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Abstract

The present work is framed in the wide topic of metamaterials. New elements
portray this investigation with respect to what already existing in the current world-
wide scenario. Indeed, the attention is focused on elastic metamaterials, with the
idea to control wave propagation within the structure in terms of wave target-
ing, wave stopping and wave absorption. This is a novelty, since the concept of
metamaterials is usually related to electromagnetic applications, for which all the
uncommon effects, as for instance the invisible cloaking, are mainly related to the
negative refraction index. A simple one-dimensional structure is analysed. More
than the short-range elastic constitutive relationship, a nonlocal new long-range
elastic material is here considered. This deeply affects and changes the topology
of the system, leading to unexpected propagation phenomena. A mathematical
model, based on the nonlocal elasticity theory of Eringen, is considered. The long-
range interaction term appears as an integral function that induces a nonlinear
characteristic to the conventional equation of motion. Special types of forces are
chosen to model the long-range term, as they not only accurately model the elastic
forces, but also lend themselves to analysis by Fourier transform. Closed form
analytical solutions are achieved and it is the first time that such type of problem
is so exhaustively examined. Indeed, long-range interactions have already been
investigated, first by V.E. Tarasov, then by Zingales. However, Tarasov developed
an analysis on the purely static response of structures, whilst this work discusses
its dynamic behaviour, and Zingales performed only numerical solutions, which
prevent a thorough understanding, and is mainly interested in modal analysis.
The results are discussed in terms of modal analysis, dispersion relationship and
propagation. It can be seen how the introduction of unconventional connections
affects the typical behaviour of the structure and new phenomena, as hypersonic
and superluminal propagation and negative group velocity arise. The analysis has
been extended to a twin system, composed by two identical waveguides, with no
structural coupling, but mutually coupled only through the long-range characteris-
tic. An experimental campaign concludes the work. A twin waveguide system has
been realized by 3D printing; several magnet holders and metallic strips acting as
springs are used so to reproduce the mathematical model. The magnetic coupling
recreates the long-range interaction. Different types of excitations have been applied
to the primary waveguide, so to retrace first the complex frequency response and
secondly the dispersion relationship. First results, even though rough, exhibit a
damped response on the main waveguide, and a more complex response in the
secondary waveguide, in agreement with what analytically observed.
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Chapter 1

Introduction and motivations

The goal of this work is to define and present the universal propagation properties
of long-range interactions embedded within an elastic metamaterial. Long-range
interactions and metamaterials represent one of the most powerful paradigms of
modern science and technology. The plethora of applications, often interwoven to
the world of micro- and nano-scale, is not only promising whatever field they are
applied to, but is close to be striving imagination: biological material reconstruc-
tion, cancer detection [1], stealth technology for defence systems [2], submarine
invisibility to sonar detection [3], microwave hyperthermia for malignant tumour
treatment [4], swarm dynamics [5], DNA communications monitoring [6] represent
only a small window over the vast sphere of metamaterials and long-range interac-
tions.

The concept of “meta”-material derives from new propagation properties ensuing
from new type of connections among the elementary components of a structure.
Metamaterials are artificial composites whose properties, which are not yet found
in nature, derive from the newly designed structure and not from the original
components. The growing interest from the scientific community on these new ma-
terials derive from their flexible usability and, in some cases, from their capability
of interaction with mechanical waves. A proper definition is given by [7]:“. . . They
are obtained by suitably assembling multiple individual elements constructed with
already available microscopic materials, but usually arranged in (quasi-)periodic
sub-structures. Indeed, the properties of metamaterials do not depend only on those
of their component materials, but also on the topology of their connections and the
nature of their mutual interaction forces. In literature there is currently specified
a particular class of metamaterials, so called mechanical metamaterials, those in
which the particular properties which are “designed” for the newly synthesized
material are purely mechanical”.
Metamaterials represent a rather new science, though extensively studied. The
subject involves mainly acoustic and electromagnetic metamaterials, for which the
atypical refraction index produces uncommon effects and opens to new technolog-
ical developments, as the chance to achieve invisible cloaking [8] or holographic
images [9]. When dissipation and diffraction [10–14] intervene, anomalous effects
involve wave propagation with negative group velocity, light stopping [15–17]
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and superluminal speed [18]. The unique material properties now obtainable with
acoustic metamaterials [19] have led to unprecedented control of acoustic wave
propagation, resulting in many applications including acoustic cloaking, also for
underwater uses [20–22]. The increasing enhancement of additive manufacturing
and micro-, nano- technologies [23,24], and the consequent complex microstructures
these materials are composed by support the achievement of particular dynamic
behaviours, as unusual wave propagation [25] and exceptional dissipation fea-
tures [26–29], i.e. all those phenomena classical dynamic can describe only by
introducing unconventional mathematical models [7,30,31]. In mechanics, meta-
materials can be obtained through negative effective parameters as mass, elastic
modulus or anisotropic mass [32,33], but they could also be promoters of micropolar,
higher-gradient and nonlocal elasticity [7, 34–36].

In this context, metamaterials are designed as elastic structures in which the intro-
duction of magnetic inclusions generates long-range interactions, overcoming the
conventional concept of a system dynamics ruled by first-neighbour interplay and
defining the category of the elastic metamaterials. The ability of the metamaterials
of interaction with mechanical waves and their specific design induce singular
properties responsible of the manipulation of waves: by absorbing, attenuating,
blocking or deforming waves, it is possible to gain benefits that go beyond what
can be usually achieved with conventional materials. The propagation control is
founded on the modification of electromagnetic couplings [37], which have a clear
effect on the propagation parameters and on the identification of an appropriate
combination of frequency and dipole momentum so that a specific propagation
behaviour can be performed.

As explained, the introduction of long-range connections within the conventional
network of a material produces an alteration of the intrinsic topology of the system.
If the obtained morphological scheme results in a repeating periodic pattern and
if these modifications happen to be so entangled that the physical and mechanical
properties of the final arrangement does not depend on the original separated
configurations, but only on the new composition, doubtless the new object is a
metamaterial.

Long-range schemes can appear in several shapes. A general modelling of interac-
tion can be applied both to metamaterials and to the dynamics of a population. In a
three-dimensional space and in a body characterised by a classical elastic connec-
tions, each particle is connected with the two neighbours in each direction, which
means that each particle is connected with six surrounding particles.
Additive manufacturing and manipulation at microscopic level opens the chance
to change the topology of a system and a question naturally arises: which type of
collective motion can be obtained?
Long-range interactions can be produced either naturally, embedding external in-
clusions, sources of far-distance forces, as magnetic intrusions or electric charges, or
artificially, by changing the elementary matrix of a material, creating, manipulating
and expanding the already existing connections.
The basic foundation behind long-range interactions stands in the fact that each
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particle exerts and communicates forces and that each connection between particles
is a communication channel, through which information is carried. Furthermore,
the information is provided in terms of the intensity of the force and the delay time,
due to the finite speed of the travelling information.
The topic of long-range interactions is widely investigated and there is no science
that can avoid the study of their effects. Even two of the fundamental forces,
the gravitational and electromagnetic interactions, produce significant long-range
forces, whose effects can be seen directly in everyday life. Long-range interactions
represent an object that cannot be neglected if one is willing to portray the surround-
ing environment. Long-range interactions involve the outer space discoveries, and
gravitational waves are non solum the most recent breakthrough in modern science,
sed etiam one of the greatest exemplification of the power of far-distance forces,
able to be messenger of information that not even light, in this case, could carry. It
is exactly the long-range property of the gravitational force that has been the key
to open a new science, the multi-messenger astrophysics [38], but also in several
other fields they brought important discoveries, even though their presence is more
subtle. In mechanics, Kröner [39] has been one of the first to introduce the concept
of long-range interactions, applied to the strain energy of a deformed material.
Eringen created a whole theory [35, 36, 40, 41] about the effects of nonlocalities, and
its theory has been inspiration for many future works [42–47]. Tarasov [48–54]
used long-range interactions to investigate the static response of systems, through
the mean of fractional calculus. In recent years, studies of long-range interacting
(LRI) systems have taken center stage also in the arena of statistical mechanics and
dynamical system studies, due to new theoretical developments involving tools
from as diverse a field as kinetic theory, non-equilibrium statistical mechanics, and
large deviation theory, but also due to new and exciting experimental realizations
of LRI systems [55].
Many branches of science deal with interconnections between basic elements, and
most of the times the used communications pattern are complicated to analyse. This
requires simplifications, as the hypothesis of a range of action of the interchange
forces considerably short with respect to the dimensions of the system they belong
to. If for many years this approach has quenched the thirst of knowledge, the
new theoretical discoveries and the technological development claim a review of
the fundamental theories from a different point of view and deeper investigations.
Indeed, it happens very often that general models accounting only for short-range
interactions reveal to be not accurate enough. The introduction of long-range forces
provides new schemes that are well adapted to describe the real nature of the con-
nections [56–59].
Even if long-range interactions are a natural essence of branches as chemistry [60–65]
and quantum physics [66, 67], other sciences, from physics [68], to genetics [69],
nano-science [70], optics [71–73] and swarm dynamics [74–76] started to introduce
this concept in their studies. Beyond physics, the dynamics of population has a
very interesting aspect that relates to the interaction range. Recent studies in crowd
dynamics [77] propose models of social forces including repulsive or attractive
actions, and these models can be used to predict catastrophic scenarios [78]. Traffic
modeling is one of the possibilities these models offers [79]. This should not sur-
prise. Even the mathematical approach used in this thesis to model waves generated
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by a population of particle could be interpreted as the collective behaviour of a
population of individuals, the mutual interactions of which produce faster or slower
social effects on the global response of the community.

Even in the landscape of recent investigation of elastic metamaterials [80], the corre-
lation between waves and nonlocality is not directly addressed and the scientific
literature does not report results on anomalous elastic wave propagation analogous
to those found in electromagnetics. Even though nonlocal interactions have been
widely investigated [81], the absence of general results for dispersive properties
in nonlocal materials is justified by the complexity of the governing equations of
motion. Indeed, to correctly describe the nature of the interactions and the wave
propagation integral-differential equations in space and differential in time are
needed.
The core of this work is the merging of long-range interactions and elastic meta-
material. This bond defines a completely new paradigm in structural mechanics,
intrinsically based on local short-range particle interaction. The features of long-
range forces produce very new mechanical coupling effects, which can be both
intra-body and inter-body, as for instance the case of coupled waveguides: waves
generated in one of the beam propagates also in the second and vice versa, creating
a new effect named twin-waves [82, 83]. Furthermore, a thorough analysis of the
response of such structures based on inverse problem solutions can lead to the defi-
nition and the consequent realization of a new type of material, able to delineate a
specific path of waves determined starting from the control of macroscopic physical
parameters. The goal is to ensure isolation in those portion of the structure more
sensitive to the vibrational motion and waves would be funnelled towards more
resistant areas.

This work reports new results for wave propagation in elastic metamaterials, char-
acterized by long-range interactions among elementary particles. The presence of
such type of coupling, possible in elastic, acoustic as well as in electromagnetic
and optical systems, produces integral-differential equations. The theoretical pre-
sented background has wider potential uses. In fact, the long-distance interaction
is a recurring challenge in physics. Statistical mechanics of complex systems is
classically based on Boltzmann theory and the collision integral represents typical
"short-range" interactions. The Vlasov theory [84] attacks long-range interaction
for the evaluation of the probability density of a system of charged particles as
electrons or plasma ions. Long-range thermodynamic [85] produces unusual effects
as negative specific heat, anomalous diffusion, ergodicity breaking and new regimes
in cold gases. The model here introduced provides an interpretation of deterministic
effects that can be expected for long-range interactions. These interactions, whether
they occur within a single structure or whether they are meant to couple distant
objects, modify the topology of the connections and, thus, the dynamic response
of the system, and the result unveils special kind of waves, enlightening wave
stopping, negative group velocity, cut-off and superluminal propagation.

A general map of the possible connectivity templates has been presented in [86], and
all types of possible connection topologies can be reduced in four main categories,
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namely: i) master-cluster connection, already introduced in [28, 29, 87–90], ii) all-
to-all connection, common in quantum physics [91,92] iii) all-to-all with reduced
length of interaction, and iv) random sparse connection.
The connectivity matrix is the element that exemplifies the topology of a structure
based on the connections existing between particles and in the case of classical
elastic connections, it reduces to the conventional, tridiagonal stiffness matrix. The
long-range connections have the effect to complete the out-of-diagonal elements,
according to their type, shape and connectivity characteristics. Probably, among all,
the one-to-all connections enjoys the most a widespread attention, as they can be
related to the concept of “energy sinks”, an alternative to the conventional way of
absorbing vibrations. The several experiments carried out [26, 30, 93–95] consider a
set of non-damped harmonic oscillators, linked to a master structure, defined by a
single degree of freedom. The set of oscillators behaves as an energy sink, absorbing
and holding vibrations from the primary structure. There is no dissipation of
energy in the classical sense of heat transformation, however the energy remains
in the energy sinks for a sufficiently long time so that one can consider damped
the oscillatory motion of the main structure. Note that the long-range interactions
existing in an "energy sink" system are of an elastic type, which implies linear
governing equations of motion. Long-range interaction of contact-less type, as the
ones here considered, have a nonlinear nature, which has reflection on the type of
applicable equations.
In [86], the dynamics of all these systems is synthesised through a unique integral-
differential equation:

L(n)
x {w(x, t)}+ m′

∂2w(x, t)
∂t2 + K(x, t) ∗ ∗w(x, t) = 0 (1.1)

The inertia term appears as second order in time t, the n-th order differential oper-
ator L(n)

x is with respect to the space variable x, the double convolution implies a
transform operation involving both space and time and K depends on the nature of
the connections. For purely elastic connections K(x, t) ∗ ∗w(x, t) reduces to a space
operation only, but the time dependence cannot be neglected in case of a delayed
time information.
The great advantage of such type of formulation lies in the fact that to understand
the dynamic of the system, the detailed mechanics of the single components, which
might be hidden and inaccessible to direct measurements, is not required. In fact,
the investigation of the dispersion relationship, associated to equation (1.1), is suffi-
cient to analyse the global behaviour, and by simply analysing the group velocity,
the propagation behaviour of such systems can be fully illustrated. Indeed, inter-
preting the group velocity as a comparison between the short-range and long-range
actions, the propagation scenarios can be discussed in terms of a single parameter,
representative of the strength of the long-range forces, compared to classic elastic
ones. Wave-stopping occurs when an essential balance between short-range and
long-range forces is determined: the energy does not propagate along the structure
due to the absence of reflections and echoes at boundaries. Negative group velocity
is obtained if the effects due to the two forces appear as opposite, and in this case
this contrast is reflected on the propagation direction of waves and energy, opposite
as well with respect to each other. At last, specific conditions might also lead to
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hypersonic velocity.
Eventually, long-range interactions are presented and interpreted as an operator
which exponentially decays with the distance, whose intensity can be either positive,
as for attractive force, or negative, as for a repulsive interaction and it is controlled
by a single parameter. The magnetic interaction is a physical example of long-range
interactions.
This thesis is structured in five chapters: after the introduction, in Chapter 2, the
linear problem of elasticity proposed by Navier and the Eringen’s nonlocal theory of
elasticity are presented as basic foundation of the applied mathematical model. Be-
sides, an overlook over theories about long-range interactions is proposed as useful
not only to provide a complete background, but also to highlight the novelties of the
presented mathematical approach. Chapter 3 focuses on the effects of long-range
interactions on the equation of motion, beyond the concept of classical elasticity.
Chapter 4 presents the application of the mathematical model to the simple one-
dimensional problem. The propagation behaviour is analysed for special kernels
for the long-range interactions, i.e. Gaussian-like and Laplace-like forces, able to
disclose analytical solutions to the equation of motion. The surprising propagation
effects, as wave-stopping, negative group velocity and superluminal propagation,
are discussed in details in this chapter, but further developed in Chapter 5, when the
mathematical approach is applied on a twin system, where two rod-like structures
are coupled with each other, thanks to the magnetic interaction only. The mathemat-
ical analysis anticipates the existence of unconventional propagating phenomena,
which are corroborated by numerical simulations. Finite elements analysis and an
experimental campaign complete the investigation. At last, the future developments
of this thesis are discussed in the Conclusions.
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Chapter 2

State of art on long-range forces

The present work investigates elastic metamaterials, in which the presence of long-
range interactions, due to magnetic inclusions, gives rise to unconventional effects
on the dynamic of a simple one-dimensional systems.
In this chapter, the guidelines of the used mathematical model are exposed and
the linear problem of elasticity proposed by Navier is presented as a fundamental
background, together with an overlook over theories about long-range interactions.
The extension of the concept of local elasticity is a process started many years
ago. Already in 1953, dealing with periodic structures of different kinds, Brillouin
dedicates attention to a larger length of interaction among elementary particles.
In [96], he tackles the problem of wave propagation in several cases and when
the interaction length is not reduced to first neighbours only, but it spreads over
L elements, he obtains a relation between the frequency ν and the wavenumber

a =
1
λ

as the following:

π2r2M = ∑
0<m<L

U′′m sin2 πamd =
1
2 ∑

0<m<L
U′′m (1− cos 2πamd) (2.1)

where U is the energy of interaction between two particles, expressed as a potential

function that depends on the mutual distance, U′ and U′′ are its derivatives
∂U
∂r

and
∂2U
∂r2 . Since cos (2πamd) can be expanded as polynomial, the frequency itself

is a polynomial of degree L in cos (2πad). This equation means that "ν is a single-
valued function of a, but a is not a single-valued function of ν" ( [96]) and hence,
for any frequency, there are L solutions of a. Those solutions need not all to be real,
but they can in general be complex and waves propagating along the lattice are
associated to real a, and waves decaying exponentially from the source point are
related to imaginary or complex a. In this way, Brillouin shows how even a "simple"
one-dimensional problem can lead to a more complex treating if a higher number
of connections are included: "In the case of interactions between nearest neighbours only,
the boundary conditions were simple: we had only to specify the motion of the first particle.
However, added interactions complicate the procedure, and the boundary conditions must be
specified over a length Ld of the lattice."
In 1967, Kröner [39] analyses the strain energy of a deformed material in which
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the spatial interactions are of a long-range type. He provides a classification of
this energy based on the form in which it is expressed: a differential or multipolar
form of a single volume integral containing gradients of the displacement up to
infinite order, suitable to very small scale, almost atomic, range of interaction, and
an integral form or nonlocal with a double volume integral, preferable to describe
electric cohesive forces, seen as two-point material tensors.
However, the most popular theory about the extension of the classical concept of
elasticity has been developed by Eringen in [35, 36, 41] and, since it inspired many
authors and this work too, a paragraph is dedicated to its theory.
Furthermore, two remarkable examples of how the nonlocal elasticity theory can
be successfully applied to long-range interactions are illustrated, as they show
common elements with the here presented investigations. In [49–53], Tarasov
presents a mathematical model based on fractional calculus, in which nonlocal
connections affect the static response of the structure. Zingales in [44–47, 97, 98]
discusses how the dynamic behaviour, analysed in terms of integral-differential
equations, is influenced by this type of interactions, but only numerical solutions
confirm his theory. In light of the exposed theories, the key elements of the present
work and its novelties are hereafter illustrated.

2.1 Navier-Cauchy formulation

The problem of the elasticity theory is to determine the motion and the deformation
of an elastic solid that undergoes external loads, as long as equilibrium laws and
constitutive relationships remains valid. It considers only problems in which it is
reasonable to assume displacements and deformations to be much smaller than the
significant dimensions of the considered body and the constitutive relation can be
translated into the Hooke’s law.
The equation of the displacement field is obtained classically from the general
elasticity problem. It is composed by equations of equilibrium, the pointwise com-
patibility and the constitutive relationships. For a three-dimensional system, this
problem contains 15 unknown fields (displacement, stress and strain) and, even
though an analytical solution is theoretically possible given the 15 available equa-
tions, the problem remains complex and requires a reduction to a fewer number of
equation and unknowns. This procedure leads to the definition of the displacement
field, as long as displacements are the primary unknowns of the formulation and
are known everywhere on the boundary.
In the following presentation of the problem the operator ∇2 is used for the Lapla-
cian operator, ∇ for the gradient operator, ∇· indicates the divergence, λ and µ are
the Lamè constants; the rest of the symbols have an obvious meaning and are no
further discussed.
The governing equations of the linear elastic problem are:

• the equilibrium equations
∂σij

∂xj
+ fi = 0 (2.2)

which are three equations containing six unknowns
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• pointwise compatibility

ε ij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
(2.3)

which provides six equations in nine unknowns

• constitutive laws
σij = Cijklεkl (2.4)

or, in case of linear isotropic elasticity

σij = λεkkδij + 2µε ij (2.5)

which complete the problem introducing six equations, but no other un-
knowns.

Eventually, the boundary conditions can be of two types, according to whether they
are expressed in terms of displacement (essential boundary conditions) ū imposed
on the portion of the surface of the body ∂Bu, i.e. ui = ūi, or in terms of traction
(natural boundary conditions) t̄ imposed on the portion of the surface of the body ∂Bt,
namely: niσij = tj = t̄j.
The necessary conditions for the existence and uniqueness of the solution have been
intensely discussed and it is proven how they are related to the positive definiteness
of the stiffness tensor. This translates into the positiveness of the bulk and shear

moduli K =
E

3(1− 2ν)
> 0, G =

E
2(1 + ν)

> 0 and hence to a restriction on the

Poisson modulus: −1 < ν < 0.5.
To obtain the displacement field, stress and strain must be eliminated from the
general problem, through a proper combination of the given equations. Indeed, by
substituting firstly equation (2.4) into equation (2.2) and then (2.3) into (2.2) again,
one achieves the so-called Navier equations:

∂

∂xj

(
Cijkl

∂uk

∂xl

)
+ fi = 0 (2.6)

When conditions of isotropic elasticity occur and applying the same procedure as
for the general case, the stress becomes:

σij = λεkkδij + 2µε ij = λ
∂uk

∂xk
δij + µ

(
∂ui

∂xj
+

∂uj

∂xi

)
(2.7)

and the resulting equilibrium equation is:

0 =
∂σij

∂xj
+ fi = λ

∂2uk

∂xj∂xk
δij +µ

(
∂2ui

∂x2
j
+

∂2uj

∂xi∂xj

)
+ fi = λ

∂2uk

∂xi∂xk
+µ

(
∂2ui

∂x2
j
+

∂2uj

∂xi∂xj

)
+ fi

(2.8)
The expression of the field displacement for a three-dimensional, unbounded elastic
medium can then be easily obtained in its component form:

(λ + µ)
∂2uj

∂xi∂xj
+ µ

∂2ui

∂x2
j
+ fi = 0 (2.9)
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or in its vectorial counterpart:

(λ + µ)∇ (∇ · u) + µ∇2u + f = 0 (2.10)

As final step, expliciting the Lame constants, as parametric functions of the Young’s

modulus E, i.e. λ =
νE

(1 + ν)(1− 2ν)
and µ =

E
2(1 + ν)

, the Navier’s equations are:

E
2(1 + ν)(1− 2ν)

∂2uj

∂xi∂xj
+

E
2(1 + ν)

∂2ui

∂x2
j
+ fi = 0 (2.11)

E
2(1 + ν)(1− 2ν)

∂e
∂xi

+
E

2(1 + ν)

∂2ui

∂x2
j
+ fi = 0 (2.12)

where e = εkk =
∂uk

∂xk
.

These equations, together with the inertia contribution, represent the conventional
kernel of the equation of motion:

ρ
∂2ui

∂t2 −
E

2(1 + ν)(1− 2ν)

∂2uj

∂xi∂xj
− E

2(1 + ν)

∂2ui

∂x2
j
− fi = 0 (2.13)

However, the contribution of long-range forces through the term fi = fiLR alters
the nature of the equation and, hence, of the dynamic of the system and new
unconventional properties are unveiled. A general formulation of the equation of
motion is in the form:

ρutt −
E

2(1 + ν)

[
1

(1− 2ν)
∇(∇ · u) +∇2u

]
− fLR = 0 (2.14)

where utt is the notation used for a second order time derivative.

2.2 Eringen theory of elasticity

The elasticity theory is based on two fundamental assumptions: i) the relationship
between components of stress and strain is linear, and ii) only infinitesimal strains
or "small" deformations (or strains) are considered. Even though this might be
suitable for many engineering problems, for more accurate studies they represent a
limitation.
In the nonlocal elasticity theory, the points undergo translational motion as in the
classic case, but the stress at a point x depends on the strain field in a region near
that point, or at every point x′ [35, 36, 40, 41]. A physical interpretation sees long-
range interactions intervening between points at far distance and they occur, for
instance, between charged atoms or molecules in a solid.
The constitutive equation for stress is in terms of the position vector x of points in
the solid, in which the Lamè coefficients for an isotropic material become spatial
functions of the distance from the point under consideration in the material.
In many of his studies [40], Eringen demonstrates how the selection of an appro-
priate class of kernels does not need to be itad hoc, but it only needs to respect
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mathematical conditions of admissibility and verifiability.
Firstly in [41], but also in [40], he presents the linearised nonlocal elasticity theory
for homogeneous and isotropic elastic solids through the following set of equations:

tkl,k + ρ ( fl − ül) = 0 (2.15)

tkl(x) =
∫

V
α
(∣∣x′ − x

∣∣ , τ
)

σkl
(
x′
)

dV(x′) (2.16)

σkl
(
x′
)
= λerr

(
x′
)

δkl + 2µekl
(
x′
)

(2.17)

ekl(x′) =
1
2

(
∂uk(x′)

∂x′l
+

∂ul(x′)
∂x′k

)
(2.18)

where tkl is the stress tensor, ρ is the mass density, fl is the body force density, ul is
the displacement vector, σkl(x′) is the macroscopic stress tensor evaluated at x′ and
related to the linear strain tensor ekl(x′), µ and λ are the Lamè constants. The elastic
strain is determined through a Fredholm integral equation in which the stress is
defined by the convolution between the local response to an elastic strain and a
smoothing kernel dependent on a nonlocal parameter.
This set of equations is not very different from the one adopted in the linear elasticity
theory. The main distinctions lies in equation (2.16), which replaces Hooke’s law.
It is interesting to notice that in [41] Eringen applies his theory to the case of
plane waves. The experimental campaign on phonons propagating in aluminium
successfully demonstrates the validity of his theory, thanks to the comparison
between the dispersion relationship, given by:

k2
[
1 +
√

2πα(k)
]
= (ω/c∞)

2 (2.19)

and the dispersion curve, obtained through the experimental campaign.
Even if Eringen does not solve analytically the dispersion relationship and no
proper analysis on the characteristics of propagation is yielded, this result is still
remarkable since not only it confirms the theoretical assumptions in a wide range
of frequencies, but also because the obtained dispersion curve shows a trend that is
unconventional with respect the one that would have been achieved through the
classical linear theory of elasticity. Furthermore, it will be shown, in the following
chapters, how the dispersion curve obtained by Eringen and the one associated to
the case of a one-dimensional waveguide equipped with magnetic inclusions (the
study case analysed in this thesis) are rather similar. This does not imply a similarity
between the proposed case studies, but more the power of the nonlocal elasticity to
investigate and bring to light shades that with the linear theory of elasticity would
remain hidden and unnoticed.

2.3 Tarasov theory

As previously mentioned, among many authors tackling the subject of long-range
interactions, Tarasov is the one who introduces the concept of long-range interac-
tions through integral-differential equations that model the dynamic of the systems
by the mean of fractional calculus [49–54, 99].
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In [51], Tarasov considers discrete systems with long-range interactions and tries
to define a continuous limit for the systems with long-range interactions, so to
interpret continuous medium models as continuous limit of a discrete chain system.
These long-range interactions of chain elements produce fractional equations for
the medium model, mapped into the continuum equation with Riesz fractional
derivative.
A wide class of long-range interactions that provides fractional medium equations
in the continuous limit are considered, but the power-law interaction represents a
special case, and its associated equation is:

∂s

∂ts u(x, t)− Gα Aα
∂α

∂|x|α
u(x, t)− F (u(x, t)) = 0 (2.20)

with α non integer.
[54] is a rare example in which Tarasov investigates the dynamic response of the
system:

∂2

∂t2 û(k, t) + J0 Ĵα(k)û(k, t)− J1û(k, t) + J2F∆ {sin (un(t))} = 0 (2.21)

where Ĵα(k) = 2
+∞

∑
n=1

cos (kn∆x)
nα+1 is the long-range kernel.

The main focus of his work is the definition of a transform operator able to translate
the set of coupled individual oscillator equations into the continuous medium
equation with the space derivative of order α, where 0 < α < 2, but α 6= 1.
However, the dynamic problem is solved only in the low frequency domain, the
region for which k → 0, hence in the infra-red limit, where the transformation,
being an approximation, is valid, and no analysis of the dispersion relationship is
presented.
The researches presented both by Eringen and Tarasov present common points: they
both consider a wide class of kernels for the long-range interactions, even though
major attention is preserved for power-law interactions, and they do not face, at
least most of the times, the problem of the dynamic behaviour of a system; indeed,
they are more focused on the static response of a structure and on a mathematical
classification of the case studies.

2.4 Zingales approach

Zingales, on the other hand, investigates wave propagation in non-local elastic
solids, applying Kröner–Eringen integral model of non-local elasticity in unbounded
domains. He presents the problem through the Hamiltonian functional formulation,
where a term additional to the elastic potential energy accounts for elastic long-
range interactions [97]:

ρ(x)A(x)
∂2u(x, t)

∂t2 − ∂

∂x

[
Enl(x)A(x)

∂u(x, t)
∂x

]
+
∫ b

a
ḡ (x, ξ) η (x, ξ, t) dξ = A(x) f (x, t)

(2.22)
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where Enl(x) is the non-local elastic modulus and ḡ (x, ξ) η (x, ξ, t) dξ represents the
contribution of the long-range interactions, proportional to the interacting volume.
In the context of standing wave analysis, Zingales provides a weak formulation of
the wave equation, able to produce only approximate analytical solutions to the
governing equation. This is achievable if the long-range forces between different
volume elements are modelled as central body forces applied to the interacting
elements. In this way, the mechanical boundary conditions may easily be imposed
because the applied pressure at the boundaries of the solid must be balanced by the
Cauchy stress. Even though the results are in agreement with what predicted by
the non-local integral theory of elasticity in unbounded domains, some differences
arise in the case of bounded domains. Besides, the lack of closed form solutions
prevents a thorough investigation of the propagation characteristics, limiting the
analysis at the context of standing waves.

2.5 New open scenarios

The growing interest about metamaterials brought several research groups and uni-
versities to work on it. Different typologies of metamaterials are under investigation
and they are mainly related to electro-magnetic, optical and acoustic metamaterials.
This is the first time that elastic metamaterials are investigated, and for the first time
the dynamic behaviour of a structure with long-range interactions, due to magnetic
inclusions, is studied.
The topic of long-range interactions is not a new: mainly related to elastic con-
nections and the concept of the energy sinks [30, 93, 94, 100], as shown in the first
chapter, in recent times it has attracted the attention of other authors, as Tarasov
and Zingales, taken as example as they face the problem with an approach not far
with the one here used. However, none of them embrace the idea of metamaterials,
and while Tarasov is only interested in long-range interactions and mainly on their
effects over the static response of a structure, Zingales carries on a study in which
the dynamic response is only numerically investigated.
The novelty introduced in this work is the chance to discuss the dynamic response
through the analytical solutions of the obtained dispersion relationship. The pro-
posed mathematical model is based on the nonlocal elasticity theory developed by
Eringen, in which several types of long-range connections are investigated. How-
ever, even tough his study is complete from a mathematical point of view, the
effect related to wave propagation are discussed only in [41]. The present work not
only analyses a specific type of long-range interactions, associated to the effects of
magnetic inclusions within the matrix of a conventional material, but also provides
a thorough investigation of the arising propagation phenomena, suggesting a map
of the possible scenarios according to the intrinsic physical properties of the system.
A similar analysis was conducted by [101] and [102], but it is applied to micro and
nano scales only.
This new type of interaction, together with the advantage of a detailed analysis,
possible thanks to the achievement of closed form solutions, brings to light un-
conventional phenomena, as an infinite numerable values of the wavenumber
associated to a single frequency, wave stopping and superluminal propagation that
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will be discussed further on in this thesis.
However, long-range interactions are not only a mean to achieve uncommon propa-
gating phenomena and special dynamic response. Indeed, they define a commu-
nication network. These interactions can connect elements and even separated
structures, when no structural links are present or possible, as long as their mutual
distance is smaller than the typical interaction length. In this scenario, the case of
a twin system finds its place as extension of the single waveguide problem. The
twin-waves is not only a theoretical dissertation; a natural application of the twin
system concept are, indeed, the interface waves (propagation waves at the inter-
face between different media), which should not be interpreted only as coupling
between fields, but as long-range interacting waves. More than the novelty in itself,
the communication aspect is even more interesting if one considers all its possible
applications, which can spread from remote control, to control over the dynamics
of populations or swarms.

2.6 Final remarks

This opening chapter introduces the fundamental basis of the proposed mathemati-
cal approach: the elasticity theory, as bequeathed by Navier and Cauchy, is further
developed following the guidelines of Eringen’s nonlocal theory. Furthermore,
among many authors challenging the topic of long-range interactions, the works of
Tarasov and Zingales are discussed as they exhibit common features with the here
discussed problem. This overview has the ambition to enlighten the innovation
nature of this work.
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Chapter 3

A new approach to long-range
metamaterials

The mathematical model presented in this work is framed in the general context
of linear elasticity, introduced through Navier-Cauchy equation of motion, but
further developed so to include the contribution of long-range forces. For this
purpose, the nonlocal elasticity theory of Eringen is considered and, accordingly, a
convolution term is introduced in the displacement field equation as interpretation
of the new nonlocal properties of the system. The effect of this term is the addition
of nonlinearities within the resulting integral-differential equations of motion.
The present chapter focuses on the long-range interactions, investigating their
nature, beyond the concept of classical elasticity, and their effects on the equation of
motion.

3.1 The nature of the force: beyond elasticity

Two main concepts are often involved when dealing with structural mechanics,
namely elasticity and linearity, and when taking a closer look to relatively small
problems, it sounds reasonable, in most cases, to reduce them to their simplest
expression. However, linearity and perfect elasticity are approximations of the real
world and many materials, defined elastic, remain purely elastic only under the
specific hypothesis of small deformations.
We set the limits and the conditions under which a structure can be said linear; we
manipulate reality so to be easier for us to be understood. Elasticity, even more than
linearity, represents a clear example. It relies upon the idea that a body is able to re-
sist to an external load and to recover its original shape when that force is removed.
The existence of a "state of ease" of "perfect elasticity" in which "a body can be
strained without taking any set" [103] implies a range delimited by the unstrained
state on one side and the elastic limit on the other. Nevertheless, there are cases
which bring to light the limitations of this assumption, as materials that, albeit show-
ing a definite elastic limit, are subdued to applications causing deformations beyond
that limit, or materials, as rubber, that after very large deformations, would only
recover a part of it. These examples generate a new concept: the ground-position,
defined as the position in which the deformation started and which differs from the
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initial position. This induces a difference between deformation and strain, where
the first is the global modification of the material and the latter is the recoverable
part of it, when all the external forces have been removed. "The strain can differ
from the deformation not only in magnitude, but also in the orientation of the prin-
cipal axes" [104]. In this sense, the ground position corresponds to the unstressed
state, but not to the undeformed one. A general theory of elasticity should relate
the strain and both the stress by it produced and the external forces necessary to
equilibrate the stress in the body, according to d’Alembert principle. The classical
theory, instead, refers to the case where strain and deformation are identical and
the stress-strain curve can be approximated as linear, neglecting higher order terms.
This theory, that when applied to isotropic materials reduces to the well-known
Hooke’s law (ut tensio, sic vis), can be extended to fluids as well; indeed, in response
to a small, rapidly applied and removed strain, non-Newtonian fluids may deform
and then return to their original shape.
However, the forces that rules nature and that keep matter together overcome the
limits of classical elasticity and their behaviour is strongly nonlinear. The four
fundamental forces describe any physical phenomenon at any scale of distance
and energy through nonlinear relations. It is fascinating to notice how the entire
reality around us is pictured through a set of forces covering not only any scale,
from subatomic, as the strong and weak nuclear bonding, to macroscopic scales, as
the gravitational attraction and electromagnetism, but also any type of nonbonded
interactions. Strong and weak interactions have a minuscule range of action, con-
fined within the nuclear radius, whereas electromagnetism and gravitation even
more are the greatest examples of long-range interactions carriers. The gravitational
force runs infinitely unbounded and through gravitational waves we are able to
listen to the far universe, for which light cannot be a proper messenger. Long-range
interactions affect our life, generators of inextricable networks daily employed,
from the social connections to the world wide web.
This is just a hint to understand that limiting the interconnections within matter to
short-range interactions only is equivalent to be color blind, the boundaries would
be undoubtedly defined, but all the possible shades would remain undiscovered
and, even though reasonable in some cases, the overall view would still be missing.
In this newly defined stage, the chance to introduce long-range forces and to go
beyond the classical concept of elasticity opens new scenarios in the panorama
of structural mechanics as well. The types of possible connections are wide and
each one produces unique effects on wave propagation, vibration characteristics,
damping and modal behaviour. Figure (3.1) presents a map, already shown in [86],
of the possible topologies of connection that have in common the long-range feature
and that enter the domain of the propagation in nonlocal elasticity.

• In the master-cluster scheme (3.1a), a single mass communicates with all the
others and phenomenon of wave stopping arises; the energy transported
along the ring, when exciting the connected mass, can stop and the excited
mass does not receive any echo from the ring; irreversible energy transfer
(the energy initially associated to the master particle is rapidly transferred to
the cluster and an appropriate modulation of the intensity of the connections
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(a) master-cluster (b) all-to-all (c) reduced all-to-all (d) random sparse

Figure 3.1. Long-range interactionsConnection schemes

makes the process irreversible) occurs;

• The full-range scheme (3.1b) includes any connection between any arbitrary
pair of particles and anomalous propagation phenomena appear, as wave
stopping and superluminal propagation of waves;

• In the all-all limited range (3.1c), the same phenomena of (3.1b) appear;

• In the case of randomly sparse connections (3.1d), synchronization of the
particle motion becomes relevant and no phase-delay is observed; besides,
the disturbance propagates with very high speed, as consequence of the
amplification of the group velocity.

The technological progress has finally reached a level that allows experimental
campaigns that were just imagination until not long ago and with it the possibility
to confirm a wide class of theories. 3D printers or micro-nano technologies can insert
elements within conventional materials, so to produce long-range interactions, as
the case here under investigation of magnetic or electric inclusions. The presence
of magnetic and electrostatic interaction compels the communication between far
particles and practically overcomes the limit of short-range connections of the local
elasticity theory.
Perfect elastic body is an ideal concept only. The most elastic body in modern
science found is quartz fibre, which is not even a perfect elastic body.
The aim of this work is to go beyond the fashion of conventional mechanics and
classical elasticity. Of course there is no pretension to reconcile general relativity
and quantum mechanics, but more the willingness to show how the combination
of apparently different fields can yield to surprising phenomena and the greatest
question about the nature of the universe might provide cues to face even common
and simpler problems.

3.2 Elastic-electrical-magnetic interactions

The element that expresses the relation between the degrees of freedom of a struc-
ture and the topology of the force exchange is the connectivity matrix. The shape of
the matrix depends on the nature of the force existing between particles. In discrete
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dynamic systems of concentrated parameters, as masses, springs and dampers, one
can reduce the connectivity matrix to a tridiagonal matrix (Figure (3.3)) with good
approximation and the connectivity matrix exemplifies the stiffness matrix, since
that is the one carrying the information about the connections among elements.
It describes the conventional elastic interaction, modelled in Figure (3.2), and the
conventional propagation in which elements out of the three main diagonals do not
interfere.
When more than the classical elastic connections intervene, the connectivity matrix

Figure 3.2. Elastic connections

Figure 3.3. Conventional connectivity matrix

can assume a much more complex structure and, at most it could be a full matrix,
if it is reasonable to assume that each element is linked with all the others. In real
structures, the topology of connections is actually more sophisticated, due to the
bonding among elementary particles, and the assumption of elastic connections is
valid only within the hypothesis of small deformations, but this is still an approxi-
mation. Furthermore, if a structure is supplied with additional types of connection,
it is apparent that the topological scheme should be carefully investigated. In this
context, the attention is focused on a new type of metamaterial, in which the inclusion
of magnetic or electric particles within the material matrix alters the nature of the
structure itself, and this produces interesting effects, reason of the growing interest
on this elastic metamaterials.
The expressions of the Coulomb forces and the dipole-dipole coupling are, respec-
tively:

FCoulomb = kq1q2
r1 − r2

‖r1 − r2‖3 (3.1)
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where k is the Coulomb’s constant k =
1

4πε0
, ε0 is the electric constant or absolute

permittivity of free space, q1 and q2 are the magnitudes of the charges and d =
‖r1 − r2‖ is the distance between the charges;

F =
3µ0

4π
m1m2

r1 − r2

‖r1 − r2‖5 (3.2)

with µ0 is the magnetic permeability of free space, m1 and m2 are the dipole momen-
tum intensities and d = ‖r1 − r2‖ is their mutual distance. It is clear that electric
and magnetic forces spread the range of interaction, involving a larger number of
elements than the elastic connections. This implies that the connectivity matrix
would keep non-null elements out of the main tridiagonal band. However, even
though wide, the range of interaction of these forces decays with the distance, as
shown in Figure (3.4), and the coupling between particles becomes weak enough to
be neglected. It is then reasonable not to include all the elements in the connectivity

Figure 3.4. Trend of Coulomb force and dipole-dipole coupling

matrix, according to the realistic range of influence, as in Figure (3.5).
Long-range interactions are always engines of unconventional wave propagation

Figure 3.5. Connectivity matrix associated to electrical and magnetic interactions

phenomena, but when they are produced through elastic connections, as in the case
of the energy sinks [30, 93, 94, 100], the posed problem is still linear. Equipping a



3.3 Intrabody and interbody forces 20

structure with electric or magnetic inclusions is synonym of introducing long-range
interactions of a nonlinear nature, which influences the governing equation of mo-
tion. Besides, their contactless feature and hence, the lack of structural constrains,
simplifies the practical generation of long-range forces. However, from a mathemat-
ical point of view, these force are rather complex to manipulate, due to the presence
of a discontinuity in their domain, as it can be seen in Figure (3.4). Since these
forces describe the link existing between two elements, equally whether they are
charges or dipoles, the discontinuity represents the natural impossibility of the two
elements to collide. This aspect justifies the choice of adopting other type of forces
to characterize long-range interactions, physically analogous to Coulomb force and
to the magnetic coupling, but mathematically more suitable. The family of power
law forces is the one that better responds to these requirements, being a perfect
compromise between the necessary physical equivalence and the mathematical
application, and in this sense it does not sound unfamiliar, since also Tarasov in [51]
and Eringen in [40] have underlined the remarkable properties of this type of forces.

3.3 Intrabody and interbody forces

Each type of interaction has its own region of applicability, defined by a typical
interaction length and depending on the strength of the force; any object within that
region is connected, whether it is matter of particles within the same body, in that
case one could talk of intra-body interactions, or different bodies, named inter-body
interactions, still they will communicate. The case of inter-body interactions can be par-
ticularly interesting if one considers that actions on one structure affects the others,
generating wave propagation phenomena. This discloses the chance to realize an
entire network of communicating systems and even of remote control. Practically,
this can be realized by the mean of magnetic inclusions within the structure of an
elastic support and the model is the one presented in Figure (3.6), analogous to
those presented in Figure (3.1).
The presence of long-range interactions, additional to the conventional elastic ones,

Figure 3.6. Interbody long-range interactions

produces a modification of the topology of a structure and hence, of its dynamic be-
haviour, defining a new paradigm in structural mechanics, traditionally associated
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to conventional and short-range interactions.

Let us consider two nonadjacent particles interacting with each other, not necessarily
belonging to the same medium, but surely at a distance smaller than the long-range
force characteristic length. The initial configuration, assumed as reference, is such
that the first particle is placed at x and the second at ξ. The mutual force is expressed
by:

F (x + u(x, t), ξ + u(ξ, t)) = − f (|r|)r (3.3)

where r = x− ξ + u(x, t)− u(ξ, t) is the distance between the two particles and
u(x, t) is the displacement in the elastic medium, as shown in Figure (3.7).

Figure 3.7. Definition of the vector r

The shape of the long-range forces must guarantee the legitimacy of the action-
reaction principle, i.e. F(r) = −F(−r). Moreover, they are modelled so to decay
with the distance, lim

|r|→∞
f (|r|)r = 0, as typical of several existing forces, namely

magneto-static, Coulomb, gravitational and molecular bond.
When the long-range interaction involves more than two points, becoming a master-
cluster or an all-to-all interaction, the contribution of the long-range forces is a
summation extended to all the interacting couples, as shown in Figure 3.8. and the

Figure 3.8. Discrete contribution of long-range forces
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force assumes the form:

F(x) = f (|r11|)r11 + f (|r12|)r12 + f (|r13|)r13 + . . . (3.4)

where rij is the distance between the particle set at x and the particle set at ξ j. If the
particle density within the medium is assumed semi-infinite, as shown in Figure 3.9,

then the contribution of these forces turns into an integral term
∫

ξ∈R3
f (|r|)rdV. The

integral represents the summation of the long-range interaction forces, exerted on
the particle originally at x, due to all the particles in the space, varying with ξ and
overcomes the ordinary concept of the short-range interactions.
If long-range forces do not involve only points within the same medium, but are

Figure 3.9. Integral contribution of long-range forces

powerful enough to extend the connection to multiple bodies, then the equation
of motion would be completed with additional integral contributions, accounting
both for intra-body and inter-body interactions. In that case, the equation of motion,
generally expressed by equation (2.14), becomes:

ρ utt(x, t)− E
2(1 + ν)

[
∇2u(x, t) +

1
1−2ν

∇ (∇ ·u(x, t))
]
+
∫

ξ∈R3
f (|r|)r dV+

+
∫

η∈R3
f (|r|)r dV = 0 (3.5)

where ξ is the coordinate associated to the intra-body forces, η is the coordinate asso-
ciated to the inter-body forces, ρ(x) is the mass density, E(x) the Young’s modulus,
ν(x) the Poisson modulus and ∇ the nabla operator. From a mathematical point
of view, these long-range forces introduce a nonlinear feature into the equation of
motion, related to their integral nature.
The convention used for f (|r|) is such that f (|r|) is negative for repulsive forces
and positive for attractive ones. To better understand this convention, let rewrite
equation (3.3) as:

F(r) = −r sign f (|r|) (3.6)

Since the equation of motion is written considering the forces exerted on the particle
at x due to the particle at ξ, according to Figure (3.7), a repulsive force F(r) implies
f (|r|) to be opposite with respect to the vector r, and vice versa for the attractive
one.
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For acoustic media with long-range interactions (the case of electrostatic approx-
imation of low frequency plasma [105]), and considering only intra-body forces,

the equation of motion can be simplified as u(x, t) +
∫

ξ∈R3
f (|r|)r dV = 0. In

general, analytic solutions are not possible. However, the linearization of the force
f (|r|)r, with respect to ε = u(x, t) − u(ξ, t) and for small deformation, permits,
together with some additional hypotheses introduced later, to investigate closed
form solutions, providing important insights into the wave propagation properties.

3.4 A linearised model

The complexity of the posed problem requires some simplifications to ensure the
achievement of analytical solutions, which are in general not possible. This section
is focused on the linearization of the long-range force F (r) with respect to ε =
u (x, t)− u (ξ, t) and for small deformations, with direct advantages regarding the
investigation of the equation of motion.
The final expression of the considered force is derived, starting from its Taylor
expansion up to the first order in terms of ε. The force is presented in the form:

F(r) = f (|r|)r (3.7)

where

r = x− ξ + ε

or for components:
f (|r|)rk

with

rk = xk − ξk + εk

The Taylor expansion of the force around εs leads to:

f (|r|)r = f (|x− ξ|) (x− ξ) +
∂

∂ε
[ f (|r|)r]|ε=0 ε (3.8)

namely:

f (|r|)rk = f (|x− ξ|) (xk − ξk) + ∑
s

∂

∂εs
[ f (|r|)rk]|ε=0 εs (3.9)

f (|r|)rk = f (|x− ξ|) (xk − ξk) + ∑
s

[
∂ f
∂εs

∣∣∣∣
ε=0

(xk − ξk) εs + f |ε=0
∂rk

∂εs

∣∣∣∣
ε=0

εs

]
(3.10)

f (|r|)rk = f (|x− ξ|) (xk − ξk)+∑
s

[
∂ f
∂|r|

∣∣∣∣
ε=0

∂|r|
∂εs

∣∣∣∣
ε=0

(xk − ξk) εs + f |ε=0
∂rk

∂εs

∣∣∣∣
ε=0

εs

]
(3.11)

Examining the terms in the square brackets aside, one obtains:

∂|r|
∂εs

∣∣∣∣
ε=0

=
∂

∂εs

[
∑

i
(xi − ξi + ε i)

2

] 1
2
∣∣∣∣∣∣
ε=0

=
1
2

2 (xs − ξs + εs)

|x− ξ + ε|

∣∣∣∣
ε=0

=
xs − ξs

|x− ξ|
(3.12)
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∂rk

∂εs

∣∣∣∣
ε=0

=
∂

∂εs
(xk − ξk + εk)

∣∣∣∣
ε=0

= δsk (3.13)

Thus, equation (3.11) becomes:

f (|r|)rk = f (|x− ξ|) (xk − ξk) + ∑
s

[
∂ f
∂|r|

∣∣∣∣
ε=0

(xs − ξs)

|x− ξ| (xk − ξk) εs + f |ε=0 δskεs

]
(3.14)

f (|r|)rk = f (|x− ξ|) (xk − ξk) + ∑
s

[
∂ f
∂|r|

∣∣∣∣
ε=0

(xs − ξs)εs

|x− ξ| (xk − ξk) + f |ε=0 εk

]
(3.15)

or in vectorial form:

f (|r|)r = f (|x− ξ|) (x− ξ) +

[
∂ f
∂|r|

∣∣∣∣
ε=0

(x− ξ) · ε
|x− ξ| (x− ξ) + f |ε=0 ε

]
(3.16)

f (|r|)r ∼
[

f (|x− ξ|) + ∂ f
∂|r|

∣∣∣∣
ε=0

(x− ξ) · ε
|x− ξ|

]
(x− ξ) + f0ε (3.17)

Hence,

f (|r|)r ∼
[

f0 +
∂ f
∂|r|

∣∣∣∣
ε=0

(x− ξ) · ε
|x− ξ|

]
(x− ξ) + f0ε (3.18)

The introduction of an appropriate choice of a second order tensor h0 allows the
second and the third term to be rewritten as follows:

∂ f
∂|r|

∣∣∣∣
ε=0

(x− ξ) · ε
|x− ξ| (x− ξ) + f0ε = h0ε + f0ε (3.19)

The component form of the first term is:

∑
k

∂ f
∂|r|

∣∣∣∣
ε=0

(xk − ξk)εk

|x− ξ| (xs − ξs) (3.20)

therefore,

∑
k

∂ f
∂|r|

∣∣∣∣
ε=0

(xk − ξk) (xs − ξs)

|x− ξ| εk (3.21)

The second order tensor h0 is, then, given by:

hsk (x− ξ) =
∂ f
∂|r|

∣∣∣∣
ε=0

(xk − ξk) (xs − ξs)

|x− ξ| (3.22)

or in tensorial form:

h0 =
∂ f
∂|r|

∣∣∣∣
ε=0

(x− ξ)⊗ (x− ξ)

|x− ξ| (3.23)

where the symbol ⊗ represents the tensor product operator.
Eventually, equation (3.17) can be written as:

f (|r|)r ∼ (x− ξ) f0 + h0ε + f0ε (3.24)

in which the subscript indicates quantities evaluated at ε = 0. The force is composed
by three terms: the first is a static force, the other two are instead dynamic forces,
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displacement dependent. Namely, the second order tensor h0 depends on the
gradient of the force with respect to the distance, while the third is due to the static
pre-stress.
The linearised integral term of the equation of motion (3.5) is:∫

ξ∈R3
[(x− ξ) f0 + h0ε + f0ε] dV (3.25)

and the final version of Navier-Cauchy integral-differential equation for a three
dimensional, continuous, unbounded media becomes:

ρwtt−
E

2(1 + ν)

[
∇2w +

1
1− 2ν

∇ (∇ ·w)

]
+ h̄0 ·w− [h0 ∗w] + f̄0w− [ f0 ∗w] = 0

(3.26)
This is a linear integral-differential equation with space-dependent coefficients
which, based on the Eringen nonlocal elasticity theory, includes at this stage only
the intra-body contribution (a more complete treating, which includes inter-body
forces as well, is presented in chapter 5, regarding the twin system). Equation (3.26),
in which ∗ indicates the convolution operation and the symbol ·̄ average over R3,
is written for the dynamic component w(x, t) of the displacement only. In general,
one should consider the whole displacement u(x, t) = v(x) + w(x, t), without
separating the two components. However, in a context in which the focus is the
wave propagation, the discussion is not about v(x). Moreover, v(x) vanishes for
those forces that respect: ∫

ξ∈R3
(x − ξ) f0 dV = 0

and only w(x, t) remains.
The presented linearization is valid only under specific conditions and, in particular,
for a one-dimensional system the appropriate version of the equation of motion (3.5)

is admissible as long as |ε| � |x− ξ|. This means
|ε|
|x− ξ| =

|w(x, t)− w(ξ, t)|
|x− ξ| � 1,

which implies that the strain must be small, at least of order 10−1. To express this
condition in terms of characteristic interaction length, let assume the displacement
of a travelling wave perturbation as w(x, t) = w0ej(kx−ωt). The strain is given by
∂w
∂x

= jkw0ej(kx−ωt), and, for the linearization to be valid, it must be in modulus

much smaller than unity, thus |w0k| � 1. Finally, for K = βk the nondimensional
wavenumber, where β is the typical long-range interaction length, the last relation

becomes
∣∣∣∣w0K

β

∣∣∣∣� 1 and K � β

w0
.

This means that, once the region of investigation is chosen in terms of K, the
amplitude of vibration w0 must be compared with the typical interaction length β
for the linearization to be guaranteed.
As final consideration, it must be noticed that equation (3.26) can provide analytical
solutions for particular choices of the function f (|r|).
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3.5 Final remarks

Long-range interactions crash the concept of conventional dynamics and go beyond
a local, short range connectivity, where the communication pattern exists only
among close neighbour particles. Regardless their nature, long-range connections
introduce nonlinear properties in the system, whose dynamics is unavoidably
influenced. It is shown how the presence of a convolution term in the displacement
field equation, according to Eringen’s theory, is representative of their integral
nature and the mathematical model is hence ruled by integral-differential equations.
The present chapter reports a wide spectrum analysis of the long-range interactions
in terms of their nature, of their physical interpretation, of their range of applicability
and of the complexity they inevitably introduce both in the mathematical model
and in the dynamic response.
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Chapter 4

Analytical solutions for the 1D
linear problem

The introduced mathematical model is based on Navier-Cauchy equations, char-
acterised by integral-differential terms and nonlinear properties. To better inspect
the effects of the new long-range interactions on the propagation behaviour, the
simpler one-dimensional case will be examined.
In the following section, remarkable kernels for the long-range interactions, i.e.
single contribution of long-range forces and a Gaussian-like and Laplace-like forces,
are examined, since they disclose analytical solutions to the equation (3.26).

4.1 Linearised integral-differential equation for long-range
metamaterials

Equation (3.26) defines the dynamic behaviour of an elastic metamaterials in which
long-range interactions change the topology of the connections and, hence, the
dynamic response of the system. However, given the complexity of the problem,
the investigation of the propagating properties requires some simplifications. For
this reason, the one-dimensional version of equation (3.26) is here considered.
The aim is to obtain a shape of the equation (3.26) consistent with Eringen formu-
lation for nonlocal elasticity in 1D [41], even though Eringen assumption is based
on the constitutive laws and what it is sought here is a relation with the interaction
forces instead:

ρ
∂2w
∂t2 − E

∂2w
∂x2 − F(x) ∗ εx = 0 (4.1)

where εx is the strain along the x axis. This can be achieved through special kernels
of the function F(x), such that:

F(x) ∗ εx = F(x) ∗ ∂w(x)
∂x

= F(x) ∗ w′x = F′(x) ∗ wx =
∂F(x)

∂x
∗ wx = g(x) ∗ w(x)

(4.2)
through which the equation of motion takes the form:

ρ
∂2w
∂t2 − E

∂2w
∂x2 − g(x) ∗ w(x) = 0 (4.3)
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The advantage of such formulation stands in the associated dispersion relationship.
Indeed, assuming

w(x, t) =
∫∫ +∞

−∞
W(k, ω)ej(kx−ωt)dk dω (4.4)

or taking the Fourier transform F{·} of (4.3) with respect to x and t, the resulting
dispersion relationship is:

ρω2 − Ek2 + G(k) = 0 (4.5)

where G(k) = F{g(x)}. It is apparent that the analysis of the propagating charac-
teristics depends on the shape of the function G(k) and an appropriate choice of the
function F(x) would unveils analytical solutions.
The one-dimensional version of the Navier-Cauchy equation of motion (3.26) is:

ρ
∂2w
∂t2 − E

∂2w
∂x2 +

∫ +∞

−∞
F [x, ξ, w (x, t) , w (ξ, t)] dξ = 0 (4.6)

or in convolution terms:

ρ
∂2w
∂t2 − E

∂2w
∂x2 + (h0 ∗ 1) · w− [h0 ∗ (w)] + ( f0 ∗ 1)w− [ f0 ∗ (w)] = 0 (4.7)

Since the terms h0 ∗ 1 and f0 ∗ 1 can be interpreted as averages of the quantities h0
and f0 over R3, i.e. h̄0 and f̄0, respectively, equation (4.7) can be rewritten as:

ρ
∂2w
∂t2 − E

∂2w
∂x2 + h̄0 · w− h0 ∗ (w) + f̄0w− f0 ∗ (w) = 0 (4.8)

The presented equation does not produce analytical solutions. For this reason,
some peculiar cases of long-range interactions are analysed and a more thorough
investigation is carried on for Gauss-like and Laplace-like forces, eventually chosen
to model the long-range interactions for their several advantages.

4.2 Special kernel for the long-range interactions

For special choices of the function f (|r|)r, equation (3.26) can exhibit analytical
solutions. The advantage of a type of interaction able to provide analytical solutions
of the equation of motion lies in the chance of a thorough investigation of the prop-
agating behaviour, disclosing the main properties responsible of the modifications
in the dynamic response.
In this section it is shown the existence of different families of long-range inter-
actions for which closed form analytical solutions are possible. The long-range
prototypes here discussed can be divided mainly in two groups:

• single distribution of long-range interactions: springs connecting two material
points;

• continuous long-range interactions: the remarkable case of a Guass-like and
Laplace-like forces and their variants.
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4.2.1 Single distribution of long-range interactions

Discrete long-range interactions are probably elemental examples, but they are a
useful tool to examine common properties of long-range interactions. Here, two
cases are examined: the case of a single spring connecting two material elements
and the case of two symmetric springs.
Let us analyse a single spring first, shown in Figure 4.1.
The equation of motion related to this system is:

Figure 4.1. Long-range as a single spring

EA
∂2w(x, t)

∂x2 − ρA
∂2w(x, t)

∂t2 + χ [w(x)− w(x− D)] = 0 (4.9)

Neglecting the effect of short-range interactions, if the displacement is assumed
to be in the form w(x, t) = w0ej(kx−ωt), for a complex wavenumber such that
k = kR + jk I , then (see Appendix A for the complete calculations) the resulting
dispersion relationship is:

ρAω2 − χ + χ [cos kRD− j sin kRD] ekI D = 0 (4.10)

Dividing real and imaginary part of the equation, the following system is obtained:{
ρAω2 − χ + χ cos kRDekI D = 0

−χj sin kRDekI D = 0
(4.11)

This implies the conditions on the wavenumbers are:
k(n)R =

πn
D

k(n)I =
1
D

ln
1− ω2

ω2
n

(−1)n

(4.12)

where ω2
n =

ρA
D

is the natural frequency of the single oscillator. Analysing the

solution as k = k(ω), the conditions on the wavenumber unveil the existence of an
infinite set of wavenumbers for any given value of the frequency ω.
The case of a double spring, reported in Figure 4.2, can be straightforwardly ob-
tained by following the same approach as for the single spring.
For such a system, the equation of motion is:

EA
∂2w(x, t)

∂x2 − ρA
∂2w(x, t)

∂t2 + χ [w(x)− w(x− D)] + χ [w(x + D)− w(x)] = 0
(4.13)
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Figure 4.2. Long-range as a double spring

Applying the same procedure, hence neglecting the short-range effect, assuming
the displacement once again of the form w(x, t) = w0ej(kx−ωt) and for complex
wavenumber k = kR + jk I , the dispersion relationship becomes:

ρAω2 + χ [−2 cos kRD sinh k I D + j2 sin kRD cosh k I D] = 0 (4.14)

Separation of real and imaginary part of the dispersion relationship leads to:{
ρAω2 − 2χ cos kRD sinh k I D = 0

sin kRD cosh k I D = 0
(4.15)

The conditions on the wavenumber, trivial to find, are:
k(n)R =

πn
D

k(n)I =
1
D

arcsinh
ρAω2

2χ

1
(−1)n

(4.16)

As for the single spring, even in this case the existence of an infinite number of
values of the wavenumber for any single frequency is demonstrated.

4.2.2 Continuous long-range interactions

To better understand the physics of waves behind (4.8), a Gaussian-like force and a
Laplace-like force are considered, as they unveil some important propagation char-
acteristics related to long-range interaction. These forces present three advantages:
(i) they guarantee the action-reaction principle holds, given their antisymmetric
behaviour with respect to their dependence on the distance r, (ii) they vanish for
large x, a typical property of some long-range forces met in physics and (iii) they
admit an analytical known Fourier transform G(k). Besides, for power-like forces
the average terms h̄0 and f̄0 vanish when integrated over the domain R3. This
implies a strong simplification of the equation of motion, which becomes suitable
for an analytical investigation.

4.2.2.1 Gauss-like force

The considered Gaussian-like form is:

F(r) = µre−
(

r
β

)2

(4.17)



4.2 Special kernel for the long-range interactions 31

where µ controls the intensity of the force, β is the characteristic interaction length
and r = x− ξ + w (x, t)− w (ξ, t). While β is always positive, the sign of µ rules
the attractive and repulsive property of the force, and according to the convention
stipulated in section 3.3, positive µ represents attractive forces and negative µ
indicates repulsive ones. This force, whose shape is according to equation (3.7),
satisfies two physical requirements: F(r) = −F(−r) and lim

r→∞
F(r) = 0. The trend

of the Gauss-like force is shown in Figure 4.3.
To proceed with the analytical study of the dispersion relationship, it is necessary

Figure 4.3. Gauss-like force

to linearise the force about ε = w (x)−w (ξ) = 0, as it has been done for the general
case:

F(x, ξ) ≈ µ(x− ξ)e−
(

x−ξ
β

)2

+ µ

[
1− 2

(
x− ξ

β

)2
]

e−
(

x−ξ
β

)2

w(x)

− µ

[
1− 2

(
x− ξ

β

)2
]

e−
(

x−ξ
β

)2

w(ξ)

(4.18)

The first two terms of (4.18), shown in Figure 4.4, vanish when integrated. The
third one, according to the used formulation, can be rewritten as:

− µ

[
1− 2

(
x− ξ

β

)2
]

e−
(

x−ξ
β

)2

w(ξ) = [ f0 + h0] (x− ξ)w (ξ) = g (x− ξ)w (ξ)

(4.19)
in this way, equation (4.6) becomes:

ρ
∂2w
∂t2 − E

∂2w
∂x2 − µ

∫ +∞

−∞

(
1− 2

β2 ξ2
)

e−
(

ξ
β

)2

w(x− ξ)dξ = 0 (4.20)

or in convolution notation:

ρ
∂2w
∂t2 − E

∂2w
∂x2 − g(x) ∗ w(x) = 0 (4.21)
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Figure 4.4. Vanishing terms of the approximated linear force

where g(x) =
∂F(r)

∂r

∣∣∣∣
r=x

.

4.2.2.2 Laplace-like force

In this case, F is based on the Laplace distribution:

F(r) = µre−
|r|
β (4.22)

shown in Figure 4.5.
For this force, as for the Gauss-like distribution, F(r) = −F(−r) and lim

r→∞
F(r) = 0

hold.
The linearised force is:

F(x, ξ) ≈ µ(x− ξ)e−
|x−ξ|

β + µ

[
1− |x− ξ|

β

]
e−
|x−ξ|

β w(x)

−µ

[
1− |x− ξ|

β

]
e−
|x−ξ|

β w(ξ)

(4.23)

Figure 4.6 shows as, also in this case, the first two terms of the linearization vanish
when integrated over the domain.
The equation of motion becomes:

ρ
∂2w
∂t2 − E

∂2w
∂x2 − µ

∫ +∞

−∞

(
1− |ξ|

β

)
e−
|ξ|
β w(x− ξ)dξ = 0 (4.24)

which can be written in a convolution form analogue to equation (4.21).
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Figure 4.5. Laplace-like force

Figure 4.6. Vanishing terms of the approximated linear force

4.2.2.3 Variants of power-like forces

Since the problem is treated as linear, it is clear that also appropriate variants
of the mentioned power-like forces might produce the same relevant results. As
"appropriate variants" one could refer to multiple peaks power-like forces, as shown
in Figure 4.7, which provides an example for a double-peak Gauss-like force, but
analogous considerations hold for the Laplace distribution as well.
A continuous equation of motion implies that the relation imposed by it is valid at

any instant for any portion of the structure. Considering for instance the Gauss-like
force, it means that any particle is source of this interaction. Therefore, the physical
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Figure 4.7. Double peak Gauss-like force

meaning of multiple-peak type of force should not be confused, in the sense that
each peak is not associated to each particle, but it is only a way to further extend the
range of interaction; each multiple peak is originated by any elementary component
of the structure.
The expression of the double-peak Gauss-like force is:

F(r) = µre−
(

r
β

)2

+ µ (r− a) e−
(
(r−a)

β

)2

(4.25)

It is trivial to obtain the equation of motion, which takes the form:

ρ
∂2w
∂t2 − E

∂2w
∂x2 − µ

∫ +∞

−∞

(
1− 2

β2 ξ2
)

e−
(

ξ
β

)2

w(x− ξ)dξ−

µ
∫ +∞

−∞

(
1− 2

β2 (ξ − a)2
)

e−
(

ξ−a
β

)2

w(x− ξ)dξ = 0
(4.26)

and eventually becomes:

ρ
∂2w
∂t2 − E

∂2w
∂x2 − g(x) ∗ w(x)− g(x− a) ∗ w(x) = 0 (4.27)

where the second convolution term has the function to empower the contribution
of the long-range interactions. The linearity of the problem allows to extend the
number of terms till the limit of an infinite series, with no consequences on the
resolution of the problem, which remains totally analogous to the simpler case of
a single peak force. Moreover, it should be noticed that the shape of the function,
through the parameters β and µ, not necessarily has to be identical between the two
convolution terms, but it can be adequately adjusted.
This completes the analysis of the families of kernels suitable for the present investi-
gation.
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4.3 Dispersion equations and wave propagation problem

Once the equation of motion is obtained (equation (4.21)), through the Fourier
Transform or imposing a specific shape of the displacement (equation (4.4)), the
dispersion relationship is trivial to calculate for a given G(k) and it is presented in
a form as in equation (4.5). A dispersion relationship, by definition, is a law that
links frequencies and wavenumbers, and it can be analysed both considering the
wavenumber k as a function of the frequency ω or vice versa as ω = ω(k).
For the Gauss-like force, G(k) assumes the form:

G(k) =
µβ3

2
√

2
k2e−

β2k2
4 (4.28)

and its associated relationship is (see Appendix B for the mathematical procedure):

Ω2 + K2
(

χe−
K2
4 − 1

)
= 0 (4.29)

where Ω =

√
ρ

E
βω, K = βk and χ =

µβ3

2
√

2E
are nondimensional parameters. χ can

be rewritten as χ =
E∗

E
and hence interpreted as ratio between the elastic modulus

provided by the long-range forces and the conventional Young’s modulus and, in
these terms, it provides a measure of the intensity of the long-range interactions.
Moreover, χ has the same role of µ, since whether the force is attractive or repulsive
is ruled by the sign of χ; indeed, attraction occurs for χ > 0 and repulsion χ < 0.
In the same way, for the Laplace-like force

G(k) =
2
√

2
π β3k2µ

(1 + β2k2)2 (4.30)

and the associated dispersion relationship is:

Ω2 + K2

(
8χ

√
π (K2 + 1)2 − 1

)
= 0 (4.31)

The analysis of the wavenumer as function of the frequency k = k(ω) returns all
its possible values, in general complex and the equation admits a set of numerable
solutions, which can be finite or infinite, depending on the nature of G(k).
Due to the trascendent form of the dispersion relationships (equations (4.12), (4.16),
(4.29) and (4.31)), to each value of the frequency, the associated wavenumber as-
sumes an infinite set of numerable wavenumbers. If one interprets the roots as a
wave (propagating or evanescent), this implies that, for each excitation frequency,
the disperison relationship predicts a waveguide response composed by the super-
position of a set of infinite wavenumbers. Hence, even a single excitation frequency
produces a complex wave train that is dispersive. In other words, while in a stan-
dard waveguide (closest neighbour interaction) we expect a sine-shaped waveform
translating towards the x axis, when a single-frequency is acting, in the present
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long-range system, we expect to see that a single-frequency excitation generates a
superposition of different sine-shaped waveforms, translating at different phase
speeds. In this way, each wavenumber defines a propagating shape, physically differ-
ent with respect to the classical modes arising in finite size systems. Therefore, a
long-range system produces, at each single-frequency, a response that is the super-
position of an infinite number of propagation shapes.
This is unusual for standard one-dimensional propagating phenomena, where for
partial differential equations, in general, one obtains a polynomial form of the dis-
persion relationship, which admits at most a number of different roots equal to the
degree of the polynomial; in particular, the higher the derivation order, the larger
is the set of numerable values the wavenumber can assume for each frequency.
Moreover, the case of an infinite set of wavenumbers commonly refers to finite-size
systems, since complex wavenumers are connected to localized and vanishing phe-
nomena and to the boundary conditions.
The outlined physical phenomenon is new and it has an analogy only in two- or
three-dimensional systems, which are associated to higher-order derivatives, but
not yet found in structures modelled by one-dimensional equations. A system has
a dimension which can assume a different meaning whether it is discussed by a
mathematical or a physical point of view. A mathematically multi-dimensional
system is a system that, even tough physically one-dimensional, has multi-variable
equations of motion. An example is the case of strip-like structures that are prop-
erly two-dimensional systems, with a finite length along one axis and an infinite
length along the other. Precisely, along the finite size axis, transverse modes take
place, while along the infinite size direction, a propagating shape travels, related
to the excited transverse steady mode. Examples of this behaviour are met in
optical/electromagnetic waveguides and are known as TE, TM and TEM (trans-
verse electromagnetic modes, or purely electric or magnetic modes [106]), or in
mechanical strip-like bending plates [107–109], or in laser theory, but needing 2D
or 3D systems . A further example is the Timoshenko beam theory [110], which
is physically one-dimensional, but mathematically multi-dimensional, since wave
propagation involves not only the longitudinal direction. This aspect emerges from
the equation of motion for a linear, elastic, isotropic, homogeneous beam with a
constant cross-section:

EI
∂4w(x, t)

∂x4 + m
∂2w(x, t)

∂t2 −
(

J +
EIm
kAG

)
∂4w(x, t)

∂x2∂t2 +
mJ

kAG
∂4w(x, t)

∂t4 =

q(x, t) +
J

kAG
∂2q(x, t)

∂t2 − EI
kAG

∂2q(x, t)
∂x2 (4.32)

where A is the cross-section area, G is the shear modulus, I is the second moment
of area, k is the Timoshenko shear coefficient, q is the external load, J = ρI, m = ρA.
The associated dispersion relationship is given by:

c2
Lc2

SkG (1− jωµ)2 k4−
(
cL + kGc2

S
)
(1− jωµ) k2ω2−ω2

(
kGc2

S
)

rG
(1− jωµ) +ω4 = 0

(4.33)
where cL is the longitudinal wave velocity, cS the shear wave velocity, rG is the

radius of gyration rG =

√
I
A

, kG the Timoshenko shear coefficient. This formulation
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is based on two independent parameters: Ω =
ωrG

cS
and R =

G
E

=
c2

S

c2
L

.

A last representative example is the double curvature shells, mathematically and
physically multi-dimensional. The equation of equilibrium for a shell element is
provided by [111]:

K∇4w = pz + Eδ

[
kx

∂u
∂x

+ kxy

(
∂u
∂y

+
∂u
∂y

)
+ ky

∂v
∂y

]
− Eδ

(
k2

x + 2kxy + k2
y

)
w

(4.34)

where ∇2 =
∂2

∂x2 +
∂2

∂y2 , pz is the load per unit area of the middle surface in the

direction of the normal deformation load, δ is the shell thickness, K =
Eδ3

12(1− ν2)
is

flexural rigidity of the shell, ν Poisson’s ratio, E elastic modulus, kx =
1
rx

=
∂2z
∂x2 ,

ky =
1
ry

=
∂2z
∂y2 and kxy =

1
rxy

=
∂2z

∂x∂y
are the curvatures of the middle surface in

the directions x and y, respectively.
The expression for the displacement associated to each propagating shape of wavenum-
ber ki(ω) is:

wi(x, t) = ϕi(x)e−ωt =
∫ +∞

−∞
Φ(ki)e(kix−ωt)dki =

∫ +∞

−∞
Φ(ki(ω))e(ki(ω)x−ωt)dki(ω)

(4.35)
where Φ(ki) = F (ϕi(x)) and the integral form assumes the meaning of the limit
for derivation order n→ ∞.
The upper plot of Figure 4.8 shows the real part of the first twenty wavenumbers re-
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Figure 4.8. Propagation modes wavenumbers for the Gaussian-like force.

lated to the propagation modes, together with the purely real standard propagation
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wavenumber, related to the standard wave (sloping curve). The lower plot displays
imaginary parts and the lowest curve represents a purely imaginary wavenumber.
Therefore, the general solution to the equation of motion is:

w(x, t) =
+∞

∑
i=1

∫ +∞

−∞
Φ(ki)e(kix−ωt)dki =

+∞

∑
i=1

∫ +∞

−∞

[
Φ+(ki)e(kix−ωt) + Φ−(ki)e(kix−ωt)

]
dω

(4.36)
This expression matches the double nature of the solution, as a mixing of propa-
gation and mode response, through the presence of an integral (normally related
to the response representation for infinite-size systems) and summation (normally
related to the modal response in finite-size systems).
The arising of 1D propagating shape is a remarkable feature of the long-range struc-
ture here investigated and this property represents an additional common point
with Tarasov theory [54], even though it does not analyse the dynamic behaviour
of the investigated systems. Indeed, considering equation (2.21) only the terms
comparable with the equation of motion (3.5), for clarity here reported again

ρ utt(x, t) +
E

2(1 + ν)

[
∇2u(x, t)− 1

1−2ν
∇ (∇ ·u(x, t))

]
+
∫

ξ∈R3
f (|r|)r dV = 0

the trascendent characteristic of the associated dispersion relationship emerges:

ω2 − 2
+∞

∑
n=1

cos (kn∆x)
n1+α

= 0 (4.37)

This implies that, even in this case, a set of infinite numerable values of the
wavenumber is associated to any single value of the frequency.
However, even though interesting, the present work investigates infinite-size sys-
tems, in which only the propagating component of a wave deserves attention.
For this reason, it makes more sense to reinterprete the dispersion relationship in
terms of ω(k) imposing the constrain of real wavenumber and then evaluating the
frequency. The revisited forms of the dispersion relationship are:

Ω = ±K
√

1− χe−
K2
4 (4.38)

for the Gauss-like force, and

Ω = ±K

√
1− 8χ
√

π(K2 + 1)2 (4.39)

for the Laplace-like.
Equations (4.38) and (4.39) can exhibit imaginary values for specific regions of
wavenumbers and values of χ. This means that the waveguide might become
unstable with unbounded amplitudes, when long-range forces present a negative
stiffness larger than the classical elastic one.
The arising propagating phenomena are discussed in the next section, but for the
Gauss-like force only, since the Laplace distribution produces very comparable
results.
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4.4 Propagation characteristics

The inquiry of the propagation characteristics can be reduced to the analysis of
dispersion curve, group and phase velocity in terms of the parameter χ only, since
it is the only one affecting the dispersion relationship, as in equation (4.38). For
this reason, dispersion relationship, phase and group velocities are discussed for
different ranges of χ, namely i) χ� −1, ii) −1 < χ < 1 and iii) χ� 1.
For the Gauss-like interaction, the expressions of phase and group velocity are:

Cϕ =
1
c

ω

k
=

Ω
K

=

√
1− χe−

K2
4 (4.40)

and

Cg =
1
c

∂ω

∂k
=

dΩ
dK

=
1 + χe−

K2
4

(
K2

4 − 1
)

√
1− χe−

K2
4

(4.41)

respectively, where c =

√
E
ρ

is the speed of sound.

Figure 4.9 shows the trend of the nondimensional dispersion relationship for differ-
ent values of χ smaller than −1, compared to the d’Alembert case, represented by
the red dotted line. For χ� −1, the already mentioned "surprising" effects start to

Figure 4.9. Dispersion relationships for different χ� −1

occur. The group velocity, as derivative of the dispersion relationship, can be easily
deduced by Figure 4.9. Indeed, the shape of the dispersion curve, unconventional
by itself, displays the existence of two regions: a branch with a positive slope,
which means positive group velocity, and a branch characterised by a negative
slope, hence negative group velocity. While the positive group velocity promotes
a standard wave propagation within the system, the negative group velocity is
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rather uncommon and this is a first meaningful effect introduced by the long-range
interactions. For higher values of the nondimensional wavenumber, all curves
converge towards the conventional d’Alembert case. This variation in the trend
of curves implies the existence of two points for each curve in which the tangent
is horizontal: a maximum and a minimum at which the group velocity vanishes.
This aspect discloses the existence of conditions for which wave-stopping occurs.
Wave-stopping is a phenomenon proper of wave envelopes, being associated to the
group velocity. This means that propagation is prevented to the envelope, which
stands still, while the single wave components continue to travel along the waveg-
uide. The region defined by the pairs of these points is the one characterised by the
negative group velocity and is delimited on one side by the so-called wave stopping
line, geometric locus of points corresponding to null group velocity.
It is interesting to notice that the trend of the dispersion curve recalls the one ex-
perimentally obtained by Eringen [41], when investigating the motion of phonons
within aluminum, and depicted in Figure 4.10. As previously mentioned, the simi-
larity cannot be associated to a closeness of the proposed models, but it underlines
the key role played by nonlocalities when dealing with wave propagation phe-
nomenon.
To better inspect these aspects the plots of the group velocity and phase velocity

Figure 4.10. Experimental dispersion curve

are reported in Figure 4.11 and Figure 4.12, respectively.
In Figure 4.11, where the group velocity is plotted versus the wavenumber, one can

recognise the same effects discussed in the dispersion curve analysis: the existence
of wavenumbers pair for which the group velocity vanishes and the presence of
a bandwidth of negative values of the group velocity. Moreover, the higher is the
values of χ, the larger is the wavenumber bandwidth in which the system performs
negative group velocity propagation.
Compared to the conventional waveguide, the phase velocity at low frequencies
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Figure 4.11. Group velocity for different values of χ� −1

Figure 4.12. Phase velocity for different values of χ� −1

assumes values considerably higher, but it is a trend that disappears for increasing
values of the frequency, when it tends to the d’Alembert case, as it has happened
for both dispersion curve and group velocity.

Since χ provides a measure of the strength of the long-range interactions compared
to the classical elastic ones, a range of χ between −1 and 1 is associated to long-
range forces of the same order of the short-ranges. If the long-range effect becomes
less predominant, one can expect a global behaviour to be much akin to the standard
d’Alembert waveguide and converging to it the more χ tends to zero, as one can
infer from Figure 4.13.
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Wave-stopping effects do not occur, and the group velocity is always positive, as

Figure 4.13. Dispersion relationships for different −1 < χ < 1

confirmed by Figure 4.13.

Figure 4.14. Group velocity for different values of −1 < χ < 1

Eventually, the range of χ� 1 is considered. For low values of the wavenumber,
the dispersion relationship produces purely imaginary solutions only. This implies
the amplitude of waves becomes unbounded and propagation is prevented. In a
finite size system, imaginary (or in general complex) solutions are usually related to
local effects and produce near field waves, appearing either at the boundaries of the
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system, when obstacles occur, or where punctual external forces are applied. This
type of waves exponentially vanishes within a narrow region around their source.
In an infinite size system, since no boundary conditions would be meaningful and
given the fact that no external forces are here considered, this type of waves is surely
vanishing in one direction, but no reason of confinement occurs in the opposite
one, leading to unbounded amplitudes and hence instability. The unstable region
appears for the dispersion curves (Figure 4.15), but also for group (Figure 4.16) and
phase (Figure 4.17) velocities, and it can be noticed how the higher is the value of
the parameter χ, the larger is the unstable region.

Outside the unstable region, solutions turn to real values and propagation occurs.

Figure 4.15. Dispersion relationships for different χ� 1

In a very narrow wavenumber bandwidth, all the curves pass from a very high slope
to converge rapidly to the D’Alembert curve, so to a standard propagation regime.
In this badnwidth both group and phase velocities are much larger than the wave
speed associated to the conventional propagation. Especially the group velocity
tends to infinite, meaning the birth of hypersonic/superluminal propagation. Even
tough an infinite velocity might sound impossible, due to the the theory of relativity,
it has to be remembered that the group velocity is the velocity neither of a particle
nor of an information. The speed of light in vacuum is an insuperable limit for a
signal or a particle speed: this implies that what just found does not object Einstein’s
theory, which only imposes an upper bound to the speed of any moving object.
The concept of superluminal propagation, even if it could sound as a pure theoretical
digression, it has already been investigated. In [112], Sommerfeld and Brillouin
discuss how a wave envelope propagating with a group velocity larger than the
speed of light can occur in dissipative media and absorptive materials. While
investigating anomalous dispersion for mechanical oscillators, they theoretically
show that inside an absorption band, the dispersion is anomalous, and the result
is a group velocity that can become faster than c, the vacuum speed of light, or
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Figure 4.16. Group velocity for different values of χ� 1

Figure 4.17. Phase velocity for different values of χ� 1

even negative. The contradiction between the limitation from relativity and a
superluminal group velocity is solved, as casuality only requires the speed of a
signal carried by light to be limited by c, while the light pulse can travel at the group
velocity. However, in our case, the long-range interactions are modelled as elastic
connections and the system is thus conservative: superluminality is only related
to the elastic topology. In [113–115], the authors experimentally demonstrate that
the group velocity exceeding the speed of light is possible and in some cases might
also become negative for free-loss systems: "We suggest here an operational definition
of the signal velocity and apply it to the recently observed superluminal propagation of a
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light pulse in a gain medium. This experiment showed not only that a superluminal group
velocity is possible without any significant pulse distortion, but also demonstrated that
this can occur with no appreciable absorption or amplification." [115]. Kuzmich et Al.
analyse a gain-assisted linear anomalous dispersion to experimentally demonstrate
that light propagation in atomic caesium gas can achieve superluminal regimes.
Measuring the group velocity they find out that "a light pulse propagating through the
atomic vapour cell appears at the exit side so much earlier than if it had propagated the same
distance in a vacuum that the peak of the pulse appears to leave the cell before entering it.
The observed superluminal light pulse propagation is not at odds with causality, being a
direct consequence of classical interference between its different frequency components in an
anomalous dispersion region. [113].
However, in order to complete the investigation including the dissipation effect, a
viscous contribution is introduced in the equation of motion 4.21.

ρ
∂2w
∂t2 + γ

∂w
∂t
− E

∂2w
∂x2 − g(x) ∗ w(x) = 0 (4.42)

The approach is the same: given the dispersion relationship, the results are dis-
cussed in terms of group velocity.
The nondimensional relationship is (see Appendix C for the mathematical proce-
dure):

Ω = −
Γ
2
±

√
Q2 −

(
Γ
2

)2

(4.43)

where Γ =
γβ√

ρE
, Q2 = K2[1− χφ(K)] and φ(K) = e−

K2
4 for the Gaussian case.

The group velocity is in general complex:

Cg =
∂Ω
∂K

= ± 1√
1−

(
Γ

2Q

)2

∂Q
∂K

= ± 1√
1−

(
Γ

2Q

)2
CgΓ=0 (4.44)

where CgΓ=0 is the group velocity considered in the previous sections, i.e. in the
absence of dissipation and in the presence of long-range interactions. It is interesting
to notice that the expression of the group velocity appears in a factorised form and
the contribution of long-range and dissipation are distinct and non combined.
Let us analyse the two extreme cases. In the absence of dissipation , Γ = 0, and
Cg = CgΓ=0 is the group velocity analysed in this section. In the absence of long-

range interactions, Q = K, and
∂Q
∂K

= 1. The group velocity keeps only the

dissipative contribution: Cg = ± 1√
1−

(
Γ

2Q

)2
and a discussion of that Γ can state

the presence of superluminal effects, i.e. Cg > 1 (as in [112]), which happens for√
1−

(
Γ

2Q

)2

< 1 and.

√
1−

(
Γ

2Q

)2

real.

The merging of both effects, if they are simultaneously present, must be discussed
in terms of both the parameters χ and Γ, since the amplitude of the real part of
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Cg and whether it is smaller or larger than 1 depends on the choices of the ruling
parameters.
In a nutshell, one can assure the rising of superluminal propagation when both
long-range and dissipation occur; however, these two effects, depending on their
intensity and on the frequency range, can be productively combined or they can
interfere with each other.

A last consideration concerns the linearization procedure. In section 3.4, it has been
underlined how the linearization holds under specific conditions: "once the region of
investigation is chosen in terms of K, the amplitude of vibration w0 must be compared with
the typical interaction length β for the linearization to be guaranteed.". In this section, it
has been shown that the most remarkable phenomena related to wave propagation,
as wave-stopping and superluminality, emerge for K of order∼ 1, whilst for K → ∞,
the propagation characteristic collapses into the standard D’Alembert equation.
This evidences that all these effects are valid and the linearisation approximation
holds as long as the vibration amplitude is much smaller than the characteristic
long-interaction length β: w0 � β.

4.4.1 Notes on the modal density

The modal density is defined as the number of natural frequencies, hence of modes,

within a defined frequency bandwidth ρn(ω) =
N
(
ω f
)
− N (ωi)(

ω f − Nωi
) . Classically the

modal density is a function that, being a "counter" of modes, is intrinsically related
to finite-size systems. For homogeneous, simple systems there are expressions that
provide the modal density in terms of the system parameters. For instance, the case
of a longitudinal beam, simply supported, whose modes are equally distributed
over the frequency domain, has a constant modal density distribution. Its expres-

sion, depending on the specific boundary conditions, is: ρn =
nπ

L

√
E
ρ

, where n is a

positive integer n = 1, 2, 3, ..., L is the length of the beam, c =
√

E
ρ is the speed of

sound, E is the Young’s modulus and ρ is the density. However, this case, together
with the cases of a bending beam, bending plate, are ideal representation of real
structures as no dissipation is considered. The effect of dissipation induces, towards
higher frequency ranges, a thickening of the mode distribution and a flattening of
the modal density. This is particularly relevant for waves travelling at high frequen-
cies: while a perturbation travelling at low frequency can be strong enough to reach
the boundaries and being reflected, so to induce the inception of a mode shape, at
high frequencies the damping considerably reduces the strength of a perturbation,
which might vanish before reaching the edges of the system. In other word, at high
frequencies, the dynamic behaviour of a finite beam can be considered as the one
of an infinite beam, for which modes and natural frequencies loose their meaning,
given the actual lack of wave reflections. It is exactly in this limit condition, for the
length L → ∞, that the concept of modal density might still be used to disclose
other aspects of the dynamic response of a structure. The modal density, indeed,
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can be obtained from the equation of motion, even when no boundary conditions
can be defined. The result is a function that depends upon the frequency only.
The duality between finite and infinite systems, thus between discrete and continu-
ous formulations, is a long-standing discussion, which involves the modal density
as well.
From a physical point of view, there are many cases in which the modal density is
implied for non-finite structures or when the boundary conditions are not relevant.
Statistical Energy Analysis (SEA) is an example of how the concept of modal density
is not necessarily addressed to strict boundary conditions, which are the mean to
define a finite structure. Indeed, SEA replaces the real boundary conditions with
special ones, usually easier to handle and for which the shape of the modes is
known. This is allowed because, while at low frequencies the modes present a
sensibly different shape, at high frequencies they become similar, and the small
difference occurring at the boundaries is negligible; the real conditions are less
influential and the constraints loose their particular meaning.
In finite structures, wavenumbers are distinct, and so are the modes. The wave
forms are associated to the set of numerable wavenumbers kn =

nπ

L
and expressed

by:

φn = sin
nπx

L
(4.45)

where n is a positive integer. If L→ ∞, the distribution of wavenumbers, discrete
at first, becomes continuous, n is not integer any longer and kn becomes a real
number. However, the definition of a set of modes is still possible. Indeed, for a
chosen frequency band ∆ω, there always exists an associated wavenumber band
∆k, as shown in Figure 4.18, since ∆n can be translated in ∆k = ∆k(n). Thus, the
relation between the frequency bandwidth and the wavenumber bandwidth defines
the modal density. For L → ∞, ∆k → 0, but also, and even better, ∆k tends to its

Figure 4.18. Modal density function

infinitesimal value dk. The curve representing the modal density in Figure 4.18,
polygonal chain for a discrete set of pairs (ωi, ki), becomes a continuous curve

related to infinite size systems. In both cases,
∆ω

∆k
= ρn 6= ρn(L) remains. The

modal density is an invariant function with respect to the dimension L (unless a
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mode normalization is applied) and, for L → ∞, it tends to infinite, but globally,
not punctually. This means that it keeps its shape and, in this small difference, the
modal density can still be meaningful, also for unbounded media.
A certain correlation between the discrete and the continuous formulation can
be demonstrated also from a mathematical point of view. Omitting the details, a
structural displacement can be expressed in modal form:

φ = sin
kπn

L
sin ωnt (4.46)

or in wave form:
sin (knx−ωnt) (4.47)

The presence of a sinusoidal term in the wave form guarantees the existence of
modes, if one accepts to interpret them as a sin knx form.

An aspect relevant for the present analysis stands in the fact that
dN
dΩ

∝
1

Cg
, which

implies that the results obtained for the group velocity can be discussed also in
terms of modal density. This relation can be proven comparing the expressions of
the group velocity and of the modal density. The group velocity is rather straight-

forward, since it is defined based on the envelope speed: Cg =
dK
dΩ

. Regarding the
modal density, it has been already mentioned how it can be defined also in terms
of wavenumber. If the modes are harmonic or complex exponential, which is in
general true far from the boundaries, then the resulting wave behaves as sinusoidal

wave form, hence kn =
nπ

L
or simply kn ∝ n. This means that ∆k can be expressed

as kn+1 − kn =
π

L
. If for a pair of consecutive wavenumber ∆k ∝ n, for a larger

band, kn+p − kn ∝ p, where p is the number of modes included in the interval[
ωn; ωn+p

]
. As result, for the modal density the relation ρn =

∆n
∆ω

∝
∆k
∆ω

holds.
Eventually, considering nondimensional parameters, the limit to infinite lengths

leads to ρn ∝
dK
dΩ

∝
1

Cg
.

The modal density has been analysed for the same χ ranges, previously investigated,
and displayed vs wavenumber. For χ � −1, the trend of the modal density is
presented by Figure 4.19.
The plot confirms what discussed for dispersion curve, group and phase velocity

within the same χ range. The modal density exhibits two peaks; given the high
values of the modal density at these points, corresponding to vanishing group
velocity, the singularities imply an energy storage effect in the waveguide; indeed,
if the energy is trapped within a very narrow bandwidth, propagation is prevented
and wave-stopping takes place.

The range of χ delimited by −1 and 1, which did not unveil special effects for
dispersion curve and group velocity, becomes very interesting when dealing with
the modal density, shown in Figure 4.20. For any value of the parameter χ, the
curve presents two regions: a positive region, on the left hand side with respect
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Figure 4.19. Modal density for different values of χ� −1

Figure 4.20. Modal density for −1 < χ < 1

to the intersection with the D’Alembert curve, and a negative region on the right
hand side. This implies that in the region before the intersection, which has a
higher modal density compared to the standard waveguide, there is a gain in
terms of number of modes, as well as there is a reduction in the region after k0.
Furthermore, the evaluation of the modal density, with respect to the frequency,
within the two regions, as shown in Figure 4.21, reveals the two areas to be equal:∫ Ω(k0)

0

(
dN
dΩ
− 1
)

dΩ =
∫ +∞

Ω(k0)

(
1− dN

dΩ

)
dΩ, where

dN
dΩ

(k0) = 1. This means

that the number of modes gained by the waveguide in the interval [0, Ω (k0)]
matches the number of modes lost in the interval [Ω (k0) ,+∞]. This phenomenon
can be interpreted as a mode-migration from high to low frequencies, around the
wavenumber k0, defined as folding wavenumber. The curves for all values of χ fold
in a very narrow region abound the value k = 1.4. This has reflections on the group
velocity; when the values of the modal density are high, the energy is trapped and
its propagation is slowed down, consequently also the group velocity suffers a
reduction, as in Figure 4.14.
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Figure 4.21. Modal density vs frequency for χ = 0.4

Eventually, for χ� 1 the modal density, shown in Figure 4.22, mirrors the effects
already discussed for dispersion curve and the group velocity, in relation to the
superluminal propagation and to the following convergence to the D’Alembert
behaviour.

Figure 4.22. Modal density for different values of χ� 1

Note that the comments regarding the correlation between modal density and en-
ergy of the system are not immediate and mathematically justified; however, they
are based on the energy equipartition principle that, applied over the modes, states
the amount of energy received and absorbed by each mode to be the same. This
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means that a region with a higher modal density is able to absorb a larger amount
of energy, with consequences over the velocity of waves and wave envelope, as a
region with lower modal density, thus with a lower number of modes, has a limit on
the energy storage capacity. A clear example is represented by the wave-stopping
effect. This phenomenon is firstly demonstrated by the group velocity trend, but it is
also confirmed by the modal density behaviour. Corresponding to the singularities,
the modal density has a considerably high value, which means that in a narrow
bandwidth there is a high number of modes, hence a trapping of the energy, and
the envelope hardly propagates.

Finally, Figure 4.23 represents a map of the possible propagating scenarios, when
a Gauss-like type of long-range interaction is introduced within the structure: the
negative group velocity region (NGV) is delimited by the wave-stopping curve,
the unstable region is confined within superluminal curves and all the lines are
isofrequency contours. Since the characteristics of the Gauss-like force are rather
general, and mainly related to the decaying with the distance feature, this map
provides a universal description of the propagating regimes existing in an elastic
metamaterial supplied with long-range interactions.

Figure 4.23. Propagation Map for instant long-range interaction

4.4.2 Space-Time visualisation

To complete the investigation space-time visualizations are presented. They have
the great advantage to be direct solutions of the equation of motion and there is
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no need consider the discrete counterpart of the problem, which is a mandatory
step to perform numerical simulations. Numerical simulations, indeed, should be
used with carefulness when dealing with phenomena of propagation. There are
two main problems:

• discretization procedure and mesh distort the propagation phenomenon, also
in simple cases. Numerical simulations are based on the comparison between
the solution of a differential equation, related to the continuous model, and the
one of the finite difference equation, related to the discrete model. Theoretical
investigations have shown that the first solution is of an exponential type
et, the second one is zk, with k integer and z complex. For a discretization
step dt that tends to zero, the two solutions coincide, but for larger dt they
are different, until the limit at which, while et is an oscillating harmonic
solution, zk does not oscillate any more and it monotonically decreases or
increases. Finding the condition between an acceptable comparison and a
large distortion is not always an easy task (an example is provided by Lax
equation [116]). It can be shown that even for a problem not badly conditioned,
the solution of the finite difference equation results distorted when compared
with the continuous one;

• a second issue is related to the boundary conditions. To solve numerically
discretized equations, the boundary conditions must be specified. In the case
of integral-differential equation, the boundary conditions are of the same
nature, hence complex to define.

To perform space-time visualization, the shape of the propagating signal is imposed
in the form:

w(x, t) =
N

∑
i

[
W(1)

i sin (kix−ω(ki)t) + W(2)
i cos (kix−ω(ki)t)

]
(4.48)

where W(1)
i and W(2)

i are coefficients depending on initial conditions, and ω(ki)
is specified by the dispersion relationships (4.38) and (4.39). The displacement is
expressed as a Fourier series, i.e. a discrete approximation of a continuous shape.
The analysis of the space-time development of the displacement has been carried on
according to the range of χ� −1 and χ� 1 previously introduced, except for the
case of −1 < χ < 1 as no special effects have been observed for group and phase
velocity. In particular, sections at different times of the surface w(x, t) are shown,
where the red dot indicates the phase velocity, the green square the group velocity
and dotted lines highlight these points moving in space and time.

In the range of χ� −1, two separate phenomena appear: negative group velocity
and wave stopping. To better visualise them and according to the dispersion curve
shape, the travelling wave packet is shown for χ = −100 and in three different
conditions, shown in Figure 4.24: i) Ω = 10 and K = 1.4, condition along the
positive slope of the dispersion curve (arch around A), where both group and phase
velocities are positive, ii) Ω = 10 and K = 3 on the negative branch (arch around
B), where negative group velocity is displayed, iii) Ω = 12 and K = 2 about the
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maximum peak of the curve (point C), where wave-stopping takes place.
Figure 4.25, corresponding to condition i) and ii), shows on the left hand side the

Figure 4.24. Dispersion curve

trend of phase and group velocity at low wavenumbers, while on the right hand side
the range of high wavenumbers is considered and the result confirms what in the
previous section observed. While in the figure corresponding to the positive group
velocity region, both the single wave and the envelope proceed forward and phase
and group velocity are consistent with each other, in the negative group velocity
region to a forward travelling wave corresponds an envelope that propagates
backward, and negative group velocity is assumed by the wave packet.

Figure 4.26, corresponding to condition iii), compares the propagation within
the standard D’Alembert waveguide on the left hand side with the propagation
occurring within a long-range waveguide, on the right hand side. The wave-
stopping phenomenon is apparent since the single wave travels in time, following
the phase velocity line, while the envelope stands still and its shape is frozen.

For χ� 1 the arising phenomenon was the superluminal propagation. Figure 4.27
compares the propagation of a standard waveguide and, once again, the behaviour
of the long-range waveguide. For high values of the parameter χ the long-range
waveguide, on the right side, shows an incredibly fast propagation, compared to
the conventional one on the left side, which almost remains still. Phase velocity
instead, according to Figure 4.17, rapidly vanishes.

4.5 Final remarks

Long-range interactions might produce extremely complex systems, depending on
their nature and on how entangled is the network of elementary particles. In this
context, the intention is to define the general propagation properties related to the
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Figure 4.25. Left: positive group velocity, Right: negative group velocity

Figure 4.26. Left: D’Alembert waveguide Right: Long-Range waveguide

long-range interactions. For this purpose, special kernels are chosen to model the
long-range connections, applied to the case of a simple one-dimensional waveguide;
these kernels have the remarkable property to produce analytical solutions to
the equation of motion, so to reduce the difficulties arising from the nonlocal
properties. This chapter illustrates the formulations used to model the long-range
interactions, and eventually the Gauss-like force is selected to develop a proper
wave propagation analysis. This model, as well as the Laplace-like force, has a
shape that well mimics the magnetic coupling and, in general, natural long-distance
decaying forces. Besides, the known analytical form of its Fourier Transform ensures
the achievement of closed form analytical solutions. The analysis of the propagation
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Figure 4.27. Left: D’Alembert waveguide, Right: Long-Range waveguide

properties is thoroughly developed and it is discussed in terms of propagation
velocity, modal density, and the extraordinary emerging phenomena are in detail
described.
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Chapter 5

Coupled waveguides and twin
waves: theory, simulations and
experiments

To complete the description of the long-range interaction family, within the elastic
metamaterial panorama, the case of a coupled system is considered as a natural
extension of the single waveguide example. These long-range interactions have
a radius of influence and, since the interaction with matter does not intensively
affect them, they can condition distinct objects, when no structural connections
are present, and even a group of them. Although many author have examined
long-range interactions, literature does not provide many examples of dynamic
behaviour of a system coupled because of the long-range interaction. In this context,
the investigation of the twin system is an absolute novelty.
The straightforward approach showed in [43] has been applied to the topic inves-
tigated in [83]. The analysed system is composed by two identical, continuous,
unbounded waveguides (twin system), in which long-range interactions act in ad-
dition to the conventional elastic connections. A Gauss-like type of force is used
to model these long-range interactions, and it mimics magnetic coupling. The ad-
vantages related to the application of this type of forces was already demonstrated:
they accurately model natural forces and lead to analytical solution of the equation
of motion, since their Fourier Transform has an analytical expression. A long-range
interaction exists within the single waveguides, but also in the case of the twin
system. Indeed, with no external connection involved, it can be seen how the two
rod-like structures are coupled with each other, thanks to the magnetic interaction
only. The mathematical analysis anticipates the existence of unconventional propa-
gating phenomena, which are confirmed by numerical simulations. Finite elements
analysis and an experimental campaign complete the investigation.

5.1 Model for interacting waveguides

In this context, we are not interested in the discussion of the results obtained for a
single waveguide, already exhaustively presented. However, the same approach
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and its related analysis are applied for a more sophisticated system that involves
the coupling between two structures at first, but that could be further extended to
multiple components.
The remarkable aspect stands in the capability of structures equipped with long-
range interactions to communicate, even when set apart with no structural con-
nection in between. Different types of coupling can be realised and consequently
different propagating scenarios can be performed, making long-range interactions
a powerful way to achieve unusual dynamic response, remote control and multiple
systems intelligence.
The equation of motion, as presented in (3.5), must be considered in its overall
formulation so to consider the cross-correlation action, expressed by the second
integral:

ρ utt(x, t)− E
2(1 + ν)

[
∇2u(x, t) +

1
1−2ν

∇ (∇ ·u(x, t))
]
+

+
∫

ξ∈R3
f (|rs|)rs dV +

∫
η∈R3

f (|rcr|)rcr dV = 0 (5.1)

In this section, the equations of motion of a coupled system are derived in a form
according to equation (4.21), for the system shown in Figure 5.1 and named twin
system. The system is composed by two identical, rod-like structures, set at a
distance smaller than the typical long-range interaction length. In these conditions,
the inter-body forces are not negligible with respect to the intra-body ones and
the overall dynamic behaviour is profoundly affected. Indeed, each point of the
waveguides is subdued to forces, modelled as Gauss-law, generated by each point
of both its own waveguide and the other one.
The problem so presented is two-dimensional; however, it is reasonable to neglect

Figure 5.1. Twin waves model

the displacement along the z-axis and consider the longitudinal displacement only,
thus only the x-axis component of the long-range force remains. Moreover, inter-
body and intra-body forces are assumed to be only dependent on the distances PQ

and PR, respectively. In particular, PQ = |rcr| =
[
(x− η + εcr1)

2 + D2
] 1

2
, where

εcr1 = w1(x) − w2(η) is the cross-distance, and PR = |rs| = x − ξ + εs1, with
εs1 = w1(x)− w1(ξ) the intra-distance.
The linearised expression of the long-range forces, as mention in section 3.4, is
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applied to both inter- and intra-body interaction.

F (rcr) = f (|rcr|) rcr = f0 · (x− η) + h0εcr + f0εcr (5.2)
F (rs) = f (|rs|) rs = f0 · (x− ξ) + h0εs + f0εs (5.3)

The subscript cr denotes the cross-correlation term, and the subscript s the contri-
butions within the single waveguide. Focusing on the cross-interactions only, and
analysing the effect exerted by the bottom waveguide to the top one, the force in
equation (5.2) becomes:

F (rcr) = µe
− |r0|2

β2

(x− η)− 2 (x−η)2

β2 [w1(x)− w2(η)] + [w1(x)− w2(η)]

D− 2D (x−η)
β

 (5.4)

where the first row is the force along the x-axis, and the second is along the z-axis.
As previously stated, only the former is considered and the associated force is:

Fx(x, η) = µe
− 1

β2 [(x−η)2+D2]
(x− η)−µe

− 1
β2 [(x−η)2+D2]

[
1− 2

(x− η)2

β2

]
[w1(x)− w2(η)]

(5.5)
Among all the terms, when integrated over the entire domain, only the third one
provides a non-zero contribution. The resulting action of the cross long-range forces,
generated by the bottom waveguide affecting the top one, is:∫

η∈R
µe
− D2

β2 e
− (x−η)2

β2

[
1− 2

(x− η)2

β2

]
w2(η) dη = −l(x) ∗ w2(x) (5.6)

The equation of motion for the top waveguide is finally derived through the combi-
nation of equations (4.21) and (5.6):

ρ
∂2w1(x, t)

∂t2 − E
∂2w1(x, t)

∂x2 − g(x) ∗ w1(x)− l(x) ∗ w2(x) = 0 (5.7)

With analogous procedure, the equation of motion of the bottom waveguide is:

ρ
∂2w2(x, t)

∂t2 − E
∂2w2(x, t)

∂x2 − g(x) ∗ w2(x)− l(x) ∗ w1(x) = 0 (5.8)

Note the term l(x) contains the properties of the interacting structures and is
the same for equations (5.7) and (5.8), since the two waveguides are identical, in
this example. However, the chance of achieving complex coupled systems, with a
possibly high number of components interacting with each other, lies in l(x). Indeed,
designing appropriately the shape of l(x) means designing a specific long-range
scheme, which changes accordingly. The long-range scheme affects the topology of
the system and, consequently, it dominates the communication pattern.

5.2 Insights into the dispersion relationship

In this section, the analytical form of the dispersion relationships is determined
on the base of the displacement, as expressed in equation (4.4). In particular, for
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w1(x, t) = ϕ1(x)e−jωt and w2(x, t) = ϕ2(x)e−jωt, the coupled equations are:{
−ρ1ω2Φ1 + E1k2Φ1 − G1Φ1 − LΦ2 = 0

−ρ2ω2Φ2 + E2k2Φ2 − G2Φ2 − LΦ1 = 0
(5.9)

What is observed is that this new type of coupling introduces an additional con-
volution term in the dispersion relationship, which is of the same nature of the
contribution of the local interactions. Even this case discloses the chance to obtain
an analytical solution. In fact, if G1, G2 and L are known Fourier transforms, the
previous equation exhibits an analytical dependence between the frequency ω and
the wavenumber k. The general result confirms the chance of an infinite number
of propagating modes, since the nature of the dispersion relationship can admit
infinite numerable solutions. The global dispersion relationship can be obtained by
isolating Φ2 from the second equation of (5.9):

Φ2 =
L

−ρ2ω2 + E2k2 − G2
Φ1 (5.10)

that substituted into the first, provides:

(
−ρ1ω2 + E1k2 − G1

)
Φ1 −

L2

−ρ2ω2 + E2k2 − G2
Φ1 = 0 (5.11)

The resulting dispersion relationship is:(
−ρ1ω2 + E1k2 − G1

) (
−ρ2ω2 + E2k2 − G2

)
− L2 = 0 (5.12)

Selecting once again the particular case of a Gauss-like interaction f (r) = µre−
(

r
β

)2

and assuming the two waveguides are twins, the dispersion relationship becomes:(
−ρω2 + E k2 − G

)2 − L2 = 0 (5.13)

As for the single waveguide system, nondimensional parameters are introduced

to more conveniently discuss the problem: Ω =

√
ρ

E
βω, K = βk, ∆ =

D
β

and

χ =
µβ3

2
√

2E
, which represents a measure of the intensity of those forces expressed in

terms of elastic modulus. As previously stated, being E∗ either positive or negative,
χ as well can perform both signs, meaning an attractive action when positive (χ > 0)
and repulsive when negative (χ < 0). In this way, the effects produced by the long-
range forces can be discussed in terms of the parameter χ only. The displacement of
the two waveguides is assumed to be function of the same wavenumber, since they
are identical with each other. This allows to obtain a system of equations analogous
to (5.9): Ω1 = ±

√
K2 − χK2e−∆2− K2

4 − χK2e−
K2
4

Ω2 = ±
√

K2 − χK2e−∆2− K2
4 + χK2e−

K2
4

(5.14)
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As for the single waveguide, the dispersion relationship is examined as varying
with respect to the parameter χ.
Figure 5.2 and 5.3 show the trend of the nondimensional dispersion relationship
for χ = −50 and χ = 50, respectively, with respect to the conventional D’Alembert
waveguide. A unique curve, one for each solution of Ω, describes the behaviour of
the entire system, since the two rods are identical and a single equation contains
both the intra-body and the inter-body long-range interaction contributions. The
mutual distance between the waveguides is set to ∆ = 0.1 and both the positive
solutions of Ω are displayed.
For both values of χ, one solution, namely Ω1, produces interesting effects. When

Figure 5.2. Dispersion curve for negative χ

the parameter χ is positive, a region of no propagation appears for low values of
the nondimensional wavenumber K. Indeed, for such values of K, only complex
values of Ω1 are obtained. With no chance to damp the divergent contribution of
the solution, the system is subdued to instability. A steep slope closes the unstable
band and unveils a narrow wavenumber region in which the group velocity tends
to infinite and superluminal propagation arises, before the system converges to the
D’Alembert model. For negative values of χ, the curve has both a maximum and
a minimum, at which the group velocity vanishes. This means that for positive χ
the existence of a wave-stopping region is proved. Furthermore, while the positive
slope implies conventional propagation, the negative slope reveals negative group
velocity. On the other hand, the solution related to Ω2 does not show remarkable
effects. This is due to the destructive combination in the solution between the two
long-range contributions, the one related to the intra-body interactions and the one
provided by the magnetic coupling, which causes the annihilation of the long-range
effect.
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Figure 5.3. Dispersion curve for positive χ

5.3 Numerical simulations and remarkable properties of the
twin-waves

The twin-system is investigated as extension of the single waveguide problem with
the idea to extract how the intrinsic properties of the long-range interactions en-
able the communication between far systems and modify the overall dynamic
response. The results are performed in two separate ways: the first provides numer-
ical simulations of the discrete counterpart of the twin-system, the second one are
visualizations of the wave propagation in space and time.
The behaviour of the twin waveguides has been numerically analysed by consid-
ering their discrete counterpart. With 200 degrees of freedom, the system consists
of a set of two discrete subsystems of uniform masses, each one connected with
springs to its first neighbours. The long-range interaction not only links masses
of the same waveguide, but also the two waveguides together. The distance D
between the waveguides is considered in terms of the typical long-range interaction
length δ0 = β. Numerical simulations are performed for a distance of the same
order of δ0, D ∼ δ0.

To perform numerical simulations, an initial non-zero displacement has been
applied only to the top waveguide (waveguide 1), leaving at rest the second (waveg-
uide 2). The main noticeable effect is an induced wave propagation in the bottom
waveguide, clearly only due to the propagation on the top one. This confirms what
analytically observed: the pair of waveguides is intrinsically coupled, and propa-
gating phenomena occurring in one of them will be transmitted to the other by the
mean of long-range forces. A second remarkable effect is the richer wavenumber
content of the twin waveguides compared with the purely elastic one. Some disper-
sion is observed even when the initial wave train packet travels along the classical
waveguide. Since the theoretical system represented by the standard waveguide
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Figure 5.4. Twin waves vs purely elastical simulations

E
∂2w
∂x2 − ρ

∂2w
∂t2 = 0 is non-dispersive, the weak dispersion documented in Figure 5.4

(left column) is due to the numerical discretization (a finite difference scheme is
used) as it is known from the theory of finite difference equations. In fact, the
dispersion relationship is in this case nonlinear, but represented by a branch of sine,
implying higher frequencies propagate slightly slower. The wavenumber content of
the twin waveguides is clearly richer with respect to the classical waveguide, and
the initial wave packet spreads over the waveguide length. This effect is explained
by equation (4.36), as a consequence of the infinite solutions of the dispersion re-
lationship 4.29, or equivalently 5.13, predicting the appearance of a superposition
of propagation modes, the evidence of which is in the second and third column of
Figure 5.4. Moreover, it appears a slow down of the wavefront speed in the presence
of long-range interaction.

To perform space-time visualization, the discrete counterpart of the displacement
(4.4) is considered:

w(x, t) =
N

∑
i

[
W(1)

i sin (kix−ω (ki) t) + W(2)
i cos (kix−ω (ki) t)

]
(5.15)

where W(1)
i and W(2)

i are coefficients depending on the initial conditions, and ω (ki)
is defined by the considered dispersion relationship, whether it is related to a Gauss-
like or Laplace-like force, as done for the single waveguide.
The results are shown in terms of χ, as already presented in section 4.4. The analysis
of phase and group velocity unveils new propagating phenomena that are defined
as hypersonic propagation, wave-stopping and negative group velocity propagation.
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To conclude the investigation, space-time visualization are presented in Figure 5.5,
in which the history line of the displacement in both waveguides is displayed.
According to Figure 5.2, at low wavenumbers (see Figure 5.5), both phase and

Figure 5.5. Space-time visualization

group velocity are positive. However, the increase of the wavenumber induces
a changing in the group velocity, which becomes negative and discordant with
respect to the phase velocity.
Finally, a propagation map is presented in Figure 5.6. It shows different propagating
scenarios, occurring at the varying of the parameter χ, according with the effects
discussed for the dispersion curves. Because of the previously explained reasons,
the map is given for Ω1 only. Each line is an isofrequency contour. The instability
region is surrounded by the superluminal propagation region; the negative group
velocity is delimited by the conventional propagation regimes.

5.4 3D model

The experimental campaign has been carried out at Technion, Israel Institute of
Technology and has its core in the analysis of the twin-system, composed by two
identical rod-like structures. Each waveguide has magnetic dipoles embedded
within, which are responsible of the cross interaction (inter-body interactions), since
no structural connection is included between the waveguides.
The aim of any experimental campaign is to validate the presented theoretical model
or a proper general theory. In this second part of the chapter, it is presented what
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Figure 5.6. Propagation map

could be defined as an initial experiment. The presented theory has a very general
feature; however, the fact that results are presented in a nondimensional form im-
plies the lack of references for the physical properties of the system. Thus, the aim
of this first-stage experiment is to obtain a measure, an estimation of the physical pa-
rameters able to perform, not only strong enough long-range interactions, but also
the propagation phenomena previously described. The number of variables and
unknowns of the system, which interprets the discrete counterpart of the twin-wave
system, is undoubtedly large: minimum number of degrees of freedom, value of the
mass, type of connection between masses, number of magnets, source of long-range
interaction, type and strength of the magnets. The complexity of the problem stands
not only in the fact that the model is applied on infinite waveguides, which is a
condition that must be reproduced, but also because the long-range interactions
spread within the single waveguide, and further connected the two waveguides.
This implies that each mass is affected by a complex network of connections if
the magnets are powerful enough. For these reasons the experimental campaign
has been carried out on the twin-system, but the arrangement of magnets is such
that only inter-body interactions have a major contribution, so to slightly reduce
the order of complexity of the problem and thus, of the unknowns. Moreover, the
choice to perform the experimental campaign on the twin system stands in the fact
that, even though useful from a mathematical point of view, the nondimensional
characteristics of the obtained results are a limitation when an experimental set-up
must be organised. The twin-system responds to the need of coupling as many
degrees of freedom as possible: the coupling power of the magnets is an unknown;
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this implies that also the number of coupled degrees of freedom for each magnet is
unknown; working with coupled waveguides means taking advantage of the range
of action in an additional dimension, transverse with respect to the longitudinal
motion. Coupling in this direction is clearly unavoidable, but the FEM analysis
explains whether the motion in the two directions is actually coupled or not and
if there are range of frequencies for which it is admissible to consider the motions
fundamentally uncoupled.
For sake of simplicity, the experimental model is composed by a set of degrees of
freedom, arranged so to recreate two discrete waveguides, where the main one is the
one the force is applied to. Magnets have been selected to produce the long-range
interactions and for this reason each mass is designed so to host a magnet. The
idea is to generate a lumped element model, as shown in Figure 5.7, in which each
element is representative of a single physical property.
Each mass is connected with each other through elastic springs and further con-

Figure 5.7. 3D model

nected to the basement, through ground-hook springs. The length of the springs is
designed in order to be much stiffer in the transverse motion than in the longitu-
dinal one, so to endorse the propagation of longitudinal waves, according to the
presented mathematical model. In addition to the magnet holders and the springs,
the system includes also a set of basis, bolted to the optical table, which have the
function to connect the masses to the optical table and to adjust the distance of the
second waveguide with respect to the main one at three possible locations, i.e. a
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face-to-face distance of 10 mm, 20 mm or 30 mm. From an executive point of view,
the springs are thought as a unique piece: a pre-stress is imposed so to force the
wanted radius of curvature, then the free ends of the strips pass through the holes
in the magnet holder and then they are glued in the base holes, corresponding to
the chosen distance between the waveguides. The holes of the magnet holder have
an inner profile designed so to compress the spring and to prevent the sliding of
the magnet holder along the strip. The dimensions and the number of the masses
are the result of the set-up constraints and the maximum allowed displacement.
Indeed, to guarantee a longitudinal overall displacement of the masses of 6 mm
(±3 mm), the mutual distance between the masses is set at 12,6 mm. The length of
the optical table (about 910 mm) and the willingness to include as many degrees of
freedom as possible, considering also the dimensions of the excitation system, set
the maximum number of masses at fourteen per waveguide. Figure 5.8 shows the
global arrangement.

The components have been designed with Autodesk Fusion 360 software and

Figure 5.8. Global drawing

realized with a 3D printer. Figure 5.9 and Figure 5.10 show for the magnet holder
and the base, both the 3D model and the drawing, in which the dimensions are in
mm, respectively.

5.5 Finite element analysis

To carry out a FEM analysis, the three-dimensional model has been imported in
Ansys Workbench software.
Even though the complexity of the system is not extreme, the geometry has been
simplified, deleting the objects that would impose a fine mesh, causing a high
computational cost, with no advantage in the preciseness of the results since these
details hardly affect the dynamics: the holes in the basis and in the magnet holders
have thus been deleted. Carefulness should be used for the strips: first of all in
the original model they pass through the magnet holders and are inserted in the
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(a) Drawing

(b) 3D model

Figure 5.9. Magnet holder

(a) Drawing

(b) 3D model

Figure 5.10. Base

basis, which implies that, after deleting the holes, to avoid interference the strips
must be cut; besides, any thin object is better modelled as a surface element, by
replacing the object itself with its own middle surface; the real thickness of 0.5 mm
is automatically recognised. Eventually the strips would not appear in the model as
solid basis any longer, but as surfaces. Since the entity body does not exist any more,
it is necessary to recreate the connections between the strips and the magnet holders
on one side and the basis on the other. The type of connection uses a Multiple Point
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Table 5.1. Material properties

Structural Steel PLA

Elastic modulus E 210 GPa 3.5 GPa
Density ρ 7980 kg

m3 1234 kg
m3

Poisson modulus ν 0.3 0.36

Constraint (MPC) formulation, which lock the rotation of the strip, enabling the
deformation of the strip itself. Other types of formulation would instead allow a
free body motion; this means that the strip would not deform, but simply rotate
around its longitudinal axis.
The used materials are structural steel for the springs and PLA, used by the 3D
printer, for the basis and the magnet holders. Table 5.1 reports the material proper-

ties. Literature usually provides a value of PLA density around 1240
kg
m3 . However,

the components are not fully printed; indeed, a section of each component would
unveil a netting pattern with a thread thickness of 0.15mm. To obtain an accurate es-
timation, the density has been measured as the ratio between the measured masses,
of the magnet holder and the base, and their volumes, provided by Ansys. Hence,

the density if the magnet holder is ρPLA =
8.5

9447.5
gr

mm3 = 899.71
kg
m3 , while the base

has ρPLA =
28.92
54000

gr
mm3 = 552.2

kg
m3 .

To obtain an appropriate fine mesh, as shown in Figure 5.11, hex dominant elements
have been selected for the solid bodies, as magnet holders and basis, and square
plane elements, quadrilateral dominants, for the strips. A size mesh of 2mm is
applied.
Once the mesh is generated, to obtained the harmonic response, more than the

Figure 5.11. Model mesh

modal analysis, fix boundary conditions have been applied on the lower face of
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the basis, corresponding to the connection to the optical table, and a punctual lon-
gitudinal force is applied to the first degree of freedom, simulating the voice coil
excitation.
To model the magnetic interaction, physical elements can be added between the
two waveguides. As previously mentioned, the long-range interaction occurs only
between the waveguides, and the effect within the single one can be neglected. As
first stage, beam elements have been added only between pairs of masses, arranged
one in front of the other, avoiding the extension of the connection to the second
order, as shown in Figure 5.2 in which the beam elements are encircled in green.
Beams are preferred to springs as the latter take into account only the longitudinal

Figure 5.12. Detail of the beam element

motion and are reliable only under the assumption of small displacements. Beams
provide also the advantage to access the cross-section geometry, which can be ad-
justed so to recover the magnetic equivalent stiffness.
In order to add the beam elements, the geometry must be modified in the pace
Claim environment. Rectangular profile is chosen for the cross-section. Through
the values of b and h of the cross-section, it is possible to reproduce the values of
the magnetic stiffness kx and ky in the two on-plane directions, x and y, respectively.
Since kx and ky are coupled with each other through b and h, the system that corre-

lates b, h, kx and ky does not necessarily have a solution. Indeed, kx =
EI
L3 , ky =

EA
L3 ,

where A = bh, I =
bh3

12
and L is the face-to-face distance. However, given the

fact that the longitudinal motion is the favoured one, the choice of b and h is such
that priority would be given to the value of kx; ky is evaluated consequently. The
values of the effective stiffness kx and ky are calculated considering the linearised
expression of the magnetic force, which has been measured through the calibration
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Table 5.2. Modes

1 28.771 Hz 2 36.606 Hz 3 36.765 Hz 4 37.247 Hz
5 37.74Hz 6 38.514 Hz 7 39.48 Hz 8 40.409 Hz
9 41.826 Hz 10 42.806 Hz 11 44.588 Hz 12 45.546 Hz
13 47.583 Hz 14 48.466 Hz 15 50.645 Hz 16 51.416 Hz
17 53.628 Hz 18 54.262 Hz 19 56.399 Hz 20 56.885 Hz
21 58.841 Hz 22 59.182 Hz 23 60.854 Hz 24 61.066 Hz
25 62.35 Hz 26 62.469 Hz 27 63.264 Hz 28 63.343 Hz
29 127.98 Hz 30 152.37 Hz

procedure of the magnets.
The magnetic force, experimentally evaluated by measuring the strength occurring
between two magnets at different distances, is:

FM = C1 + C2
1
x4 (5.16)

with C1 = 7.45[N] and C2 = 1.26105[N ∗m4]. To obtain the values of the stiffness,
the magnetic force must be linearised according to equation (3.24). The resulting

values (see Appendix E) are kx = 4.92
N
m

and ky = 16.9
N
m

. From the value of kx,
b = 0.05 mm and h = 0.47 mm are extrapolated. They lead to a larger value of ky,
but it is still reasonable, as it implies the system is stiffer in the transverse motion;
in fact, the transverse motion appears at higher frequencies.
Eventually, a number of thirty modes is analysed over a range of frequency from 0
Hz up to 200 Hz, and the frequencies at which they occur is reported in Table 5.2.
The range of frequency must be decided accurately, because to evaluate the har-
monic response of a system, the contributions of all modes must be taken into
account. A good estimation for the frequency range is 1.5 times higher than the
natural frequency of the last considered mode.
The results show two specific frequency bandwidths in which several modes are

gathered together. Besides, to notice is the fact that modes appear coupled: at very
close frequencies, it emerges first the mode of the second waveguide and straight
after the mode of the main waveguide. An example is provided by Figure 5.13 and
Figure 5.14, which show the second mode.
A first group of modes occur between 28 Hz and 60 Hz. These modes refer all to

the longitudinal motion of the system, with negligible displacements on the other
directions. The following figures, which exhibit the non-real scale deformation
of the system, reveal the most representative modes that refer to 38.514 Hz (Fig-
ure 5.15), 48.466 Hz (Figure 5.16) and 51.416 Hz (Figure 5.17). A more complete list
of them is provided in Appendix F.

A second bandwidth appears approximately between 125 Hz and 155 Hz. Fig-
ure 5.18 shows the mode corresponding to 152.37 Hz, presenting both the isometric
and the top view, which represents an example of the transverse modes occurring
in this frequency bandwidth.
This is sufficient to assume that the longitudinal and the transverse motions are sub-

stantially uncoupled and thus to focus on the lower frequency bandwidth during
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Figure 5.13. 36.606 Hz

Figure 5.14. 36.765 Hz

Figure 5.15. 38.514 Hz
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Figure 5.16. 48.466 Hz

Figure 5.17. 51.416 Hz

the experimental campaign.
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(a) Isometric view

(b) Top view

Figure 5.18. 152.37 Hz

5.6 Experimental setup

The experimental set-up is composed by the twin-wave systems, the sensors and
the equipment necessary to excite the system. Figure 5.19 shows the set-up chain
and indicates in blue the path followed by the input signal and in black the output
signal.
The masses and the basis have been 3D printed using PLA material. The basis are

bolted on the optical table, which ensures the correct positioning and the stability of
the structure. Metallic strip behave as both ground-hook springs and they further
connect the mass with each other. To perform a longitudinal motion and to easily
link the masses, the springs have been bended and the assembly considers the
springs to be bended before they are inserted in the magnet holders. At last their
free ends are glued on the basis. Each mass hosts a magnet and magnets are
arranged so to produce only inter-body interactions, as the North-South position is
such that their effect rapidly vanishes along the waveguide they belong to, but it is
stronger in the transverse direction, i.e. they are attractive between the waveguides
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Figure 5.19. Experimental set-up

and repulsive within the same waveguide. The strength of the magnets is such that
the related parameter χ is in the range between −1 and 1. This means that, among
all the analysed propagation phenomena, the expected one is the mode migration.
Anticipating what later will be discussed, the post-processing investigation must
consider this aspect and an input force allowing an accurate modal analysis is
preferable. The first mass of the behind waveguide is connected to the voice coil
actuator, and from now on it is referred to this wavegudie as "main" waveguide.
The voice coil actuator provides the excitation onto the longitudinal direction. The
excitation is imposed in terms of the current supplied to the actuator: if an harmonic
force is desired, to be harmonic is actually the current and theoretically the resulting
force is proportional to the current: F = αI; however, the real force is:

F = αI + εI3 (5.17)

where the additional term, even though small, brings distortions in the input signal
and further frequency contributions, which are not necessarily negligible. The voice
coil support, as shown in Figure 5.20, is composed by a basement and two nonlinear
springs and during the evaluation of the measurements, the dynamics of this system
must be considered.
The input signal is generated by the workstation, then sent to the A/D converter,

which also receives the output signal on a different channel. The sampling range
of the digital converter can be decided depending on the amplitude of the output
signal. For instance, if the amplitude is around 9V, the sampling range should be
[−10V;+10V]; for an output signal of 0.5V, the sampling range should be reduced
to [−2V; 2V]. Since the number of used bits is the same, it is preferable to use a
as small as possible sampling range, so to increase the resolution. Before reaching
the actuator, the input signal is sent to the current amplifier, which has its internal
feedback control with a gain to correct the current. The current amplifier is also
connected to its power supply system. Three laser sensors, two Keyence and



5.6 Experimental setup 75

Figure 5.20. Voice coil support

one µε, are used to read the displacement of one mass each. Each sensor has its
own power supply. Laser sensors are used as the non-contact principle enables
wear-free measurements since the sensors are not subject to any physical contact
with the target. Furthermore, the laser triangulation principle is ideal for very
fast measurements with high accuracy and resolution. Laser triangulation sensors
operate with a laser diode which projects a visible light spot onto the surface of
the measurement target. The light reflected from the spot is imaged by an optical
receiving system onto a position-sensitive element. If the light spot changes its
position, this change is imaged on the receiving element and evaluated. The three
sensors are all red semiconductor lasers, with a reference distance of measurements
of 50 mm. The dimensions are rather similar: 75 mm x 70 mm x 33 mm for the
Keyence and 48 mm x 65 mm x 20 mm for the µε, and similar is also their weight
of approximately 100 gr. Since all these sensors have a specific reference distance,
they need to be calibrated before the measurements are taken. Besides, they must
be mounted on a support which can adjust the position of the laser, so to be at the
right distance from the target. Keyence lasers are slightly more sensitive, since the
dimensions of the spot are 50µm x 2µm, while the µε has a diameter spot of 110µm.
The measuring range of the Keyence is ±10 mm, more extended is the one of the µε:
50 mm overall.
A Sony RX10iv camera, which records the motion of the entire twin-wave system
for four seconds, with a sampling rate of 960 frame per second, completes the set-up.
The unit of measurements of the displacement provided by the camera is the pixel.
Two considerations follow: first of all, a conversion from pixel to mm is required;
this is not straightforward as also the curvature of the lenses and the zoom have
distortion effects on the image. This distortion causes a non direct proportionality
between a length in an image and the real length. For this reason, a calibration
process is required before the run of the experiment and it has to be repeated any
time the position of the camera changes with respect to the framed object. This is
done by taking several picture of the set-up from always different point of views.
A chessboard image is placed close to the twin-system, as shown in Figure 5.21:
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the dimensions of the chessboard are known both in pixels and in mm; from the
comparison between the dimensions and the displacement of the masses and the
chessboard, it is possible to translate the sizes from pixels to mm. Secondly it must
be noticed that a pixel is also the resolution of the camera, and if the amplitude of
the displacement is smaller than a pixel, numerical errors might occur. In order to
recover the displacement of the masses, the sub-pixel interpolation is used: through
the values of the displacement calculated for points corresponding to the pixels,
it applies a proper curve fitting so to rebuild the signal of the masses for all those
points that do not correspond to the pixel grid. This ensures that the displacement
can be retraced even if its amplitude is smaller than a pixel.
Before start the data acquisition process, three operations are required:

Figure 5.21. Camera calibration

• lasers warm up;

• lasers calibration;

• camera calibration.

The laser sensors calibration is aimed at recovering the offset in the input voltage,
so to prevent the sensor to saturate in one of the directions, due to their rather small
range, and to optimize the dynamic range on the A/D. The lasers have been posi-
tioned so to follow the three masses at the edge of the two waveguides, except for
the first mass of the main waveguide, which is directly connected to the voice coil.
This represent the only possible arrangement, otherwise the apparatus composed
by the laser sensor and its support would screen the system from the camera.
The aim of the experimental campaign is to retrace the dispersion curve, so to be
able to compare it with the theoretical findings. The most logical way to identify
the dispersion curve is through the measure of the phase velocity at any frequency.
Remembering that the phase velocity is given by the ratio between the displace-
ment of the mass and the delay time, the identification of the dispersion curve is
reduced to the evaluation of the delay time, through the cross-correlation of the
signals outputs of different masses. For this purpose and, as previously mentioned,
according to the type of the expected propagation phenomenon (mode migration),
the choice of the excitation has to be accurate, in terms of the modal characteristics
they introduce in the system. A perfect excitation should allow a frequency by
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frequency analysis, thus should have a narrow spectrum in the frequency domain,
similar to the one of a harmonic excitation, and narrow in space, so to involve the
least number of degrees of freedom. This is an important aspect in the evaluation
of the delay time. The measure of the delay time occurring between two masses
is much more complicated if the propagation affects both of them. On this regard,
the case of a sinusoidal excitation, hence a single harmonic, would not be correct,
as its stationary feature would prevent the occurrence of a delay time; moreover,
the unavoidable reflections impede actually a stationary motion. The application
of a single period of a sinusoidal force is another incorrect excitation: indeed, the
Fourier Transform considers the entire input history, and the truncation of the signal,
necessary to cut the force and maintain only one period, is interpreted as a step,
which translated in the frequency domain has a wide spectrum. In the same way,
any "long-time" excitation would cause resonating phenomena, as the tilting of the
masses, which would not occur for "short-time" excitations.
Table 5.3 specifies the types of applied excitations, which are later explained, and
the investigated range of frequencies of these preliminary tests.

The Gauss pulse is probably the type of excitation that better responds to the

Table 5.3. Tests

Excitation Type To find Frequency range Analysis method

Gauss pulse Transient Dispersion 10-60 Hz Correlation
curve 115-130 Hz DIC

Step sine Steady-state FRF 10-60 Hz Fitting sine
115-130 Hz DIC

Step response Transient FRF DIC
HT

Chirp Transient Dispersion 115-130 Hz HT
Slow and fast curve 50 and 4 seconds

HT:Hilbert transform

requirements imposed in space and frequency domains, and it provides a frequency
by frequency scanning. Indeed, it is model so to have a 2 Hz frequency bandwidth
spectrum and, consequently, it is applied every 2 Hz, covering the entire frequency
range.
Both the step sine and the step response are used to calculate the frequency response.
The step sine retraces the frequency response scanning one frequency at the time,
and conveying the entire amount of energy in a single frequency. With step response
is intended a square wave excitation, a wide spectrum input that involves all the
frequency at the same time. Theoretically, the frequency response obtained with
a square wave excitation, or any wide-spectrum excitation, and with a step sine
should be the same. However, the step sine presents a better signal-to-noise ratio,
due to the fact that exciting one frequency at the time, it forwards the energy onto a
single specific frequency. The square wave instead, exciting all the frequencies at
the same time, easily loses information about the frequencies which produce small
responses. In a real system, there is no equi-distribution of the energy, which is not
evenly spread over the spectrum. This implies the existence of frequencies more
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energy-consuming than others. Eventually, the resulting frequency response is not
the same, and the step sine is preferred.

5.7 Results and comparison

The analysis of the data involves two aspects and thus two methods have been
chosen to evaluate the results: the Digital Image Correlation (DIC), which operates
with the videos taken with the camera, is used to investigate the displacements
of the degrees of freedom, so to recreate the dispersion curve; the Fit Sine, which
analyses the data coming from the laser sensors, provides the frequency response of
the system. Since the experimental campaign is only at its pilot stage, the practical
limitations, which are further discussed in the next section, prevent the achieve-
ment of accurate results. However, these preliminary considerations are useful to
enlighten the aspects that necessarily must be revised and enhanced for the future
experiments. From this perspective only the most significant results, among many,
are here reported.

As previously mentioned, the amplitude of the displacement depends on the fre-
quency excitation, and while at low frequencies it can reach few mm, at high
frequencies it reduces to few tenths of mm, thus it could even be smaller than a
pixel. This usually provokes a loss of data; the sub-pixel interpolation instead, by
curve-fitting the output data, is able to rebuild the signal, even in the absence of
reference points.
This approach, defined within the major context of digital image correlation, pro-
vides a very precise measurement of the displacement of the selected points through
the evaluation of the cross-correlation function, as additional step with respect to
the pixel resolution method. Based on the fact that an image can be interpreted as
a discrete frame (grid) composed by pixels, the pixel resolution provides only the
values of the cross-correlation function corresponding to the pixel and rebuild the
displacement starting from that information.
The basic approach of the pixel resolution, and also of the sub-pixel interpolation,
which guarantees a higher grade of efficiency, considers a given an image of the
system under analysis, and one of its possible smaller frame, selected so to follow
the motion of the selected degree of freedom. The initial position, and hence the
main frame, is considered as reference, and when the system moves, it does it with
respect to the initial configuration. At each time, the new position is compared with
the initial one, so to rebuild the displacement history line. This process is done step
by step, considering the displacement in terms of pixels, which define the grid or
mesh of the image. The displacement is evaluated through the cross-correlation
function, which compares the moving frame, considered as a scaled delayed signal,
and the initial configuration, i.e. the original signal. The cross-correlation function
returns the exact delay time, as long as it has the chance to measure it everywhere.
The pixel resolution, indeed, it is not sufficient when the maximum value of the
function happens to be in between pixels, reason why, if a more exact estimation is
needed, one has to use the sub-pixel interpolation.
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The concept of correlation is associated to the grade of similarity between two
variables, but it can be further extended to the case of two signals and whenever it
is possible to find a law linking the two variables/signals, then it is allowed to talk
about correlation and hence define a functional relationship.
There are several means to analyse the correlation rate, depending on the available
data and on what it is required: the autocorrelation function, which provides a
measure of the periodicity of a signal, is used when the same signal is interpreted
as unique input, whose history line is considered and the signal is evaluated at
different instants; the cross-correlation function, when applied to digital image
processing, compares the frames, obtained by a single input but divided in multiple
frames, as if different signals. Both functions are defined in the time domain. The
autocorrelation function is used to identify deterministic periodic data hidden
within external noise: while a deterministic signal has a correlation lasting in time,
the correlation of a random signal, as noise, for long time intervals, decays to zero.
The cross-correlation function measures the grade of similarity between two signals
at different instants and it is defined by:

Rxy(t, τ) = E [x(t) · y(t + τ)] (5.18)

which simplifies into:

Rx(τ) = lim
T→+∞

1
T

∫ T
2

− T
2

x(t) · y(t + τ)dt (5.19)

for ergodic, time independent signals.
Cross-correlation is useful for determining the time delay between two signals,
e.g. for determining time delays for the propagation of acoustic signals across a
microphone array. After calculating the cross-correlation between the two signals,
the maximum (or minimum if the signals are negatively correlated) of the cross-
correlation function indicates the point in time where the signals are best aligned.
The great power of the cross-correlation function is the chance to extract random
data hidden within external noise, to provide a time delay estimation and also
identifies the transmission ways, since each one produces its own time delay; this is
possible since cross-correlation function shows a peak at the exact delay time:

td =
dγxy(τ)

dτ
= 0 (5.20)

This is possible because the cross-correlation function slides the delayed function
along the t-axis, calculating the integral of their product at each position. When the
functions match, the value of cross-correlation is maximized, since when positive
areas are aligned, they make a large contribution to the integral. So do the negative
areas given the fact that the product of two negative areas is positive.

The sub-pixel interpolation has a precise methodology, which can be summarised
in the following steps:

• evaluation of the cross-correlation for each frame;
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• finding the maximum value of the correlation function and the corresponding
indices through pixel resolution;

• definition of a sub-grid centred at the maximum pixel and composed by at
least five neighbouring points;

• collection of the values of Γ̂xy corresponding to the neighbouring points;

• curve fitting through least square method;

• differentiation;

• finding of the extrapolated position (x, y).

Let us consider the mathematical model behind this approach for a two-dimensional
case, i.e. an image whose displacement occurs along two axes x and y.
The reference frame, the first level sub-frame, is a portion of a larger picture, defined
by the function g(x, y); the delayed frame, second level sub-frame, is a portion
of the first level sub-frame, given by f (x, y) = αg(x + ∆x, y + ∆y). One could
also consider directly the main picture as first level sub-frame, however, especially
when a system is composed by a large number of degrees of freedom and when
displacements are small, it might be more precise to select a window, first level
sub-frame, including only the selected degree of freedom, and a further smaller
frame, second level sub-frame, only around a portion of the mass, signed with
markers. The markers are applied on the degrees of freedom that one wants to
analyse and they are the points, whose displacement is then followed and whose
purpose is to produce a better contrast with the surrounding objects in the image.
This ensures that no ambiguity affects the measurements, since not only one can
follow one degree of freedom per time, but also the selection of a narrow window
around the markers ensures no ambiguity.
The normalised cross-correlation function can be calculated through:

Γx,y(ξ, η) =
1

σf σg
E
[(

f (x + ξ, y + η)− µ f
) (

g (x, y)− µg
)]

(5.21)

where σf and σg are standard deviations, i.e. σ2
x = E[x2] − E2[x], µ f and µg are

means, which are all constants over time due to stationarity and E[x] indicates the
expected value.
Figure 5.22 shows the meaning of first-level frame, the green squared picture g(x, y),
whose initial position is the reference configuration, and second-level sub-frame
f (x, y) = αg(x + ∆x, y + ∆y), i.e. the light-blue rounded sub-frame, which moves
around with respect to the first one. This procedure is widely used since it increases
the efficiency of the evaluation approach and prevent ambiguity when many de-
grees of freedom are involved, as it is possible to analyse the motion of different
points separately.
Basically, the cross-correlation function Γ̂xy is evaluated for each position of the
second-level sub-frame.The pixel resolution, considering only the cross-correlation
associated to pixels, returns the optimum pixel only, but not the exact value of the
maximum of the cross-correlation, which might occur in between the pixels. When
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Figure 5.22. First and second level sub-frame

Figure 5.23. Neighbouring points grid

the maximum value of Γ̂xy is detected through the pixel resolution, a grid of neigh-
bouring point (pixels) around this maximum must be defined, as in Figure 5.23. The
origin of the new reference system (ξ, η) is set at the maximum of the cross function
and the neighbouring points are such that i = −1, 0, 1 and j = −1, 0, 1.
The values Γ

(
ξi,j, ηi,j

)
of the cross-correlation function corresponding to the neigh-

bouring pixels are known, since they have already been calculated so to find the
maximum.

For image-processing applications in which the brightness of the image and tem-
plate can vary due to lighting and exposure conditions, the images can be first
normalized. This is typically done at every step by subtracting the mean and divid-
ing by the standard deviation. The actual value of the cross-correlation function is
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then:
Γxy =

1
σf σg

E
[(

f (x + ξ, y + η)− µ f
) (

g (x, y)− µg
)]

(5.22)

However, it is sufficient to evaluate the integral form defined over a finite interval
and averages can be used instead of distributions. The expression of the approxi-
mated cross-correlation function is:

Γ̂ (ξ, η) =
1

σf σg

∫ xmax

xmin

∫ ymax

ymin

f (x + ξ, y + η) g (x, y) dxdy (5.23)

Eventually, this expression is further approximated, considering the discrete coun-
terpart, which is in wide sense stationary:

Γ̂i,j =
∑m ∑n

(
fi+m,j+n − µ f

) (
gm,n − µg

)√
∑m ∑n

(
fi+m,j+n − µ f

)2
√(

gm,n − µg
)2

(5.24)

This is the expression through which the cross-correlation is evaluated for each
position of the second level sub-frame, sliding pixel by pixel around the first level
sub-frame.
Once the maximum value of Γ̂xy is obtained for the pixel closest to the optimum
point, if it assumable that the distance between the maximum pixel and the op-
timum point is reasonably smaller with respect to the integration intervals, i.e.
∆x � xmax − xmin and ∆y� ymax − ymin, then the cross-correlation function can be
extended through a Taylor series up to the second order:

Γ (ξ, η) ≈ Γ (∆x, ∆y) +
(

∂Γ
∂ξ

∂Γ
∂η

)(
ξ − ∆x
η − ∆y

)
+

+
1
2
(

ξ − ∆x η − ∆y
) [ ∂2Γ

∂ξ2
∂2Γ

∂ξ∂η
∂2Γ

∂η∂ξ
∂2Γ
∂η2

](
ξ − ∆x
η − ∆y

)
(5.25)

that rewritten in a concise form becomes:

Γ (ξ, η) ≈ Γ0 + bTh +
1
2

hTBh (5.26)

which is a parabolic surface with maximum at ξ = ∆x and η = ∆y.

h ∆
=

(
ξ − ∆x
η − ∆y

)
represents the discrepancy between the exact position of the maxi-

mum and the one given by pixel resolution, as in Figure 5.24.
Γ̂MAX (ξ, η) is the maximum found through the pixel resolution and XOPT (∆x, ∆y)

is the maximum to be found through the sub-pixel interpolation.
Through the known values of the cross-correlation function obtained in correspon-
dence of the pixels, the curve fitting, based on the expression (5.26), is able to
provide the value of the cross-correlation function through an interpolation proce-
dure for any position, not necessarily corresponding to a specific pixel, accessing
the sub-pixel level.
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Figure 5.24. Optimum point through sub-pixel interpolation

The problem (5.26) can be rewritten as:

Γ
(
ξi,j, ηi,j

)
=
(

1 h[1] h[2] 1
2 h[1]h[1] h[1]h[2] 1

2 h[2]h[2]
)


Γ0
b1
b2
B11
B12
B22

 (5.27)

where a =
(

Γ0 b1 b2 B11 B12 B22
)

is the vector of the coefficients, with

B12 = B21 since
∂2Γ

∂ξ∂η
=

∂2Γ
∂η∂ξ

.

Solving for a implies finding the missing coefficients of equation (5.26). The spatial
displacements ∆x and ∆y are such that

dΓxy(ξ, η)

dξ
=

dΓxy(ξ, η)

dη
= 0 (5.28)

At this point, to find the optimal value, the only remaining step is the differentiation
with respect to h:

dΓxy(h)
dh

= 0 (5.29)

Bh = −b and hence to h = −B−1b, which is the interpolated location of the maxi-
mum value.
Video processing is very useful when systems are too large or include many degrees
of freedom, and thus would require a large number of sensors, when there is no
room for sensors. Indeed, great advantages of this process are related to the small
invasiveness, compared to the accelerometers apparatus, and the simple required
set-up.
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The here presented results regards only the step response excitation, as they are
the most significant ones. For each frame, the sub-pixel interpolation rebuilds the
displacement of any single mass in pixel and in time and it recreates its history. The
result is a matrix whose columns correspond to the degrees of freedom and whose
rows correspond to the time t: each entire column provides the history of the dis-
placement for a specific mass. The Fourier Transform in space and time produces a
dispersion surface. The importance of the dispersion curve is not only related to the
chance of comparing experimental data with the theoretical findings, but is mainly
associated to the possibility to identify the propagation regions and to evaluate
phase and group velocity. However, the system is composed by too few degrees
of freedom to obtain a high resolution dispersion curve. Indeed, when the Fourier
Transform is applied, it translates the space dependency onto the wavenumber
domain. Having available only few degrees of freedom implies few wavenumbers
at which the dispersion curve is evaluated. Moreover, the accuracy of the obtained
dispersion curve is further reduced when the FFT is performed in Matlab: the
FFT has a domain defined from −∞ to +∞, and the data are split into a negative
and a positive contribution; the FFT operation in Matlab translates the negative
contribution in the positive range of the domain, but it is still only a reflection. This
means that only half of the data are truly significant and can be employed. For
this reason, the results are solely presented in terms of the displacement of the two
waveguides, as showed in Figure 5.25, where the blue stems are associated to the
displacement of the main waveguide and the orange ones to the second waveguide.
The plot displays the displacement of the two entire waveguides at five different
instants.
Even though the preliminary aspect of this experimental campaign has been dis-

Figure 5.25. Displacement in the twin-wave system
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cussed several times, the results already show interesting effects: first of all the
propagation occurring in the second waveguide demonstrates the efficiency of
the long-range coupling effect, even if the awaited phenomena do not emerge yet.
Besides, the reaction of the second waveguide appears with a slowed down wave
propagation and dispersion over its length. However, given the few degrees of
freedom available and hence, due to the unavoidable poor resolution, this result
can only be considered as an introductory representation of the twin-wave system.

Results are here presented also in terms of frequency response. Theoretically, to
find the frequency response it could be sufficient to compare the output and input
signals. However, the input itself is not perfect, and instead of being a perfect
sinusoid, it presents more peaks in the frequency domain. This phenomenon finds
its reasons in the presence of noise, and probably in the non perfect synchronization
between the current sent to the voice coil and its reaction. Eventually, the two
signals are not comparable as they are and the output signal modelling is crucial.
The Fit Sine procedure transforms the measured signal to a finite Fourier series
with the addition of noise. It is assumed that the signal contains a base frequency
and its multiplications, usually 1x...5x. The base frequency is not a priori known
since the clock generating the sine wave, i.e. the input to the voice coil, has a finite
resolution: even an error of a fraction of a Hz in the frequency leads to a huge error
in the phase, when measuring a large amount of periods. The actual frequency
is estimated with the non-linear least squares from the cleanest measured signal,
usually the generator. The Sine Fit is a two-step approach:

• firstly the exact frequency is evaluated through a nonlinear least square
method;

• then the signal is redefined, when its coefficients are obtained.

The aim of the first step is to find the exact frequency, which is used later to fit the
output signal.
The non-linear least square method is the form of least squares analysis used to
fit a set of observations with a model that is non-linear in a number of unknown
parameters, smaller than the number of observations. The basis of the method is to
approximate the model by a linear one and to redefine the parameters by successive
iterations. The objective function is quadratic with respect to the parameters only
in a region close to its minimum value, where the truncated Fourier series is a
good approximation to the model. The more the parameter values differ from their
optimal values, the more the contours deviate from elliptical shape. A consequence
of this is that initial parameter estimates should be as close as practicable to their
optimal values, even if unknown.
The used model here used is:

s(t) = a1 sin (b1t + c1) (5.30)

where b1 is the exact frequency.
Once the exact frequency is estimated, the aim of the second step is to rebuild the
output signals. Any signal can be written and considered as a Fourier series of
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increasing orders of harmonic contributions:

s(t) = A1 sin ωt+ B1 cos ωt+ A2 sin 2ωt+ B2 cos 2ωt+ A3 sin 3ωt+ B3 cos 3ωt+ ...
(5.31)

where Ai and Bi are the coefficients related to the i-th order. The higher is the
number of considered orders, the better is the approximation of the signal. The
output signal, or actually any sinusoidal signal, for a single frequency, is described
by two parameters only, i.e. the amplitude and the phase, and it can be written either
as ŝ(t) = A sin ωt + B cos ωt or as ŝ(t) = C cos (ωt + φ). The two formulations are

equivalent since C =
√

A2 + B2 and φ = tg
B
A

, but the first one is a linear model,
and thus preferred. The goal is then to find A and B of all of the measured signals.
To obtain an accurate estimation of these coefficients, equation 5.31 is used as it
considers more than the first order.
The problem can be presented as:

y =


y1
·
·
·

yn

 =


cos ωt1 sin ωt1 cos 2ωt1 sin 2ωt1

... ... ... ... 1




A1
B1
A2
B2
A0

 (5.32)

which can be rewritten as: y = Cc, where n is the number of measured data, y is
the vector of the measured data, c is the vector of the unknown coefficients and C
is a matrix containing the coefficients of the model in equation (5.31), which are
the more accurate, the higher is the considered order and which are known, since
the frequency has been evaluated through the nonlinear least square method. The
problem is easily solved through: c = C−1y. The output signal can now be redefined
considering only the first order coefficients. This is based on the assumption that the
higher orders are related to noise, but neglecting them from the beginning would
have caused a worse approximation.
This procedure must be repeated for each degree of freedom, whose displacement
has been measured. Once all the pairs Al and Bl , where l indicates the l-th degree
of freedom, are defined, the complex frequency response is straightforward to
calculate.

H1,l =
(A1 − iB1)l
(A1 − iB1)1

(5.33)

and

Hvc,l =
(A1 − iB1)l
(A1 − iB1)v c

(5.34)

where vc stands for voice coil. These expressions provide the frequency response
obtained from the comparison between the l-th degree of freedom and the first
degree of freedom in equation (5.33) and between the l-th degree of freedom and
the voice coil in equation (5.34).
Figure 5.26 reports the complex frequency response of the three edge masses, com-
pared to the voice coil input signal, calculated from 10 Hz up to 60 Hz. Instead of
using a single step or multiple single step, a slow square wave excites the system
and time domain average over all the steps is performed so to reduce the random
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Figure 5.26. Frequency response

error. Even though the phase resolution is very poor, it clearly shows a group of
natural frequencies occurring mainly in the range between 24 Hz and 40 Hz, in
agreement with the results of the FEM analysis. Finally, regarding the resolution,
note that about 10 frequencies are expected within a bandwidth of some Hz, which
implies that about 10 crossings of 90 degrees should be measured within the band-
width. This requires a very high resolution, due to the presence of many frequencies:
indeed, if 10 is the minimum number of points per frequency, at least 100 points are
needed for the entire frequency bandwidth and for a 5 Hz bandwidth, this means a
0.05 Hz resolution.

5.8 Final remarks

In this chapter, the case of the twin-wave system is analysed not only to complete
the records of the long-range families, but also to present a first extension to a
more complicated network of objects, anticipating the future application on large
populations and on swarm dynamics. The mathematical model and numerical
simulations are presented together with the FEM analysis and the experimental
investigation.
The experimental campaign, even if at its earliest stage, is a useful tool to prop-
erly investigate the dynamic of the system. It enlightens the effect of the magnets,
which are powerful enough to clearly couple the two waveguides, but probably not
enough the give rise to the unconventional phenomena presented in the previous
chapters. There are several aspects that can be enhanced for the future experiments.
In this section, an overview of the main issues is presented.
Firstly, the FEM analysis should extend the magnetic interaction, coupling not
only face-to-face masses, but also elements arranged diagonally with respect to the
selected mass. A more accurate finite element analysis helps the understanding of
the effects of the magnetic interaction and provides a more precise estimation of the
natural frequencies of the system. A way to enhance the description of the magnetic
interaction entails the manual modification of the mass and stiffness matrix, extrap-
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olated from Ansys, adding the contributions of the magnetic interaction. Despite
the guaranteed high level of accuracy the resulting matrices would reveal, this
approach is not simple, since it involves the correction of the physical parameters
of the degrees of freedom defined in the FEM.
Regarding the experimental set-up and in particular the twin-system itself, the
number of used degrees of freedom should be enlarged. This brings two advan-
tages: first of all, a larger system implies a larger amount of time before the wave
reflections occur; this is important when the theoretical model finds its focus on
infinite-size structures. Besides, to perform the dispersion curve through FFT, only
half of the data can be beneficially used; hence, the larger is the number of employed
degrees of freedom, the larger is the number of available wavenumbers and the
better is the resolution of the dispersion curve.
A further consideration concerns the realization process. It must be noticed that
inevitably the 3D printer has a limited preciseness and repetitiveness, both because
the plastic material tends to shrink during the printing process and also because the
high tolerances obtained with conventional materials, as steel and aluminium, can-
not be achieved with PLA; this indicates that the masses are not all equal. Besides,
as previously mentioned, the springs are made out by a unique piece that inserted in
the basis, passes through the magnet holders. To be able to use this type of assembly,
the strips have to be bended before they are linked to the masses. However, the
process of inserting the strip in the magnet holders, since it is manually done and
since the specific holes are not always precise for the aforementioned reasons, might
cause further deformations of the strip, which have a random feature.
The greatest reason of discrepancy between the theoretical model and the exper-
iments stands in the intrinsic nonlinearities of the system and in the assumption
that the single waveguides can be considered one-dimensional. Several are the
sources of nonlinearity, as they can refer to architectural imperfections or they can
be addressed to the assumptions of the model. The main reasons of nonlinearity
are:

• the presence of an offset in the alignment of the voice coil with the center of
the face of the first mass;

• the stiffness of the springs depending upon the amplitudes of the vibrations,
which causes a shift of the natural frequencies of the system. This aspect
surely involves the the springs of the voice coil support that stiffen the higher
is the amplitude of the vibrations, but it might also refer to the metal strips;

• the force input signal is not linear, both because it is not directly proportional
to the current, but it is further affected by a higher order term, which, even
though small, induces additional harmonics, and because of the intrinsic
dynamics of its support;

• the magnetic coupling.

The effects of the nonlinearities due to architectural imperfections, namely the
stiffness of the springs and voice coil dynamics, can be quantified through the
Lissajous curve technique [117], which is often used to detect the nonlinearities of
the experimental model. This method measures for any investigated frequency the
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ratio between the output signal and the input signal, which in the case of a linear
system is an elliptic curve. The frequency is chosen so to be the natural frequency
of the object under analysis. Distortions of the elliptic curve unveil the presence of
nonlinearities.
Furthermore, the theoretical model considers the waveguides as one-dimensional;
however, the misalignment of the masses produces a motion in the transverse
direction, with respect to the length of the waveguide. The system becomes two
dimensional and cross-section effects influence the dispersion curve: in fact, in a
two-dimensional system, to each frequency there is a set of associated wavenumbers
that unveils the superposition of different modes.
A last consideration is about the post-processing analysis. The presented results
are affected by a very poor resolution, which prevents a proper identification of
the dispersion curve. Once the experimental set-up is appropriately improved, the
tests should be run for different type of excitations, as each type brings its own
advantages.
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Chapter 6

Conclusions

This work investigates the effects of long-range interactions introduced in an elastic
metamaterials on the dynamic response of a system. The main aspiration is the
shaping of the desired dynamic response by tailoring the magnetic coupling.
The first chapter introduces the fundamental basis of the proposed theory: from
the elasticity theory proposed by Navier and Cauchy, and the first digression about
non localities presented by Brillouin and Kröner, to Eringen’s nonlocal theory, the
mathematical model is presented in its general form.
Several researches about long-range interaction and metamaterials have already
been developed and many are the authors who steered the attention towards this
new topics. Especially the topic of metamaterial can be tackled by different point
of views, depending on their nature, whether they are acoustic, electromagnetic or
mechanical. However, the combination of metamaterials and long-range interac-
tions is an absolute novelty, and the newly arising concept of elastic metamaterial
represents a breakthrough in the whole panorama of metamaterials.
Long-range interactions have the power to revolutionise the classical dynamics,
anchored to short range connectivity and communication channels involving only
close neighbour particles. The dynamics of systems equipped with long-range con-
nections is described by an integral-differential equation, in which the convolution
term is representative of their nonlocal nature, according to Eringen’s theory.
A wide family of forces is considered, and in particular two types, i.e. Gauss-like and
Laplace-like, induce a variety of unconventional propagation phenomena. These
forces, described in terms of their nature and physical interpretation, act in addition
to the classical short-range connections occurring between closest neighbours. They
present three advantages, as they rapidly decay with the distance, they satisfy the
action-reaction principle and their associated Fourier Transform is such that closed
form analytical solutions are available for their dispersion relationship. These ad-
vantages makes these forces perfect candidates to mimic magnetic inclusions, which
embedded within the matrix of a material, would practically produce long-range
forces.
The willingness to define a general propagation behaviour related to the long-range
interactions promotes the investigation of a simple one-dimensional waveguide.
A complete theoretical analysis is presented: the nonlocal theory of Eringen is
applied to Navier-Cauchy equations; a linearisation procedure, applied to long-
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range forces modelled as power-law, guarantees the achievement of closed form
analytical solutions of the dispersion relationship. The results, and especially the
extraordinary emerging phenomena, are discussed in terms of a unique parameter
χ, which provides a measure of the strength of the long-range forces. Indeed, since

χ =
E∗

E
, χ takes into account the ratio of the long-range elastic modulus E∗ =

µβ3

2
√

2
and the Young modulus E, where E∗ can be either positive or negative, depending
on the attractive or repulsive nature of the interaction force.
Varying of E∗, hence of χ, the results show three different scenarios:

• for large and negative χ wave-stopping arises and negative group velocity
induces a backward propagation;

• for large and positive χ, after a region of instability because of the presence of
imaginary solutions, superluminal propagation occurs due to the high values
of the group velocity;

• for |χ| close to 1, a mode migration appears and modes are transported from
high to low frequencies and vice versa.

The general feature of the forces is warranty of the universal representation of the
propagation scenarios. This implies the legitimacy of the results for a wide class of
both long-range forces and elastic metamaterials.
Since long-range interactions do not strongly interact with matter, their influence
spread out across the surrounding environment, and they become messengers and
communicating patterns, which might involve several objects. This work presents
the simplest case of two identical waveguides, coupled with each other by the mean
of the long-range interactions. However, the extension to more complicated systems,
as even an entire population of single elements (swarm dynamics), is not pure
imagination. The mathematical analysis applied on the twin-wave system duplicates
the case of a single waveguide, and the results confirm the overall effectiveness of
the approach, also to more complicated problems. FEM and experimental campaign,
held at Technion, Israel Institute of Technology, further develop the investigation,
unveiling more interesting properties of long-range interactions. The experimental
campaign is surely at its earliest stage, but it is still useful to investigate the dynamic
of the system.
The experimental campaign enlightens several aspects:

• the effect of the magnets is powerful enough to couple the two waveguides,
but not enough the give rise to the unconventional propagation phenomena;

• a more accurate FEM modelling of the magnetic coupling is required so to
extend the interaction to other elements and not only to face-to-face masses;

• a larger number of masses should be involved so to gain preciseness for the
FFT evaluation and so to have longer time before reflections occur;

• several sources of nonlinearity are detected and they are related to structural
imperfections of the 3D printed components and of the springs, manually as-
sembled to the main structure, to the the presence of an offset in the alignment
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of the voice coil with the center of the face of the first mass, to the stiffness
of the springs depending upon the amplitudes of the vibrations, to the input
signal, to the magnetic force;

• the theoretical model considers the waveguides as one-dimensional, but
misalignments of the masses, producing a motion in the transverse direction,
would transform the system in a two-dimensional one.

These considerations are the starting points of the future developments of this
work, which firstly concern the follow-up of the experimental campaign. Besides,
since the aim is to present a general theory about the propagation characteristics
of long-range interactions embedded within elastic metamaterials, all the applied
hypothesis, regarding linearity and special kernels, should be removed.
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Appendix A

About the single distribution

A.1 Single spring

Given the system presented in Figure 4.1 and here reported for seek of clarity, the

Figure A.1. Long-range as a single spring

related equation of motion is:

EA
∂2w(x, t)

∂x2 − ρA
∂2w(x, t)

∂t2 + χ [w(x)− w(x− D)] = 0 (A.1)

To find the associated dispersion relationship, the displacement is assumed to be
in the form: w(x, t) = w0ej(kx−ωt). Substituting the displacement in equation (A.1),
one obtains:

− ρAω2 + χ
(

1− e−jkD
)
= 0 (A.2)

If complex wavenumber are considered, it is admissible to set k = kR + jk I , which
leads to:

ρAω2 − χ
(

1− e−j(kR+jkI)D
)
= 0 (A.3)

ρAω2 − χ + χe−jkR ekI D = 0 (A.4)

ρAω2 − χ + χ (cos kRD− j sin kRD) ekI D = 0 (A.5)

Dividing real and imaginary part of equation (A.5), the following system is given:{
ρAω2 − χ + χ cos kRDekI D = 0

−χj sin kRDekI D = 0

Conditions on the wavenumber are sought: from the second equation k(n)R =
πn
D

is
obtained; substituted in the first equation of the system, it leads to:

ρAω2 − χ + χ(−1)nekI D = 0 (A.6)
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Considering that ω2
n =

ρA
χ

is the natural frequency of the single oscillator, the

condition on the imaginary part of the wavenumber is:

k(n)I =
1
D

ln
1− ω2

ω2
n

(−1)n (A.7)

This equation can be interpreted in terms of the frequency ω as well: Ω2 =(
ω

ωn

)2

= 1− ekI D cos kRD, where still ω2
n =

ρA
χ

.

This implies an infinite set of wavenumbers for any given value of the frequency ω.

A.2 Double spring

In the same way, also the case of a double spring, as in Figure 4.2, is reported.
The related equation of motion is:

Figure A.2. Long-range as a double spring

EA
∂2w(x, t)

∂x2 − ρA
∂2w(x, t)

∂t2 + χ [w(x)− w(x− D)] + χ [w(x + D)− w(x)] = 0
(A.8)

Eliminating the contribution of the short-range forces, and assuming the displace-
ment once again in the form w(x, t) = w0ej(kx−ωt), equation (A.8) can be rewritten
as:

ρAω2 + χ
(

1− e−jkD
)
+ χ

(
ejkD − 1

)
= 0 (A.9)

ρAω2 + χ
(
−e−jkD + ejkD

)
= 0 (A.10)

For complex wavenumber k = kR + jk I , the dispersion relationship becomes:

ρAω2 + χ
(
−e−jkRDekI D + ejkRDe−kI D

)
= 0 (A.11)

ρAω2 + χ
[
−ekI D (cos kRD− j sin kRD) + e−kI D (cos kRD + j sin kRD)

]
= 0

(A.12)
and finally:

ρAω2 + χ [−2 cos kRD sinh k I D + j2 sin kRD cosh k I D] = 0 (A.13)
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Separation of real and imaginary part of equation (A.13) leads to:ρAω2 + χ
[
cos kRD

(
e−kI D − ekI D

)]
= 0

χj sin kRD
(

e−kI D + ekI D
)
= 0

(A.14)

{
ρAω2 − 2χ cos kRD sinh k I D = 0

sin kRD cosh k I D = 0
(A.15)

To find the conditions on the wavenumber, from the second equation of the system

(A.15) k(n)R =
πn
D

is extracted; when inserted in the first equation, the condition on
the imaginary part is achieved:

k(n)R =
πn
D

k(n)I =
1
D

arcsinh
ρAω2

2χ

1
(−1)n

(A.16)

The second relation can be also interpreted in terms of the frequency ω: Ω2 =(
ω

ωn

)2

= 2 cos kRD sinh k I D, where ω2
n =

ρA
χ

.

As for the single spring, even this case shows the existence of an infinite number of
values of the wavenumber for any single frequency.
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Appendix B

Nondimensional dispersion
relationship

ρ
∂2w
∂t2 − E

∂2w
∂x2 − g(x) ∗ w(x) = 0 (B.1)

The Fourier transform in space and time of the previous equation, for the Gauss-like
force, leads to:

− ρω2 ˆ̂w + Ek2 ˆ̂w− µβ3k2

2
√

2
e−

β2k2
4 ˆ̂w = 0 (B.2)

Dividing all terms by E and multiplying by β2 produces:

ρ

E
β2ω2 − k2β2 +

µβ3

E2
√

2
β2k2e−

β2k2
4 = 0 (B.3)

Introducing the nondimensional parameters Ω =

√
ρ

E
βω, K = βk and χ =

µβ3

2
√

2E
,

the resulting nondimensional relationship is:

Ω2 + K2
(

χe−
K2
4 − 1

)
= 0 (B.4)
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Appendix C

Nondimensional dispersion
relationship with viscous term

ρ
∂2w
∂t2 + γ

∂w
∂t
− E

∂2w
∂x2 − g(x) ∗ w(x) = 0 (C.1)

The Fourier transform in space and time of the previous equation, for the Gauss-like
force, leads to:

− ρω2 ˆ̂w− jγω ˆ̂w + Ek2 ˆ̂w− µβ3k2

2
√

2
e−

β2k2
4 ˆ̂w = 0 (C.2)

Dividing all terms by E and multiplying by β2 one obtains:

ρ

E
β2ω2 + j

β2γ

E
ω− k2β2 +

µβ3

E2
√

2
β2k2e−

β2k2
4 = 0 (C.3)

Some nondimensional parameters are straightforward to define; indeed, Ω =√
ρ

E
βω, K = βk and χ =

µβ3

2
√

2E
. The viscous term requires few mathematical

passages:
β2γ

E
ω =

βω√
E

γβ√
E
= βω

√
ρ
√

E
γβ√

ρE
(C.4)

the first term is Ω and the second one is Γ that from now on will measure the
intensity of the dissipation contribution.
The resulting nondimensional relationship is:

Ω = −
Γ
2
±

√
Q2 −

(
Γ
2

)2

(C.5)

where Γ =
γβ√

ρE
, Q2 = K2[1− χφ(K)] and φ(K) = e−

K2
4 for the Gaussian case.

The group velocity is, in general, complex:

Cg =
∂Ω
∂K

= ± 1√
1−

(
Γ

2Q

)2

∂Q
∂K

= ± 1√
1−

(
Γ

2Q

)2
CgΓ=0 (C.6)
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Appendix D

Interbody force

Figure D.1. Twin-waves model

First the geometrical parameters are defined.
Definition of the position vectors:
The coordinates of the point P:

x =

(
x1
x2

)
=

(
x
0

)

The coordinates of the point R:

ξ =

(
ξ1
ξ2

)
=

(
ξ
0

)

The coordinates of the point Q:

η =

(
η1
η2

)
=

(
η
−D

)

Definition of the displacement vectors:
displacement within a single waveguide:

εs =

(
w1(x)− w2(ξ)

0

)
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displacement of the twin system:

εcr =

(
w1(x)− w2(η)

0

)

Definition of the distance vectors:
distance between P and R

rs = x− ξ + εs =

(
x1 − ξ1 + εs1
x2 − ξ2 + εs2

)
=

(
x− ξ + εs1

0

)

distance between P and Q

rcr = x− η+ εcr =
(

x1 − η1 + εcr1
x2 − η2 + εcr2

)
=

(
x− η + εcr1

D

)

modulus |r| =
[
(x− η + εcr1)

2 + D2
] 1

2

distance between P and Q

r0 = x− η =

(
x− η

D

)

For the Gauss-like force F(r) = µre−
(

r
β

)2

, the analytical expressions of the two
long-range contributions f0 and h0 within the same waveguide are:

f0 = µe
−
(
|r0|

β

)2

(D.1)

h0 =
∂ f (|rcr|)

∂ |rcr|

∣∣∣∣
εcr

(x− η)⊗ (x− η)

|x− η| (D.2)

Expliciting the components:

h0 = −µ
2
β2 e
−
(
|r0|

β

)2 [
(x− η)2 (x− η) D

D (x− η) D2

]
(D.3)

Since
F (r) = f (|r|) r = f0 · (x− η) + h0εd + f0εd (D.4)

then

F (r) = µe
−
(
|r0|

β

)2 [
(x− η)− 2

β2 (x− η)2 [w1(x)− w2(η)] + [w1(x)− w2(η)]

D− 2
β2 D (x− η)

]
(D.5)
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The integral term of the equation becomes:

∫
η∈R

µe−
(

D
β

)2

e
− (x−η)2

β2 (x− η) dη−w1(x)
∫

η∈R
µe−

(
D
β

)2

e
− (x−η)2

β2

[
1− 2

β2 (x− η)2
]

dη+

∫
η∈R

µe−
(

D
β

)2

e
− (x−η)2

β2

[
1− 2

β2 (x− η)2
]

w2(η) dη (D.6)

Only the third integral brings a non-null contribution and can be rewritten as:

− [h011 + f0] (x) ∗ w2(x) (D.7)

or alternatively:
− l(x) ∗ w2(x) (D.8)

This represents the long-range contribution due to the bottom waveguide on the
upper one.
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Appendix E

Effective stiffness of the
twin-wave model

The measured magnetic force is:

FM = C1 + C2
1
x4 (E.1)

with C1 = 7.45[N] and C2 = 1.26105[N ∗m4]. To obtain the values of the stiffness,
the magnetic force must be linearised according to equation (3.24):

f (|r|)r ∼ (x− ξ) f0 + h0ε + f0ε (E.2)

In this way, the force can be interpreted as F = Kx, where K is the value of the
effective stiffness.
The resulting values are kx = 4.92

N
m

and ky = 16.9
N
m

.
The effective stiffness depends on the mutual distance between the magnets, as
shown in Figure E.1. According to Figure E.1, the matrix of the distances is:

Figure E.1. Magnet position

[
D2

x DxDy
DyDx D2

y

]
=

[
0 0
0 (30mm)2

]
(E.3)
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The only two terms of the linearised force that should be considered are h0ε and
f0ε:

f0ε =
C2

|x0|5

[
w(x)− w(η)
u(x)− u(η)

]
(E.4)

and

h0ε = − 5C2

|x0|7
10−6

[
0 0
0 (30mm)2

] [
w(x)− w(η)
u(x)− u(η)

]
(E.5)

Combining the two contributions, two equations are obtain: one associated to the
first row, which related to the x axis provides the effective stiffness kx, and one
associated to the second row that, related to the y axis, leads to the effective stiffness
ky. Indeed,

Fx =
C2

|x0|5
[w(x)− w(η)] (E.6)

produces kx =
C2

|x0|5
= 4.92

N
m

and

Fy =
C2

|x0|5
[u(x)− u(η)]− 5C2

|x0|7
10−6D2

y [u(x)− u(η)] (E.7)

provides ky =
C2

|x0|5

[
1− 5

|x0|2
10−6D2

y

]
= 16.9

N
m

.
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Appendix F

Modes shape

In this section, most of the obtained modes are reported. The displacement is not
real scale. As mentioned in the paragraph related to the FEM analysis, modes
related to the two waveguides appear very close to each other, with gaps of tenths
of Hz.

Figure F.1. 28.771 Hz

Figure F.2. 36.6 Hz
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Figure F.3. 36.75 Hz

Figure F.4. 37.247 Hz

Figure F.5. 37.74 Hz

Figure F.6. 38.514 Hz
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Figure F.7. 39.48 Hz

Figure F.8. 40.409 Hz

Figure F.9. 41.826 Hz

Figure F.10. 42.806 Hz
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Figure F.11. 44.588 Hz

Figure F.12. 45.546 Hz

Figure F.13. 47.583 Hz

Figure F.14. 48.466 Hz
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Figure F.15. 50.645 Hz

Figure F.16. 51.416 Hz

Figure F.17. 53.628 Hz

Figure F.18. 58.841 Hz
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Figure F.19. 59.182 Hz

Figure F.20. 60.854 Hz

Figure F.21. 61.066 Hz

Figure F.22. 62.35 Hz
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Figure F.23. 62.469 Hz

Figure F.24. 63.264 Hz

Figure F.25. 63.343 Hz

Figure F.26. 127.98 Hz
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(a) Isometric view

(b) Top view

Figure F.27. 152.37 Hz
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