
some among the continuous-time properties [39], [40].

The (F0,G) representation has been proposed in [41] as an al-
ternative to (3) (namely, of the mapping Fδ (·,u)). Denoting by

x+(u) any curve in Rn parameterized by u ∈ R, one defines the
differential/difference form of (3) as

x+ =Fδ
0 (x), x+ = x+(0) (4a)

dx+(u)
du

=Gδ (x+(u),u) (4b)

with

Fδ
0 (x) =eδL f x; Gδ (x,u) =

∫
δ

0
e−s ad f+ug g(x)ds.

Specifically, the map Fδ
0 (x) =Fδ (x,0) describes the free evolution of

the dynamics when u = 0 while the u-dependent vector field Gδ (x,u)
over Rn models the variation of the map Fδ (·,u) with respect to the
control and around Fδ (·,0).

In the sampled-data context both representations are perfectly
equivalent. Given any pair (xk,uk) for k ≥ 0, one recovers the usual
difference equation (3) by integrating (4b) over u∈ [0,uk[ with initial
condition (4a) that is [41]

Fδ (xk,uk) = Fδ
0 (xk)+

∫ uk

0
Gδ (x+(v),v)dv

and, thus, xk+1 = x+(uk) = Fδ (xk,uk). The (F0,G) representation is
useful to carry out analysis and control design over sampled dynamics
in a differential geometric framework as illustrated in the sequel in
terms of passivity or passivation.

It is important to emphasize that, when the same initial condition
x(0) = x0 is assumed, the trajectories of (3) (and, equivalently,
(4)) coincide for any k ≥ 0 with the ones of (2) at any sampling
instant t = kδ . Thus, properties of the sampled-data system (3) (and,
equivalently, (4)) are equivalent to the properties of the continuous-
time dynamics (2) at any t = kδ , k ≥ 0. In this sense, we recall the
following definition about stabilization at the sampling instants.

Definition 3.1 (S-GAS and S-LES): The equilibrium of the sam-
pled dynamics (2) is sampled-data GAS (S-GAS) (resp. sampled-
data LES, S-LES) under a suitable piecewise constant uk = u(xk) if
it is GAS (resp. LES) for the closed-loop discrete-time equivalent
dynamics xk+1 = Fδ (xk,u(xk)).

B. Sampled-data average-passivity

The notion of u-average passivity has been introduced in [34] when
referring to a discrete-time system. Let Σδ be a generic sampled-
data system described by the dynamics (4) with output map H(·,u) :
Rn×R→ R (possibly depending on u).

Definition 3.2 (u-average passivity): Σδ is u-average passive if
there exists a C1 function S(·) : Rn→R+ (the storage function) such
that for any pair (xk,uk)(k ≥ 0) one verifies the inequality

S(x+(uk))−S(xk)≤ Hav(xk,uk)uk (5)

with
Hav(x,u) =

1
u

∫ u

0
H(x+(v),v)dv

being the u-average output map associated to H(x,u); that is Σδ is
passive in the usual sense with respect to the dummy output Hav(x,u).

It is important to note that in the (F0,G) representation (4), ∆kS(x) =
S(xk+1)−S(xk) = S(x+(uk))−S(xk) rewrites as

∆kS = S(Fδ
0 (xk))−S(xk)+

∫ uk

0
LGδ (·,v)S(x

+(v))dv

so that inequality (5) rewrites in integral form as follows

S(Fδ
0 (xk))−S(xk)+

∫ uk

0
LGδ (·,v)S(x

+(v))dv≤ Hav(xk,uk)uk. (6)

mattiamattioni
Evidenziato
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Exploiting (6), the extended concept of u-average passivity from
some nominal control value ū is here introduced.

Definition 3.3 (u-average passivity from/around ū): Σδ is u-
average passive from ū ∈ R if there exists a C1 function
S(·) : Rn → R+ (the storage function) such that, for any pair
(xk,uk) and k ≥ 0, one verifies the inequality

∆kS =S(x+(ū))−S(xk)+
∫ uk

ū
LGδ (·,v)S(x

+(v))dv (7a)

≤
∫ uk

ū
H(x+(v),v)dv. (7b)

u-average passivity from ū can be understood as u-average passivity
of the dynamics around a nominal ū; namely, one has∫ uk

ū
H(x+(v),v)dv =

∫ uk−ū

0
H(x+(ū+ v), ū+ v)dv.

Defining

Hav
ū (xk,uk) =

1
uk− ū

∫ uk

ū
H(x+(v),v)dv

the inequality (7) rewrites as ∆kS(x)≤ (uk− ū)Hav
ū (xk,uk) so recov-

ering, when ū = 0, classical u-average passivity.

Remark 3.1: The notion of u-average passivity from ū is strictly
reminiscent of the concept of incremental passivity [42]. It defines
incremental-like passivity of the overall system with respect to
trajectories that are parameterized by different inputs u rather than
time.

IV. GENERALITIES ON FEEDFORWARD SYSTEMS

Let the continuous-time feedforward dynamics

ż = f (z)+ϕ(z,ξ )+g(z,ξ )u, z ∈ Rnz (8a)

ξ̇ =a(ξ )+b(ξ )u, ξ ∈ Rnξ , u ∈ R (8b)

possess an equilibrium at the origin and assume the standard feed-
forwarding assumptions [2].

Assumption 4.1: The functions ϕ(z,ξ ) and g(z,ξ ) satisfy the
linear growth property with respect to the state z.

Assumption 4.2: ż = f (z) is globally stable (GS), with radially
unbounded and locally quadratic Lyapunov function W (z) so that
L f W (z) ≤ 0 for all z. There exist real and constant c,M > 0 such
that, for ‖z‖> M, ‖∇W (z)‖‖z‖ ≤ cW (z).

Assumption 4.3: ξ̇ = a(ξ ) is globally stable (GS), with radially
unbounded and locally quadratic Lyapunov function U(ξ ) such that
LaU(ξ )≤ 0 for all ξ ∈ Rnξ .

The next Theorem is recalled from [2] when denoting ḡ(z,ξ ) =
col(g(z,ξ ),b(ξ )).

Theorem 4.1: Let the cascade dynamics (8) verify Assumptions
4.1 to 4.3 and the sub-dynamics (8b) with output y0 = LbU(ξ )
be Zero State Detectable (ZSD, [2, Definition. 2.27]). Let the pair
(∇a(0),b(0)) be stabilizable. Then:

1) the feedback u0 = −LbU(ξ ) makes the equilibrium of (8b)
globally asymptotically stable (GAS) and locally exponentially
stable (LES);

2) there exists a continuous cross-term

Ψ(z,ξ ) =
∫

∞

0
Lϕ(·,ξ (s))−g(·,ξ (s))LbU(ξ (s))W (z(s))ds (9)

evaluated along the solutions of

ż = f (z)+ϕ(z,ξ )−g(z,ξ )LbU(ξ )

ξ̇ =a(ξ )−b(ξ )LbU(ξ )
(10)

making V (z,ξ ) =U(ξ )+Ψ(z,ξ )+W (z) a radially unbounded
Lyapunov function for (10);

3) the dynamics (8) with output y = LḡV (z,ξ ) is passive with
storage function V (z,ξ );

4) the control law u = −LḡV (z,ξ ) achieves GAS of the equilib-
rium. If the Jacobian linearization of (8) is stabilizable, such a
feedback ensures LES of the equilibrium.

Under Assumptions 4.1 to 4.3, the damping feedback u0 =−LbU(ξ )
makes the equilibrium of (8) globally stable. Thus, the cross-term (9)
satisfies

Ψ̇(z,ξ ) =−Lϕ(z,ξ )−g(z,ξ )LbU(ξ )W (z) (11)

yielding V (z,ξ ) = U(ξ )+Ψ(z,ξ )+W (z) non-increasing along the
closed-loop dynamics; i.e., V̇

∣∣
u=−LbU(ξ ) ≤−

1
2‖LbU(ξ )‖2.

A. Feedforward dynamics under sampling

Detailing the sampled-data equivalent models in Section III-A to
(8) and setting x = col(z,ξ ), f̄ (x) = col( f (z)+ϕ(z,ξ ),a(ξ )), ḡ(x) =
col(g(z,ξ ),b(ξ )), one gets the following results.

Lemma 4.1: The sampled-data equivalent model to (8) preserves
the feedforward structure that is

zk+1 = f δ (zk)+ϕ
δ (zk,ξk)+gδ (zk,ξk,uk) (12a)

ξk+1 = aδ (ξk,uk) (12b)

with

aδ (ξ ,u) =eδ (La+uLb)ξ ; f δ (z) = eδL f z

ϕ
δ (z,ξ ) =δϕ(z,ξ )+ ∑

i≥1

δ i+1

(i+1)!
ϕi(z,ξ )

gδ (z,ξ ,u) =δg(z,ξ )u+ ∑
i≥1

δ i+1

(i+1)!
gi(z,ξ ,u)

ϕi(z,ξ ) =Li
f̄ (L f +Lϕ )z−Li+1

f z

gi(z,ξ ,u) =uLḡ(Li−1
f z+ϕi−1(z,ξ )+gi−1(z,ξ ,u)).

Lemma 4.2: The (F0,G) form equivalent to (12) exhibits a feed-
forward structure as described below

z+ =Fδ
0 (z,ξ ) (13a)

dz+(u)
du

=Gδ (z+(u),ξ+(u),u) (13b)

ξ
+ =aδ

0 (ξ ) (13c)
dξ+(u)

du
=Bδ (ξ+(u),u) (13d)

where

Fδ
0 (z,ξ ) = f δ (z)+ϕ

δ (z,ξ ); aδ
0 (ξ ) = aδ (ξ ,0)

Gδ (z,ξ ,u) =
∫

δ

0
e−sad f̄+uḡ g(z,ξ )ds

Bδ (ξ ,u) =
∫

δ

0
e−sada+ub b(ξ )ds.

When necessary, one compactly rewrites (13) as

x+ =F̄δ
0 (x);

dx+(u)
du

= Ḡδ (x+(u),u)

with F̄δ
0 (·) = col(Fδ

0 (·), aδ
0 (·)) and Ḡδ (·) = col(Gδ (·), Bδ (·)).
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B. Problem statement

How to design a sampled-data feedback that makes the equilibrium
of (8) S-GAS? In the sequel, it will be shown how the preservation of
the feedforward structure of (8) under sampling can be exploited by
making extensive use of Lyapunov and u-average passivity arguments
to deduce the control law. In doing so, only the continuous-time
assumptions of Theorem 4.1 are shown to be sufficient to fulfill the
goal.

V. SAMPLED-DATA STABILIZATION OF FEEDFORWARD
DYNAMICS

Given (8) verifying the assumptions set in Theorem 4.1, the
following three items will be proven over its sampled-data equivalent
model (12):

1) there exists a feedback u = uδ
0 (ξ ) (or simply uδ

0 when no
confusion arises) ensuring GAS and LES of the equilibrium
of the ξ -dynamics (12b) (Theorem 5.1);

2) a new and explicitly δ -dependent Lyapunov function V δ (·) :
Rnz ×Rnξ → R+ can be constructed for the augmented dy-
namics (12) (Proposition 5.1);

3) there exists an output mapping Y δ (z,ξ ,u) so that (12) is
u-average passive from uδ

0 and ZSD with storage function
V δ (z,ξ ); accordingly, one can construct a sampled-data feed-
back ensuring GAS and LES of the equilibrium of the complete
cascade (12) (Theorem 5.2).

These three items will be repeated to deal with multiple cascades
in Section VI so to get S-GAS of the overall system (8).

Remark 5.1: As mentioned in the introduction, all criteria and
mappings involved in the passivation-based design and Lyapunov
analysis are, in general, different from the continuous-time ones
although no further hypotheses are needed to ensure their existence.

A. Stabilization of the ξ -subsystem

Given (8) with sampled-data equivalent model (12), let us first
stabilize the ξ -dynamics (12b) through passivity-based design in the
u-average sense [34].

Theorem 5.1: Let (8b) satisfy Assumption 4.3 and be ZSD with
respect to the output y0 = LbU(ξ ) and assume the linear pair
(∇a(0),b(0)) stabilizable. Then, the sampled-data system (12b)
(equivalently, (13c)-(13d)) with output

Y δ
0 (ξ ,u) =

1
δ

LBδ (·,u)U(ξ ) (14)

is u-average passive. Thus, the control u = uδ
0 (ξ ) solution to

u =−Y δ ,av
0 (ξ ,u) (15)

makes the closed-loop equilibrium of (8b) S-GAS and S-LES.

Remark 5.2: The output (14) making the sampled-data system
(12b) u-average passive is different from the continuous-time one
since it is explicitly dependent on the control and smoothly param-
eterized by the sampling period. More specifically, it rewrites as a
series expansion in powers of δ as

Y δ
0 (ξ ,u) =LbU(ξ )− δ

2
LadabU(ξ )

+
δ 2

3!
La+ubLadabU(ξ )+O(δ 3)

so getting Y δ
0 (ξ ,u)→ LbU(ξ ) as δ → 0 (i.e., the continuous-time

passivating output). This provides an interesting tool for validating
approximation-based design.

B. A Lyapunov function for the augmented cascade

Let us now consider the closed-loop dynamics (8) under piecewise
constant feedback uk = uδ

0 (ξk) defined in (15) which is governed, for
t ∈ [kδ ,(k+1)δ [, by the differential equations

ż(t) = f (z)+ϕ(z,ξ )+g(z,ξ )uδ
0 (ξk) (16a)

ξ̇ (t) =a(ξ )+b(ξ )uδ
0 (ξk). (16b)

In the sequel we investigate on the existence of a Lyapunov function
for (16) of the form

V δ (z,ξ ) =U(ξ )+Ψ
δ (z,ξ )+W (z) (17)

where the cross-term Ψδ (z,ξ ) is defined so to ensure, at any sampling
instant, ∆kV δ (z,ξ )≤ 0 along the trajectories of (16).

Before stating the result, let us note that, when defining V δ (·) as in
(17), the inequality below is easily verified along the trajectories of
(16)

∆kV δ (z,ξ ) =∆kΨ
δ (z,ξ )+∆kW (z)+∆kU(ξ )

≤∆kΨ
δ (z,ξ )+

∫ (k+1)δ

kδ

L
ϕ+uδ

0 (ξk)g
W (z(s),ξ (s))ds

because, by Assumption 4.2, L f W (z) ≤ 0 and ∆kU(ξ ) ≤ 0 by con-
struction of uδ

0 (ξk) in Theorem 5.1. It follows that for guaranteeing
that V δ (·) is non increasing, the cross-term Ψδ (·) must satisfy the
equality

∆kΨ
δ (z,ξ ) =−

∫ (k+1)δ

kδ

L
ϕ+uδ

0 (ξk)g
W (z(s),ξ (s))ds (18)

along the trajectories of (16).

Proposition 5.1: Let (8) verify Assumptions 4.1 to 4.3. Then, the
solutions of (16) are bounded at any k≥ 0 and (18) admits a solution
Ψδ (·) : Rnz ×Rnξ → R of the form

Ψ
δ (z,ξ ) =

∞

∑
`=0

∫ (`+1)δ

`δ
L

ϕ+uδ
0 (ξ`)g

W (z(s),ξ (s))ds (19)

that is continuous. Furthermore V δ (z,ξ ) : Rnz ×Rnξ →R defined as
in (17) is a positive definite and radially unbounded Lyapunov func-
tion for (16) at any sampling instant t = kδ , k≥ 0 and, equivalently,
for (12) under uk = uδ

0 (ξk) as in (15).

Remark 5.3: The equality (18) rewrites in integral-differential
form as ∫ (k+1)δ

kδ

L f̄+uδ
0 (ξk)ḡ

Ψ
δ (z(s),ξ (s))ds

=−
∫ (k+1)δ

kδ

L
ϕ+uδ

0 (ξk)g
W (z(s),ξ (s))ds

so extending to the sampled-data context the partial differential
equation (11). In Section VII-B, it will be instrumental to express
the integral-differential equation (18) as an infinite number of partial
differential equations.

Remark 5.4: The construction of the cross-term might be carried
out by considering the sampled-data equivalent model (12) under uk =
uδ

0 (ξk) as a purely discrete-time system [23]. Namely, one would look
for a Lyapunov function Vd(z,ξ )=U(ξ )+W (z)+Ψd(z,ξ ) where the
new cross-term should be chosen to satisfy the equality

∆kΨd(z,ξ )
∣∣
u=uδ

0 (ξ )
=−W

(
f δ (z)+ϕ

δ (z,ξ )+gδ (z,ξ ,uδ
0 (ξ ))

)
+W ( f δ (z)). (20)

The above equality is in general different and more conservative
than (18) and its solvability requires further assumptions than the
continuous-time ones. As a matter of fact, (20) does not take into
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account the continuous-time nature of the plant and the properties
of the original vector fields defining its dynamics. Specifically, the
discrete-time approach tends to erase even the terms in the right-hand
side of (20) whose sign is well-defined because of Assumption 4.2
as one gets∫ (k+1)δ

kδ

L f W (z(s))ds =W ( f δ (z))−W (z)+Θ
δ (z,ξ )≤ 0

where the term

Θ
δ (z,ξ ) =

∫ (k+1)δ

kδ

∫
ξ

0
∇ν

(
esL f̄ (·,ν)L f (·)W (z)

)
dνds

+
∫ (k+1)δ

kδ

∫ uδ
0 (ξ )

0
∇u
(
esL f̄ (·,ξ )+uLḡ(·,ξ )L f (·)W (z)

)
duds

is erased by (20) although the corresponding contribution in
∆kVd(z,ξ ) is negative definite.

Remark 5.5: Equalities (18) and (20) coincide whenever the dy-
namics is in strict-feedforward form (i.e., when f (z) = Fz and the
coupling vector fields do not depend on z). See [22], [23] for further
details.

The cross-term Ψδ (·) is, in general, different from the continuous-
time one Ψ(·) in (9); this is motivated by the fact that the closed-loop
trajectories of (16) and (10) differ at the sampling instants. However,
the existence of Ψδ (z,ξ ) can be proven under the same Assumptions
4.1, 4.2 and 4.3 as in continuous time. As detailed in Section VII-B,
its construction can be worked out through its series expansion in
powers of δ of the form

Ψ
δ (z,ξ ) = Ψ0(z,ξ )+ ∑

i≥1

δ i

(i+1)!
Ψi(z,ξ ) (21)

around the continuous-time solution Ψ0(z,ξ ) = Ψ(z,ξ ).

C. Sampled-data passivity-based feedforwarding

Once a Lyapunov function V δ (z,ξ ) is constructed over (16), one
can verify that the sampled dynamics (12) (or, equivalently, (13))
is u-average passive from uδ

0 (ξ ) with respect to a suitably defined
output mapping. For this purpose, when ū = uδ

0 (ξ ), one considers the
inequality

∆kV δ (z,ξ )≤U(ξ+(uδ
0 (ξ )))−U(ξ ) (22)

+
∫ u

uδ
0 (ξ )

LḠδ (·,v)V
δ (z+(v),ξ+(v))dv

with U(ξ+(uδ
0 (ξ )))−U(ξ ) ≤ −δ‖Y δ ,av

0 (ξ )‖2 by construction of
uδ

0 (ξ ) and with ξ+(uδ
0 (ξ )) = aδ (ξ ,uδ

0 (ξ )). Accordingly, any con-
troller u making the second part of the right hand side of (22) negative
semi-definite achieves GAS of the equilibrium of the complete
cascade (12). This is resumed in the main theorem below.

Theorem 5.2: Let (8) verify Assumptions 4.1 to 4.3. Let (8b) with
output y0 = LbU(ξ ) be ZSD and stabilizable in first approximation.
Then, the following hold:

1) the sampled-data equivalent dynamics (12) with output

Y δ
1 (z,ξ ,u) =

1
δ

LḠδ (·,u)V
δ (z,ξ )

is u-average passive from uδ
0 (z,ξ ) as in (15) with storage

function V δ (z,ξ ) in (17);
2) the feedback law u = uδ

1 (z,ξ ) solution to the implicit equality

u =−Y δ ,av
uδ

0 (ξ )
(z,ξ ,u) (23)

makes the closed-loop equilibrium of (8) S-GAS;

3) if the dynamics (8b) is stabilizable in first approximation, u =
uδ

1 (z,ξ ) makes the equilibrium of (8) S-LES.

Remark 5.6: From equality (23), it can be verified that when z≡ 0,
one recovers uδ

1 (0,ξ ) = uδ
0 (ξ ).

VI. THE CASE OF MULTIPLE CASCADE
INTERCONNECTION

The procedure here presented extends to multiple interconnected
feedforward dynamics of the form

żi = f i(zi)+ϕ
i(zi, . . . ,z1,ξ )+gi(zi, . . . ,z1,ξ )u (24a)

ξ̇ =a(ξ )+b(ξ )u (24b)

with zi ∈ Rnzi and i = 1, . . . ,N. Accordingly, we suppose that As-
sumptions 4.1 to 4.3, with required extensions, hold on the vector
fields defining the dynamics (24). Given (24), let

zi+ = f δ
i (z

i)+ϕ
δ
i (z

i, . . . ,z1,ξ ), (25a)

dzi+(u)
du

=Gδ
i (z

i+(u), . . . ,z1+(u),ξ+(u),u) (25b)

ξ
+ =aδ

0 (ξ ),
dξ+(u)

du
= Bδ (ξ+(u),u) (25c)

be the (F0,G) representation of its sampled-data equivalent model.

Introduce, for i = 1, . . . ,N and the sake of compactness

ξ
i> = (zi>,ξ i−1>)

Bδ>
i (ξ i,u) = (Gδ>

i (zi, . . . ,z1,ξ ,u),Bδ>
i−1(ξ

n−1))

a>i (ξ i) = ( f>i (zi)+ϕ
>(zi, . . . ,z1,ξ ),a>i−1(ξ

i−1))

b>i (ξ i) = (g>i (zi, . . . ,z1,ξ ),b>i−1(ξ
i−1))

with ξ 0 = ξ , Bδ
0 (ξ

0,u) = Bδ (ξ ,u), a0(ξ
0) = a(ξ ) and b0(ξ

0) =
b(ξ ).

Theorem 6.1: Let the continuous-time dynamics (24) be stabiliz-
able in first approximation and suppose that for any i = 1, . . . ,N
(24a) verifies Assumptions 4.1 and 4.2. Moreover let (24b) verify
Assumption 4.3 and be ZSD with output y0 = LbU(ξ ). Then, the
following holds:

1) the sampled-data equivalent model (25) is u-average passive
from uδ

N−1(ξ
N−1) with output

Y δ
N (ξ N ,u) =

1
δ

LBδ
N (·,u)

V δ
N (ξ N)

and storage function V δ
N (ξ N) = U(ξ ) + ∑

N
i=1
(
Wi(zi) +

Ψδ
i (z

i, . . . ,z1,ξ )
)

with V δ
0 (ξ 1) =U(ξ ) and, for i = 1, . . . ,N−1

V δ
i (ξ i) =Wi(zi)+Ψ

δ
i (z

i,ξ i−1)+V δ
i−1(ξ

i−1)

Ψ
δ
i (z

i,ξ i−1) =
∞

∑
`=0

∫ (`+1)δ

`δ
L

ϕ̃ i(·,ξ i−1(s))Wi(zi(s))ds

ϕ̃
i(zi,ξ i−1) = ϕ

i(zi,ξ i−1)+gi(zi,ξ i−1)uδ
i−1(ξ

i−1
` )

uδ
i (ξ

i) =− 1

uδ
i (ξ

i)−uδ
i−1(ξ

i−1)

∫ uδ
i (ξ

i)

uδ
i−1(ξ

i−1)
Y δ

i (ξ i+(v),v)dv

2) the control law u = uδ
N(ξ

N) solution to the implicit equality

u =− 1

u−uδ
N−1(ξ

N−1)

∫ u

uδ
N−1(ξ

N−1)
Y δ

N (ξ N+(v),v)dv

makes the equilibrium of (24) S-GAS and S-LES.

Remark 6.1: Whenever zi ≡ 0, one gets uδ
i (ξ

i)
∣∣
zi=0 = uδ

i−1(ξ
i−1)

for i = 1, . . . ,N.
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Remark 6.2: When specifying this procedure to strict-feedforward
structures, at each step, the design yields the definition of a control
that makes a certain stable manifold controlled invariant. We refer to
[22], [23] for further details as in that case it follows the lines of the
discrete-time counterpart.

VII. APPROXIMATE SOLUTIONS AND CONSTRUCTIVE
ASPECTS

Some computational aspects regarding the three steps of the design
procedure are discussed below.

A. The u-average passivity based stabilizing controller uδ
0 (ξ )

By definition of Bδ (ξ ,u) and Remark 5.2, the u-average of the
output Y δ

0 (ξ ,u) in (14) can be described as a series expansion in
powers of δ around the continuous-time output y0 = LbU(ξ ). By
invoking the Implicit Function Theorem, a unique solution uδ

0 (ξ ) to
(15) exists in the form of the following series expansion in powers
of δ

uδ
0 (ξ ) = u0

0(ξ )+ ∑
i≥1

δ i

(i+1)!
ui

0(ξ ).

Moreover uδ
0 (ξ ) can be computed as an inverse series around the

continuous-time feedback solution (i.e., u0
0(ξk) = u0(ξk)). Exploiting

the dependency in δ of the exact solution, an executive algorithm
can be worked out to compute the successive additional terms ui

0(ξ )
(see [24] for details). For the first terms, one gets

u0
0(ξk) =−LbU(ξk) = u0(ξk) (26a)

u1
0(ξk) =−La+u0

0bLbU(ξk)−LbLaU(ξk) (26b)

= La+u0
0bu0(ξk)−LbLaU(ξk)

u2
0(ξk) = L2

a+u0
0b

u0(ξk)+
3
2

u1
0Lbu0(ξk)

+
(

La+u0
0bLb +LbLa

)
LaU(ξk). (26c)

Whenever no confusion arises, for i ≥ 0, ui
0 will be denoting the

constant value ui
0(ξk) for t ∈ [kδ ,(k+1)δ [ (so implying u̇i

0(ξk)≡ 0
and all the higher order time derivatives).

B. Construction of the sampled-data cross-term Ψδ (z,ξ )

Insights on the construction of the sampled pair (Ψδ ,uδ
0 ) in terms

of the continuous-time one (Ψ,u0) are given below.

Proposition 7.1: Let (8) verify Assumptions 4.1 to 4.3, then (18)
admits a solution Ψδ : Rnz ×Rnξ → R of the form (21) around the
continuous-time one defined in (9), with

∑
i≥1

δ i

(i+1)!
Ψi(z,ξ ) =

∞

∑
`=0

∫ (`+1)δ

`δ
(u0(ξ (s))−uδ

0 (ξ`))Lḡ(Ψ+W )(s)ds (27)

where uδ
0 (ξ`) is described in (15) and (z,ξ ) = (z0,ξ0).

Equality (27) clearly emphasizes the impact of the piecewise
constant nature of the feedback uk = uδ

0 (ξk) over the redefinition
of the cross-term for the sampled-data dynamics with respect to the
continuous-time couple (u0,Ψ). Expanding (27) and comparing the
terms of the same power in δ , one gets that any Ψi(z,ξ ) is solution

to a partial differential equation; for the first ones one gets

L f̄0(k)
Ψ1 =−

(
u1

0(ξk)−L f̄0(k)
u0
∣∣
kδ

)
Lḡ(W +Ψ) (28a)

L f̄0(k)
Ψ2 =−

(
u2

0(ξk)−
3
2

u1
0(ξk)Lḡu0

∣∣
kδ

(28b)

−L2
f̄0(k)

u0
∣∣
kδ

)
Lḡ(W +Ψ)

−
(3

2
u1

0(ξk)−L f̄0(k)
u0
∣∣
kδ

)
L f̄0(k)

Lḡ(W +Ψ)

− 3
2

u1
0(ξk)LḡΨ1−

3
2

L2
f̄0(k)

Ψ1

where, for the sake of compactness, f̄0(k) = f̄ +u0
0(ξk)ḡ denotes the

closed-loop dynamics under the piecewise constant feedback u0
0(ξk).

C. The complete sampled-data stabilizing controller uδ
1 (z,ξ )

As already commented, a unique solution to the nonlinear equality
(23) exists by direct application of the Implicit Function Theorem.
The solution is provided as a formal series in powers of δ . Exact
solutions can be hardly computed so that only approximation of (29)
can be implemented in practice. By rewriting V δ (z,ξ ) = V (z,ξ )+
∑i≥1

δ i

(i+1)! Ψi(z,ξ ), one gets for the first terms

uδ
1 (z,ξ ) = u0

1(z,ξ )+ ∑
i≥1

δ i

(i+1)!
ui

1(z,ξ ) (29)

with (when discarding the state dependency)

u0
1 =−LḡV (30a)

u1
1 =−L f̄+u0

1ḡLḡV −LḡΨ1−LḡL f̄ V −u0
0L2

ḡV (30b)

=−LḡΨ1 +L f̄+u0
1ḡu0

1−LḡL f̄+u0
0ḡV

u2
1 =−LḡΨ2 +L2

f̄+u0
1ḡ

u0− 1
2
(u1

1 +3u1
0)L

2
ḡV − 3

2
L f̄+u0

0ḡLḡΨ1

− 3
2

LḡL f̄+u0
1ḡΨ1−L f̄+u0

0ḡLḡL f̄+u0
1ḡV −LḡL2

f̄+u0
0ḡ

V

− (u0
1−u0

0)Lḡ

(
LḡL f̄+u0

1ḡ +L f̄+u0
0ḡLḡ

)
V. (30c)

Remark 7.1: These approximate solutions coincide, under suitable
modifications of the indices, to all others issued from the general
procedure in Section VI.

The stabilizing properties of approximate solutions of this form
have been discussed in [29], [30]. Specifically, pth-order approximate
feedback are defined as truncations at any finite order p ∈ N of the
series expansion (29), namely:

uδ [p]
1 (z,ξ ) = u0

1(z,ξ )+
p

∑
i=1

δ i

(i+1)!
ui

1(z,ξ ). (31)

Moreover we refer to any ui
1(z,ξ ) in (31), for i ≥ 1, as corrector

terms. Summarizing, it was proven that those feedbacks ensure
practical asymptotic stability in closed-loop so that trajectories will
converge onto a neighborhood of the origin whose size is determined
by the length of δ p. Thus the order of approximation needs to
be chosen as a trade-off among computational effort and required
performances for the closed loop.

VIII. EXAMPLE

Consider the simple cascade dynamics

ż = ξ z; ξ̇ = u. (32)
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According to Section III-A, (32) admits an exactly computable
sampled-data equivalent model

zk+1 = eδ (ξk+
δ
2 uk)zk; ξk+1 = ξk +δuk (33)

which clearly preserves the feedforward structure with nonlinear
dependency in uk. The equivalent (F0,G) representation takes the
form

z+ = eδξ z;
dz+(u)

du
=

δ 2

2
e−δ (ξ+(u)− δ

2 u)z+(u)

ξ
+ = ξ ;

dξ+(u)
du

= δ .

Finally, one verifies that the continuous-time dynamics (32) satis-
fies Assumptions 4.1 and 4.2 with W (z) = 1

2 z2 and Assumption 4.3
with y0 = ξ , U(ξ ) = 1

2 ξ 2.

On the basis of Section V-A, one computes the average output
Y δ ,av

0 (ξk,uk) = ξk +
δ
2 uk and the control solution uδ

0 = − 2ξk
2+δ

that
is always well defined since δ ≥ 0 and recovers the continuous-
time solution when δ = 0. The increment of the Lyapunov function

along the ξ -trajectories gives U(ξk+1)−U(ξk) =−
4δξ 2

k
(δ+2)2 . It can be

immediately verified that the right-hand side of (18) specifies as∫
δ

0
z2(t)ξ (t)dt =

∫
δ

0

(
1− 2t

δ +2

)
e2t(1− 2t

δ+2 )ξk dtz2
kξ

2
k

=
(

e2δ (1− δ

δ+2 )ξk −1
)

z2
k .

Thus, (19) reduces to

Ψ
δ (z,ξ ) =

1
2
(e2ξ −1)z2. (34)

The final Lyapunov function V (z,ξ ) = 1
2 ξ 2 + 1

2 e2ξ z2 verifies

∆kV (z,ξ )≤U(ξk+1)−U(ξk) =−
4δ

(δ +2)2 ξ
2
k .

Note that, in this case, the cross-term Ψδ (z,ξ ) in (34) verifies
Ψ1 ≡ Ψ2 ≡ 0. Although it might seem restricting, approximations
of the δ -dependent cross-term are unavoidable in order to compute
and implement control solutions.

Finally, the overall control is computed by solving (23) in O(δ 2)
as detailed in the previous sections. The output and the control
approximated at the first order get the form

Y δ (z,ξ ) = (1+
δ

2
)e2ξ z2 +ξ +O(δ 2)

uδ
1 (z,ξ ) =−e2ξ z2−ξ +

δ

2
(e4ξ z4−2ξ e2ξ z2 +ξ )+O(δ 2).

From the above expressions it is easy to verify that for δ → 0 the
continuous-time solution is recovered.

Simulations: The proposed control strategy is compared through
simulations to the continuous-time one and the so-called emulated
control (i.e., when implementing the continuous feedback by means
of sample-and-hold devices). We implement approximate solutions
of sampled-data feedback as in (31) for p = 1 and p = 2. The results
are depicted in Figures 1(a) and 1(b) for initial condition (z0,ξ0) =
(0.5,0.5). They clearly show that, as the sampling period increases,
the proposed control strategy achieves very good performances (with
smooth trajectories and even with only one corrector term) especially
when the emulated one degrades or even fails (Figure 1(b)). This
empirically proves the efficiency of the sampled-data direct design
(even with only one corrector term) when compared to mere sample-
and-hold implementation [32], [33] of the continuous-time feedback.
Moreover, contrarily to the emulated feedback, the evolutions of the
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(a) δ = 1.5 s

(b) δ = 2.1 s

Lyapunov function along the trajectories under the proposed sampled-
data feedback are decreasing even when δ significantly increases.
More in detail, the continuous-time V (z,ξ ) is no longer a Lyapunov
function for the closed-loop system under emulated feedback. Finally,
the simulated results underline the nested nature of the feedback in the
sense of Remark 5.6; namely, first one drives z to zero so recovering
the integrator ξ -dynamics ξk+1 = ξk +δuk evolving according to the
feedback computed at the first step of the design. In this sense, when
the emulated feedback is implemented (i.e., u0(ξk) =−ξk) and z≡ 0
the reduced linear ξ -dynamics is clearly unstable for higher values
of δ as Figure 1(b) clearly underlines; in this same scenario, the
dynamics under the proposed feedback uδ

1 (z,ξ ) still exhibits good
stabilizing performances.
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IX. CONCLUSIONS

This paper presents an iterative procedure for stabilizing general
feedforward dynamics under sampling exploiting the preserved tri-
angular structure. By suitably shaping the mappings and functions
involved in the design, one shows how to construct a sampled-data
stabilizing feedback under the same assumptions as in continuous
time. The notion of u-average passivity around a nominal feedback
is here introduced and is crucial for making the proposed design
iterative. This study extends and concludes some previous works con-
cerned with strict-feedforward systems or more general classes under
some stronger assumptions [21], [35]. The proposed methodology
lyes in between the continuous and purely discrete-time cases as it
requires less demanding assumptions for ensuring the existence of a
stabilizing feedback by exploiting the properties of the continuous-
time dynamics. The design is based on the definition of a cross-term
for the construction of a suitable control Lyapunov function and thus
requires the explicit computation of the trajectories of the system over
any sampling interval (as even in continuous time). Current work is
toward the definition of modified Lyapunov functions to weaken this
demand.
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