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Abstract. 

 Industrial facilities often store a large amount of hazardous material and, in case of seismic 
event, there is a high probability that accidental scenarios as fire, explosion, toxic or radioactive 
dispersion may occur. Moreover, the structural configuration of industrial facilities are often 
the fruit of plants and functionality requirements, that lead to strong irregularities and different 
load resisting systems within the same structure. This paper presents a performance-based 
earthquake assessment of an industrial gas filter structure, characterized by the presence of im-
portant masses placed at significant height and of different horizontal resisting systems, such 
as moment resisting frames, inverted V bracings and diagonal bracings. Within the framework 
of the PROINDUSTRY research project critical failure mechanisms of industrial structures and 
relevant limit states are analyzed and discussed. The structural response is computed via non-
linear finite elements analyses of the static pushover (PO) and dynamic response history type 
(RHA). The seismic input is defined through Probabilistic Seismic Hazard Analysis (PSHA) 
and a set of natural Ground Motions (GM) which are selected and scaled with different criteria 
with respect to the Uniform Hazard Spectrum (UHS) and the Conditional Mean Spectrum 
(CMS). An overview of significant aspects of the structural performance assessment is pre-
sented with respect to input definition and choice of Intensity Measures (IM), irregular struc-
tural behaviour and probabilistic treatment of key Engineering Demand Parameters (EDP) for 
this type of industrial structure. 
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1 INTRODUCTION 

Recent earthquakes have pointed out the high vulnerability of industrial facili-
ties[1][2][3][4][5][6]. The risk associated to the failure of the plant, or a part of it, is very high 
since the consequences may be disastrous, in terms of human lives, environmental contamina-
tion and economic losses. These aspects make the risk assessment of industrial buildings par-
ticularly complex requiring different approach with respect to risk assessment of residential and 
commercial buildings [7][8]. Such buildings are characterized by structures often designed ac-
cording to old codes, which were not performance oriented or did not consider anti-seismic 
design. Some efforts were carried out in the past to address evaluation and upgrading of seismic 
performances of non-structural elements [9][10][11][12].  

Seismic design provisions for industrial plants can be found in ASCE/SEI 7-10 [13], ASCE-
SEI 43-05 [14], FERC 2007 (Liquified Natural Gas facilities) [15], API Standard 620 and 650 
(Storage Tanks) [16][17], UNI EN 1998-4 (Silos, tanks and pipelines)[18], UNI EN 1998-6 
(Towers, piles and chimneys) [19]. Such international codes define rules for performance as-
sessment at the component level, checking/comparing member demand with capacity through 
a traditional Performance Based Earthquake Engineering (PBEE) approach. These codes pre-
scribe also methods of nonlinear analysis, both static and dynamic, and rules for Response His-
tory Analysis (RHA) and Ground Motions (GMs) selection. A comprehensive review of Non-
Linear Response History Analysis (NL RHA) code procedures for different types of structures 
is carried out in the NIST GCR 11-917-15 document [20]. Despite the high number of refer-
ences in literature and international codes, to date, there is not a unique and recognized method 
for selecting and scaling GMs. 

In this paper, an industrial structure from the PROINDUSTRY project is selected as case 
study, and NL RHA are performed adopting two different GMs sets, respectively coherent with 
UHS and CMS. The results obtained in terms of different EDPs are investigated and discussed, 
focusing on the influence of the different GMs selection and scaling techniques. 

2 CASE STUDY DESCRIPTION 

The building analyzed in this paper is characterized by a mass placed at a significant height 
and different typologies of horizontal forces resisting systems, as it is shown in Figure 1. The 
same building was already adopted in [21] for the evaluation of the seismic behavior of steel 
structures equipped with self-centering devices [21].  

The building has a regular plan with dimensions 37.80 m x 16.94 m and total height 29.64 
m. The supporting structure, with a total height of about 10.80 m, has six bays in the longitudi-
nal direction and three in the transversal one. The horizontal loads resisting systems comprises 
moment resisting frames (X direction - ground floor), inverted V bracings (Y direction - ground 
floor) and diagonal bracings (X and Y directions - first floors). The total mass of the silo (23700 
kN), considering the structural elements and the infill material, represents the 86% of the total 
mass (27650 kN).  

A 3D model was created in OpenSEES [22] adopting the simplified geometry shown in Fig-
ure 1. The nonlinear analyses carried out through a more geometrically accurate model in [21] 
and the linear modal analysis, showed that the building behavior is governed by the deformation 
of the supporting structure and the silo and roof behave as a rigid body. Steel elements are 
modeled through Fiber sections, each fiber is assigned the “Steel02” material property, second 
order effects are modeled through a “corotational transformation” for braces and through a “P-
Delta transformation” for columns.   
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Figure 1. Case study nonlinear  model geometry [21]. 

3          SEISMIC INPUT DEFINITION 

Two sets of GMs are selected for an Italian high seismicity zone corresponding to the site of 
Reggio Calabria (Italy). One set is coherent with the spectral shape of UHS and the other is 
coherent with CMS. The spectrum coherence rules used is consistent with the requirements of 
Eurocode 8 (§3.2.3.1) [32][32]. The target spectrum is matched with the Geomean spectrum of 
the two orthogonal GM components. Coherence is sought in the period range between 0 sec 
and 2 sec. The reference spectrum chosen is the Italian code NTC08 [31] Design Spectrum 
computed for Reggio Calabria (Lat 38.1, Long 15.65), with Soil C, reference period VR =100 
years and a probability of exceedance PoE=10%, which corresponds to a return period of 949 
years. GMs have been selected in accordance with Magnitude-distance (M-R) hazard deaggre-
gation in the range of 6<Mw<8 and 0<R[km]<40. The selected UHS coherent GMs, are those 
used also in [21] [29] [33] [34] [35] [36] and [37], for the seismic evaluation of different indus-
trial structures. The seismic action associated to the Damage Limitation Limit State (DLS), 
characterized by a probability of exceedance PoE=50% in the reference period (100 years), is 
evaluated scaling the reference spectrum by a factor of 0.433. The CMS refers to a scenario 
event for a given Hazard Level (HL) and conditioning period T* based on disaggregation data 
(M, R); the spectral ordinate at this period is maximized (through the parameter ε) and should 
reach the value given by the UHS for the HL selected. The spectral ordinates at other periods 
are then related to the Sa(T*) through conditional probability and correlation factors, and their 
values are lower than those on the UHS. The conditioning period T* has been chosen as the 
average period of the two first vibration modes T1x=1.08sec and T1y=0.57sec. 
Starting from the deaggregation analysis of the chosen site, the scenario event which mainly 
influences the hazard is computed based on the hazard data of INGV [23] and through the 
Ground Motion Prediction Equations (GMPE) proposed by Ambraseys et al. [24]. Through this 
procedure the average values of M,R and ε are respectively 6.9, 12.62Km and 0.61. 
The CMS is then computed as described by Baker [25]  and is shown in Figure 2. 
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Figure 2. CMS for the Reggio Calabria site. Decimal scale (left). Logarithmic scale (right). 

Once the CMS is defined a corresponding set of GMs is selected based on coherence rules and 
deaggregation data. The selected records are shown in Figure 3 (right). 

In order to investigate the effects of the dispersion of some IMs that most influence the response, 
the UHS coherent set has been scaled to the spectral acceleration of the first mode of vibration 
in the X direction (Sa(T1X)) and in the y direction (Sa (T1Y)), as it is shown in Figure 4 and Figure 
5.  

4 NONLINEAR ANALYSIS 

The seismic performance is evaluated through both non linear static (pushover) and Non linear 
Response History Analysis (NL RHA). Table 1 summarizes the total number of NL RHA per-
formed using the different GMs sets described above at hazard levels with PoE =10% and 
PoE=50%. The NL RHAs were performed applying to the building the three concurrent com-
ponents, two horizontals and one vertical, of each GM.  

 

Figure 3. Set UHS coherent (left), set CMS coherent (Right).Unscaled GeoMean components 
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Figure 4. Set UHS scaled to Sa(T1x). Long.-component (left). 2Trasv.-component (right) 

Figure 5. Set UHS scaled to Sa(T1y). Long.-component (left). Trasv.-component (right) 

Table 1. NL RHA  executed for HL 10%. 
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4.1 Results of NL RHA 
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respectively. Each plot reports also the performance points evaluated based on the N2 method 
for NL static analysis and the performance points evaluated as mean values of the maximum 
base shear and maximum displacement obtained through the NL RHA. It should be noted that 
in the X direction the structure is more flexible than the Y direction and post-yielding behavior 
is governed mainly by the flexural deformations of the moment resisting frames at ground and 
first floor. In the Y direction, the behavior is completely different and the displacement ductility 
is limited due to the buckling of the inverted V diagonal bracings causing a fast drop of the 
global resistance. The structure is stiffer due to the presence of several bracings. The collapse 
mechanism is thus characterized by the formation of a soft-storey mechanism at the ground 
level, while the first floor remains substantially elastic. 

a) GM set: UHS unscaled e) GM set: CMS unscaled

c) GM set: UHS scaled on Sa(T1X) d) GM set: UHS scaled on Sa(T1Y)
Figure 6. Pushover curve and NL RHA results, in terms of maximum base shear - maximum displacement, in the 

X direction. 

Analyzing the structural response in the X-direction, in all the cases, dynamic analyses yield 
lower values of EDPs with respect to static analysis. Considering first the “Unscaled set”, it 
should be noted that for PoE=50% the results obtained based on the CMS and on the UHS sets 
are very similar, while for PoE=10% the CMS set produces lower values of EDPs (about 12% 
for displacements and IDR) due to the elongation of the period and lower spectral accelerations 
for T>T1x of the CMS compared to UHS. The coefficients of variation are very similar between 
the two Unscaled sets and there is only a slight increase of this parameter for seismic action 
with PoE=10%, as it was expected. The set scaled on Sa(T1x) provides less scattered response 
for both the hazard levels considered, however, when the set is scaled on the spectral ordinates 
of the spectrum of the orthogonal direction (i.e. Sa(T1y) when X-direction is investigated) the 
dispersion of results due to input uncertainty increase significantly, consistent with observations 
made by [26] [27] and [28].  

0

1000

2000

3000

4000

5000

6000

7000

8000

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

M
AX

 B
AS

E 
SH

EA
R 

 [k
N

]

MAXIMUM DISPLACEMENT - X DIRECTION [m]

PUSHOVER

Single record - HL 50%

Single record - HL 10%

Performance point (NL RHA) - HL 50%

Performance point (NL RHA) - HL 10%

Performance Point (N2) - HL 50%

Performance Point (N2) - HL 10%
0

1000

2000

3000

4000

5000

6000

7000

8000

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

M
AX

 B
AS

E 
SH

EA
R 

 [k
N

]

MAXIMUM DISPLACEMENT - X DIRECTION [m]

PUSHOVER

Single record - HL 50%

Single record - HL 10%

Performance point (NL RHA) - HL 50%

Performance point (NL RHA) - HL 10%

Performance Point (N2) - HL 50%

Performance Point (N2) - HL 10%

0

1000

2000

3000

4000

5000

6000

7000

8000

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

M
AX

 B
AS

E 
SH

EA
R 

 [k
N

]

MAXIMUM DISPLACEMENT - X DIRECTION [m]

PUSHOVER

Single record - HL 50%

Single record - HL 10%

Performance point (NL RHA) - HL 50%

Performance point (NL RHA) - HL 10%

Performance Point (N2) - HL 50%

Performance Point (N2) - HL 10%
0

1000

2000

3000

4000

5000

6000

7000

8000

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

M
AX

 B
AS

E 
SH

EA
R 

 [k
N

]

MAXIMUM DISPLACEMENT - X DIRECTION [m]

PUSHOVER

Single record - HL 50%

Single record - HL 10%

Performance point (NL RHA) - HL 50%

Performance point (NL RHA) - HL 10%

Performance Point (N2) - HL 50%

Performance Point (N2) - HL 10%

4189



R. Laguardia, A. Piscini, M. Faggella, F. Morelli, R. Gigliotti, F. Braga, W. Salvatore. 

a) GM set: UHS unscaled e) GM set: CMS unscaled

c) GM set: UHS scaled on Sa(T1X) d) GM set: UHS scaled on Sa(T1Y)

Figure 7. Pushover curve and NL RHA results, in terms of base shear associated to the maximum displacement - 
maximum displacement, in the Y direction. 

For the Y-direction, when the hazard level with PoE=50% is investigated, the results of static 
and dynamic analysis are comparable in terms of mean values and the set “Scaled on Sa(T1y)” 
gives the lower dispersion, as expected. Results for the hazard level with PoE=10% show how 
the static analysis underestimates significantly drift and displacements but, more significantly, 
the dispersion of results is very high for all the investigated cases. Furthermore, scaling on 
Sa(T1y) does not give the expected advantages in terms of coefficients of variation and mean 
values. These values are considerably higher compared to the other case, also due to a few 
analyses with very high displacement demand which affect the final estimate.  

5 CONCLUSIONS 

The industrial structure investigated herein exhibits very different behavior in the two principal 
directions, and this behavior leads to very different observations regarding the effectiveness of 
the different GMs sets and scaling techniques.  
In the X direction, the CMS provides less conservative results when the structure exhibits an 
inelastic behavior, due to the reduced values of spectral accelerations for periods longer than 
the first elastic mode period T1x. Scaling GMs to Sa(T1x) and Sa(T1y) we observed that, for all 
the action levels investigated, the dispersion is highly reduced in the principal direction but, on 
the contrary, it becomes significant in the perpendicular direction. In the Y-direction, none of 
the GMs sets investigated herein led to significant advantages in the prediction of the response, 
due to the soft story mechanism and buckling of V bracings. 
For this particular industrial structure, it is complex to define an IM that governs entirely the 
response, especially when the structure exhibits inelastic behavior and when 3D response is 
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investigated. The use of CMS and the proposed scaling techniques may be not conservative or 
unsuitable for 3D analysis of industrial facilities and, in general, for structures which exhibit 
very different behavior in the two principal directions. 
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