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Inscription

Fig. 1 Pale Blue Dot, Carl Segan

"We succeeded in taking that picture [from deep space], and, if you look
at it, you see a dot. That’s here. That’s home. That’s us. On it, everyone
you ever heard of, every human being who ever lived, lived out their lives.
The aggregate of all our joys and sufferings, thousands of confident religions,
ideologies and economic doctrines, every hunter and forager, every hero and
coward, every creator and destroyer of civilizations, every king and peasant,
every young couple in love, every hopeful child, every mother and father, every
inventor and explorer, every teacher of morals, every corrupt politician, every
superstar, every supreme leader, every saint and sinner in the history of our
species, lived there on a mote of dust, suspended in a sunbeam.

The Earth is a very small stage in a vast cosmic arena. Think of the rivers of



viii

blood spilled by all those generals and emperors so that in glory and in triumph
they could become the momentary masters of a fraction of a dot. Think of the
endless cruelties visited by the inhabitants of one corner of the dot on scarcely
distinguishable inhabitants of some other corner of the dot. How frequent their
misunderstandings, how eager they are to kill one another, how fervent their
hatreds. Our posturings, our imagined self-importance, the delusion that we
have some privileged position in the universe, are challenged by this point of
pale light.

Our planet is a lonely speck in the great enveloping cosmic dark. In our
obscurity — in all this vastness — there is no hint that help will come from
elsewhere to save us from ourselves. It is up to us. It’s been said that as-
tronomy is a humbling, and I might add, a character-building experience. To
my mind, there is perhaps no better demonstration of the folly of human
conceits than this distant image of our tiny world. To me, it underscores
our responsibility to deal more kindly and compassionately with one another

and to preserve and cherish that pale blue dot, the only home we’ve ever known."

"Da questo distante punto di osservazione, la Terra puod non sembrare di
particolare interesse. Ma per noi, ¢ diverso. Guardate ancora quel puntino.
E qui. E casa. E noi. Su di esso, tutti coloro che amate, tutti coloro che
conoscete, tutti coloro di cui avete mai sentito parlare, ogni essere umano che
sia mai esistito, hanno vissuto la propria vita. L’insieme delle nostre gioie e
dolori, migliaia di religioni, ideologie e dottrine economiche, cosi sicure di sé,
ogni cacciatore e raccoglitore, ogni eroe e codardo, ogni creatore e distruttore di
civilta, ogni re e plebeo, ogni giovane coppia innamorata, ogni madre e padre,
figlio speranzoso, inventore ed esploratore, ogni predicatore di moralita, ogni
politico corrotto, ogni "superstar', ogni "comandante supremo", ogni santo e
peccatore nella storia della nostra specie e vissuto li, su un minuscolo granello
di polvere sospeso in un raggio di sole. La Terra ¢ un piccolissimo palco in una
vasta arena cosmica.

Pensate ai fiumi di sangue versati da tutti quei generali e imperatori affinché,
nella gloria e nel trionfo, potessero diventare per un momento padroni di una
frazione di un puntino. Pensate alle crudelta senza fine inflitte dagli abitanti
di un angolo di questo pixel agli abitanti scarsamente distinguibili di qualche
altro angolo, quanto frequenti le incomprensioni, quanto smaniosi di uccidersi a

vicenda, quanto fervente il loro odio. Le nostre ostentazioni, la nostra immagi-



naria autostima, l’illusione che noi abbiamo una qualche posizione privilegiata
nell’Universo, sono messe in discussione da questo punto di luce pallida. 1l
nostro pianeta ¢ un granellino solitario nel grande, avvolgente buio cosmico.
Nella nostra oscurita, in tutta questa vastita, non c¢’é alcuna indicazione che
possa giungere aiuto da qualche altra parte per salvarci da noi stessi.

La Terra ¢ 'unico mondo conosciuto che possa ospitare la vita. Non c’e altro
posto, per lo meno nel futuro prossimo, dove la nostra specie possa migrare.
Visitare, si. Colonizzare, non ancora. Che ci piaccia o meno, per il momento
la Terra ¢ dove ci giochiamo le nostre carte. E stato detto che I’astronomia
e un’esperienza di umilta e che forma il carattere. Non c¢’¢ forse migliore
dimostrazione della follia delle vanita umane che questa distante immagine
del nostro minuscolo mondo. Per me, sottolinea la nostra responsabilita di
occuparci piu gentilmente 1'uno dell’altro, e di preservare e proteggere il pallido

punto blu, 'unica casa che abbiamo mai conosciuto."

Carl Segan, October 13, 1994
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Abstract

Artificial Intelligence (Al) is a science that deals with the problem of having
machines perform intelligent, complex, actions with the aim of helping the
human being. It is then possible to assert that Artificial Intelligence permits to
bring into machines, typical characteristics and abilities that were once limited
to human intervention. In the field of Al there are several tasks that ideally
could be delegated to machines, such as environment aware perception, visual
perception and complex decisions in various field.

The recent research trends in this field have produced remarkable upgrades
mainly on complex engineering systems such as multi-agent systems, networked
systems, manufacturing, vehicular and transportation systems, health care; in
fact, a portion of the mentioned engineering system is discussed in this PhD
thesis, as most of them are typical field of application for traditional control
systems.

The main purpose if this work is to present my recent research activities in
the field of complex systems, bringing artificial intelligent methodologies in
different environment such as in telecommunication networks, transportation
systems and health care for Personalized Medicine.

The designed and developed approaches in the field of telecommunication net-
works is presented in Chapter 2, where a multi-agent reinforcement learning
algorithm was designed to implement a model-free control approach in order to
regulate and improve the level of satisfaction of the users, while the research
activities in the field of transportation systems are presented at the end of
Chapter 2 and in Chapter 3, where two approaches regarding a Reinforcement
Learning algorithm and a Deep Learning algorithm were designed and developed
to cope with tailored travels and automatic identification of transportation
moralities. Finally, the research activities performed in the field of Personalized
Medicine have been presented in Chapter 4 where a Deep Learning and Model
Predictive control based approach are presented to address the problem of

controlling biological factors in diabetic patients.
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Le metodologie di Intelligenza Artificiale (AI) si occupano della possibilita di
rendere le macchine in grado di compiere azioni intelligenti con lo scopo di
aiutare 1’essere umano; quindi ¢ possibile affermare che I'Intelligenza Artificiale
consente di portare all’interno delle macchine, caratteristiche tipiche considerate
come caratteristiche umane.

Nello spazio dell'Intelligenza Artificiale ci sono molti compiti che potrebbero
essere richiesti alla macchina come la percezione dell’ambiente, la percezione
visiva, decisioni complesse.

La recente evoluzione in questo campo ha prodotto notevoli scoperte, princi-
palmente in sistemi ingegneristici come sistemi multi-agente, sistemi in rete,
impianti, sistemi veicolari, sistemi sanitari; infatti una parte dei suddetti sistemi
di ingegneria e presente in questa tesi di dottorato.

Lo scopo principale di questo lavoro e presentare le mie recenti attivita di ricerca
nel campo di sistemi complessi che portano le metodologie di intelligenza artifi-
ciale ad essere applicati in diversi ambienti, come nelle reti di telecomunicazione,
nei sistemi di trasporto e nei sistemi sanitari per la Medicina Personalizzata.
Gli approcci progettati e sviluppati nel campo delle reti di telecomunicazione
sono presentati nel Capitolo 2, dove un algoritmo di Multi Agent Reinforcement
Learning ¢ stato progettato per implementare un approccio model-free al fine
di controllare e aumentare il livello di soddisfazione degli utenti; le attivita di
ricerca nel campo dei sistemi di trasporto sono presentate alla fine del capitolo 2
e nel capitolo 3, in cui i due approcci riguardanti un algoritmo di Reinforcement
Learning e un algoritmo di Deep Learning sono stati progettati e sviluppati per
far fronte a soluzioni di viaggio personalizzate e all’identificazione automatica
dei mezzi trasporto; le ricerche svolte nel campo della Medicina Personalizzata
sono state presentate nel Capitolo 4 dove e stato presentato un approccio
basato sul controllo Deep Learning e Model Predictive Control per affrontare il

problema del controllo dei fattori biologici nei pazienti diabetici.
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Chapter 1

Introduction

Artificial Intelligence (AI) methodologies deal with the possibility to make
machines able to perform intelligent actions with the aim of helping the human
being; then is possible to assert that Artificial Intelligence permits to bring
into the machine, typical characteristics considered as humans. In the Al space
there are a lot of tasks that could be demanded to machine such as environment
aware perception, visual perception, complex decisions.

Al is experiencing a moment of great interest in the scientific community, as
never before, thanks above all to the current computation power of the modern
computers. Currently, several different research activities are really active to
bring Al practically everywhere, and some industrial companies are ready to in-
stall working Al tools into the services and things. Bringing intelligence within
things means not only have machines/computers with relevant computational
power but also endow the machines with reasoning capabilities. The recent
evolving in this field has produced remarkable upgrades mainly on engineering
systems such as multi-agent systems, networked systems, manufacturing sys-
tems, vehicular systems, health care systems, etc... .

The main scope of my recent research activities is a tentative approach to use
intelligent control [1] [77], a data driven control framework [47] [102], which
uses typical artificial intelligence methodologies, such as Neural Network [110],
Genetic Algorithms [91] and Reinforcement Learning [56]. The data-driven
control appears when traditional control methods can not address real-world
systems. The data driven control (often found in the literature relative to data
driven modeling) are based on the analysis of data for a generic system and are
in charge of finding the relations between the system variables (input, internal

and output) without having a prior knowledge of the physical dynamics of
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the system [90]; such methods are for instance the three branches of Artificial
Intelligence: Machine Learning, Deep Learning and Reinforcement Learning, all
of which are able of extracting patterns from high dimensional data discovering
models of dynamical systems or learning control laws, directly from the data.
In some traditional control methods the decision about the control actions
are mainly based on received feedback, for example the sensor measurements,
and the system can be set up with a control strategy that corrects and drives
the whole system, such a pendulum, to stabilize it and to follow the desired
trajectory. The control system for the pendulum, can be explicitly determined
since we have the dynamical model, but in some real-world scenario, such as
neuroscience we don’t have an analytical representation of the model and hence
it looks as practically unfeasible applying traditional control strategies. In fact,
for systems such as neuroscience, finance, climate and self-driving cars, it is
really difficult to identify a model, due to the massively nonlinear behavior. In
some worst cases, the model doesn’t exist at all, since the equations of such
systems are unknown. For such systems where the dynamics is unknown one
cannot develop a traditional control law, and hence the strength of data-driven
control is clear. In this context, the modern solutions brought from model-free
approaches such as Reinforcement Learning, Deep Learning, Machine Learning
in general (i.e., modern Al solutions), can address the possibility to control
systems where we might have unknown dynamics, or we are facing with non-
linear system very high dimensional states and limited measurements. The
machine learning control is that in all of the mentioned complex system with
high dimensional nonlinear, possibly unknown, dynamics tend to produce the
dominant patterns that emerge from the data. The dominant patterns created
and get out with machine learning methodologies from the data can represent
the what we should control, creating hence a data-driven model.

In this respect, and according to my PhD supervisor, I have conducted research
activities with the scope of developing novel Al solutions; the solutions have
been developed and tested in various scenarios such as in telecommunication
networks, transportation systems and health systems for Personalized Medicine.
The research activities were also conduced, during the PhD period, for an in-
house consultant @QCRAT (Consorzio per la Ricerca nell’Automatica e nelle
Telecomunicazioni) for developing end-to-end algorithms and/or applications.

At CRAT I have actively participated (this role is still active) in several different



funded projects from both Italian (MIUR) and European side (H2020).

The projects at issue are:

« PLATINO (MIUR-PON project): Platform for Innovative Services in

Future Internet

« BONVOYAGE (H2020 project): From Bilbao to Oslo, intermodal mobility
solutions, interfaces and applications for people and goods, supported by

an innovative communication network

o 5G ALLSTAR (H2020 project): 5G Agile and fLexible integration of
SaTellite And cellulaR

The PLATINO project was focused on designing and developing a service
platform able to provide heterogeneous services and contents to end users by
evaluating their satisfaction during the experienced content. The platform
had to be so flexible enough to satisfy at the same time a lot of terminals
while guarantying a personalized Quality of Experience (QoE) based on the
evaluation of the perceived Quality of Service (Qos).

The problem of QoS and related QoE in telecommunication networks is widely
investigated in the literature [13], [12], [86], [88], [41] and is aimed at control-
ling the network status even when the resources are not enough for all the
connected terminals. In PLATINO project my role was to investigate, design
and implement a realistic framework application for evaluating and controlling
the QoE trying to guarantee the highest possible QoS to all the end users also
in presence of a huge number of connected terminals.

To address this problem I have implemented a Multi Agent Reinforcement
Learning (MARL) control algorithm based on an innovative heuristic solution
implemented for finding a consensus among users. The heuristic solution,
MARL based, was able to dynamically provide the most appropriate Class of
Service (CoS) [104] to the connected terminals; the CoS was computed accord-
ing to the status of the overall network and also considering the users’ needs
in terms of QoS. A personalized parameter, that is QoE, was then computed
as the expression of users’ personalized perception for the on-going contents
(e.g., Movie Streaming, Conference Call, etc..). The CoS, that was associated
dynamically to each user and content, was aimed at incrementing the overall
performances in order to guarantee the Personalized QoE needs.

The research activities and the achieved results following the mentioned ap-

proaches in this field have led to two publications:
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o F.Delli Priscoli, A. Di Giorgio,F. Lisi, S. Monaco, A. Pietrabissa, L.
Ricciardi Celsi,and V. Suraci, " Multi-agent quality of experience control",
International Journal of Control, Automation and Systems,Volume 15
number 2, pages 892-904, 2017.

« S. Battilotti, S. Canale, F. Delli Priscoli, L. .Fogliati, C. Cori Giorgi, F.
Lisi, S. Monaco, L. Ricciardi Celsi and V.Suraci, "A Dynamic Approach
to Quality of Ezxperience Control in Cognitive Future Internet Networks',

poster appearing in Proceedings of the 24th European Conference on
Networks and Communication (EuCNC 2015)

The BONOVOYAGE project deals with the possibility to design, develop,
and implement a platform able to multi-modal door to door scalable solutions
for passengers and goods. The main impact of the project was to realize
an innovative communication network for sharing National and International
transport information in order to create a set of National Access Point where
the whole set of transportation provider information was stored. The really
challenge was to improve the current Transportation Systems bringing an
innovative way to manage and distribute transportation providers information
and bring intelligence in journey planner solutions. The whole platform was
assisted and make real by an APP where users are able to interact for looking
for innovative trip solutions and providing feedbacks in terms of expected
quality of the overall system. The system is able to acquire information from
users’ feedbacks and use them to improve itself.

My role in this project was to design and implement efficient algorithms able
to acquire knowledge from users’ expectations based on their feedbacks and
choices during their interaction with APP. Such approaches was devoted to
provide sophisticated and personalized travel solution for each user while using
the developed BONVOYAGE APP.

During the BONVOYAGE projects new research activities was conducted in
the field of transportation system, where innovative algorithms were designed
and developed to identify almost in real-time the transportation mode with
which users are moving. Such an approach could promote, at least in my vision,
the development of traffic control and management algorithms.

The results of such works have led to the following papers/submitted papers:

e S. Canale, A. Di Giorgio, F. Lisi, M. Panfili, L. Ricciardi Celsi, V.

Suraci, and F. Delli Priscoli, “A Future Internet Oriented User Centric



Extended Intelligent Transportation System,” in Proceedings of the 24th
Mediterranean Conference on Control and Automation (MED 2016),pp.
1133-1139, June 21-24, 2016, Athens, Greece

o A. Detti, G. Tropea, N.Blefari Melazzi, D. Kjenstad, L.. Bach, I. Chris-
tiansen, F. Lisi, "Federation and Orchestration: a scalable solution for
EU multimodal travel information services", submitted to Intelligent

Transportation System Magazine, 2018

o A. Giuseppi, F. Lisi, A. Pietrabissa, "Automatic Transportation Mode
Recognition on Smartphone Data based on Deep Neural Networks," sub-
mitted to Journal of Intelligent Transportation Systems: Technology,

Planning, and Operations, 2018

The ongoing 5G-ALLSTAR project deals with the possibility to manage
multi-connectivity based services, in order to create a sort of cooperation
among different Radio Access Technologies. The cooperation begins with the
sharing of the spectrum among different radio access and supports the great
challenges to use multiple Radio Access technologies at the same time for the
same transmission by joining the resources of the Cellular (i.e., 5G NR, 4G
LTE, 3G) and Satellite networks.

My role in this project, just started, will be to identify potential methodologies
to fight with the actual multi-connectivity challenge that is aimed at introduc-
ing advanced algorithms able to provide appropriate and scalable algorithms
for traffic steering problems. The solution, which includes the traffic steering
algorithms, should also take into account the users’ expectations.

The research activities of the 5G-ALLSTAR project are out of scope of this

thesis and not will be reported.

It is clear that the Artificial Intelligence methodologies and algorithms have
been the basis of my involvement in the PLATINO, BONVOYAGE and 5G
ALLSTAR projects. In fact, even if in different scenarios, similar methodologies
were applied by modeling them in different environments.

The research activities were not conducted only within the above mentioned
European projects, and the techniques acquired were used, notably, in a new
research argument concerning Prediction and Control for biological factors.

The common ground with the other research activities presented in this chapter

is the use of Artificial Intelligence techniques in the field of health for Per-
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sonalized Medicine. In this respect, a Deep Learning and Model Predictive
Control based innovative solution has been designed and tested, by using an
in-silico Application able to simulate patients afflicted by diabetes, to control
and maintain the blood glucose level in what is commonly considered as the
safe range. The proposed solution concerns the usage of Deep Bidirectional
Neural Network for predicting the blood glucose level (glycemic index) in sick
patients and controlling that index with a Model Predictive Control technique
able to determine instant by instant the more appropriate insulin injection
to patient itself. The effectiveness of the proposed solution was tested on an
in-silico patients towards an application developed by UVA/PADOVA [71].
The mentioned solution will lead to a international publication in a journal
paper, that is not yet finalized and in this thesis a draft version is presented.
The PhD thesis is structured as follow:

o Chapter 2: State of the Art and Multi-Agent Reinforcement Learning
algorithms applied in both Telecommunication networks and vehicular

networks

o Chapter 3: State of the Art and Deep Learning based Transport recogni-

tion system

o Chapter 4: State of the Art and Deep Model Predictive Control based

diabetes application

In Chapter 2 a complete description of the Multi Agent Reinforcement
Learning state of the art is presented as well as its application and relative
obtained results in the PLATINO project and BONVOYAGE project. In Chap-
ter 3 after a brief introduction about Machine Learning and Deep Learning
architectures and algorithms, a Transportation Mode Recognition application is
presented also discussing the main achievements. In Chapter 4 the state of the
art about recent advances in the filed of biological factors such as glucose level
control in patients afflicted by diabetes is presented and an innovative Deep
Learning and Model Predictive Control based, namely Deep Model Predictive
Control, solution is proposed in its draft version; it is indeed in a draft version

but already deserved to be included in this work.



Chapter 2

Reinforcement Learning based
Multi Agent Control Systems

In this Chapter I report the research activities carried out in the field of
Reinforcement Learning, Game Theory and Multi-Agent Reinforcement Learning.
More precisely, the methodologies introduced in the first part of this chapter
(see Section 2.1 and 2.2) have been extended in order to be applied in several
use cases. Section 2.3 presents the research activities performed to cover issues
in telecommunication networks where multiple users are involved in sharing
bandwidth by exploiting and extending Multi Agent Reinforcement Learning
approach. The telecommunication networks have to be able to satisfy all
the users expectation, assuming bandwidth with limited capacities, and the
objective is to assure suitable performances. Section 2.3 shows the results of
the publication [22].

Section 2.4 presents the research activities conducted in the framework of
BONVOYAGE ! H2020 project for addressing the possibility to introduce
artificial intelligence techniques in the Intelligent Transportation System [25],
[54], and [100]. More precisely, Section 2.4 reports: (i) a publication [17] in
the field of Machine Learning methodologies to identify travellers’ profiles for
computing tailored trips and (ii) a Reinforcement Learning algorithm properly
designed and implemented to rank tailored journey solutions according to a

new deducted travellers’ model.

'BONVOYAGE H2020 http://www.bonvoyage2020.eu/
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2.1 Reinforcement Learning

Reinforcement Learning is an area of autonomous learning that deals with
the possibility to create an agent able to perform actions or make decisions
in an unknown environment. At the beginning the agent needs to perform
several actions within environment to be able to acquire the proper knowledge.
The environment is modeled as a set of states; each agent can perform actions
according to the belonging state, receiving a suitable reward for each action
performed in each state.

The main goal in Reinforcement Learning is to achieve the final state by ac-
quiring the highest possible cumulative reward.

The Reinforcement Learning approach can be used in several different do-
mains [55]; T have investigated two domains for solving problems using Rein-
forcement Learning. In particular, the domains in question are game theory
and control technique.

In Reinforcement Learning problems the environment is typically formulated as
a Markov Decision Process (MDP) [51]. An MDP can be modeled as a tuple:

(S, A, Po, Ra, ) (2.1)

S: represents the state space,

A: represents the actions space,

P,: represents the probability to choose an action in a given state,

R,: represents the reward for each performed action in a given state

~: represents the discount factor assumed to be in the range of [0, 1].

The reward, received by an agent, can be considered as the feedback received
by the agent while performing an action in its current state at time ¢.

The selection of the best action is called policy and an agent can learn its
best policy, selecting each time the action that produce the greatest possible
cumulative reward.

The selection of the best action in each state is the definition of policy. The
agent can learn its best policy, by selecting during the interaction with the
environment the actions that produce the greatest possible cumulative reward.

Considering a state-value function for a policy 7 [94]:
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V() = EofBilst = s} = B{ Y Prisunlse = ) (22)

k=0

In equation (2.2) is computed the expected return for an agent when it start in
state s;, and when the agent follows the policy 7, the E.{-} is the expected
value. The discounted factor is defined by 7.

However, the value of an action, for an agent, taking action a in state s and

when it follows the policy 7, is represented by:

Q" (s,a) = E.{Ry|s; = s,a, = a} = Eﬁ{z Yoropplse = s,a, = a}  (2.3)
k=0
The optimal expected return for the state-value function can be obtained
in a MPD using the Bellman equation [10] for V™.

The method used in RL to estimate the optimal value of a state is :

V7(s) =>_m(s,a) Z PRy + V7 ()] (2.4)

and the more visits has a state the better estimation of V7(s) is obtained.
Anyway the aim of an agent is try to maximize its reward over time, this means
getting an optimal policy. A policy 7 is better than another in any state s if
V™ (s) > V™ (s). The Equations (2.2) and (2.3) can be optimized as:

V*(s) = max,V"(s) (2.5)

Q*(s,a) = max,Q"(s,a) (2.6)

The equations (2.5) and (2.6) can be used to compute the optimal value of
actions in a state Q*(s, a) and optimal value of a state V*(s), when the agent
uses the policy . If the transition probability P,y and the reward function
R?, with the Bellman Equation for V*(s) can be computed the value of a state
S,

V*(s) = maz, Z P[RS, +~V*(s)] (2.7)

and the (2.7) using the Bellman Equation, became

Q"(s,a) = Y PL[Riy +ymazaQ*(s', d)] (2.8)
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The Bellman Equation is the basis for many dynamic programming methods
to solve MDP, but only when the agent has a perfect model of the environ-
ment, knowing the transition probability and rewards function for every action
performed in every state.

Some MDP can be solved by using several different techniques such as dynamic
programming in case the agent has a perfect knowledge of the environment.
This means that the agent knows the P, (transition probability functions)
and the R, (the rewards) for each state and then it achieves the best possible
cumulative rewards.

The environment in which the agent plays can be completely unknown by the
agent itself.

This is the case in which the agent can perform actions by exploring the en-
vironment. In order to solve a Reinforcement Learning, if the agent has no
knowledge of the environment, a Q-Learning algorithm can be used.

The Q-Learning [105] Algorithm allows agents to act in an optimal way in
Markovian domains, learning by the consequences of action without having
knowledge about the transition and reward functions, this is the reason why
Q-Learning is a form of model-free Reinforcement Learning.

The aim of Q-Learning, that can be viewed as temporal-difference (TD) learning
method, is to estimate the Q-value for each policy. The agent uses its experi-
ence during the learning process to improve its estimate. Once the agent has
acquired a perfect knowledge of the transition and immediate reward function
it can provide the optimal policy, and using the equation (2.7) it can calculate
the optimal action a; for each state s;. The fundamental requirement is that
the agent must visit each state often enough to converge (as illustrated in [105])
to the optimal Q*.

Hence, the sequence of visits of each state permits to the agent to achieve the
suitable experience; each visit is performed in a distinct episode.

The Q-Learning Algorithm:

a. Observe s; to be the current state
b. Choose an action a;
c. Observe s, to be the next state and receive an immediate r, reward

d. Update the Q; values, with the form :

Qu(st,ar) = (1 — ) Qu—1(8t, ar) + ay[ry + ymaz Qu_1(s}, a;)]  (2.9)
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with v the discount factor and « the learning rate.

The equation (2.9) takes into account the value of each action in each state,
and it updates its estimate of the optimal value of each action in all states. The
Q-Learning build a table, called Q-Table, that contains the values, updated
with the equation (2.9), of each action-state pair. The learning rate is an
important parameter since decreases with the time, and different learning rate

might be used for each state-action pair.

2.2 Multi Agent Reinforcement Learning

The Reinforcement Learning algorithms are designed for one agent interacting
with its environment. However, Reinforcement Learning problems can be
extended for more than one agent interacting with the same environment for
multi-agent domains.

As introduced in the previous chapter, the single agent Reinforcement Learning
problems can be modeled with Markov Decision Proces; in case of multi agent
scenarios, the Multi Agent Reinforcement Learning can be modeled as a game

theory problem or stochastic games (SGs) [89)].

2.2.1 Matrix Games

The Matrix Games [67] consist in a many players games, e.g. two players games.
The players in a game might have opposite or different rewards. The first case
is the zero-sum game, the second case is a general-sum game. In a zero-sum
game in case of scenario with two agents and the first receives 1 as reward, the
second player receives -1 as reward. In a general-sum game each player receives
a different reward. In both cases the rewards depend on the actions, chosen
from the available actions in action space, of all players. The Matrix game can

be formalized by a tuple:
< n7A1,A2, ---;Anlea Ry, ... R, >

where the number of players n have a finite action space A; and reward R;,
with ¢ = 1,..,n.
The rewards for each player are included in a matrix, stored depending on

their actions. In case of two-player game, one has two m X n matrices, X and
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Y. In both matrices, Player A is the column player and Player B is the row
player, the values in the matrices are represented by the rewards received by
the players, depending on the actions chosen.

The Matrix X contains the rewards for Player A, obtained with the joint actions
of the Player B, and Matrix Y contains the rewards for Player B, obtained
with the joint actions of the Player A, e.g., the position z;; (associated to X)
describe the rewards obtained by Player A, when it performs actions ¢ with
Player B that performs action j, the y;; (associated to Y) describe the rewards
obtained by Player B, when it performs action j with Player A that performs

action 7. The expected payoff for both players can be represented as :

E{Rx} = izn:ﬂ'ixl’ijﬂ';/ (2.10)

i=1j=1

E{Ry} = ZZWZ-X%]‘W;-/ (2.11)
i=1j=1
The policy 7¥ in the equations (2.11) and (2.12) is the probability that
Player A will choose action 7 and 71'}/ is the probability that Player B will choose
action j.
A typical example to understand the concept may be “The Matching Pennies
Game”. In this game with two players, and where each player has one penny,
they must show one side of their pennies. When both pennies, of the two
players, have the same side, Player A wins and receives a reward 1, while Player
B loses and receives reward -1, otherwise if the sides of the pennies are different
Player B wins and receives the reward 1, while Player A receives reward -1.
This is an example of zero-sum game, since the rewards received by the players
are opposites.
The Matrices X=-Y, containing the rewards previously assigned, and can be

represented as follows:

1 -1 -1 1
X = Y =
-1 1 1 -1
Table 2.1 Reward Matrices for two players

The rows and the columns of each matrix represent the available actions
(show heads or show tails) for row Player A and for column Player B. Each

player in this game, has to make a decision each turn. If both players have the
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same probability to choose an action, they receive the same amount of rewards,
hence the solution, for the players, could be to play one side for half of choices,
and the other side for the other half of choices. In this way the total amount
of the rewards will be maximized for both Players, and an equilibrium will
be reached. The reached equilibrium is called Nash Equilibrium, as properly

defined in the following section.

2.2.2 Nash Equilibrium

The Nash Equilibrium, as defined in [89], “is a collection of strategies for each
of the players such that each players’ strategy is a best response to the other
players’ strategies; at a Nash equilibrium, no player can do better by changing
strategies unilaterally given that the other players don’t change their Nash

strategies. There is at least one Nash equilibrium in a game”.

*

The collection of all players’ strategy (77}, 75, ..., T

) in a matrix game is the
Nash Equilibrium if:

Vi(nl, coymly ) > Vi, o mr, cm ), Vm € i =1, .0 (2.12)

1 1

Y

where V; is the i’s value function of the expected reward with all players
strategies, and ; is any strategy of player i from II; strategy space. In [30]
there is the proof that in a n-player game there exist at least one mixed strategy
equilibrium. In the Nash Equilibrium the players’ strategy is influenced by the
strategy of all players who try to maximize their rewards, if all strategies are
the best the Nash equilibrium is reached.

For two players, in order to find the equations to maximize the expected value,
the Nash Equilibrium can be used, and a general example is then explained.

As in earlier section for the two player two matrices can be defined:

Y=

T11 T12
X =
To1 T2z

Y11 Y12
Y21 Y22

Table 2.2 Reward Matrices for two players

In order to maximize V; for Player A and V5 for Player B, to find the optimal

X, m¢, m¥ and 7Y . Now, getting the inequalities:

.731171'1)( -+ l’lgﬂ';( Z ‘/1 (213)
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Ty + Ty > Vi (2.14)
™ty =1 (2.15)
5 >0,i=1,2 (2.16)
yum +ym >V, (2.17)
yn Ty + Yy =V, (2.18)
™ 4wy =1 (2.19)

™ >0,i=1,2 (2.20)

Using the linear programming for the above equations (from 2.16 to 2.21) can
be found the values for 7;¥, 72X, 7} and 7). Getting back to the example of
matching pennies, where there are two players, the associated rewards matrices

and the equations (considering 73 = 1 — m;%) are (for Player A):

27rf(—12V1
—or +1>W (2.21)
ngffgl

The optimal value of 0.5 for 7 (i.e. Player A) and 0.5 for 7} (i.e. Player B)
with the same procedure, using the linear programming. Hence, there is the
proof of previous deduction that the best strategy for this game is play one

side for half of actions, and the other side for the other actions.

2.2.3 Stochastic Game

The stochastic games [14] - [107] are the generalization of the Markov Decision
Process for the multi agent case, and then the fundamental Markov Assumption

is still needed. When multiple agents interact in the same environment, the
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state transitions and the rewards depend on the joint action of all agents.

The stochastic game can be formalized by a tuple:
< S, Al, ceey An, Ry, ... R,, T >

where S is the space state, A; is the set of action of agent 7, R; = S x A;... x A,
is the payoff function for player i and T : S x A'... x A" x S — [0,1] is the
transition function.

The transition function is the probability distribution over next state given the
current state and the joint action of the agents.

If all agents have the same goal, this mean that all payoffs are equal (i.e.
Ry =--- = R,), and the stochastic game is fully cooperative. With only two
agents, a 2-player stochastic game can be considered as fully competitive, when
the rewards of the agents are opposite. Stochastic Games are mixed games

when are neither fully competitive nor fully cooperative.

2.2.4 Nash Q-Learning

The Nash Q-Learning Algorithm [48] - [49] is suited for multi-agent general-
sum stochastic game and it is founded on the Q-Learning algorithm for the
single-agent case, adapted for multi-agent environment. It is based on the Nash
Equilibrium where “each player effectively holds a correct expectation about the
other players’ behaviors, and acts rationally with respect to this expectation”
[49]. The strategy of an agent is the strategy that is the best response for all
other agents’ strategies, and when the strategy change this means that the
agent may be in a worst position.

Now, by considering the Q-Learning Algorithm where the agent objective is
to maximize its own payoff, building a Q-Table, and adapting Q-Learning to
multi-agent general-sum stochastic game, the agents’ payoff is given by the joint
action of all other agents. The agent needs to take into account the other agents’
actions and rewards, collected in the Q-Tables (a Q-Table for each agent) and
the Nash Q-values. The Nash Q-Value is defined by Hu and Wellman as “the
sum of discounted rewards of taking a joint action at current state (in state
so) and then following the Nash equilibrium strategies thereafter” [49]. In this
situation, the agents try to reach an equilibrium (Nash equilibrium) in order to
maximize its payoff, and then the optimal strategy will be reached by observing
all agents’ actions and rewards. Keeping the Q-Learning algorithm update
method, i.e, equation 2.9 ;| the difference with the Nash Q-Learning is that its
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update method can be obtained by using the future Nash Equilibrium, take
into account the actions of all agents, instead of a single maximum payoff. In
[49] is defined the Equation for the Nash Q-function as :

Q.(s,a',...,a") =r'(s,a a’)+7 Y p(s]s, al,..,a"'(s, wk, ..., ")
s'esS
(2.22)
where (7!, ...,77) is the Nash Equilibrium; each 7 represents all the policies

from the next state until the end state, which can be considered as the series
of actions that maximizes the agents’ rewards , and then the Nash Equilibrium
strategy.

The agent’s reward in a state s where all agents perform their actions is given by
ri(s,al,...;a") with (al,...,a™), that represents the joint action, vi(s’, 7!, ..., 7™)
represents the agent’s total discounted reward from the state s’ when the agents
in the game follow the equilibrium strategies.

Figure 2.1 represents the game for two agents. The left agent must reach point

B and the right agent, must reach point A.

A B N
Fig. 2.1 Grid Game Fig. 2.2 Nash Strategy

Figure 2.2 represent a possible Nash Equilibrium strategy.

The function 3.1 provides a method to update the Q-Tables with the Nash
Q-Values, which represent the current reward and future reward for an agent
that follows a Nash Equilibrium. For an agent, the Nash Q-Value depends
on the joint action strategy and not its own payoff only. This is not always
permitted in an environment, in fact there exist several environments in which
this is not feasible, but the agents need to identify the other agents’ rewards as
well. Therefore, the Nash Q-Learning algorithm uses the equation (as defined
in [26]) :
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Qiii(s,ayia”) = (1 - @)@i(s,a', .., a") + alr; + yNash@y(s')]  (2.23)

where,

NashQi(s') = (7'(s), 7*(), ..., mn(s") QL(s") (2.24)

“Different methods for selecting among multiple Nash equilibria will in

general yield different updates. NashQ:(s') is agent i’s payoff in state s', for
the selected equilibrium” [49)].
Given an agent, the Q-Values of the other agents may not be available for it.
Thus in order to obtain the Nash Equilibrium the agent must learn these infor-
mation. Hence, agent ¢ starts to initialize the Q-Function as Qé(s, at,...,a") =0
for all other agents (j), and then it observes, during the game, the agents’
immediate rewards. The information, obtained during the game are used to
update the Q-Function of each agent, previously initialized, through the update
rules [49]:

Lals,at,na®) = (1 - a)Q](s,a', ;") + alr] +yNashQi(s))]  (2.25)

Therefore equation in 2.25 “does not update all the entries in the Q-Functions.
It updates only the entry corresponding to the current state and the actions

chosen by the agents. Such updating is called asynchronous updating” [49].

Algorithm 1 Nash Q-Learning Algorithm
Initialization

Let t = 0 and initial state sg

Let each learning agent be indexed by ¢

For all s € S and @’ € A7 with j =1,...,n

Let Q/(s,a',...,a") =0

Loop

Choose action!

Observe 77, ...,r)" and s;41 = &’

Update @ for j=1,....n

Qlir(s,a,....a™) = (1 —)Q{(s,a, ...,a") + a[r] + yNashQ](s')]
Lett=1t+4+1
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Algorithm 1 represents in details the Nash Q-Learning (as described in
49)).
The authors in [49] considers the convergence of the Nash Q-Algorithm under
several important assumptions :

Assumption 1. One of the following conditions holds during learning.[49]

Condition A. Every stage game Q}(s),...,Q%(s), for all t and s, has a
global optimal point, and agents’ payoff in this equilibrium are used to update
their Q-Functions.[49]

Condition B. Every stage game Q}(s),...,Q"(s), for all t and s, has a
saddle point, and agents’ payoff in this equilibrium are used to update their
Q-Functions.[49]

Assumption 2. FEvery state s € S and action a* € A* for k = 1,..,n
are visited infinitely often.[49]
Assumption 3. [26] The learning rate oy satisfies the following conditions for

all s, t,a', ..., a"

a. 0 < ay(s,al, ... a,) < 1,30, (s, al, ... a,) = oo,
S2olas(s,als...,a™)]? < oo, and the latter two hold uniformly and with

probability 1.

b. as(s,al,...;a™) = 0 if (s,a',...;a") # (s, al,...,a"). This means that
agent will only update the Q-values, for the present state and actions. It

does not need to update every value in the ()-tables at every step.

An important issue of this algorithm, is that there might be more than one
equilibrium, in this case, as suggested in [49], the Lemke-Howson Algorithm
[63] might be used to find a Nash Equilibrium. The algorithm, converges within

the previous assumptions.

2.2.5 Friend-or-Foe Q-Learning

The Friend-or-Foe Q-Learning (FFQ) [67], [59] is derived from the idea that
the Assumptions 1,2,3 (previous section) create a sort of restriction, in order
to guarantee the convergence of Nash-(Q), since the Assumption 1 contemplates
that every stage game needs to have either a global optimal point or a saddle
point [12].
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Algorithm 2 Friend-or-Foe Q-Learning Algorithm
Initialization

Vs e S,a; € Ay and aq € Ay

Let Q(s,a1,az2) =0

Vs e S

Let V(s) =0

Vs e S, a; € Ay
Let 7(s,a;) = ﬁ

Let a =1 Loop

In state s

Choose a random action from Ay, with probability

If not a random action, choose action a; with probability 7 (s, a;)
Learning In state s’

Agent observes the reward R related to action a; and opponent’s action as in
state s

Update Q-Table of player with

Q(s,a1,a2) = (1 —a) - Q(s,a1,a2) + a(R+ - V[s])

find 7(s,a;) and V(s) with

V(S) = MaTa e, asea, @15, a1, as] in case of friends players, or

V(s) = Marer(a)MiNaye Ay 2ayear T(al)Q1[s, a1, as] if players are foes.
a = a - decay

End Loop

In order to reduce the restriction from Assumption 2 the FFQ, is then
implemented by [67] where it always converge by changing the update rules
depending on the agents’ behavior, friend or foe. The label as friend or foe
must be identified by the other agent. The FFQ can be viewed as an adaptation
of the Nash Q-Learning, where the main feature that differentiates it from
the Nash-Q Algorithm is that each agent take into account its own Q-Table;
the FFQ was developed for n-player but in Algorithm 2 , just for clarity, we
represent it for 2-player. As can be noted from Algorithm 2, the update rule
(2.25) replace the function NashQ'(s,Q1, ..., Q,) with:

maxaiEAiQi[saala "'7an] (226)

if the players are friends, or if they are foes, with:
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MAT zeTI(A) Vg, € A, Z m(a;)Qils, a1, ..., an) (2.27)
aieAi

where n is the number of players. Clearly the update rule (2.26) is the same as
the Q-Learning update rule (2.9), but it is adapted by [67] for multi-agent case.
As explained by the author in [67], for n-player game, NashQ'(s, Q1, ..., Q,) is:

NashQ;(s,Q1, ..., Qn) =

MATeT1(X7 x...x X)) TNy yieYi,..Y

Z m(wy) - (k) Qs[S, T,y oy Th, Y1y oo Y (2.28)

@1 TR € X1 XX X,

where X; through X are the actions that are available to the k friends of
player i, and the actions Y; through Y; are available to its [ foes. When the
agents are “friends”, they try to maximize the payoff for its friend, while in

case of “foes”, they try to minimize their payoff.
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2.3 Multi Agent Control Systems applied to

telecommunication networks

The complete content of this Chapter (i.e., 2.3) is object of the publication [22].

A Key Future Internet [18] target is to allow applications to transparently,
efficiently and flexibly exploit the available resources, with the aim of achieving
a satisfaction level that meets the personalized users’ needs and expectations.
Such expectations could be expressed in terms of a properly defined Quality of
Experience (QoE) [5].

In this respect, the International Telecommunication Union (ITU-T) defines
QoE as the overall acceptability of an application or service, as perceived
subjectively by the end-user [50]: this means that QoE could be regarded
as a personalized function of plenty of parameters of heterogeneous nature
and spanning all layers of the protocol stack (e.g., such parameters can be
related to Quality of Service (QoS), security, mobility, contents, services, device
characteristics, etc.).

Indeed, a large amount of research is ongoing in the field of QoE Evaluation,
i.e., of the identification, on the one hand, of the personalized expected QoE
level (Target QoE) for a given user availing her/himself of a given application
in a given context (e.g., see [53], [28] for voice and video applications, respec-
tively), and, on the other hand, of the personalized functions for computing the
Perceived QoE, including the monitorable Feedback Parameters which could
serve as independent variables for these functions (e.g., see [84]). In particular,
several works focus on studying the relation between QoE and network QoS
parameters (e.g., see [32]).

Another QoE-related key research issue is that of QoE Control.

Once a QoE Evaluator has assessed the personalized expected QoE level (Target
QoE) and the personalized currently perceived QoE level (Perceived QoE), a
QoE Controller should be in charge of making suitable Control Decisions aimed
at reducing, as far as possible, the difference between the personalized Target
and Perceived QoE levels. The interested readers are referred to [84] and [16]
for an approach to QoE Evaluation that is fully consistent with this part of
the work. Without claiming to present a ready-to-use solution, this chapter

provides some innovative hints that could ensure an efficient implementation of
the QoE Controller.
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Will be described how Control Decisions can practically be implemented via
the dynamic selection of predefined Classes of Service; explained how such
a dynamic selection can be performed in a model-independent way — in the
authors’ opinion, any control-based approach relying on any Future Internet
model is not practically viable due to the sheer unpredictability of the involved
variables [19] — thanks to the adoption of a suitable Multi-Agent Reinforce-
ment Learning (MARL) technique, such as the MARL Q-Learning algorithm
presented in [67] and [14]; then, will be discussed the limitations of MARL
Q-Learning with respect to practical implementation and how these limitations
can be overcome by adopting the proposed new heuristic algorithm, hereafter
referred to as H-MARL-Q algorithm; finally, some numerical simulations show-
ing the encouraging performance results of the new algorithm are presented

with reference to the proof-of-concept scenario which will be introduced.

2.3.1 QoE Controller

The QoE Controller makes its decisions at discrete time instants ¢;, hereafter
referred to as time steps, occurring with a suitable time period 7', whose duration
depends on the considered environment (including technological processing
constraints).

We assume that each in-progress application instance is handled by an Agent
i and we define the personalized QoFE Error at time t; (indicated as e;(t)),

relevant to Agent i, as:
Gi(tk) = PQOEz(tk)—TQOEZ (229)

where PQoFE;(t)) represents the Perceived QoE, i.e., the QoE currently per-
ceived at time t; by Agent i, and TQoE; represents the Target QoE, i.e., the
personalized QoE which would satisfy the personalized Agent ¢ requirements.
So, if this QoE Error is positive, the in-progress application is said to be
over-performing, since the QoE currently perceived by the Agent is greater
than the desired one, whereas, if the QoE Error is negative, the in-progress
application is said to be under-performing.

Note that the presence of over-performing Agents might affect the system perfor-
mance, since they may require an unnecessarily large amount of resources, which
could cause, in turn, the under-performance of other Agents. The goal of the

QoE Controller is to guarantee, at every time t;, a non-negative QoE Error for
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all Agentsi (fori=1,...,N), i.e., to avoid the occurrence of under-performing
applications. Furthermore, if it is not possible to guarantee a non-negative
QoE Error for all Agents (e.g., due to insufficient network resources), the QoE
Controller should reduce, as far as possible, the QoE Errors of the various
Agents while guaranteeing fairness among them. Fairness basically consists in
making sure that the QoE Errors experienced by the Agents are kept, as far as
possible, close to one another.

As shown in Future Internet Architecture presented in [22], both the Perceived
and the Target QoE should be computed by a suitable QoE Evaluator based
on suitable Feedback Parameters resulting from the real-time monitoring of the
network, as well as from direct or indirect feedbacks coming from users and/or
applications. For a more detailed description of the way the QoE functionalities
are embedded in the Future Internet architecture ,see [84].

In particular, a promising approach [84] is to relate the computation of the
Perceived QoE to the application type (e.g. real-time HDTV streaming, dis-
tributed videoconferencing, File Transfer Protocol, etc.) of each in-progress
application instance.

Let M denote the total number of application types in the considered envi-
ronment; let m € 1,..., M denote a generic application type; let i(m) denote
an Agent (i.e., an application instance) belonging to the m-th application
type. Then, the Perceived QoE for Agent i(m), denoted with PQoE;()(tx), is

computed as follows:

PQoFEim) (tr) = gm(dm(tr)) (2.30)

where ¢,, (1) represents a suitable set of Feedback Parameters for the m-th
application type, computed up to time t;, and g,, is a suitable function re-
lating, for the m-th application type, the Feedback Parameters ¢,,(t;) with
the Perceived QoE. The Target QoE, denoted with TQoFE;, can be derived
from a suitable analysis of the available Feedback Parameters (e.g., by using
unsupervised machine learning techniques), or it can simply correspond to a
reference value which is assigned by the Telco operator, taking into account
the commercial profile of the user.

The work proposes a solution in which the distributed Agents associated to the
application instances are embedded in properly selected network nodes (e.g.,
in the mobile user terminals): the Agents are in charge of the monitoring and

actuation functionalities whereas the control functionalities are centralized in
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the QoE Controller.

In particular, whenever a new application instance is born, the associated Agent
i is in charge of evaluating the personalized Target QoE T'QoE; (which remains
unchanged for the whole lifetime of the application instance), of computing
its own personalized Perceived QoE PQoFE;(tx) and of communicating the
monitored values to the QoE Controller. As a result, at each time ¢, the QoE
Controller, based on the received values for TQoE; and PQoE;(t;) up to time
tr (i=1,...,N;7 =0,1,...,k), has to choose the most appropriate action
a;(ty) (for i =1,..., N) which the Agent i should enforce at time ty, i.e., the
most appropriate joint action (a(tx), as(tx), ..., an(tx)) which the N Agents
should enforce at time t,. At each time ¢, the chosen joint action is broadcast
to the N Agents: then, the i-th Agent has to enforce the corresponding action
a;(ty).

Note that the proposed arrangement is based on the presence of a centralized
entity (i.e., the QoE Controller), collecting the Agents’ observations, which per-
forms the MARL algorithm and broadcasts the resulting Control Decisions to
the Agents. Therefore, any direct signal exchange among the Agents is avoided,
thus limiting the overall signaling overhead. The QoE Controller outputs, i.e,
the joint action chosen by the QoE Controller, may include for each Agent the
choice of QoS Reference Values (e.g., the expected priority level, the tolerated
transfer delay range, the minimum throughput to be guaranteed, the tolerated
packet loss range, the tolerated dropping frequency range, etc.), of Security
Reference Values (e.g., the expected encryption level, the expected security
level of the routing path computed by introducing appropriate metrics, etc.),
and of Content/Service Reference Values (e.g., the expected content /service
mix, etc.).

The QoE Controller has to dynamically select, for each in progress application
instance, the most appropriate Reference Values which should actually drive,
thanks to suitable underlying network procedures (which are outside the scope
of this work), the Perceived QoE as close as possible to the Target QoE (for
further details, see [14] where the above-mentioned Reference Values are re-
ferred to as Driving Parameters).

However, since the control action has a large number of degrees of freedom,
the exploration of the solution space may take a large amount of time, thus
making the task of the QoE Controller excessively complex.

A simpler (yet less fine-grained) control task arises if the management of the
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underlying networks is arranged into Classes of Service (CoS), as described in
[31].

Now, we can assume that each CoS is associated with a predefined set of QoS
Reference Values. Nevertheless, the proposed approach can be applied even in
the case when each CoS is associated with a set of Reference Values that are
not necessarily related to QoS issues only, but also, for instance, to Security
parameters, and/or to Content/Service characteristics, etc. Let S indicate
the total number of CoSs and let a;(t;) € {c1,¢ca,...,cs} indicate the action
performed by the i-th Agent (i.e., the CoS chosen by the i-th Agent) at the
time instant ¢;.

In current telecommunication networks, a static CoS assignment policy is
adopted: each application instance is given a CoS for its entire lifetime; the
CoS associated to a given application instance should be the one whose QoS
Reference Values satisfy “on the average” the application requirements. Never-
theless, it is evident that such a static association does not take into account
either personalized application requirements or contingent situations taking
place in the telecommunication networks, such as congestion events. So, a
static CoS assignment may generally lead to poor performance in terms of
the personalized QoE perceived by each user. Hence, considered the dynamic
CoS-to-application assignment as the methodological means to accomplish the
above-mentioned goals in terms of QoE Error reduction and fairness. This
means that, at each time instant t;, the QoE Controller has to decide, in real
time, which is the most appropriate CoS to be associated with each in-progress
application instance (e.g., if the Agents are embedded in mobile user terminals,
the QoE Controller decisions can be implemented by inserting the selected CoS
identifier in the header of the packets transmitted by the terminals). Up to the
authors’ knowledge, apart from [19], such a dynamic assignment approach has
never been investigated so far.

The problem of designing the QoE Controller algorithm.

It should be evident that, in order to solve this problem by means of traditional
model-based control techniques, the QoE Controller should know — or at least
estimate — the correlation between its decisions (namely, the selected QoE
Controller outputs) and the Perceived QoE. However, no model of the very
complex plant regulated by the QoE Controller (namely, the one receiving
the QoE Controller outputs in input and producing the Perceived QoE as its

output) can be assumed, since it depends on plenty of hardly predictable factors
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(such as traffic characteristics of the ongoing applications, network topologies,
resource management algorithms, QoE Evaluation methods and so on).

In light of the above, the QoE Controller decision strategy must be learned on
line by trial and error. This is why we propose that the QoE Controller makes
use of a model-free Multi Agent Reinforcement Learning (MARL) algorithm in
order to evaluate, at each time step ¢, the joint policy (a1 (tx), az(ty), ..., an(te)) =
7(ay, as, . ..,ay) which, once enforced by the Agents, tracks the discussed goals
in terms of QoE Error.

The proposed MARL algorithm works on the basis of the observation of a
joint reward r(txi1,a1(tx), az(ty), ..., aN(ty)) = r(tks1,a1,a9,...,ay), ie., of
the numerical reward (the same for all the N Agents) which is received by
each Agent at time ¢, as a consequence of the enforcement, at time t;, of
the joint policy (a1, as,...,ax). The MARL algorithm in question is aimed
at maximizing the long-run return R(m), namely at maximizing the expected

discounted return:

R(’TF) = Eﬂ-Z’}/kT(tk+1,CL1,CL2,...,CLN> (231)

i=0
where v € [0,1) is the discount rate, which weights immediate versus delayed
rewards, and FE, denotes the expected value under policy 7. In order to set up
a MARL problem, we have to select the state space, the action spaces and the

reward function.

1. We consider a static game, i.e., a game with only a single state: such
an assumption, on the one hand, is not limiting in our context, and, on
the other hand, greatly reduces the computational complexity which in

MARL is exponential in the number of state and action variables.

2. Following the discussion on dynamic CoS assignment, the action set
A; of Agent i coincides with the set of CoSs, i.e., A; = ¢1,¢9,...,cCs,
i=1,...,N. In other words, action a;(t;), performed by Agent i at time
ti, can be equal to either ¢y, or ¢o, ..., or ¢g. The cardinality of the joint
action space A = Ay x ... x Ay is equal to |A;| X [Ag| x ... x |An| = S.

3. The function expressing the joint reward r(txy1, a1, as, ..., ay) should be
consistent with the discussed goals in terms of QoE Error; in this respect,
each candidate joint reward should be a non-increasing function of the N

error values |e;(t)| (fori=1,..., N).
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In particular, we propose to apply the Multi-Agent Q-Learning algorithm [67]
(hereinafter referred to a MARL-Q algorithm) which is proved to converge to an
optimal policy 7*(ay, asg, ..., ay), i.e., to a policy which maximizes the expected
discounted long-run return R(m) [105]. The MARL-Q algorithm relies on the
estimation of the optimal action-value function Q. (s, ay,as,...,ay), defined as
the expected return of the system when it starts from state s, takes the joint
action aq, asq, ..., ay, and follows policy 7 thereafter. In the previously defined
centralized context, at each time step ty, this algorithm (i) evaluates a joint
policy m(ay,as, ...,ay) — which sums up the behavior of all the N Agents and
is initialized arbitrarily — and (ii) improves such a policy by making it e-greedy
with respect to the current action-value function [94], thus yielding a better
joint policy 7’ to be evaluated and improved at the next iteration.

In detail, the policy evaluation step (i) is performed by the MARL-Q algorithm
by updating the action-value function Q(t,a,as,...,ay) according to the

following update rule:

Q(tk, a1, a9, ... ,CLN> =
(L+afty) X Q(t-1,a1,a2,...,an) + a(ty) x [r(ty, a1, a9,. .., ay)  (2.32)
+a X (tg) +ymarQ(tp_1,a1,az, . .., an)]

where v € [0,1) is the discount rate and a(t;) is a sequence of learning
rates, which are key parameters that should satisfy the standard stochastic
approximation conditions for convergence [52]. The argument t; denotes the
value of the action-value function computed at time ¢, whereas the argument
s is omitted since we consider a single state problem.

The policy improvement step (ii) consists in performing, with probability equal

to €, a random joint action (a},al,....,aly) and, with probability equal to 1—e,
the following greedy joint action (a},aj, . ..., a%y):
ay,ay,.....ay = argmarQ(ty, ay,az, ..., ay) (2.33)

The parameter € € to (0, 1) is the exploration rate. A large value of € guarantees
that different policies with respect to the current best one are explored, and thus
avoids that the QoE Controller remains stuck in a local minimum (exploration);
on the other hand, a small value of € lets the QoE Controller choose the best
action based on the current estimate of the action-value function (exploitation).

So, at each time step ty, the centralized QoE Controller based on the Perceived
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QoE values PQoFE;(t) (i = 1,..., N) transmitted by the Agents at time ¢, and
on the knowledge of the Target QoE values TQoFE; (i = 1,..., N) transmitted
by the Agents at the time of their birth — performs the following tasks until
the optimal action-value function @Q* (and the optimal policy 7*) is found:
T1) it updates the action-value function Q according to (2.32);

T2) it determines the joint action (a},d,...,a’y) in a random way with proba-
bility equal to €, and according to (2.33) with probability equal to 1—¢;

T3) it broadcasts the chosen joint action (a},a, ..., d)y) to all Agents so that
Agent i should enforce action a;’;

T4) it computes the corresponding joint reward r(tx.1, ai, as, ..., ay) according
to the selected reward function which should include, as independent variables,
the Perceived QoE values PQoE;(tx) (i = 1,..., N) and the Target QoE values
TQoE; (i=1,...,N).

The algorithm converges under a generic initial policy. By varying the learning
rates, the exploration rate and the discount rate, the convergence speed of the
algorithm and the quality of the solution significantly change; the parameters
used in the simulations have been tuned by running the simulations several

times.

2.3.2 Proposed Heuristic MARL-Q based (H-MARL-Q)

algorithm

The analysis of the contents of the previous section offers us the opportunity to
discuss the following issues. The main challenge arisen in MARL is the so-called
curse of dimensionality [14]: in fact, as Reinforcement Learning algorithms
(such as Q-Learning) estimate values for each possible state or state-action pair,
the computational complexity of MARL is exponential in the number of state
and action variables and, therefore, in the number of Agents; in addition, the
Agents’ rewards are correlated and then they cannot be maximized indepen-
dently of one another.

The runtime of the MARL-Q algorithm (i.e., the time the algorithm needs to
perform the specific task it has been designed for) directly depends on the
cardinality S™ of the joint action space. As a matter of fact, at each time
step, the max operator in (2.33) has to consider SV values; in this respect, it is
particularly important to note that, in a Future Internet framework where the

QoFE Controller should be able to handle even thousands of Agents and dozens
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of CoSs, S¥ would become a really huge value. For this reason, the task of im-
plementing the dynamic CoS assignment according to the MARL-Q algorithm
discussed in the previous section is inherently complex from a computational
point of view and, as a result, it is extremely runtime-consuming.

Such a relevant issue claims for a reasonable reduction of the size of the joint
action space (and, hence, of the computational effort of the learning algorithm).
Moreover, the issue of non stationarity of multi agent learning arises too, since
all Agents in the system are simultaneously learning: each Agent is faced with
a moving-target learning problem and consequently the best policy changes as
the other Agents’ policies change. In this respect, the exploration strategy is
crucial for the efficiency of MARL algorithms.

Agents explore to obtain information not only about the environment, but
also about the other Agents, for the purpose of implicitly building models of
these Agents. In other words, the need for coordination stems from the fact
that the effect of any Agent’s action on the environment depends also on the
actions taken by the other Agents. Nonetheless, too much exploration should
be avoided, as it may destabilize the learning dynamics of the other Agents.
In order to address the above-mentioned limitations, this work develops an
innovative heuristic algorithm, hereafter referred to as H-MARL-Q algorithm
and derived from the MARL-Q algorithm. Such a heuristic algorithm, in
comparison with the latter, considerably reduces the joint action space, thus
significantly accelerating the task of dynamic CoS mapping, without teasing out
an excessive amount of exploratory and information-gathering actions (hence,
preserving an acceptable level of environment exploration).

The proposed H-MARL-Q algorithm has also turned out to be successful in
addressing the issue of the algorithm scalability, yielding satisfactory results
even when the number of Agents is counted in the order of thousands (as it
will happen in the upcoming Internet of Things era).

The H-MARL-Q algorithm only considers a suitably selected subset of the joint
action space, reasonably yielding an approximate solution to the dynamic CoS
assignment problem, as already discussed. Basically, at each time step, the
entire joint action space contains plenty of joint actions which have very few
possibilities of being the best ones (i.e., the ones which meet the max operator
in (2.33)). Unfortunately, such joint actions cannot be identified and discarded
a-priori, because we do not have any a-priori knowledge of the environment;

nevertheless, such actions can be identified and removed by carrying out a
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preliminary analysis of the Agents’ dynamic behavior in a simpler emulated
environment.
So, the basic underlying idea of the H-MARL-Q algorithm is to perform the

following two steps:

- Step (a):

This step, referred to as Identification of the Reduced Joint Action Space, is
performed by the QoE Controller una tantum, every time a new Agent is born,
in order to identify, through the emulation of suitable test environments, an

appropriate Reduced Joint Action Space.

- Step (b):

This step, referred to as Identification of the Suboptimal Joint Action, is per-
formed, in real time, by the QoE Controller at each time step t;, in order
to identify the joint action (aq,as,...,ay) to be performed at time t; on the
basis of real-time observations of the environment and considering the Reduced
Joint Action Space identified in step (a) (and not the entire joint action space
A). This yields a suboptimal joint policy which constitutes a satisfactory

approximate solution to the considered problem.

Whenever a new Agent, say agent N, is born (i.e., a new application in-
stance is launched), say at time t, in a real environment in which N - 1
Agents i (for i = 1,2,..., N - 1) are already active, the new Agent notifies
its existence to the QoE Controller together with its own personalized QoE
requirements expressed in terms of Target QoE (T'QoEy). Then, the QoE
Controller emulates the dynamic behavior of the system in N — 1 two-player
test games, each one involving two Agents: (i) the new Agent N and (ii) each
of the already active Agents ¢ (¢ = 1,..., N — 1). These two-player test games
are played in emulated test environments which should reproduce only some
key features of the real environment.

Let [i, j] denote the two-player test game involving Agents 7 and j.

In each two-player test game [i, j| the optimal policy 7*(a;, a;) is obtained by
applying the MARL-Q algorithm described in the previous section (clearly,
in this case, the number of Agents N appearing in (2.32) and (2-33) is equal
to two). The optimal policy identifies a pair of deterministic actions (a, a})

177
where a; and a} represent the optimal CoS choices that the Agents ¢ and j,
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respectively, should enforce.
It should be clear that, since the cardinality of the joint action space of each
test environment is equal to S?, the computational complexity of the MARL-Q
algorithm is limited, i.e., the algorithm converges to the optimal policy in a
limited runtime.
After step (a), at any time t; at which N Agents are active, the QoE Controller
stores N (N - 1)/2 optimal action couples:

(aj,a;) with i=1,... N,j=1,....N,i#j. (2.34)
These couples are used in order to identify a Reduced Joint Action Space
containing a reasonable subset of the entire joint action space A. Let a} [i, j]
and @} [4, j] denote the optimal action for the i-th Agent and the j-th Agent,
respectively, resulting from the two-player test game [i, j]. We assume that
such a Reduced Joint Action Space consists of the union of N Action Subspaces,
where the i-th Action Subspace is associated to the i-th Agent (the sub-tables
within the borders in bold in the table below represent such Action Subspaces).
Each Action Subspace includes S candidate joint actions (i.e., the rows of each
sub-table). The i-th Action Subspace is built by only considering the two-player
test games involving the i-th Agent. In particular, each of the S candidate joint
actions of the i-th Action Subspace is obtained as follows: for each Agent j,
with j # 4, the optimal action a [i, j] that such an Agent would perform in
the two-player test game [i, j] is taken into account, whilst for the i-th Agent
all the S possible actions of the A; set are spanned (each one being considered
in a different candidate joint action of the Action Subspace). By so doing, the
Reduced Joint Action Space includes S'x candidate joint actions: this certainly
entails a drastic reduction with respect to the SV joint actions that would
appear in the entire joint action space A. For instance, if, at the considered
time step, N = 4 (i.e., the Agents 1, 2, 3 and 4 are active) and S = 3 (i.e.,
the action a; that Agent i (for i = 1,2,3,4) can perform corresponds to the
selection of one of the three CoSs ¢y, g, ¢3), each of the S x N = 12 lines of
the table below provides one of the 12 candidate joint actions (in particular,
the sub-tables included within the borders in bold identify the N = 4 Action
Subspaces), while each of the four columns of the table identifies the single
actions that can be taken by Agents {1,2,3,4}, respectively, in the overall
Reduced Joint Action Space.

Moreover, every time a new Agent, say agent N, dies (i.e., an in-progress appli-
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Table 2.1 Representation of the reduced joint action space for N=4 and S=3

A @2 @3 L4
@ a2 a3 a4
3 L2 alL3 a4
A2 o @23 a4
ai[L,2] 2 aif2,3] ai[2,4]
ai[1,2] 3 a3[2,3] aj[2,4]
13 @523 ol ajf3,4]
@13 32,3 2 a)f3,4
ai[l,3] a3[2,3] <2 aj3,4]
ai[1,4] a3[2,4] af[3,4] cl
Alld] aGRa B o
ai[1,4] a3[2,4] a%[3,4] 3

cation terminates), the Reduced Joint Action Space is updated by eliminating
the actions involving Agent N. For instance, referring to the example reported
in the table below, if Agent 4 dies, the three joint actions corresponding to
the three last rows are removed (i.e., the Action Subspace corresponding to
Agent 4 is removed), and all the actions corresponding to the last column are
removed, too.

Step (b) of the H-MARL-Q algorithm is performed on the basis of the MARL-
Q algorithm and is applied to the Reduced Joint Action Space identified in
step (a). So, in step (b), the QoE Controller has to perform the tasks T1,
T2, T3, and T4, previously described, with the fundamental difference that,
when performing tasks T1 and T2, the Reduced Joint Action Space (having
cardinality S x N), instead of the entire Joint Action Space (having cardinality
SN, is considered. Since N can be in the order of thousands, it is evident that

the proposed approach drastically reduces the required computing power.

2.3.3 H-MARL-Q algorithm simulation

This paragraph presents numerical simulations, carried out using MATLAB®,
with reference to a simple simulation scenario which does not claim to represent
any real network. The presented simulations are just aimed at providing a proof-
of- concept of the proposed algorithm in order to highlight its potentialities and

criticality. We assume the presence of S = 3 different CoSs (e.g., “guaranteed,”
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“premium” and “best effort” services) and M = 3 different application types
(i.e., real-time HDTV streaming, distributed videoconferencing and simple File
Transfer Protocol).

The static CoS assignment policy determines a static association among ap-
plication types and CoSs (i.e., an application instance belonging to a given
application type is assigned the corresponding CoS for its entire lifetime),
whereas in the dynamic CoS assignment case, at each time step t;, an appli-
cation instance can be assigned any CoS (regardless of the application type)
according to the proposed H-MARL-Q algorithm. We assume that during our
simulations N Agents are active, each one being involved in an application
instance.

Such an application instance may belong to one of the three considered appli-
cation types and is characterized by an average offered transmission bit rate
b; randomly selected in the set {0.6,1.2,2} and by a personalized Target QoE
TQoE; (fori=1,..., N) randomly selected in the set {0.7,0.8,0.9}.

-

Transmiter #1 Receiver #1

g Baottleneck g
Transroitter #2 \ l / Recener #2
I———’

Router West RE\
Transitter #3

Recener #3

= =

Transraitter #H Recerer #1Y

Fig. 2.3 Example Network

The simulated network has a dumbbell network topology, as shown in
Fig. 2.3, where each of the N transmitters corresponds to one of the N considered
Agents. Router West implements a Weighted Fair Queuing (WFQ) scheduler
for handling the traffic to be transmitted over the bottleneck link. The related
WFQ vector [23] is assumed to be (0.2,0.3,0.5), where the i-th element is the
weight assigned to the i-th CoS (higher weight means higher priority). The
bottleneck link is characterized by an available link capacity Bj;,x computed
as:

N
Biink =w Y b; (2.35)

=1
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where w is a parameter in the range (0, 1) accounting for traffic congestion; in
particular, in our simulations we consider two different situations characterized
by w = 0.7 and w = 0.8, which represent High Traffic and Medium Traffic con-
ditions, respectively. As for the number of active Agents N, in our simulations
we consider two cases: N = 100 and N = 1000. For each of these two cases and
for each of the two considered traffic congestion conditions, ten simulation runs
or episodes have been carried out, with a duration of (15 x 103) time steps for
N =100 and of (15 x 104) time steps for N = 1000 : in each simulation run a
different association among application instances, application types, average
offered bit rates and Target QoE values is performed.

Such associations are assumed to be fixed for the entire simulation run. In
the simple proposed simulation scenario, we assume that the set of Feedback
Parameters ¢, includes, for any m = 1,2, 3, just a single element denoted as
®0os and that the function g,,, is computed on the basis of the well-known
IQX hypothesis [32]. This means that (2.30) becomes:

PQoE;(m)(tk) = pme€ ™ ¢Qos + Tm (2.36)

where the parameter ¢g,s has been assumed to be equal to the difference
between the traffic offered by the application instance and the corresponding
bit rate currently allocated by the WFQ Scheduler.

Note that the latter parameter depends on the CoS appointed at time ¢, for
the considered application instance, which actually impacts on the priority
assigned by the WFQ Scheduler to the packets of the relevant traffic flow. We
assume ol = 0.5, 02 =0.7, 03 =1, as well as p,, = 1 and 7,, = 0 for all values
of m; with these choices, PQoE;(m)(tx) is always included in the range [0, 1].
The learning rates a(tx) appearing in (2.32), according to [75], are set to:

alty,a1,a9,...,ay) = 1/(1 + visit(ty, a1, az, ..., an)) (2.37)
where visit(ty, a, as, ..., ay) is the number of times that a specific joint action
(ay,as,...,ay) has been enforced up to the iteration at time t;. The discount

rate is set to 7 = 0.9. The selected joint reward function, consistent with the

general criteria, is:

N
r(ty, ar,as,...,ay) :Zwitk (2.38)
i=1
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where the absolute value of w; serves as an appropriately chosen penalty, which
the i-th Agent is inflicted with, any time it exhibits either under-performing or

over-performing behavior. A proper choice of w; may be the following :

o w;(ty) = — 100 if e;(tx) < — 0.15 (i.e., if severe under-performance is

experienced by Agent 7);

o w;(ty) = — 10 if 0.15 < ¢;(tx) < 0 (i.e., if minor under-performance is
experienced by Agent 7);

o wi(ty) =—1if 0 < e;(t) < 0.1 (i.e., if acceptable over-performance is
experienced by Agent 7);

o w;(ty) = — 50 if e;(tx) > 0.1 (i.e., if undesirable over-performance is

experienced by Agent 7).

In particular, the thresholds on the QoE Error values of w; as below described
have been arbitrarily chosen in order to suitably classify the behavior of Agent
i at time t; as a result of the joint action taken. Moreover, the initial policy,

that is, the initial CoS-to-application association, is randomly generated.

The results will be showing as obtained in the described simulation scenario;
in particular, the H-MARL-Q algorithm is applied with a number of Agents
N =100 and N = 1000, both in the High and Medium Traffic conditions. It
should be emphasized that we can deal with such a high number of Agents
due to the fact that the proposed H-MARLQ algorithm relies on a Reduced
Joint Action Space, which has cardinality S x N = 300 in the scenario with
100 Agents (S =3 and N = 100), and S x N = 3000 in the scenario with 1000
Agents (S = 3 and N = 1000). If the original Joint Action Space were used,
a solution relying on the MARL-Q algorithm would be unfeasible, since the
cardinality would be SV = 310 = 5.2 x 10%", and SV = 3190 = 1.42 x 104"
in the two scenarios, respectively. The results obtained with the H-MARL-Q
algorithm are compared with the performance of a Static algorithm which
adopts a static CoS assignment policy. The comparison with the MARL-Q
algorithm is impossible due to the curse of dimensionality. The obtained results

are expressed in terms of two quantities:



36 Reinforcement Learning based Multi Agent Control Systems

o The Average Absolute QoE Error, computed as the absolute value of the
QoE Error, averaged over all the considered Agents and all the simulation

episodes;

e The QoE Error Standard Deviation, computed as the standard deviation
of the QoE Error vector (e, es,...,ex) (where ¢;, for i = 1,2,... N)

averaged over all the simulation episodes

Note that the standard deviation accounts for the fairness among Agents: the
smaller the standard deviation, the higher the fairness among Agents. Figs.
2.4-2.7 clearly show that the H-MARL-Q algorithm remarkably outperforms
the Static algorithm in all of the considered simulation cases. In particular,
while under the Static algorithm the Average Absolute QoE Error is appreciably
smaller in Medium rather than in High Traffic conditions, under the H-MARL-
Q algorithm, for both N = 100 and N = 1000, the Average QoE Error bars
corresponding to High and Medium Traffic conditions (see Figs. 3 and 4)
exhibit values that are really close to each other: this means that the presented
algorithm also allows to overcome the disadvantages related to the impact that
the traffic congestion conditions produce on the bottleneck link. Furthermore,
the QoE Error Standard Deviation shown in Figs. 2.6 and 2.7 confirms the
virtues of the H-MARL-Q algorithm, since the dispersion of the QoE Error
values of the different Agents at the end of the learning procedure is significantly
closer to zero than in the case when the Static algorithm is applied.

All these results evidently show that the dynamic and personalized selection of
the most appropriate CoS for the ongoing application instances yields improved
performance results, if compared with a static CoS assignment policy. In
addition, Fig. 2.8 shows the Average Absolute QoE Error trend, i.e., the
evolution of the Average Absolute QoE Error over time.

Let the settling time denote the time needed by the Average Absolute QoE
Error to reach a steady state. Once an acceptable preliminary agreement among
Agents — yielding the selection of the most “promising” joint actions for solving
the dynamic CoS assignment problem — has been reached in step (a), the error
dynamics, as highlighted in Fig. 2.8, experiences a rapid decrease over the first
100 iterations of step (b) and then it takes some time to settle down to the
steady-state value: in the figure, the settling time is approximately equal to
9000 iterations. So, the overall runtime required by the H-MARL-Q algorithm
is the sum of the time t, necessary to reach the preliminary agreement in

step (a) plus the time ¢, necessary to perform step (b), where ¢, amounts to
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approximately 9000 iterations for N = 100 and t, is negligible with respect
to tp. This is indeed an encouraging result which shows that the H-MARL-Q
algorithm has to be preferred to the MARL-Q algorithm as the former achieves
a satisfactory approximate solution in a reasonably smaller amount of runtime
than the latter — whose runtime, instead, actually turns out to be unfeasibly
long in scenarios where the number of Agents is counted in the order of hundreds

or thousands.

Average Absolute QoE Error
for N=100
0,20
0,15
0,10
0,05 —
0,00
H-MARL-Q Static

Fig. 2.4 Average Absolute QoE Error for N = 100. The dark-grey bar and the
light-grey bar represent the Average Absolute QoE Error in High and Medium
Traffic conditions, respectively.

The proposed approach to QoE Control enables a dynamic Class of Service
[81] selection aimed at reducing the error between the personalized Perceived
QoE and the personalized Target QoE levels by properly driving the control
procedures that handle the underlying networks. This result could be obtained
by embedding a new Multi-Agent Reinforcement Learning algorithm, namely
the proposed H-MARL-Q algorithm, in a centralized QoE Controller.

The proposed method presents several practical advantages:

« it does not require any a-priori knowledge of the environment (i.e., it is
model-free) thanks to the adoption of a Reinforcement Learning based

approach;

o it is decoupled from QoE Evaluation, i.e., it can work in conjunction

with any algorithm computing the Target QoE and the Perceived QoE
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Average Absolute QoE Error
for N=1000
0,20
0,15
0,10
0,05 -
0,00 -
H-MARL-Q Static

Fig. 2.5 Average Absolute QoE Error for N = 1000. The dark-grey bar and the
light-grey bar represent the Average Absolute QoE Error in High and Medium
Traffic conditions, respectively.

QoE Error Standard Deviation
for N=100
0,25
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0,15
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0,05 -
0,00 -
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Fig. 2.6 QoE Error Standard Deviation for N = 100. The dark-grey bar and
the light-grey bar represent the QoE Error Standard Deviation in High and
Medium Traffic conditions, respectively.
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QoE Error Standard Deviation
for N=1000
0,25
0,20
0,15
0,10 -
0,05 -
0,00 -
H-MARL-Q Static

Fig. 2.7 QoE Error Standard Deviation for N = 1000. The dark-grey bar and
the light-grey bar represent the QoE Error Standard Deviation in High and
Medium Traffic conditions, respectively.

Average Absolute QoE Error trend
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Fig. 2.8 Average Absolute QoE Error trend, corresponding to step (b) of the
H-MARL-Q algorithm, in High (black line) and Medium (grey line) Traffic
conditions with N = 100.
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values, and it allows a personalization level up to the single application
instance, since the only signal exchanged at the interface between the
QoE Controller and the QoE Evaluator is the QoE Error provided by
2.29;

it requires minimal signaling overhead since no communication exchange
among Agents is needed and very little information has to be exchanged

among the centralized QoE Controller and the distributed Agents;

it is characterized by a very good degree of scalability (thus being able
to handle several hundreds of Agents) due to the fact that, as the joint
action to be carried out at each time step is sought within a suitable
Reduced Joint Action Space, the complexity of the proposed H-MARL- Q
algorithm is linear in the number of Agents (as opposed to the well-known
MARL-Q algorithm whose complexity is exponential in the number of
Agents).

At present, the authors are carrying out further research, based on consensus

in networked dynamical systems, with the aim of overcoming the centralized

paradigm and, consequently, of developing a solution in which the QoE Control

functionalities are fully distributed into the Agents.
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2.4 RL Control approach applied to transporta-

tion system

Some content of this section is part of the publication in [17].

Smart data aggregation, transmission and analysis are key features in In-
telligent Transportation System (ITS). Since the beginning, these mobility
support systems allowed both urban, local trip planning and control solutions
integrating private and public transportation means, and door-to-door long
distance multimodal journey planning with the aim of optimizing specific travel
aspects (e.g., cultural visit, low emission, etc.). Due to the wide deployment
and large range of applications, I'TSs can take advantage of the most advanced
ICT architectures and technologies. Among them, Future Internet (FI) offers
one of the most promising frameworks for efficient, large-scale solutions. In this
work, we present a FI oriented system for a closed-loop, control-based approach
driving existing I'T'Ss in personalizing basic services for end users. The proposed
approach is user centric, in the sense that it is sufficiently general to allow the
personalization of a family of services, ranging from trip planning and control
services to tariff design. In particular, we consider the personalization of a
multi-modal trip planning service.

Nowadays I'T'Ss represent an important topic from the technological and business
point of view. They mainly rely on models and algorithms from Transportation
Engineering that are deeply changing our travel habits. The main goal is that
of making current transportation systems more and more safe, secure and
efficient, as well as providing intelligent multi-modal trip plans and reducing
risks, traffic congestion, and CO2 emissions. From the ICT point of view, ITSs
take advantage of real-time information and communication for supporting
end user decision-making [93]. In this respect, an ITS can be considered as
intelligent since it combines several disciplines including, but not limited to,
effective and efficient optimization and control algorithms, as well as computer
science innovative services and advanced architectures. According to [114],
from the functional point of view, an I'TS can be divided into six fundamen-
tal components (see 2.9): (i) Advanced Traveler Information System (ATIS),
(ii) Advanced Transportation Management System (ATMS), (iii) Advanced
Vehicle Management (AVM), (iv) Business Vehicle Management (BVM), (v)
Advanced Urban Transportation System (AUTS), and (vi) Advanced Public
Transportation System (APTS). Among them, ATIS represents one of the most
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important components in I'TS, especially because it provides travelers with
suitable real-time detailed information about journey, traffic status, public
transport information, including time table and current availability of each
transport means. From the conceptual point of view, ATIS consists of two
main modules [111]: (a) Pre-Trip Traveler Information System (PTTIS) and
(b) En- Route (also known as On-Trip) Traveler Information System (OTTIS).
In applications of practical interest, ATIS can include the Multi-modal Trip
Planner (MTP) module (see [78] - [34]). In order to provide suitable real-time
information about travel, usually data coming from several, heterogeneous
sensors are gathered and subsequently processed into the Advanced Transporta-
tion Management System (ATMS) [93]. A real challenge in ITS is integrating
different, heterogeneous and dynamic data sources and providing information
for each end user in a multi-modal transport model that could cover long dis-

tance journeys [113]. A highly challenging feature in ITSs is the personalization

INTELLIGENT TRANSPORT SYSTEM

Advanced
Advanced Traveller Transportation Advanced Vehicle
Information System Management Management
System

Advanced Urban Advanced Public
Transportation Transportation
System System

Business Vehicle
Management

Fig. 2.9 Intelligent Transportation System

of real-time information, aimed at providing end users with suitable, on-line
support taking into account user (i) requirements, (ii) preferences, and (iii)
behavioral profile. Several approaches have been considered, ranging from
Recommendation Systems to advanced Expert Systems. In [78], an advanced
trip planner is presented aimed at providing personalized user information
and travel alternative path. A personalized information retrieval system for
filtering travel results, such as to satisfy user specific needs, is conceived in [35].
In [76], a multi-criteria decision making approach is proposed and validated
in order to help, in a personalized way, the end user in the journey selection
among several different travel solutions. In [10], a framework integrating Case
Based Reasoning and Multi Criteria Decision Making is proposed in order to

improve the user satisfactions for itinerary search in urban area. Three distinct
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methods aimed at predicting journey times and ranking typologies of Points of
Interest (i.e., stations, museums, etc.) according to user interests are proposed

in [61]. Sophisticated machine learning methodologies have been proposed for

User Centric Control System (UCCS)
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Fig. 2.10 Extended Intelligent Transportation System

user profiling. A Markov Decision Process and Reinforcement Learning based
approach is proposed in [70] to learn how to support users in decision-making
process through human-computer interaction. Bayesian methods have been
adopted in [3] in order to learn user travel preferences by considering user past
travel choices.

We propose an Extended Intelligent Transportation System (ExITS) whose key
difference, with respect to previous control and/or learning based approaches
for I'TS, consists in jointly taking into account the user request submitted to
the Multi-modal Trip Planning (MTP) module and the actual choice carried
out by the user as one or more Candidate Travel Solutions are returned. As a
matter of fact, these choices are elaborated by a dedicated User Centric Control
System (UCCS) in order to refine the user behavioral profiling and eventually
producing the so-called Personalized Optimality Criteria which drive the ba-
sic ITS to provide personalized travel solutions representing the Personalized
Control Decisions as explained in Sections IV. The UCCS extends traditional
ITS functionalities by automatically learning user preferences from the user
behavior, even in the case the user preferences are in contrast with the ones

explicitly declared.
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2.4.1 Reference scenario

The transport network is modeled as a multigraph G(V, E'), namely a graph
with possible multiple edges between the same vertices. A multigraph can be
described by a function f: E — V x V indicating the vertices (v;, v;) connected
by a given oriented edge el, i.e. f(e;) = (v;,v;). In our model, there exists an
oriented edge el connecting the vertices (v;, v;) if there exists a transport mean
m directly linking the node v; with the node v; starting at time ¢; from the node
v; and arriving at time ¢ at the node v;. We assume that there are M distinct
transport means. A transit node in V' is a node v such that v is the source node
of a link e served by a transport means m; and the destination node of a link e
served by a transport means m; for some 4,j and 4, j {1, ..., M }. By referring
to 2.10, the I'TS includes the so-called Advanced Travel Information System
(ATIS), whose main task is to keep dynamically updated the structure of the
above-mentioned multigraph G(V, E) on the basis of the real-time mobility
information provided by Transport Operators. As a matter of fact, G(V, E) is
a basic input for the Multimodal Trip Planner (MTP) module. In this paper,
we assume that U users are registered in the I'TS platform and have subscribed
the trip planning service. This service is used by user u whenever u needs to
plan a door-to-door travel, i.e. a complete trip from a specific source location
a to a target destination location b. The source and destination locations of
the travels are two particular vertices of G(V, E). We indicate by d(a,b) the
Fuclidean distance between two dimensional vectors of GPS coordinates of
physical locations a and b. User u can indicate the time t, for travel to begin,
t, can be a specific time in a day, a generic daytime or a range of time in a day.
Additionally, user u can provide a set of User Constraints, indicated by
UC(u,a,b,t,), for the travel from a to b starting at time ¢,. Typical constraints
concern the number of passengers traveling with u, special needs indicated by
u, allowed transport means among the possible M transport means, etc. We
consider S possible special needs that user u can declare. Finally, user u can
indicate an explicit set UP(u,a,b,t,) of User Preference Criteria about the
desired travel. The criteria UP(u,a,b,t,) are provided in order to explicitly
guide the MTP in proposing the most suitable travel solutions. In this work,

we consider a basic family of criteria consisting of:
e minimizing the overall travel time;

e minimizing the overall travel cost;
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o maximizing comfort level during the journey

« maximizing the class category of each transport modality;
e minimizing CO2 emissions during the trip;

e minimizing the number of transit nodes;

e minimizing the walking distance;

e minimizing the number of distinct modality means

These so called criteria represent a subset of a more general set of Optimality
Criteria, here indicated as OCR = {ocy, ..., ocp}, consisting of all optimality
criteria considered by MTP. In general, the cardinality P of OCR depends on
the specific MTP and can be a very high number, often including particular
combinations of criteria (e.g., convex combinations). We refer to as User Query,

indicated as
Qi(u) = (u,a,b,t,, UC,UP) (2.39)

the i-th query submitted by the user u who wants to plan the travel from the
source location a to the destination location b starting at time ¢, with the User
Constraints UC(u, a, b, t,) and the User Preference Criteria U P(u, a, b, t,). For
the sake of readability, we will refer to a generic i-th User Query Q;(u) as
Q(u). A Travel Sequence related to Q(u), indicated as s(Q(u)), consists of a
list of L distinct and consecutive edges e;, (1) linking the source a with the
destination b in such a way that f(e;) = (v;,v;), flew1) = (v, v), tji < tjma
, fler) = (a,v;) and f(er) = (v;,b). A Travel Sequence s(Q(u)) is referred
to as Feasible if s(Q(u)) respects all constraints UC(u,a,b,t,). A Feasible
Travel Sequence s(Q(u)) is Optimal if s(Q(u)) optimizes some Optimality
Criterion in OC'R. Note that, for processing time constraints, MTP cannot
consider all the P possible Optimality Criteria; conversely, MTP will consider
a suitably selected subset of OCR including, at the minimum, U P(u, a,b,t,).
This subset will be hereinafter referred to as the set SOCOCR of Selected
Optimality Criteria. A Feasible Travel Sequence s(Q(u)) being relevant to a
given Q(u) and optimal according to some optimality criterion in SOC' identifies
a Candidate Travel Solution for Q(u). We assume that MTP is able to find
the entire set of Candidate Travel Solutions for Q(u) on the basis of the set
SOC and of the information related to the present structure of G(V, E). Let
TS(Qu)) = {s1(Q(u)), s, (Q(u))} be the set of Candidate Travel Solutions for
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Q(u) returned by MTP. Typically, the cardinality n of T'S(Q(u)) increases as
the number M of transport modalities gets larger and/or the distance do(a, b)
increases. We define Selected Travel Solution and indicate by s*(Q(u)) the
Candidate Travel Solution in 7°S(Q(w)) which is actually selected by the user
u. We assume that the user u can be assigned the User Profile grouping all
users being more similar to w with respect to three families of parameters: the
distance dy(a,b), the constraints UC(u, a, b, t,) and the criteria UP(u, a,b,t,).
The identification of K possible User Profiles is a task demanded to a specific
functionality of the UC'C'S. Now, we introduce three important functions:

- ocr : s — OCS is the function indicating the optimality criterion ocr(s) in
OCR considered by MTP to provide the Candidate Travel Solution s(Q(u)) in
TS(Q(w));

- prl : uw — prly, prily, prix is the function assigning a user u to her/his User
Profile pri(u) properly selected in a set of K possible User Profiles;

- prs : prly is the function identifying the subset of OC'R being suitable for
the User Profile prii; in other words, for each possible pri; for k = 1, K the
function prs allows the identification of the most relevant optimality criteria in
the User Profile pri.

2.4.2 Extended Intelligent Transportation System

In this section, the ExtePOnded Intelligent Transportation System (ExITS) is
outlined with respect to two working modes: the Basic Mode and the Cognitive
Mode. In the following, we will refer to 2.10 in order to illustrate these working
modes and to clarify the main differences between them. Both working modes
are based on a basic I'TS consisting of the main components ATIS and MTP.
Both working modes allow each user u to submit a User Query Q(u) in the
pre-trip phase to the MTP. In both working modes, MTP is in charge of
selecting the set T'S(Q(u)) of n Candidate Travel Solutions which is returned
to the user u 2.10). The MTP performs such selection on the basis of Q(u)
(arrow A) G(V, E) (arrow C) Multigraph information is dynamically elabo-
rated by the ATIS on the basis of the real-time Mobility Information received
from Transportation Provider (arrow B). Note that the dynamic information
included in G(V, E) allows the MTP to react, in real-time, with respect to
unforeseen events affecting the mobility dynamics. The Basic Mode, differently
from the Cognitive Mode, does not makes use of the User Centric Control

System (UCCS). Therefore, with reference to Figure 2, the information flow of
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the Basic Mode just foresees the sequence A B C and F.

Conversely, the Cognitive Mode makes use of the UCCS including two funda-
mental functionalities being in charge for the actual personalization of mobility
services: (i) the off-line User Profile Identification functionality and (ii) the
on-line User Profiling functionality. In the Cognitive Mode, (u) submitted by
the user u (arrow A) is forwarded to the UCCS (arrow D).

As the UCCS receives Q(u), the User Profiling functionality identifies, in real-
time, the User Profile pri(u) the user u belongs to in the set of K possible
User Profiles. The identification of this set is demanded, off-line, to the User
Profile Identification functionalities. Then, the User Profiling functionality
identifies, via the prs(prl;) function when prl; = pri(u), the Personalized
Optimality Criteria POC(Q(u)) € OCR, associated to the User Profile pri(u),
i.e., optimality criteria being more likely preferred by the user u when traveling
from a to b starting at time t, as indicated in Q(u). In general, the cardinality
of POC(Q(u)) will be much lower than the cardinality of OCR.

The set POC(Q(u)) of Personalized Optimality Criteria are provided by the
UCCS to MTP (arrow E). Accordingly, MTP can calculate the set T'S(Q(u))
of Candidate Travel Solutions with respect not only to the explicit User Pref-
erence Criteria UP(u,a,b,t,) (as in the Basic Scenario, arrow A), but also
to the implicit Personalized Optimality Criteria POC(Q(u)) (arrow E). In
other words, in the ExITS, the set SOC includes both the set of User Pref-
erence Criteria and the set of Personalized Optimality Criteria, i.e. SOC =
UP(u,a,b,ta) U POC(Q(u)).

Therefore, the MTP considers both preferences explicitly indicated by the user
u in Q(u) and the Personalized Optimality Criteria selected by the UCCS
as user profile based preferences implicitly inducted by the machine learning
approach.

In the Cognitive Mode, the set T'S(Q(u)) of Candidate Travel Solutions, com-
puted by the MTP according to SOC, is returned to user u (arrow F) once
ranked according to the following rule. The first Candidate Travel Solutions
appearing in the ranked list are the ones satisfying the explicit User Prefer-
ence Criteria UP(u,a,b,t,). Instead, the following Candidate Travel Solutions
satisfy the implicit Personalized Optimality Criteria POC(Q(u)). Once the
ranked set 7'S(Q(u)) of Candidate Travel Solutions is returned to user u, such
a user makes her/his choice by selecting one of Candidate Travel Solutions
in TS(Q(u)), i.e., the Selected Travel Solution s*(Q(u)). It is fundamental
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to note that, differently from the Basic Mode, the Selected Travel Solution
s*(Q(u)) is provided to the UCCS (arrow G), in order to be used as a feedback
of paramount importance in the machine learning algorithms embedded in the
User Profiling Identification module. Therefore, with reference to figure 2.10,
the information flow of the Cognitive Mode foresees the complete sequence
from A to G.

It is important to remark that the Cognitive Mode is fully in line with the
Future Internet concept of considering a service/technology independent Con-
troller (here represented by the MTP). In fact, the Controller takes control
decisions (here represented by the set T'S(Q(u)) of Candidate Travel Solutions)
on the basis of the feedbacks directly coming from monitoring of the present
system status (here represented by the User Query Q(u) and the Mobility
Information), according to a control law depending on some user centric, per-
sonalized Driving Parameters (here represented by the Personalized Optimality
Criteria POC(Q(u))).

Within the UCCS, four main functional modules are in charge of dealing
with User Query Q(u) at the aim of generating the Personalized Optimality
Criteria POC(Q(u)).

The Travel Knowledge Base has the role of storing all additional data considered
in the Cognitive Mode but not in the Basic Mode. These interactions are
represented by a set HP of records R;(u) of the form

Ri(u) = [Qi(u), POC(Qi(w)), ocr(s*(Qs(u)))]" (2.40)

Each R;(u) includes the i-th User Query @;(u) submitted by user u, the
Personalized Optimality Criteria POC(Q;(u)) returned by UCCS with respect
to Q;(u), and the optimality criterion ocr(s*(Q;(w))) considered by the MTP
when s(Q;(u)) is the Selected Travel Solution s*(Q;(u)). The Travel Knowledge
Base stores records having the structure (see equation 2.40). A new record of
this structure is created whenever a Candidate Travel Solution in 7°S(Q;(u)) is
selected by u. The set H P of historical records are provided to the User Profile
Identification module so that the set of K User Profiles can be calculated
off-line. In addition, when a new Q(u) triggers the UCCS (arrow D), the User
Profiling module detects on-line the User Profile pri(u) associated to user u on
the basis of the information stored in the Travel Knowledge Base. Accordingly,
Personalized Optimality Criteria POC(Q(u)) are provided to the MTP via the

prs function (arrow E). Once the Selected Travel Solution s*(Q(u)) is chosen
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in TS(Q(u)) by the user u (arrow F), a new record R;(u) is inserted in the
Travel Knowledge Base.

The Meta Data Handling Tool offers basic procedures to gather, store and
manage data records of the form (2.40) in the Travel Knowledge Base. This
module is in charge for extracting the features of a given Q(u), namely the
distance dy(a,b), the vector UC(u,a,b,t,) and the vector UP(u,a,b,t,), as
made available by the ITS (arrow D). Moreover, this module is in charge of
transmitting the set POC(Q(u)), identified by the User Profiling, to MTP.
Finally, the Meta Data Handling Tool implements the function ocr : s = OCR
indicating the optimality criterion ocr(s) considered by the MTP for Candidate
Travel Solution s.

The proposed ExITS is sufficiently general in the sense that UCCS can adapt
to any MTP by means of the Metadata Handling Tool. In fact, every MTP
accepts User Query Q(u) containing at least the source a and the destination
b. In this elementary case, UC(u, a,b,t,) and UP(u,a,b,t,) are empty vectors
and the only data that the Meta Data Handling Tool can extract from Q(u)
is the distance dy(a,b). Accordingly, other components in UCCS can work
seamlessly.

The User Profile Identification is the core module of UCCS. In fact, this module
is able to analyze a huge amount of historical records HP of the form (2.40)
stored in the Travel Knowledge Base and to identify the set of K User Profiles
that will constitute the basic family of user profiles driving the User Profiling
module. The automatic identification of the User Profiles is made on the basis
of the similarity between historical records R;(u) in HP. The main idea is that
similar User Queries Q(u) and Q(w) should be characterized by similar sets
TS(Q(u)) and T'S(Q(w)) of Candidate Travel Solutions, that means similar
Personalized Optimality Criteria POC(Q(u)) and POC(Q(w)). Note that
the Personalized Optimality Criteria POC(Q(u)) are proposed by the ExITS
on the basis of historical patterns of User Query being similar to Q(u). On
the contrary, the Selected Travel Solution s*(Q(u)) is explicitly chosen by the
user u and, therefore, the optimality criterion ocr(s*(Q(u))) represents the
actual, implicit preference of user u with respect to Q(u). The User Profile
Identification algorithm for determining the Personalized Optimality Criteria
PCPQ(u).

The User Profiling module implements two distinct functions. The former is the

function pri: w — {prly, pris, ..., prix} assigning a user u to User Profile pri(u)
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in the set of K possible User Profiles already identified by the User Profile
Identification module. The latter is the function prs:{prily,pris, ..., prig} —
{0, 1} identifying the subset of OCR being suitable for each User Profile priy
for k ={1,.., K}.

2.4.3 Data Driven User Profiling

In this section, functionalities of the User Centric Control System (UCCS) (see
2.10) are described from the methodological and algorithmic point of view.
These functionalities rely on similarity based behavioral profiling techniques
typically used to learn user preferences by analyzing a huge amount of data
records and inferring similar behaviors. Data describing both user preferences
and behaviors with respect to the considered service, in this case the MTP, are
a key aspect of the analysis.

The complete set of entries of record R;(u) is summarized in Table 2.2. It
is important to remark that all entries are numerical values (real, integer or
Boolean). Of course, according to the specific features of the considered MTP,
some sub-vectors in the User Query @(u) can be available or not. In this case,
the Meta Data Handling Tool will not manage these data and the record stored
in the Travel Knowledge Base will not include the resulting missing data with

no consequence for the machine learning algorithms.

Analyzing the feedback provided by users with respect to a given service
is fundamental for user profiling and service personalization. In this work, we
consider the mobility service offered by MTP integrated in the ITS via ATIS, as
explained in the reference scenario. In this case, the explicit feedback provided
by the user u is the Selected Travel Solution s*(Q(u)) actually chosen by the
user u in the set 7'S(Q(u)) of Candidate Travel Solutions returned by the MTP.
We are interested in defining a finite number K of User Profiles describing
general, but recurrent patterns of user behaviors when users choose s*(Q(u))
in 7'S(Q(u)). In order to identify the set of possible User Profiles, we consider

a pattern of the form
1(Q(u)) := [do(a, b),UC(u, a,b,t,), UP(u,a,b,t,),ocr(s*(Q(u)))]* (2.41)

We consider that for each user request, i.e., for each interaction between an
user u and the ExITS producing a User Query Q(u), a record R;(u) (2.40) is
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Table 2.2 Data Record

Vector Entry Description Type
u User identifier Integer
a Source Location GPS
b Destination Location GPS
tq Begin travel time Integer
Owned transport mean (Yes or No) Boolean
Fidelity Program Boolean
Reason for traveling Boolean
Number of Passengers Integer
Maximum number of transit nodes Integer
UC(u,a,b,t,) | Requested return (Yes or NO) Boolean
Vector of allowed types of transportation mean {0,1}"M
Qu) Preferred class category Integer
Maximum allowed overall price Real
Allowed total travel time Integer
Vector of special travel request {0,1}°
Minimize the overall travel time Boolean
Minimize the overall travel cost Boolean
Minimize comfort level Boolean
Maximize the class category Boolean
UP(u,a,b,ta) Minimize CO2 emissions Boolean
Minimize the number of transit nodes Boolean
Minimize the walking distance Boolean
Minimize the number of distinct modalities Boolean
POC(Q(u)) Personalized Optimality Criteria for Q(u) {0,1}”
ocr(s*(Q(u))) Optimality Criterion explicitly selected by user u | {0, 1}
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stored in the Travel Knowledge Base and a pattern I[(Q(u)) can be used for
user feedback analysis by the User Profile Identification. The user feedback
analysis consists of a partitional clustering procedure that, given a set HP of
historical patterns I(Q(u)), yields a partition [[(HP) = {Wy,..., Wk} of K
non empty subsets W; C HP such that U—, _x Wi = HP and W, N W, =0
for each 4,7 = 1,..., K and i # j. The K components of partition [J(HP),
also called clusters, represent groups of similar patterns with respect to an
inter cluster separation criterion or, alternatively, an intra cluster homogeneity
criterion ([40]). Both approaches rely on a priori selected distances (typically
Ix-norm metrics, e.g. [108]) measuring the inter cluster similarity or the intra
cluster dissimilarity, respectively. According to the criterion to optimize, a
number of partitional clustering algorithms have been proposed in the literature.
Some algorithms are indicated in case of numerical attributes describing the
patterns to be clustered, others are more suitable when dealing with mixed
attributes. The most of clustering procedures consider the number K of clusters
as input parameter to the procedure (e.g., k-means, see [69] and [43]). There
exist approaches not requiring the number of clusters as input parameter (e.g.,
Clique Partitioning Problem, see [7]). The selection of the suitable partitional
clustering algorithm depends on the characteristics of the user profiling problem.
In this work, we consider patterns I(Q(u))including all numeric attributes (see
Table 2.2), and adopt the k-means algorithms for selecting the optimal partition
in k clusters by minimizing the so-called Sum of Squares Error (SSE), i.e. the
sum of the squared Euclidean distances between each pattern [(Q(w)) and
the cluster centroid. This choice is particularly suitable, since the Euclidean
distance allows capturing the differences between different patterns, once their
entries are normalized (in our case, we consider a normalization in [0, 1]). The
selection of parameter k of the clustering algorithm is a key feature of our
approach. In fact, even if the clustering procedure is completely unsupervised,
we deal with the problem of selecting the suitable number K of clusters by
analyzing the results of the clustering obtained with different values of the
input parameter k£ and by selecting the value K corresponding to the minimum
number of distinct optimality criteria ocr(s*(Q(u))) represented in each cluster.
In such a way, similar users belong to same cluster WW; and share the same user
profile given by the centroid of W;. The user profile is characterized by the
most representative optimality criteria appearing in the cluster W; that are in

a restricted number of meaningful user profile based optimality criteria. The
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representative optimality criteria in cluster W; are the ones returned as the set
POC(Q(u)) of Personalized Optimality Criteria by the on-line User Profiling
module for all Q(u) such that I(Q(u)) is similar to the centroid of the cluster
W;. In this sense, we say that Personalized Optimality Criteria returned by
the User Profiling module are personalized.

The output of the off-line User Profile Identification module is the set [[(HP) =
{Wi, ..., Wk} of clusters of homogeneous patterns I(Q(u)). For each cluster
Wy, the centroid of the cluster is given by the mean values of entries of patterns
I(Q(u)) belonging to Wy. In the following, for each k =1, .., K, we indicate by
prl the sub vector

priy, = [do(a,b,UC(u,a,b,t,),UP(u,a,b, ta)]T (2.42)

where UC' (i.e. vector) and a in UP, including the mean values of entries
do(a,b), UC(u,a,b,t,) and UP(u,a,b,t,) of all patterns I(Q(u)) belonging to
Wy. Tt is important to remark that a single user can belong to different clusters.
In fact, if two User Queries are assigned to distinct clusters, then the user who
submitted the queries behaved differently and, accordingly, his behaviors have
been assigned to distinct groups in [ HP.

Given the output of the off-line User Profile Identification, namely the set
[THP = {W;,...,Wk} and the related sub vectors {priy, ..., prix} (2.42), we
denote by J(Q(u)) the sub vector of the pattern I(Q(u)) given by

J(Q(u)) = [dy(a,b),UC(u,a,b,t,),UP(u,a,b,t,)]" (2.43)

Once a new User Query Q(u) is submitted by a user u to the MTP, the on-line
User Profiling procedure evaluates the cluster pri(u) which Q(u) belongs to. In
order to do that, the Euclidean distance between the sub vector J(Q(u)) and
each sub vector pri; of the K centroids of the partition [[ HP is calculated.
Q(u) is assigned to the cluster whose centroid is the closest to J(Q(u)).
In this sense, the User Profiling module implements the function prl : v —
{prly,pria, ..., prix} by assigning to the user u the cluster pri; obtained as
follows

K* = argming—y, xd,(J(Q(u)), pri) (2.44)

In order to provide the Personalized Optimality Criteria POC(Q(u)) C OCR,
the User Profiling module implements the function prs : {priy,pris, ..., prix} —
{0,1}” that identifies the subset POC(Q(u)) of the P possible Optimality
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Criteria being suitable for a given User Profile pri; for £ =1, .., K. In order to
do that, given the User Profile pri(u) assigned to User Query Q(u) by (2.43),
the function prs(pri(u)) returns the subset of OC'R being mostly represented
in cluster pri(u) in terms of high percentage of patterns I(Q(u)) sharing the

same selected optimality criterion ocr(s*(Q(u))).

2.4.4 User Centric Control System

I have realized a questionnaire to collect user data in terms of users general
preferences and needs during journeys. The answers from survey participants
have been used to implement a data driven user profile approach by training
a K-means algorithm (a Machine Learning unsupervised algorithm) able to
divide in k clusters/groups the travelers as described in the previous sections.
The result of having divided in K clusters/groups the users has carried out
different user profiles (as presented above) according to questionnaire answers.
By analyzing the main users preferences and needs through the computed user
profiles I have defined a traveler (user) model, which represents a synthetic
description of a generic user in the travel context with a set of different travel
characteristics.

The identification of a traveler model is the starting point to enable a learning
process via human-machine interaction.

In the human-machine interaction, i.e. when a human being interacts with an
application which provides services, a learning system can be setup (see figure
2.11) able to intercept the human behavior/choices during the interaction with
the application.

To intercept and learn from human behavior the learning system has been
designed to include the traveler model, so that it is able to learn the human
choice or actions, according to the traveler model, while the human begin
interacts with the application.

The traveler /user model is characterized by 11 different characteristics (7'C):

o Number of transit nodes: representing the mean of number of modalities

changes during performed journeys.

o Preferred transport means: representing the preferred modalities during

each journey.
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Fig. 2.11 Human Machine Interaction with learning system

 Private service car: representing the car-modalities (e.g., car rental, car

sharing, car pooling, etc.) mostly used by the user for its journeys.

o Preferred class category: representing the class category most preferred
by the user among the available class categories chosen performing its

journey.

o Special travel needs: The travel needs are correlated to the class categories,
since each category offers different comfort; in order to acquire preferred
needs, this characteristic defines the exact needs preferred in choosing

journey.

o Total travel time: each journey has a total time that each user has to
respect to finish its trip; this characteristic attempts to define the total
time admitted for each user.

o Comfort level: for each journey transport providers or private service

discovery may define a comfort level for the corresponding journey.

o Sensibility to C'O, emission: The sensibility to C'Oy emission can deter-
mine in a-priori manner the user choose. In particular, any model could
drive a journey planner only consider the sensibility to C'O, emissions,

by computing only routes while considering this characteristic.

o Walking distance: The total distance admitted while user travels
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» Range departure time: Each user could have a preferred departure time.

o Price range travel: representing the willingness to pay for each user during
its journey.

9

The user model characteristics T'C; were used to acquire knowledge from users
expectation in order to determine perfect users’ needs. In this respect, the
Extended ITS presented in figure 2.10 were enriched by including an adaptive
system as shown in figure 2.12.

The architecture presented in figure 2.12 extends basic functionalities offered
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Fig. 2.12 Control Scheme for Intelligent Transportation System

by typical ITS modules or subsystem (already presented in figure2.10). The

modules included in figure 2.12 are:

o Trip Planning (TP) typically included in the ATIS, is the module in
charge of processing the user query in the pre-trip planning phase; it

computes the trip solutions expected by each user as a consequence of a

query.

o The Single User Adaptive Learning module in charge of iteratively learning
user travel preferences and behavioral profile, exploiting the user cognitive
model, where the model is designed as a set of travel features. It also
provides to the TP module the route preferences for computing tailored

solution.
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e The rank module is in charge of providing the list of travel solutions

ordered following the criteria provided by Single User Adaptive Learning.

By learning from human-machine interaction, I have used the traveler model
with the purpose of creating an individual control experience, in charge of
providing individual parameters for both (i) computing ordered personalized
travel solutions and (ii) delineating knowledge about specific users’ preferences
and needs (also defined as behavioral context), for computing tailored solution.
The learning system captures the travels’ characteristics most preferred by
users via explicit feedback (namely the user feedback as shown in figure 2.12).
The feedbacks is then modeled over the traveler model permitting to outline the
users behavioral context (how the users behave in choosing the travel solutions).
More precisely, I have designed an algorithm that on the basis of the traveler
model is able to learn which are (i) the preferred travel preferences/needs and
(ii) the behavioral context contained in Single User adaptive learning (see 2.12)
modules.

The travel preferences/needs refer to those travel characteristics selected by
a generic user while choosing a travel solution considered as mandatory for
performing a travel; conversely the traveler behavioral context refers to the
travel characteristics that are not the most preferred by the user, but that
are anyway chosen in the selected travel solution. The concept of behavioral
context deserves a clear example: Imagine that, by using a generic journey
planner system, a generic user makes its request for a long range travel where
the departure location is Rome and the destination location is Sydney, as a
consequence of the request the users receives a set of different solutions which
include airplane; now it is possible to assert that for the requested travel the
transport mean airplane is essential; but the generic user doesn’t prefer the
airplane transport mean for generic reasons; the travel is in some sense impos-
sible without the airplane and the generic user picks the solution containing
the airplane mean; this is the behavioral context, how the user behaves facing
with those travels which contain some not preferred characteristics.

A generic system which doesn’t include a learning system doesn’t consider this
selection as special selection, while a supervised system, described in the work,
captures this selection and marks it as behavior. Obviously, figure out the
difference between a choice that is either a consequence of the user preference or
user behavior is not simple and it requires enough interactions (human-machine

interactions) to be captured. When the user interacts with the system by
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making decision in terms of selected travel solutions, the adaptive learning
system captures the user choices and compares the picked solution with the
other in the list; if the user picks solutions that don’t contain airplane transport
mean even if in some solutions it is contemplated the system could learn that
this is a preference i.e. the user prefers TRAIN for instance; while selecting
the solution that contain airplane transport mean among the other that don’t
contain any alternatives (the set of solutions includes only airplane mean) the
adaptive learning system could capture the behavior taking into account the
whole user’s history i.e. it has always selected train mean and now it has
selected airplane mean.

To implement an individual control experience the generic user has to be learned
in its whole completeness, that is what he/she prefers and what he/she does
not prefer but is in any case chosen.

For the sake of simplicity, within each 11 defined characteristic T'C; can be
identified a set of different actions. The user preferences/needs and behavioral
context are characterized by the more suitable actions in each characteristic
TC for a given user, where the goal is to provide to each user the personalized
ordered travel solutions evaluating what the algorithm has learned in terms of
preferences and behavioral context.

The implementation of a such adaptive learning system is allowed by the
Reinforcement Learning approach and the I have identified a stateless Q-
Learning algorithm able to actualize such a adaptive learning system. The
preferences/needs and the behavioral context that the adaptive learning sys-
tem expects to learn concern those characteristics that are directly involved
when users interact with an application able to satisfy the users’ request with
appropriate travel solutions.

The traveler model is characterized by a number of M characteristics, f;,
i=1,....,M (f; = TC;). For each characteristic f, a set of distinct available
actions a,, 1 € A, where n=1,... N,.

The overall action space A is computed as A = A; X Ay X ... X A, with
cardinality N = [[y_; N i.e., it considers all the possible combinations of
actions available in each characteristic. In this way, a set of vectors a; € A is
obtained, where j = 1,...,J represents the joint actions that must be evalu-
ated to suggest the personalized ordered travel solutions describing also the
behavioral context. Each joint action a; contains the available action a, for

each n, implying that we are aiming at evaluating the optimal joint action,
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defined as:
a* = argmaz,c2Q(a) (2.45)

i.e., the action that fits better with the behavioral context of a given user. The

action-value function update is:

Qir1(ar) = (1 — a)Q(ay) + aufry + ymazacaQ(a)) (2.46)

where a; represents the joint action performed at time ¢, is the discount factor,
ry is the immediate reward and t is the learning parameter. The choice of «
determines the convergence of the algorithm. An appropriate choice [75] is the
following:

a; = 1/1 4 visit,(a) (2.47)

where visit,(a) is the number n of times that a given joint action a is used.
In practice, the number of characteristics of interest and the number of actions
a, in each joint action a; are large enough to make the number J of joint
actions a big obstacle for the learning process — this problem is known as the
“curse of dimensionality” [14].

To avoid the hard limits of the learning process due to the already mentioned
curse of dimensionality, the algorithm is designed by assuming that the char-
acteristic are independent; then, a single-agent (SA) stateless Q-Learning
algorithm is implemented for each characteristic f;. The traveler model is
represented as a collection of characteristic f;, where i = 1,..., M, for each
characteristic f; can be considered the set of actions a,,;, i € A;. The charac-

teristics (already discussed above as traveler model) and actions predicates are:

 f1: number of transit nodes (a,, )
ap1: The number of transit nodes (i.e., number of exchange nodes) that

characterize the travel solutions.

e fo: user transport means (a,2)

an2: The transport means that may be used during travels.

 f3: private service car (ay3)

an3: The private transport means.

o fy: preferred class category (a,.4)

an.4: The implied class categories used choosing several transports means.



60 Reinforcement Learning based Multi Agent Control Systems

o f5: total travel time (ay,5)
an5: The total travel time is evaluated dividing the interval between 0

and 1 in n subinterval.

 fe: special requests (a,.¢)

ane: The additional services that may be requested during travels.

 f7: walking distance during travel (a, 7)
an 7: The overall availability to walk during travels evaluates dividing the

interval between 0 and 1 in n subinterval.

o fs: sensibility to COy emissions (a,g)
ans: The predisposition in choosing solutions pay attention to the pollu-

tions.

o fo: comfort level (a,g)

an9: The overall comfort level during travels.

 fi0: range hour travel (a, 10)

an10: The range of requested departure.

o fi1: price travel (a,11)
an11: The willingness to pay evaluates dividing the interval between 0

and 1 in n subinterval.

The M Q-Matrix are therefore built, each one collecting the estimated values

of actions available for one characteristic and apply the Q-learning update rule:

Qirvi(ar) = (1 — @)Qirlar) + afry + ymaz,caQis(a)] (2.48)

The objective is then to find the M optimal actions a},i =1,..., M, one for
each characteristic; the collected optimal actions will form the joint action that
will be a = (a});=1,.m-

In order to guarantee a certain degree of exploration, an e-greedy policy is
adopted. At each time step ¢, the best action for each characteristic is chosen
with probability 1-¢, with € € (0, 1), according to the Q-Matrix, i.e.:

ai = argmaz,eaQa),i=1,..., M (2.49)

whereas a random action a € A; is chosen with probability €. The parameter e

has to be tuned to drive the trade-off between exploration of the action space,
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with a value for € close to 1, and exploitation of the learned preferences, with a
value € close to 0.

The optimal a; will be then used for both : (A) provide a personalized ordered
list of solutions and (B) compute a tailored solution (stitched on the preferences

and needs of the user).

2.4.5 Adaptive Rank and Results

The estimated traveler model was implemented for acquiring both user needs
and expectation, and providing a valuable service to users by exploiting the
learned context.

An Adaptive Rank algorithm was developed aimed at proving tailored list of
ranked travel solutions to each user.

The user model has been used to model each travel solution 7'S (i.e. each
travel solution in output from a generic journey planner can be converted into
features and action of the presented model), the collection of different travel
solutions T'S (k the number of travel solutions) for each query will form the
list to be ranked for tailoring the users’ experience. The collection of T'Sy

modeled over the travel model has the following form:

TSi(filai), faag), s fulay) (2.50)

The acquired user knowledge in terms of needs and preference, is therefore used
to evaluate each travel solution by assigning a value.

As previously described for each action in each individual Q-Matrix (build by
following the user model) we associate a weight, and then modeling each travel
solution (as described in equation 2.50) we obtain a weight for each action in

each feature.
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Algorithm 3 Adaptive Rank Algorithm
Initialization

Given

K=Number of solutions

w=w-th Q-Matrix

1, 7, y=active actions in each solution

s=1,....K

Compute

Model the set of solutions T'Sk into traveler model
TSk (fi(ai), f2(ay), .., fi1(ay)

Take the weights for each travel characteristic from the Q-Matrix as Wy (T'Sk) =
Qu(fj(as))

Compute the weight for each TS following the equation
TSk =3 Ws

W =W,

Wortea = sort(W)

The list of ranked travel solutions, according to the user needs, is therefore
obtained by ordering the travel solutions by means of weights and considering
a descending order, as described by the Algorithm 3.

Now, consider a generic user A who begins its first interaction with the system
shown in figure 2.12. The learning algorithm such as Single user adaptive
learning, designed for acquiring knowledge from the human-machine interaction,
doesn’t know the user needs, since the user is at the first interaction with the
system.

This means that, in case user A requests a generic trip, the system provides
an initial random list of ranked travel solutions (according to the whole set of
alternatives) waiting for a user first choice in order to acquire the first user A
needs.

Figure 2.13 shows what the system has provided to the user. The set of travel
solutions with a tailored random order is shown to the user (referring to top left
part of the figure 2.13 ). In this respect, in the set of travel solutions depicted
in figure 2.13, the user A selects the third solution, for instance. The selected
solution contains paths with FOOT and CAR SHARING. The selection from
user allows the system to learn the initial user needs.

Figure 2.14 shows the same solutions, according to the same request, with

the difference that the solutions are ordered taking into account the user latest
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choice. The adaptive rank algorithm has learned the initial preferences and in
this second interaction (see figure 2.14) a more precise order is performed.

In order to figure out the performances in terms of effectiveness of the tailored
rank of solutions in Figure 2.15 a new set of solutions is shown and provided
by the system to the user A. The set of solutions are returned to the user, still
according to the acquired needs and preferences, in fact in the first position
in 2.15 is still presented the CAR SHARING solution; the other solutions are
ranked taking into account the 11 features already presented.

In case the user A selects the third solution in the list of 2.15, (METRO BUS)
the system acquires again the user preferences and needs. A result of the last
choice is presented in Figure 2.16 where the system returns the tailored list of
ranked solutions according to the user A choices.

The effects of the human-machine interaction have result also in case the query
is outside the urban area and covers long range distance as depicted in Figure
2.17 where the solutions are ranked according to the user A complete choices.
The first solution in 2.17 from OSLO to ROME includes CAR SHARING for
traveling in the Rome city as already selected by user A in its choices. In
particular, the first solution within the whole set of solutions returned by the
system contains: (1) CAR as first transport mean to reach the airport, (2)
AIRPLANE to reach the Rome airport, (3) TRAIN to link the Rome airport
with the Rome city center and (4) CAR SHARING path to reach destination.
Furthermore, the fact that the system has learned the user A preferences is
highlighted by the fifth ordered solution in the list. The fifth solution contains
paths not desired by the user A taking into account the previous user A
selections.

The results shown from figures 2.13 to 2.17 try to demonstrate how the system
is able to learn preferences from the human-machine interaction and project
the acquired knowledge for controlling and improving the users’ experience
while interacting with the application by ordering in a personalized way the

solutions for user A.
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2.4.6 Tailored Solution

As introduced above the adaptive learning system is able to capture the users’
behavioral context. The behavioral context can be used to compute the tailored
solution by proving individual route parameters to a generic Trip Planner.

The generic Trip Planner taking into account the individual route parameters
will provide the tailored solution thought to be the most preferred solution. The
route parameters RF;, where ¢ = 1,...,11 are the optimal actions a; computed

according to the equation in 2.49, converted into actions predicates.
_ * * * * * * * * * * *
RP@ - [CLl’ Ao, 4 3,0y, s, Gg, A7, Ag, Qg, A1, all] (251)

This means that the RP; contains the actions having the best value for each
characteristic according to the equation 2.48. The RP; are delivered to the Trip
Planner that computes the potential "optimal" solution for the user. Figure
2.18 shows the tailored solution according to the user A behavioral context;
with respect to the previous example where more than one solution is presented,

in this case the trip planner returns only one solution considered as the most
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desired solution for user A.

The suggested RP; are used by the trip planner as constraints. The trip planner
used to perform the simulations reported in this chapter has been developed
within the H2020 project BONVOYAGE 2.

2BONVOYAGE H2020 http://www.bonvoyage2020.eu/






Chapter 3

Deep Learning based Intelligent

Transportation System

3.1 Introduction

In this Chapter, dedicated to the automatic recognition algorithms, I reports
the research activities carried out in the field of Artificial Intelligence (Al);
more precisely machine learning [75](ML) and Deep Learning methodologies
[37] (DL). The ML and DL have attracted a lot of attention in the recent years
for their elevated efficiency in helping human people in several different tasks.
Currently, these methodologies are providing great advantages in different fields:
physics, computer science, economics, vision analysis, health care, etc.., with a
relevant number of applications. The great part of the success is given to the
fact that the Artificial Intelligence methodologies are able to bring intelligent
capabilities to computers/machine. The human being are able to perform
reasoning and make decisions thanks to the acquired experience during their
life. There are some hard problems, in terms of computation complexity, in
which the human beings could fail either due to the complexity or at least take
a lot of time for solving. In general, the ability to solve real world problems
that belong to some physical (play guitar) or intellectual (interpret a sentence)
become feasible for a human being after a training process.

This is the main concept of the Machine Learning algorithms and related
techniques, in fact just like the human beings the Machine Learning algorithms
need to be trained before providing a correct decision. Such techniques can be
implemented via software, developing an algorithm, that learns exactly what

the human being (the developer) has intention to perform. After a period
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of training the developed software is able to get decisions with its relative
experience.

Moreover, the algorithms will achieve the awareness of a given task after a
training process. The training process is mainly based on data analytics, and
the Machine Learning algorithms can acquire experience from the past having
knowledge about the data which describe for instance past events.

The human being has made-up Machine Learning for solving some complex
tasks in which was simpler to develop an algorithm than solving manually the
tasks. The ML and DL methodologies are mainly used for pattern recognition,
time series prediction, images classification, etc .... However, Deep Learning
[37] is a particular Machine Learning technique able to solve the most complex
problems.

The Machine Learning algorithms can be divided into three main types:

e Supervised Learning

The Supervised learning algorithms refer to those algorithms trained with
a target variable associated to each data entry. Basically, these algorithms
generate a function able to map for each input variable a desired output.
In the learning process the algorithms take as input a set of different
observations and as output a set of different labels representing the
outcome of the observations. Examples of Machine learning supervised
algorithms are: Logistic Regression [9], Random Forest [11], Decision Tree
[95], K-nearest neighbors [58], Support Vector Machine [97], Artificial
Neural Network [21], etc ...

e Unsupervised Learning

The Unsupervised Learning algorithms refer to those algorithms that
are able to predict or at least estimate a target variable for each data
entry. The main different with respect to the Supervised Learning al-
gorithms is that the target/output variables are not known in a priori
manner. This means that the data are unclassified and then a correlation
among input variables and output variable is unknown. The objective
of these algorithms is then a prediction of the output variables and they
are used mainly for dividing the data in different groups/clusters. A
typical example of Unsupervised learning algorithm is: K-Means [44] and
AutoEncoders [98].
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e Reinforcement Learning
The Reinforcement Learning algorithm was described in the previous

chapter (namely, Chapter 2).

Supervised Learning algorithms are particularly suited for solving two different

types of problems:

o Classification
Classification is the problem of identifying the class of a given observa-
tion. For example, the observation ca be an image and the class can be

considered as what the image represents: a CAR.

« Regression
Regression is the problem of estimating which are the relation among
variables involved in a given dataset. These kind of problems can be also
called predictors; in fact, the regression algorithms, properly designed
for solving regression problems, are able to predict numerical values
associated of the given observations. An example of regression algorithms
are used for predicting house’ pricing (output variables) in the future
having knowledge of the prices in the past and the features describing

the houses (input variables).

Deep Learning algorithms are particularly used (as already mentioned)
for facing with high dimensional dataset and complex tasks in case of both
Supervised Learning and Unsupervised Learning.

The machine learning algorithm, previously cited, are well used for simple and
normal data analysis. In case of a huge amount of data the simple machine
learning algorithms are not enough powerful to distinguish among highly het-
erogeneous dataset. In this regard, one of the main authors and follower of

Deep Learning methodologies, namely Ian Goodfellow, in his book says [37]:

"Deep learning is a particular kind of machine learning that achieves great
power and flexibility by learning to represent the world as a nested hierarchy of
concepts, with each concept defined in relation to simpler concepts, and more

abstract representation computed in terms of less abstract ones’.

The first part of this chapter is devoted to introduce Deep Learning tech-

niques, architecture and algorithms. The second part of the following chapter
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is devoted to introduce the transportation mode recognition problem and how
I have solved the problem with Deep Learning methodologies.

The transportation mode recognition will be used for monitoring the traffic
flows enabling the possibility to control traffic lights in Vehicular Networks as
presented at the end of this chapter.

3.2 Deep Learning

The main advantages brought by Deep Learning methodologies cover the ability
to (i) analyze a huge amount of heterogeneous data; (ii) obtain high perfor-
mances in terms of accuracy (a measure of error computed as the different
between the estimated and the target value) for classification or prediction; (iii)
create the correlation among sequential data; (iv) high level of flexibility in
complex tasks as for example self-driving car; (v) automatic identification of
relevant and/or new features in a dataset.

In the presence of great advantages in the field of data science, Deep Learning
suffers from several different disadvantages. The main disadvantages are strictly
related to the dimension of the data that will have to be analyzed. In fact,
Deep Learning offers its great power only in case of huge amount of data, while
losing accuracy and efficiency in case of small data collection. The second,
but not less important, disadvantage is that Deep Learning algorithms need a
long time to be trained and at the same time they need a great computational
power to run. Anyway, nowadays the human people have figure out the power
of analyzing data and they are collecting as much data as possible in several
different fields.

To present a possible comparison, in terms of how Deep Learning is more
powerful than Machine Learning, we can introduce a clear example:

We would like to develop a prediction system able to (x) solve a classification
problem in charge of identifying if a image contains a Car or a helicopter, and
(xx) solve a clustering problem able to associate similar things to the same
group.

For solving the problem in (x) with classical machine learning algorithms the
data scientist has to identify a method for extracting image features and then
define a function for capturing the main differences between images represented
with a features selection (e.g. the helices of the helicopter). Using a Deep

Learning methodology particularly suited for image classification such as Deep
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Convolutional Neural Network (DCNN), the data scientist has to only identify
the DCNN parameters that better provide the classification (the parameters
identification and more details about DCNN will be presented later).

For solving the problem in (#x) we need to use a clustering machine learning
algorithm such as k-Means. Since the clustering algorithm has no knowledge
about labels it has to autonomously (without a supervision) divide the level
of belonging of the different images. The tasks can not be addressed by using
classical machine learning [57] since K-Means is not able to classify images
whose features are non-linear, due to the fact that K-Means algorithm is a
linear model.

Deep Learning techniques and algorithms are based on Artificial Neural Net-
works (ANN) [21]; in particular, Deep Learning refers to such neural networks
having multiple hidden layers. From the hidden layers perspective, they are

composed by several different artificial neurons or perceptrons.

3.2.1 Perceptron

The Perceptron or Neuron can be considered as the fundamental unit of artificial
neural networks, it is inspired by the biological brain where the synapses provide
biological signals in mammals. In order to respond to certain stimuli similar
to the brain, the perceptron implements activation function. The activation

functions are also biologically inspired to the action potential (nerve impulse).

The Perceptron is a linear discriminant model and it is able to process input
values (also called features) and provides in output values according to the
input.

The Perceptron algorithm [82] was created by Frank Rosenblatt in 1957. It
was designed to be an algorithm for binary classification.

The perceptron, showed in Figure 3.1 takes as input a vector of real-values
x € R”, that is transformed with a nonlinear transformation in the form of
a vector ¢(x) [8]; the nonlinear transformation is used to build a generalized

linear model having the form:

y(x) = f(w¢(x)) (3.1)

In the generalized linear model presented in the equation 3.1 the f(x) represents

the linear activation function or step function in the perceptron having the
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following form:

+1, a>0
f<a)={ ey (32)

With the equation in 3.2 is simple to understand the reason why the perceptron
algorithm can be consider as a binary classifier, in fact it is able to determine
the relative class C; or C5 for the given input x. This means that the perceptron
maps each input into a class which correspond to the value in the activation
function. For each input (observation) (z;), where ¢ = 1,..., N in the input
vector x are associated a set of weight w;, where j =1,..., N — 1, the wy = b
where b is a bias threshold. The w; is the value for connecting the relative

input value x; and the output (classification). The key concept in perceptron

Fig. 3.1 Single Unit - Perceptron - artificial neuron

algorithm is that the algorithms attempts to learn w; parameters for the correct
classification of the inputs. To learn w;, the algorithm used are perceptron
rule and delta rules [75]. The convergence of the perceptron rule algorithms
happens in case of linearly separable dataset and the percetron rule fails in
case non linearly separable data in learning dataset. Let’s assume a dataset
D = {(z1,1), (z2,92), (x3,93), ..., (T, yn)} which contains for each input z;
(known observation) the corresponding output y; (target for the given input).
From the perceptron perspective, the target values are binary (0,1) but in
case of more complex neural networks they could be multi categorical values

(classification problems) or real values (regression problems).

As already introduced, the perceptron is the fundamental unit of an Artificial

Neural Network (ANN). The perceptron has a very limited capacity, since it
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is able to learn only linearly separable examples. In fact, in case of more
complex problems with non linearly separable examples (inputs), more than
one perceptron/neuron can be interconnected with other neurons creating the
ANN that has the capabilities of approximating continuous functions with the

assumption of the activation function.

3.2.2 Artificial Neural Networks

The Artificial Neural Networks are designed to have more connected units
(perceptron or artificial neurons), with interlinked inputs, outputs and hidden
nodes.

In artificial neural networks, each connected artificial neuron provides a signal
to the other connected neurons creating an overall connected system. In the
artificial neural networks the signals are real numbers computed by each per-
ceptron, composing the artificial neural network, as described in the previous
paragraph.

As already introduced the learning process in perceptrons is enabled from the
weights w; describing the perceptrons. The systems with multiple connected
perceptrons, characterizing the artificial neural networks, have a real relevant
number of weights w;. The inputs for the artificial neural networks are the fea-
tures which describe the context to be learned by the artificial neural networks,
and the output is computed with particular non-linear activation function.

In case of non-linearly separable dataset the weights can be learned by back-
propagating the loss using the back-propagation method [36]. The loss is
computed with loss function able to measure the difference between the pre-
dicted output y; and the real output y;. Dependently by the nature of the
dataset and the problems that would like to be solved by using neural net-
works there are different back-propagation optimization algorithms (gradient
descent, stochastic gradient descent, adam, etc...), loss functions (Binary cross
Entropy, Margin Classifier, Soft Margin Classifier, Absolute Loss function,
mean Square Loss Function, etc...) and activation functions (e.g., Binary Step,
Logistic/Softmax, TanH, ArcTanh, ReLu, Sinc, Gaussian, etc...).

By increasing the connections and the number of units interconnected in
the ANN, it is then possible to assign to the ANN very complex tasks thanks
to the number of weights that can be adjusted and that then can particularize

the learning process.
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Typically the Artificial Neural Networks are composed by neurons for the
inputs, neurons computing the outputs, and some other connected layers (each
layer is characterized by a number of neurons) that can be called hidden layers
(hidden nodes) since they are typically located between the inputs and outputs.
Figure 3.3 shows an example of an ANN with only one hidden layer.

When the ANNs have many hidden layers they are called Deep Artificial Neural
Networks. There exists several different Deep architecture each one designed
for solving different problems. An example of common Deep Artificial Neural
Network is the Deep FeedForward neural network [30], depicted in Figure 3.2
where the connection between the different nodes and layers composing the
networks doesn’t have cycles and the information are propagated along the

network in one direction, forward.

Hidden
layer

Input
layer

Output
layer

Inputs
Outputs

Fig. 3.2 Artificial Neural Network architecture [21]

The Deep Feedforward neural networks are used for supervised learning

problems considering both Classification and Regression problems.
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Hidden Layers

Fig. 3.3 Deep FeedForward Neural Network architecture

3.2.3 Deep Recurrent Neural Networks

Deep Recurrent Neural Networks (RNN) are a particulate type of Deep Ar-
chitecture properly design for sequential inputs (temporal data). They are
particularly suited for prediction problems, where given a sequential data inputs
they predict the next value.

Differently from the Deep FeedForward these type of networks form cycle
among connected neurons. This type of Networks can be used in various fields
as for example: machine translation, time series predictions, sentiment analysis,
etc... .

Differently from other Deep Networks the Recurrent Networks attempt to
maintain association between past and recent events, in contrast with other
Deep Architecture that don’t maintain memory from the past information. In
order to associate past and recent event it implements a transition weight in

order to get the memory and provide information among times.

Simple RNN
In Deep FeedForward Neural networks all the inputs are independent, in the
sense that they have not any relation each other; while in case of time series
data, where each data in the future has a relation in the past, the assumption

of independence among input data is broken. The Simple RNNs, depicted in
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Figure 3.4, have a sort of memory in the hidden state which creates and takes
into account past events written in the time series examples.

Given a sequence of inputs denoted with xq, 22, 23, ..., z,, in classification or re-
gression problems correspond an output sequence in the form vy, y2, ¥3, ...yn, the
Recurrent Neural Network computes the hidden vector sequence h = (hy, ..., hy)
by repeating the equation in 3.3 and 3.4 for t = 1,...T. In Recurrent Neural
Network we have to pay attention between what the network should provide
in output yi,ys, ys3, ...y, and what it actually provides v, 92, 93, ..., Yn. The Re-

current can provide either an output for each input or an output for a set inputs.

ht = tcmh(Ua:t + Wht_l + b) (33)
g = softmax(Vh; + c) (3.4)

The equations in 3.3 and 3.4 describe the behaviour of the Recurrent Networks.
In particular, the RNN computes the h; for a given input x; and taking into
account the h;_1; the output of the RNN is computed considering the h;.

Now, the weights associated to the input are represented as U, while the weights
of the previous hidden state are in W while computing the h;. V in equation
3.4 are the weights of the h; computing the output. The Simple RNN uses the

tanh to implement the recurrence.

(1) y(t)

¥
\_/

Fig. 3.4 Simple RNN architecture

Long Short Term Memory
A type of RNN model is the Long Short Term Memory (LSTM) [46], particularly
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suited in case of long term dependency between time series examples.
The LSTM model is similar to the Simple RNN in terms of how they implement
the recurrence, but instead of a single tanh (see equation 3.3) in LSTM there
are 4 layers devoted to each specific task for implementing the recurrence.

In Figure 3.5 the function of a LSTM hidden layer is depicted: ¢(t) represent

D)
1) . o/ ot
[ant]
f i .
g
| sigm | | sigm | | tanh | sigm e X
h(t)=z(t)

h[t—ll
x(t)

Fig. 3.5 LSTM architecture

the state at time t representing the internal memory, while h(t) represent the
hidden state; the gates i, f, g, o are parameters to be learned during the

training process and then overcoming the vanishing gradient problem [26].

i = o(Wihi_y + Uszy) (3.5)
f=0(Whi_y + Usz,) (3.6)
0=0(W,hy_1 + Uyzy) (3.7)
g = tanh(W,h;_y + Uyzy) (3.8)
a=(a1®f)®(g®i) (3.9)
hy = tanh(c;) ® o (3.10)

The above equations represents how the gates ¢, f, g, o influence the hidden
state.

Now h; € RY the LSTM includes the forget gate f; € RY, the input gate
i, € RY, an output gate o, € RY and an input modulation gate g, € RV.

The LSTM are designed to learn from long-term dependency among data, and

the implementation of the presented gates allows the learning for long-term
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dependency.

Bidirectional LSTM

Another example of interesting RNN model is Bidirectional RNN [85] that also
can be transformed in Bidirectional LSTM [39] by combining Bidirectional
RNN with LSTM model.

A limit of standard RNN is that they learn from the past but not from the
future context during the learning process [38], this means that the RNN has
not knowledge of future input from the current state and the output depends
on what the network has learned only from the past, this restriction is exceeded
by Bidirection RNN (BRNN) designed to reach future input from the current
state. The BRNN needs to have two networks or hidden layers (a) backward
layer and the (b) forward layer, where the layer in (a) has access to the past
information from the current state, while the layer in (b) has access to the
future information, from the current state, if present in the dataset. The output
in the BRNN will be effected by both past and future information from the
current state.

Since the BRNN has two hidden layers it computes two hidden states h, the
former for the backward layer h pqc; and the latter for the forward layer Ay for
fort =1,...,T. The equations from 3.11 to 3.13 describe the BRNN. In this
respect, Ny pacr and hy jor represent the hidden states, backward and forward
respectively, computed from the input at z; and the previous hidden state
hpack(t — 1) and bso(t —1). The W and U are the weights associated to
previous hidden state for the input during the computation of the h; f,, and

It pack considered as current hidden state.

ht,for - tanh(Uforxt + Wforht—i-l + beT) (311)
ht,back = tanh(Ubackxt + Wbackht+l + bback) (312)
g = softmax(Veack e pack + Viorht for + €) (3.13)

The BRNN can be extended into Bidirectional LSTM [38] for long-term evolu-
tion and Figure 3.6 shows the Deep Bidirectional LSTM architecture.

Now, let’s us provide a concrete example to present the main difference
between the LSTM and Bidirectional LSTM and how the Bidirectional LSTM
provides a valuable improvement in predictions.

Now, we can consider a word generation problem where the sentence is charac-



3.2 Deep Learning 81

/" NGO/ N\ /L N
/ \\ \ / \
A\ : VAN \\ : /N ) R
\ / \ / A
A\ % \ N\ Y \ \
N\ I \ N I \ \ I |
N\ \\. | \ \\ .‘ \\ \'\. ]
NE; : | * . |/ e L |/
— 1—/—’;— I 1—,—’/’— I qﬁ’ﬁlﬂ'—
. ///" Y / / /
/ < / ( < /f = //

\T \T \I
Fig. 3.6 BLSTM architecture

terized by the following expression:

In the LSTM to estimate the words after the empty space in the sentence
(fe,"...... ") only the words that occur before the empty space will be taken
into account and then only "I am a’, the LSTM will predict the words taking
into account the sentence learned during the training process. In this case for
example the LSTM could predict "student'.

In the Bidirectional LSTM since the networks shall take into account the past
events, that is I am a and the events after the empty space, that is player, based
on the experience acquired during the training process the Bidirectional LSTM,
potentially will predict "soccer', that it is evident to be the most appropriate

word in this example.

3.2.4 Deep Convolutional Neural Networks

The Deep Convolutional Neural Networks (DCNET) [2] are a type of Deep
Architecture designed to perform in two-dimensional data for classification of
images or movies, and, indeed, they can be used for several different types
of applications involving classification (i.e., recommender systems, behavior

recognition, speech recognition, etc ... ).
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The standard Deep Networks, for instance Deep FeedForward Neural Net-
work are not able to scale in case of high dimensional images, on the contrary
the DCNET are properly designed to perform well also in case of high dimen-
sional images.

The DCNET are made up focusing on the brain of animal visual cortex and
in particular on the receptive fields [24] and technically inspired by a previous
work on time-delay neural network [2] which consists in sharing the networks
weights in a temporal dimension [99], that fosters the possibility to reduce the
computations.

The main advantage in DCNET is that the data input vectors (e.g., images,
videos, documents) don’t need to be preprocessed for features extraction [68].
The DCNET are characterized by the convolution operations, in Figure 3.7
the DCNET architecture is presented having three main layers, namely the
convolution layer, the subsampling or pooling layer and the fully connected
layer. The black boxes in Figure 3.7 represent the filter that is used to perform
the convolutions among outputs from layers. The sub-sampling layers perform
the pooling [62] operation that consist in selecting the best valuable value into
each filter matrix between two convolutional layers that enable the dimension-
ality reduction. The fully connected layer is typically used at the end of the
convolutional operation in order to obtain the classification/recognition.

In order to go more in depth with the representation of how DCNET works,

bx Wx+1 b[(ﬂ
c [
g O—~O
Activat
e g
f o

Fig. 3.8 Convolutional Operation

we can refer to an example shown in Figure 3.8 [2]. In DCENT the convo-
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lution steps involves the convolution of an input (for instance an image if
the convolution is in its first stage or feature maps in case the convolution is
involved in further steps) with the filter f, and a bias b, in order to compute
the convolution layer C,. The subsampling process concerns a set of different
operation (in Figure 3.8 are those operation between the C,, and S;1) to obtain
a feature map S,,1 by using an activation function properly designed for the
scope.

One of the most important characteristic in DCNET are the shared weights
properties, in fact the learned weights during the learning process are shared
for the whole input in each input fashion.

The filter has dimension m X n and it is applied to the whole input moving
across the input, or in case of second convolution layer moving into feature
maps. Having a input size of X x X with a filter m x n the feature map size

created by using the convolution operation is:

X —p
s+1

(3.14)

where s is the dimension of the stride. The stride determine how many sequences
of the input have to be convolved. Bigger is the stride, bigger is the size of

feature maps.

3.2.5 Deep AutoEncoders

The Deep AutoEncoders (DAE) [98] are a particular type of Deep Architecture
(see Figure 3.9) designed for unsupervised learning. The DAE are particularly
suited to synthesize huge amount of data extracting encoded features from the
input data in an unsupervised manner. The encoded features representing the
dataset could be considered of a model of the data.

The operating principle covers the possibility to compress the input data (i.e.,
the dataset) = into a numerical encoded representation, then the encoded rep-
resentation is re-built obtaining in output z” which has the same representation
of the given input.

In DAE the input data x intuitively represents the dataset.

x € [0,1]% (3.15)
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The DAE maps the input data in 3.15 into a hidden representation of the form
3.16 [98]
y € [0, 1]¢ (3.16)

by using a deterministic mapping where § = {W, b} and the sigmoid s(z) =
1/(1+e77)
y = fo(x) = s(Wx +Db) (3.17)

the matrix of weights W in 3.17 is
W=dxd (3.18)

and b represents the bias vector. The y represents the compressed or encoded
description of the input vector in x, and it is used to re-build the input vector
having the form z

z € [0,1] (3.19)

z=gy(y) = s(Wy+b) (3.20)

In this case the §" = {W',b'} represents the weights and bias for the rebuilding
step.

Therefore, the encoded representation of x is y and z is the rebuilt output.
As explained in [98] the § and §" are optimized to minimize the error during

the rebuilding model as:

/ 1Z o
6,0 = argmme,g/EZL(xz,z’) (3.21)

i=1
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where x’ and z’ are the input and output data. By using the equation 3.20 in

3.21 we can obtain:
! . 1 L i ’
0,0 = argmingy — > L(X', gy (fo(x))) (3.22)
i=1

As already explained in the previous sections to compute the optimization of
weights in Deep Neural Networks the loss function is used for the case of DAE,
where the input data is numerical, in 3.20 and 3.21 the L represents the loss
function of the form:

L(x,z) = ||x — z||? (3.23)

In case the input data x, that must be rebuilt to achieve the compression y,
are not numerical but are vectors, for instance, the loss function L that can be

used is the cross-entropy as:

d
Ly =—>_ xilog(zi) + (1 — xp)log(1 — z) (3.24)
k=1
d in 3.24 is the dimension of the input vectors.
The DAE are in some sense very similar to the dimensionality input data

reduction process called Principal Component Analysis (PCA) [109].

3.3 Transportation Mode Recognition Problem

The Transportation Mode Recognition (TMR) [73] problem has attracted much
attention in the recent years thanks to its potential use in various fields. The
TMR consists of identifying automatically the transportation mode with which
users are moving, and this information can be provided to the public trans-
portation provider, National department of infrastructure, as well as to traffic
management departure. According to the information acquired with the TMR
solution the public transport provider could improve/reduce the frequency of
their public transports according to a data based motion flows in cities, the
National department of infrastructure could improve/reduce the size of the
streets as well as increase or re-design data based special preferential lanes, and
the traffic management could control the traffic with traffic lights.

The real-time identification of transportation modes behavior of humans per-
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mits to have information about traffic flows to make real-time journey planners
being aware about traffic status in smart cities, estimate the CO, emission [72],
and determine the motion patterns about users in cities. In order to acquire
useful information for detecting the transportation mode the use of smartphone
sensors is essential. The modern smartphone are equipped with several different
sensors as GPS system, accelerometer, gyroscope, magnetometer, etc. By
collecting the data provided by the smartphone sensors, and processing those
data, it enable the possibility to realize a complex motion model system.
Much literature has already introduced and investigated this problem bringing
innovative solutions. For example, in [87] the authors have investigated the
possibility to use accelerometers information to determine motion patterns im-
plementing several different classifiers (e.g. Support Vector Machine, AdaBoost,
random forest and decision tree); the accelerometers data were pre-processed
and a features extraction process was set up for enabling recognition for 4
different transport modalities, i.e., Walk, Bicycle, Car, Train with a time
window of data collection for each recognition of about 5 seconds achieving
high performances in terms of mean accuracy in recognition of about 99.8
percent. In [72] the authors have used the Fast Fourier Transform (FFT) to
extract features from sensors data achieving performances in terms of accuracy
in pattern recognition about 82.14 percent for 8 different transport modalities
i.e., Bus, Metro, Walk, Bicycle, Train, Car, Still, Motorbike and using a time
window data collection for enabling the recognition of about 5.12 seconds. In
[45] the authors have collected data by using three different smartphones and
implementing different classification algorithms and introducing an innovative
technique for estimating the gravity component [45] reaching a mean accuracy
over 80 percent for 7 different transport modalities: Walk, Bus, Still, Train,
Metro, Car and Tram. For enabling the recognition, close to real-time, with
the mentioned transport modalities they have overlapped two time windows
of data collection of 1.2 seconds and then used a final time window of data
collection for enabling the recognition of 2.4 seconds. In [101] the authors
by using a time window of data collection of about & seconds have a mean
accuracy for 6 transportation modalities i.e., Still, Walk, Bus, Train Metro and
Tram of about 80 percent.

In the real-world where the motion recognition is on-going (basically when it
works at full capacity) each user’s smartphone sends its motion data information

for enabling the motion recognition. To provide those motion information the
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smartphones consume their own power. In fact, less is the time window of data
collection and less will be the power consumed by each smartphone. A small
portion of data collection is then essential in order to save the battery of each
smartphone and it enables a new challenge that consist of detecting with high
accuracy the motion pattern, despite the data collected are few.

While the idea of detecting in real time the transportation mode is not really
innovative I have conducted research activities to implement a real-time trans-
portation mode recognition designing an innovative Deep Learning algorithm
able to solve the problem with time windows of data collection under the
second.

A real-time transportation mode detection approach also permits to compute
in real-time the user motion flow and/or traffic status enabling the real-time
traffic control.

In the following paragraphs I will present the designed detection mode system
for 7 different transportation modalities i.e., Car, Walk, Motorbike, Tram,
Subway Bus, and Still with two Deep Learning approaches, namely features
extraction based and raw data based approaches, able to solve the TMR
problem. In more details, I will present a feature extraction based approach,
where the data from sensors were pre-processed to create the inputs for Deep
Recurrent Neural Networks algorithms, and a raw data based approach with
an innovative Deep Convolutional Architecture having great performances in

terms of detection accuracy and enabling the real-time detection.

3.3.1 Problem Statement

The research activities performed to solve the Transportation Mode detection
problem involve several different tasks. Figure 3.10 shows the complete de-
tection system designed from scratch. In more details, for the two mentioned
approaches the detection system was divided in two steps. In the Training
Step (first step) an Android Based APP was developed (Data Collection APP)
able to acquire data from sensors (GPS, Accelerometer, Magnetometer and
Gyroscope), creating a set of trip datalogs (a small portion of the trip data-
logs are also available on-line) which contains data from smartphones sensors
acquired during different trips for the whole set of transport modalities i.e.,
Car, Walk, Motorbike, Tram, Subway Bus, and Still. The raw data in trip
datalogs are used for both (i) pre-processing the data and extracting features

for training the Deep Recurrent Neural Network and (ii) directly training the
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Fig. 3.10 Transportation Mode Detection

Deep Convolutional Neural Network.
After the training process (Practical Application) an Algorithm Model in
obtained containing executable model able to perform the motion pattern recog-

nition with new data coming from the Real Time Recognition APP.

3.3.2 Data Collection

As already introduced an Android APP was developed to (i) read and acquire
sensor data information, for the purposes of training algorithms, and (ii) store
those information in datalogs. The sensor information are referred to Latitude
and Longitude from GPS system, Accelerometer for the three axes (x-y-z),
Gyroscope for the angular velocity on 3 axes (x-y-z) and Magnetometer on 3
axes (x-y-z). Android permits also to acquire the Current Speed by computing
the variation of Latitude and Longitude during the smartphone movement.
These sensor data information are stored in .csv file with a data structure
having the form:

{day, month, year, second, minute, hour, signal strength, speed, latitude, longi-
tude, x-acceleration, y-acceleration, z-acceleration, x-gyroscope, y-gyroscope,
z-gyroscope, x-magnetometer, y-magnetometer, z-magnetometer}

Figure 3.11 shows the resultant acceleration computed as the root of the rel-
ative acceleration over the three axes squared, as in equation 3.25. Through
figure 3.11 it is clear that the resultant acceleration differs depending on the

transportation modality. In fact each transportation modality has its own
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amplitude and dominant frequency of the time-varying acceleration.

a, =\/aZ + a2 + a? (3.25)

The sensor information are acquired with a sampling rate of 50 Hertz, and
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Fig. 3.11 Resultant acceleration over 8seconds

each datalog contains 400 rows (8 seconds) with the data structure presented
above.

In totally 140 hours of recording trips have been collected for the whole set of
the seven transportation modalities.

The data collected are used to train the algorithms (they will be presented in
the following paragraphs) with two approaches. In the first approach the raw
data collected are pre-processed and a features extraction phase is performed
for training purposes. In the second approach the raw collected data are given
in input directly to the Deep Learning algorithm. The two approaches will be

compared in terms of:
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(i) Performances: accuracy in the classification

(ii) Computational Effort: how many resources are required to perform the
classification

(iii) Time Window: how long is the time window of data collection to achieve

acceptable performances.

3.3.3 Features Extraction approach

The first approach consists in a two steps solutions. At the beginning (see
Figure 3.12), after the data are collected the features are extracted from the

raw data stored in the datalogs; the second step in figure 3.13 is characterized

DATA PRE- FEATURES TRAINING

SENSORS PROCESSING ALGORITHM

Fig. 3.12 Features Extraction based approach

by a feature-based classification, where the algorithm model classifies the new

data coming from sensors of a real time recognition APP once the raw data are

DATA PRE- FEATURES ALGORITHM
SENSORS PROCESSING MODEL CLASSIFICATION

Fig. 3.13 Features Extraction based classification

therefore pre-processed via features extraction for the classification purposes.

The extracted features are summarized in the table below.

INVOLVED SENSORS EXTRACTED FEATURES

Mean speed, Max speed, Min speed, Speed std,
GPS/Speed Speed Hth Percentile, Speed 95th Percentile

Mean acc, Acc std, Max acc, Min acc, Acc 5th
Percentile, Acc 95th Percentile, Acc kurtosis, Acc
Acceleration skewness, Acc components at {1,2,...,15}Hz,

Acc increase avg, Acc decrease avg, Acc increase
max, Acc decrease max

Gyroscope Mean w, w std, w kurtosis, w skewness

The extracted features from the three different sensors are 37 taking 50
samples of the sensors data. Each features vector in input to the Deep Re-

current Neural Network is composed by 74 columns computed by aggregating
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two slot of the 37 values. Since the sampling time of our Collection Data
APP is 50 Hertz the data collection is about 1 second for each slot and then
2 second of data aggregation for each features vector. The other approaches
features extraction based presented in literature use more than 2 seconds of
data recording for computing the features. The main advantage in reducing the
data collection in features based approach is that the computational time to

compute features is reduced enabling a faster classification in real environments.

3.3.4 Raw Data approach

The second classification approach such as Deep Convolutional Neural Networks,
are able to provide classification without a features extraction process by

inferring correlation directly among the raw data. By exploiting the main

DATA TRAINING
SENSCQRS | ALGORITHM

Fig. 3.14 Raw Data approach

functional characteristics of Convolutional Neural Network able to automatically
create features maps (see chapter 3.2.4), their generalization properties try
to deduce autonomously the performing "features" that better approximate
the whole dataset (the whole dataset is composed by all the data records

for all transportation modalities). Therefore, whereas in the first features

DATA ALGORITHM
SENSORS E— MODEL CLASSIFICATION

Fig. 3.15 Raw Data Classification

based approach we give the 74 values in input to the algorithm the Deep
Convolutional Neural Networks considered in this second approach work will
be fed directly with the raw data coming from the sensors. In this case each
raw data vector is composed by 4 components represented by the Speed, z-
Acceleration, y-Acceleration and z-Acceleration. Even in this case the algorithm
is trained as depicted in Figure 3.14 and the algorithm model is used in the

real environments (see Figure 3.15).
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The Deep Convolutional NN in this approach was trained with vector of 64 x 4
(64 rows and 4 columns) corresponding to 1.28 seconds of data at 50 Hertz. With
respect to the first approach introduced in the paragraph above this solution
has two main advantages. In fact, it works with a smaller time windows and it
doesn’t need computation effort for computing the pre-processing step. The
mentioned advantages in conjunction with the power of the Deep Convolutional
NN really enable a real-time classification. The next paragraphs contain

the solutions details more in depth.

3.3.5 Deep Recurrent Neural Network

The Recurrent Neural Networks work with time-dependent data. The Deep
Recurrent Neural Network architecture designed and implemented to solve the
TMR problem is depicted in figure 3.16. It includes an input layer referred to
the layer in charge of receiving the feature vectors, in details the set of vectors
of 1 x 74 as input; it includes 3 hidden layers of 512 LSTM cell, 128 LSTM cell
and 32 LSTM respectively, and an output layer for the 7 class classification.
The configuration depicted in figure 3.16 is the result of the several different
attempts looking for the best configuration able to achieve the best classification
performances for the complete set of transportation modalities.

The trained Deep Neural Network in question returns an algorithm model
(also called executable model) consisting in a set of values created by the Deep
Neural Network itself as representation of the correlation between input and
output data. This algorithm model will be able to classify further data starting
from the extracted features of the same form of what is given in input during
training process. Basically, the algorithm model will expect vectors in the form
of 1 x 74, then corresponding to a time windows of data collection of about 2

seconds, for providing a eligible prediction.

st hidden layer 1st hidden Tayer 2nd hidden Tayer 37 hidden
with with with layer with OUTPUT LAYER
512 LSTM 256 LSTM 128 LSTM 32 LSTM
INPUT
LAYER Feature Vectors

Fig. 3.16 Deep Recurrent Neural Network Architecture
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3.3.6 Deep Convolution Neural Network

The Convolutional Neural Networks are able to create autonomously the feature
maps as result of a correlation between the input data. To do that they entail
the presence of a set of filters used for convolution process.

The Convolutional Neural Network, as already discussed in the previous chap-
ters are particularly suited for image recognition. This means that the input
size should be in form of an image and then m x n (with m rows size and n
columns size). For this reason the input dimension of each vector in this context
will have the form of 64 x 4 (and then a time windows of data collection of 1.28
seconds) creating from the beginning a time-variant correlation raw data of the
same modality for the same trip directly received from smartphones’ sensors.
Figure 3.17 shows the Deep Convolutional Neural Network Architecture prop-
erly designed and implemented for the TMR solution. It is composed by an
Input Layer that receives in input vectors having the form of 64 x 4 compo-
nents, a set of 5 hidden convolutional layers having 14,6,8,6,8 filters (how many
feature maps are obtained after the convolution for each convolutional layer)
respectively. Each Convolutional layer has its own filter size and activation
function as well as it is linked to a fully-connected feed-forward layer (Dense
Layer) which is in charge of receiving in input the feature maps created by
each convolutional layer.

The Dense Layers output is captured by a Concatenation Filter able to con-
catenate the acquired knowledge of each Dense Layer. At the end an Output
Layer is set up for the 7 class classification.

The purpose of this kind of architecture is then capturing the informations at
various levels and correlate them directly.

For sake of clarity, please note that also in this case the Deep Convolutional
Neural Network depicted in figure 3.17 is the result of several different attempts
aimed at looking for the best configuration returning the best performances for
all the classes.

After the training process with the raw data the algorithm model (executable

model) is then stored for further prediction.
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3.3.7 Real Time Recognition

The Deep Learning algorithms presented above have been implemented exploit-
ing a Python library * called Keras % and the algorithm models that hereinafter
I call Recurrent model and Convolutional model have been saved by exploiting
a Keras function properly implemented for this scope. The algorithm models,
namely the two obtained after the training process of both Deep Recurrent and
Deep Convolutional Neural Networks have been published to a remote server
where both expose HTTP RestFULL APIs . An Android based APP (referred
to the Real Time Recognition APP as depicted in figure 3.10) was developed
to (1) read sensors data information, (2) acquire the raw data, (3) send the
raw data to the remote server. By exploiting the implemented APIs the two
algorithm models are triggered to be able to return the expected classification

taking into account the data received.

3.3.8 Results

The Deep Learning algorithms was trained with the entire dataset acquired
for all transportation modalities i.e. Car, Walk, Motorbike, Tram, Subway
Bus, and Still. A portion of 25% of the dataset was used to validate the
Deep Learning algorithm during the training process. So that the algorithm
could be monitoring during the learning process with the aim of find the best
hyperparameter [4].

To figure out the effectiveness of the implemented solutions to solve the TMR
problem two types of validation tests was performed; the first is referred to the
validation test obtained with the validation data used during the training
process. Those data have not been seen by the algorithms and then can be used
for testing purposes obtaining the confusion matrices for both Deep Algorithms.
The second is referred to a test directly conduced in the real-environments
where through the Real Time Recognition APP and involving 10 persons the
results were then collected.

Validation Test

Table 3.1 and Table 3.2 show the confusion matrices (error matrices showing the
algorithms performances) of the two Deep Learning algorithms. The algorithms

performances are evaluate by considering Precision,Recall and F1-Score that are

1
2

www.python.org
www.keras.io
3https://restfulapi.net/http-methods/
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typical indices to determine the algorithm performances in statistical learning.

The precision is defined as:

P = TruePositive/TruePositive + False Positive (3.26)
The Recall is defined as:
R = TruePositive/TruePositive + FalseNegative (3.27)

The F1-Score is defined as the harmonic means of the Precision and Recall.
The True Positive can be defined as the value where the row and the column
have the same label (e.g. in Table 3.1 a 36 is a true positive for Motorbike).
The False Negative are those values that take place in the column except for
the value that has the same label in the row and column (e.g. in Table 3.1
for Motorbike the values 3 Still and 3 Car are the False Negative). The Fulse
Positive are those values in the row except for the value that has the same
label for row and column (e.g. in Table 3.1 for Motorbike the values 3 Bus and
2 Car are the False Positive).

Table 3.1 Confusion Matrix for Deep Recurrent Neural Network

Actual

Predicted | |Motorbike| Walk | Bus|Subway | Tram |Still| Car | | Precision |Recall ~ |F1-Score
Motorbike 36 0 3 0 0 0 | 2 ]]/0,878049 |0,857143|0,8674699
Walk 0 41 | 0 0 0 3 | 0 []0,931818 |0,97619 |0,9534884
Bus 0 0 |38 0 0 0] 0|1 0,9047 10,95

Subway 0 0 0 40 3 0 | 0 ]]0,930233 |0,952381(0,9411765
Tram 0 0 1 2 39 | 0 | 0 ]]/0,928571 |0,928571(0,928571
Still 3 1 0 0 0 |39 0 |[0,906977|0,928571|0,9176471
Car 3 0 0 0 0 0 |40 ]]0,930233 |0,952381(0,9411765

The algorithm performances are both high as shown in Tables 3.1-3.4. The

Deep Convolutional Neural Network with the validation data test seems to be
better than the Deep Recurrent Neural Network of about 3% only considering
the different between the avg/total for F1-Score and a percentage of recognition,
according to the avg/total of F1-Score of 96,25% for Deep Convolutional versus
the 92,85% for the Deep Recurrent. The accuracy in classification of the new
data is higher than the other results obtained with other algorithms and

methodologies already presented in the literature.
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Table 3.2 Confusion Matrix for Deep Convolutional Neural Network

Actual
Predicted | | Motorbike| Walk |Bus|Subway | Tram | Still| Car | | Precision |Recall | F'1-Score
Motorbike 38 0 2 0 0 0 | 2 1/0,9047 ]0,9047/0,9047
Walk 0 42 1 0 0 0 310 []0,93 1 0,9655
Bus 0 0 |40 0 0 0] 0|1 0,95 10,97
Subway 0 0 0 42 0 00 |1 1 1
Tram 0 0 0 0 42 | 0 | 0 (|1 1 1
Still 2 0 0 0 0 |39 0 ||0,9512 ]0,9285|0,9397
Car 2 0 0 0 0 0 |40 (]0,9523 {0,9523|0,9523

Table 3.3 Average Total Performances for Deep Recurrent Neural Network

Precision Recall F1-Score
| avg/total [ 0,929411 | 0,928571 | 0,9285042 |

Real-Environment Test

The Real-Environement Test have been conduced with real users using the
Real-time Recognition APP (RTRA) during their travel.

The RTRA is in charge of collecting during the users travel at most 2 seconds,
for each data take-over, of raw data. The RTRA sends the collected data to
the server by exploiting the implemented APIs for classification purposes.
The two classificators, namely the Deep Recurrent Neural Network and the
Deep Convolutional Neural Network, use the needed data for providing the
classification and then 2 seconds for the first classificator (Deep Recurrent) and
1.28 seconds for the second classification (Deep Convolutional). The server
where both algorithms are implemented return the modes recognized.

For each transport modalities at least 100 tests was realized and the performance
results for both algorithms are reported in table 3.5 for features based and
table 3.6 for raw data based.

According to the performance results described by the tables 3.5 and 3.6
the best performances in terms of accuracy in recognition are performed by
the Deep Convolutional Neural Networks, and also it is able to achieve such
performances having a shortest time window of data collection and it doesn’t

need features process.

Table 3.4 Average Total Performances for Deep Convolutional Neural Network

Precision Recall F1-Score
| avg/total | 0,963099 | 0,962585 | 0,9625756 |
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Table 3.5 Real Environment Performances for Deep Recurrent Neural Network

’ Feature Based Deep Recurrent ‘ Recognition % ‘

Motorbike 48
Walk 99
Bus 93
Subway 92
Tram 93
Still 99
Car 92
’ avg/total 88

Table 3.6 Real Environment Performances for Deep Convolutional Neural
Network

Feature Based Deep Recurrent ‘ Recognition % ‘

Motorbike 96
Walk 100
Bus 98
Subway 100
Tram 100
Still 100
Car 96

| avg/total 98.6
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For the sake of clarity it is important to stress that both approaches require a lot
of time for the training process where the algorithm models are then created. At
the end of the training process both approaches are able to return classification
in a very short time with the great difference that the Deep Recurrent needs
about 2 seconds of data collection and also it needs to process the raw data
by extracting features in order to perform the classification; whereas the Deep
Convolutional needs at most 1.28 seconds of time windows data collection for

providing the classification, reaching almost real-time recognition.

3.4 Traffic Control based Future Works

A potential future work that I have preliminary investigated, is able to exploit
the implemented TMR solution to bring awareness Traffic Control.

In fact, as already introduced the TMR solution could be adopted by several
transportation management providers and in particular by the traffic manage-
ment departure.

The TMR solution, presented in the previous paragraphs, permits of identi-
fying the transportation means in urban and extra urban area, while people
are moving on the streets. For instance, figure 3.18 shows the motion flows
of two transportation modalities (Car in blue and Motorbike in orange, and
the axis represent the Latitude and Longitude) identified with the Real Time

Recognition APP for testing purposes. Starting from the real time recognition
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Fig. 3.18 Car and Motorbike Motion Flow in Rome

by exploiting the implemented Deep Convolutional Neural Network solution
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is possible to identify the people motion flows. The motion flow determines
how a recognized transport modality is moving on the streets and with which
velocity. In this respect the Real Time recognition APP is able to monitor the
speed, Latitude, Longitude and recognize the transport modality.

Recent studies [65] [66] [106] try to improve the efficiency of the traffic lights
providing multiple solutions for managing the traffic lights signals. The three
mentioned solutions, [65] [66] and [106], to perform the traffic lights control use
a Deep Reinforcement Learning [103] approach for controlling the traffic light
signals, by using sensors on the streets, camera sensors positioned in proximity
of the traffic lights, vehicular networks [42], and traffic data collection.

The most promising and recent approach (at least from my perspective) is
described in [66] where the authors propose a Deep Reinforcement Learning
solution with a Deep Convolutional Neural Network able to process the real
time input data and the Reinforcement Learning algorithm able to decide the
timing for the traffic light signals. This approach entails the presence of sensors
equipped in each traffic light to monitor the status of the vehicular network as
for instance number of vehicles, the location of vehicles, and their waiting time.
By using the TMR solution basic input data <position,speed> to perform the
traffic lights control as described in [66] can be used with the transportation
modality by optimizing the traffic light signals also according to the type of
transportation means on the streets. In fact, the basic input data as number
of vehicles, the location of vehicles, and their waiting time can be estimate by

processing the recognition from real-time TMR solution.



Chapter 4

Deep Model Predictive Control

based techniques

The problem of controlling the glucose level for diabetic patients is the starting
point for most of the available treatments. Despite the importance of this
problem, the complex dynamics that regulate the evolutions of the glycaemic
index and many of connected biological factors, force the solutions commonly
implemented in medical devices as for instance artificial pancreas to make
several simplifying assumptions. Several different approaches have widely inves-
tigated this problem, implementing control solutions spacing from traditional
threshold based ones to PID and MPC.

In this chapter a new solution is presented for improving the State-of-the-art
algorithms performances and methodologies proposing a work inspired to what
developed in [112], [80], and [74]. The proposed solution is based on Bidi-
rectional Neural Network and Model Predictive Control techniques aimed at
maintaining the blood glucose level within a safe range.

The Deep Bidirectional Neural Network are mainly used for time series pre-
diction evaluating the evolution of the blood glucose signal, and the Model
Predictive Control scheme is used as optimization strategy for controlling the
biological factor of interest (blood glucose level) via insulin injection quantity.
The approach reported in this chapter aims to highlight the results obtained
with the Deep Neural Network techniques since the Model Predictive Control
controller solution is still under a finishing process. Therefore, the MPC solu-
tion is presented as objective that will be reached when the work will be indeed

completed.
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4.1 Blood Glucose Level Control

The design and control of a system dedicated to the blood glucose level con-
trol is widely investigated in literature. In [79] the authors have proposed a
solution with a model based predictive control algorithm for controlling the
normoglycemia in diabetic patients with diabetes of Type 1 by using a closed
loop insulin injection; they also develop a compartmental modeling.

The authors in [20] develop a system of a closed-loop control for glyceamic
index in diabetes patients by combining the closed-loop control algorithm a
glucose sensor and an actuator for insulin infusion. In [92] the authors propose
a closed-loop insulin delivery system with an associated subcutaneous glucose
sensor and related subcutaneous insulin injection; this solution for controlling
the glycaemic index was experimented over 10 patients afflicted by diabetes of
type 1.

In [33] the authors have introduced a solution based on a Bergamn nonlinear
mathematical model Bergman describing the the plasma insulin injection; a
semi closed loop algorithm is presented for the correction of hyperglycemia in
diabetic patients. The performances of such an approaches was then evaluated
with a simulation for testing the effectiveness.

The glucose control have been also investigated in several other different works,
following the methodologies presented achieving important results as described
in [60], [96], [83], [6] and [27]. In these works the authors have presented
solutions dealing with closed loop control algorithms aimed at achieving desired
level of blood glucose level with respect to the actual level; the main problem
in closed loop based algorithms is that this methodology adapts its control
actions following the biological signals without any prediction of further effects
and it is has not optimization properties.

The Model Predictive Control methodologies imposes an iterative open loop op-
timization following the residing horizon paradigm, hence bringing the advance
of the closed loop control to the optimality of the open loop. The recent and
most advanced solution in this field, at least from my knowledge, is presented
in [74]; in this work the authors have presented a model predictive control
based algorithm for implementing an artificial pancreas for a personalized
treatment of type 1 diabetes, providing several personalized control schemes for
blood-glucose concentration-regulation. The work in [74] is based on synthetic
data, generated with the UVA/PADOVA simulator [71], a tool recognize bu
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the U.S Food and Drug Administration as a substitute to animal trials in

preclinical testing.

4.2 Model Predictive Control

Model Predictive Control (MPC) [15] is an advanced control methodology used
in several application contexts where there is a need to respect some constraints.
It deals with large-scale systems and with a relevant number of control variables.
The MPC is in charge of proving a method treating with constraints on input
and states. The optimization problem and the control strategies are defined
in discrete time domain; typically for an efficient implementation of the MPC
solution a model of the process and cost function that must be optimized are

required.

Now, let us to consider a discrete-time linear system:
z(k+1) = Az(k) + Bu(k) + Md(k) (4.1)

the z(k) € R™ represent the state vector, the input vector in 4.1 is represented
by u(k) € R™, and the disturbance vector in equation 4.1 is represented with
d(k) € R', at the kth sampling time instant. According to equation 4.1 the
system matrices are A € R™™, B € R™™ and M € R*™!. With N we can
identify the prediction horizon.

Let us to consider a predicted input sequence with the form:
U(k) = [u” (k|k),u” (k + 1]k), ..,u” (k + N — 1]k)]* (4.2)
and we have also consider the disturbance sequence having the form:
D(k) = [d"(k),d" (k +1),....,d" (k+ N — 1)]" (4.3)

It is possible to obtain the time evolution of the state by simulating the equation

in 4.1 forward for N sampling time intervals having the initial condition
z(k|k) = x(k) [74].Accordingly,

X(k+1) = [ (k+1]k), 2" (k + 2|k), ..., 2" (k + N|k)]" (4.4)
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the input and state at time k + ¢ with ¢« € N predicted at time k have the form
u(k + ilk) (4.5)

(k + ilk) (4.6)

The system that must be controlled receives a control law generated by solving
the optimization problem following a defined and dedicated cost function that
must be minimized, as for instance:
N-1
J(x(k),U(-), k) = Z ||z (k+i|k) —xref(k+i)”é+ [Ju(k +i|k) — wpep(k+14)||%
= (4.7)
where x,.r(k) represents the states at time k and w,.s(k) represents the inputs

references at time k. The mentioned references vectors are included in:

Uref(k) = [ufef,ug;f(k: +1), ...,ufef(k +N-1)]* (4.8)
and
XT@f(k> = [xzefvxgef(k + 1)7 ) iL'Z;f(k + N — 1)]T (49>

The @ and R matrices in equation 4.7 are the symmetric positive definite
matrices.

The optimal control sequence U°(k) has the form:
U°(k) = argminy J(z(k),U(+), k) (4.10)

At the end, once obtained the generation of the control input [74] and taking
into account the receding horizon approach, the first element of the U°(k),
considered to be the optimal control sequence, is then applied to the process
u(k) = u®(k|k). The obtained optimized procedure has to be repeated for each
sampling time k.

Yet, it is clear that one of the most important characteristic of the Model
Predictive Control is the presence of the input ans state constraints in the
optimization problem. In the MPC problem formulation we have both equality
constrains representing the equation in 4.1 as the model dynamics and inequality
constraints on input and state variables. Typically, the equality constraints are
used to predict state trajectories while the inequality constraints are imposed

in the optimization problem. The equation 4.7 defined as cost function can
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be endowed with the state prediction at the horizon N [74]. Hence, with the
mentioned modification of equation 4.7 is possible to obtain a quadratic cost

function having the form:

N-1

a0 UC)K) = 3 ol + l6) = 1
kragr O

Hlu(k + k) — trer(k + 1)l + llz(k + NIK)|[p

The equation in 4.11 is hang out to the state dynamics presented in 4.1, where
the presence of P being the unique nonnegative solution of the discrete time
Riccardi equation [74]

Pk)=Q+AT"P(k+1)A—A"P(k+1)Bx (R+B"P(k+1)B)"'B"P(k+1)A

(4.12)
The matrix P € R"*" is the above mentioned weight matrix related to z(k +
N|k); such form represent the predicted state over the horizon N. Hence
considering the horizon N, the predicted state trajectories of the system

dynamics take the form:
X(k+1)=Ax(k) + BU(k) + MD(k) (4.13)

The matrices in the above equation, as described in [74], A € R B €
RMVxmN A € RPNXIN are then obtained by using algebraic calculation staring
from the equation in 4.1. Depending on the problem or kind of application
D(k) can be either estimated or known/unknown. Whether the disturb is
unknown, the MPC calibration achieved with the symmetric definite positive
matrices () and R, must be robust enough to guarantee at least as suboptimal
control performances. The equation in 4.11 considered to be the quadratic cost

function under these assumption takes the form:

J(@(k),U(), k) = IUK)I| +2(a" (k) Fy + D* (k) Fpp—
~Ures(K)R — X[y (k) Frep)U (k)

r

(4.14)

where only the terms depending on U (k) have been maintained and

H=B"OB+R (4.15)
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F.=B"QA (4.16)
Fp =B"OM (4.17)
Fx,., =B"Q (4.18)

where Q = diag(Q, ...,Q) € R™>*™Y and R = diag(R, ..., R) € R™N*mN,
Whether the input and state constraints are not considered in the optimization
problem, under the assumption of nonsingularity of the matrix H, the solution

exist is unique and has the form:
U°(k) = H ' (—Fpx(k) — FpD(k) + RUep(k) + Fu,; Xres(K)) (4.19)

On the contrary, whether the input and state constraints are considered, the

optimization problem can be solved via quadratic programming optimizer [74].

4.3 Deep Model Predictive Control

Model Predictive Control is widely used for addressing various control complex
tasks in different fields such as mobile robot maneuvering, humanoid robots.
As already discussed in section 4.2, MPC has a fundamental advantage with
respect to closed loop control techniques that since it has an accurate predictive
model permits to optimize the control inputs with properly designed defined
cost function. In MPC a key challenge is to identify, with a reasonable accuracy,
the dynamic model especially in presence of highly non-linear systems.

The authors in [64] have developed a system for controlling a PR2 robot able to
cut food items. In this context, the dynamic of the system depends by several
different properties such as the type of food that should be cut, the coefficient
of friction with the knife, fracture effects and elastic modulus. In this work,
presented in [64] a key challenge is to design a model that is able to take into
account all the different properties discussed above; for this reason the authors
defined the design of the model as unfeasible.

To solve the mentioned issues and for controlling a food cutting PR2 robot,
they have implemented a system that combines deep learning system with an
MPC controller. The use of deep learning in essential in their work since deep
learning techniques are able to learn non-linear, time-varying dynamics while
remaining differentiable using back-propagation algorithms.

Basically, the authors in [64] divide the approach in two steps; in the first step
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they implement a deep learning architecture able to provide model parameters
by acquiring knowledge from a dataset which contains a huge set of examples
for robotic cutting towards 20 different material types. The output of the first
step are a set of parameters able to estimates the model dynamics. In the
second step they use the learned dynamics for predicting the future state via
recurrent prediction and use it for implementing a real-time model predictive
control able to accomplish task-specific control.

Figure 4.1 shown the functional architecture of the DeepMPC system proposed

| Offline Learning

Unsupervised Single-Step Recurrent
L.
| Dataset L Pre-Training d Prediction > Prediction |
L - - - - - - - - - - = - —
- — — — — _ _ModellParams. __ __ __
| Control Process | ___________ I Recurrent |
i Shared ! v latent state
| | + memory | Deep Predictive Model |
|  EE pose 0 —t >
| | : H Forward Back-
+ H H I prediction propagation I
| | : : >
. ' H A
Sc”ﬁqesls H : | Predicted l
I ontre | . H I w future state I
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- ' ' Gradient
Restormg* forces : i MPC cost wi/T/t statg
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Fig. 4.1 DeepMPC system [64]

in [64]. The system is divided into 4 blocks concerning the robot with joint angles
and joint torques, the control process, the offline learning that performs the
learning procedure from dataset up to the model parameters, and optimization
process with the real time model predictive control.

Basically, the control process, provide to the optimization process the robot’s
joint angles pose, the pose is used by the forward prediction, which exploiting
the learned model parameters as presented in equation 4.20, to provide the
Predicted future state for computing the gradients with respect to the state of
the MPC cost function back-propagating it to the deep predictive model and
obtaining the gradients with respect to the forces. They use an AdaGram [29]

optimization to compute the optimized forces providing them to the control
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process. The MPC cost function for such task, that is food cutting is presented

in equation 4.21 as describe in [64].
0 = (WU wld wll il yyiwl yyie yi yylel (4.20)

C(X,U) = Cot(X) + BCoun(X) (4.21)

The first term in equation 4.21, that is expressed in 4.22, represents the driving
for the controller to move the knife and
t+T
Cout = > PF+PHT (4.22)
k=t
The second term in 4.21, that is expressed in 4.23, is able to maintaining the

tip of the knife within a "sawing range" [64].

T

Coaw = Y _(max{0, |PF — P| —d, + \})? (4.23)

b

e
Il
-

In equation 4.23 the P is the center point for the sawing range, and the dj is

the range as well as A represent the margin.

The presented work developed by the authors in [64] is an example of how
is possible to combine the Deep Learning and MPC into a unique solution.
This will lay the basis for our proposed solution for controlling the biological

factors in diabetic patients as will be presented in the next paragraphs.

4.4 DeepMPC Artificial Pancreas

In the context of managing metabolic disorder a relevant introduction about
the problem is expressed in [74]:

"T1D is a metabolic disorder that causes a total insulin deficiency and im-
pedes the regulation of blood glucose concentration (also called glycemia) by the
pancreas. Insulin is an essential hormone for blood glucose control, and the lack
of insulin could result in chronic hyperglycemia, which exposes T1D subjects
to risky long-term complications. The lack of insulin must be compensated
with exogenous, usually subcutaneous, insulin administration that can result
i hypoglycemia if the amount of insulin is overestimated. Hypoglycemia is

associated with short-term complications that, in severe cases, can result in a
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coma or death. Consequently, T1D subjects face the challenge of maintaining

their glycemia within a safe range."

The development of an Artificial Pancreas in charge of managing, in an
intelligent manner, the regulation of insulin released is a basic concept to make
progress in the diabetic disorder. Nowadays, some people still use the direct
insulin release by using, manually, the syringe in time and days as fixed by
physicians.

The Artificial Pancreas creates the possibility to discard the manually dis-
tribution of insulin with fixed dosages and enables the possibility to use an
automatic release of insulin when needed.

The approach discussed in this section deals with the possibility to create
an Artificial Pancreas system able for automatic subcutaneous insulin pumps
injection. Currently, several different closed loop algorithms have been imple-
mented and tested towards portable devices. But this approach (the closed
loop one) is affected by inherent delays [74] and then it requires other and
more efficiency techniques. Model Predictive Control can be used as control
technique in this context and it is already used in several different clinical trials.
In the problem of controlling biological factors such as blood glucose control
the subject dynamics has the most important role. In fact, in diabetic patients
we can find different glucose-insulin dynamics, and the control is build over the
artificial pancreas has to be robust, reliable and safe to guarantee acceptable
performances.

Why different dynamics? Because each subject has its own physiological char-
acteristic that could produce different dynamics. In this respect, following the
Model Predictive Control principle that produces control actions according to a
cost function model-based, for each subject a proper model must be included in
order to produce acceptable control actions and hence acceptable performances
from Artificial Pancreas.

The design of a individualized model for each subject - i.e. diabetic patient - is

a hard task; even because the diabetic model patients is highly non-linear and
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time variant (see equation 4.24 as reported in [74]).

-

1(t) = —kgriza (t) + d(t)

2 (t) = kgri — Kempt (21(2) + 22(t))72(?)
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In [74] the authors have considered three individualization techniques to sum-
marize a Model Predictive Control based linear model. In order to linearize the
model in 4.24 the metabolic parameters in the model 4.24 e.g., Time-varying
parameters Keppt, Ra(t), E(t), U4, etc. have been substituting with their average
values. The average parameters are hence included in the model, linearizing it
around a fictitious basal equilibrium [74]; after that by considering the other
values (i.e., model inputs) i(t),d(t) to be i(t) = i,(t) and d = 0; the model

become the linear model having the form:

{x(k: +1) = Az (k) + Bu(k) + Md(k) (4.25)

y(k) = Cx(k)
where the control action is expressed by u(k) as insulin injection and d(k) is the

variation of insulin infusion as subcutaneous administration. To customize the

model, starting from the linearized one i.e. 4.25, can be reached by substituting
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some input parameters depending on the subject as expressed in [74].

The linearized model representing a complex subject behaviour, even if tai-
lored by some additional modification, loses a lot of information that are indeed
useful for controlling purposes. The lost of that information will be reflected
into the performances of such approach, and in this respect the main goal of my
current research activities is to try to approximate the highly non-linearity of
the complete model (see equation 4.24) by using Deep Learning methodologies,
in order to reach high precision through data driven control.

By exploiting the UVA/PADOVA [71] in-silico tool that is able to represent
diabetic patients and their behavior during the administration of meals (that
means the glycemic index after minutes/hours from the meal), I have ap-
proximated the non-linear and time variant diabetic user model by training a
Bidirectional Recurrent Neural Network and then obtaining a model (output
from the traning process) that is able to return glycemic index level with respect
to a given meal for a specific subject.

Inspired by the DeepMPC approach presented in the previous section, I have
designed an artificial pancreas approach based on the Deep Learning solution
where the biological factors are controlled by a Model Predictive Control.

Figure 4.2 shown the DeepMPC architecture designed for building an innova-
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DIABETIC PREDICTIVE i

PATIENT MODEL PREDICTED FUNCTION
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ALGORITHM
COMTROL ACTION

Fig. 4.2 DeepMPC architecture

ON-LINE PATIENT STATE

OFF-LINE PATIENT DATA,

tive artificial pancreas. The UVA/PADOVA tool [71] contains a set of simulated
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diabetic patients; the simulation consists in providing reliable biological factors
from patients after that a set of meals are dispensed. In the tool there is the
possibility, also, to assign meals, and get decisions in terms of carbohydrates
assumed in each meals. The UVA/PADOVA tool already includes a closed-loop
control algorithm that taking into account a specific user and given meals,
provides at the beginning of each meal the corresponding dose of bosul insulin
to be injected; moreover, there is the possibility to see users’ behavior in case
of open-loop control, i.e. enabling a fixed control regardless of the type of
meal (the fixed control consists of bosul insulin to be injected) or disable it
altogether.

By exploiting the tool we have created a diabetic patient dataset (see its partial
content in Table 4.1) that contains the patient’s behaviour, i.e., Glucose Level
index in the table 4.1, during the meals simulating 1 year with both closed-loop
and open-loop control, and considering 5 meals per day with different quantity

of carbohydrates per meal. The Table 4.2 represents an example of the given

Table 4.1 Partial content of the dataset

Time | Glucagn | Meal DestroselV | Insulin_IV | Insulin_sub_ Injection | Glucose_Level
359 0 0 0 0 120 134,3059474
360 0 3333,333333 | 0 0 11520 134,3109421
361 0 3333,333333 | 0 0 120 134,3161604
362 0 3333,333333 | 0 0 120 134,3237609
363 0 3333,333333 | 0 0 120 134,3353563
364 0 3333,333333 | 0 0 120 134,3520073
365 0 3333,333333 | 0 0 120 134,3768196
366 0 3333,333333 | 0 0 120 134,4138789
367 0 3333,333333 | 0 0 120 134,4678387
368 0 3333,333333 | 0 0 120 134,5439337
369 0 3333,333333 | 0 0 120 134,6485899
370 0 3333,333333 | 0 0 120 134,7922252
371 0 3333,333333 | 0 0 120 134,9982503
372 0 3333,333333 | 0 0 120 135,3169522
373 0 3333,333333 | 0 0 120 135,8177187
374 0 3333,333333 | 0 0 120 136,5554574
375 0 0 0 0 120 137,5588808

meals for the simulated diabetic patient where the administration of the carbo-
hydrates is considered being variable during the days (e.g. 10-45 for breakfast

means that the administration of carbohydrates could vary in the range of 10
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and 45).
The DeepMPC approach introduced in this work starts with the analysis of

Table 4.2 Variable Meals for specific patients

breakfast(7am) | lunch(1pm) | snack(4pm) | dinner(7pm)

snack(11pm)

carbs[g] | 10-45 55-130 5-30 45-140 10-30

the dataset by training a supervised Biderectional Recurrent Network that shall
produce in output a personalized (i.e. a model dedicated to a specific diabetic
patient) trained model able to predict glycemic index levels taking as input the
online patient state for the duration of the meal (see table 4.3 referred to just
a minute of the complete meal; the complete meals are typically considered
having a duration of 15 minutes ). The prediction of future glucose levels has
been already investigated in [80].

The predicted glycemic index level in output concerns the glycemic index levels

Table 4.3 On-line diabetic patient state

Glucagn | Meal DestroselV | Insulin_ IV | Insulin_sub Injection

Glucose Level

0 0 0 120

3333,333333

144,3109421

after 30 minutes, 1 hours and 1 hour and 30 minutes staring from the moment
generated by the on-line patients state, the mentioned timing correspond to
the peak glycemics (see table 4.4).

The predicted peak glycemics are the consequence of the user behavior with

Table 4.4 Glycemic index over the predicted periods

Glucose Level 30minutes | Glucose Level 1hour

Glucose Level 1h 30minutes

354,7868 469,8769 513,9808

respect to the current "GlucoseLevel” and "InsulinsubInjection” depicted in
table 4.3. By changing the "Insulinsublnjection" of table 4.3 from 120 p/mol
(that correspond to basal injection [74]) to 11520 p/mol, the predictive model
will return the values shown in table 4.5. This means that the predictive model
will provide 3 future indexes to analyze the user behaviour after each meal;
and then providing different states it is possible to observe the user behaviour

in the future.

The MPC cost function will evaluate the output from the predictive model.

The MPC cost function is properly designed for evaluating the error between
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Table 4.5 Glycemic index over the predicted periods

Glucose Level 30minutes | Glucose Level lhour | Glucose Level 1h 30minutes

185,4003 193,7652 201,8824

the expected Target (7;) value (the right glycemic index level for the specific
user) and the Predicted value (P;) for i =1,..,3 is:

y = (T; — P)* (4.26)

Basically the MPC cost function will evaluate the error between the Target
and Predicted value.

Now, by using a back propagation algorithm the control system will find the
best control action, i.e. insulin injection, to reduce as much as possible the
glycemic index level over the admitted threshold (the threshold is represented
by the Target values for each subject over controlling period) by minimizing the
error computed with the MPC cost function. The back propagation algorithm
will provide actions such that the computed error over the equation 4.26 is
closest as possible to 0. Once obtained the best insulin injection (control action)

for a given patient state, it is provided to the in-silico patient.

4.5 Results

This section presents the results obtained with the implemented Artificial Pan-
creas starting from the evaluation of the prediction values. In order to evaluate
the performances I have created a dataset by using the UVA/PADOVA tool by
simulating the behaviour of an in-silico diabetic patient.

Working with time-dependent data, the Bidirectional Recurrent Neural Network
(BRNNs) was implemented to create the Predicted model able to synthesize
the patient behaviour. The implemented architecture chosen for our testing
consists in a multi-layer Bidirectional Long-Short-Term Memory composed by
3 hidden layers with 80, 60 and 50 cells respectively; the output layer is a 3
cells layer where each cell in output correspond to the number of prediction
timing; in our case the 3 cells correspond to the output for 30 minutes, 1 hour,
and 1 hour and 30 minutes of prediction.

The main advantage of this architecture (Bidirectional) is that during the

training process, as already presented in previous section, the network learns
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the user past, present and future behaviours; whereas in case of a RNN the
network would have learned only the past and present behaviour with respect
to a present user state.

The training process was developed for evaluating the collected data by ded-
icating 80% of the collected data, randomly selected among the 1 month of
the data samples, to the training set, and the 20% of the collected data for
validation purposes. In this way, during the learning process, it is possible
to evaluate the degree of accuracy in learning the network (i.e., the accuracy
in prediction future values). The accuracy in prediction during the training
process evaluated with the validation test is 93%.

In order to test the performances in predicting future values starting from a

—— Test
800 - Predicted

750 4

700 A

650 - /

600

550 A

500 A

T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00

Fig. 4.3 Predicted and target values over 30 minutes, 1 hour, and 1 hour and
30 minutes

diabetic patients state, new data samples was collected by simulating 1 meal
and the assumed carbohydrates for the meal is presented in table 4.6.

Figure 4.3 shown the predicted values (in orange) at 30 (0.00 on the x-axis), 1

Table 4.6 1 Meal for testing prediction

Lunch
carb[g] | 89

hour (1.00 on the x-axis) and 1 hour and 30 minutes (2.00 on the x-axis) with
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the after the meal considering 89grams of carbohydrates and the real values
(in blues) as computed with the UVA/PADOVA tool for the simulated subject.
These values correspond to the measured glycemic index for the subject without
any insulin injection (bolus) but just considering the basal injection

The predicted values are really close to the real ones; this means that the
BRNN has approximated the model subject and it is able to predicted future
glycemic indices during the meal administration. Therefore, with in high level

of accuracy it is possible to enable the a data-driven control.

4.6 Future Work

As already mentioned, this work is in draft version since the control part,
i.e. Model Predictive Control strategy, although in an advanced state is still
immature to be described and formalized as a whole. However, the way in
which control will act, once the part of the Deep Learning in terms of predictive
model, will provide the user’s behavior, deserves to be explained. Although
immature some results of the control performed with a Model Predictive Control
technique can be highlighted.

In adults the normal glycemic peak should be less that 180 mg/ml considered
as renal glucose threshold. In our Artificial Pancreas the quantity of insulin
injection is decided dynamically taking into account the predictions in output
from the BRNN. A Model Predictive Control cost function is used to determine
the error (see equation 4.26) between the Target value considered as renal
glucose threshold and the predicted ones.

Figure 4.4 shown the controlled in-silico patient with the implemented Artificial
Pancreas for the mentioned meal. Figure 4.5 shown the controlled in-silico
patient with a closed loop control implemented by the authors in [74]. The
Artificial Pancreas created in this thesis provide a control able to provide an
intelligent insulin injection such that the peak glycemin doesn’t reach values
over 200mg/dl, while with the closed-loop control without prediction as shown
in figure 4.5 the peak glycemic index is over 200mg/dl. The glycemic values
over the 5 hours in the figure 4.1 grow since the Deep MPC controller is disabled
during the simulation from the 5th hour while in figure 4.5 the values are in

the correct range since the closed loop controller is still active.

Thttps://www.diabetes.co.uk/insulin /basal-bolus.html
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Fig. 4.4 Deep MPC Control for the administered meal
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Fig. 4.5 Closed Loop Control for the administered meal






Chapter 5
Conclusion

In this PhD thesis I have reported and discussed the main research activities
performed during my PhD carreer. As discussed in previous chapters, the main
scope of my research activities was to bring artificial intelligence methodologies
in the field of control systems employing solutions from the fields of data-driven
control and intelligent control systems.

The choice of a PhD in the field of AT applied to Control System was driven by
the vision of having machines perform both intelligent and reasoning actions,
previously exclusive to human decisions, that are able to control complex sys-
tems for which a mathematical model may not be available.

I this context, this work reports such activities as tentative approach to use
intelligent control [1] [77], a data driven control framework, introducing and
discussing typical Al related methodologies and solutions such as Neural Net-
work, Machine Learning in general and Reinforcement Learning.

Data-driven control researches found in the literature are often based on the
process, referred to as data driven modeling, of analysis the historical data for
a generic system. The goal of such modelling approach is to find the relations
between the system variables (input, internal state and output) without having
a priori knowledge of the physical dynamics of the system.

Machine Learning techniques are able of extracting patterns from high dimen-
sional data discovering models of dynamical systems or learning control laws,
directly from the data and eventually their experience.

In this work I have discussed that some traditional control methods could
not address some systems related to real-world scenarios, due to the intrinsic
complexity of the systems, as, for example, self-driving cars.

In this context, the modern solutions brought from model-free approaches such
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as Reinforcement Learning, Deep Learning and Machine Learning in general (i.e.
modern Al solutions), can address the possibility to control systems in which we
might have unknown, or hard to model, dynamics, or system characterized by
heavily nonlinear laws with high dimensional states and limited measurements.
The control based machine learning can be designed thanks to the ability of
the employed AI methods to identify the dominant patterns and relations that
emerge from the data.

The dominant patterns identified with such machine learning methodologies
directly from the data represent in a certain sense what we should control,
creating hence a data-driven model that is a representation of the system itself.
In this PhD thesis, the research activities that I have conducted, have been
described in order to addressing some real-world scenarios such as telecommu-
nication networks, transportation systems and health systems for Personalized
Medicine arriving to, at least from my perspective, meaningful conclusions.
In chapter 2 I have presented the approaches related to Reinforcement Learn-
ing, Game Theory and Multi-Agent Reinforcement Learning. More precisely,
the methodologies introduced in the first part of the Chapter 2 have been
investigated and properly extended in order to be applied in telecommunica-
tion networks. In the telecommunication networks such methodologies were
presented to cope with multiple users involved in sharing bandwidth and an
heuristic Multi Agent Reinforcement Learning approach was designed and
implemented to satisfy the users’ requests. In the scenario considered, the
telecommunication network has to be able to satisfy all the users expectation,
assuming bandwidth with limited capacities, and the objective is to assure
suitable performances. Section 2.3 shows the results of the publication [22].
In Chapter 2 I have also presented the research activities conducted in the
framework of BONVOYAGE ! H2020 project for addressing the possibility to
introduce artificial intelligence techniques in the field of Smart Transportation
Systems [25] - [54] - [100]. More precisely, Section 2.4 reports: (i) a publication
[17] in the field of Machine Learning methodologies to identify travellers’ pro-
files for computing tailored trips and (ii) a Reinforcement Learning algorithm
properly designed and implemented to rank tailored journey solutions according
to a new deducted travellers’ model.

In Chapter 3 I have introduced Deep Learning techniques, architecture and

algorithms. A new methodology to solve the transportation mode recognition

'BONVOYAGE H2020 http://www.bonvoyage2020.eu/



121

problem is presented by describing the solution and the algorithms involved to
solve the problem.

The transportation mode recognition will be used for monitoring the traffic
flows enabling the possibility to control traffic lights in Vehicular Networks as
presented at the end of this chapter; the traffic lights control has been presented
as a future work. The performance of the presented solution is discussed in
details in terms of accuracy in the classification/recognition problem.

In Chapter 4 I have presented the research activities carried out in the field of
Personalized Medicine. A first study on "Deep Model predictive control',i.e. a
particular approach designed for combining Deep Learning and Model Predic-
tive Control, is presented aiming at controlling the biological factors of diabetic
patients.
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