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Abstract

The effectiveness of a Metamodel-Embedded Evolution Frame-
work for model parameter identification of a Smoothed Particles
Hydrodynamic (SPH) solver, called DualSPHysics, is demon-
strated when applied to the generation and propagation of pro-
gressive ocean waves. DualSPHysics is an open-source code
that provides GP-GPU acceleration, allowing for highly refined
simulations. The automatic optimization framework combines
the global-convergence capabilities of a Multi-Objective Ge-
netic Algorithm (MOGA) with Response Surface Method (RSM)
based on a Kriging approximation. The proposed Metamodel-
Embedded Evolutionary framework is used to find the set of SPH
model parameters that ensures an accurate reproduction of a 2nd

order Stokes wave propagating in a numeric flume tank. In order
to demonstrate the consistency of the obtained results, the opti-
mum set of parameters found by the framework is finally used
to reproduce other 2nd and 3rd order Stokes waves propagating
over the same flume tank.
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1. Introduction

One of the major complexities in the study of coastal and ocean
engineering process consists in the necessity of modeling small
scale phenomena, such as boundary layer flows and turbulence,

∗Email address for correspondence: riccardo.angelinirota@uniroma1.it

for physical systems involving large scale problems such as
wave run-up, wave breaking, fluid-structure interaction (FSI) and
coastal flooding. As is typical in numerical problems, two con-
flicting tasks need to be tackled: on one hand prediction models
must rely on accurate physics description; on the other hand the
computational burden of the numerical model needs to suit engi-
neering requirements.

The ability to correctly reproduce a certain wave field is one of
the fundamental requirements for prediction tools. Many theories
have been formulated over the past years to model different wave
types, but the complexity of analytic models restricts their prac-
tical utility. In the past 20 years easier accessibility of high per-
formance computing allowed application of Computational Fluid
Dynamics (CFD) techniques to coastal engineering problems.
In this respect different numerical methods have been presented
for the solution of wave propagation problems. One success-
ful application has been presented by Zijlema et al. (2011),
who developed a time-domain, depth-averaged, non-hydrostatic
model for free surface waves based on Non-Linear Shallow Water
(NLSW) equations for large domain applications. NLSW equa-
tions are a simplified form of the Navier-Stokes equations, as-
suming depth-integrated free-surface flows. This model has been
widely used for the prediction of coastal engineering problems,
such as wave transformation and propagation over small sloped
beaches, wave breaking, wave run-up and wave overtopping of
coastal defenses (see for instance Suzuki et al. (2011), Smit et al.
(2014) and Suzuki et al. (2017)). Kennedy et al. (2000), Mad-
sen et al. (2002) and Fuhrman and Madsen (2008) presented a
Boussinesq model in which non-linearities and wave dispersion
are retained in the solution of depth integrated N-S equations.

Limitations of Boussinesq and NLSW in computing vertical
flow characteristics and accurately reproducing phenomena such
as wave flow through porous structures, have been overcome by
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using fully 3D, unsteady Navier-Stokes (N-S) models for the so-
lution of pressure, velocity and turbulence characteristics. N-S
models are applicable to a wide range of coastal structures of
complex geometry, both permeable and impermeable. Among N-
S techniques, the most popular models are based on an Eulerian
flow description, in which fluid motion equations are written con-
sidering a specific fixed location in the fluid domain. VOFbreak
(Austin and Schlueter, 1982), FLOW-3D (see e.g. Bayon et al.,
2016) and IHFOAM (Higuera et al., 2013) are some examples of
N-S Eulerian models. The most relevant flaw of these models is
represented by time consuming mesh generation processes, often
required for complex geometries. Moreover Eulerian approaches
present severe technical challenges associated with implement-
ing conservative multi-phase schemes able to capture the non-
linearities within rapidly changing geometries. A second family
of N-S techniques consists in meshless models in which the wave
field is specified through a Lagrangian approach and the tracking
of free surface is an intrinsic property of the fluid discretization in
unit elements or particles. Among Lagrangian meshless models,
Smoothed Particle Hydrodynamics method (SPH) has recently
gained significant popularity in the coastal engineering field (Vi-
oleau, 2012). In SPH, the fluid is discretized into a set of parti-
cles. Each of these particles is a nodal point where physical quan-
tities (e.g. position, velocity, density, pressure) are computed as
an interpolation of the values of the neighboring particles.
In this paper we employ a SPH-based model (DualSPHysics, see
Crespo et al., 2015) to reproduce different progressive waves on
a flat-bottom 2D tank ending with a sloped beach. DualSPHysics
is an open-source code based on the Smoothed Particle Hydrody-
namics (SPH) method. It has been derived from the SPH formu-
lation implemented in the open-source code SPHysics (Gomez-
Gesteira et al. (2012a)). DualSPHysics has been mainly used to
study wave transformation and breaking at detailed scale close to
the shoreline. Many studies recently demonstrated the validity of
this method. Barreiro et al. (2013), Vacondio et al. (2013), Rota
et al. (2014), Altomare et al. (2014), Altomare et al. (2015a) and
Altomare et al. (2017) are some of the many examples available
in literature. The particle formulation of SPH methods is par-
ticularly suitable for modeling coastal processes especially in the
surf and swash zones characterized by strong non-linearities such
as run-up and wave breaking. The computational burden required
for large domain simulations becomes unbearable, hence the GP-
GPU acceleration implemented in DualSPHysics, allows for fea-
sible computational requirements as demonstrated by Valdez-
Balderas et al. (2013) and Vacondio et al. (2014).
In general, any numerical model requires a preliminary validation
study in which numerical predictions are compared to analytic
results or experiments. This stage gives the chance to calibrate
numerical models by opportunely tuning parameters in order to
increase their fidelity in the description of each specific problem.
A major complexity in properly tuning SPH model parameters is
due to their dependence on the particular problem that needs to be
solved. Considering the physical and mathematical meaning of
each parameter, this paper proposes an innovative method, based
on data mining, for the calibration of the model setting that better

suits a specific problem. The problem under investigation is the
propagation of a wave train in a tank. In particular the numerical
calibration process is applied to minimize the error between the
computed and the theoretic 2nd order Stokes wave profile. To
achieve this target, a two-step computational framework for pa-
rameter calibration has been set up based on a combination of a
Multi-Objective Optimization Algorithm and a Response Surface
Method (RSM).
As outlined by Simpson et al. (2008) the improvements in com-
putational resources are nowadays used to add complexities to
the solution of particular problems. High-fidelity models are cre-
ated to fill the gap between numerical simulations and physical
observations. RSM (also referred to as metamodels or surrogate
models) represent a less computationally expensive emulator of
the original function under study. So they play a key role in
reducing computational effort when a large number of function
evaluations are needed. For a comprehensive review of surrogate-
based technique applications in water resources problems and
related issues the reader is referred to Razavi et al. (2012) and
Brunetti et al. (2017).
The paper is organized as follows: theoretic background on
Stokes waves and wavemaker theory is provided in Section 2.
3 describes the formulation of the DualSPHysics solver, high-
lighting the physical and mathematical meaning of each of the
analyzed model parameters. The optimization-based calibration
framework is described in Section 4 in all its parts: the Multi-
Objective Optimization Algorithm (4.1), the RSM (4.2) and the
formulation of the objective function (4.3). Results obtained by
the proposed approach are presented and discussed in Section 5.

2. Physical and theoretical backgrounds of wave generation
and propagation

The parameter identification is carried out on a second order
Stokes wave. This wave theory is able to model a wide range
of wave amplitudes H

gT 2 and depth ratios d
gT 2 ; it is a widely em-

ployed model for ocean engineering problems. Moreover, the
non-linear theory at the basis of their mathematical formulation
allows for steep waves modeling. The wave profile η(x, t) is ob-
tained considering a 2D potential flow assumption:

η(x, t) = a cos(kx− ωt)+

+ ka2 · cosh(kd) [2 + cosh(2kd)]

4 sinh3(kd)
· cos [2 (kx− ωt)]

(1)

Where d is the water depth, H the wave height and T the wave
period. The non linear wave profile is obtained by superimposing
two harmonics of frequency ω and 2ω, solutions of the first and
second order problems respectively. Non linear Stokes wave the-
ory is generally valid for deep water for H

d � 1 and Ur � 10,
where Ursell number Ur is defined as follow:

Ur =
HL2

d3
(2)

In the context of a wave flume, progressive waves are generated
using a piston-type wavemaker (see e.g. Dean and Dalrymple,
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1991). The ratio between the expected wave height and the im-
posed stroke S of the wavemaker is theoretically provided by Eq.
(3).

H

S
=

2 (cosh(2kd)− 1)

sinh(2kd) + 2kd
(3)

3. Smoothed Particle Hydrodynamics for Numerical Mod-
eling of Progressive Waves

SPH method basically develops in two phases: a kernel approx-
imation and a particle approximation. The former involves the
representation of a field variable and its derivatives in a continu-
ous integral form by a suitable kernel function; the latter refers to
the discretization process of the computational domain that is re-
defined by an initial distribution of discrete particles. According
to this discrete model, field variables on a particle are computed
by approximation using the nearest neighbor particles. The con-
tribution of the nearest particles is weighted according to distance
between particles. The kernel function W is used to measure this
contribution depending on the inter-particle distance that is de-
fined using a smoothing length h. The smoothing length is a
characteristic length used to define the area of influence of the
kernel and the kernel presents compact support to avoid contri-
butions with other particles beyond that distance.

3.1 Governing Equations

The basic mathematical formulation of the SPH relies on integral
interpolation functions. Therefore any function F can be com-
puted by the integral approximation according to Eq. (4).

F (r) =

∫
Ω

F (r′)W (r − r′, h)dr′ (4)

This function F can also be expressed in discrete form based on
particles. Thus, the approximation of the function is interpolated
at particle a and the summation is performed over all the particles
within the region defined by the compact support of the kernel as
in Eq. (5).

F (ra) ≈
∑
b

F (rb)W (ra − rb, h)
mb

ρb
(5)

where the volume associated to the neighboring particle b is
mb

ρb
,

with m and ρ being the mass and the density, respectively. The
kernel function W must fulfill several properties (see Monaghan,
1992), such as being positive inside the area of interaction, hav-
ing compact support, being normalized (

∫
Ω
W (x− x′) dx′ = 1)

and monotonically decreasing with distance. DualSPHysics im-
plements two different kernel functions, namely the cubic spline
(Monaghan and Lattanzio, 1985) and the quintic kernel function
by Wendland (1995). The former has been used in the present

work and can be expressed as follows:

W (r, h) =
7

4πh2


3
2q

2 + 3
4q

3 0 ≤ q ≤ 1
1
4 (2− q)3 1 ≤ q ≤ 2

0 q ≥ 2

(6)

In DualSPHysics, Navier-Stokes equations are solved consider-
ing weakly compressible fluid (Gomez-Gesteira et al. (2012b)).
Conservation laws of continuum fluid dynamics, in the form of
differential equations, are transformed into their particle forms by
employing kernel functions. The momentum equation proposed
by Monaghan (1992) has been used to determine the acceleration
of a particle (a) as the result of the particle interaction with its
neighbors (particles b) as in Eq. (7).

dva
dt

= −
∑
b

mb

(
P 2
b

ρb
+
P 2
a

ρa
+ Πab

)
∆aWab + g (7)

Here, v is the velocity, P the pressure, ρ the density, m the mass,
g = (0, 0,−9.81) ms−2 the gravitational acceleration and Wab

the kernel function that depends on the distance between parti-
cles a and b. Πab is the viscous term according to the artificial
viscosity proposed by Monaghan (1992). This term is defined as
follows:

Π =

{
αµabc̄ab
ρab

vabrab < 0

0 vabrab > 0
(8)

Here, rab = ra − rb and vab = va − vb and rk and vk are the
particle position and velocity, respectively. The mean speed of
sound is defined as

cab = 0.5(ca + cb) (9)

and the coefficient µab, as:

µab = hvab ·
r2
ab

(r2
ab + η2)

(10)

where, η2 = 0.001h2 and α is a coefficient regulating wave dissi-
pation if properly tuned. Based on experiments on a wave flume,
Altomare et al. (2015b) proposed a reference value of α = 0.01
for wave propagation and induced loading onto coastal struc-
tures.
The mass of each particle is constant, so that changes in fluid
density are computed by solving the conservation of mass or con-
tinuity equation in SPH form as stated in Eq. (11):

dρa
dt

=
∑
b

mbvab ·∆aWab (11)

According to the weakly compressible approach, pressure is
computed from density values of the particle using a stiff equa-
tion of state. The compressibility is adjusted in order to artifi-
cially lower the the speed of sound. This means that the size of
time step taken at any moment can be maintained at a reason-
able value. The time step is determined according to a Courant-
Friedrichs-Lewy (CFL) condition based on the currently calcu-
lated speed of sound for all particles. Time step adjustment,
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however, restricts the sound speed to be at least ten times faster
than the maximum fluid velocity. This implies density variations
must be lower than 1% to avoid introducing relevant deviations
with respect to an incompressible approach. Following Batchelor
(1969), the relationship between pressure and density follows the
expression in Eq. (12):

P = B

[(
ρ

ρ0

)γ
− 1

]
(12)

with B =
c20ρ0

γ
, γ = 7 and reference water density ρ0 =

1000
[
kg m−3

]
. The speed of sound c0 is defined at the ref-

erence density as:

c0 = c(ρ0) =

√
∂P

∂ρ
|ρ0 (13)

In DualSPHysics c0 from Eq. (13) is computed to be at least
equal to 10 times the maximum velocity in the system. The latter
is determined as the wave-front velocity of a dam-break case:

c0 = coeffsound
√
g hswl (14)

where hswl is the still water level and coefsound is usually taken
in the range [10;30].
The Symplectic time integration algorithm (Leimkuhler et al.
(1996)) has been used in the present work. This scheme is an ex-
plicit second-order scheme with an accuracy in time of O(∆t2)
and involves both predictor and corrector stages. During the pre-
dictor stage the values of acceleration and density are estimated
at the middle of the time step according to the following formu-
lation: {

r
n+ 1

2
a = rna + ∆t

2 vna

ρ
n+ 1

2
a = ρna + ∆t

2
dρna
dt

(15)

where the superscript n denotes the time step and t = n∆t. Dur-

ing the corrector stage, the term
dv

n+ 1
2

a

dt
is used to calculate the

corrected velocity, and therefore the position, of the particles at
the end of the time step according to the following Eq. (16):vn+1

a = v
n+ 1

2
a + ∆t

2
dv
n+ 1

2
a

dt

rn+1
a = r

n+ 1
2

a + ∆t
2 vn+1

a

(16)

The corrected value of density
dρn+1
a

dt
is finally calculated using

the updated values of vn+1
a and ρn+1

a . A variable time step is
calculated based on the CFL condition, the force terms and the
viscous diffusion term. According to Monaghan (1999) the vari-
able time step ∆t is computed according to Eq. (17).

∆tf = CFL ·min ∆tf ,∆tcv

∆tf = mina
√

h
|fa|

∆tcv = mina
h

cs+maxb |
hvab·rab
(r2ab+η2)

|

(17)

where ∆tf is based on the force per unit mass (|fa|), and ∆tcv
combines the Courant and the viscous time step controls. In
DualSphysics, boundaries are described using a discrete set of
boundary particles that exert a repulsive force on the fluid par-
ticles as they are approached. A dynamic boundary condition
where the boundary particles satisfy the same equations as the
fluid particles is used (Crespo et al., 2007). However, they do not
move according to the forces exerted on them. Instead, they re-
main fixed (fixed boundary) or they move according to some ex-
ternally imposed movement (e.g. gates, flaps, etc.). Using such
a boundary treatment, when a fluid particle approaches a bound-
ary particle, as the relative distance decreases beyond the kernel
range, the density of the boundary particles increases giving rise
to an increase of the pressure. This results in a repulsive force
being exerted on the fluid particle due to the pressure term in the
momentum equation.

3.2 Discussion on the selected model parameters for wave
propagation

Five model parameters have been selected for the parameter cali-
bration of DualSPHysics: the initial particle inter-space, the arti-
ficial viscosity coefficient, the coefficient for the speed of sound,
the smoothing length and the Courant-Friedrichs-Lewy coeffi-
cient. Even though SPH-based models have been already largely
applied for engineering purposes (e.g. Rogers et al., 2010, Bar-
reiro et al., 2013, St-Germain et al., 2013, Altomare et al., 2015a),
sensitivity analysis on the main model parameters has been car-
ried out manually for a limited range of values. The choice of
the ranges to be analyzed, far from being incorrect, was often
based on the authors’ expertise. To attain satisfactory simulation
results, the user’s selection of the model parameter can require
several attempts depending on the expertise in the particular nu-
merical method and in the specific phenomenon that is the object
of study. The selection of proper values for the model parame-
ter might also be case-dependent and can be accompanied with
higher or lower degree of accuracy, which will inevitably affect
the model results. This process is actually a sort of model ma-
nipulation, defined by Chau (2004) as a process that is used to
improve modeling results for representation of real phenomena.
Therefore, the mathematical and physical meaning of each model
parameter needs to and must be analyzed in setting up a numer-
ical simulations. This is of course also valid for DualSPHysics.
The proposed automatic optimization based approach is intended
to be a useful method to better support the expertise of the users,
both allowing exploration of wider ranges of parameter values
and accelerating convergence to the most suitable set for a spe-
cific problem. In this context, the capability of the SPH method
to deal with the propagation of long-crested sea wave in a flat-
bottom horizontal tank is studied. Wave propagation is charac-
terized by slow dynamics, with little energy dissipation. This
phenomenon differs from the classical application of free-surface
SPH to fluid-structure impact flows or violent flows involving
breaking waves and interface fragmentation. Rather than imple-
menting new numerical schemes or improving existing ones, the
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present work aims to explore the capabilities for wave propaga-
tion of DualSPHysics model.

3.2.1 Initial particle interspace, dp

The initial particle interspace, dp, is the grid size that is initially
used in SPH to locate the particles inside the domain at t = t0.
When the simulation starts, the fluid particles are free to move,
however the selected dp determines the total amount of fluid and
boundary particles, hence being an expression of the model res-
olution. Convergence studies are usually carried out to analyze
the influence of the model resolution on the results. This has been
done also in SPH and DualSPHysics (see for instance Altomare
et al., 2015a) however the optimal value of the initial particle
relative distance is case-dependent. Experience suggests to use
a value of dp that, for wave propagation purposes, would be at

least
1

10
of the wave heightH . Several authors, such as Altomare

et al. (2015a) and De Padova et al. (2014), show that increasing
the spatial resolution (i.e. using smaller values of dp) improves
the numerical model accuracy. However, convergence has not yet
been completely proved in SPH and the choice of this parameter
influences the contribution of artificial viscosity terms in Eq. (7)
and Eq. (8) (see De Padova et al., 2014).

3.2.2 Artificial viscosity coefficient, α

Recently De Padova et al. (2014) proposed a systematic analysis
focused on the effects of the artificial viscosity on the propaga-
tion and breaking of regular waves in a Weakly Compressible
SPH (WCSPH) model. Based on their results, they concluded
that the value of the artificial viscosity coefficient α can drasti-
cally modify the results of the simulation (see Eq. (8)). However,
in absence of any other numerical diffusion scheme (e.g. as in
Molteni and Colagrossi (2009), Antuono et al. (2010), Marrone
et al. (2011)), the pressure field obtained with the WCSPH for-
mulation contains non-physical high frequency noise (see Gotoh
et al. (2005) and Meringolo et al. (2017)). This noise is partially
damped out by introducing an artificial viscosity such the one de-
scribed by Monaghan (1992). De Padova et al. (2014) show that
using excessive values of viscosity coefficient lead to high dif-
fusivity and wave height under-prediction (particularly at break-
ing). On the contrary, if the empirical coefficient α falls below
a certain threshold, the model becomes unstable and the parti-
cles begin to move chaotically, even out of the computational do-
main. Furthermore, the choice of the optimal value of α should
be related to the particular smoothing length h and initial particle
resolution dp.

3.2.3 Coefficient for the speed of sound, coeffsound

In DualSPHysics the liquid phase is treated as weakly-
compressible media (see Eq. (12)-(15)). coeffsound in Eq. (15)
is an empirical coefficient usually selected in the range [10;30].
Besides the fact that the use of a WCSPH approach involves high

computational costs because of the needed time-space resolu-
tions, such a method is often affected by acoustic perturbations
related to the speed of sound (Meringolo et al., 2017). Even if dif-
fusive correction schemes have been largely introduced in SPH to
obtain more reliable pressure results, acoustic perturbations still
persist due to the weakly compressible approach. Furthermore,
low values of compressibility will lead to particle penetration if
density or pressure of boundary particles are too low. Therefore,
the selection of the coeffsound not only will influence the model
efficiency but also its accuracy, causing possibly unreliable re-
sults for engineering applications.

3.2.4 Smoothing length, h

The smoothing length h is computed in DualSPHysics as h =
coefh

√
dx2 + dy2 + dz2. In 2D, assuming dx = dz = dp and

dy = 0, it results in h = coefh
√

2 dp2 = coefh · dp
√

2. coefh
is an empirical coefficient, typically case-dependent. Based on
the authors’ experience, the smoothing length might be an even
more important parameter than diffusive schemes for reliable
wave propagation. The choice for coefh determines the value

of the dimensionless smoothing length ratio
h

dp
. According to

De Padova et al. (2014) the latter quantity should be
h

dp
≥ 1.4

for cases of regular wave breaking on plane slope. Experience
suggests that values ranging from 1.7 up to 2.5 provide more ac-
curate results with low wave decay for wave propagation in large
numerical domains. However, this has not been systematically
analyzed yet.

3.2.5 Courant-Friedrichs-Lewy coefficient, CFL

Using explicit time integration schemes, in DualSPHysics, the
time step is calculated based on the Courant-Friedrichs-Lewy
condition, the forcing term and the viscous diffusion term. The
CFL coefficient (see Eq. (17)) is a factor to correct minimum
criteria derived by the forcing term and the viscous diffusion
term. Usually, CFL = 0.1 or 0.2 should be used to keep the
mean water level stable.

4. Computational Approach to Model Parameter Identifi-
cation

The problem of identifying the parameters of the hydrodynamic
method is solved by the three-step approach shown in the flow-
chart of Figure 1. Phase 1 (operations bounded by a red dotted
rectangle) involves the use of an automatic optimization algo-
rithm (orange boxes) that, coupled to the SPH solver (blue box),
is used to find an initial set of feasible candidate designs. This al-
ready includes a preliminary search toward the desired solution.
In Phase 2 (highlighted by a blue dotted rectangle) the prelimi-
nary set of results are interpolated in order to formulate a surro-
gate model (red box) that allows for a continuous description of
the investigated domain. The same optimization process is con-
ceptually applied again in Phase 2 but the hydrodynamic solution
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is obtained using the surrogate model estimates. The results of
this optimization process are the so-called virtual designs.
In Phase 3 (highlighted by a green dotted rectangle), the optimal
virtual design found in Phase 2 (or eventually a set of possible
optimal designs) is verified through new SPH simulations, hence
generating a new real design set. In case the difference between
the virtual design and the corresponding real design is within a
given small tolerance ε, such a design can be chosen as the real
optimal design concluding the calibration of the SPH model pa-
rameters. On the contrary, if those two designs differ by a certain
amount greater than ε, the surrogate surface will be updated in-
cluding the new real design. The second optimization process is
repeated until convergence.
The architecture of the proposed approach, i.e. a Metamodel-
Embedded Evolution framework (Razavi et al., 2012), is in prin-
ciple comparable to other global convergence multi-objective op-
timization algorithms (e.g. Particle Swarm Optimizer) or other
exact (interpolating) emulators (e.g. Radial Basis Functions).

4.1 Population-based multi-objective optimization algo-
rithm

The Non-dominated Sorting Genetic Algorithm (NSGA-II)
proposed by Deb et al. (2002) is selected for the first phase of the
process. This is a well established Multi-Objective Optimization
Algorithm (MOGA) able to solve complex multi-modal con-
strained problems (see for instance Zitzler et al., 2000). Many
successful examples of the application of this optimization algo-
rithm to a variety of problems belonging to different disciplines
can be found in literature. It has been used for example in shape
optimization of unconventional ships (Vernengo and Brizzolara,
2017) and propellers (Gaggero et al., 2016) or in calibrating the
Soil and Water Assessment Tool (Zhang et al., 2013; Ercan and
Goodall, 2016).
This algorithm adopts different levels of classification of the
generated designs, creating sub-groups that are used during
the evolution strategy. Besides the classic genetic operators
(selection, crossover and mutation), the optimization process is
also driven by the so called crowding distance assigned to each
design in order to improve the exploration of the design space.

4.2 Surrogate Model for Data Interpolation

The interpolation of the reduced set of designs obtained at the
end of the first optimization process is performed using a Krig-
ing method. This is a technique first developed for interpolation
of geostatistical spatial data (Krige, 1951) and then formalized
for general interpolation problems (Matheron, 1963). Examples
of application of such a data interpolation method can be found in
many fields: for example in environmental-related problems (see
for instance Li et al., 2011; Rohmer and Idier, 2012; Tsoukalas
and Makropoulos, 2015; Barca et al., 2017)) or in fluid dynam-
ics applications (see e.g. Simpson et al., 2001; Duvigneau and
Chandrashekar, 2012). Further details on this method and on its
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Figure 1: High-level flow chart of the computational framework
for SPH model parameter identification. The three computational
phases are highlighted by colored dashed rectangles.

formulation can be found among the other in Jones et al. (1998),
Santner et al. (2003) or Forrester et al. (2008). There also exist
specific formulations based on the Kriging model that aim at im-
proving the prediction of the solution in unknown points of the
domain under investigation. For example by using anisotropic
semivariograms as in Friedland et al. (2016), by merging in-
formation from sources at different level of fidelity as proposed
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by Kennedy and O’Hagan (2000) and applied e.g. in Bonfiglio
et al. (2017) or by using particular rules on data co-variance as in
Clark Jr et al. (2016).
Kriging is mainly a linear interpolation method able to give a
prediction of the value of an objective function at an unknown
location of the domain under investigation using the observations
at known locations. The prediction is provided by weighting the
known values in the neighbors of the point of interest. Due to
the linearity of the Kriging estimator, the covariance can be used
to express the variance error. The covariograms of the objective
function, identifying the correlations among the data, are used
to define the weighting coefficients. The unbiasedness property
according to which the real and the predicted (virtual) value in a
given location should be the same is enforced by specific require-
ments on these weigh coefficients.
The computational domain is denoted by Ω ⊂ Rnp , being np
the number of free parameters of the problem. Considering a
point v =

[
v1, v2, ..., vnp

]
of the domain where the value of the

objective function χ(v) is unknown, and a given number nv of
neighbor points in the proximity of the desired estimation point,
the Kriging estimation χ̃(v) of χ(v) in v ⊂ S is given by Eq.
(18):

χ̃(v)− E(v) =

nv∑
i=1

λi(v) · [χ(vi)− E(vi)] (18)

whereE(v) andE(vi) are the expected values of χ̃(v) and χ(vi)
respectively, and λi(v) are the weights coefficients for the esti-
mation point v.
Assuming an isotropic stationary model, the covariance C of the
function χ of two points (vi,vj) depends only on the distance
between the two. Hence the covariance and the covariance matrix
are defined by the following Eq. (19) and Eq. (20), respectively:

C(χ(vi), χ(vj)) =E[(χ(vi)− E(χ(vi)))·
· (χ(vj)− E(χ(vj)))]

(19)

C =

∣∣∣∣∣∣∣∣∣
σ2 C(||v1 − v2||) · · · C(||v1 − vnv ||)

C(||v2 − v1||) σ2 · · · C(||v2 − vnv ||)
...

...
. . .

...
C(||vnv − v1||) C(||vnv − v2||) · · · σ2

∣∣∣∣∣∣∣∣∣
(20)

The difference between the predicted function value at a point
χ̃(v) (virtual design) and its real value χ(v) is called the estima-
tion error, as defined in Eq. (21):

ε(v) =
χ̃(v)− χ(v)

χ(v)
(21)

To build an optimal function estimation method the weight coef-
ficients λi(v) are derived in order to ensure the minimization of
the variance of the estimation error. This condition is written as
follows:

∂E[(χ̃(v)− χ(v))2]

∂λi(v)
= 0 (22)

Developing Eq. (22) and imposing the unbiasedness condition
on the weight coefficients result in a constrained optimization
problem that can be solved by Lagrangian multiplier technique,
leading to the definition of a closed form for the Kriging predictor
model.

4.3 Objective functions for progressive wave propagation

The aim of the automatic calibration framework is to obtain the
set of model parameters that ensures a stable propagation of a
given wave. Here a 2nd order Stokes wave is chosen but the
method is general and is in principle applicable to every kind of
wave.
Both space and time wave characteristics are monitored. As a
consequence, two objective functions are defined in terms of spa-
tial and time errors of the numerical wave with respect to the the-
oretical wave, giving rise to a multi-objective optimization prob-
lem.
The computational domain is defined in a fixed Cartesian refer-
ence system centered at the intersection between the bottom of
the tank and the wavemaker at rest. The tank has a flat bottom of
length LTank = 15 m ending on a sloped beach used to damp
the incoming waves. The initial water depth is d = 1.2 m. The
computational domain with a developed wave is shown in Figure
2. Wave profile ηSPH(x, t) is marked by blue dots.
According to Eq. (23) the objective function in space FS is de-
fined as the root mean square of the relative errors between the
theoretical wave profile η(x, t) and the computed one at a given
time t = t̄. t̄ is chosen to avoid the first transient phase of the
simulation. The time objective function FT has the same defini-
tion but considering a wave profile measured at a fixed location
x̄
L = 1

3 over a suitable range of time steps (see Eq. (24)). The
simulation time has been choose in order to avoid reflections of
the first waves that have reached the sloped beach (which is dis-
sipative too).

FS =
1

η̄(x, t̄)

√√√√ np∑
i=1

(ηSPHi (x, t̄)− ηi(x, t̄))2 (23)

FT =
1

η̄(x̄, t)

√√√√n∆t∑
i=1

(ηSPHi (x̄, t)− ηi(x̄, t))2 (24)

5. Results of the Identification Method for a 2nd order
Stokes Wave

The goal of the optimization-based framework is to calibrate the
SPH parameters with the goal of accurately reproducing a 2nd

order Stokes wave of amplitude H = 0.1 m and length λ = 2
m. The five-dimensional space of parameters is described in Ta-
ble 1 where we indicate lower and upper bounds of each variable
together with five relevant SPH parameters selected for the cal-
ibration of the wave generation model. A uniform distribution
has been assigned to each of them. The dp parameter is directly
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Figure 2: Example of computational domain used to resolve the
wave generation. The free surface profile is highlighted by blue
dots while particle velocities are shown using colors from blue to
white.

Table 1: SPH model parameter involved in the calibration pro-
cess.

SPH Model Parameter Lower bound Upper bound
H

dp
3.5 12.5

coeffsound 10 30
α 0.001 0.03
h 0.5 2.0
CFL 0.100 0.50

related to the number of particles used for the simulation. There-
fore it strongly affects the required computational time. Its value
is selected so that the ratio H

dp results in the range (3.5, 12.5). The
suggested value of Hdp = 10 is then included in these bounds. The
lower bound is chosen to achieve a reasonable limit on the overall
computational time. As described in Section 3, coeffsound is a
coefficient modeling the speed of sound at the reference density
while α is a coefficient used in the artificial viscosity computa-
tion. The Courant-Friedrichs-Lewy (CFL) condition, together
with a forcing and a viscous diffusion terms, regulates the time
step for the explicit time integration scheme. These parameters
have a direct impact on numerical issues related to the solver
(such as possible flow instability, particle elimination and over-
damped waves).
Figure 3 presents examples of possible inaccurate predictions
of the wave profiles for the 2nd order Stokes wave over the
selected flume tank, occurring during the automatic optimiza-
tion process. All three simulations have been carried out with
dp = 0.01, coeffsound = 15.8. Simulation SPH − A, consid-
ered as a reference in this example, has CFL = 0.5, h = 1.8 and
α = 0.0035. With respect to the reference, simulation SPH−B
has CFL = 0.176 and α = 0.05, while simulation SPH − C
has CFL = 0.176 and h = 0.86. All the values have been
automatically selected by the identification framework. The pre-
dicted wave shapes strongly differ from the theoretic solution, ul-
timately demonstrating the sensitivity of the solution to the model
parameters.
The NSGA-II optimization algorithm has been run for about 7

generations in Phase 1. Based on previous experiences, accord-
ing to the rule nDesigns = 10 ∗ nParameters (also used e.g. in
Jones et al., 1998) each generation is made of 50 candidate de-
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Figure 3: Comparison of theoretic (solid black curve) and
(failed) numerical time series of surface elevation of the 2nd or-
der Stokes wave measured at x = 5 m from the wave maker.
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Figure 4: Evolution of the two objective functions during the
optimization process. Red dots for Fs and green dots for Ft.

signs resulting in about 320 total designs evaluated. The initial
Design of Experiments (DoE), i.e. the first generation of the algo-
rithm has been sampled in the five-dimensional parameter space
using a Sobol algorithm. The crossover probability has been set
to CR = 0.9% and the mutation probability to CM = 0.6%.
The two optimization histories for the space and time objective
functions are shown in Figure 4. This plot presents the evolution
of the two objective functions during the optimization computa-
tion. The algorithm is able to reduce the initial spread among
the solutions by minimizing the values of both objective func-
tions. The genetic algorithm optimization is interrupted before
complete convergence is reached, with objective functions show-
ing a trend toward the optimum.
Considering this first set of results, the effect of each parameter

on the objective functions has been preliminary analyzed by us-
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ing the t-Student test, originally developed by Gossett (Student,
1908). This statistical test might be used even on a very small
set of sampled data (De Winter, 2013) without need of bootstrap-
ping, as happens e.g. in other variance based methods for sensi-
tivity analysis (Pianosi et al., 2015). The value of the t parameter
is obtained according to Eq. (25).

t =
|Ml −Mu|√
S2
G

nu
+

S2
G

nl

(25)

Where S2
G is the general variance computed by Eq. (26), S2

u and
S2
l are the variances of the designs for the output variable x in the

upper and lower parts of the domain respectively as in Eq. (27)
and (28).

S2
G =

(nl − 1)S2
l + (nu − 1)S2

u

(nl + nu − 2)
(26)

S2
u =

∑
(xu −Mu)2

(nu − 1)
(27)

S2
l =

∑
(xl −Ml)

2

(nl − 1)
(28)

Mu and Ml are the means of the values of the output variable x
in the upper and lower parts respectively of domain of the input
variables while nu and nl are the number of values in the up-
per and lower parts of that domain. According to this definition,
the significance represents the probability that the difference be-
tween upper and lower ranges of the response variable is due to
chance. Then, low values of significance mean a stronger relation
between factor and response variable while high values stand for
weaker factor-response relation. As already applied in Vernengo
et al. (2016), the influence of each parameter is evaluated as the
opposite of the Student t-test significance t. Results of this anal-
ysis are represented in Figure 5 in a normalized form (i.e. each
significance is divided by the overall summation on all the param-
eters). Both the objective functions are affected by the selected
model parameters in the same extent. Smoothing length coeffi-
cient h and the CFL cover in both cases more than the 60% of
the total percentage of the significance. coeffsound is the third
most influencing variable followed by the artificial viscosity co-
efficient α ranging from 12% on FS up to 13.6% on FT . In this
case, the number of particles governed by dp does not seem to
have a relevant impact on the simulation.
This analysis concludes the computations performed in Phase 1.
At the end of Phase 1 the number of objective function evalua-
tions do not allow to clearly identify the so-called Pareto Frontier,
i.e. the extreme boundary of the non-dominated solutions. This is
due to a certain dispersion of the solutions that the optimization
algorithm has not been able to tighten because of the relatively
small number of generations.
In Phase 2 we construct a Kriging surrogate model for each ob-
jective function, using a subset of 100 designs from the opti-
mization analysis of Phase 1 computation. These 100 designs
are selected from the tails of the optimization histories, hence
excluding the first 220 designs that show relatively higher disper-
sion. Both surrogate models are preliminary analyzed by using a

cross-validation procedure according to the Leave-one-out tech-
nique: each ith design is removed from the design space and a
surrogate model is generated based on the nP − 1 designs. We
use the surrogate model to predict the objective function for the
ith design and we compare Kriging prediction with the value ob-
tained by CFD simulation. The estimation error, defined in Eq.
(21), is on average equal to εFS = 10.39% and εFt = 8.86%
FS and Ft surrogate models. Despite the non-negligible average
error, these models are able to properly predict the trends of the
responses as shown in the following discussion of the results. We
could reduce the average error by constructing surrogate models
using different data sets, but in the context of the present study
we employ the Kriging models to improve and confirm the pre-
diction given by the genetic optimization algorithm.
Figure 6 presents the solutions found using this innovative op-
timization process in the space of the two objective functions
where we can visually identify the Pareto Frontier. Figure 6 also
shows the initial set of designs and the final optimum (both from
Kriging response surface and from the SPH computation). Us-
ing this second optimization process we were able to analyze
about 60000 cases in few minutes on a single cpu. Each new
wave evaluation can be cheaply sampled from the response sur-
face constructed using the Kriging surrogate model. The whole
set of designs evaluated during the surrogate-based optimization
is presented in Figure 6 by means of blue dots which finally iden-
tify the Pareto Frontier.
When using such a kind of Metamodel-Embedded Evolution
Framework there are choices and relevant issues to be aware of
(see Razavi et al., 2012). Examples are the size of the initial
DoE, possible increases of inaccuracy due to the use of multiple
surrogate models, overfitting of the surrogates due to the con-
formability factor. Most of these issues are difficult to predict in
advance and many choices are based on users’ experience and
preferences. So beyond the validation of the single models of the
framework (i.e. the SPH solver and the kriging interpolation) a
further verification of the obtained results is required to assess
the validity of the process.
The best Pareto solution found using the Kriging approximation
has then been directly computed using the SPH solver in order to
verify the real improvements achieved in Phase 2. Overall results
of this computation are summarized in Table 2. The surrogate-
based optimization is ultimately able to reduce both objectives by
∆FS = −15.7% and ∆FT = −9.5% compared to Phase 1. The
optimal set of model parameters is reported in Table 3.
Figure 7 demonstrates the good agreement between the time evo-
lution at xL = 1

3 of the simulated 2nd order Stokes wave obtained
with the optimal set of model parameter (Best Pareto (Real)-
Phase 2) and the theoretic wave profile.
Figure 8 displays as a bubble-chart the SPH solutions used to
generate the surrogate model in the plane of the two objective
functions. The H

dp parameter is shown using both bubble size and
color. It is not trivial to understand the trends of both objective
functions with respect to e.g. the selected parameter. The ratio
H
dp has a strong impact on the computational time but its effect
on the objective functions depends on the combinations of the
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Figure 5: Influence of each model parameter with respect to Ft (left side) and Fs (right side). CFL in blue. coeffsound in yellow. h in
grey. α in red. dp in green

other parameters. This is highlighted in Figure 9 for a subset of
five SPH simulations. Increasing that ratio from a reference value
of H

dp = 4.5 (blue circle) might also lead to double the compu-
tational time while the objective functions do not show a clear
monotonic trend. This exactly depends on the combination of all
the model parameters involved in the simulation. This clarifies
the need for an automatic procedure for parameter calibration.
The optimum set of parameters does not have the maximum al-
lowed value of H

dp , theoretically related to the highest possible
accuracy (i.e. the finest particle resolution), and the use of the
framework avoids screening all the possible solutions and allows
selection of those that can be a priori considered the most accu-
rate.
Finally, the effectiveness of the results obtained by the calibration
model has been proven on four different waves, i.e. two 2nd or-
der Stokes waves and two 3rd order ones. Simulated waves have
been compared with the corresponding theoretic profiles and the
two objective functions used during the calibration process have
been computed according to Eq. (24) and Eq. (23). Results of
this additional verification study are included in Table 4. Re-
sults of the comparison between the time evolution of the nu-
meric wave profile and the theoretic one of a 3rd order Stokes
wave are shown in Figure 10 and 11. In the former the wave pro-
files are taken at x

L = 1
3 . In the latter two other slices at x

L = 2
3

and x
L = 1 have been considered. In these last cases fewer wave

periods are shown because, as already mentioned, the simulation
time has been set to avoid the reflection of the first wave reach-
ing the sloped beach. The good results achieved by these final
comparisons on both 2nd and 3rd order Stokes waves different
from the one used for calibration confirmed the validity of the
proposed method based on different optimization techniques for
this specific case.

Table 2: Results of the surrogate-based optimization.

Best-Phase 1 Pareto (Kriging)-Phase 2 Pareto (SPH)-Phase 2
FS 2.11E−01 1.84E−01 1.91E−01

FT 1.27E−01 9.51E−02 1.07E−01

Table 3: Optimal set of the SPH model parameter resulting from
the calibration process on the selected theoretic 2nd order Stokes
wave.

SPH Model Parameter Optimal value
H

dp
10.204

coeffSound 15.80
α 3.54E−03

h 1.80
CFL 1.76E−01

Table 4: Verification of the optimal set of SPH model parameters
on other waves.

Wave type T [sec] H
L FT FS

Stokes 2nd order 1.14 0.033 1.02E−01 0.83E−01

Stokes 2nd order 0.76 0.033 1.86E−01 2.05E−01

Stokes 3rd order 1.27 0.070 0.61E−01 1.93E−01

Stokes 3rd order 0.76 0.070 1.64E−01 1.10E−01
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6. Conclusions

The time-consuming calibration of the model parameters of a
Smoothed Particle Hydrodynamics (SPH) needed to obtain ac-
curate physical results for a specific problem typically relies on
tedious one-at-the-time tunings which strongly rely on user expe-
rience. In this paper, we solve this task using an innovative multi-
objective optimization framework specifically developed to min-
imize the overall computational time needed to find the optimal
parameter set. The computational process involves three main
phases:

1. the initial exploration and sampling of the domain, aimed
at tightening parameter bounds, and performed by a multi-
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Figure 8: FS versus FT . Bubble-chart of the selected SPH solu-
tions for surrogate creation. H

dp is represented both as the bubble
size and by colors.
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objective optimization algorithm.

2. interpolation of resulting data set by a Response Surface
Method (RSM) in order to generate a surrogate model for
each objective function

3. optimization exploiting the newly generated surrogate mod-
els to perform a candidate optimum search able to minimize
both space and time errors with respect to a known solution.

The capabilities of the proposed framework are shown in an ex-
ample case, i.e. the simulation of a 2nd order Stokes wave prop-
agating in a numeric flume tank ending with a sloped beach. At
the end of Phase 1 an appreciable improvement of the errors be-
tween the theoretic and numeric waves is achieved but at the cost
of few hundreds SPH simulations (ranging from less than 1 hour
up to about 2 hours). The use of surrogate models gives a marked
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speed-up to the optimization process, allowing to compute about
60,000 extra designs in few minutes, leading to a final improve-
ment of ∆Ft = −15.7% and ∆Fs = −9.5% with respect to
the lowest error found from Phase 1. The accuracy of the SPH
model, properly tuned with the optimum numerical and physical
parameters identified for the selected theoretic 2nd order Stokes
wave, is finally verified on a set of four new Stokes waves of both
2nd and 3rd order. In all these cases the computed error functions
FT and FS provide consistent results of the same order of those
obtained on the wave used in the calibration process. This con-
firms that the results obtained by the proposed framework have a
fairly general validity for such a class of problems. Such results
also encourage the application of the proposed calibration frame-
work to other types of fluid related problems that can be solved
by this SPH method, such as wave-structure interaction, solitary
wave propagation or fluid-driven object dynamics.
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