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of RNA-binding proteins
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From transcription, to transport, storage, and translation, RNA depends on asso-
ciation with different RNA-binding proteins (RBPs). Methods based on next-
generation sequencing and protein mass-spectrometry have started to unveil
genome-wide interactions of RBPs but many aspects still remain out of sight.
How many of the binding sites identified in high-throughput screenings are
functional? A number of computational methods have been developed to analyze
experimental data and to obtain insights into the specificity of protein–RNA
interactions. How can theoretical models be exploited to identify RBPs? In addi-
tion to oligomeric complexes, protein and RNA molecules can associate into
granular assemblies whose physical properties are still poorly understood. What
protein features promote granule formation and what effects do these assemblies
have on cell function? Here, we describe the newest in silico, in vitro, and in vivo
advances in the field of protein–RNA interactions. We also present the chal-
lenges that experimental and computational approaches will have to face in
future studies. © 2016 The Authors. WIREs RNA published by Wiley Periodicals, Inc.
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INTRODUCTION

Since ‘the central dogma’ was formulated (the
genetic information flows from DNA to protein

passing through RNA), our knowledge on the tran-
scriptome has progressed enormously.1,2 We now
know that genes do not code for just a single protein
but produce a number of variants: the activity of
nuclear RNAs (snRNAs and snoRNAs) and several

splicing factors generates several messenger RNAs
(mRNAs) with different lengths and exon composi-
tions (Figure 1).2 In addition to protein production,
RNA participates in other essential processes such as
mRNAs expression regulation (microRNAs, miRNA;
small interfering RNAs, siRNA; long noncoding
RNAs, lncRNAs)1,2 and genome protection by trans-
poson silencing (PIWI-interacting RNA, piRNA).3

RNAs also perform a number of structural and func-
tional tasks, as in the case of rRNAs, which consti-
tute 60% of the ribosome,4 and tRNAs, which carry
the amino acids to the ribosome during the transla-
tion process.1,2

Every aspect of RNA life, from birth (poly-
merases) to degradation (nucleases), involves protein
binding (Figure 1). A correct interplay between
RNAs and RNA-binding proteins (RBPs) is crucial
for the development of cellular processes: miRNAs,
for instance, require Argonaute proteins to reach
target mRNAs as well as piRNAs associate with
PIWI proteins to form silencing complexes that pro-
tect the germline genome from transposons.1,2
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Moreover, the interplay between RBPs and RNAs
can promote formation of membrane-less organelles
(e.g., P-bodies, stress granules),5–7 whose composition
can be rapidly adapted to the cell state and the envi-
ronment conditions (e.g., stress conditions).8 Muta-
tions in RBPs, aberrant interactions or altered RNA

processing have been related to a number of human
diseases, from neurological disorders to cancer.9–12

Protein–RNA interactions have been studied
using a range of quantitative approaches such as elec-
trophoretic mobility shift assay (EMSA),13 fluores-
cent anisotropy/polarization,14 Förster resonance

FIGURE 1 | RNA-binding proteins (RBPs) and RNA life. RNA birth is regulated by RBPs (1) that are responsible for maturation (2) and
modification (3). RBPs protect (4) and transport (5) RNA around the cell to specific sites (6). Interactions are regulated through a diverse set of
binding sites that allows the formation of dynamic complexes sustained by reversible contacts and involving multiple partners (7, 8). When RNA is
not required, it can be stored for future needs (7) or degraded (8). The last process of the RNA life cycle is the release of nucleotides that will be
employed to build new RNA molecules. When RBPs are impaired (e.g., protein mutation, concentration deregulation, etc.), half-life, arrangement
and location of RNA are affected (9).
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energy transfer (FRET),15 surface plasmon resonance
(SPR)16 or, more recently, microscale thermophoresis
(MST)17,18 and stochastic optical reconstruction
microscopy (STORM).19 Although these approaches
have proved to be powerful to assess the specificity
and affinity of protein–RNA interactions, they only
allow the study of single or few molecular interac-
tions at a time.

The recent development of large-scale quantita-
tive methods, exploiting next-generation sequen-
cing20,21 and protein mass spectrometry,22 contributes
to the genome-wide identification of RBPs, RNA tar-
gets and cofactors.2 Deep-sequencing approaches
combined with RBPs immunoprecipitation as well as
in vitro methods, such as Systematic Evolution of
Ligands by Exponential Enrichment SELEX,23,24

revealed the binding ability of a number of RBPs and
showed that many RBPs bind to thousands of
transcripts.

In parallel to experimental advances, a number
of in silico methods have been developed to predict
protein–RNA interactions and to detect binding-sites.
Computational tools are particularly useful to predict
potential ribonucleoprotein associations and to nar-
row down a list of interaction partners for experi-
mental validation. For instance, some RBPs recognize
particular nucleotide sequences, whereas others bind
to the backbone or double-stranded RNA.25 When
modeling protein–RNA interactions, many factors
should be considered, including secondary structures,
folding and characteristics of binding interfaces.26

Especially physicochemical properties of amino acids,
such as structural disorder and polarity, are relevant
to characterize the RNA-binding ability of pro-
teins.27,28 Indeed, recent studies reported that in
addition to classical RNA-binding domains other
regions found in ribosomal proteins, translation elon-
gation factors, zinc fingers as well as structurally dis-
ordered parts participate in contacting transcripts.29

Here we review the most recent experimental
and computational advances for the detection of
protein–RNA interactions and introduce new chal-
lenges for future developments in the field.

EXPERIMENTAL METHODS FOR
DETECTION OF PROTEIN–RNA
INTERACTIONS

Transcripts are never naked and form complexes
with partner proteins in ribonucleoprotein particles
from their birth to their degradation (Figure 1).30

The assembly of functional complexes and the deliv-
ery to final destination involves progression through

a series of intermediate complexes and subcellular
localizations. For instance, Cajal bodies are sites of
noncoding ribonucleoprotein particles maturation,
where assembly factors gather to accelerate compli-
cated biochemical reactions. Complexes containing
mRNAs often undergo remodeling as they travel
from the site of transcription to the cytoplasm where
they are translated.

The advent of sequencing technologies, together
with the introduction of various cross-linking chemis-
tries, has enabled the development of new high-
throughput methods for the simultaneous detection
of hundreds to thousands interactions in a single
experiment. The methods can be classified into ‘pro-
tein-centric’ approaches, which reveal RNAs bound
to a known protein, and ‘RNA-centric’ approaches,
which characterize proteins interacting with an RNA
of interest.

Protein-Centric Approaches
The predominant protein-centric methods are based
on protein immunoprecipitation from cell lines or tis-
sues, and detection of the co-purified RNAs (Table 1
and Figure 2).

RNA immunoprecipitation (RIP) implies the
purification of RNA–protein interactions in native
conditions by using a protein-specific antibody, and
detection of interacting RNAs by either microarray
(RIP-chip) or sequencing (RIP-seq).31,51,52 Despite
the genome-wide potential, the method has practical
limitations. Indeed, it is prone to detect nonspecific
interactions due to the nonphysiological formation of
protein–RNA complexes in solution. As a conse-
quence, interactions identified using native purifica-
tion methods often require additional validation.

RIP limitations have been overcome with the
introduction of cross-linking and denaturing meth-
ods, namely cross-linking and immunoprecipitation
(CLIP). CLIP combines UV cross-linking of RBPs to
their cognate RNA molecules with stringent purifica-
tion of protein–RNA complexes that are resolved and
size-selected on an SDS-PAGE before proceeding to
high-throughput sequencing of cDNA library (HITS-
CLIP).32 Photoactivable ribonucleoside enhanced CLIP
(PAR-CLIP) and individual-nucleotide resolution CLIP
(iCLIP) are approaches derived from modified cross-
linking or library-preparation protocols that allow the
identification of cross-linking sites at a single-nucleotide
resolution.32,33,53,54

CLIP has enabled the characterization of RNA
binding profiles of several RBPs involved in neurolo-
gic disorders and cancer, thus helping in understand-
ing their role in disease. The first CLIP experiment,

WIREs RNA Characterization of RNA-binding proteins

© 2016 The Authors. WIREs RNA published by Wiley Periodicals, Inc.



TA
B
LE

1
|
Li
st
of

Ex
pe
rim

en
ta
lM

et
ho
ds

fo
rt
he

Id
en
tifi

ca
tio
n
of

Pr
ot
ei
n–
RN

A
In
te
ra
ct
io
ns

M
et
ho
d

Ad
va
nt
ag
es

Ch
al
le
ng
es

Di
se
as
e-
Re
la
te
d
RB

P/
RN

A
Re
fe
re
nc
es

Pr
ot
ei
n-

ce
nt
ric

In
vi
vo

RI
P

G
en
om

e-
w
id
e

Hi
gh

ba
ck
gr
ou
nd

no
ise

EL
AV

L1
(e
pi
le
ps
y,
ca
nc
er
)

Te
ne
nb
au
m

et
al
.3
1

Ap
pl
ic
ab
le
to

tis
su
es

Po
ss
ib
le
ar
tif
ac
ts

CE
LF
1
(m
yo
to
ni
c
dy
st
ro
ph
y)

Lo
w
re
so
lu
tio
n

IG
F2
BP
1
(c
an
ce
r)

AD
AR

(D
ys
ch
ro
m
at
os
is
sy
m
m
et
ric
a,

sp
as
tic

pa
ra
pl
eg
ia
)

Hi
TS
-C
LI
P

G
en
om

e-
w
id
e

Fa
lse

ne
ga
tiv
e
du
e
to

lo
w
cr
os
s-
lin
ki
ng

ef
fi
ci
en
cy

CE
LF
4
(e
pi
le
ps
y,
hy
pe
ra
ct
iv
ity
)

Li
ca
ta
lo
si
et

al
.3
2

PA
R-
CL
IP

Hi
gh

sp
ec
ifi
ci
ty

Ti
m
e
co
ns
um

in
g

EL
AV

L1
(e
pi
le
ps
y,
ca
nc
er
)

Ha
fn
er

et
al
.3
3

iC
LI
P

Hi
gh

re
so
lu
tio
n
(b
in
di
ng

sit
es
)

Ch
al
le
ng
in
g
se
t-u

p
FM

R1
(F
ra
gi
le
-X

m
en
ta
lr
et
ar
da
tio
n,

au
tis
m

sp
ec
tru

m
di
so
rd
er
s)

Ko
ni
g
et

al
.2
0

eC
LI
P

N
ot

ap
pl
ic
ab
le
to

tis
su
es

FU
S
(F
TL
D,

AL
S)

Va
n
N
os
tra

nd
et

al
.3
4

(P
AR

-C
LI
P)

M
BN

L1
/2

(m
yo
to
ni
c
dy
st
ro
ph
y)

N
O
VA

1/
2
(P
O
M
A)

PA
RK

7
(P
ar
ki
no
n’
s
di
se
as
e)

TA
RD

BP
(F
TL
D,

AL
S)

RB
FO

X
(a
ut
ism

)

In
vi
tr
o

RN
A-
co
m
pe
te

La
rg
e-
sc
al
e

N
on
ph
ys
io
lo
gi
ca
lc
on
di
tio
ns

EL
AV

L4
Ra
y
et

al
.3
5

SE
Q
RS

M
ea
su
re
m
en
to

fi
nt
er
ac
tio
n

af
fi
ni
ty
an
d
sp
ec
ifi
ci
ty

N
O
VA

1
(P
O
M
A)

Ca
m
pb
el
le
ta

l.2
4

RB
N
S

An
al
ys
is
of

m
ul
tip
le
pr
ot
ei
ns

HN
RN

PA
0
(c
an
ce
r)

La
m
be
rt
et

al
.3
6

RN
A-
M
aP

M
BN

L1
(m
yo
to
ni
c
dy
st
ro
ph
y)

Bu
en
ro
st
ro

et
al
.3
7

Hi
TS
-R
AP

CE
LF
1
(m
yo
to
ni
c
dy
st
ro
ph
y)

To
m
e
et

al
.3
8

M
IT
O
M
I

M
ar
tin

et
al
.3
9

RN
A- ce
nt
ric

In
vi
tr
o

TR
AP

/R
AT

Re
la
tiv
el
y
ea
sy

an
d
fl
ex
ib
le

Hi
gh

ba
ck
gr
ou
nd

no
ise

Ho
gg

an
d
Co

lli
ns

40

Ra
PI
D

Ea
sy

pu
rifi

ca
tio
n
pr
ot
oc
ol
s

Po
ss
ib
le
pe
rtu

rb
at
io
n
of

RN
A
fo
ld
in
g

Sl
ob
od
in
an
d
G
er
st
41

Ri
bo
Tr
ap

La
rg
e
am

ou
nt
s
of

st
ar
tin
g
m
at
er
ia
l

M
ic
hl
ew

sk
ia
nd

Cá
ce
re
s4
2

RN
A-
as
sis
te
d

ch
ro
m
at
og
ra
ph
y

Pr
ot
ei
n
m
ic
ro
ar
ra
y

La
rg
e-
sc
al
e

Po
ss
ib
le
ar
tif
ac
ts
du
e
to

no
np
hy
sio

lo
gi
ca
l

co
nd
iti
on
s
(p
ro
te
in
fo
ld
in
g,

ac
ce
ss
ib
ili
ty
,p

os
t-t
ra
ns
la
tio
na
l

m
od
ifi
ca
tio
ns
,e
tc
.,)
0

TP
53

Sc
he
rre

re
ta

l.4
3

Re
la
tiv
el
y
ea
sy

an
d
fa
st

HR
AS

Si
pr
as
hv
ili
et

al
.4
4

M
YC

(c
an
ce
r)

BC
L2

PW
RN

1
(P
ra
de
rW

ill
is
yn
dr
om

e)

Advanced Review wires.wiley.com/rna

© 2016 The Authors. WIREs RNA published by Wiley Periodicals, Inc.



TA
B
LE

1
|
Co

nt
in
ue
d

M
et
ho
d

Ad
va
nt
ag
es

Ch
al
le
ng
es

Di
se
as
e-
Re
la
te
d
RB

P/
RN

A
Re
fe
re
nc
es

In
vi
vo

M
S2
-B
io
TR
AP

Fa
st
an
d
ea
sy

se
t-u

p
La
rg
e-
sc
al
e

Ch
al
le
ng
es

as
so
ci
at
ed

w
ith

ce
ll

tra
ns
fe
ct
io
n

Ts
ai
et

al
.4
5

Lo
w
am

ou
nt
s
of

st
ar
tin
g

m
at
er
ia
l

Po
ss
ib
le
ar
tif
ac
ts
du
e
to

ta
g

Ch
IR
P

St
ud
y
of

pr
ot
ei
n–
RN

A
in
te
ra
ct
io
ns

un
de
r

ph
ys
io
lo
gi
ca
lc
on
di
tio
ns

Ti
m
e
an
d
co
st
co
ns
um

in
g

M
AL
AT

1
(c
an
ce
r)

Ch
u
et

al
.4
6

CH
AR

T
La
rg
e
am

ou
nt
s
of

st
ar
tin
g
m
at
er
ia
l

re
qu
ire
d

N
EA

T1
(c
an
ce
r)

Si
m
on

47

RA
P-
M
S

Ch
al
le
ng
in
g
se
t-u

p

In
te
ra
ct
om

e
ca
pt
ur
e

St
ud
y
of

pr
ot
ei
n–
RN

A
in
te
ra
ct
io
ns

un
de
r

ph
ys
io
lo
gi
ca
lc
on
di
tio
ns

Po
ss
ib
le
ar
tif
ac
ts
(p
os
iti
ve

an
d
fa
lse

ne
ga
tiv
e)
du
e
to

cr
os
s-
lin
ki
ng

Ca
st
el
lo
et

al
.2
9

Id
en
tifi

ca
tio
n
of

un
kn
ow

n
RB

Ps
Ti
m
e
co
ns
um

in
g

Ch
al
le
ng
in
g
se
t-u

p

R
IP
,
R
N
A

Im
m
un

op
re
ci
pi
ta
ti
on

,
H
iT
S-
C
L
IP
,
H
ig
h-
th
ro
ug

hp
ut

se
qu

en
ci
ng

of
R
N
A

is
ol
at
ed

by
cr
os
s-
lin

ki
ng

im
m
un

op
re
ci
pi
ta
ti
on

,
PA

R
-C

L
IP
,
Ph

ot
oa

ct
iv
ab

le
ri
bo

nu
cl
eo
si
de

en
ha

nc
ed

C
L
IP
,
iC
L
IP
,
in
di
vi
du

al
-

nu
cl
eo
ti
de

re
so
lu
ti
on

C
ro
ss
-L
in
ki
ng

an
d
Im

m
un

oP
re
ci
pi
ta
ti
on

,
SE

Q
R
S,

in
vi
tr
o
se
le
ct
io
n
hi
gh

-t
hr
ou

gh
pu

t
se
qu

en
ci
ng

of
R
N
A

an
d
se
qu

en
ce

sp
ec
ifi
ci
ty

la
nd

sc
ap

e,
R
B
N
S,

R
N
A

B
in
d-
n-
Se
q,

R
N
A
-M

ap
,
R
N
A

on
a

m
as
si
ve
ly

pa
ra
lle
l
ar
ra
y,

H
iT
S-
R
A
P,

H
ig
h-
th
ro
ug

hp
ut

se
qu

en
ci
ng

R
N
A

af
fi
ni
ty

pr
ofi

lin
g,

R
N
A
-M

IT
O
M
I,
R
N
A

m
ec
ha

ni
ca
lly

in
du

ce
d
tr
ap

pi
ng

of
m
ol
ec
ul
ar

in
te
ra
ct
io
ns
,
T
R
A
P,

T
an

de
m

R
N
A

af
fi
ni
ty

pu
ri
fi
ca
ti
on

,
R
A
T
,
R
N
A

af
fi
ni
ty

in
ta
nd

em
,
R
aP

ID
,
R
N
A
-b
in
di
ng

pr
ot
ei
n
pu

ri
fi
ca
ti
on

an
d
id
en
ti
fi
ca
ti
on

,
M
S2

-B
io
T
R
A
P,

M
S2

in
vi
vo

bi
ot
in

ta
gg
ed

R
N
A

af
fi
ni
ty

pu
ri
fi
ca
ti
on

,
C
hI
R
P,

C
hr
om

at
in

is
ol
at
io
n
by

R
N
A

pu
ri
fi
ca
ti
on

,
C
H
A
R
T
,C

ap
tu
re

hy
br
id
iz
at
io
n
an

al
ys
is
of

R
N
A

ta
rg
et
s,
R
A
P-
M
S,

R
N
A

an
ti
se
ns
e
pu

ri
fi
ca
ti
on

-m
as
s
sp
ec
tr
om

et
ry
.

WIREs RNA Characterization of RNA-binding proteins

© 2016 The Authors. WIREs RNA published by Wiley Periodicals, Inc.



P
ro

te
in

-c
en

tr
ic

 m
et

h
o

d
s

(a
) 

 In
 v

iv
o

(b
) 

 In
 v

itr
o

(c
) 

 In
 v

iv
o

(d
) 

 In
 v

itr
o

R
N

A
-c

en
tr

ic
 m

et
h

o
d

s

N
a
ti
ve

 p
u
ri

fi
c
a
ti
o

n
(R

IP
)

U
V

 c
ro

s
s
lin

k
in

g

E
p
ito

p
e

ta
g

R
N

A
 p

u
lld

o
w

n

R
N

A
 p

o
o
l

P
u
lld

o
w

n
 t
a
rg

e
t 
R

N
AR
N

A
fl
u

o
re

s
c
e

n
t

la
b

e
lin

g

H
y
b

ri
d

iz
a

ti
o

n
 o

f
th

e
 a

rr
a
y

R
N

A
R

B
P

A
ff
in

it
y

m
a
tr

ix

R
N

a
s
e
 d

ig
e
s
ti
o
n

Im
m

u
n
o
p
re

c
ip

it
a
ti
o
n

D
e
n
a
tu

ra
ti
o
n
 (

S
D

S
-p

a
g
e
)

T
ra

n
s
c
ri

p
t 

1

T
ra

n
s
c
ri

p
t 

2

L
ib

ra
ry

 p
re

p
a
ra

ti
o
n

s
e
q
u
e
n
c
in

g

D
e
n
a
tu

ri
n
g
 m

e
th

o
d
s

(C
L
IP

)

e
.g

. 
R

N
A

-c
o

m
p

e
te

In
 v

it
ro

tr
a

n
s
c
ri

p
ti
o

n

(R
N

A
 l
ib

ra
ry

g
e

n
e

ra
ti
o

n
)

T
a
rg

g
e
d
 R

N
A

C
e
ll 

ly
s
a
te

C
ro

s
s
lin

k
S

o
n

ic
a

te
 (

fr
a

g
m

e
n

t 
D

N
A

)

H
y
b

ri
d

iz
e

 b
io

ti
n
y
la

te
d

a
n

ti
s
e

n
s
e

 o
lig

o
s

Im
m

o
b

ili
z
e

 o
n

s
tr

e
p

ta
v
id

in
 b

e
a

d
s

w
a

s
h

Im
m

o
b

ili
z
e

 R
N

A

to
 a

 s
u

p
p

o
rt

C
a

p
tu

re
 i
n

te
ra

c
ti
n

g
p

ro
te

in
s
 f

ro
m

 ly
s
a

te

W
a

s
h

 o
u

t

u
n

b
o

u
n

d
 p

ro
te

in
s

E
lu

te
 R

N
A

-p
ro

te
in

c
o

m
p

le
xe

s
 f

ro
m

s
u

p
p

o
rt

R
N

a
s
e

 A
, 
H

A
n

a
ly

z
e

 p
ro

te
in

s

W
e
s
te

rn
 B

lo
t

M
a
s
s
 s

p
e
c
tr

o
m

e
tr

y

m
/z

m
/z

W
e
s
te

rn
 B

lo
t

M
a
s
s
 s

p
e
c
tr

o
m

e
tr

y

A
n
a
ly

z
e
 D

N
A

A
n

a
ly

z
e

 p
ro

te
in

s

D
N

A
 s

e
q
u
e
n
c
in

g

FI
G
U
R
E
2

|
Sc
he
m
at
ic
re
pr
es
en
ta
tio
n
of

ex
pe
rim

en
ta
lm

et
ho
ds

fo
rt
he

id
en
tifi

ca
tio
n
of

pr
ot
ei
n–
RN

A
in
te
ra
ct
io
ns
.P

ro
te
in
-c
en

tr
ic
m
et
ho

ds
.(
a)

In
vi
vo

ap
pr
oa
ch
es

in
cl
ud
e
na
tiv
e
pu
rifi

ca
tio
n

pr
ot
oc
ol
s
(R
N
A
Im
m
un
op
re
ci
pi
ta
tio
n,

RI
P)

an
d
de
na
tu
rin
g
pr
ot
oc
ol
s
(C
ro
ss
-li
nk
in
g
an
d
Im
m
un
op
re
ci
pi
ta
tio
n,

CL
IP
).
In

th
e
fi
st
ca
se
,R

N
As

bo
un
d
to

a
sp
ec
ifi
c
pr
ot
ei
n
ar
e
im
m
un
op
re
ci
pi
ta
te
d
fro

m
ce
ll

ly
sa
te

in
na
tiv
e
co
nd
iti
on
s
by

us
in
g
a
pr
ot
ei
n-
sp
ec
ifi
c
an
tib
od
y
an
d,

af
te
rw

as
h
an
d
pr
ot
ei
n
re
m
ov
al
by

pr
ot
ei
na
se

K
tre

at
m
en
t,
RN

As
ar
e
re
ve
rs
e
tra

ns
cr
ib
ed

an
d
id
en
tifi

ed
th
ro
ug
h
RN

A
se
qu
en
ci
ng
.4
8
In

th
e
se
co
nd

ca
se
,c
el
ls
ar
e
UV

cr
os
s-
lin
ke
d
to

‘fr
ee
ze
’
pr
ot
ei
n–
RN

A
co
m
pl
ex
es
.R

N
A
is
di
ge
st
ed

to
ob
ta
in
fra

gm
en
ts
of

a
de
fi
ne
d
siz
e
an
d
th
e
ob
ta
in
ed

co
m
pl
ex
es

ar
e

im
m
un
op
re
ci
pi
ta
te
d
an
d
re
so
lv
ed

on
an

SD
S-
PA

G
E.
Af
te
ri
so
la
tio
n
fro

m
m
em

br
an
e
an
d
pr
ot
ei
na
se

K
di
ge
st
io
n,

th
e
RN

A
fra

gm
en
ts
ar
e
re
ve
rs
e
tra

ns
cr
ib
ed

an
d
se
qu
en
ce
d.
49

In
re
d
an
d
ye
llo
w
ar
e

re
pr
es
en
te
d
sim

ul
at
ed

en
ric
hm

en
tv

al
ue
s
of

a
ta
rg
et

an
d
no
nt
ar
ge
tR

N
A
re
sp
ec
tiv
el
y
(lo
w
er

pa
rt
of

th
e
pa
ne
l).

(b
)A

s
an

ex
am

pl
e
of

in
vi
tro

ap
pr
oa
ch
es
,t
he

sc
he
m
at
ic
w
or
kfl
ow

of
RN

A
co
m
pe

te
is

re
pr
es
en
te
d.
35

RN
A
lib
ra
rie
s
ar
e
ge
ne
ra
te
d
by

in
vi
tro

tra
ns
cr
ip
tio
n.

Tr
an
sc
rip
ts
ar
e
in
cu
ba
te
d
w
ith

th
e
pr
ot
ei
n
of

in
te
re
st
im
m
ob
ili
ze
d
on

an
af
fi
ni
ty
m
at
rix

(e
.g
.,
st
re
pt
av
id
in
-b
io
tin

ta
g
sy
st
em

)a
nd

th
e
bo
un
d
fra

gm
en
ts
ar
e
th
en

fl
uo
re
sc
en
tly

la
be
le
d
an
d
de
te
ct
ed

by
hy
br
id
iz
at
io
n
on

a
m
ic
ro
ar
ra
y
pl
at
fo
rm

.R
N
A
-c
en

tr
ic
m
et
ho

ds
.(
c)
In

vi
vo

ap
pr
oa
ch
es

fo
rt
he

id
en
tifi

ca
tio
n
of

pr
ot
ei
ns

bo
un
d
to

an
RN

A
of

in
te
re
st
of
te
n
de
riv
e
fro

m
m
et
ho
ds

us
ed

fo
rt
he

id
en
tifi

ca
tio
n
of

ge
no
m
ic
DN

A
lo
ci
ta
rg
et
ed

by
no
nc
od
in
g
RN

As
.C

el
ls
ar
e
cr
os
s-
lin
ke
d
an
d
ly
se
d.

Ch
ro
m
at
in
is
sh
ea
re
d
an
d
pr
ot
ei
n–
RN

A–
DN

A
co
m
pl
ex
es

ar
e
pu
ll-
do
w
n
by

us
in
g
bi
ot
in
yl
at
ed

ol
ig
os

co
m
pl
em

en
ta
ry
to

th
e
se
qu
en
ce

of
th
e
RN

A.
Af
te
rR

N
A
di
ge
st
io
n,

pr
ot
ei
ns

ca
n
be

id
en
tifi

ed
by

w
es
te
rn

bl
ot

or
m
as
s
sp
ec
tro

m
et
ry

an
al
ys
is.

46
(d
)I
n
vi
tro

ap
pr
oa
ch
es

co
m
m
on
ly
ex
pl
oi
tt
he

us
e
of

RN
A
ta
gs

to
im
m
ob
ili
ze

th
e
RN

A
of

in
te
re
st
on
to

an
af
fi
ni
ty
m
at
rix
.U

po
n
in
cu
ba
tio
n
w
ith

ce
ll
ly
sa
te
,p

ro
te
in
s
bi
nd

to
th
e
im
m
ob
ili
ze
d

RN
A.

Af
te
rw

as
he
s,
th
e
pr
ot
ei
n–
RN

A
co
m
pl
ex
es

ar
e
el
ut
ed

fro
m

th
e
m
at
rix

an
d
pr
ot
ei
ns

ar
e
ch
ar
ac
te
riz
ed

by
w
es
te
rn

bl
ot

or
m
as
s
sp
ec
tro

m
et
ry
.5
0

Advanced Review wires.wiley.com/rna

© 2016 The Authors. WIREs RNA published by Wiley Periodicals, Inc.



published by Ule et al., shed light on the role of
NOVA 1 and 2 proteins in paraneoplastic
opsoclonus-myoclonus-ataxia (POMA), an autoim-
mune neurologic disease characterized by abnormal
motor inhibition.55 NOVA proteins were found to
regulate alternative splicing of RNAs encoding multi-
ple components of inhibitory synapses, such as
GABAβ 2 receptor and GIRK2, which mediate slow
inhibitory postsynaptic potentials, the K+ voltage-
gated channel KCNQ3 or the nicotinic acetylcholine
receptors β2 and α2, highly represented in the
GABAergic interneurons.55

The combination of RIP-chip and CLIP
approaches has allowed the identification of targets
of the mammalian ELAVl family whose four mem-
bers, ELAVL 1,2,3 and 4, (also known as HuR,
HuB, HuC, and HuD) are implicated in different can-
cers and neurological diseases.56,57 In particular,
ELAVL1, the only member of the family expressed in
both neuronal and non neuronal cells, has been
found particularly abundant in breast, ovary, colon,
and brain cancers58 associated with poor prognosis.59

RIP-chip and CLIP have identified a transcriptome-
wide list of targets (including Cyclin D1, E1, A2 and
B1, EGF, c-Myc, p27, COX-2, and BRCA1) and indi-
cated that ELAVL1 functions as a major hub for reg-
ulating RNA metabolism in the cell at different levels,
from pre-mRNA alternative splicing to mature
mRNA stability and microRNA biogenesis.57,60 The
other three members, ELAVL2–4 (nELAVl), are
highly enriched in neurons and show a unique hierar-
chical expression during cortical development.61

HITS-CLIP on mice cortical tissue has revealed that
nELAVl regulated transcripts are mainly involved in
synaptic cytoskeleton assembly and disassembly,
amino acid and sugar biosynthetic pathways. In par-
ticular, nELAVl have been found to regulate the
alternative splicing of the gene coding for the gluta-
minase enzyme, the major responsible for the synthe-
sis of the excitatory neurotransmitter glutamate.56

The complex protocol and bioinformatics
required for data analysis represent the main disad-
vantage of CLIP approaches (Figure 2). As a matter
of fact, high experimental failure rates are reported.
Recently, an enhanced CLIP (eCLIP) protocol has
been developed.34 In addition to reducing hands-on
time to as few as 4 days, eCLIP dramatically
decreases required library amplification by 1000 fold
and enhances the rate of success at generating librar-
ies with high usable reads percentages across diverse
RBPs, maintaining the single-nucleotide resolution of
previous methods. In addition, paired-matched input
controls improve the signal-to-noise ratio for the dis-
covery of authentic binding sites. 102 eCLIP

experiments for 73 diverse RBPs have been generated
(available at https://www.encodeproject.org), provid-
ing an unprecedented source of data for the study of
protein–RNA functional networks. Despite its suc-
cessful applications, a major concern when using
CLIP is that UV-induced cross-linking is still poorly
understood at the biophysical level. Only a very
small percentage (1–5%) of protein–RNA complexes
present in the cells can be efficiently cross-linked, and
it is not clear which types of interactions might be
unseen.62 For instance, several RBP families do not
directly associate with nucleic acid bases but interact
with other elements (i.e., the sugar phosphate back-
bone) showing low cross-linking efficiency. Moreo-
ver, UV only cross-links direct protein–RNA
interactions but it does not capture interactions
occurring with protein complexes, thus providing just
part of the information.

The study of in vivo interactions is limited to
contacts formed in a certain cell type and at a spe-
cific time point. To better understand the physico-
chemical properties controlling protein–RNA
interactions, a number of new methods allow the
in vitro screening of interactions between proteins
and libraries of randomly generated RNA sequences
by combining the use of microarray and microflui-
dic platforms with molecule fluorescent labeling and
RNA sequencing technologies. While in vitro evolu-
tion SELEX has bias towards highest-affinity
targets,36 other methods enable the characterization
of lower-specificity and medium-range affinities with
single proteins or multiprotein complexes.63 Incuba-
tion of RNA libraries with a protein of interest
immobilized on an affinity matrix is followed by
fluorescent labeling of selected RNAs and hybridiza-
tion to a microarray, in the case of RNA-compete
(Figure 2), or deep sequencing in the case of in vitro
selection high-throughput sequencing of RNA and
sequence specificity landscape (SEQRS) and RNA
Bind-n-Seq (RBNS).25,36 These methods are often
applied to identify consensus elements of RBPs (see
also Computational Methods for Detection of
Protein–RNA Interactions).

Quantitative analysis of RNA on a massively
parallel array (RNA-MaP) and high-throughput
sequencing RNA affinity profiling (HiTS-RAP), con-
sist in the in situ synthesis of RNA libraries inside an
Illumina sequencing flow cell followed by incubation
with a fluorescently labeled protein and quantifica-
tion of molecular interactions.37,38 These approaches,
together with RBNS, provide quantitative measure-
ments of dissociation constants (Kd) through the use
of multiple protein concentrations. Moreover, meth-
ods relying on the use of fluorescent proteins, such as
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the previously mentioned RNA-MaP and HiTS-RAP,
as well as the RNA mechanically induced trapping of
molecular interactions (RNA-MITOMI),39 provide
effective visualization of multiple proteins simultane-
ously, thus revealing the effects of protein partners.
These approaches have great range of applicability,
especially considering that RNA metabolism is regu-
lated by multiple RBPs to form functional particles
(e.g., small nuclear ribonucleoproteins, telomerases,
ribosomal subunits, UTR-regulatory complexes, etc).

RNA-Centric Approaches
RNA-centric methods aim to identify RBPs targeting
a single RNA of interest. The majority of the existing
methods exploit tagged RNAs as a bait to capture
and characterize all proteins bound to it by mass
spectrometry analysis (Table 1 and Figure 2). In vitro
synthesized RNA can be chemically tagged through
the incorporation of modified ribonucleotides that
contain biotin, fluorescent dyes, or, alternatively, nat-
ural or artificial aptamers (e.g., S1, D8, MS2 hairpin
loop, etc.,) can be incorporated.40–42 In addition to
their in vitro application (e.g., TRAP, RAT, RaPID,
RiboTrap, RNase-assisted RNA chromatography),
RNA tagging system can be applied in vivo, as in the
example of MS2-BioTRAP method, where a MS2
hairpin loop tagged RNA and the bacteriophage
MS2 coat protein fused to a protein tag (e.g., HB or
streptavidin), are co-expressed to capture the RNA of
interest by exploiting the high affinity interaction
between the MS2 protein and the MS2 hairpin
loop.45 All these methods are relatively flexible, and
their in vivo applicability allows the study of
protein–RNA interactions in physiological condi-
tions. Nevertheless, the incorporation of a tag into
the RNA bait may alter its secondary structures and
possibly the formation of ribonucleoprotein com-
plexes. In addition, MS2-BioTRAP is only applicable
in easy-to-transfect cells and the overexpression of at
least one of the two interacting molecules might lead
to experimental artifacts.

Capture hybridization analysis of RNA targets
(CHART), Chromatin isolation by RNA purification
(ChIRP) and RNA antisense purification (RAP) are
methods designed to identify DNA and proteins tar-
geted by noncoding-RNAs in vivo (Figure 2). These
approaches involve cell cross-linking and pull-down
of the RNA of interest using short biotinylated oligo-
deoxyribonucleotides that are complementary to the
endogenous RNA. After reversion of cross-linking,
the RNA-associated DNA and proteins are identified
by sequencing and mass spectrometry (MS) analysis,
respectively.46,47,64,65 The design of antisense

oligonucleotides with high affinity to accessible
single-stranded regions of RNAs is often a challeng-
ing step in these approaches. Moreover, these proto-
cols are time consuming and usually require large
amounts of starting material in order to generate suf-
ficient product for MS.

CHART was first applied for the characteriza-
tion of protein interactors of the human long non-
coding RNAs NEAT1 (nuclear-enriched abundant
transcript 1) and MALAT1 (metastasis-associated
lung adenocarcinoma transcript 1) that localize to
nuclear speckles and paraspeckles, respectively.66

Speckles and paraspeckles are nuclear bodies in close
proximity to each other, comprising many RBPs,
including splicing factors. Interestingly, paraspeckles
have been implicated in sequestering RNAs that
respond to cellular stress. Although NEAT1 and
MALAT1 have specific binders, the overlap of their
protein interactome suggested potential redundancy
or cooperation in regulating nuclear organization
around nuclear bodies.

ChiRP and RAP-MS have been applied to the
discovery of the protein interactome of Xist (X-
inactive specific transcript), a lncRNA required for X
chromosome inactivation (XCI) of one of the two X
chromosomes in female cells, enabling dosage com-
pensation between XX females and XY males.66

Through an RAP-MS approach, McHugh and collea-
gues recently characterized ten Xist-specific interac-
tors in mouse embryonic stem cells (mESC).67 One of
them, SAF-A (scaffold attachment factor-A, also
known as HNRNPU) was previously shown to be
required for tethering Xist to the inactive X chromo-
some in differentiated cells, while five of these pro-
teins are implicated in transcriptional repression,
chromatin regulation, and nuclear organization.
These results partially overlap with a ChiRP-MS
based study conducted on the same year by Chu and
colleagues, in which 81 Xist interactors were
described.68 These proteins are mainly involved in
chromatin modification, nuclear matrix and RNA
remodeling pathways. Notably, this analysis reveals
two sets of proteins that interact with Xist in a devel-
opmentally regulated manner, shedding light on a
potential step-wise assembly of Xist binding proteins
from the pluripotent state to cell differentiation.

A number of other methods based on the
in vitro or in vivo screening of protein libraries have
been developed. As an example, protein microarrays
have been recently used to test the binding of pro-
teins with a specific RNA in vitro.43,44 The RNA is
fluorescently labeled and hybridized on a protein
chip. This method allows the screening of thousands
of proteins in less than a day, and relatively small
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amounts of RNA are required. On the other hand,
the quality of the data is less robust because it
strongly depends on the proteins conditions on the
array (i.e., folding, RBDs accessibility, post-
translational modifications, etc).

Finally, the interactome capture, a method devel-
oped in 2012 by Castello et al., allows the simultane-
ous recovery and characterization of the whole
proteome associated with mRNAs in living cells.29

This approach, originally applied to HeLa and
Hek293 cells,69 and lately to mouse embryonic stem
cells70 and yeast,71 led to the discovery of new poten-
tial RBPs lacking the canonical RNA-binding domains
but enriched in features such as protein disorder and
repetitive low complexity amino acid regions. The
majority of these candidate RBPs have also enzymatic
activity, and, while the RNA binding capacity of some
of them has been validated, further evidence should be
provided for the large majority of these proteins.

Future Experimental Challenges
Despite the enormous progress done in the last few
decades, it is clear that each of the experimental
methods offers a partial, and in some cases poten-
tially erroneous, view on protein–RNA interactions.
In this scenario, two main questions arise: to what
extent in vitro interactions are relevant in vivo? Does
in vivo binding imply functionality?

As regulatory regions interact with competing
RBPs and RNAs, only a small percentage of in vitro
determined binding sites is actually occupied in vivo.
Very often, binding regions become inaccessible due
to mRNA localization into granular assemblies (see
section Beyond the Protein–RNA Complex: Mem-
brane-Less Organelles).72 It should be also mentioned
that RNAs lacking annotated biding sites are found to
interact in vivo because of indirect interactions or as a
result of molecule sequestration in subcellular compart-
ments, where high concentrations favor low affinity or
unspecific interactions.71

Most importantly, in vivo occupancy not
always indicates functionality. As a matter of fact, to
unravel the complexity of the RNA biology, it will be
essential to develop new tools for the integration of
interaction data with global functional assays, such
as for instance Ribosome profiling.73

COMPUTATIONAL METHODS FOR
DETECTION OF PROTEIN–RNA
INTERACTIONS

A large number of computational methods address
the problem of characterizing RNA partners of

specific RBPs. MEME,74 RBPmap,75 SeAMotE,76 and
RNAcontext77 identify motifs enriched in RNA tar-
gets.26 The use of sequence motifs allows discovery of
targets in RNA datasets, but ab initio predictions of
RNA interactions are not possible without previous
experimental knowledge on the RBPs of interest.

A different class of computational approaches
aims to identify RNA-binding residues78–80 and
RNA-binding regions using primary-, secondary- or
tertiary-structure information.81–83 Methods such as
Struct-NB,84 PRIP,85 SPOT-Seq,86 and OPRA87 pre-
dict the RNA-binding ability by identifying regions
in the protein surface that accommodate nucleotide
chains. As three-dimensional structures are needed to
perform the calculations, these approaches are lim-
ited by the existence of available templates. Yet,
using a library of 1164 nonredundant protein–RNA
complexes (95% sequence identity cutoff ) and the
folding recognition technique SPARKS X88 the
SPOT-Seq-RNA approach89 has been used to charac-
terize 2418 novel RBPs in the human proteome of
which 291 are reported in interactome capture
experiments29 (see RNA-centric methods in
section Experimental Methods for Detection of
Protein–RNA Interactions).

Algorithms relying on primary-structure features
have a clear advantage over tertiary-structure methods
that require three-dimensional references to compare
structures87 and atomistic details90 to study inter-
actions. Methods based on primary-structure exploit
evolutionary information (i.e., conservation of specific
residues in sequence alignments), secondary-structure
propensities and information on physicochemical
properties of amino acids (e.g., hydrophobicity). The
binding elements are often classified using machine-
learning methods such as Support Vector Machine
(SVM), Random Forest (RF), and Naïve Bayes (NB).
For further information about the algorithms, we refer
the Reader to reviews describing features and techni-
ques in detail.81–93 In the following text we will pro-
vide a short description of the most used algorithms
(Table 2) and their published performances.

BindN68 predicts DNA- and RNA-binding resi-
dues through a SVM trained on hydrophobicity, dis-
sociation constant (pKa), and molecular mass of
amino acids. The method was validated on a dataset
of 100 protein–RNA complexes characterized
through X-ray crystallography and nuclear magnetic
resonance (NMR), and shows a cross-validation
accuracy of 0.69. Using a slightly different codifica-
tion of physicochemical properties and integrating
them with evolutionary information, the BindN+
algorithm78 reaches an accuracy to of 0.78. The evo-
lutionary information is derived from a position-
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specific scoring matrix (PSSM) generated by PSI-
BLAST,99 that searches against a nonredundant data-
base of protein sequences. With the same approach,
Pprint100 combines evolutionary information from
PSSMs with SVMs, thus predicting RNA-binding
sites with an accuracy of 0.81. Similarly, RNA-
ProB101 employs a smoothed PSSM encoding scheme
to predict RNA-binding sites on proteins and shows
an accuracy of 0.89. Slightly different types of physi-
cochemical properties are combined in RNABindR,27

that exploits accessible surface area, sequence specific
entropy, hydrophobicity, secondary structure propen-
sities, and electrostatics. In the testing phase, RNA-
BindR identifies interface residues with an accuracy
of 0.85. Adding the contribution of HomPRIP,55 a
sequence homology-based method for prediction of
RNA-binding sites, RNABindR+ shows an accuracy
of 0.83 on a larger benchmark set of 200 proteins.80

The working principles of these algorithms are based
on different assumptions: the conservation, physico-
chemical properties or topological properties of the
binding site. Hence, it is challenging to compare the
algorithms; their applicability depends on the kind of
dataset that needs to be analyzed. For more details,
the Reader can refer to comparative studies that
describe the tools in more detail.92,102

While BindN,68 Pprint,100 RNAProB,101 and
RNABindR27 predict the RNA-binding ability of
individual amino acids without considering the
sequence context, HMMER82 is designed to perform
homology searches in protein sequences using Hid-
den Markov Models and multiple sequence align-
ments of domain families. HMMER functionality is
limited to previously annotated domain-families, as

the tool does not perform de novo detection of
binding-domains. A recent method, catRAPID
signature,83 identifies RNA-binding regions by con-
sidering physicochemical properties that are present
in known RBPs.83 catRAPID signature exploits prop-
erties such as hydrophobicity, secondary structure,
disorder, and burial.83 Each feature defines a unique
signature, or profile, containing position-specific
information arranged in sequential order from the N-
to the C-terminus.28,103 In addition to the RNA-
binding score, catRAPID signature predicts regions
contacting RNA. On a test set of mouse proteins har-
boring noncanonical RNA-binding domains,70

catRAPID signature shows an accuracy of 0.71 in
predicting the RNA-binding ability. When applied to
newly discovered RBPs, the algorithm discriminates
RBPs from nonRBPs with an area under the receiver
operating curve of 0.76.29,69 In Table 3, we show the
performances of catRAPID signature,83 BindN+,78

Pprint,100 and RNABindR+80 to identify nonclassical
RNA-binding domains.70

TABLE 2 | List of Computational Methods for the Identification of Protein–RNA Interactions

Prediction Examples Advantages Disadvantages References

Binding motif
(RNA)

MEME
SeAMotE

de novo binding site discovery High-throughput data are required
as input

Bailey et al.94

Agostini et al.76

Sequence complexity is a limitation

Binding residue Pprint Evolutionary information RNA-binding domains cannot be
identified

Kumar et al.79

BindN+ Wang et al.78

RNAbindR+ Walia et al.80

Domain
(protein)

HMMER Domain recognition Annotation of RNA-binding domains
are required

Finn et al.95

Livi et al.83

catRAPID
signature

Annotation of RNA-binding
domains are not required

Single amino acid resolution has not
been implemented

RNA–protein
interaction

catRAPID
RPISeq

Runs on high-throughput data
High sensitivity

RNA < 1200 nt Bellucci et al.96

Agostini et al.97Protein < 750 aa

Low specificity Muppirala et al.98

Max 100 sequences per run

TABLE 3 | Performances on Detecting RNA-Binding Regions

Method ACCa sensb specc precd

catRAPID 0.67 0.76 0.60 0.65

BindN+ 0.38 0.37 0.39 0.38

PPrint 0.47 0.49 0.45 0.49

RNAbindR+ 0.48 0.53 0.42 0.48

We analyzed 102 proteins containing nonclassical RNA-binding domains
and 102 without annotated RNA-binding domains with catRAPID signa-
ture and three other algorithms.27,68,83,100 The performances are measured
using a. accuracy, b. sensitivity, c. specificity, and d. precision.
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We also compared the prediction performances
of BindN,93 BindN+,78 Pprint,79 RNAproB,101

RNABindR+,80 and catRAPID signature83 using
structural data from 90 folds, 126 families and
100 superfamilies retrieved from the SCOP data-
base102 (Figure 3). In all the classifications, catRAPID
signature and BindN+ show the best performances102

recognizing contacts identified at a distance cutoff of
3.5 Å. We note that while BindN,93 BindN+,78

Pprint,79 RNAproB,101 and RNABindR+80 have been
designed to predict the RNA-binding ability of indi-
vidual residues in protein sequences, catRAPID signa-
ture identifies binding regions (Table 2).

Only a few methods address the question
whether a protein of interest interacts with a specific
RNA exploiting the properties of both interaction
partners. catRAPID96,97 estimates the interaction
potential through van der Waals, hydrogen bonding
and secondary structure propensities of both protein
and RNA sequences (total of 10 features per mole-
cule)81 and allows identification of binding partners
with high confidence (training accuracy = 0.89; test-
ing accuracy = 0.78; see also Cirillo et al.91;
Table 2). catRAPID identified the interaction of the
N-terminus of Fragile Mental Retardation Protein
FMRP104 with dendritic nontranslatable brain cyto-
plasmic RNA BC1105 before crystallographic studies

determined the presence of tandem Agenet and KH
domains.106 Similarly, catRAPID predictions for the
physical binding of heterogeneous nuclear ribonu-
cleoprotein U SAF-A with the long noncoding Xist107

have been recently confirmed by ChiRP-MS experi-
ments.68 In addition, catRAPID can be used to per-
form proteome- and transcriptome-wide
calculations,97 which is useful to complement experi-
mental approaches, such as interactome capture29

(see also Experimental Methods for Detection of
Protein–RNA Interactions) and to identify target
partners.108 Owing to the complexity of the confor-
mational space, a fragmentation procedure,107,109

based on division of polypeptide and nucleotide
sequences into overlapping regions, is used for RNAs
longer than 1000 nucleotides and proteins longer
than 750 amino acids.

Another method called RPISeq predicts interac-
tions combining protein and RNA features in SVM
and RF classifiers.98 In RPISeq, RNA sequences are
encoded by frequency of nucleotide tetrads (i.e., 4-
mer combinations of [A,C,G,U]), while protein
sequences are represented using 3-mer of 7 amino
acid types ([A,G,V], [I,L,F,P], [Y,M,T,S], [H,N,Q,
W], [R,K], [D,E], and [C]). More specifically, the
RNA is represented by a 4 × 4 × 4 or 256-
dimensional vector, in which each feature represents
the 4-mer normalized frequency appearing in a RNA
sequence (e.g., CCAU, AUUG, and GACA). The pro-
tein instead is encoded by a 7 × 7 × 7 or 343-
dimensional vector, where each element of the vector
corresponds to the normalized frequency of the cor-
responding triple of amino acids in the sequence. The
protein and RNA vectors serve as input for the SVM
and RF to predict whether the protein–RNA pair
interacts. RPISeq shows significantly high perfor-
mances in the training phase (accuracy = 0.89) and
high sensitivity / low specificity when applied to other
sets.81,92,106

Future Computational Challenges
catRAPID and other computational tools96,98 predict
the interaction propensity of a protein–RNA pair to
interact, dismissing other proteins involved in the
physical binding. As a matter of fact, RBPs often
form complexes and bind together to their target
RNAs (see also ‘RIP’ section in Experimental Meth-
ods for Detection of Protein–RNA Interactions).110

A recent computational approach developed to pre-
dict transcription factor binding sites suggests that
additional information retrieved from protein–
protein interactions improves the performances of
current predictions.111 Thus, as done for DNA-
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FIGURE 3 | Methods to predict RNA binding sites. We calculated
performances of BindN,93 BindN+,78 Pprint,79 RNAproB,101 RNABindR
+,80 and catRAPID signature83 on a set of proteins whose RNA-
binding sites have been validated through X-ray and NMR techniques.
As in a recent work,102 three protein classes ‘fold,’ ‘family,’ and
‘superfamily’ were retrieved from SCOP.102 Performances were
estimated using the formula (sensitivity + specificity)/2 on 90 folds,
126 families, and 100 superfamilies (details at http://service.
tartaglialab.com/static_files/shared/documentation_signature.html).
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binding proteins, integration of protein–protein net-
work layers112 could boost considerably interaction
predictions. We envisage that network-based meth-
ods will shed light on the complex life of newly dis-
covered RBPs, their dynamics and role in human
diseases.113

A number of reports indicate that RBPs with
many partners are enriched in structural disor-
der.114,115 The lack of stable tertiary structure
increases the ability of RBPs to interact with multiple
partners116 and promotes the formation of transient
ribonucleoprotein complexes, which are discussed in
section Beyond the Protein–RNA Complex:
Membrane-Less Organelles. Moreover, some RBPs
have been found to be enriched in glycine, arginine,
lysine, and tyrosine motifs29 as well as a number of
other patterns71 that could promote transient interac-
tions. Thus, to reach a complete and biologically rele-
vant understanding of protein–RNA interactions,
complex formation should be studied as a dynamic
process. Data based on techniques such as surface
plasmon resonance could allow measurement of
interactions in real time providing both equilibrium
and kinetic information for the development of new
methods.16

BEYOND THE PROTEIN–RNA
COMPLEX: MEMBRANE-LESS
ORGANELLES

RBPs and RNAs interact through different types of
contacts that facilitate not only the formation of olig-
omeric complexes but also other types of dynamic
assemblies.31 Interestingly, a number of RBPs associ-
ate through weak contacts present in structurally dis-
ordered regions117 to trigger a process known as
liquid-to-liquid phase separation.118 Through liquid-
liquid demixing, ribonucleoprotein assemblies form
distinct compartments in the cytoplasm and nucleo-
plasm119 that in vivo can act as membrane-less
organelles.5–7 The liquid nature of these assemblies
allows rapid diffusion favoring chemical reactions on
biological timescales.

Two of the most common macromolecular
assemblies are processing-bodies (P-bodies) and stress
granules.7,120 These assemblies are associated with
mRNA degradation and storage, respectively, and
are built in response to different environmental sti-
muli.8 P-bodies and stress granules are conserved
throughout evolution and appear in yeast, plant,
nematode, fly, and mammalian cells.121

Ribonucleoprotein assemblies have special physi-
cochemical properties that can be investigated using

computational approaches such as the multiclever-
Machine.122,123 With respect to the yeast proteome
(globular proteins with sequence redundancy < 40%),
the multicleverMachine predicts that proteins forming
P-bodies and stress granules are depleted in hydropho-
bicity and enriched in structural disorder and RNA-
binding ability (p-values < 10−5; Fisher’s exact test;
Figure 4), which is in agreement with experimental
evidence.72,126 Hydrophobicity and structural disorder
highly discriminate the two sets (areas under the ROC
curve AUC in the range of 0.70–0.80; calculations
available at http://www.tartaglialab.com/cs_multi/
confirm/1207/c51ef6cff3/).

An important property of the membrane-less
organelles is the wide spectrum of structural
states,126 which is promoted by the different type of
interactions between protein and RNA components.
The RNA content influences viscoelasticity of assem-
blies, as well as exchange rate with the surrounding
milieu, fusion and fission kinetics.127 As a matter of
fact, the protein–RNA contacts can be quite diverse:
strong to stabilize RNAs from synthesis to degrada-
tion or weak to bind RNAs at a precise moment and
place.128 A better understanding of the physical char-
acteristics of ribonucleoprotein components is crucial
to investigate their function and dysfunction.

RBP Assemblies and Disease
Current literature indicates that the structure of a
ribonucleoprotein assembly depends on a delicate
equilibrium between protein and RNA components
that is regulated by the quality control machinery
(e.g., chaperones).129 Incorrect assembly/disassembly
of such macrostructures can jeopardize molecular cell
homeostasis. Intriguingly, RBPs found in liquid
phase-separated assemblies are enriched in structural
disorder that is also associated with a high risk of
misfolding and the formation of toxic protein aggre-
gates.126,129 Neurons appear to be especially suscep-
tible to failures in proteostasis, a major source of
neurodegenerative diseases. Indeed, several dementias
and motor-neuron diseases are associated with accu-
mulation of disordered RBPs, such as TAR-DNA-
binding protein 43 in Amyotrophic Lateral Sclerosis
(ALS) or Ataxin 1 in Ataxia.130

In this context, chaperones perform the impor-
tant task to keep protein homeostasis and prevent
disease. They are upregulated upon cellular stress
(e.g., diabetes-induced [glyc]oxidation stresses) to
limit the accumulation of damage131 via folding assis-
tance, blocking aberrant interactions, disaggregating
proteins, and facilitating protein degradation.132–136

We speculate that the ability to form phase-separated
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ribonucleoprotein assemblies requires a tightly regu-
lated control machinery, that in stress conditions and
aging can be compromised and drive to formation of
toxic aggregates. Thus, chaperones can be applied to
develop therapeutic interventions, from controlling the
initial aggregative events in the ER, to blocking the
assembly of cytotoxic aggregates.

Future Challenges in the Characterization
of RBP Assemblies
A major challenge in the future will be to identify
the components of each ribonucleoprotein assembly
and pinpoint the defects associated with RBP
dysfunction.128,137 Currently the characterisation of

solid phase separated aggregates is possible.138 How-
ever, the study of the liquid phase assemblies is more
complex due to their fast exchange with the cell
milieu, i.e., their rapid dissolution impeding its
isolation.

Solid aggregates appear in many diseases, includ-
ing Huntington’s, Creutzfeldt-Jakob, and Alzheimer’s
disease. This suggests a common hallmark139 and the
existence of common pathways for pharmacothera-
peutic targeting.137,140 In this context, it is crucial to
understand the cellular mechanisms controlling health
conditions as well as the factors triggering toxicity.
Interestingly, the metastable nature of the liquid
assemblies offers the possibility to use endogenous bio-
chemical pathways to reverse pathological states.137
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FIGURE 4 | Features of yeast proteins forming ribonucleoprotein assemblies. Using physicochemical properties, the multicleverMachine
approach122,123 discriminates P-bodies and stress granules from other globular proteins. The datasets employed in this analysis comprise 52 P-body
and 62 stress granule proteins, previously reported in experimental works,124 as well as five random sets of 100 globular proteins from Astral
SCOPe 2.05 (<40% sequence identity).125 Three specific properties are reported: (a) nucleic acid binding, (b) hydrophobicity, and (c) disorder
propensity. For each feature, enrichment or depletion of a set is indicated with a specific color: green indicates that proteins contained in P-bodies
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indicates no significant differences between the sets. As observed in previous experimental works,63,104 proteins found in P-bodies and stress
granules are more structurally disordered and prone to bind nucleic acids as well as less hydrophobic (p-values <10−5; Fisher’s exact test). Sets
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As a matter of fact, prion protein neurodegeneration
can be reduced by inhibition of RNA granules path-
way and stimulation of protein synthesis.140

CONCLUSION

RBPs functions include protection, modification, and
transport of transcripts to their translation or degra-
dation sites (Figure 1). The scenario is particularly
complex considering the fact that not only RBPs reg-
ulate RNAs but also RNAs regulate RBPs.141,142

Experimental techniques aiming to reveal RNA–
protein contacts will have to uncover more details of
such interactions (see ‘protein-centric’ and ‘RNA-cen-
tric’ experimental methods). The study of RBPs will
benefit from new computational approaches taking
into account information of protein–protein net-
works (see section Computational Methods for
Detection of Protein–RNA Interactions).

An important aspect to consider while building
computational models is that many proteins exhibit
RNA-binding activity without having canonical
RNA-binding domains.30,71,117 As observed for
protein–protein interactions, structurally disordered
regions bind with high specificity and low affinity.143

Hence, noncanonical domains, which are enriched in
structural disorder, could promote low affinity inter-
actions with RNA molecules.108 Accordingly, com-
putational methods predict that the RNA-binding

ability of structural disorder is more pronounced in
noncanonical RBPs, indicating that unfolded regions
promote RNA interactions.108 With respect to the
RNA-binding ability of full-length proteins, the con-
tribution of disorder is high at low-interaction pro-
pensities, which suggests that a large number of
transcripts can be targeted by noncanonical
domains.108 How many other RBPs lacking canoni-
cal binding domains exist in nature?69,83 The reper-
toire of RBPs needs to be expanded in order to link
transcriptomic with metabolomic properties,144

which will involve the development of new computa-
tional strategies.80,83

Most importantly, future computational and
experimental investigations will have to focus on
noncanonical protein–RNA complexes.145 Indeed,
transient interactions, promoted by structurally dis-
ordered regions in RBPs, often induce phase-
separation in the nucleus or cytoplasm (see
section Beyond the Protein–RNA Complex:
Membrane-Less Organelles).6 The functionality of
phase-separated protein–RNA assemblies is still
under investigation but appearance of solid protein–
RNA aggregates has been linked with devastating
diseases, such as for instance ALS (see section RBP
Assemblies and Disease).137,140 Thus, studying
protein–RNA assemblies will be essential to better
understand the etiopathogenesis of specific diseases
and to design new therapeutic strategies.
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