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1 Introduction

There is a significant body of literature in statistics, econometrics and ecology dealing
with the modeling of discrete responses under biased or preferential sampling designs.
They are particularly popular in the natural sciences when species distributions are
studied. Such sample design may reduce the survey cost especially when one of the
responses is rare. A large part of statistical literature concerns the case-control design,
retrospective, choice-based or response-based sampling (Lancaster and Imbens, 1996).
In the simplest situation a sample of cases and an additional sample of controls are
available and for each observation a set of “attributes/covariates” is observed in both
samples. Then inference is carried out following standard statistical procedures (Ar-
menian, 2009).
A situation that has received increasing attention in the literature is the situation
where the sample of controls is a random sample from the whole population with
information only on the attributes and not on the response (Lancaster and Imbens,
1996). This situation is fairly common in ecological studies where only species’ pres-
ence is recorded when field surveys are carried out. In the ecological literature, since
the 1990’s such data are called presence-only data (see Araùjo and Williams, 2000, and
references therein). Pearce and Boyce (2006) define presence-only data as “consisting
only of observations of the organism but with no reliable data where the species was
not found”. Atlases, museum and herbarium records, species lists, incidental observa-
tion databases and radio-tracking studies are examples of such data.
In recent years we find a considerably growing literature describing approaches to the
modeling of this type of data, among the many ecological papers we recall Keating
and Cherry (2004), Pearce and Boyce (2006), Elith et al. (2006), Elith and Leath-
wick (2009), Franklin (2010) and, most notably, in the statistical literature Ward et al.
(2009), Warton and Shepherd (2010), Chakraborty et al. (2011), Di Lorenzo et al.
(2011) and Dorazio (2012). While in Warton and Shepherd (2010) and Chakraborty
et al. (2011) the presence-only data are modelled using Poisson point processes in the
likelihood and Bayesian frames respectively, in Ward et al. (2009) and Di Lorenzo et al.
(2011) a modified case-control logistic model is adopted in the likelihood and Bayesian
perspective respectively. In Dorazio (2012) the asymptotic relations between the two
approaches are discussed.
A different approach, MaxEnt (Phillips et al., 2006; Elith et al., 2011), is based on the
maximum entropy principle (Jaynes, 1957). In MaxEnt the relative entropy between
the distribution of covariates at locations where presences are observed (species pres-
ence in the related papers) and the unconditional background distribution of covariates
is maximized subject to some constrains (see Philips et al., 2006, for details).
As pointed by Dorazio (2012) “the MaxEnt method requires knowledge of species’
prevalence for its estimator of occurrence to be consistent”. Recently, further attention
has been given to the connection existing between the point process and MaxEnt ap-
proaches (Fithian and Hastie, 2013; Renner and Warton, 2013). In particular in Fithian
and Hastie (2013) the finite sample equivalence between point processes and MaxEnt is
analyzed and the different behavior of standard logistic regression in the same setting
highlighted.
n what follows we are going to use the name presence-only data when referring to the
above sketched general problem of having information on the presence and covariates
jointly on a sample from a population, while information on only the covariates is
available on any sample from the same population. This work is developed in the same
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discrete setting as in Ward et al. (2009) and Di Lorenzo et al. (2011). In particular, we
have a population of conditionally independent units given covariates and we imagine
that if some type of dependence is detected, information on it is brought in by covari-
ates. In this work, the presence of spatial dependence in the data is discussed in the
application to real data, enhancing the issues arising when only censored information
on the response variable is available.
The main contribution of the paper is a new rigorous formalization of the logistic regres-
sion for presence-only data based on a stratified sampling design with non-overlapping
strata that allows further insight into the inferential issues. This leads us to an algo-
rithmic procedure that, among other results, returns a MCMC approximation of the
response prevalence under general knowledge of the simplified mechanism generating
the data. We present an extensive simulation study comparing our approach to two
models representing optimal benchmarks and an application to real data.
The paper is organized as follows. Section 2 introduces our general framework for the
presence-only data problem, Section 3 presents the Bayesian approach, Section 4 de-
scribes the MCMC algorithm while results related to the simulation study are reported
in Section 5. In Section 6, an application to real data is presented to show the relevance
and flexibility of our proposal. Finally, in Section 7 some conclusions are drawn and
future developments briefly described.

2 Logistic regression for presence-only data

The analysis of a binary response related to a set of explicative covariates is usually
carried out through the use of the logistic regression where the logit of the conditional
probability of occurrence is modeled as a function of covariates. In this section, we
first introduce a general framework for the logistic modeling of presence-only data and
then consider the case of the logistic regression with linear predictor. The proposed
approach is built on two levels and we partially follow the formulation introduced by
Ward et al. (2009) but adopting a stratified sampling design and a Bayesian scheme as
in Divino et al. (2011).

2.1 A two-level scheme

Let Y be a binary variable informing on the presence (Y = 1) or absence (Y = 0) of
a population’s attribute and let X = (X1, ..., Xk) denote a set of informative, on the
same attribute, covariates which are available on the same population and with do-
main X . Then, the presence-only problem can be formalized by considering a censorship
mechanism that acts when observing the response Y , so that part of the population
units are not reachable. In particular, we refer to the situation in which we are able to
detect only a partial set of units on which the attribute of interest is present while the
information on the covariates X is available on the entire population. In this situation
we have to consider two types of uncertainty: the uncertainty due to the mechanism
of censorship and the uncertainty due to the sampling procedure. Moreover, since the
response Y is not completely observable, we need to adjust for the sampling mechanism
through the use of a case-control design (Breslow and Day, 1980; Schlesselman, 1982;
Breslow, 2005; Armenian, 2009) .
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In order to build a statistical model, in this framework we adopt the following concep-
tual scheme in two levels.

Level 1 Given the population of interest U of size N , the binary responses y =
(y1, ..., yN ) are conditional independently generated by a probability law P.

Level 2 Let Up be the subset of U where Y = 1. A modified case-control design is
applied so that a sample of presences, considered as cases, is selected from Up and a
sample of “contaminated” controls (Lancaster and Imbens, 1996) is selected from the
whole population U , with all the covariates but no information on Y .

Here, we cannot approach the model construction using only a finite population ap-
proach (Särndal, 1978; Valliant et al., 2000) because of the censoring mechanism that
“masks” distributional information on Y already at the population level. By the in-
troduction of Level 1 we can describe the censored observations as random quantities
generated by the probability law P. Hence, the problem of presence-only data can be
formalized as a problem of missing data (Rubin, 1976; Little and Rubin, 1987). In
particular, we consider a missing completely at random framework (Little and Rubin,
1987).

2.2 The model generating population data

At the first level, we assume that the law P is defined in terms of the conditional
probability of occurrence P(Y = 1|x), denoted by π∗(x), when the covariates are X =
x, and that the binary responses are conditionally independent given X = x. Moreover,
we consider that the relation between Y and X is formalized through a regression
function on the logistic scale, logitπ∗(x) = φ(x), that is π∗(x) = exp{φ(x)}

1+exp{φ(x)} . When
the data y = (y1, ..., yN ) are conditional independently generated from the law P, we
denote by π the empirical prevalence of the binary response Y in the population U ,
expressed as the ratio of the number of presences N1 to the size of the population, that
is π = N1

N .

2.3 The modified case-control design

At the second level, we adopt a case-control design adjusted for presence-only data
(Lancaster and Imbens, 1996) in order to account for the specific structure of the data.
In general, the use of the case-control design is always necessary when it is appropriate
to select observations in fixed proportions with respect to the values of the response
variable. This can occur when the attribute of interest represents a phenomenon that
is rare among the units of the population as for example a rare disease or exposure in
epidemiological studies (Woodward, 2005).
The case-control design can be seen as a stratified sampling design (Schlesselman,
1982; Valliant et al., 2000; Levy and Lemershow, 2008) with non-overlapping strata,
the strata being the controls (Y = 0) and the cases (Y = 1). Observations are generated
from each stratum using a random sampling design, i.e n0 controls and n1 cases are
obtained. In our framework, we consider simple random sampling mechanisms without
replacement and with discrete uniform probability of selection. Then an element of a
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population of size N has probability n
N to be selected in a sample of size n.

Let us introduce some notation. In our framework, we consider two levels of proba-
bilistic formalization: the first one is represented by the probability law P generating
the data, while the second one concerns the probality distribution of the response Y
at the population level. For each value x ∈ X , let us indicate by U(x) the subset of U
where units have covariate X equal to x, that is U(x) = {i ∈ U|X(i) = x}, where X(i)
is the covariate X at unit i. Now, we denote by P (Y = 1|x) the conditional probabilty
of drawing a presence from U(x). Under the assumption that each unit has the same
chance to be drawn one has

P (Y = 1|x) =
N1(x)

N(x)
(1)

where N(x) is the size of the subset U(x) and N1(x) =
∑
i∈U(x) yi. If the response Y

is censored or only partially observed in U , the probability in (1) cannot be determined
because the quantity N1(x) is unknown. But under the assumption that, given X(i) =
x, Yi are conditionally independent binary random variables with identical conditional
probability of occurrence P(Y = 1|x) = π∗(x), we can derive by simple algebra the
expectation of the ratio in (1)

E
[
N1(x)

N(x)

]
= P(Y = 1|x).

Therefore, in order to derive a computable model for presence-only data, throughout
the paper we use the following approximation and its consequences

P (Y = 1|x) ≈ P(Y = 1|x) = π∗(x).

Now, let C be a binary indicator of inclusion into the sample (C = 1 denotes that
a unit is in the sample), let ρ0 = P (C = 1|Y = 0) and ρ1 = P (C = 1|Y = 1) be
the inclusion probability of the absences and the presences, respectively. Under the
assumption that, given Y , the sampling mechanism is conditionally independent of
the covariates X, the conditional probability of occurrence at sample level is obtained
through the Bayes rule as

P (Y = 1|C = 1, x) =
ρ1exp{φ(x)}

ρ0 + ρ1exp{φ(x)}
. (2)

Hence, the corresponding case-control regression function, denoted by φcc(x) and de-
fined as the logit of (2), is given by

φcc(x) = φ(x) + log
ρ1
ρ0
. (3)

In particular, if the selection of cases and controls is made independently without
replacement, the inclusion probabilities are given in terms of the empirical prevalence
π by ρ0 = n0

(1−π)N and ρ1 = n1
πN , so that the equation (3) becomes

φcc(x) = φ(x) + log
n1
n0
− log

π

1− π .

In our framework, since the response variable Y is already censored at the population
level, the standard case-control design cannot be adopted but it should be modified in
such a way that a sample of presences is matched with an independent sample drawn
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from the entire population, named the background sample (Zaniewski et al., 2002; Ward
et al., 2009). Remark that in this sample the response variable is unobserved and only
the covariates are available.
In this way, the complete sample S is composed by a set Su of nu independent back-
ground data, where the response Y is not observed, drawn from the entire population
U and by a set Sp of np independent observations selected from the sub-population of
presences Up.
To adopt the stratified sampling design formalization we need to clarify the role of the
sub-population of presences Up ⊂ U . We need disjoint strata to ensure the coherence of
the probabilistic structure of the model. Hence we introduce a design population UD de-
fined as the reference population U augmented with the sub-population of presences Up,
that is UD = (U ;Up), and then of size ND = N +N1 or equivalently ND = N0 + 2N1.
To illustrate the sampling framework we are going to adopt here, let us consider the
following situation: we can label population units of type y = 1 only when they are
isolated from units of type y = 0. This can be formalized by introducing a binary
stratum variable Z such that Z = 0 indicates when an observation is drawn from the
stratum of the entire population U while Z = 1 denotes the sampling from the stratum
of the sub-population Up. Remark that Z = 1 implies Y = 1 while Z = 0 implies
that Y is an unknown value y ∈ {0, 1} because in this stratum we cannot observe the
response Y . Moreover, by construction the stratum Z is conditionally independent of
the covariates X, given the response Y . The introduction of the stratum variable Z
allows us to define the structure of the data at the population level and at the sample
level in terms of presences/absences (response Y ) and known/unknown data (stratum
Z), as reported in Table 1 and Table 2. In Table 1, N0 represents the number of

Table 1: Data structure at the design population level by stratum (Z) and response
(Y ).

stratum

response Z = 0 Z = 1 Total

Y = 0 N0 0 N0

Y = 1 N1 N1 2N1

Total N N1 ND

Table 2: Data structure at the sample level by stratum (Z) and response (Y ).

stratum

response Z = 0 Z = 1 Total

Y = 0 n0u 0 n0

Y = 1 n1u np n1

Total nu np n

absences in the population U while in Table 2, n0u and n1u respectively denote the



Bayesian Logistic Regression for Presence-only Data 7

unknown frequencies of absences and presences in the sub-sample Su. From Table 1,
it is easy to derive the probabilistic weight of each stratum, P (Z = 0) = N

N+N1
and

P (Z = 1) = N1
N+N1

and the probability distribution of the response Y in the design
population UD, respectively P (Y = 0) = N0

N+N1 and P (Y = 1) = 2N1
N+N1 . Remark

that, in the above described situation, the inclusion probabilities in the sample change.
In fact, while an absence can be drawn only when sampling from the stratum U , a
presence can be selected when sampling from both strata U and Up. Hence, one has
the following property(see Appendix for the detailed proof).

Property 1 Under a stratified random sampling design adjusted for presence-only data,
with non-overlapping strata U and Up, the inclusion probabilities in the sample are
given by

ρ0 =
n0u

(1− π)N
(4)

for the stratum of cases and by

ρ1 =
n1u + np

2πN
. (5)

for the stratum of controls.

The introduction of the stratum variable Z allows us also to exactly derive the logis-
tic regression model under the case-control design adjusted for presence-only data. In
fact, when we consider the population U augmented with its subset Up, π∗(x) repre-
sents the model for the conditional probability of occurence only when Z = 0, that
is P (Y = 1|Z = 0, x) = π∗(x). On the other hand, when Z = 1, we simply have
P (Y = 1|Z = 1, x) = 1. We can state the following result (see Appendix for the de-
tailed proof).

Proposition 1 Let us consider the population U augmented with its subset Up. Then,
under the assumption that the stratum variable Z is conditionally independent of X
given Y , one has that the conditional probability of presence in the design population
UD is given by

P (Y = 1|x) =
2π∗(x)

1 + π∗(x)
.

From the above result, we obtain the following Corollary (see Appendix for the detailed
proof).

Corollary 1 Under the assumption that, given Y , the inclusion into the sample (C =
1) is conditionally independent of the covariates X, one has

P (Y = 0|C = 1, x)P (C = 1|x) =
1− π∗(x)

1 + π∗(x)
ρ0 (6)

and

P (Y = 1|C = 1, x)P (C = 1|x) =
2π∗(x)

1 + π∗(x)
ρ1. (7)
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Then, from the ratio of (7) to (6), we can obtain that

P (Y = 1|C = 1, x)

P (Y = 0|C = 1, x)
=

2π∗(x)

1− π∗(x)

ρ1
ρ0
,

and by plugging the quantities ρ0 and ρ1, as defined in (4) and in (5), into the logit of
P (Y = 1|C = 1, x), one obtains the following relation (see Property 2 in the Appendix
for details)

logitP (Y = 1|C = 1, x) = logitπ∗(x) + log
n1u + np
n0u

− log
π

1− π

that represents the logistic regression model under the case-control design adjusted
for presence-only data. Now, recalling that logitπ∗(x) = φ(x), we can formalize the
presence-only data regression function, denoted by φpod(x), as

φpod(x) = φ(x) + log
n1u + np
n0u

− log
π

1− π .

Although the derivation is substantially different, we end with the same formulation as
in Ward et al. (2009). Now, in order to make parameter estimation possible, we need
to handle the ratio

ρ1
ρ0

=
n1u + np
n0u

1− π
2π

, (8)

where the quantities π and n1u are unknown (n0u = nu − n1u).
In the recent literature two main approaches have been proposed. The first one by
Ward et al. (2009) replaces the ratio n1u+np

n0u
with the ratio of the expected numbers

of presences and absences in the sample, that is

ρ1
ρ0
≈ E[n1u + np]

E[n0u]

1− π
2π

=
πnu + np
(1− π)nu

1− π
2π

=
πnu + np

2πnu
. (9)

The authors adopt a maximum likelihood approach and computation is carried out via
the EM algorithm. As they underline, this approximation can be easily implemented if
the empirical population prevalence π is known a priori. They discuss also the possibil-
ity to estimate π jointly with the regression function when the prevalence is identifiable,
as for example in the logistic regression with linear predictor, and with respect to this
case they present a simulation example. The difficulty in obtaining efficient joint es-
timates due to the correlation between π and the intercept of the regression term is
discussed as well. Notice that Ward et al. (2009) considers a slightly different repre-
sentation of the ratio (9), omitting the multiplier “2” in the denominator. This point
shows the difference between our approach and the model by Ward et al. (2009). In our
framework, we assume and formalize in details a stratified sampling design with non-
overlapping strata as sampling scheme. In fact that design induces that the presences
can be sampled from two disjoint strata, U and Up, hence from the results in Property
1 and Proposition 1 follows our representation of the ratio (8) .
Di Lorenzo et al. (2011), dealing with a problem of abundance data, use the approxima-
tion (9), but they adopt a Bayesian approach and consider the population prevalence
π as a further parameter in the model. They choose an informative Beta prior for π
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and in the MCMC algorithm they include an approximating step since the simulation
of π is performed from its prior and not from the posterior that can be derived through
the interaction between the parameter π and the regression function φ(x).
A different approximation of the ratio (8) can be obtained by considering the sample
prevalence πu = n1u

nu
in Su (the background sample).

Due to the censorship process, this quantity is unknown but it would be the max-
imum likelihood estimator for π if the data yu = {yi, i ∈ Su} were observed. Now,
replacing π by πu in (8) one obtains

ρ1
ρ0
≈ n1u + np

n0u

1− πu
2πu

=
n1u + np
nu − n1u

nu − n1u
2n1u

=
n1u + np

2n1u
, (10)

that allows to formulate a computable version of the regression function for presence-
only data as

φpod(x) ≈ φ(x) + log
n1u + np
n1u

.

This function depends on the data yu in Su which are not directly observable, but
if yu is treated as missing data they can be included into the estimation process and
then obtain an approximation for φpod(x). In particular, in a Bayesian framework,
this idea can be performed by using a Markov Chain Monte Carlo computation with
data augmentation (Tanner and Wong, 1987; Tanner, 1996) . Moreover, from the use
of MCMC simulations we can also obtain an approximation of πu and therefore an
estimate of the empirical population prevalence π. Details are given in Section 4.
The approximation (10) can, in principle, be always adopted, but some care must be
used as identifiability issues are present. We follow the recommendation in Ward et al.
(2009) to estimate φ(x) and π jointly when the latter is identifiable with respect to
the regression function, as for example in the case of logistic regression with linear
predictor (see Ward et al., 2009, for mathematical details).

2.4 The logistic regression with linear predictor

If we consider a linear predictor φ(x) = xβ, where β = (β1, ..., βk) is the vector of
the regression parameters, a computable logistic model for presence-only data can be
defined through the following approximation

φpod(x) ≈ xβ + log
n1u + np
n1u

,

or equivalently through the approximation of the conditional probability of occurrence
at the sample level

P (Y = 1|C = 1, x, β) ≈
exp{xβ + log

n1u+np

n1u
}

1 + exp{xβ + log
n1u+np

n1u
}

=

(
1 +

np

n1u

)
exp{xβ}

1 +
(
1 +

np

n1u

)
exp{xβ}

. (11)

In this particular case, all the unknowns of the model are the vector of regression
coefficients β and the missing data yu in the background sample Su.
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3 The hierarchical Bayesian model

Due to the censorship process affecting the data, we can acquire complete information
only on the stratum variable Z and not on the binary response Y . Then, it seems
natural to model Z as the observable variable. If we consider the conditional joint
distribution of Z and Y

P (Z, Y |C = 1, x) = P (Z|y, C = 1, x)

× P (Y |C = 1, x), (12)

through the marginalization over Y , the probability P (Z|C = 1, x) can be obtained
and we can express the relation between presences and covariates in terms of regression
of Z with respect to X. Notice that, while P (Y |C = 1, x) is given by (11), the term
P (Z|y, C = 1, x), due to the conditional independence between Z and X given Y ,
simplifies to P (Z|y, C = 1) that can be derived from Table 2.
We point out that, even if the response Y does not play an explicit role after the
marginalization, we need to keep it in the model as a hidden variable in order to
obtain an approximation for the quantity n1u =

∑
i∈Su

yi, necessary to adjust the
logistic regression model for presence-only data.
Now, we can formalize the hierarchical Bayesian model to estimate the parameters of
a logistic regression with linear predictor under the case-control design adjusted for
presence-only data. In order to better explain the conditional relationships underlying
the hierarchy, we introduce the graph in Figure 1. The dashed node indicates a variable
hidden with respect to the conditional relationships.

The likelihood In Figure 1, at the lowest level of the hierarchy, we have the likelihood,
defined with respect to the observable stratum variable Z. Recalling that from Table 2
we have P (Z = 1|Y = 0, C = 1) = 0 and P (Z = 1|Y = 1, C = 1) =

np
n1u + np

, when

(12) is marginalized over Y , one obtains the approximation

P (Z = 1 | C = 1, x, β) ≈

≈ np
n1u + np

exp{xβ + log
n1u+np

n1u
}

1 + exp{xβ + log
n1u+np

n1u
}

=

np

n1u
exp{xβ}

1 +
(
1 +

np

n1u

)
exp{xβ}

(13)

and hence

P (Z = 0|C = 1, x, β) ≈ 1 + exp{xβ}
1 +

(
1 +

np

n1u

)
exp{xβ}

.

Thus, we can assume that for all i ∈ S the conditional distribution of Zi is Bernoulli,
denoted by B(·), with probability of occurence given by (13), that is

Zi|Ci = 1, xi, β ∼ B

(
np

n1u
exp{xiβ}

1 +
(
1 +

np

n1u

)
exp{xiβ}

)
.



Bayesian Logistic Regression for Presence-only Data 11

θ

β

Y
u

Y
p

Z

C=1

X

Fig. 1: Graphical representation of the hierarchical Bayesian model.

Recalling that Zi = 0 for all i ∈ Su while Zi = 1 for all i ∈ Sp, the likelihood
function can be approximated as

L(β; z,x) ≈
∏
i∈Su

1 + exp{xiβ}
1 +

(
1 +

np

n1u

)
exp{xiβ}

×
∏
i∈Sp

np

n1u
exp{xiβ}

1 +
(
1 +

np

n1u

)
exp{xiβ}

.

where z = {zi, i ∈ S} and x = {xi, i ∈ S}. Ward et al. (2009) defines this function as
the observed likelihood versus the full likelihood that, instead, considers the distribution
of the stratum variable Z jointly with the response Y .

The hyperpriors, priors and missing data At the top of the hierarchy, we assume the
hyperparameter θ distributed as p(θ). At the second level, we consider the prior prob-
ability distribution on β depending on the hyperparameter θ, that is β|θ ∼ p(β|θ).
At the third level, the unobserved data yu = {yi, i ∈ Su} are considered latent pa-
rameters with prior distribution Bernoulli with probability of occurrence given by the
approximation in (11), that is for i ∈ Su

yi|Ci = 1, xi, β ∼ B

( (
1 +

np

n1u

)
exp{xiβ}

1 +
(
1 +

np

n1u

)
exp{xiβ}

)
.
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This point is important for deriving the predictive distribution of the unobserved data
yu necessary in the estimation algorithm.

The posterior Now, through the Bayes rule we derive the full posterior

p(β, θ|z,x) ∝ p(θ)p(β|θ)L(β; z,x) (14)

that can be used to make inference on the quantities of interest.

4 The MCMC computation

Samples from (14) can be obtained via Markov Chain Monte Carlo simulation (Robert
and Casella, 2004; Liu, 2008). While it seems quite standard to implement a direct
sampler for the vector β and the hyperparameter θ, we need to sample also the latent
yu. For this reason we introduce a step of data augmentation (Tanner and Wong, 1987;
Tanner, 1996) in the estimation procedure. The basic idea of the data augmentation
technique is to augment the set of observed data to a set of complete data that follow
a simpler distribution (Liu and Wu, 1999). In our framework, we need to augment the
observations z of the stratum variable with the missing values yu in order to have, at
each iteration, a consistent value of the quantity n1u, necessary to adjust the regression
function φpod(x) ≈ xβ+log

n1u+np

n1u
. The following result allows for an easy implemen-

tation of the data augmentation step (see the Appendix for the detailed proof).

Proposition 2 Using the approximation (10) of the ratio (8), the posterior predictive
probability of occurrence for an unobserved response Y = y in the sub-sample Su is
approximated by the probability law P that generates the data at the population level,
that is

P (Y = 1|Z = 0, C = 1, x) ≈ π∗(x). (15)

4.1 The data augmentation algorithm

A general MCMC procedure to perform inference on a logistic regression model for
presence-only data can be defined as follow.

Algorithm 1 MCMC with Data Augmentation for presence-only data.
Step 0. Initialize θ, β and yu

Step 1. Set n1u =
∑

i∈Su
yi

Step 2. Sample θ from p(θ|z,x, β)
Step 3. Sample β from p(β|z,x, θ)
Step 4. Sample yi from p(yi|Zi = 0, Ci = 1, xi, β) for all i ∈ Su

Repeat from Step 1

After the initialization of all the arrays (Step 0), Step 1 sets a current value for the
quantity n1u to adjust the regression function φpod(x). Step 2 and Step 3 consider the
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sampling from the posterior of the hyperparameter θ and the regression parameter β,
respectively, and they can be performed by Metropolis-Hasting schemes (Robert and
Casella, 2004). Step 4 concerns the data augmentation for the unobserved yu in order
to update consistently the quantity n1u at the following iteration. From the result
(15), this simulation can be obtained by a Gibbs sampler (Robert and Casella, 2004)
since the posterior predictive distribution for all i ∈ Su is approximated by a Bernoulli
random variable with parameter of occurrence π(xi) = exp{xiβ}

1+exp{xiβ} .

4.2 The estimation of prevalence π

From the data augmentation algorithm we can obtain an estimate of the population
prevalence π from the MCMC run for the posterior distribution. In fact, if at each
iteration t, after the Markov chain has reached the stationary equilibrium, we save the
current value n(t)1u , we can obtain a MCMC approximation of the sample prevalence πu
in Su by

π̂mcmc =
n̄1u
nu

where n̄1u is the ergodic mean of the augmentations n(t)1u over the Markov chain, that

is n̄1u =

∑T
t=1 n

(t)
1u

T
.

Therefore, since πu would be an estimator for π, π̂mcmc represents also an estimate of
the empirical population prevalence.

5 A comparative simulation study

We present a simulation experiment to evaluate the performances of the model (11). To
this aim we generate several datasets in the way described below and we compare our
proposal to two models acting in two different situations: (a) the censorship process
does not act on the population U so that the data y are completely observed; (b)
the censorship is present, but we assume known the population prevalence so that
approximation (9) can be used. In (a) we are able to estimate a logistic model with
linear predictor (denoted by M0), no correction is required and φ0(x) = xβ. In (b) we
consider a logistic model with linear predictor for presence-only data, denoted by M1,
with regression function φ1(x) = xβ + log

πnu+np

πnu
. Model (11) (denoted by M2) is

estimated when the censorship process acts on the data and no information is available
on the population prevalence. In this case, the regression function is given by φ2(x) =
xβ + log

n1u+np

n1u
. Remark that model M2 can be estimated when the least amount of

information is available, M1 requires less information than M0 but more than M2 and
M0 can be used only in the ideal situation of complete information. We assume M1 as
benchmark model in the case of presence-only data.

Generation of data In order to perform the simulation study, we need to generate the
covariates X and the binary response Y . In particular, we consider two covariates: X1,
giving strong information on the distribution of the response Y , and X2, representing a
term of noise in the generation of data, not available in the estimation step. We assume
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X1 distributed as a mixture of two Gaussian densities, denoted by N (., .), centred in
µa = 4.0 and µb = −4.0 respectively, and with equal variances σ2 = 4.0, that is

X1 ∼ wNa(µa, σ
2) + (1− w)Nb(µb, σ2).

The weight w is fixed to 0.165 that implies presences are rare events but not “too rare”.
X2 is assumed to follow standard Gaussian distribution N (0, 1). Finally, the binary
response Y , given the covariates X1 and X2, is Bernoulli distributed with probability
of occurrence

π(x) =
exp{β0 + β1x1 + β2x2}

1 + exp{β0 + β1x1 + β2x2}
.

We generate covariates and binary response with respect to a population U of size
N = 10000. Three general scenarios with different level of complexity are considered:

(i) β0 = 0, β1 = 1, β2 = 0 : only the informative covariate X1 generates the
data;

(ii) β0 = 0, β1 = 1, β2 = 1 : a term of noise X2 is added to the informative
covariate;

(iii) β0 = 1, β1 = 1, β2 = 1 : X1, X2 and a constant effect generate the data.

The case-control sampling For each scenario, we sample under the case-control design
with a ratio of presence/unobserved equal to 1 : 4 and with respect to eight different
sample sizes:

n = 50, 100, 200, 500, 1000, 1500, 2000, 3000.

For example, if the sample size is equal to n = 500, we build the corresponding simu-
lated experiment by extracting a random sample Sp from the stratum Up of np = 100
presences and a random sample Su from the stratum U of nu = 400 unobserved values,
covariates are available for the whole sample S. We consider h = 1000 independent
replications of each experiment. In summary, we generate a database of 24,000 datasets
(8 sample sizes, 3 scenarios and h = 1000 replications). The data generation framework
is quite general since the contribution of an informative covariate is combined with a
constant effect and a white Gaussian noise. With respect to the three scenarios, we
obtain empirical population prevalences respectively π(i) = 0.215, π(ii) = 0.223 and
π(iii) = 0.286.

Posterior computation through MCMC The estimation is performed in a Bayesian
framework for all the models M0, M1 and M2. The likelihood function we use in
the estimation is based on a model that does not always replicate the model used to
generate data. More precisely, for all experiments (i), (ii) and (iii) the estimation model
is:

logitP (Y = 1|X1 = x1) = β0 + β1x1

than with scenario (i) the model that generates the data and the one defining the
likelihood are the same, while for scenarios (ii) and (iii) the likelihood model becomes
increasingly different from the one that generates the data. Notice that we consider
a simpler structure than the one shown in Figure 1 as we choose a Gaussian prior
N (0, 25) for all regression parameters (β0 and β1) and no hyperparameter is considered.
Then, MCMC estimates are computed using 5000 runs after 10000 iterations of burn-in,
no thinning is applied as the sample autocorrelation is negligible.
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Results In what follows we report figures and tables built on scenario (iii) as it rep-
resents the most complex of the three alternatives and it is our “worst” case. In each
replicate of an experiment, point estimates are computed as posterior means over 5000
iterations. In Figure 2 scatter plot of point estimates together with their 95% credibil-
ity interval versus sample sizes are reported, horizontal lines correspond to the “true”.
Dots corresponds to M0, squares to M1 and triangles to our proposal M2. In M0 the
prevalence π is estimated as the ratio of the observed presences in Su to the sample size
nu. In M1, although π is assumed known a priori, we consider its posterior prediction
in Su. Finally in M2, the prevalence is obtained at each MCMC step as described in
Section 4.2 and then the mean over 5000 runs is taken. In Table 3 further details on
the point estimates are reported: the median and in parenthesis the first and third
quartiles. From the Figures and the values we can see that the three procedures lead
to “comparable” results with the obvious reduction of variability when n increases. Re-
mark that the estimates for M2, although affected by a larger variability with small
sample sizes, rapidly approaches M0 and M1 behaviour with increasing sample size.
This can be seen more clearly in Figure 3 where rooted mean squared errors (rmse) are
reported. As far as β1 is concerned, the lack of knowledge on X2 leads to biased point
estimates regardless the estimation procedure. Tables 5 and 6 in Appendix report point
estimates for scenarios (i) and (ii). For scenarios (i) unbiased estimates are obtained
while (ii) is affected by the same distortion as (iii) but with smaller variability.

From Ward et al. (2009) we know that pairwise correlation between parameters is
present. In Table 4 we report the empirical pairwise correlation measures, obtained as
the averages with respect to h = 1000 replications, with increasing sample sizes across
the different models. No significant differences in the pattern of correlation (β0;β1)
between the models M1 and M2 is found while the correlation (β1, π) has a general
weaker pattern inM1 thanM2. With respect to the correlation (β0, π) more significant
differences are present between M1 and M2. For M2 this correlation remains stable
with changing sample size, than M2 produces the largest positive correlation between
point estimates.

To verify the predictive performance we consider relative measures of specificity and
sensitivity (Fawcett, 2006) build as the ratio of the same measures for M2 (numerator)
and for M1 (denominator) respectively. In Figure 4 the obtained values are reported
versus sample sizes. Remark that M2 rapidly reaches the same level of performance as
M1 with increasing sample size.

6 Real data example: the North Carolina wren data

In the same spirit as the simulation study we compare the performance of our pro-
posal (M2) on real data to logistic model with linear predictor (M0) and the already
introduced model M1. The data we consider in this example are well known in the
literature (see for example Royle et al., 2012; Merow and Silander Jr., 2014), they are
taken from the North American Breeding Bird Survey (BBS). In particular we focus on
the Carolina wren (Thryothorus ludovicianus) using four land cover variables (per cent
cover of mixed forest (pcMix), deciduous forest (pcDec), coniferous forest (pcCon) and
grasslands (pcGr)) and latitude (Lat) and longitude (Lon), these data are available
in the maxlike R’s package. Unlike Royle et al. (2012) and Merow and Silander Jr.
(2014) we consider only simple covariates effects, we fit the simplest logistic regression
to avoid overfitting and possible multicollinearity. The data include full information
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Table 3: Scenario (iii): summary of the marginal posterior distribution for the regression
parameters and the prevalence expressed as median and upper and lower quartiles over
h = 1000 replications with increasing sample sizes (n) and different models (M0, M1

and M2).

n Model β0 β1 π

50
M0 1.42 (0.68 ; 2.33) 1.15 (0.88 ; 1.55) 0.28 (0.25 ; 0.35)
M1 3.13 (1.78 ; 4.46) 1.69 (1.17 ; 2.28) 0.31 (0.26 ; 0.35)
M2 1.79 (-3.38 ; 4.26) 1.44 (0.76 ; 2.12) 0.24 (0.13 ; 0.34)

100
M0 1.14 (0.72 ; 1.62) 1.00 (0.86 ; 1.22) 0.29 (0.25 ; 0.33)
M1 2.12 (1.11 ; 3.51) 1.30 (0.97 ; 1.80) 0.30 (0.26 ; 0.34)
M2 1.92 (0.16 ; 3.87) 1.24 (0.89 ; 1.78) 0.28 (0.21 ; 0.36)

200
M0 1.01 (0.72 ; 1.36) 0.94 (0.83 : 1.06) 0.29 (0.26 ; 0.31)
M1 1.53 (0.89 ; 2.39) 1.08 (0.87 ; 1.37) 0.29 (0.27 ; 0.32)
M2 1.49 (0.59 ; 2.62) 1.07 (0.83 ; 1.37) 0.29 (0.24 ; 0.34)

500
M0 0.94 (0.75 ; 1.15) 0.89 (0.82 ; 0.96) 0.29 (0.27 ; 0.30)
M1 1.12 (0.78 ; 1.57) 0.94 (0.82 ; 1.10) 0.29 (0.28 ; 0.31)
M2 1.17 (0.62 ; 1.82) 0.94 (0.80 ; 1.12) 0.29 (0.26 ; 0.32)

1000
M0 0.91 (0.78 ; 1.04) 0.88 (0.83 ; 0.92) 0.28 (0.28 ; 0.30)
M1 1.03 (0.79 ; 1.34) 0.91 (0.83 ; 1.01) 0.29 (0.28 ; 0.30)
M2 1.05 (0.68 ; 1.49) 0.91 (0.82 ; 1.03) 0.29 (0.27 ; 0.31)

1500
M0 0.89 (0.80 ; 1.00) 0.86 (0.83 ; 0.91) 0.29 (0.28 ; 0.29)
M1 1.00 (0.78 ; 1.24) 0.89 (0.82 ; 0.98) 0.29 (0.28 ; 0.30)
M2 1.01 (0.71 ; 1.35) 0.90 (0.82 ; 0.99) 0.29 (0.27 ; 0.31)

2000
M0 0.89 (0.82 ; 0.98) 0.87 (0.84 ; 0.90) 0.29 (0.28 ; 0.29)
M1 0.96 (0.79 ; 1.15) 0.89 (0.83 ; 0.95) 0.29 (0.28 ; 0.29)
M2 0.96 (0.71 ; 1.23) 0.88 (0.82 ; 0.96) 0.29 (0.27 ; 0.30)

3000
M0 0.90 (0.83 ; 0.97) 0.87 (0.84 ; 0.89) 0.29 (0.28 ; 0.29)
M1 0.94 (0.82 ; 1.09) 0.88 (0.84 ; 0.93) 0.29 (0.28 ; 0.29)
M2 0.95 (0.76 ; 1.17) 0.88 (0.83 ; 0.94) 0.29 (0.28 ; 0.30)

Table 4: Scenario (iii): pairwise correlation (average over the h = 1000 replications)
with increasing sample sizes (n) and different models (M0, M1 and M2).

Model M0 M1 M2

n β0β1 β0π β1π β0β1 β0π β1π β0β1 β0π β1π

50 0.65 0.26 -0.09 0.59 0.10 -0.30 0.68 0.81 0.31
100 0.75 0.24 -0.12 0.89 0.29 0.02 0.82 0.76 0.37
200 0.78 0.34 -0.04 0.94 0.39 0.18 0.90 0.78 0.48
500 0.79 0.38 0.00 0.95 0.41 0.24 0.92 0.77 0.51
1000 0.77 0.38 -0.01 0.94 0.46 0.27 0.91 0.81 0.54
1500 0.78 0.42 0.00 0.95 0.48 0.28 0.92 0.81 0.55
2000 0.77 0.35 -0.06 0.94 0.49 0.30 0.92 0.81 0.55
3000 0.81 0.37 -0.01 0.95 0.43 0.23 0.91 0.80 0.52

on both presence and absence over 4607 locations of which 1506 record the presence
of a wren. We fit M0 over samples of size 800 taken from the entire dataset, while to
fit M1 and M2 we build a sample of 200 presences and background samples of size
800, the procedure is repeated 100 times. In Figure 5 we report the estimated models
parameters and their 95% credibility intervals (see Table 7 in the appendix for details).
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We compute, again following Fawcett (2006), the true positive rate that shows howM2

is the most accurate model in detecting presences (true positive rate or sensitivity:
M0 = 0.84, M1 = 0.91, M2 = 0.93), while in terms of specificity the three models
are very similar (M0 = 0.91, M1 = 0.89, M2 = 0.87). The population prevalence is
0.33 and the M2 estimated prevalence is 0.39 with 95% credibility interval (0.32,0.44)
that includes the population value, while theM1 predicted prevalence is 0.37 with 95%
credibility interval (0.33, 0.40) where the population value is at the very edge of the in-
terval. In terms of point estimatesM2 performs as well as the other two models, paying
the price of a larger estimates variability due to the smaller amount of information it
uses. The geographical variables play a strong role in the fitted models (see Figure 5).
The data show a clear and strong spatial dependence as the presences are clustered on
the eastern part of the United States. A spatial joint-count autocorrelation test (Cliff
and Ord, 1981, page 20) with a neighborhood structure with 4 neighbors returned a
p-value smaller than 2.216 × 10−16 confirming the strong spatial dependence present
in the data. However all the three models assume spatial independence and devolve to
covariates to account for such dependence. Being the covariates spatially informative
estimates are perfectly coherent.
Notice that the spatial dependence is usually included in linear and non linear models
according to two main approaches: (i) introducing an autoregressive component as pre-
dictor (Besag, 1974), (ii) adding a latent, often Gaussian, component spatially
structured (Gelfand, 2010; Banerjee et al., 2004). Both approaches seem
almost unfeasible with presence-only data. The first one it is definitely
not feasible as we have incomplete information on the response variable
and than any autoregressive component cannot be computed. The second
one seems conceptually acceptable however, given the severe identifiability
issues the logistic regression shows, it would be really difficult to learn any-
thing on any latent component in the model. An attempt to build a model
including a random effect spatially structured can be found in Aarts et al.
(2008). The authors, propose a logistic, mixed-effects approach that uses
generalized additive transformations of the environmental covariates and
is fitted to a response data-set comprising telemetry data (presence-only
data) integrated with simulated observations, under a case-control design.
Estimation is carried out in the likelihood framework. This work, although
very interesting, do not proposes any solution for the estimation of the case-
control correction and prevalence and it does not solve in general terms the
issue of how to simulate absences. Our proposal seems then a more feasible
solution including spatial information using informative covariates, such as
the locations coordinates.

7 Conclusions

In this work, we presented a Bayesian procedure to estimate the parameters of logis-
tic regressions for presence-only data. The approach is based on a two-level scheme
where a generating probability law is combined with a case-control design adjusted
for presence-only data. The new formalization using the stratified sample design with
non-overlapping strata, allows to consider rigorously all the mathematical details of
the model as for instance the approximation of the ratio (8) that represents the crucial
point when modeling presence-only data in a finite population setting. From a com-
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putational point of view we propose an effective estimation procedure that does not
require a priori knowledge of the population prevalence. The procedure is implemented
as an efficient MCMC algorithm that compensates for the reduced knowledge on the
response variable trough a data augmentation step. We concentrated on the case of
the logistic regression with linear predictor because we were aware that some care is
necessary to handle the identifiability issues present in the model.
The comparative simulation study considered three scenarios with different levels of
complexity across increasing sample sizes. We presented detailed results with respect
to the most difficult case where the contribution of an informative covariate was mixed
with a constant effect and a white Gaussian noise. In terms of point estimation, the
estimates based on our model were comparable to those obtained under the presence-
only data benchmark in which the empirical population prevalence was assumed to be
known. On the other hand, this lack of information on the population prevalence af-
fected the efficiency of the point estimates, that resulted smaller for our model than for
the benchmark. This difference was significant only when the sample size was smaller
than n = 1000, i.e. when the number of observed presences was smaller than np = 200.
From the predictive point of view, our model performed as well as the benchmark al-
ready for sample sizes about n = 200, i.e. for a number of observed presences at least
np = 40. The pairwise correlation between β0 and π, that represents an important
issue as pointed by Ward et al. (2009), remains stable with increasing sample sizes.
In the real data example we showed that our model is perfectly capable of capturing
the “true” population prevalence and returning prediction that are as good as those of
the benchmark models.
We want to stress again that with our proposal a perfectly reasonable estimate of the
population prevalence is obtained in all scenarios and in the real data example. It is
somehow obvious that if the covariates available on the entire population do not provide
“enough” information on the population prevalence no model would be able to return
“plausible” estimates. Informative covariates allows to account for latent dependence
structures in the data, as we showed in the real data example.
Further developments may include the exploration and adaptation to presence-only
data of tools to “remove” spatial dependence from the data when information is com-
plete (presence/absence data). For example as proposed by Carl and Kuhn (2008) ),
the authors suggest to adopt binary wavelets to this end. Or in Liao and Wei (2014)
where spatially expanded coefficients are adopted in logistic regression.

Appendix

Property 1 Under a stratified random sampling design adjusted for presence-only data,
with non-overlapping strata U and Up, the inclusion probabilities in the sample are
given by

ρ0 =
n0u

(1− π)N

for the stratum of cases and by

ρ1 =
n1u + np

2πN
.

for the stratum of controls.
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Proof By definition one has

P (C = 1 | y) =

= P (C = 1 | y, Z = 0)P (Z = 0 | y) +

+ P (C = 1 | y, Z = 1)P (Z = 1 | y).

The term P (Z = z | y) = P (Z,Y )
P (Y ) can be computed easily from Table 1. In particular,

one has
P (Z = 0 | Y = 0) =

N0

N0
= 1,

P (Z = 1 | Y = 0) =
0

N0
= 0,

P (Z = 0 | Y = 1) =
N1

2N1
=

1

2
,

P (Z = 1 | Y = 1) =
N1

2N1
=

1

2
.

Now it is easy to derive

ρ0 = P (C = 1 | Y = 0)

=
n0u
N0
× 1 + 0

=
n0u

(1− π)N

and

ρ1 = P (C = 1 | Y = 1)

=
n1u
N1
× 1

2
+
np
N1
× 1

2

=
n1u + np

2πN

ut

Proposition 1 Let us consider the population U augmented with its subset Up. Then,
under the assumption that the stratum variable Z is conditionally independent of X
given Y , one has that the conditional probability of presence in the design population
UD is given by

P (Y = 1|x) =
2π∗(x)

1 + π∗(x)
.

Proof From the hypothesis of conditional independence it results

P (Z|y, x) = P (Z|y),

which can be express also as

P (Y |z, x)P (Z|x)

P (Y |x)
=
P (Y |z)P (Z)

P (Y )
.

Let us consider the case with Y = 1 and Z = 0, one has
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P (Y = 1|Z = 0, x)P (Z = 0|x)

P (Y = 1|x)
=

=
P (Y = 1|Z = 0)P (Z = 0)

P (Y = 1)
.

The probabilities enclosed in the second term can be derived from Table 1 and one
has

π∗(x)P (Z = 0|x)

P (Y = 1|x)
=

N1
N

N
N+N1

2N1
N+N1

=
1

2
. (16)

In the case Y = 1 and Z = 1 one similarly obtains

P (Z = 1|x)

P (Y = 1|x)
=

N1
N1

N1
N+N1

2N1
N+N1

=
1

2
. (17)

From (17) it is obtained P (Y = 1|x) = 2P (Z = 1|x) and by substituting into (16),

one can derive that P (Z = 0|x) =
1

1 + π∗(x)
and hence P (Z = 1|x) =

π∗(x)

1 + π∗(x)
.

Now, it is easy to obtain that

P (Y = 1|x) =
2π∗(x)

1 + π∗(x)
.

ut

Corollary 1 Under the assumption that, given Y , the inclusion into the sample (C =
1) is conditionally independent of the covariates X, one has

P (Y = 0|C = 1, x)P (C = 1|x) =
1− π∗(x)

1 + π∗(x)
ρ0

and
P (Y = 1|C = 1, x)P (C = 1|x) =

2π∗(x)

1 + π∗(x)
ρ1.

Proof In general we have that

P (Y |C = 1, x) =
P (C = 1|y, x)P (Y |x)

P (C = 1|x)
(18)

From the conditional independence between C = 1 and X given Y , the (18) be-
comes

P (Y |C = 1, x) =
P (C = 1|y)P (Y |x)

P (C = 1|x)
,

hence

P (Y |C = 1, x)P (C = 1|x) = P (C = 1|y)P (Y |x).

Recalling that P (Y = 1|x) = 2π∗(x)
1+π∗(x) and the definitions of ρ0 = P (C = 1|Y = 0)

and ρ1 = P (C = 1|Y = 1) the proofs for Y = 0 and Y = 1 can be derived. ut
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Property 2 Under the case-control design adjusted for presence-only data the logistic
regression function φpod(x) is given by

φpod(x) = log
π∗(x)

1− π∗(x)
+ log

n1u + np
n0u

− log
π

1− π .

Proof By the definition of logistic regression function for presence-only data and by
simple algebra one has

φpod(x) = logitP (Y = 1|C = 1, x)

= log
P (Y = 1|C = 1, x)

P (Y = 0|C = 1, x)

= log
P (Y = 1|C = 1, x)P (C = 1 | x)

P (Y = 0|C = 1, x)P (C = 1 | x)

= log

2π∗(x)
1+π∗(x) ρ1

1−π∗(x)
1+π∗(x) ρ0

= log
2π∗(x)

n1u+np

2πN

[1− π∗(x)] n0u
(1−π)N

= log
π∗(x)

n1u+np

π

[1− π∗(x)] n0u
1−π

= log
π∗(x)

1− π∗(x)
+ log

n1u + np
n0u

− log
π

1− π

ut

Proposition 2 Using the approximation (10) of the ratio (8), the posterior predictive
probability of occurrence for an unobserved response Y = y in the sub-sample Su is
approximated by the probability law P that generates the data at the population level,
that is

P (Y = 1|Z = 0, C = 1, x) ≈ π∗(x).

Proof From the conditional independence between Z and X given Y , the predictive
probability of occurrence in Su is given by

P (Y = 1 | Z = 0, C = 1, x) =

=
P (Z = 0|Y = 1, C = 1)P (Y = 1|C = 1, x)

P (Z = 0|C = 1, x)
.

From Table 2 one has that P (Z = 0|Y = 1, C = 1) = n1u
np+n1u

and hence

P (Y = 1 | Z = 0, C = 1, x) =

=
n1u

np + n1u

P (Y = 1|C = 1, x)

P (Z = 0|C = 1, x)
. (19)

Now, recalling that in the general case one has
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P (Y = 1|C = 1, x) ≈
(
1 +

np

n1u

)
exp{φ(x)}

1 +
(
1 +

np

n1u

)
exp{φ(x)}

(20)

and

P (Z = 0|C = 1, x) ≈ 1 + exp{φ(x)}
1 +

(
1 +

np

n1u

)
exp{φ(x)}

, (21)

by substituting (20) and (21) in (19), one obtains

P (Y = 1 | Z = 0, C = 1, x) ≈

≈ n1u
np + n1u

(
1 +

np

n1u

)
exp{φ(x)}

1 + exp{φ(x)}

=
exp{φ(x)}

1 + exp{φ(x)}
= π∗(x).

ut
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Table 5: Scenario (i): summary of the marginal posterior distribution for the regression
parameters and the prevalence expressed as median and upper and lower quartiles over
h = 1000 replications with increasing sample sizes (n) and different models (M0, M1

and M2).
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Table 6: Scenario (ii): summary of the marginal posterior distribution for the regression
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Fig. 2: Parameters estimates for β0 (a), β1 (b) and π (c), and their 95% credibility
intervals under scenario (iii) for M0 (dots), M1 (squares) and M2 (triangles). The
dashed line indicates the “true” parameter’s value.



28 Fabio Divino et al.

●

●

●

●
● ● ● ●

0 500 1000 1500 2000 2500 3000

0
1

2
3

4

sample size

rm
se

● M0
M1
M2

(a)

●

●

●

● ● ● ● ●

0 500 1000 1500 2000 2500 3000

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

sample size

rm
se

● M0
M1
M2

(b)

●

●

●

●

●
●

●
●

0 500 1000 1500 2000 2500 3000

0.
05

0.
10

0.
15

sample size

rm
se

● M0
M1
M2

(c)

Fig. 3: Scenario (iii): root mean squared errors for different models (M0, M1 and M2)
over the h = 1000 replications, plots with increasing sample sizes for β0 (a), β1 (b)
and π (c). Dashed trajectories are reported to show the patterns.
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trajectories are reported to show the patterns.
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Fig. 5: North Carolina Wren data, parameters estimates and their 95% credibility
intervals for for M0 (dots), M1 (squares) and M2 (triangles).


