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“There are two days in the year  

that we can not do anything,  

yesterday and tomorrow”  

 

- Mahatma Gandhi - 
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Abstract 
 

 

Natural materials, such as soils, are influenced by many factors acting during their 

formative and evolutionary process: atmospheric agents, erosion and transport 

phenomena, sedimentation conditions that give soil properties a non-reducible 

randomness by using sophisticated survey techniques and technologies. This character is 

reflected not only in the spatial variability of soil properties which differ punctually, but 

also in their multivariate correlation as function of reciprocal distance. 

Cognitive enrichment, offered by the response of soils associated with their spatial 

variability, implies an increase in the evaluative capacity of contributing causes and 

potential effects in the field of failure phenomena. 

Stability analysis of natural slopes is well suited to stochastic treatment of the uncertainty 

which characterized landslide risk. In particular, the research activity has been carried out 

in back-analysis to a slope located in Southern Italy that was subject to repeated 

phenomena of hydrogeological instability - extended for several kilometres and recently 

reactivated - applying spatial analysis to the controlling factors and quantifying the 

hydrogeological susceptibility through unbiased estimators and indicators. 

A natural phenomenon, defined as geo-stochastic process, is indeed characterized by 

interacting variables leading to identifying the most critical areas affected by instability. 

Through a sensitivity analysis of the local variability as well as a reliability assessment of 

the time-based scenarios, an improvement of the forecasting content has been obtained. 

Moreover, the phenomenological characterization will allow to optimize the attribution of 

the levels of risk to the wide territory involved, supporting decision-making process for 

intervention priorities as well as the effective allocation of the available resources in social, 

environmental and economic contexts. 
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Introduction 

 

 

 

Worldwide in the last decade, a new vision and collective sensitivity have been 

affirmed on disaster risk reduction particularly on stability phenomena (St. Cyr, 

2005) thanks to institutions and administrations action in territorial planning in 

which scientific community and research institutes have been providing 

fundamental support. 

Mitigation policy of the impact of hydrogeological events is essentially based 

on two parallel and coordinated actions: the organization of interventions which 

guide social response in emergency contexts and the planning of preventive and 

protective decisional activities in delayed time (UNISDR, 2017a). In particular, 

satellite observation technologies of natural phenomena are increasing for a more 

successful outcome of preventive land management (Quanta Technology, 2009) 

in quiescent conditions, forecasting the potential effects induced on the areas of 

interest more accurately. 

 

The increasing availability of data, acquired through modern and sophisticated 

systems and innovative detection processes, has been associated with application 

methods and elaborated through numerical modeling aimed at assessing extreme 

events (Rouaiguia and Dahim, 2013). 

The use of new technologies, associated with a growing safety demand of 

society, makes the development of integrated technical and scientific 

methodologies necessary to guide predictive spatial planning through a reliable 

assessment of risk in heterogeneous and dynamic contexts such as those deriving 

from hydrogeological instability conditions (Ferlisi, 2013) with exogenous - often 

anthropogenic - origin. 

Technological progress and technical-scientific knowledge should lead to 

improve quantitative analysis by carrying out a reliable probabilistic assessment 

(Li et al., 2013) for characterizing spatial uncertainty and dynamic evolution of 

potential risk levels. In the same way, this concerns the need to implement a 

quantitative procedure for the estimation of the variables affecting scenarios in 

order to reduce risk to a residual value (Bhattacharya, Chowdhury and Metya, 

2017). 

These are needs that should meet coordinated investments aiming at synergistic 

activities to forecast catastrophic events particularly in susceptible territorial 

contexts (Rossi et al., 2010) either in terms of extension or spatial distribution, 

considering evolution and duration as well. In fact, enrichment and quantitative 

cognitive improvement offered by soil response as well as evaluative capacity of 
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potential causes and expected effects should be adapted to the fragility of the 

specific area. 

 

The development of applied research and technologies for mitigating “natural” 

risk in many countries provides wide and useful tools to achieve a more effective 

disaster risk reduction (Fisher et al., 2014). The use of joint methodologies deriving 

from multi-disciplinary fields and integrated application methods, would allow 

to improve planning and safeguarding activities (Marx and Cornwell, 2001), 

giving a comprehensive risk assessment for natural hazards. 

Landslides are among the most potentially manageable of all natural hazards, 

given the range of approaches and techniques that are available to reduce the 

level of hazard. There is much scope to reduce their impacts (UNISDR, 2017b). 

Landslide hazard is a function of susceptibility, as spatial propensity to landslide 

activity, and temporal frequency of landslide triggers, and its assessment may be 

done on local (individual slope), regional, national, continental, or even global 

scales (UNISDR, 2017a). The most appropriate method in each scale depends on 

the extent of the study area and on the available data (Nadim, Einstein and 

Roberds, 2005; Nadim et al., 2006; Corominas and Moya, 2008). In any type of 

landslide hazard assessment, there is a need to consider topography and other 

factors that influence the propensity to landslide activity (susceptibility factors), 

as well as landslide triggering factors (precipitation, earthquakes, human 

activity). 

Climate change increases the susceptibility of surface soil to instability because 

of abandoned agricultural areas, deforestation and other land-cover 

modifications. Anthropogenic activities and uncontrolled land-use are other 

important factors that amplify the uncertainty in landslide hazard assessment 

(Meusburger et al., 2012).  

 

Disasters may catalyse moments of change in risk management aims, policy and 

practice. Increasingly, the decision-making processes of the authorities in charge 

of reducing the risk of landslides and other hazards are moving from “expert” 

decisions to include the public and other stakeholders (Scolobig, Thompson and 

Linnerooth-Bayer, 2016). 

Further, the Hyogo Framework of Action 2005–2015 and the Sendai Framework 

for Disaster Risk Reduction 2015–2030 emphasise the importance of improved 

resilience at national and local community level. The concept of resilience is 

variously defined but covers the capacity of public, private and civic sectors to 

withstand disruption, absorb disturbance, act effectively in a crisis, adapt to 

changing conditions, including climate change, and grow over time (Martin-

Breen and Anderies, 2011) (Kervyn et al., 2015). 
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Building resilience not only require accurate hazard estimates that account for 

spatial distribution, temporal frequency and hazard intensity, but also 

quantitative assessments of their impacts, as well as the evaluation of current 

social and cultural structures affecting the territorial vulnerability (Nakileza et al., 

2017). This is essential to identify effective adaptation strategies that are cost-

effective, technically efficient, culturally acceptable and adapted to the 

livelihoods of the vulnerable populations.  

 

In this research, a quantitative analysis has been carried out considering the 

probabilistic distribution of the most influential (Jaksa, 1995) spatial variables 

identified. In this way may be highlighted the presence of interdependence and 

potential mutual correlation of the conditioning parameters (Sarma, Krishna and 

Dey, 2015). 

The acquisition of data and territorial information has been performed by 

considering different geo-environmental elements such as empirical 

measurements, instrumental monitoring, historical series and statistical 

databases, integrated to outline a cognitive framework. 

A clear advantage is therefore the benefit of a deeper phenomenological 

knowledge, reorganizing the geo-information to complete implementation of 

procedures to conduct territorial planning and management as well as 

coordination of urgent interventions (Cardarilli, Lombardi and Guarascio, 2018). 

 

Common methodologies currently associated with the characterization of 

instability phenomena of natural soils use semi-probabilistic approaches (Marx 

and Cornwell, 2001) often neglecting the spatial component. The aleatory 

uncertainty (Valley, Kaiser and Duff, 2010), belonging to every environmental 

context, has been recognized as component that may be characterized due to its 

intrinsic variability, often ignored (F. . Dai, Lee and Ngai, 2002). 

To date, spatio-temporal references (Pebesma and Graeler, 2017) concerning 

mitigation and monitoring are lacking. Planning activities consist of 

heterogeneous scenarios (Phoon et al., 2006a) and unconditional parametric 

sequences (Kim and Sitar, 2013) whose predictions do not depend on reliability 

considerations (Cho, 2013). Essential is therefore the introduction of 

methodologies which have long been using in mining field - Geostatistics - within 

hydrogeological context (Meshalkina, 2007). 
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Chapter I 
 

The Factor of Safety (FS) 
 

 

1.1 Safety in Engineering 
 

The goal of safety is the preservation of existence of an individual or a community 

(Ferlisi, 2013). Although the term safety may be found in many laws, this does not 

necessarily mean that the content of the term is clearly defined (Metya, 2013), so 

many people have a different understanding of the term (Diamantidis et al., 2006). 

 

Some common descriptions are following presented (Proske, 2008): 

 

• Safety is a state in which no disturbance of the mind exists, based on the 

assumption that no disasters or accidents are impending; 

• Safety is a state without threat; 

• Safety is a feeling based on the experience that one is not exposed to dangers; 

• Safety is the certainty of individuals or communities that preventive actions 

will function reliably. 

 

Safety requirements and safety concepts have a long history in some technical 

fields (Fleming and Leveson, 2015) especially concerning natural slope stability 

(Cheng, 2004). 
 

 

1.2 Slope Stability as Safety Condition 

 

A slope is a portion of soil which, for its topographic characteristics, may undergo 

a movement according to the gravity (Duncan, 1999). 

Landslides can be triggered by many, sometimes concomitant causes. Seasonal 

rainfall is generally responsible of shallow erosion or reduction of shear strength 

(Kim et al., 2004). In addition, landslides may be triggered by anthropic activities 

such as adding excessive weight above the slope, digging at mid-slope or at the 

foot (Kim, Jeong and Regueiro, 2012). Often, more than one triggering factor joins 

together to generate instability over time, which often does not allow a clear 

reconstruction of phenomenon evolution. 
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Causes Phenomena Possible Reasons 

Increase in stresses 

Natural actions 

Erosion 

Seismic forces 

Water thrusts, Freezing 

Anthropic actions 
Excavations 

Overloading 

Decrease in resistances 

Increasing pore water 

pressure 

Meteorological events 

Groundwater excursion 

Variation of strength 

parameters 

Changes in hydraulic 

conditions 

Alteration of rocks 

Soil degradation (softening, 

creep) 

Table 1 - Causes of soil movement (source: F. Dai, Lee and Ngai, 2002) 

 

The term stability of a slope may be explained as a balance of the shear stresses, 

induced by the gravity on the mass of soil, to the available soil shear strength 

before collapsing (Duncan, 1999). In the practice, this equilibrium condition is 

numerically expressed as Factor of Safety (FS). 

 

FS  = 
Available Soil Shear Strength

Equilibrium Shear Stress
 

 

The main interest of slope stability is the assessment of FS along the potential 

failure slip surface where its results the lowest. According to this, a Factor of 

Safety equal to 1 indicates that the slope is at limit equilibrium; below 1 indicates 

an unstable slope that theoretically already should have failed, and consequently 

greater than 1 indicates stability (Duncan, 2000). 

 

 

Figure 1 - Slope failure mechanism (source: Wyoming State Geological Survey) 

(1) 
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The conventional safety factor depends on physical model, method of calculation, 

load conditions and soil parameters. Therefore, all these factors with their level 

of approximation of slope stability conditions, involve uncertainty in FS 

computation. Another factor concerns also the ability to find the critical slip 

surface both in term of geometry and position (F. C. Dai, Lee and Ngai, 2002). 

 

In most cases, the most pronounced sources of uncertainty in a slope stability 

analysis concern soil strength and groundwater levels; a probabilistic evaluation 

of soil parameters may help in assessing the Factor of Safety (Zhang, 2010).  

 

 

1.3 Probability of Failure  
 

Engineers are very familiar with uncertainties especially in natural and 

environmental contexts. This leads to consider uncertainty in a probabilistic way 

for representing its randomness (Fallis, 2013).   

A Probability Density Function (PDF) may be introduced to model the relative 

likelihood of a random variable. The PDF describes, in fact, the relative likelihood 

that the variable has a certain value within a range of potential values. 

Since soil strength and applied loads are each subject to uncertainties, they may 

be considered as random variables as well as the Factor of Safety which results 

from their joint combination (Johari, Fazeli and Javadi, 2013). Based on the PDF 

of FS, the application of a probabilistic modelling gives also the distribution of FS 

values then the likelihood of failure.  

 

 
 

Figure 2 - Deterministic and Probabilistic distributions of Load and Strength  

(source: Mustaffa, Gelder and Vrijling, 2009)  

 

The advantage of the probability model is that with appropriate considerations 

and assumptions the PDF extends beyond the information portrayed by the 
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observed data for the specific site, as well as other related factors. Caution must 

be exercised, however, to ensure the appropriateness of the PDF in representing 

the site and state of stability (Hsu, 2013). 

 

   

Figure 3 - Probability of Failure P(FS) (source: Johari and Javadi, 2012) 

 

The relative contribution of different factors in slope failure should be kept in 

mind when a target probability is being selected (Diamantidis et al., 2006). It 

makes little sense to reduce the computed probability of failure due to slope 

stability problems if other triggering causes are not addressed at the same time 

taking also in account past experiences and further studies performed until 

nowadays (Valley, Kaiser and Duff, 2010). 

 

 

1.4 Slope Stabilization 

 

Landslide mitigation generally consists of non-structural and structural activities 

aiming at reducing the probability of occurrence and/or the impact of landslide 

event on people and goods at risk (Popescu and Sasahara, 2005). 

It is possible to consider a subdivision of stabilization interventions in relation to 

triggering factors and movement mechanism that each measure addresses 

(Popescu, 2001): 

 

• Geometrical methods, in which the geometry of the slope profile is modified 

(slope inclination from the horizontal plane); 

• Hydrogeological methods, in which an attempt is made to lower the 

groundwater level or to reduce the water content of the material by draining 

elements; 

• Chemical methods, which increase the shear strength of the unstable mass by 

introducing internal slope reinforcements thought additive materials; 
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• Mechanical methods, which introduce active external forces (e.g. anchors, or 

ground nailing) or passive (e.g. retaining walls, piles or reinforced ground) to 

counteract the destabilizing forces. 

 

 

Figure 4 - Drainage system (left) and anchorage grid (right)  

(sources: Weinstein Construction Corp and Dywidag systems) 

  

Geometrical modification is the most common method that has been used, 

usually simple and less costly. The changing of the slope angle from steep slope 

to a gentler slope may increase the stabilization of slope mainly thought 

roughening, terracing and rounding. Moreover, the angle is usually supported by 

grass bonding together with soil. Vegetation has, in fact, a beneficial effect on 

slope stability by the processes of interception of rainfall, and transpiration of 

groundwater, thus maintaining drier soils and enabling some reduction in 

potential peak groundwater pressures. 

This type of method does not require heavy load resistance and naturally stabilize 

the slope with the creepy grass surface which requires minimum maintenance. 

Drainage concerns one of the slope failure factors: saturation degree and pore 

water pressure building up in the subsoil. A drainage system may minimize the 

instability by reducing the surface water and groundwater level with very 

effective increases of shear strength.  

As a long-term solution, however, it suffers greatly because the drains must be 

maintained if they are to continue to function (Charles and Bromhead, 2008). In 

general, this method is very common and used in combination with other 

methods (Glade, Anderson and Crozier, 2012).  

Surface drains may discharge more water, especially during heavy rain to avoid 

the effects of large amounts of water absorption by the slope. 

Retaining structures are generally more expensive. However, due to its 

flexibility in a constrained site, it is always the most commonly adopted method. 

The principle of this method is to use earth-retaining structures to resist the 
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downward forces of the soil mass. It also may reduce rainwater infiltration and 

prevent slope erosion of the slope forming materials.  

Over the last several decades, there has been a notable shift forward novel 

methods such as “internal stabilization” through consolidating additives (lime or 

concrete), grouting, soil nailing or reinforced grids which increase shear strength. 

The cost of these remedial measures is considerably lower when compared with 

the cost of classic structural solutions.  

 

Within the general domain of the structural mitigation measures, they should 

firstly concern the specific site conditions as well as the economic cost often 

limited (Song et al., 2014): 

 

• Application of slope; 

• Purpose of stabilizing; 

• Time available; 

• Accessibility of the site; 

• Types of construction equipment; 

• Cost of repair and maintenance; 

• Sustainable environmental impact. 

 

The experience shows that while one remedial measure may be dominant, most 

landslide repairs involve the use of a combination of two or more of the major 

categories.  

However, the success of corrective slope regrading (fill or cut) is determined not 

merely by size or shape of the alteration, but also by position on the slope 

(Popescu and Sasahara, 2005).  
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Chapter II 
 

Characterization of Soil Uncertainty 
 

 

2.1 Sources of Soil Uncertainty 

 

Many variables are involved in slope stability analysis as well as in the evaluation 

of Factor of Safety. It requires physical data on geologic materials and shear 

strength parameters (i.e. cohesion and angle of internal friction), pore water 

pressure, geometry of slope, unit weight, etc.  

Soil components may affect locally the slope behaviour and globally the geo-

mechanic response but, in addition, they are characterized by variability which 

leads to uncertainty (Garzón et al., 2015).  

 

The variability associated with soil is uncertain due to many reasons which lead 

to increasing uncertainty in slope stability as well. The associated uncertainty 

varies in each analysis and is case specific (Borgonovo, 2007). Soil uncertainties 

depends mainly on:  

 

• Site topography and stratigraphy; 

• Geology and geomorphology; 

• Groundwater level; 

• In-situ characteristics;  

• Properties of materials;  

• Mechanical behaviour. 
 

Owing to the nature of soil, it is necessary to individuate and evaluate the 

uncertainties. Concerning slope stability assessment, the sources may be grouped 

into three main categories (Phoon et al., 2006a), associated with: 

 

• Measurement (laboratory and field investigations); 

• Transformation (indirect relations between soil parameters, modelling); 

• Inherent variability of ground conditions at the site (natural soil processes). 
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Figure 5 - Uncertainty diagram in soil property estimates (source: Phoon and Kulhawy, 1999) 

 

The first source of uncertainty arises from the difficulty in measuring soil 

properties (i.e. geological, hydrogeological, geomechanical etc.). Any 

measurement involves errors due to equipment, procedural/operator sampling 

process, testing effects. This uncertainty may be minimised increasing tests’ 

density, but it is commonly included within the measurement errors (Phoon, 

1999). 

Properties such as permeability, compressibility, shear strength, in a soil deposit, 

may show significant variations, even when located within homogeneous layers. 

On the other hand, in every investigative campaign, the volume of investigated 

and sampled soil represents a very small portion of the total volume of soil 

affected, and global behavior assessments must necessarily be made based on 

limited, often deficient, information (Phoon and Kulhawy, 1999). 

 

The second one is introduced when field or laboratory measurements are 

transformed into design soil properties by using empirical or other correlation 

models. The relative contribution of these uncertainties clearly depends on the 

precision of the applied models (Phoon et al., 2006a).  

To date, the focus on technology has made it possible to increase the efficiency of 

the technical execution of surveys and to reduce the time of data acquisition as 

well. It has also improved and integrated the best experiences with empirical 

transformations of different variables characterizing soils.  
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Figure 6 - Uncertainty diagram in geotechnical design process (source: Honjo and Otake, 2011) 

 

Collectively, these two sources may be described as data scatter. Two types of 

uncertainty were identified. The first one was the knowledge or epistemic 

uncertainty which reflects lack of data, lack of information available about events 

and processes or lack of understanding real phenomena, reducible perfecting 

survey instruments and knowledge (Riesch, 2013).  

 

Uncertainty due to naturally 

variable phenomena in time or 

space: "Uncertainties of nature" 

Uncertainty due to lack of 

knowledge or understanding: 

"Uncertainties of the mind" 

Natural variability Knowledge uncertainty 

Aleatory uncertainty Epistemic uncertainty 

Random/stochastic variation Functional uncertainty 

Objective uncertainty Subjective uncertainty 

External uncertainty Internal uncertainty 

Statistical probability Inductive probability 

Table 2 - Terms used in the literature to describe the duality of meaning for "uncertainty" 

(source: Muller, 2013) 

 

The third type of uncertainty governs physical properties due to their 

composition and complex depositional processes over time which are involved in 

soil formation. The natural inherent character is unknown to designers and must 

be deduce from limited and uncertain observations.  

The term used to define this third uncertainty is natural or aleatory which means 

non-reducible (Phoon and Kulhawy, 1996). It represents soil uncertainty over 
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time for phenomena that take place at a single location (temporal variability), or 

over space for phenomena which take place at different locations but in a single 

time (spatial variability), or both (spatial-temporal variability) (Phoon et al., 

2006a). 
 

The final objective is the reconstruction of the physical model of the territory, 

basic for any further step of analysis. In fact, the quality of results obtained is 

strictly connected to the reliability and uncertainty of the source data. 

Mac (2014) considers geological data affected by different estimation error 

depending on the type of data. This estimation error is connected primarily to a 

certain data dispersion, due mainly to: 

 

• Intrinsic natural variations; 

• System heterogeneity; 

• Anisotropy of parameters; 

• Sampling difficulties; 

• Noise of natural system; 

• Calculation system noise. 

 

Therefore, due to the complexity of geological materials, it is important to 

consider the difficulty of modeling soil. Simplifications and conceptual 

assumptions are needed to define geotechnical models, trying to be as much 

effective as possible especially in design practice. The characterization of the 

reliability degree, however, turns out to be, in some contexts of analysis, 

indispensable (Johari, Fazeli and Javadi, 2013). 

Finally, the factors triggering landslides are, by their nature, subject to a high 

degree of uncertainty. 

 

Every scale of investigation, characterization and analysis of natural 

phenomena involves uncertainties that, directly or indirectly, must be considered. 

In most cases of slope analysis, uncertainty is associated with geotechnical 

parameters, geotechnical models, frequency, intensity and duration of triggering 

agents. The importance of different uncertainties depends on size and relevance 

of the specific site as well as the extension and from the quality of investigations 

and laboratory tests performed leading to inadequate representativeness of data 

samples due to time and space limitations. Another source of uncertainty is the 

temporal variability of parameters such as interstitial water pressure within the 

slope at different depths and especially along the potential sliding surface. 

Ideally, we would like to have perfect knowledge of site conditions, but resources 

are limited. Expenditures must be commensurate with both the scope of design 
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and with the potential consequences of using incomplete and imperfect 

information in making decisions.  
 

Excellent authors (Vanmarcke, 1980; Rethati, 1989; Christian, Ladd and 

Baecher, 1994; Lacasse and Nadim, 1996; Jaksa, Kaggwa and Brooker, 1999; Phoon 

and Kulhawy, 2001; Cassidy, Uzielli and Lacasse, 2008; Bond and Harris, 2008; 

Griffiths, Huang and Fenton, 2009; among others) focused on the need to develop 

new methods concerning spatial and temporal variability treatment of soil data 

which aim at optimizing their usage as well as providing a soil characterization 

and analysis as reliable as accurate.  

 

 

2.2 Soil Uncertainty Assessment  

 

It is often convenient in risk and reliability analysis to presume that some part of 

natural uncertainty is due to randomness. This allows to use probabilistic 

approaches to bear on a problem that might otherwise be difficult to address, 

incorporating probabilities of both aleatory and epistemic variability (Sarma, 

Krishna and Dey, 2015). 

It is important to point out that the presumed randomness in this analysis is a 

part of the models, not part of the site geology. The assumption is not being made 

that site geology is in some way random: once a formation has been deposited or 

formed through geological time, the spatial distribution of structure and material 

properties is fixed (Zêzere et al., 2004). 

 

Probabilistic approach results crucial when evaluating, either at quantitative 

or qualitative level, hazard and consequences of a calamitous event potentially 

affecting people, environment, infrastructures, local activities and so on (Zhang, 

2010). 

A probabilistic approach to studying geotechnical issues offers a systematic way 

to treat uncertainties, especially in soil stability.  

Deterministic slope stability analysis uses single value for each variable to 

calculate the Factor of Safety without evaluating the probability of failure 

(Alimonti et al., 2017).  

Different approaches try to evaluate soil variability. Relatively to the level of 

“knowledge” or complexity, they may be applied to the treatment of many 

problems depending on the relevance of design or, in this case, on the 

consequences of landslide events.  

All methods assume soil parameters as variables that may be expressed as 

Probability Density Function (PDF). As a result, stochastic approaches, based on 

probabilistic analysis, provide useful and different information. They are 
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following listed and described according to the level of details provided 

(Vanmarcke, 1980): 

 

• Semi-probabilistic (Level I); 

• Probabilistic simplified (Level II); 

• Probabilistic rigorous (Level III). 

 

The first level proposes a probabilistic approach based on characteristic values of 

each design variables (resistances and loads), conceived as fractiles of the 

statistical distributions. The characteristic values (respectively Rk and Ek) are 

defined as lower/upper values which minimise safety, considering volume 

involved, field extension and laboratory investigations, type and number of 

samples and soil behaviour (Bond and Harris, 2008). 

 

The second level of soil variability evaluation is the probabilistic simplified 

approach. In this method, FS may be interpreted in terms of probabilities or of 

suitable safety indices, leading to defining the probability of failure 

corresponding to FS less than or equal to 1 (Bond and Harris, 2008). 

It assumes soil parameters as aleatory variables that may be expressed with PDF 

curves. An alternative way of presenting the same information is in the form of 

Cumulative Distribution Function (CDF), which gives the probability of a 

variable in having value less than or equal to a selected one. 

This method attempts to include the effects of soil property variability giving, in 

addition to fractile, two more values per each uncertain parameter which 

characterized the PDF:  sample mean value () and sample standard deviation () 

of the probabilistic distribution function, respectively measuring the central 

tendency of the aleatory variable and its deviation, the average dispersion of the 

variable from its mean value (Bond and Harris, 2008). 

The normal or Gaussian distribution is the most common type of probability 

distribution function and respects the distribution of many aleatory variables 

conform to it (Jiang et al., 2014). It is generally used in probabilistic studies in 

geotechnical engineering unless there are good reasons for selecting different 

distributions. Typically, variables which arise as a sum of several aleatory effects 

are normally distributed (Li et al., 2011). 

The problem of defining a normal distribution is to estimate the values of the 

governing parameters which are the true mean and the true standard deviation. 

Generally, the best estimates for these values are given by the sample mean and 

standard deviation, determined from a few tests or investigations. Obviously, it 

is desirable to include as many samples as possible in any set of observations but, 

in geotechnical engineering, there are serious practical and economic limitations 

to the amount of data which may be collected. 
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Therefore, this approach provides statistical values of soil parameters to 

stochastically evaluate soil natural variability. The FS obtained is a curve of 

probability distribution numerically expressing the probability of failure of slope 

equilibrium condition (Meyerhof, 1994).   

 

The probabilistic rigorous approach performs probabilistic analysis 

considering not only measured values but also and especially its arrangement 

within the volume of soil explored. In fact, the claim of this method consists in 

providing a comprehensive statistical knowledge of all the variables that 

influence FS: soil parameters evaluated in three-dimensional contest (Griffiths, 

Fenton and Tveten, 2002).  

Another feature consists in soil inherent variability considered no more random. 

Based on probabilistic tools currently available, the analyses aim at a complete 

understanding of soil spatial laws is not feasible yet, remaining a pure theoretical 

reference. This underlines as the first two approaches are extremely reductive and 

approximate in soil characterization then in the evaluation of FS (Griffiths, Huang 

and Fenton, 2009). 
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Chapter III 
 

Stochastic Modelling of Soil 
 
 

Experience with panels of experts suggests that model uncertainty is among the 

least tractable issues dealt with. The difficult questions about model uncertainty 

have to do with underlying assumptions, with conceptualizations of physical 

processes, and with phenomenological issues. Failure processes involve strongly 

non-linear behaviours in considerations of time rates and sequences.  

 

 

3.1 Statistical Analysis of Variability 

 

Different types of mathematical models are built using different assumptions 

about natural phenomena. These different assumptions lead to different 

limitations in the applicability of models and specified boundary conditions. 

Thus, each model has an appropriate usage and scope dictated by the underlying 

assumptions. As the number of assumptions underlying a model increases, the 

scope narrows and accuracy and relevance of the model decreases (Hsu, 2013).  

 

In natural science, quantitative methods represent the systematic empirical 

investigation of observable phenomena via statistical, mathematical, or 

computational techniques. They aim at developing and applying mathematical 

approach pertaining to natural phenomena, such as slope instability, by including 

(Huang et al., 2013): 

 

• The generation of models, theories and hypotheses; 

• The development of instruments and methods for measurement; 

• Experimental control and manipulation of variables; 

• Collection of empirical data; 

• Modelling and analysis of data. 

 

Quantitative research is often contrasted with qualitative approach, which 

purports to be focused more on discovering underlying meanings and patterns 

of relationships (Lari, Frattini and Crosta, 2014), including classifications of types 

of phenomena and entities without involving numerical expression of 

quantitative relationships of data and observations. 
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Hazard Assessment 

Methods 

Qualitative methods 

(Knowledge driven) 

Field analysis Inventory mapping 

Index or parameter 

methods 

Combination or 

overlay of index maps 

Logical analytical 

models 

Quantitative methods 

(Data driven) 

Statistical analysis 

Bivariate statistical 

analysis 

Multivariate statistical 

analysis 

Mechanistic 

approaches 

Deterministic analysis 

Probabilistic analysis 

Neural network 

analysis 
 

 

Table 3 - Scheme of evaluation methodologies (source: Aleotti and Chowdhury, 1999) 

 

Statistical models are the most widely used branch of mathematics in quantitative 

research. In particular, multivariate statistics starts with studies on causal and 

interacting relationships by evaluating factors that influence landslide 

phenomena while controlling other variables relevant to obtain experimental 

frequency and distribution of outcomes in failure regions. 

Empirical relationships and mutual correlations may be examined between any 

combination of continuous and categorical variables by using some form of 

general linear model, non-linear model, or by using factor analysis (Pinheiro et 

al., 2018). 

 

Generally, in this context, to simplify analyses, analytical and transformation 

models are used to interpret results of site investigation using simplified 

assumptions and approximations. But, due to the complexity of soil formation 

and depositional processes, soil behaviour is seldom homogeneous (Svensson, 

2014). In addition, the assessment of slope stability is based on approaches based 

on average/low/high values of soil properties, which may reduce the realistic 

content of the analyses carried out (Wang, Hwang, Luo, et al., 2013).  

Geologic anomalies, inherent spatial variability of soil properties, scarcity of 

representative data, changing environmental conditions, unexpected failure 

mechanisms, simplifications and approximations adopted in geotechnical 

models, as well as human factors (Diamantidis et al., 2006) in stability assessment, 

are all factors contributing to uncertainty.  

Soil components and their properties are inherently variable from one location to 

another in a three-dimensional space, due mainly to complex processes and 

effects which influence their formation (Lombardi, Cardarilli and Raspa, 2017).  
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Therefore, the evaluation of the role of uncertainty necessarily requires the 

implementation of stochastic methods more accurate (Li et al., 2011).  

 

 

3.2 Geostatistical Approach 

 

The presence of such a spatial variability is the pre-requisite for the application of 

Geostatistics and its description is a preliminary step towards spatial prediction 

(Pebesma and Graeler, 2017). Geostatistics is a mathematical discipline which 

focuses on a limited number of statistical techniques to quantify, model and 

estimate the spatial variability of sparse sample data (Meshalkina, 2007). 

Therefore, it may allow to verify whether the simplified models and hypotheses 

of soil behaviour, used in the conventional approaches, are well-fitting (Valley, 

Kaiser and Duff, 2010).  

 

Matheron (1963) stated that the model of spatial variation reflects an inherently 

random process that has generated the site. Nonetheless, it is convenient to 

structure the models as if some fraction of the uncertainty we deal with has to do 

with irreducible randomness and then to use statistical methods to draw 

inferences about the models applied to that natural variability. 

 

  

Figure 7 - Variability of soil profile  (source: Honjo and Otake, 2011) 

 

Before introducing geostatistical analysis, the concept of regionalised aleatory 

variable (AV) and Aleatory Function (AF) must be introduced (Matheron, 1963). 

An AV is a variable that may assume multiple values and whose values are 

randomly generated according to some probabilistic mechanism. The AV Z(x) is 

also information-dependent, in the sense that its probability distribution changes 

as more data about the un-sampled value z(x) become available.  
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The regionalised value z(xo) at the specific location xo is one realization of the AV 

Z(xo), which is itself a member of the infinite family of aleatory variables.  

Therefore, the RV measured at each point is one of the possible results of the 

Aleatory Function: RV is a realization of AF. 

This set of functions, given by the spatial nature of the phenomenon, represents 

the spatial law of AF Z(x). 

 

 

Figure 8 - Description of Aleatory Function in S domain (source: Kasmaeeyazdi et al., 2018) 

 

 

3.2.1 Spatial variogram model 

 

It is the most common function of Geostatistics, used mainly in applications for 

characterizing spatial variability of regionalised phenomena (Matheron, 1973).  

 

The variogram is defined as the variance of the increment: 

 

[Z(x1) - Z(x2)] 

It is written as: 

 

2γ(x1,x2) = Var [Z(x1) − Z(x2)] 

 

The function γ(x1,x2) is then the semi-variogram.  

 

In particular, weak stationarity models are based on the following two 

hypotheses: 

 

E[Z(x)] = E[Z(x+h)] = m 

 

Var[Z(x+h)-Z(x)] = 2γ(h)   with   γ(h) = C(0)-C(h) 

(2) 

(3) 

(4) 

(5) 
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which respectively mean: constant average value in the whole domain and 

covariance function invariant by translation. Therefore, the semi-variogram is 

dependent only on h. 

 
Figure 9 - Schematization of S domain and xi values (source: Famulari, 2013) 

 

Semi-variogram is the best way to describe spatial correlation for which data at 

two locations are correlated as function of their distance. It is usually defined 

autocorrelation or correlation length because referred to the correlation of a single 

variable over space (Matheron, 1963). 

Generally, the variance changes when the space between pairs of sampled points 

increases, so near samples tend to be alike. For large spacing, experimental 

variogram sometimes reaches - or tends asymptotically to - a constant value (sill). 

It corresponds to the maximum semi-variance and represents the variability in 

the absence of spatial dependence (Guarascio and Turchi, 1977). 

The distance after which variogram reaches the sill is the range and corresponds 

to the distance at which there is no evidence of spatial dependence. In case sill is 

only reached asymptotically, range is arbitrarily defined as the distance at which 

95% of the sill is reached (Matheron, 1973). 

The behaviour at very detailed scale, near the origin of the variogram, is very 

meaningful as it indicates the type of continuity of the regionalised variable.  

Though the value of the variogram for h = 0 is strictly 0, several factors, such as 

sampling error, short scale variability or geological structures with correlation 

ranges shorter than the sampling resolution (Meshalkina, 2007), may cause 

sample values separated by extremely small distances to be quite dissimilar. This 

causes a discontinuity at the origin of the variogram, which means that the values 

of the variable change abruptly at the scale of detail. For historical reasons, this 

type of variogram behaviour is called nugget effect. It represents the variability at 

a point that cannot be explained by spatial structure (Matheron, 1963).  
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Figure 10 - Variogram parameters and function (source: Loots, Planque and Koubbi, 2010) 

 

In Geostatistics, spatial patterns are usually described by using experimental 

variogram which measures the spatial dependence (correlation) between 

measurements, separated by h displacement (lag distance). The variogram is 

estimated from available values at sample points so it represents the degree of 

continuity of the soil property at different locations. In nature, generally, the 

values of a soil property at two close points are more likely similar than those far 

away from each other (Sidler, Prof and Holliger, 2003).  

The description of spatial patterns is rarely a goal. Generally, there is the need to 

quantify spatial dependence for predicting soil properties at un-sampled 

locations. Therefore, it is necessary to fit a theoretical function which describes 

the empirical variogram of the spatial variability of sampled points as well as 

possible (Jaksa, 1995). 

 

 

Figure 11 - Theoretical variogram functions (source: gisgeography.com) 
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Relatively to spatial analysis there is isotropy when the variogram depends on 

separation distance h between points instead of directional component 

(Matheron, 1973). If spatial correlation depends on spatial direction (angular 

direction), then the spatial process assumes anisotropic correlation. This is a 

common case in most cases concerning soil properties, due to sedimentation 

(Pebesma and Graeler, 2017) which often gives a preferential layers’ orientation 

(the direction of maximum continuity will most likely be parallel to stratigraphy). 

 

    

Figure 12 - Anisotropy characteristics and discretization (source: spatial-analyst.net) 

 

 

3.2.2 Kriging: spatial prediction method 

 

A problem common in site characterization is interpolating among spatial 

observations to estimate soil or rock properties (Sidler, Prof and Holliger, 2003) at 

specific locations where they have not been observed. 

The main application of Geostatistics is the estimation and mapping of spatial soil 

properties in the un-sampled areas.  

 

The most obvious way to proceed for spatial prediction at un-sampled 

locations is simply to take an average of the sample values available and assume 

that it gives a reasonable prediction at all locations in the region of interest. 

However, if it is known that the variable of interest tends to be spatially 

correlated, it would make sense to use a weighted average, with measurements 

at sampled locations that are nearer to the un-sampled location being given more 

weight (Matheron, 1963).  

Kriging has been defined by Olea (2009) as “a collection of generalised linear 

regression techniques for minimising an estimation variance defined from a prior 

model for a covariance”. Kriging is just a generic name for a family of generalised 
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linear (least-squares) regression algorithms used to define the optimal weighting 

of measurements points in order to obtain a spatial prediction as much 

representative as possible at all un-sampled locations (Functions and 

Geostatistics, 1991). In Kriging the Euclidean distance is replaced by the statistical 

distance, which depends on the variogram model assumed (Matheron, 1973). 

 

Kriging belongs to the category of stochastic methods, since it is assumed that 

measurements, both actual and potential, constitute a single realization of an 

aleatory (stochastic) process. One advantage of this assumption (Meshalkina, 

2007) is that measures of uncertainty may be defined and hence, weights may be 

determined to minimise the measure of uncertainty. Indeed, much of the 

advantage of using geostatistical procedures, such as Kriging, lies not just in the 

point and block estimates they provide, but in the information concerning 

uncertainty associated with these estimates (Zhang et al., 2013). 

Kriging fits a mathematical function to a specified number of points, or all 

points within a specified radius, to determine the output value per each location.  

Kriging is a multistep process, it includes exploratory statistical analysis of data, 

variogram modelling, creating a surface and (optionally) exploring the variance 

surface (Matheron, 1973).  

Oliver and Webster (2014) detailed the following key steps involved in Kriging 

method of geostatistical estimation: 

 

• A structural study defining the semi-variogram; 

• Selection of samples to be used in evaluating the elements; 

• Calculation of the Kriging system of equations; 

• Solution of the equations to obtain optimal weights; 

• Use of results to calculate the estimates and the associated estimation 

variance. 

 

Kriging weights the surrounding measured values for deriving a prediction of 

un-measured locations (Matheron, 1963). The general formula, applied to original 

data, consists of a weighted sum of the data: 

 

Z*(x0)= ∑ λi

n

i=1

Z(xi) 

where: 

 

Z*(xo) = the predicted value at xo location (Kriging estimation); 

Z(xi) = the measured value at ith location; 

λi = the unknown weight for the measured value at ith location; 

(6) 
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n = the number of measured values. 

 

In Kriging, weights are based not only on Euclidean distance between measured 

points and prediction locations, but also on the overall spatial arrangement 

among observed points. These optimal weights depend, in fact, on the spatial 

arrangement and autocorrelation quantified (Functions and Geostatistics, 1991). 

 

 
Figure 13 - Spatial prediction between unsampled point (red) and measured values (black) 

(source: resources.esri.com) 

 

The Kriging estimation is the best linear unbiased estimator (Viscarra Rossel et al., 

2010) of the Z(x) if the properties in Table 4 are hold.  

 
Estimator 

property 
Definition 

Unbiasedness 
The expected value of Z(x) over all ways the sample might have been 

realized from the parent population equals the parameter to be estimated 

Consistency Z(x) converges to the parameter to be estimated 

Efficiency The variance of the sampling distribution of Z(x) is minimum 

Sufficiency 
The estimator Z(x) makes maximal use of the information contained in the 

sample observations 

Robustness 
The statistical properties of Z(x) in relation to the parameter to be estimated 

are not sensitive to deviations from the assumed underlying PDF of Z 

Table 4 - Properties of statistical estimators (source: Sigua and Hudnall, 2008) 

 

Kriging is very popular in numerous scientific fields because its estimates are 

unbiased and have a minimum variance. Furthermore, this interpolation method 

may estimate errors associated with each prediction and its correctness, meaning 

that in a sampled point the estimated value is equal to the observed one, then the 

mean estimation error is null (Matheron, 1963). In this way Kriging provides also 
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the minimum estimation variance of errors, for which it is defined an accurate 

method (Matheron, 1973).  

It appears evident that Kriging variance, as measure of precision, relies on the 

correctness of the theoretical variogram model assumed (Kasmaeeyazdi et al., 

2018). However (Sidler, Prof and Holliger, 2003): 

 

• As with any method, if the assumptions do not hold, Kriging interpolation 

might be not representative of data measurements; 

• There might be better non-linear and/or biased methods; 

• No properties are guaranteed, when the wrong variogram is used. However 

typically a 'good' interpolation is still achieved; 

• Best is not necessarily good: e.g. in case of no spatial dependence, Kriging 

interpolation is only as good as the arithmetic mean; 

• Kriging provides a measure of precision. However, this measure relies on the 

correctness of the variogram. 

 

Different Kriging methods for calculating spatial weights may be applied. 

Classical methods are (Oliver and Webster, 2014): 

 

• Simple Kriging, it assumes stationarity of the first moment over the entire 

domain with a known zero mean; 

• Ordinary Kriging, which assumes constant the unknown mean only over the 

neighbourhood of xo; 

• Universal Kriging, assuming a general polynomial trend model; 

• Indicator Kriging, which uses indicator functions instead of the process itself, 

in order to estimate transition probabilities; 

• Disjunctive Kriging, it is a nonlinear generalisation of Kriging; 

• Lognormal Kriging, which interpolates positive data by means of logarithms. 

 

Concerning phenomena in which the input is uncertain, also Reliability-based 

theory deals with stochastic modelling (Jiang et al., 2014). 

 

 

3.3 Reliability Approach 

 

Reliability approach more widely deals with the estimation, prevention and 

management of engineering uncertainty and risks of failure (Huang et al., 2013), 

understanding reliability of parameters and/or system. 

Reliability is generally defined as the probability that a component will perform 

its intended function during a specified period of time under stated conditions 

(Wu et al., 2013). 
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To combine the concept of reliability and to retain the advance of convenience for 

use like the conventional method of Safety Factor, the concept of safety factor of 

reliability is introduced. 

Concerning FS, reliability approach attempts to account explicitly for 

uncertainties in load and strength and their probability distribution (Kim and 

Sitar, 2013).  

 

 

Figure 14 - Three-dimensional joint density function f(R,S)  

(source: risk-reliability.uniandes.edu.co) 

 

Reliability analysis deals with the relation between the loads a system must carry 

and its ability to carry those loads. Both the loads (S) and the resistance (R) may 

be uncertain, so the result of their interaction is also uncertain (Wu, 2013). It is 

common to express reliability in the form of Reliability Index (β), which may be 

related to Probability of Failure (pf). 

 

Failure occurs when FS < 1, and the Reliability Index is defined by (Belabed and 

Benyaghla, 2011): 

 

pf = P[FS < 1] =  ϕ(−β)              β =
μFS − 1

σFS
 

 

β is approximately the ratio of the natural logarithm of the mean FS (which is 

approximately equal to the ratio of mean resistance over mean load) to the 

coefficient of variation (COV) of FS (Phoon and Kulhawy, 1999). 

A large value of β represents a higher reliability or smaller probability of failure 

(Usace, 2006). The reliability level associated with a Reliability Index β is 

approximately given by the Standard Normal Probability Distribution ϕ, 

evaluated at β, from Table 5. 

(7) 
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Analysis Reliability Level Reliability Index Probability of Failure 

High 5 0.0000003 

Good 4 0.00003 

Medium High 3 0.001 

Medium Low 2.5 0.006 

Low 2 0.0023 

Unsatisfactory 1.5 0.07 

Risky 1 0.16 

Table 5 - Typical values of the Reliability Index and Probability of Failure  

(source: Usace, 2006) 

 

 

 

Figure 15 - Probability of exceedance (source: daad.wb.tu-harburg.de) 

 

β index thus expresses the stability condition of a slope; if two slopes have the 

same FS, with different Reliability Index, they have different Probability of 

Failure (Manoj, 2016). Therefore, in order to calculate the probability of failure it 

is necessary to hypothesize, or however to know, the probability distribution of 

FS (Katade and Katsuki, 2009). 

 

There are several methods in literature for assessing β and pf, each having 

advantages and disadvantages (Low, 2003). Among the most widely used there 

are (Belabed and Benyaghla, 2011): 
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• The First Order Second Moment (FOSM) method. This method uses the first 

terms of a Taylor series expansion of the performance function to estimate the 

expected value and variance of the performance function. It is called a second 

moment method because the variance is a form of the second moment and is 

the highest order statistical result used in the analysis.  

• The Second Order Second Moment (SOSM) method. This technique uses the 

terms in the Taylor series up to the second order. The computational 

complexity is greater, and the improvement in accuracy is not always worth 

the extra computational effort. 

• The Point Estimate method. Rosenblueth (1975) proposed a simple and 

elegant method of obtaining the moments of the performance function by 

evaluating the performance function at a set of specifically chosen discrete 

points.  

• The Hasofer–Lind method or FORM. Hasofer and Lind (1974) proposed an 

improvement on the FOSM method based on a geometric interpretation of 

the reliability index as a measure of the distance in dimensionless space 

between the peak of the multivariate distribution of the uncertain parameters 

and a function defining the failure condition. This method usually requires 

iteration in addition to the evaluations at 2N points.  

• Monte Carlo Simulation (van Slyke, 1963). In this approach the analyst creates 

a large number of sets of randomly generated values for the uncertain 

parameters and computes the performance function for each set. The statistics 

of the resulting set of values of the function may be computed and β or pf 

calculated directly. 

 

The conventional safety factor depends on the physical model (Bowles, 1979), the 

method of calculation, and most importantly, on the choice of soil parameters. 

The uncertainty level associated with the resistance and load is not explicitly 

considered. Consequently, inconsistency is likely to exist among engineers and 

between applications for the same engineer. The use of a reliability index β may 

provide significant improvement over the use of the traditional design safety 

factor in measuring the reliability component (Abbaszadeh et al., 2011). 

 

 

3.3.1 Random variables 

 

A random process model describes the generating mechanism of a physical 

phenomenon in probabilistic terms, from which is described the theoretically 

“correct” stochastic behavior of the phenomenon (Li et al., 2011). This contrasts 

with an empirical model that simply fits a convenient, smooth analytical function 

to observed data with no theoretical basis for choosing the particular function. 
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A random variable is a mathematical model to represent a quantity that varies 

(Johari, Fazeli and Javadi, 2013). Specifically, a random variable model describes 

the possible values that the quantity may take on and the respective probabilities 

for each of these values (Huang et al., 2013).  

A probability is associated with the event that a random variable will have a 

given value. Random variables for each calculation are needed from a sample of 

random values (Hsu, 2013) which are based on the selected PDF which well fits 

the variable. Although these PDFs may take on any shape, normal, lognormal, 

beta and uniform distributions are among the most favored for analysis (Low, 

2003).  

 

The Normal distribution (also known as the Gaussian distribution) is the classic 

bell-shaped curve that arises frequently in datasets concerning geotechnical 

aspects and are used to estimate the PDF of FS. Thus, for uncertainties such as the 

average soil strength with random variations, the Normal pdf is an appropriate 

model (Papaioannou and Straub, 2012). 

In many cases, there are physical considerations that suggest appropriate 

forms for the probability distribution function of an uncertain quantity. In such 

cases (Griffiths, Huang and Fenton, 2009) there may be available from which to 

construct a function cogent reasons for favoring one distributional form over 

another, no matter the behavior of limited numbers of observed data (Valley, 

Kaiser and Duff, 2010).  

 

Much work in probability theory involves manipulating functions of random 

variables (Griffiths, Fenton and Tveten, 2002). If some set of random variables has 

known distributions, it is desired to find the distribution or the parameters of the 

distribution of a function of the random variables useful in generating random 

Normal variables for Monte Carlo Simulation (Danka, 2011). 

 

 

3.3.2 Monte Carlo Simulation: random process method 

 

Any simulation releasing on random numbers requires that there is some way to 

generate the random numbers (EPA, 1997). Statisticians have developed a set of 

criteria that must be satisfied by a sequence of random numbers. The value of any 

number in the sequence must be statistically independent of the other numbers 

(Hsu, 2013). 

Monte Carlo technique may be applied to a wide variety of problems employed 

to study both stochastic and deterministic systems. This method involves random 

behavior and a number of algorithms are available for generating random Monte 
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Carlo samples from different types of input probability distributions (Harrison, 

2010).  

The Monte Carlo method is particularly effective when the process is strongly 

non-linear or involves many uncertain inputs, which may be distributed 

differently (Enevoldsen and Sørensen, 1994). To perform such a study, it 

generates a random value for each uncertain variable and performs the 

calculations necessary to yield a solution for that set of values. This gives one 

sample of the process. From a set of response realizations, it gives a picture of the 

response distribution from which probability estimates may be derived (Wu et al., 

1997).  

 

The method has the advantage of conceptual simplicity, but it may require a large 

set of values of the performance function to obtain adequate accuracy. The major 

disadvantage is that it may converge slowly so it requires a large number of trials 

directed at either reducing error in sampling process or achieving a desired 

accuracy. Accurate Monte Carlo simulation depends also on reliable random 

numbers (Carlo and Galvan, 1992). 

Furthermore, the method does not give insight into the relative contributions of 

the uncertain parameters that is obtained from other methods (Harrison, 2010), 

each run gives one sample of the stochastic process. 

In slope stability context, Monte Carlo simulation produces a distribution of 

Factor of Safety rather than a single value (Belabed and Benyaghla, 2011). The 

results of a traditional analysis, using a single value for each input parameter may 

be compared to the distribution from the Monte Carlo simulation to determine 

the level of conservatism associated with the conventional design (Danka, 2011). 

By this procedure, values of the component variables are randomly generated 

according to their respective PDFs. By repeating this process many times, the 

Probability of Failure may be estimated by the proportion of times that FS is less 

than one (EPA, 1997). The estimate is reasonably accurate only if the number of 

simulations is large; also, the smaller the probability of failure, the larger the 

number of simulations that will be required (Gustafsson et al., 2012). 
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Chapter IV 
 

Case Study: the Landslide of Montaguto (AV) 
 

 

 

4.1 Earthflow Phenomenon Description 

 

Earth flows are among the most common mass-movement phenomena in nature 

(Keefer, D.K.; Johnson, 1983). 

In Italy, earth flows affect large areas of the Apennine range and are widespread 

where clay-rich, geologically complex formations outcrop (Del Prete and 

Guadagno, 1988; Martino, Moscatelli and Scarascia Mugnozza, 2004; Bertolini 

and Pizziolo, 2008; Revellino et al., 2010). Most of them are reactivations of ancient 

earth flow deposits; only few events are completely new activations (Martino and 

Scarascia Mugnozza, 2005; Revellino et al., 2010). 

 

Active earth flows generally manifest a seasonal and long-term activity pattern 

related to a regional climate pattern (Coe, 2012; Handwerger, Roering and 

Schmidt, 2013) with a higher susceptibility to movement, in the form of local 

landslides or major reactivations. 

Earth flow response to rainfall or snowmelt, in terms of velocity fluctuations, is 

often delayed, and in several cases, long periods of cumulated precipitation are 

required to trigger a reactivation (Kelsey, 1978; Iverson, 1986; Iverson and Major, 

1987). 

 

Earth flows are generally identified by an upslope crescent-shaped or basin-

shaped scar that is the source area, a loaf-shaped bulging toe that has a long 

narrow tongue- or teardrop-shaped form (Rengers, 1973; Keefer, D.K.; Johnson, 

1983; Bovis, 1985; Cruden and Varnes, 1996; Baum, Savage and Wasowski, 2003; 

Parise, 2003). Earth flow has characteristic features that make it recognizable on 

the basis of morphological observation (Keefer, D.K.; Johnson, 1983; Fleming, 

Baum and Giardino, 1999; Parise, 2003; Zaugg et al., 2016). 

The length of an earth flow is commonly greater than its width and its width is 

greater than its depth.  
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Figure 16 - Earthflow landslide representation diagram (source: Keefer, D.K.; Johnson, 1983) 

 

Some authors observed that weak, low-permeability clay layers, characterizing 

the basal and lateral shear zones of some earth flows, might effectively isolate the 

earth flow from adjacent ground. This mechanical and hydrological isolation 

contributes to the persistent instability of earth flows (Baum, R. L, Reid, M. E., 

2000).  

Shear strength of the clay layer tends to be significantly lower than both the 

landslide materials and adjacent ground, helping to perpetuate movement on 

relatively gentle slopes. The presence of the clay layer causes the landslide to 

retain water (Habibnezhad, 2014). 

 

The term Earthflow was used by many authors (Cascini et al., 2012; Guerriero et 

al., 2013; Ferrigno et al., 2017; Bellanova et al., 2018) to describe the Montaguto 

slope failure because it is composed of predominantly fine-grained material and 

has a flow-like surface morphology (Keefer, D.K.; Johnson, 1983; Cruden and 

Varnes, 1996; Hungr, Leroueil and Picarelli, 2014). However, most movement of 

Montaguto earth flow takes place by sliding along discrete shear surfaces 

(Guerriero, Revellino, Coe, et al., 2013). The association of the Montaguto 

landslide with Earth flow phenomenon will be described in more detail 

afterwards. 
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4.1.1 Geography and historical activity 

 

The Montaguto landslide is located in the Apennine Mountains of Campania 

Region in Southern Italy, Province of Avellino (41.2375676 lat, 15.2210359 long). 

It took the name from the Municipality in which it has been occurred since, at 

least, 1935 when a first statement reported landslide movement (Guerriero, 

Revellino, Coe, et al., 2013). Additional information indicates that it was active 

around 1947 and in 1954 and 1955 when it destroyed farmland and compromised 

the wheat cultivations (Guerriero, Revellino, Grelle, et al., 2013). Conversely, from 

1976 to 1991, it was relatively stable. From 1991 to 2003, the lower part of the 

landslide was active, and the toe appeared to have expanded. For the period from 

2003 to 2005 some residents indicated that the landslide moved again. In June 

2005 the entire length of the slope became active and on 26th April 2006 a large 

remobilization covered and closed the SS90 state road which connects the 

provinces of Foggia and Avellino (Guerriero et al., 2015). 

 

 

Figure 17 - Landslide body and run out after the reactivation in 2006  

(source: Cascini et al., 2012) 
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Figure 18 - Landslide toe covering the National Road SS90 after 2006 movement  

(source: Guerriero, Revellino, Grelle, et al., 2013) 

 

From October 2007 to July 2009 the landslide activity was concentrated in the 

source area and near the toe. Between March and November 2008, the movement 

was minimal. The source area was particularly active in early 2009 when the main 

head scarp progressed upslope (Terra et al., 2013). On 10th March 2010, another 

large remobilization occurred. This reactivation covered and closed again the 

national road SS90 and the Benevento-Foggia railway (Ferrigno et al., 2017). 

 

 

Figure 19 - Landslide body and run out after the reactivation in 2010  

(source: Guerriero, Revellino, Grelle, et al., 2013) 
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Figure 20 - Landslide toe covering the road SS90 and railway after 2010 movement  

(source: Guerriero, Revellino, Grelle, et al., 2013) 

 

 

4.1.2 Geological and hydrological setting 

 

The Montaguto earthflow is approximately 3 km long and involves 4-6 million of 

m3 of soil material (Guerriero et al., 2014). The earth-flow width ranges from 75 

m of the earthflow neck to 450 m of the upper part of the earth-flow source area. 

The total elevation difference, from the toe next to the Cervaro River to the top of 

the 90 m high head scarp, is about 440 m (Luigi Guerriero, Mascellaro, et al., 

2016a). 

The geological context is tectonically and stratigraphically complex, with a 

network of faults and folds affecting sedimentary units (Pescatore et al., 1996).  
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Figure 21 - Geological Sheet No. 174 "Ariano Irpinia" (SGd'I, 1964):  

A - Flysch formation; B - Argillaceous marl unit; C - Arenitic unit; D - Conglomeratic unit;  

E - Ligurid unit; F - Alluvial deposits (source: Pinto et al., 2016) 

 

The morphology and hydrography occur quite articulated with a strong 

structural control. The outcropping stratigraphic units are mainly three: the 

Flysch Faeto, the Marne and the clay of the Toppo Capuana, the Altavilla Unit, 

and the Cervaro river alluvial deposits (Pinto et al., 2016).  

The Flysch Faeto formation consists of two main lithofacies. The limestone-marl 

lithofacies consists of an alternation of turbidite limestones, calcilutites and 

whitish marls intercalated with greenish clays and bioclastic calcilutites 

(Guerriero et al., 2014).  

The alluvial deposits of the T. Cervaro are characterized by gravel and gravel 

sandy locally cemented where the thickness of the deposits has been rated not 

more than 15 m (Guerriero et al., 2015). There are also, widely distributed along 

the valley bottom, the recent torrential alluvial deposits (Holocene and Present), 

consisting of gravel and gravel-sandy, with lenses of sand and silt. 

 

The geological complexity of the area controls groundwater flow and spring 

positions (Diodato et al., 2014). Springs and ponds appeared and disappeared 
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between 1976 and 2010, but their spatial positions stayed in consistent geologic or 

structural settings.  

In the area of the main scarp of the landslide a high number of springs were 

identified with a total substantial flow rate, its value is around 2.0 l/s. The springs 

are supplied from the calcareous-clayey complex (Guerriero, Revellino, Coe, et al., 

2013). The outflows are channelled within the landslide body. 

 

 

Figure 22 - Main scarp of Montaguto earthflow (view from the top)  

(source: Guerriero et al., 2014) 

 

Cross-correlation analysis performed by Diodato et al., (2014) between spring 

discharge and precipitation for the yearly cycle shows the existence of a 

hydrogeological structure with a quasi-fast response to precipitation. A simple 

statistical model was used to reconstruct spring discharges (Guerriero et al., 2015) 

by using Landslide Hydrological Climatological indicator (LHC) which analyzed 

cause-effect relations between documented historical earth flow activity and 

monthly rainfall data. 
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Graph 1 - Evolution of the monthly LHC indicator (01/1923 - 05/2010) for the landslide  

(source: Guerriero et al., 2015) 

 

The comparative analysis of rainfall data performed by Guerriero et al., (2015) 

indicates, thus, that the most important landslide reactivations were triggered 

after at least two consecutive wet hydrologic years1.  

Earth flow response to rainfall or snowmelt is in fact often delayed, and in several 

cases, long periods of cumulated precipitation are required to trigger a 

reactivation (Kelsey, 1978; Iverson, 1986; Iverson and Major, 1987). This led to 

suggest that a cause-effect relationship does exist (Diodato et al., 2014; Guerriero 

et al., 2015). 

Investigation of a large earth flow response to rainfall is particularly challenging 

due to short-term and seasonal variability of groundwater fluctuation (Coe et al., 

2003; Schulz et al., 2009; Doglioni et al., 2012). 

However, in hydrogeological complex conditions, groundwater rising caused by 

rainfall alone cannot be enough to explain earth flow reactivations (Guerriero et 

al., 2014); local hydrogeological factors and basal slip surface geometry might 

influence earth flow stability. 

 

At the Montaguto earth flow, previous work by other researchers has 

documented the evolution of surface topography (Ventura et al., 2011; Giordan et 

al., 2013) and the influence of basal- and lateral-slip surfaces on long-term earth-

flow evolution (Guerriero, Revellino, Grelle, et al., 2013). 

Most movement of Montaguto earth flow takes place by sliding along discrete 

shear surfaces (Guerriero, Revellino, Grelle, et al., 2013). At Montaguto, as at most 

                                                 
1 A wet hydrologic year is defined as a year where the cumulative rainfall is above the average  

  of two standard deviations. 
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slope failures, sliding movement is usually concentrated along basal- and lateral-

slip surfaces (Hutchinson, 1970; Keefer, D.K.; Johnson, 1983; Baum and Johnson, 

1993). The steepness of the basal-slip surface controls differences in flow velocity 

(from 0.5 m/h up to 4.5 m/h in the upper part of the earthflow), which resulted in 

local strain.  

Cross section profile locations were selected where there were abundant data 

available to constrain the position of the slip surfaces (Guerriero et al., 2014).  

Difference DEMs derived from 2006 and 2010 were used to determine the 

thickness of the basal- and lateral-slip surfaces along a longitudinal-profile and 

along several cross section profiles (Guerriero et al., 2014). 

 

 

Figure 23 - Geological longitudinal section of the slope in 2006. The Faeto Flysch (brown), the 

clayey marl unit of Villamaina formation (dark yellow) and the landslide mass (grey). 

(source: Guerriero et al., 2014) 

 

 

Figure 24 - Longitudinal profile showing the geometry of the basal slip surface of the 

Montaguto earth flow (source: Guerriero et al., 2014)  
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Figure 25 - Slip surface geometry along landslide body  

(source: Pinto et al., 2016) 

 

Overall, the basal-slip surface is a repeating series of steeply sloping surfaces 

(risers) and gently sloping surfaces (treads). 

The implications of these observed and modelled effects are that basal- and 

lateral-slip surfaces should also control the positions and geometries of surface 

features (Guerriero et al., 2014). 

 

The direction of earth-flow motion, as well as earth-flow structures with strikes 

roughly parallel to this direction, was strongly influenced by pre-earth-flow 

drainages that were controlled by tectonic structures (folds and faults in bedrock) 

(Giordan et al., 2013). Also, earth-flow deposits (i.e. the inactive toe) influenced 
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the direction of subsequent earth-flow motion (Guerriero, Revellino, Coe, et al., 

2013). 

 

 

4.1.3 Soil investigation and monitoring 

 

After the first main reactivation occurred in April 2006, hydrogeological and 

geotechnical surveys were carried out (Pinto et al., 2016). The geo-

characterization, performed just after the event, was based on soil investigations 

both in-situ and in laboratory, consisting of: 
 

• 9 geognostic surveys; 

• 22 un-disturbed samples (Direct simple shear and Triaxial tests); 

• 15 in-situ penetration surveys (CPT).  

 

 

Figure 26 - Geognostic and geotechnical surveys in 2006 (red and green)  

and 2010 (black and blue) (source: Guerriero et al., 2016b) 
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Following the second main landsliding event, in March 2010, further surveys 

campaigns were conducted together with monitoring activity. 

Due to the substantial change in the topographic profile occurred during the 

landslide movement, the monitoring activity was carried out through the 

integration of different techniques executed by many authors (Denora, Romano 

and Cecaro, 2013; Allasia et al., 2013; Pinto et al., 2016; Ferrigno et al., 2017), as 

listed below: 

 

• Ground-based real-time SAR interferometry (DST-UNIFI); 

• Laser scanning survey (DST-UNIFI); 

• Using of optical and thermal images (DST-UNIFI); 

• Robotized total stations (RTSs) monitoring system (CNR-IRPI Turin); 

• Geophysical and geognostic surveys (UNI SANNIO). 

 

During the most recent in-situ campaign, other 9 boreholes and 22 samples were 

performed, reaching the same depths as in 2006, using a rotary drilling apparatus. 

Overall, the topographic surveys were performed to obtain the following results 

(Terra et al., 2013): 

 

• Reconstruction of a detailed 3D model (DTM) of the study area; 

• Georeferenced map realization for the works location; 

• Volumes calculation. 

 

The results of combined investigation techniques and field measurements of the 

Montaguto earthflow, led to multi-temporal reconstruction of the phenomenon 

evolution over time (Guerriero, Revellino, Coe, et al., 2013). 

Moreover, data from multi-temporal analysis was integrated with a detailed 

reconstruction of the earth-flow basal-slip surface and geological structures in 

order to identify the geometrical control exerted by the slip-surface-geometry and 

bedrock geological structures on earth-flow deformation and movement 

(Guerriero et al., 2014). 
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Figure 27 - Maps of the Montaguto Earth flow in 2006 (left) and 2010 (right)  

(source: Guerriero, Revellino, Coe, et al., 2013) 
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Figure 27 shows the direction of earthflow motion, as well as earthflow structures 

with strikes roughly parallel to this direction. This one was strongly influenced 

by pre-earthflow drainages that were controlled by tectonic structures (folds and 

faults in bedrock). Also, earthflow deposits (i.e. the inactive toe) influenced the 

direction of subsequent earthflow motion (Guerriero et al., 2014). 

 

 

4.1.4 Mitigation measures 
 

Many engineering works were realized after the main reactivation in March 2010. 

They focused on the main triggering factors of the landslide movement. 

Based on their actions, they may be distinguished in three categories, concerning: 

 

• Shallow and deep drainage systems, lowering groundwater level; 

• Topographic reshaping, aims at reducing slope angle of inclination; 

• Retaining gabions, which increase stabilization loading on the toe.  

 

Since water was the main engine of the landslide (Diodato et al., 2014), the 

primary objective of the undertaken actions was to reduce hydraulic pressure 

applied by groundwater inside and along the boundary of the landslide mass, 

both from the surface and deeper layers (Pinto et al., 2016). 

The restoration of an effective surface circulation has thus been planned, coupled 

with drainage trenches, able to intercept and divert deep circulation water by a 

controlled collection. 

 

 

Figure 28 - Trench channel works 



52 

 

 

 

The area affected by the landslide was very large, therefore it has been zoned into 

3 different parts, to better plan and carry out the required interventions. 

The upper part was characterized by the presence of a system of lakes, whose 

water, collected into a well by the drainage trenches and superficial channels, is 

delivered into a watershed located outside the landslide (Guerriero, Revellino, 

Grelle, et al., 2013). 

Superficial channels with bottom hydraulic jumps were carried out in the middle 

part of the landslide. Furthermore, deep drainage trenches have been dug, 

allowing deep water to spring at the hydraulic bottom jumps of the channels. 

The system of superficial channels coupled with drainage trenches was also 

repeated at the lower part of the landslide. The water from the lower part and 

from lateral channel system were conveyed towards a natural watercourse that 

flows beyond the landslide foot. In this way all the abundant stagnant water 

within the depressions created by the ground movements has been eliminated, 

thus reducing water infiltration and contributing to slow the landslide velocity 

down (Guerriero, Revellino, et al., 2016). 

A pilot well has been also drilled upstream the landslide, to intercept the water 

flowing towards the main scarp; the promising results in terms of water amount 

and quality suggested a possible water supply (L. Guerriero et al., 2016). 

 

 

Figure 29 - Retaining gabions on the toe 
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Secondly, stabilization works were performed along the toe front with the aim of 

protecting downstream the main elements at risk (Guerriero, Revellino, Grelle, et 

al., 2013). At first, steel reinforced gabions were installed to build a draining tied 

wall of considerable size, then the landslide has been reshaped in accordance with 

the drainage works already carried out. 

 

 

Figure 30 - Aerial view of the landslide toe after reshaping (source: Google Earth) 

 

Removal of soil material as well as reshaping of the lower part of the landslide 

were executed as final step. The reduction of the inclination angle tends, indeed, 

to increase whole slope stability (Low, 2003). 

 

 

4.2 Soil Characterization 

 

Geological information contained in the maps developed by previous authors  

(Giordan et al., 2013; Pinto et al., 2016; Guerriero et al., 2016), being based 

exclusively on lithite - chrono - stratigraphic criteria, are not immediately usable 

in terms of features techniques for our application purposes. In this sense, the 

contents of such documents need a phase of "transfer" in quantitative terms (i.e. 
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characterization in terms of lithological properties, chemical-physical status and 

geomechanical behaviour). 

The definition of the geological factors, competing with the geomorphological 

susceptibility, needs to operate on differentiated scales and this implies that such 

transfer "should" be adequate in terms of multiscalar hierarchical congruence 

(Fubelli et al., 2013) through a re-aggregation and recoding of the cartographic 

data identifying significant lithological systems. 

In terms of susceptibility, it is computed from variables such as geology, slope 

gradient and aspect, elevation, geotechnical properties, vegetation cover, 

weathering, drainage pattern (Rossi et al., 2010). 

 

Therefore, the geomorphic system has been studied by applying statistical 

methodologies of coding and aggregation which aim at maintaining the overall 

behavior deriving from complex interrelations between soil components and 

conditioning factors of the earthflow. 

 
Slope Aspect Source of Uncertainty 

Geometry 

Topography 

Geology / Structures 

Groundwater surface 

Properties 

Strength 

Deformation 

Hydraulic Conductivity 

Loading 

In-situ stresses 

Blasting 

Earthquakes 

Failure Prediction Model Reliability 

Table 6 - Sources of uncertainty (source: Fischer et al., 2009) 

 

Furthermore, the existence of a correlation between the explanatory variables 

contributing to the uncertainty may highlight the susceptibility of the landslide 

system to evolve according to their own modalities barriers identified at scale of 

detail (Rossi et al., 2010). 

For the purpose of this thesis, data derived from 2006 and 2010 soil investigations 

and survey campaigns were used to determine spatial characteristics of the 

landslide mass based on documentation given by previous authors (Giordan et 

al., 2013; Pinto et al., 2016; Guerriero et al., 2016). Data acquisition from each 

survey campaign conducted in 2006 and 2010 was collected and analyzed 

separately for a better understanding and soil characterization. 
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4.2.1 Data collection  

 

Geognostic surveys allow the subsurface exploration for the reconstruction of 

stratigraphic profile and lithological description and layers depths by taking soil 

samples – carrots - to be submitted to subsequent investigations for characterizing 

soil material (Bergman, 2012). The objectives of any subsurface investigation are 

to determine the following (Kim, 2011): 

 

• Nature and sequence of the subsurface strata (geologic regime); 

• Groundwater conditions (hydrologic regime); 

• Physical and mechanical properties of the subsurface strata. 

 

Boreholes are among the most common in-situ samples for geotechnical 

characterization of earth flow material (Guerriero et al., 2014). They are generally 

drilled inside and outside of the instable area, allowing a precise localization of 

the basal slip surface through stratigraphic and geotechnical analyses of the 

resulting core samples. 

 

In 2006 no. 9 drills were carried out up to the maximum depth of 60 m below 

ground surface (b.g.s.). A summary table following shows identification code, 

maximum sampling depth, number of undisturbed samples taken and 

groundwater level b.g.s.. The water table was measured from 2 to 25 m depth 

which highlights a huge spatial variation. 
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Figure 31 - Survey area in 2006 at 1:5000 scale (left): CPT tests (in blue), geognostic surveys (in 

red). Carrots extracted during on-site tests up to 10 meters of depth (right) 
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ID 

code          

Max sampling 

depth (m b.g.s.) 

Undisturbed   

sample 

Groundwater 

level (m b.g.s.) 

Saturat.         

(%) 

Plast. 

Index 

(%) 

Consist. 

Index (-) 

S1 30 C1 12 89.93 / / 

S2 60 

C1 

18 

83.28 28 0.1 

C2 82.86 / / 

C3 81.12 27 1.06 

C4 48.28 20 1.4 

S3 29.5 
C1 

4.8 
86.77 / / 

C2 72.71 26 1.17 

S4 40 

C1 

3.5 

88 25 0.77 

C2 84.78 24 0.71 

C3 / / / 

S5 30 

C1 

2 

92.38 30 0.71 

C2 81.41 30 0.71 

C3 / / / 

S6 60 
C1 

25 
76.55 28 0.72 

C2 / / / 

S6bi

s 
30.5 C1 19.5 90.43 / / 

S7 40 

C1 

15.2 

92.35 44 0.78 

C2 / 30 0.76 

C3 / / / 

S8 40 

C1 

10.2 

88 25 0.41 

C2 / 31 0.8 

C3 / / / 

Table 7 - Details of geognostic samples in 2006 

 

In 2010, other new 9 drills were performed to compare data information to the 

previous survey campaign. The same maximum depth of 60 m from the ground 

was reached as well as 22 undisturbed samples were taken by soil carrots. No 

information on groundwater level was provided at that time. 
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Figure 32 - Survey area at 1:5000 scale (left): old surveys executed in 2006 (in blue),                

new geognostic surveys in 2010 (in green). Carrots extracted during on-site tests up to 10 

meters of depth (right) 
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ID      

code   
Soil type 

Undisturbed      

sample 

Sampling 

depth     

 (m b.g.s.) 

Saturat.      

(%) 

Plast. 

Index 

(%) 

Fine 

Content 

(%) 

S7 Landslide deposits 

C1 4 96 31.72 64.69 

C2 10 76 28.73 / 

C3 19.5 82 20.55 38.73 

S9 
Alluvial and/or colluvial 

deposits 
C1 4 88 30.64 38.4 

S6 Deposits of Villamaina 

Unit - altered part 

C1 4 90 15.25 / 

S5 C1 4 / / / 

S6 

Deposits of Villamaina 

Unit - substrate 

C2 9 82 21.5 37.41 

C3 15 89 16.84 / 

C4 23 88 19.49 27.27 

S8 
C1 18 96 17.5 / 

C2 20 73 18.95 33.82 

S9 

C2 10 86 35.51 / 

C3 18 83 35.15 37.35 

C4 23.5 85 20.04 / 

S8 C3 23.5 92 18.79 / 

S2 Faeto Flysh deposits 

C1 13 75 19.49 43.21 

C2 17.5 83 13.75 / 

C3 27.5 81 19.97 42.03 

C4 62 75 15.11 / 

S5 
Ancient landslide 

deposits 

C2 13.5 78 34.49 / 

C3 17 82 31.31 44.57 

C4 25 78 39.78 / 

Table 8 - Details of geognostic samples in 2010 

 

From 2006 to 2010 the portion of the soil involved in the landslide in this area has 

declined, probably due to the sliding of the material downwards. 
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Figure 33 - Differences in elevation by comparing 2006 and 2010 reactivations 

 

Since no geological surveys were carried out before 2006, no information on 

landslide thickness evolution may be used for spatial-temporal comparison. 

Regarding geotechnical surveys, they were carried out only during the survey 

campaign in 2006. 

 

CPT code Sampling depth (m b.g.s.) 

2 15.4 

3 16.6 

4 5.4 

5 7.4 

6 14.2 

7 14.4 

8 15.8 
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9 4.8 

10 16.2 

11 7 

12 6.4 

13 11.2 

14 5.4 

15 9.2 

16 16.4 

Table 9 - Details of CPT surveys in 2006 

 

The undisturbed samples, taken at site both in 2006 and 2010, were analyzed in 

order to identify physical-volumetric and mechanical characteristics of the 

lithotypes forming the subsoil along the vertical. In particular, the following 

parameters were evaluated: 

 

• General characteristics: water content (Wn), specific gravity of grains (γs), 

weight of natural volume (γn), through which dry weight weight (γd), 

grade of saturation (S), index of voids (e) and porosity (n); 

• Granulometric curve through granulometric analysis by sieving / sieving 

and/or sedimentation; 

• Determination of Atterberg limits; 

• ϕ (internal friction angle) and c (cohesion) by direct shear tests with 

estimation of the "residual" break parameters; 

• ϕ (internal friction angle) and c (cohesion) by triaxial compression test 

consolidated non-drained. 

 

 

Figure 34 - Sample used for laboratory tests (silt with clayey sand) 

 

A number of 15 Cone Penetration Tests (CPTs) with mechanical point2 were 

performed to determine geotechnical properties of soils and to delineate soil type 

which is used to obtain geotechnical sections and profiles. On average, the depth 

reached was about 12 m from the ground level, with maximum value of 16.20 m 

                                                 
2 Penetrometer type PAGANI 10/20 tons. Penetrometer characteristics: Begemann tip of 10 cm2 

(tip area) and 150 cm2 side sleeve. 
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and minimum depth between 5 and 9.4 m. The following parameters were 

measured during the survey (Begemann, 1965; AGI, 1977): 
 

• qc = unit tip friction (kg/cm2); 

• fs = unit sleeve friction (kg/cm2); 

• Fs = friction ratio (%) of the above ones. 

 

 

Figure 35 - A CPT profile: fs (left) and qc (right) with depth 

 

They represent strength parameters describing geomechanical properties of soil 

layers along the vertical profile.  

This has typically been accomplished using charts that link cone parameters to 

soil type. One of the more common CPT-based methods to estimate soil profiling 

and soil type is the chart suggested by Robertson (2010) based on friction ratio Fs. 
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Typically, the cone resistance is high in sands and low in clays, and the friction 

ratio is low in sands and high in clays (Resume and Robertson, 2006). The CPT 

cannot be expected to provide accurate predictions of soil type based on physical 

characteristics, such as, grain size distribution but provide a guide to the 

mechanical characteristics (strength, stiffness, compressibility) of the soil, or the 

Soil Behaviour Type (SBT) (Robertson, 2010). CPT data provides a repeatable 

index of the aggregate behaviour of the in-situ soil in the immediate area of the 

probe. Hence, prediction of soil type based on CPT is referred to as Soil Behaviour 

Type (SBT) normalized respect to increasing effective stresses along depth 

(Robertson, 2016). 

     Jefferies and Davies (1993) identified that a Soil Behaviour Type Index, ISBT, 

might represent the SBTn zones in the normalized3 chart where, ISBT is essentially 

the radius of concentric circles that define the boundaries of soil type. ISBT may be 

defined as follows: 

 

ISBT  = [(3.47 – log(Qt))2 + (log Ft + 1.22)2]0.5 

 

where: 

 

Qt = normalized cone penetration resistance (dimensionless); 

Ft = normalized friction ratio (%). 

 
Zone Soil Behavior Type ISBTn 

1 Sensitive, fine grained NA 

2 Organic soils - clay > 3.6 

3 Clays - silty clay to clay 2.95 - 3.6 

4 Silt mixtures - clayey silt to silty clay 2.60 - 2.95 

5 Sand mixtures - silty san to sandy silt 2.05 - 2.60 

6 Sands - clean sand to silty sand 1.31 - 2.05 

7 Gravelly sand to dense sand < 1.31 

8 Very stiff sand to clayey sand4 NA 

9 Very stiff, fine grained2 NA 

Table 10 - SBTn zones per Normalized CPT Soil Behavior Type (SBTn)  

(source: Robertson, 2010) 

 

Empirical relations are often used in geotechnical engineering to correlate soil 

properties. The purpose is to estimate soil parameters needed for analysis and 

                                                 
3 Normalized to vertical overburden stresses. 
4 Heavily overconsolidated or cemented 

(8) 
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design by using some indirect properties that are relatively cheaper and easier to 

obtain although empirical relations add further uncertainty. 

Based on the lithological estimations, further parameters may be derived using 

relations suggested by scientific literature (Robertson, 2009; Robertson, 2010; 

Robertson, 2016).  

 

An approximate estimate of hydraulic conductivity or coefficient of permeability, 

k, of soil may be made from an estimate of soil behaviour type using the CPT SBT 

charts. It describes the rate of the water flows through a unit cross section of soil 

mass under a unit gradient of pore pressure (Robertson, 2016).  Lunne, Robertson 

and Powell, (1997) propose the following relationship for estimating hydraulic 

conductivity (k) based on Normalized SBTn: 

 

1.0 < ISBT  ≤ 3.27  k = 10(0.952 – 3.04 ISBT) m/s 

3.27 < ISBT  < 4.0  k = 10(-4.52 – 1.37 ISBT) m/s 

 

Zone ISBTn Range of k (m/s) 

1 NA 3x10-10 to 3x10-8 

2 > 3.6 1x10-10 to 1x10-8 

3 2.95 - 3.6 1x10-10 to 1x10-9 

4 2.60 - 2.95 3x10-9 to 1x10-7 

5 2.05 - 2.60 1x10-7 to 1x10-5 

6 1.31 - 2.05 1x10-5 to 1x10-3 

7 < 1.31 1x10-3 to 1 

8 NA 1x10-8 to 1x10-3 

9 NA 1x10-9 to 1x10-7 

Table 11 - Estimated soil permeability (k) based on the CPT SBTn 

(source: Robertson, 2010) 

 

The above relationships may be used to provide an approximate estimate of soil 

permeability (k) and to show the likely variation of soil permeability with depth 

from a CPT sounding.  

Since the normalized CPT parameters (Qt and Ft) respond to the mechanical 

behaviour of the soil and depend on many soil variables, the suggested 

relationship between k and ISBTn is approximate but may provide a guide to 

variations of possible permeability (Robertson, 2010). 

 

 

 

 

(9) 

(10) 
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4.2.2 Categorization of data  

 

To characterize soils, textural characters, prevailing lithology, genesis and 

stratigraphic relationships, thickness and degree of cementation and alteration 

must be identified. 

In addition, a general characterization of soil must be formulated for geological-

applicative purposes, evaluating all parameters considered necessary, such as 

weaving, plasticity, the potential for swelling-contraction, density, the existence 

of cemented or hardened horizons, permeability, degree of saturation and 

position of the possible phreatic surface or the presence of small suspended 

slopes, presence of drainage difficulties, acclivity and stability, depth of substrate, 

angle of friction etc. 

Soils must be represented according to permeability ranges or, when possible, 

according to classes of intrinsic vulnerability, where by intrinsic vulnerability we 

mean the set of characteristics of the hydrogeological complexes which constitute 

their specific susceptibility (Aleotti and Chowdhury, 1999). 

 

In particular, geognostic surveys were used to classify lithology types by the 

composition of the following soil classes: clay, silt, sand and gravel, and calibrated 

through the results produced by laboratory tests (undisturbed samples) 

performed during the same survey campaign. 

In this way it was possible to associate categorical variables with soil classes 

(Tedesco and Sociale, 2016).  

 

Soil texture refers to the relative percentage of clay, silt, sand and gravel in a soil. 

Natural soils are comprised of soil particles of varying sizes. They are found in 

aggregated form (Li et al., 2013).  

Arrangement of these soil particles on certain defined patterns is called soil 

structure (Vardanega and Bolton, 2015). The natural structure of soil particles also 

reveals the colour, texture and chemical composition of soil aggregates. Soil 

structure is influenced by air moisture, organic matter, micro-organisms and root 

growth. When many particles are aggregated into cluster, a compound particle is 

formed (Li et al., 2013).  

The following chart is adapted from fraction system of U.S.D.A. (Whitney, 1911). 

If relative percentages of soil separates are known, the soil may be given textural 

name. For this purpose, equilateral triangles are used. The most widely used 

Equilateral triangles are international equilateral triangle and the one used by 

USDA. These consist of three angles and its area is divided into twelve groups 

representing twelve different textural classes. Each group covers definite range of 

percentages of sand, silt, and clay. In the triangles, left side line represents the 
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clay percentage, right side line represents percentage of silt and base represents 

percentage of sand (Whitney, 1911). 

Each side of the triangle is divided into ten divisions representing soil separate 

percentage. These divisions are further divided into ten small divisions; each 

small division represents one per cent of soil separate. The percentages of sand, 

silt, and clay obtained after mechanical analysis of the given soil are read on the 

equilateral triangle (Whitney, 1911). 

In using the diagram as indicated the percentages of silt and clay should be 

located on silt and clay lines respectively. The line in case of silt is then projected 

inward parallel to clay side of the triangle and in case of clay it should be projected 

parallel to the sand side. The three lines; one representing sand percentage, other 

representing silt percentage and the third clay percentage meet at a point in the 

triangle (Whitney, 1911). The compartment in which the point falls indicates 

textural name for the given soil sample. The knowledge of soil texture is of great 

help in the classification of soil and in determination of degree of weathering of 

rock. 

 

 

Figure 36 - Soil texture triangle of soil classes (source: Whitney, 1911) 
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Figure 37 – Comparison of particle size scales (source: Whitney, 1911) 

 

Texture names are given to soils based upon the relative proportion of each of the 

four soil granulometries based on their preponderant percentage content (Clay, 

Silt, Sand and Gravel). 

As the soil is a mixture of various sizes of soil separates, it is therefore, necessary 

to define limits of variation among soil fractions to group them into textural 

classes. These classes are recognized based on relative percentage of separates; 

sand, silt and clay, as shown below: 

 

Common name Texture Basic soil textural class name 

Sandy soils Coarse 

Sandy 

Loamy sands 

Sandy loam 

Loamy soils 

Moderately coarse 
Fine sandy loam 

Very fine sandy loam 

Medium 

Loam 

Silt loam 

Silt 

Moderately fine 

Clay loam 

Sandy clay loam 

Silty clay loam 

Clayey soils Fine 

Sandy clay 

Silty clay 

Clay loam 

Table 12 - Textural class names (source: Whitney, 1911) 
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Table 13 - Soil texture classes and percentage content of sand, silt, clay separates  

(source: Whitney, 1911) 

 

Considering laboratory classification ranges used to define consistency (coherent 

soils), density (granular soils) and saturation degree, the following comparison 

was applied: 

 

Consistency (coherent soils) Density (granular soils) Saturation condition 

No consistency No density Dry 

Low consistency Low density Low humidity 

Moderate consistency Moderate density Humid 

Consistent Dense High humidity 

High consistency High density Wet 

Table 14 - Range of values based on physical characteristics 

 
Soil Texture (C-Si-Sa-G) Density (D) Consistency (Co) Saturation (S) Code 

0 0-0.2 0-0.5 0-0.2 1 

0-0.05 0.2-0.4 0-0.75 0.2-0.4 2 

0-0.15 0.4-0.6 0.5-0.75 0.2-0.6 3 

0.15-0.25 0.6-0.8 0.5-1 0.4-0.6 4 

0.25-0.35 0.8-1 0.75-1.5 0.4-0.8 5 

0.35-0.5 NA 1-1.5 0.8-1 6 

0.50-0.75 / NA NA 7 

Table 15 - Soil parameters and percentage content converted to numerical coding 

 

As for geognostic surveys and laboratory samples, the same classification was 

done for geotechnical parameters, but as already numeric values, no categorical 

association was performed.  

 

Textural group Sand Silt Clay 

Sand 80 - 100 0 - 20 0 - 20 

Sandy loam 50 - 80 0 - 50 0 - 20 

Loam 30 - 50 30 - 50 0 - 20 

Silt loam 0 - 50 50 - 100 0 - 20 

Sandy clay loam 50 - 80 0 - 30 20 - 30 

Silty clay loam 0 - 30 50 - 80 20 - 30 

Clay loam 20 - 50 20 - 50 20 - 30 

Sandy clay 50 - 70 0 - 20 30 - 50 

Silty clay 0 - 20 50 - 70 30 - 50 

Clay 0 - 50 0 - 50 30 - 100 
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The following graphs represent the distribution of the frequencies related to soil 

classes, corresponding respectively to soil texture and soil compaction of the soil 

profiles sampled during the execution of 2006’s and 2010’s investigations. 

 

 

Graph 2 - Frequency of soil texture from surveys in 2006 
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Graph 3 - Frequency of soil texture from surveys in 2010 

 

 

 

Graph 4 - Frequency of soil compaction from surveys in 2006 
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Graph 5 - Frequency of soil compaction from surveys in 2010 

 

The scatterplots (Graphs 2-5) describe the distribution of the parameter along 

depth. Frequency of occurrence in each histogram interval is obtained by dividing 

the number of occurrences by the total number of data points. 

 
 Fs (-) k (m/s) 

MIN 0.409277 3.73E-11 

MAX 268.6329 1.25E-01 

Table 16 - Range of values for friction ratio and soil permeability by CPTs in 2006 

 

Table 16 shows the minimum and maximum interval within which friction ratio 

values and permeability, sampled from CPTs in 2006, fall. 

 

 

4.2.3 Multivariate analysis 

 

Index and classification properties easily measure attributes useful in 

categorizing soils, making rough forecasts of mechanical properties based on 

correlations among measures (Bowles, 1979).  
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Soil characterization consists in a qualitative as well as quantitative description 

of the heterogeneity and distribution of soil parameters in a specific site (Marx 

and Cornwell, 2001). 

The elaboration of the predisposing parameters to obtain quantitative soil indices 

allows to relate the geo-environmental factors for the determination of the 

susceptibility level and therefore the propensity to landslide hazard (Denora, 

2013). 

 

In this study, for each conditioning factor, a numerical weighting value has been 

associated with each class, based on the grade, assessed qualitatively, with which 

this contributes to the triggering of the phenomenon. 

The first step was the statistical description of soil properties was based on soil 

sample analysis which gives quantitative measure of their variability.  

Features of interest include the central tendency of the data, dispersion or scatter 

in the data, skewness in the data, and correlation or dependence between data 

points. Based on the above tables, the following outcome was obtained for the 

specific site: 

 

Lithology Clay Silt Sand Gravel Consistency Saturation Density ICSiSaG ICoDS 

slightly 

weakly 

clayey loamy 

silty sand 

(very thick 

and humid) 

0-0.15 0.15-0.25 0.35-0.5 0-0.15 1-1.5 0.4-0.6 NA 0.02 0.53 

fine clay 

sand (not 

consistent 

and slightly 

saturated) 

0.25-0.35 0.15-0.25 0.35-0.5 0-0.15 0.5-0.75 0.8-1 NA 0.11 0.50 

coarse sands 

(on average 

consistent) 

0-0.05 0-0.05 0.35-0.5 0.25-0.35 0.5-0.75 NA NA 0.22 0.46 

medium-

coarse sand 

with weakly 

silty gravel 

(not very 

thick and 

moderately 

thickened, 

humid) 

0-0.05 0-0.15 0.35-0.5 0.25-0.35 0-0.5 0.4-0.6 0.4-0.6 0.30 0.40 

sandy gravel 

(low 

consistent 

and humid) 

0-0.05 0-0.05 0.25-0.35 0.15-0.25 0-0.5 0.4-0.6 NA 0.44 0.54 

sandy silty 0-0.05 0.15-0.25 0.25-0.35 0-0.05 NA NA NA 0.54 0.39 
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fine sand, 

slightly 

weak clay 

(inconsistent 

and not very 

consistent, 

humid and 

very humid) 

0.15-0.25 0-0.15 0.15-0.25 0.35-0.5 0-0.5 0.4-0.8 NA 0.64 0.46 

fine sandy 

clays (very 

thick, 

slightly 

humid and 

dry) 

0.35-0.5 0.15-0.25 0.15-0.25 0-0.05 1-1.5 0-0.2 NA 0.72 0.61 

Table 17 - Correspondence between some soil lithologies and ICSiSaG classes in 2006 

 
Lithology Clay Silt Sand Gravel Consistency Saturation Density ICSiSsG ICoDS 

weakly 

cemented sand 
0-0.05 0-0.05 0.35-0.5 0-0.05 NA NA 0.4-0.6 0.04 0.47 

sandy silt 0-0.05 0.35-0.5 0.25-0.35 0-0.05 NA NA NA 0.10 0.43 

cemented silt 0-0.15 0.35-0.5 0-0.05 0 0.75-1.5 0.8-1 NA 0.21 0.75 

Silty sandy 0-0.05 0.25-0.35 0.15-0.25 0-0.05 NA NA NA 0.31 0.43 

clayey silt soil 0.25-0.35 0.35-0.5 0-0.15 0-0.05 1-1.5 0.8-1 NA 0.43 0.69 

silty clay 0.35-0.5 0.25-0.35 0-0.15 0-0.05 NA NA NA 0.58 0.43 

clay and 

weakly silty 

and sandy 

clay 

0.5-0.75 0.15-0.25 0.15-0.25 0-0.05 NA NA NA 0.63 0.43 

clay 0.5-0.75 0-0.15 0-0.05 0 NA NA NA 0.99 0.43 

Table 18 - Correspondence between some soil lithologies and ICSiSaG classes in 2010 

 

The most common measure of dependence among uncertain quantities is the 

Correlation Coefficient. It measures the degree to which one uncertain quantity 

varies linearly with another uncertain quantity (Phoon and Kulhawy, 1999), as 

following shown:  

 

𝜌𝑋,𝑌 =  
𝑐𝑜𝑣 (𝑋, 𝑌)

𝜎𝑋𝜎𝑌
 =

𝐸[(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)]

𝜎𝑋𝜎𝑌
 

 

The correlation coefficient () varies within [−1,+1], with the higher bound 

implying a strict linear relation of positive slope and the lower bound a strict 

linear relation of negative slope. The higher the magnitude, the more closely the 

data fall on a straight line. Zero correlation coefficient implies no (linear) 

association between the two variables. 

(11) 
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It expresses the degree to which two parameters (X and Y) vary together in linear 

relationship: 
 

 
Figure 38 - Correlation among soil texture components in 2006:  

clay (1), silt (2), sand (3), gravel (4) 

 

 

Figure 39 - Correlation among soil texture components in 2010: 

clay (1), silt (2), sand (3), gravel (4) 
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Figure 40 - Correlation among soil texture components in 2006:  

consistency (1), density (2), saturation (3) 

 

 
Figure 41 - Correlation among soil texture components in 2010:  

consistency (1), density (2), saturation (3) 
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It is often the case that soil properties or other variables are related to one another 

along the depth (Matheron, 1973). What we need is a mathematical relationship 

that captures this correlation among the variables with vertical depth. In our case, 

more than two variables correlation would be explored.  

A multivariate statistical analysis was then carried out for groups of 

homogeneous variables (granulometric characteristics, densimetric and 

saturation conditions, mechanical behavior, etc.) through the application of an 

interacting regression model (Pinheiro et al., 2018) according to vertical depth in 

order to evaluate how each category of soil influences the others based on 

sampling location. 

A categorization treatment was carried out based on the geomorphological and 

hydrogeological characteristics by weighting (Coulton and Chow, 1993) the 

quantitative values that considered the lithological characteristics and the 

respective propensity towards a potential site-specific triggering phenomenon 

and/or in reference to technical-scientific literature (Zêzere et al., 2004). 

 

The regression analysis was applied among the clay-silt-sand-gravel soil classes 

obtaining the ICSiSaG index which represents the lithological-geological 

composition index; and through the application of the variables, the ICoDS index 

obtained from the regressive analysis of the consistency-density-saturation degree 

as an explanatory index of soil thickening. 

 

Multiple Linear Regressions (MLR) have been widely used (Coulton and Chow, 

1993; Keough & Quinn, 1995; Kelley and Bolin, 2013) to predict the response of a 

dependent variable from a set of independent variables, as a function of the 

correlations between them (Loh, 2002). The MLR algorithm was calculated using 

the ‘logistic model’ (Gortmaker, Hosmer and Lemeshow, 1994), with stepwise 

(backward) analysis, which fits the model by removing variables according to the 

confidence level (95%).  

All the variables have been standardized before applying the regression model to 

avoid the presence of biased trends (Loh, 2002) according to density distributions 

which best fitted their empirical frequencies, making the results comparable 

(Gortmaker, Hosmer and Lemeshow, 1994).  

The approximation through least-squares was used to validate and constitute the 

best linear unbiased estimators of the regression parameters (William D. Berry & 

Stanley Feldman, 1985). This study focused on prediction of soil classes (sand, silt, 

and clay) and their content in the soil layer as well as in degree of compaction 

(consistency and density) and saturation relationship. 
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Following the linear regression equation applied to obtain the ICSiSaG index, 

considering both the multivariate and the conditioned component of 

interdependence among the soil variables. 

 

 
𝐼𝐶𝑆𝑖𝑆𝑎𝐺[𝑥𝑦𝑧] =  𝛽𝑜 + 𝛽1𝐶 + 𝛽2𝑆𝑖 + 𝛽12𝐶𝑆𝑖 + ⋯ + 𝛽123𝐶𝑆𝑖𝑆𝑎 + ⋯ + 𝛽1234𝐶𝑆𝑖𝑆𝑎𝐺 

 

where: 

 

βi = regression coefficient at ith location, 

xT β = linear predictor, 

xi xj = mutual interaction between parameters at ith and jth locations. 

 

The soil index ICSiSaG is found by multiplying the discriminant weights associated 

with each factor by the corresponding factor values and summing over the thus 

weighted factors forming linear combinations of the original ones. 

 

Simple correlations among the variables, according to regression function (Korup 

2004), made it possible to calculate the coefficient of determination R2 which 

represents their correlation index ranging from 0 to 1 (Tedesco and Sociale, 2016). 

The higher is R2 value, the higher is the correlation and goodness of the regression 

with highlights the presence of an estimation error in term of systematic biases 

(Uzielli, 2008). 

 
 R2_ICSiSaG R2_ICoDS 

2006 0.8326 0.9122 

2010 0.8131 0.7265 

Table 19 - Goodness of the regressions applied to soil parameters in 2006 and 2010 

 

The indices thus obtained were normalized in order to make them comparable 

with those related to the mechanical strength of soil (i.e. the friction ratio Fs) and 

to the permeability k obtained from CPTs and empirical relations of literature 

(Robertson, 2010).  

The geo-mechanical parameters, as quantitative values obtained from in-situ 

surveys, were analyzed only by applying probabilistic approaches to perform the 

best fitted density distribution for standardization purpose as already numerical 

variables (Robertson and Campanella, 1983). 

 

Since in 2006 geognostic surveys and CPT tests were performed at minimum 

inter-distance (Helton et al., 2006) from each other and since there are not 

(12) 
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particular litho-geological discontinuities in technical maps, so as their outcomes 

are spatially comparable. 

However, in 2010 only geognostic investigations were conducted, then composite 

index Igeo has been defined based on geological composition (i.e. granulometric 

characteristics, densimetric and saturation conditions) in order to make a 

comparison between 2006 and 2010 survey results. 

 

Overall, the combination of predisposing factors along depth indicates their 

temporal contribution to susceptibility (Zêzere et al., 2004) both locally, within a 

geo-defined unit, and globally, at whole landslide area. 

 

 

4.3 Spatial Variability Modelling  

 

In geological field, besides the importance of the numerical value of the parameter 

to be studied, the position that the data has in space is fundamental. The classical 

statistical methods do not take into account the spatial information proper to the 

geological data (Wu et al., 1997). 

Geostatistics offers a way to exploit spatial information, allowing also to study 

spatial continuity as an essential aspect of many geological phenomena and for 

which the correlation between two values is as greater as the reciprocal spatial 

distance is smaller (Matheron, 1963). 

Uncertainty in mapping arises when it is necessary to infer (Myers, 2005) the type 

of soil material that exists at unobserved points from data obtained at points of 

observation (Daneshkhah, 2004).  

 

To study the effect of correlation, observe first that soil samples collected adjacent 

to each other are likely to have properties that are similar to each other compared 

with the relationships between those collected at large distances apart (Matheron, 

1973). Also, soil specimens tested by the same device will likely show less scatter 

in the measured values than if they were tested by different devices in separate 

laboratories.  

The degree of correlation as a function of separation distance between soil 

samples depends on the specific soil type and deposit characteristics and on the 

property considered (Matheron, 1963). Nevertheless, the more erratic the 

variation - less correlated - of the soil property with distance and the larger the 

soil domain considered, the larger the reduction in the variability of the average 

property will be.  

This phenomenon is a result of the increasing likelihood that unusually high 

property values at some points will be balanced by low values at other points; 
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therefore, the average property is less likely to take on exceptionally high or low 

values (Sidler, Prof and Holliger, 2003). 

Second, the in-situ soil property at incipient failure is not necessarily duplicated 

by the sampling and testing procedure performed on the soil specimen. Some of 

the causes of variance are sample disturbance, different stress conditions, and 

macro features that may not be well represented by a small specimen. Hence (Kim 

and Sitar, 2013), a bias may exist that needs to be analysed and incorporated into 

the overall (Phoon et al., 2006b) spatial variability evaluation. 

 

To characterize the entire variability of soil indices, variogram clouds have been 

graphed. They represent the diagram of pairs of values as a function of the sample 

distance and the different variability scale related to both horizontal and vertical 

directions necessary to determine the empirical variograms (Oliver and Webster, 

2014).  

 

 

Graph 6 - Variogram clouds of ICSiSaG in 2006 (left) and 2010 (right) 
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Graph 7 - Variogram clouds of ICoDS in 2006 (left) and 2010 (right) 

 

 

Graph 8 - Variogram clouds of IFs (left) and Ik (right) in 2006 

 

In the geo-applications, due to the sedimentary nature of a flat soil deposit, two 

locations separated by vertical distance are more likely to have different 

properties than two locations separated by the same distance but in the horizontal 

direction (Matheron, 1963). The application problem, when trying to model 

experimental variograms on data, consists in the different sampling scales for the 

vertical and horizontal directions due to the sedimentary nature of a flat soil 

deposit; for instance, the information along a vertical well bore is indeed on a 

‘scale of detail’, the horizontal information between wells is on a ‘scale of area’ 

(Phoon and Kulhawy, 1996). In particular, as show the above graphics, the 

locations separated by vertical distance are in order of few meters (scale of detail) 

while the distances in the horizontal direction are representative of the scale of 
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area. Thus, it is easy to construct a vertical spatial relationship, but difficult to 

construct the horizontal one.  

When more scales (Jaksa, 1982) of the same variable are not recognised - generally 

the smallest -  experimental variogram does not show a clear structure near the 

origin of axes: this may be unjustly associated with a nugget effect as 

measurement error (no spatial relationship) for small extents. It is therefore 

essential to make an experimental variogram that changes with the distance 

(width); its tolerance and the number of lags, over which the variogram will be 

calculated, allow to appreciate adequately the spatial variability (Cressie, 1989). 

Hicks and Samy (2004) observed that scale of fluctuation in horizontal direction 

is much larger (less variability), due to natural processes, than in vertical 

direction. 

 

 

4.3.1 Variograms scales 

 

To underline the presence of spatial correlation between sampled values, they 

have been analysed in two different variability scales corresponding to the 

horizontal and the vertical ones. 

 

As first step the omnidirectional variogram (Cressie, 1989) was calculated: an 

isotropic analysis which includes all data pairs regardless of their directions.  

In particular it is found to be a correlation which decreases increasing the 

separation distance. Practically, this means that the values of the sampled points 

at distances close to each other, are most correlated (with small variance) while 

increasing the distance it decreases to settle to a constant value.  

 

Subsequently, it was investigated the presence of directional anisotropy (Cressie, 

1989) or if there are directions such that the spatial correlation is greater or lesser 

than the others. To do this, two angular directions were used: 

 

• alpha (): the angle in the horizontal plane; 

• beta (): the angle in vertical direction. 

 

The analyses on horizontal plane have not shown the presence of directional 

anisotropy rotating every 90 degrees the variogram plotting. This means that they 

have an isotropic correlation distance: at equal spatial distance the variance does 

not vary for different investigated directions. 

Therefore, omnidirectional variograms may be considered representative of the 

all variability characterizations, then evaluated for each soil index. 
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At this point, theoretical variogram modelling is required to represent the 

behaviour of each spatial variable in term of variability degree (sill) and 

autocorrelation distance (range). This aims at estimating soil variability in 

unsampled locations (Goovaerts, 1999).  

The theoretical model of three-dimensional variograms have been built for each 

soil indices considering spatial correlation parameters in all directions. 

Since a difference in range values has been detected between the two scales 

(Jaksa, Kaggwa and Brooker, 1999) of fluctuation (i.e. vertical and horizontal), this 

means that fitted variogram model along horizontal as well as vertical directions 

must be evaluated separately. 

 

The models which best fitted the variability scales (horizontal and vertical) of 

every index have been applied and following graphed (Graphs 9-11).  

The Exponential model has been used as theoretical variogram based on the 

goodness of fitting to empirical values. It has the following formula (Chiles and 

Delfiner, 1999; Cressie, 1993): 

 

(h) =  c0 + c1[1 - 𝑒−(ℎ 𝛼⁄ )] 
 

where: 

 

h = distance between ith and jth locations; 

γ(h) = semi-variance at distance h; 

co = nugget effect; 

c1 = partial sill; 

α = range at which the variogram is of 95% of the sill. 

 

 

Graph 9 - Horizontal variograms and theoretical models for ICSiSaG  

in 2006 (left) and 2010 (right) 

(13) 
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Graph 10 - Horizontal variograms and theoretical models for ICoDS  

in 2006 (left) and 2010 (right) 

 

 

Graph 11 - Horizontal variograms and theoretical models for IFs (left) and Ik (right) in 2006 

 

Fs and k values show in Graph 11 a structure near the origin of the axes: this may 

be unjustly associated with a nugget effect as measurement error (no spatial 

relationship) for small extents. It happens when more scales of the same variable 

are not recognised and it is generally associated to the smallest one (Matheron, 

1963). 

 

The following coding has been used respectively to describing: 

 

• Calculation step: distance (h_lag) and distance tolerance (tol.h_lag); 

• Angular parameters: alpha (hor), alpha tolerance (tol.hor), beta (vert), beta 

tolerance (tol.vert); 
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• Nugget effect: partial sill (Nug_psill) and range (Nug_range); 

• Theoretical parameters: partial sill (Exp_psill) and range (Exp_range). 

 

The choice of this parametric representation is based on the best characterization 

of the dataset and defined after the application of attempting procedures. 
 

 ICSiSaG ICoDS IFs Ik  

h_lag 20 20 30 20 m 

tol.h_lag 10 10 15 10 m 

alpha 0 0 0 0 ° 

tol.hor 180 180 180 180 ° 

beta 0 0 0 0 ° 

tol.vert 89 89 89 89 ° 

Table 20 - Empirical values of horizontal variograms for ICSiSaG, ICoDS, IFs, Ik in 2006 

 
 ICSiSaG ICoDS  

h_lag 20 45 m 

tol.h_lag 10 22.5 m 

alpha 0 0 ° 

tol.hor 180 180 ° 

beta 0 0 ° 

tol.vert 89 89 ° 

Table 21 - Empirical values of horizontal variograms for ICSiSaG and ICoDS in 2010 

 
 ICSiSaG ICoDS IFs Ik 

Nug_psill 0 0 0.67 0.37 

Nug_range 0 0 0 0 

Exp_psill 1.25 1.46 0.39 0.82 

Exp_range 62.59 117.59 43.23 65.03 

Table 22 - Theoretical values of horizontal variograms for ICSiSaG, ICoDS, IFs, Ik in 2006 

 
 ICSiSaG ICoDS 

Nug_psill 0 0 

Nug_range 0 0 

Exp_psill 1.08 1.97 

Exp_range 19.48 235.31 

Table 23 - Theoretical values of horizontal variograms for ICSiSaG and ICoDS in 2010 

 

In our case, for distances greater than 20-30m, on average, the autocorrelation 

tends to remain at a constant value of the sill. 
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Now, the variability at the detailed scale will be evaluated such as along depth 

(vertical direction).  

Since the depth constitutes a single direction and not a plane, the variogram at 

the scale of detail is unique; anisotropy condition is thus not applicable (Cressie, 

1989).  

The Exponential model has been used again as theoretical variogram based on 

the goodness of fitting of empirical values and profiles. 

 

 

Graph 12 - Vertical variograms and theoretical models for ICSiSaG in 2006 (left) and 2010 (right) 

 

 

Graph 13 - Vertical variograms and theoretical models for ICoDS in 2006 (left) and 2010 (right) 
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Graph 14 - Vertical variograms and theoretical models for IFs (left) and Ik (right) in 2006 

 
 ICSiSaG ICoDS IFs Ik  

h_lag 0.5 0.5 0.09 0.09 m 

tol.h_lag 0.25 0.25 0.045 0.045 m 

alpha 0 0 0 0 ° 

tol.hor 180 180 180 180 ° 

beta 90 90 90 90 ° 

tol.vert 0 0 0 0 ° 

Table 24 - Empirical values of vertical variograms for ICSiSaG, ICoDS, IFs, Ik in 2006 

 
 ICSiSaG ICoDS  

h_lag 0.5 0.5 m 

tol.h_lag 0.25 0.25 m 

alpha 0 0 ° 

tol.hor 180 180 ° 

beta 90 90 ° 

tol.vert 0 0 ° 

Table 25 - Empirical values of vertical variograms for ICSiSaG and ICoDS in 2010 

 
 ICSiSaG ICoDS IFs Ik 

Nug_psill 0 0 0.7 0.1 

Nug_range 0 0 0 0 

Exp_psill 1.25 1.07 0.17 0.39 

Exp_range 6.92 7.23 0.35 0.34 

Table 26 - Theoretical values of vertical variograms for ICSiSaG, ICoDS, IFs, Ik in 2006 
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 ICSiSaG ICoDS 

Nug_psill 0 0 

Nug_range 0 0 

Exp_psill 0.68 1.55 

Exp_range 1.1 10.17 

Table 27 - Theoretical values of vertical variograms for ICSiSaG and ICoDS in 2010 

 

It should be noted, from the first distances, that presence of systematic variability, 

such as trends, is not evident (Lacasse and Nadim, 1996). This means that there is 

not a structural variability due essentially to stratigraphic processes. 

All experimental variograms along depth show as the spatial correlation 

progressively reaches a sill remaining constant after 0.5m. 

 

Finally, in order to make a spatial estimation of the soil indices among the slope, 

DEM layers of surface topography in 2006 and 2010 were used. From the ground 

surface, deeper layers were also extrapolated: slip-surface layer (Guerriero et al., 

2014) and one more at middle depth between the two previous ones. 

 

 

4.3.2 Stochastic soil predictions 

 

Geostatistics studies the natural phenomena that develop on a spatial basis 

starting from information deriving from their sampling by studying the spatial 

variability of the parameters that describe the aforementioned phenomena 

extracting the rules in a reference modeling framework and using them to carry 

out the operations aimed at giving a solution to specific problems concerning the 

characterization and estimation of the phenomena themselves (Murty, 2005). 

Peculiarity of Kriging regression is the possibility of having, for each estimate, a 

value which gives a reliability degree to spatial prediction in term of minimal 

variance of estimation (Matheron, 1973). This allows to define a confidence 

interval by identifying the areas in which it is necessary to increase the density of 

investigations. 

 

Linear spatial regression analysis was performed by applying Kriging as the best 

stochastic predictor (Oliver and Webster, 2014). Kriging considers each 

observation as a single realization of an aleatory variable whose statistical 

properties are defined by a variogram function (Sidler, Prof and Holliger, 2003). 

Starting from available observations, theoretical models have been realized which 

define spatial variability as well as auto-correlation of the predisposing factors in 

all three dimensions according to their mutual distance. 
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A 3D variogram model has been implemented to all indices conditioning soil 

instability. Therefore, Universal Kriging (UK) regression model (Pebesma and 

Graeler, 2017) has been applied to the variables providing spatial predictions of 

the values in points without surveyed information (unknown data). The 

following predictive maps have been obtained by multiplying values of spatial 

variability to soil index, as in Eqs (12) and (13). 

 
𝐼𝑠𝑜𝑖𝑙(predicted)[𝑥𝑦𝑧] =  𝐼𝐶𝑆𝑖𝑆𝑎𝐺 ∗ 𝐼𝐶𝑜𝐷𝑆 ∗ 𝐼𝐹𝑠 ∗ 𝐼𝑘 = 𝐼𝑔𝑒𝑜 ∗ 𝐼𝐹𝑠 ∗ 𝐼𝑘 

 
               𝐼𝑠𝑜𝑖𝑙(variance of prediction)[𝑥𝑦𝑧] =  𝑣𝑎𝑟𝐶𝑆𝑖𝑆𝑎𝐺 ∗ 𝑣𝑎𝑟𝐶𝑜𝐷𝑆 ∗ 𝑣𝑎𝑟𝐹𝑠 ∗ 𝑣𝑎𝑟𝑘             

 

The geostatistical approach provides not only an estimate of the unknown value, 

but also an estimate of the uncertainty referred to a specific spatial location 

(Goovaerts, 1999) of the predicted value: the Kriging variance.  

 

The three-dimensional spatial maps below illustrate the spatial distribution of soil 

spatial predictions and errors of estimate associated to them by using Universal 

Kriging model as well as their distribution in term of frequency classes. The 

predicted values were normalized (from 0 to 1) in order to make them 

comparable. 

The graphs illustrate the frequency and distribution of the values through both 

histogram plots and radar charts. 

 

 

 

(14) 

(15) 
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Graph 15 - Frequency of ICSiSaG index at different vertical depths in 2006 

 

 

  

Figure 42 - Variability maps of spatial predictions (left) and variances (right) of ICSiSaG at 

ground surface in 2006 
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Figure 43 - Variability maps of spatial predictions (left) and variances (right) of ICSiSaG at 

middle surface in 2006 

 

 

Figure 44 - Variability maps of spatial predictions (left) and variances (right) of ICSiSaG at slip 

surface in 2006 

 

In 2006, Kriging maps show values close to zero downstream of the topographic 

surface, growing upwards. Compared to the topographical level, the intermediate 

surface and even more the critical surface tend to have more uniform and 

homogeneous values. The predictions are characterized by a greater variance of 

estimation along the left end of the slope, while in the central band, corresponding 

to the landslide area, the values are between 1 and 1.5 for all three depths. 
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Graph 16 - Frequency of ICSiSaG index at different vertical depths in 2010 

 

 

 

Figure 45 - Variability maps of spatial predictions (left) and variances (right) of ICSiSaG at 

ground surface in 2010 
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Figure 46 - Variability maps of spatial predictions (left) and variances (right) of ICSiSaG at 

middle surface in 2010 

 

 

Figure 47 - Variability maps of spatial predictions (left) and variances (right) of ICSiSaG at slip 

surface in 2010 

 

In 2010 the frequencies for the granulometric index are characterized by a greater 

heterogeneity, presumably due to the reactivation of the landslide area with 

consequent mixing and redistribution of the granulometries present with respect 

to the more homogeneous condition of 2006. 

Along the vertical profile the granulometries are constant, a considerable 

variability is present between upstream and downstream parallel to the geometry 

of the landslide. The estimate variance changes with increasing depth, but 

maintaining minimum values in the downstream area. 
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Graph 17 - Frequency of ICoDS index at different vertical depths in 2006 

 

 

  

Figure 48 - Variability maps of spatial predictions (left) and variances (right) of ICoDS at 

ground surface in 2006 
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Figure 49 - Variability maps of spatial predictions (left) and variances (right) of ICoDS at 

middle surface in 2006 

 

 

Figure 50 - Variability maps of spatial predictions (left) and variances (right) of ICoDS at slip 

surface in 2006 

 

Regarding soil compaction index, despite a homogeneity distribution along the 

topographic surface, the layers at greater depth reveal a high spatial 

heterogeneity, sign of a variability that grows in the right area corresponding to 

moderate variance values, suggesting a good reliability of the estimates. 
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Graph 18 - Frequency of ICoDS index at different vertical depths in 2010 

 

 

 

Figure 51 - Variability maps of spatial predictions (left) and variances (right) of ICoDS at 

ground surface in 2010 
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Figure 52 - Variability maps of spatial predictions (left) and variances (right) of ICoDS at 

middle surface in 2010 

 

    

Figure 53 - Variability maps of spatial predictions (left) and variances (right) of ICoDS at slip 

surface in 2010 

 

Once again, 2010 shows a variability of frequency classes that suggests a greater 

heterogeneity of the level of soil compaction. Moderate values characterize the 

left side of the slope, while lower frequency classes are on the side with greater 

topographic elevation. Finally, the variances of the valley are attested on the value 

1.5 in all the topographical levels maintaining therefore the same reliability of 

estimate. 
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Graph 19 - Frequency of IFs index at different vertical depths in 2006 

 

 

 

Figure 54 - Variability maps of spatial predictions (left) and variances (right) of IFs at ground 

surface in 2006 
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Figure 55 - Variability maps of spatial predictions (left) and variances (right) of IFs at middle 

surface in 2006 

 

 

Figure 56 - Variability maps of spatial predictions (left) and variances (right) of IFs at slip 

surface in 2006 

 

As far as the spatial variability of the friction ratio is concerned, no particular 

heterogeneity comes at deeper layers; maximum values are in the valley area, 

tending to zero along the western slope profile. The variance shows in the central 

area a homogeneity of values that attest around zero. 
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Graph 20 - Frequency of Ik index at different vertical depths in 2006 

 

 

 

Figure 57 - Variability maps of spatial predictions (left) and variances (right) of Ik at ground 

surface in 2006 

 

0%

5%

10%

15%

20%

25%

30%

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

F
re

q
u

en
cy

Classes

Frequency of Ik with depth

Ik_ztopo Ik_zmiddle Ik_zslip

0%
5%

10%
15%
20%
25%
30%

0

0,1

0,2

0,3

0,4

0,50,6

0,7

0,8

0,9

1



100 

 

 

 

 

Figure 58 - Variability maps of spatial predictions (left) and variances (right) of Ik at middle 

surface in 2006 

 

 

Figure 59 - Variability maps of spatial predictions (left) and variances (right) of Ik at slip 

surface in 2006 

 

The permeability values are widely distributed in all frequency classes identified, 

giving the soil a wide variety of filtration rates. Along the vertical profile there 

are no particular variations in hydraulic conductivity, while along the horizontal 

planes there is a great heterogeneity that particularly affects the landslide area, 

with values ranging between 0.6 and 1. 

The estimate variance grows with increasing elevation but tends to minimum 

values along the landslide profile. 
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Graph 21 - Frequency of Isoil index at different vertical depths in 2006 

 

 

 

Figure 60 - Variability maps of spatial predictions (left) and variances (right) of Isoil at ground 

surface in 2006 
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Figure 61 - Variability maps of spatial predictions (left) and variances (right) of Isoil at middle 

surface in 2006 

 

 

Figure 62 - Variability maps of spatial predictions (left) and variances (right) of Isoil at slip 

surface in 2006 

 

In order to have an overview of the soil given by mutual interaction between the 

various components and soil indices, the above maps show the variability of soil 

index both in terms of spatial predictions and estimation variances. A 

considerable variability is located between the right side and the left, affecting in 

particular the toe of the slope. In fact, the values range highlighting areas of 

minimum and maximum value along the entire slope. 

The variances of the three layers are overall moderate and evenly distributed, as 

proof of the overall goodness of the estimate. 
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Graph 22 - Frequency of Igeo index at different vertical depths in 2006 

 

 

 

Figure 63 - Variability maps of spatial predictions (left) and variances (right) of Igeo at ground 

surface in 2006 
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Figure 64 - Variability maps of spatial predictions (left) and variances (right) of Igeo at middle 

surface in 2006 

 

 

Figure 65 - Variability maps of spatial predictions (left) and variances (right) of Igeo at slip 

surface in 2006 

 

By comparing soil indices for both the reactivations, the partial Igeo index has been 

spatially reproduced, taking into account only the information obtained from the 

geognostic surveys. 

The color difference shows a longitudinal variability that crosses the slope from 

upstream to downstream despite the frequency classes being limited to a few 

categories. The variance is instead kept constant along the vertical profile with 

values that are around the 1 along the landslide body. 
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Graph 23 - Frequency of Igeo index at different vertical depths in 2010 

 

 

 

Figure 66 - Variability maps of spatial predictions (left) and variances (right) of Igeo at ground 

surface in 2010 
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Figure 67 - Variability maps of spatial predictions (left) and variances (right) of Igeo at middle 

surface in 2010 

 

 

Figure 68 - Variability maps of spatial predictions (left) and variances (right) of Igeo at slip 

surface in 2010 

 

The maps show, both in 2006 and in 2010, clear contours and distinct values as 

the elevation increases, keeping partly the heterogeneity already found in Isoil. 

This enhances the role that particle size composition and degree of compaction 

and saturation have on the overall soil variability for different depths investigated 

and predictions obtained. 

The above maps illustrate how the increase of the variance values of the predicted 

locations at the edge of the interesting area, reflects the increasing of distance from 

measured points. So the estimation variance allows to evaluate the ability of the 

Kriging method to estimate uncertainty accurately with respect to the true data 

(Matheron, 1963). Thus the UK approach provides a very accurate ranking of the 

spatial distribution of the estimation uncertainty. 



107 

 

 

 

Following, the empirical frequencies have been plotted and grouped at the same 

depth to better highlight anisotropies and spatial variability. 

 

 

Graph 24 - Frequency of soil indices at ground surface (z_topography) in 2006 

 

 

 

Graph 25 - Frequency of soil indices at ground surface (z_topography) in 2010 
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Graph 26 - Frequency of soil indices at middle surface between ground and slip surfaces 

(z_middle) in 2006 

 

 

 

Graph 27 - Frequency of soil indices at middle surface between ground and slip surfaces 

(z_middle) in 2010 
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Graph 28 - Frequency of soil indices at critical surface (z_slip surface) in 2006 

 

 

 

Graph 29 - Frequency of soil indices at critical surface (z_slip surface) in 2010 

 

Several measures may be used to compare the goodness of theoretical fitting 

methods applied to data measurements (Wu, 2013).  
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Cross-Validation (CV) is a method which allows to establish how well theoretical 

model predicts values at unknown locations by measuring the discrepancy 

between measured and estimated values (Meshalkina, 2007). It removes each data 

location and predicts the associated value using remaining data in other locations. 

Thus, iterating this step in every measured point, CV compares predicted values 

to observed values obtaining useful information about the quality of predictions. 

It validates the goodness of fitted variogram model, parameters and 

neighbourhood (Oliver and Webster, 2014). 

 

A comparison between the original data of the indices, and the relative estimated 

output values is following shown: 

 

  
Graph 30 - Scatterplot between observed and estimated values of the indices ICSiSaG (left) and 

ICoDS (right) in 2006 

 

 
Graph 31 - Scatterplot between observed and estimated values of the indices IFs (left) and Ik 

(right) in 2006 

 

In Graphs 30-32, the combination of data by a weighted linear sum tends away 

from low and high estimates. The characteristic to note is the smoothing effect 
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(Wackernagel, 2003): Kriging surface will basically be as smooth as possible given 

the constraints of the data thus, the estimated maps represent smoother outputs 

than real variable (Heuvelink et al., 2016).  

In particular, the Graphs 30-31 relative to the estimates of the values measured in 

2006 show good approximations for ICSiSaG and ICoDS indices, while they deviate 

more for Fs and k. This is due to the limited adaptability of the theoretical 

variogram model used with respect to the first two indices. 

 

  
Graph 32 - Scatterplot between observed and estimated values of the indices ICSiSaG (left) and 

ICoDS (right) in 2010 

 

In particular, the results of the CV show that the smoothness of Kriging has involved 

an appreciable overestimation of low soil indices and a slight underestimation of 

higher values. But, largely, the spatial distributions are quite heterogeneous and 

asymmetric. 

The scatterplots of the predictions of the values observed in 2010 show again good 

approximations for ICSiSaG and ICoDS indices. This confirms the adequacy of the 

model and its predictions (Pebesma and Graeler, 2017). 

 

 
ICSiSaG ICoDS IFs Ik 

MAE 0.02 0.032 0.12 0.17 

RMSE 0.13 0.12 0.58 0.61 

Table 28 – Performance criteria between predicted and observed values of the indices in 2006 

 

 
ICSiSaG ICoDS 

MAE 0.09 0.035 

RMSE 0.28 0.14 

Table 29 - Performance criteria between predicted and observed values of the indices in 2010 
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Root-Mean-Squared-Error (RMSE) and The Mean-Absolute-Error (MAE) are two 

of the most common metrics used to measure accuracy for continuous variables. 

RMSE is a quadratic scoring rule that also measures the average magnitude of the 

error. It is the square root of the average of squared differences between 

prediction and actual observation. 

MAE, instead, measures the average magnitude of the errors in a set of 

predictions, without considering their direction. They may be used together to 

diagnose the variation in the errors of predictions (Willmott and Matsuura, 2005). 

Each of them may range from zero to infinity: lower values indicate better model 

performance so for this case study the comparative error assessment gives 

acceptable results (Chai and Draxler, 2014). 
 

The results globally indicate that for relatively uniform, dense sampling locations, 

methods appear to be optimal. We hypothesize that it is a consequence of the 

relatively large number of observations, which lessens the influence of extreme 

values on model calibration and spatial interpolation.  

The task of the estimated variability from experimental data is thus very 

challenging indeed and it allows to appreciate each contribution to the overall 

spatial variability for indicative values of critical soil strength conditions both 

local and global.  

 

The analysis of the uncertainty may have possible effects on the same stability 

assessment for the individuation of the failure conditions, based on accurate, 

correct and local estimated un-sampled values. 

Thus, to highlight the presence of soil values particularly critical, the assessment 

of the overall stability has been performed. 

 

 

4.4 Slope Instability Assessment 

 

Evaluative analyses of slope stability allow a quantitative estimate of landslide 

susceptibility (Aleotti and Chowdhury, 1999). 

These methods assume that ground does not deform until it breaks and that, 

under conditions of breakage, shear strength remains constant and independent 

(Baba et al., 2012) from deformations (a rigid behavior, perfectly plastic, of soil is 

assumed). From these hypotheses it follows (Fredlund, Krahn and Pufhal, 1981): 

 

• Breakage occurs along a net separation surface between landslide mass and 

stable ground; 

• Landslide mass is a rigid block in roto-translational motion; 
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• Resistance mobilized along the sliding surface in limit equilibrium conditions 

is constant over time and everywhere equal to the shear strength. It is 

independent of deformations and landslide movements; 

• It is not possible to determine deformations preceding the break, nor the 

extent of the movements of the landslide block, nor the phenomenon speed. 

 

Concerning conditioning factors, the uncertainties in slope stability analysis 

belong in three main groups (Gustafsson et al., 2012): 

 

• Uncertainties on strength parameters and geometry (angle of internal friction, 

cohesion, slope angle); 

• Uncertainties on loads (surface loads, soil weight, pore pressure); 

• Uncertainty in critical breaking mechanism, which may be slightly different 

from that one identified in the analysis. 

 

 

4.4.1 Deterministic slope modelling 

 

Generally, different Limit Equilibrium Methods (LEMs) typically divide soil mass 

into many slices and assume different interslice normal and shear forces in order 

to achieve a statically determine solution: there is only one constant factor of 

safety along the potential slip surface (Griffiths and Lane, 1999). 

 

LEMs may analyze undefined slopes and slopes of limited height (Fredlund, 

Krahn and Pufhal, 1981). 

Infinite slope is a LEM that allows to divide the slope in slices long enough to be 

considered with a constant inclination, according to characteristics of landslide 

(Barbosa, Morris and Sarma, 1989). 

A slope is considered infinite when the depth of the critical breaking surface is 

small compared to slope length. This length may therefore be assumed as 

‘infinite’. So, infinite slope pattern well fits long sliding landslides (Griffiths, 

Huang and Fenton, 2011).  

The stability of alluvial deposits, debris or alteration of small thickness than 

landslide length, placed on a rigid rocky layer (i.e. bedrock), is normally referred 

to infinite slope model (Park, Lee and Woo, 2013) 

 

For modelling the Montaguto earthflow, infinite slope method (Lollino, Giordan 

and Allasia, 2014) was considered based on landslide movement and basal-slip 

surface. 
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It has been used in order to represent and develop two approaches, through back-

analysis procedure, for evaluating the main reactivations effects on the middle-

low part of the landslide: 

 

• Deterministic analysis, to verify the slope instability conditions after 2006 and 

2010 reactivations; 

• Probabilistic analysis, in order to calculate the probability of failure in 2006 

and 2010, after the main reactivations’ occurrence. 

 

Based on 2D infinite slope model, the following assumptions were considered for 

evaluating FS: 

 

• The soil is homogeneous (or layered) with a sliding surface parallel to the 

ground surface; 

• The piezometric surface is parallel to the ground surface: filtration motion has 

parallel flow lines to the ground surface; 

• The interfaces are in the same condition, so the tangential forces along the 

vertical planes are the same and do not affect the balance of acting forces. 

 

The undrained condition (has been applied using the following formula for 

calculating the Factor of Safety per each slice (Skempton and Delory, 1957): 

 

FS =  
c′ + (γz − γwzw)cos2βtanφ′

γzsenβcosβ
 

 

where:  
 

c’ = cohesion of the soil, 

ϕ’ = angle of internal friction of the soil, 

γ = unit weight of the soil, 

γw = unit weight of water, 

β = inclination of the slope to the horizontal, 

z = depth below the ground surface, 

zw = depth of the water table below the ground surface. 

(16) 
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Figure 69 - Translational sliding diagram, infinite slope geometry and parameters  

(source: Mater et al., 2010) 

 

The slope angle was extracted by DEM files realized by previous authors on the 

site during the two motions occurrences. 

 

   

Figure 70 - Slope terrain models (β) in 2006 (left) and 2010 (right). Chromatic classes range 

from 0 degrees (green) up to over 45 degrees (red)  

 

The study area was divided in 23 tiles (50mx50m) with strength (friction angle 

(), cohesion (c’)) and geometrical (slope inclination (), slip surface (z), 

groundwater level (zw)) parameters constant for each longitudinal slice. Each 

z 

zw 

β 

equipotential line 

pressure load 
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conditioning factor represent the average value along the landslide width at the 

same slice latitude. 

 
γ 20 kN/m3 

γ' 10 kN/m3 

γw 10 kN/m3 

Table 30 - Constant slope parameters for all tiles 

 

ID_tile z (m) β (°) ϕ' (°) c’ (kPa) zw (m) FS 

1 12 28 28 11 11.13 0.65 

2 17 29 29 10 16.97 0.57 

3 22 26 30 8 16.97 0.77 

4 21 29 31 6 8.72 0.89 

5 22 26 28 7 8.72 0.91 

6 20 30 29 7 6.28 0.85 

7 20 30 29 9 6.28 0.86 

8 15 28 26 8 3.98 0.86 

9 14 30 28 9 3.98 0.86 

10 15 32 29 10 4.25 0.84 

11 16 32 29 9 4.25 0.83 

12 16 26 29 9 9.85 0.86 

13 19 26 27 9 9.85 0.83 

14 11 26 27 9 11.13 0.63 

15 14 26 28 10 15.07 0.59 

16 11 26 26 10 11.13 0.62 

17 10 26 26 12 10.22 0.65 

18 18 26 26 11 18.04 0.58 

19 11 26 28 9 11.13 0.65 

20 9 26 24 10 9.43 0.60 

21 7 25 28 9 7.32 0.74 

22 12 24 30 11 10.55 0.85 

23 11 22 29 11 10.55 0.86 

Table 31 - Soil parameters and values in 2006 per tile 

 
 z (m) β (°) ϕ' (°) c’ (kPa) zw (m) 

MEAN 14.91 27.17 28 9.30 12.29 

SD 4.38 2.47 1.62 1.45 5.97 

COV 29% 9% 6% 16% 49% 

Table 32 – Statistical values of soil parameters in 2006 

 

ID_tile z (m) β (°) ϕ' (°) c’ (kPa) zw (m) FS 

1 12 27 28 11 11.13 0.66 

2 17 28 29 10 16.97 0.58 
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3 22 25 30 8 16.97 0.79 

4 21 29 31 6 8.72 0.89 

5 22 25 28 7 8.72 0.93 

6 20 29 29 7 6.28 0.87 

7 20 29 29 9 6.28 0.88 

8 15 27 26 8 3.98 0.89 

9 14 29 28 9 3.98 0.90 

10 15 30 29 10 4.25 0.89 

11 16 30 29 9 4.25 0.88 

12 16 24 29 9 9.85 0.92 

13 19 23 27 9 9.85 0.92 

14 11 24 27 9 11.13 0.67 

15 14 24 28 10 15.07 0.63 

16 11 24 26 10 11.13 0.64 

17 10 24 26 12 10.22 0.68 

18 18 24 26 11 18.04 0.62 

19 11 24 28 9 11.13 0.67 

20 9 24 24 10 9.43 0.60 

21 7 24 28 9 7.32 0.74 

22 12 22 30 11 10.55 0.90 

23 11 20 29 11 10.55 0.92 

Table 33 - Table 19 - Soil parameters and values in 2010 per tile 

 
 z (m) β (°) ϕ' (°) c’ (kPa) zw (m) 

MEAN 14.91 26.09 28 9.30 12.29 

SD 4.38 2.66 1.62 1.45 5.97 

COV 29% 10% 6% 16% 49% 

Table 34 - Statistical values of soil parameters in 2010 

 



118 

 

 

 

         

Figure 71 - Spatial values of slip surface (left) and friction angle (right) in 2006 and 2010 

 

 

             

Figure 72 - Spatial values of cohesion (left) and groundwater surface (right) in 2006 and 2010 
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Figure 73 - Spatial values of slope angle in 2006 (left) and in 2010 (right) 

 

According with the tables above, the FS function along the slope has been 

considered dependent on 5 variables with spatial variability (slope angle, friction 

angle, cohesion, water level zw and depth of slip surface z) while other 

parameters were considered constant, such as soil weight, immersed soil weight 

and water weight. FS values were calculated and plotted in order to evaluate how 

stable was the middle and toe area compared to the safety condition (FS≥1).  
 

FS_Frequency Classes FS_Relative Freq_2006 FS_Relative Freq_2010 

0 0% 0% 

0.1 0% 0% 

0.2 0% 0% 

0.3 0% 0% 

0.4 0% 0% 

0.5 0% 0% 

0.6 30% 22% 

0.7 13% 22% 

0.8 22% 4% 

0.9 35% 52% 

1 0% 0% 

Table 35 - Empirical Frequency of FS in 2006 and 2010 



120 

 

 

 

All data were obtained by soil investigations and survey campaigns performed 

in 2006 and 2010 after the two main landslide movements.  

 

 

Graph 33 - Empirical Frequency plots of FS in 2006 and 2010 

 

 

4.4.2 Probabilistic slope failure 

 

Considering the heterogeneity and uncertainty in material properties, together 

with changes and variability in geometry and loading factors, a probabilistic 

evaluation of slope stability is required (Griffiths, Huang and Fenton, 2011).  

 

For some component events, engineering models are available for predicting 

behaviour (Zhang et al., 2014). In these cases, reliability analysis may be used to 

assess probabilities associated with the components (Christian, Ladd and 

Baecher, 1994). 

Reliability analysis propagates uncertainty in input parameters to uncertainties 

in predictions of performance. The assessment problem is changed from 

estimating probabilities of adverse performance directly to estimating 

probabilities for the input parameters (Johari, Fazeli and Javadi, 2013). 

Once probabilities for the input parameters are assessed, any of a variety of 

simple mathematical techniques may be used to calculate probabilities associated 

with performance (Cadini, Agliardi and Zio, 2017). 
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Among these are First-Order Second-Moment approximations, advanced 

Second-Moment techniques, Point-Estimate calculations, or Monte Carlo 

Simulation (MCS) as seen in previous chapters. 

 

In our case, the Monte Carlo Simulation was carried out with 1000 samples 

(Papaioannou, Breitung and Straub, 2013). 

For the sake of consistency, every conditioning factor with local variation 

(strength and geometrical parameters) was considered in the random process 

(Hsu, 2013). Remaining variables were kept at their mean values (i.e. soil weight, 

immersed soil weight and water weight). 

 

All the identified parameters affecting slope stability were considered as random 

variables in such a way as to respect the assumed probability distribution curves 

(Sofianos, Nomikos and Papantonopoulos, 2014).  

The component input parameters (Zaman et al., 2011) in stability analysis were 

thus modelled randomly and used to estimate the PDF of the Factor of Safety in 

term of Probability of Failure. 
 

 

Graph 34 - Cumulative distributions of FS in 2006 and 2010 

 

 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0,0 0,2 0,4 0,6 0,8 1,0 1,2

P
(F

S
)

FS

Cumulative Probability of Failure (MCS)

FS = 1 P(FS)_2006 F(FS)_2010



122 

 

 

 

 

Graph 35 - Probability density curves of FS in 2006 and 2010 

 

The above graphs give the results for one set of runs (1000 iterations). In each plot 

the solid lines are the result of the Monte Carlo simulation both in term of 

cumulative distribution and density function of FS in 2006 and 2010. 

 

Following, the Reliability Index (β) has been calculated, based on MSC 

assumptions and FS moments (mean and standard deviation), by using the Eq. 7: 

 
 FS_2006 FS_2010 

μFS 0.68 0.70 

σFS 0.26 0.27 

βFS -1.23 -1.13 

PfFS 0.62 0.64 

Table 36 - Statistical and Reliability values of FS in 2006 and 2010 
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Figure 74 - Spatial values of FS and P(FS) in 2006 

 

 

  

Figure 75 - Spatial values of FS and P(FS) in 2010 
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Figure 74 and 75 show FS and the Probability of Failure after the reactivation in 

2006 and 2010. They are everywhere less than 1. It’s not surprising that the 

landslide was still moving until 2010. 

 

The results showed the presence of strength values particularly critical and locally 

circumscribed representing the likely predisposing factor the instability condition 

of the slope that has really occurred implying the soil failure with landslide 

downstream. 
 

Calculation for both 2006 and 2010 slope stability analyses were carried out based 

on empirical means and variances for every variable as the first step for 

estimating their uncertainty. In this case, uncertainty includes both aleatory and 

epistemic components as no information was given on sampling errors as well as 

on estimation errors committed by previous authors concerning the 

methodologies they applied on the case study (i.e. slip surface depth, water level, 

shear strength values etc.). 

 

 

4.4.3 Sensitivity analysis of variability 

 

In traditional slope stability analysis, single fixed values (typically, mean values) 

of representative samples or strength parameters or slope parameters are used 

(Mustaffa, Gelder and Vrijling, 2009b). The factor of safety is generally calculated 

for a slope to assess its stability by using single value of soil properties and slope 

parameters. The deterministic analysis is unable (Alimonti et al., 2017) to account 

for variation in slope properties and parameters and other variable conditions so 

that a probabilistic analysis has been performed. 

Anyway, in reality, each parameter has a range of values which may differently 

affect the whole slope stability (Johari, Fazeli and Javadi, 2013).  

 

The reliability analysis and reliability sensitivity analysis are two important steps 

in engineering design (Cui, Lu and Wang, 2011). In many practical applications 

of reliability analysis, there is the interested in knowing the sensitivity of the 

probability of failure for optimization purposes (Haukaas and Der Kiureghian, 

2003; Krzykacz-Hausmann, 2006; Guo and Du, 2009). 

The objective of reliability sensitivity analysis is to determine input variables 

that mostly contribute to the variability of the failure probability. Moreover, it is 

based on a perturbation of the original probability distribution of the input 

random variables, quantifying their effects on model outputs. The objective is to 

determine the most influential input variables and to analyze their impact on the 

failure probability (Papaioannou, Breitung and Straub, 2013).  
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Parameter sensitivities are obtained in terms of the sensitivity of the respective 

probability approximation (Krzykacz-Hausmann, 2006). 

 

In this research independent sensitivity measure has been based on a perturbation 

of the initial probability density independently for each input variable. The 

variables providing the highest variation of the original failure probability are 

settled to be more influential. These variables will need a proper characterization 

in terms of uncertainty influencing the probability of failure. 

It investigates the robustness (Wang, Hwang, Juang, et al., 2013) of a study 

when the study includes some form of mathematical modelling. It increases 

understanding or quantification of the system (e.g. understanding relationships 

between input and output variables) especially when input variables are subject 

to many sources of uncertainty such as errors of measurement, absence of 

information and poor or partial understanding of the driving forces and 

mechanisms (Zaman et al., 2011).  

The sensitivity analysis is able to account for variation (Jiang et al., 2014) in 

slope properties and different geotechnical conditions. The stability of a slope 

depends on many factors such as water pressure, slope height, slope angle, shear 

strength, etc. These factors not only help in designing the slope but also help in 

understanding the failure mechanism. 

 

The proposed method is based on Monte Carlo Simulation (MCS). The Monte 

Carlo method is a simple and robust technique, independent of system 

complexity. Also, the efficiency of the Monte Carlo method in its standard form 

does not depend on the dimension of the random variable space (Danka, 2011).  

Most of the existing reliability sensitivity analysis methods assume that all the 

probabilities and distribution parameters are precisely known (Christian, Ladd 

and Baecher, 1994; Griffiths, Huang and Fenton, 2009; Wang et al., 2012). That is, 

every statistical parameter involved is perfectly determined. However, 

geological, geotechnical and geometrical properties of a slope may different from 

those one measured during survey investigation within a range of values 

(Krzykacz-Hausmann, 2006) which may greatly affect the probability of failure. 

 

As discussed in previous chapters, there are two types of uncertainties: epistemic 

and aleatory that may not be perfectly determined in engineering practices. In 

this study, both epistemic and aleatory uncertainties were considered in 

reliability sensitivity analysis (Guo and Du, 2007). 

Since no reference has been given by previous researchers on any uncertainty 

component, all the following were considered (Phoon et al., 2006a): 

 

• Measurement (laboratory and field investigations); 
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• Transformation (indirect relations between soil parameters, modeling); 

• Inherent variability of ground conditions at the site (natural soil processes). 

 

From a reliability perspective, the uncertainties of site geometry may be equally 

important to those of material properties, as discussed by (Dowding, 1979). 

The approach is to evaluate FS for the values of the parameters at the different 

condition and then to change each of the parameters in turn by a small amount 

and re-evaluate FS. The variations provide estimates of FS numerical changes as 

far as conditioning factors vary. The magnitude of this effect may be expressed 

quantitatively. This leads to identifying the spatial distribution of FS values and 

which areas are more affected by instability. 

The uncertainty in a random variable may be investigated through its first two 

moments (Cassidy, Uzielli and Lacasse, 2008), i.e. the mean (a central tendency 

parameter) and variance (a dispersion parameter).  

Second-moment descriptive and inferential modelling (Loh, 2002) of soil 

parameters are widely used in the geotechnical literature (Phoon and Kulhawy, 

1999; Cassidy, Uzielli and Lacasse, 2008; Zaman et al., 2011) because of their 

efficiency in transmitting important properties of data sets. 

The sample coefficient of variation is obtained by dividing the sample standard 

deviation by the sample mean. It provides a concise measure of the relative 

dispersion of data around the central tendency estimator (Phoon et al., 2006b) 

Therefore, Reliability sensitivity analysis is used to find the rate of change in the 

probability of failure (or reliability) due to the changes in distribution parameters 

(Cui, Lu and Wang, 2011). 

 

 

Figure 76 – Type of uncertainties in soil parameters (source: Vardanega and Bolton, 2015) 
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The uncertainty in the values of the soil properties is a major contributor to the 

uncertainty in the stability of slopes. It consists of two portions: scatter and 

systematic error.  

The structure of the spatial variation may be used to estimate the level of random 

noise in soil property data and to eliminate it from the calculation of reliability 

index. The effects of the spatial variability on the computed reliability index are 

further reduced because the variability is averaged over a region or failure 

surface, and it is only its average contribution to the uncertainty that is of interest. 

The strength of the reliability analysis is not that one may get a better estimate of 

each of these uncertainties, but that one may deal with them explicitly and 

coherently. 

Uncertainties in soil properties yield a lower bound estimate of the probability of 

failure, not the absolute probability of failure. However, for most practical 

applications the calculation of relative probability of failure is enough for 

parametric analysis. 

 

Sensitivity analysis is an interactive process (Xiao et al., 2011) adopted to simulate 

slope instability more realistically and determine the influence of the different 

parameters on the Factor of Safety. It indicates which input parameters may be 

more critical to the assessment of slope stability, and which input parameters are 

less influencing it (Sarma, Krishna and Dey, 2015). 

Therefore, how much each parameter affects the whole stability, of the middle-

low part of the earthflow, has been evaluated. The sensitivity analysis was based 

on the following statistical moments (Lu, Shen and Zhu, 2017): 

 

• Variance values, possibly due to sampling errors, modeling approximations, 

inherent soil variability. 

 

The first sensitivity analysis was carried out based on variance variability of 

geological and geotechnical survey campaigns performed in 2006. 

 

A second one was performed based on 2010 soil investigations. It focused instead 

on central tendency of variability, as follows: 

 

• Mean value, as degree (slope inclination, friction angle), depth meters (slip 

surface, groundwater level), etc. 

 

Based on that, the reliability sensitivity analysis with respect to distribution 

parameter of random variable may be derived to evaluate the effect of 

distribution parameter on the new reliability index under stochastic perturbations 

(Lu, Shen and Zhu, 2017). 
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The reason of the last sensitivity analysis concerns the interest in evaluating, in 

back analysis, either how much reducing or increasing each parameter, it 

increases slope stability. This would be useful for decision-making process as well 

as for identifying the most effective mitigation measures and priorities.  

 

Conditioning factors of slope stability are not exactly known because of scarcity 

or lack of data, assumptions made by experts in modelling, presence of inherent 

variability (Phoon and Kulhawy, 1996). 

These uncertainties are introduced by sampling errors during soil investigations, 

the relative inadequacy of the conceptual models, numerical approximations and 

completeness uncertainty difficult to assess or quantify (Phoon et al., 2006a). 

However, it is possible to minimize the effect of uncertainty (Phoon and Kulhawy, 

1999) by carrying out sensitivity studies on the model assumptions thus the effect 

on the model output.  

The focus here is on the uncertainties regarding the variability and distribution of 

the parameters sampled in 2006. 

 

The Coefficient of Variation (COV) is commonly used in geotechnical variability 

analyses (Phoon and Kulhawy, 1996). The advantages are that it is dimensionless 

and provides a more physically meaningful measure of dispersion relative to the 

mean, it is the ratio between standard deviation and mean value. Coefficients of 

variation of the same physical properties at sites worldwide vary within a 

relatively narrow range; moreover, they are thought to be independent of the 

geological age of the soil (Phoon et al., 2006a). 

 

 
Figure 77 - Main components contributing to the total uncertainty of soil properties 

(source: Muller, 2013) 
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In sensitivity analysis, a common approach is that of changing one-factor-at-a-

time (Phoon et al., 2006a), to see what effect this produces on the FS output. This 

appears a logical approach as any change observed in the output will 

unambiguously be due to the single factor changed. Furthermore, by changing 

one factor at a time one may keep all other factors fixed to their central or baseline 

value. This increases the comparability of the results (all ‘effects’ are computed 

with reference to the same central point in space) and minimizes the chances of 

computer program crashes, more likely when several input factors are changed 

simultaneously (Johari, Fazeli and Javadi, 2013). 

 

Sensitivity analysis involves a series of calculations in which each significant 

parameter is varied systematically over its maximum credible range 

(Tsompanakis et al., 2010) in order to determine its influence upon the Factor of 

Safety.  

 

Literature review (Phoon, 1999; Phoon and Kulhawy, 1999; Phoon et al., 2006a) 

was conducted to estimate the typical COV values of inherent soil variability. 

However, this task was complicated because most COVs reported in the 

geotechnical literature are based on total variability analyses (F. C. Dai, Lee and 

Ngai, 2002). 

Harr (1987) provided a “rule of thumb” by which coefficients of variation below 

10% are considered to be “low”, between 15% and 30% moderate”, and greater 

than 30%, “high” (Phoon et al., 2006b). 

Based on literary research (see Appendix 3) and COVs observed by soil data in 

2006- ranging from 6% to 50% - the following COVs values of total variability 

were considered: 10%, 25%, 50% then applied to each conditioning parameter. 

 

 ID_tile FS P(FS) P(FS_10%) P(FS_25%) P(FS_50%) 

2 0.570 0.336 0.133 0.320 0.388 

18 0.578 0.346 0.147 0.332 0.398 

15 0.594 0.370 0.185 0.361 0.419 

20 0.597 0.375 0.193 0.367 0.424 

16 0.615 0.401 0.240 0.400 0.447 

14 0.626 0.417 0.272 0.420 0.461 

19 0.649 0.452 0.344 0.462 0.492 

1 0.652 0.457 0.355 0.469 0.496 

17 0.652 0.457 0.356 0.469 0.496 

21 0.738 0.587 0.658 0.629 0.609 

3 0.773 0.639 0.766 0.691 0.653 

11 0.832 0.720 0.896 0.781 0.722 

13 0.834 0.722 0.899 0.784 0.725 
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10 0.836 0.724 0.902 0.786 0.726 

6 0.850 0.742 0.922 0.805 0.742 

22 0.850 0.743 0.923 0.806 0.742 

23 0.858 0.752 0.932 0.816 0.751 

12 0.858 0.752 0.933 0.816 0.751 

8 0.860 0.755 0.935 0.818 0.753 

7 0.861 0.756 0.936 0.820 0.754 

9 0.864 0.760 0.940 0.824 0.757 

4 0.893 0.792 0.965 0.857 0.786 

5 0.914 0.816 0.978 0.879 0.806 

Table 37 – Sensitivity of FS in 2006 with different COVs 

 

In Table 37, for low initial values of P(FS) the probability of failure increases by 

increasing the variance while for high initial values of P(FS), the probability of 

failure increases as much as the variance decreases. 

This is potentially due to sampling errors, modelling approximations and/or 

inherent soil variability. 

 
 FS FS_10% FS_25% FS_50% 

μFS 0.68 0.66 0.64 0.59 

σFS 0.26 0.27 0.28 0.34 

βFS -1.23 -1.23 -1.23 -1.16 

PfFS 0.62 0.62 0.62 0.64 

Table 38 – Statistical and Reliability values of FS for different COVs in 2006 

 

The current practice is the use of Monte Carlo simulation to propagate 

uncertainties by increasing the coefficient of variation. 

Therefore, by assuming the above target coefficients of variation, the 

probability of failure has been estimated by Monte Carlo Simulation. Again, each 

parameter has been treated as random variable at each sample of the sensitivity 

estimate. 
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Graph 36 - Sensitivity of FS in 2006 with different COVs for slip surface 

 

 

 

Graph 37 - Sensitivity of FS in 2006 with different COVs for groundwater depth 
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Graph 38 - Sensitivity of FS in 2006 with different COVs for slope angle 

 
 

 

Graph 39 - Sensitivity of FS in 2006 with different COVs for friction angle 
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Graph 40 - Sensitivity of FS in 2006 with different COVs for cohesion 

 
The parametric curves above (Graphs 36-40) show how the variance of each 

parameter changes FS. In particular, a large increase in FS is given by the variation 

in the depth of the sliding surface and the groundwater level, followed by the 

inclination of the profile, and by the parameters of shear strength. 

Statistical parameters used to model a random field are generally uncertain and 

statements regarding probabilities are equally uncertain (Cui, Lu and Wang, 

2011). That is, because of the uncertainty in estimates of mean properties, 

statements regarding the probability of failure of a slope, for example, cannot be 

regarded as absolute. 

 

 

Figure 78 - Uncertainty in mean values of depth (green) by using survey investigations (red). 
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showed that one of the effects of spatial averaging is to reduce the variability of 

the averaged parameter (e.g. shear strength) compared to the variability of the 

data considered separately. The reason for this reduction is the averaging of the 

variability over a length, surface or volume, and then only the averaged 

contribution to the uncertainty is of interest (Nadim, 2016). 

 

ID_tile FS P(FS) P(FS_10%) P(FS_25%) P(FS_50%) 

2 0.578 0.327 0.176 0.055 0.023 

20 0.604 0.362 0.193 0.060 0.024 

18 0.616 0.380 0.202 0.063 0.025 

15 0.634 0.406 0.215 0.067 0.025 

16 0.640 0.414 0.219 0.068 0.026 

1 0.656 0.438 0.232 0.072 0.026 

14 0.673 0.463 0.245 0.077 0.027 

19 0.675 0.465 0.246 0.077 0.027 

17 0.683 0.479 0.253 0.079 0.028 

21 0.736 0.557 0.298 0.095 0.030 

3 0.786 0.630 0.343 0.111 0.032 

6 0.873 0.743 0.427 0.144 0.037 

11 0.882 0.755 0.436 0.148 0.038 

7 0.884 0.757 0.438 0.149 0.038 

8 0.886 0.758 0.440 0.149 0.038 

10 0.886 0.759 0.440 0.149 0.038 

4 0.893 0.767 0.447 0.152 0.038 

9 0.899 0.773 0.453 0.155 0.039 

22 0.900 0.775 0.454 0.155 0.039 

23 0.918 0.794 0.472 0.163 0.040 

12 0.918 0.795 0.472 0.163 0.040 

13 0.925 0.801 0.479 0.166 0.040 

5 0.930 0.807 0.484 0.169 0.040 

Table 39 – Sensitivity of FS in 2010 with different mean values 

 

In Table 39, for initial values of P(FS) both low and high, the probability of failure 

decreases by halving/doubling respectively the mean value of the corresponding 

parameter. 

The variation of the central tendency influences the probability of failure without 

considering its initial value. 
 

 FS FS_10% FS_25% FS_50% 

μFS 0.69 0.94 1.45 3.41 

σFS 0.26 0.39 0.54 1.42 
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βFS -1.13 -0.14 0.83 1.70 

PfFS 0.64 0.7 0.18 0.04 

Table 40 – Statistical and Reliability values of FS for different mean values in 2010 

 

 

Graph 41 - Sensitivity of FS in 2010 with different groundwater depths 

 

 

 

Graph 42 - Sensitivity of FS in 2010 with different friction angles 
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Graph 43 - Sensitivity of FS in 2010 with different cohesion values 

 

 

 

Graph 44 - Sensitivity of FS in 2010 with different slope angles 
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Graph 45 - Sensitivity of FS in 2010 with different ground surfaces 

 

The curves above (Graphs 41-45) show how the variation of each average 

parameter changes FS. In particular, a large increase in FS is given by the variation 

of groundwater depth and slope inclination, followed by shear strength 

parameters. 

 

 

4.5 Stochastic Mapping of Slope Instability 

 

Among the most basic tasks of quantitative characterization is to map local and 

regional geo-information with spatial continuity along the study area even when 

soil parameters are discrete (Hammah, Yacoub and Curran, 2009). 

Mapping attempts to divide the three-dimensional area into layers or strata. It 

identifies and characterizes features that might be difficult to notice without a 

spatial vision of the whole site (Lombardi, Cardarilli and Raspa, 2017). It helps to 

observe each surface, looking for potential spatial correlations distributed either 

locally, in a single map, or at scale of area by combining more realizations. 

Such mapping includes the probabilities of unlikely as well as likely 

composition and distribution, assigning each point to the most probable class 

(with minimum variance) and associating with it a probability of misclassification 

(estimation variance), directly informing on the reliability assessment as well 

(Rossi et al., 2010). 
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The thematic mappings based on uncertainties in soil components and instability 

system would try to satisfy four requirements (Mancini, Ceppi and Ritrovato, 

2010): 

 

• be simple to conceive and use; 

• be able to assign subjective prior probabilities to its components; 

• be reliable or give a measure of the reliability degree (i.e. estimation error); 

• be directly useful in design decisions. 

 

As shown in previous chapters, every component conditioning slope stability has 

been mapped at different location: at the ground surface, at the slip surface depth, 

and at an intermediate depth between them. It has been made regarding both 

discrete than continuous parameters grouping each one in several ranges. By 

classifying them in chromatic categories, faster detection and easier 

understanding may be carried out by any stakeholder involved. 

 

 

4.5.1 Interventions as conditioning elements: Instability Prediction 

 

The interventions carried out after the reactivation of 2010 made it possible to 

assess the applicability of the method based on the variations induced by the 

works on the stability of the slope analyzed. 

In particular, interest has been focused on reshaping of the longitudinal profile 

and the collection of surface water made respectively through 

excavations/backfills and draining trenches. 

Concerning reshaping profile, the upper part was reduced to 14 degree from the 

horizontal plane, while the middle and toe area respectively to 10 and 20 degree. 

These values have been defined based on natural inclinations and spatial location. 
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Figure 79 - Longitudinal profile of the landslide area with stabilization works: draining 

trenches (pink points) and drainage channels (blue lines) 

 

As groundwater surface, sub-superficial drainage network was realized reducing 

the depth from 1m to 2m. For the aim of the study it has been considered 10% on 

average. 

Based on these new considerations, the variability of FS has been analyzed and 

estimated with the geostatistical approach, as follows: 

 
 FS  

h_lag 100 m 

tol.h_lag 50 m 

alpha 0 ° 

tol.hor 180 ° 

beta 0 ° 

tol.vert 89 ° 

Table 41 - Empirical values of FS variogram in 2010 
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 FS 

Nug_psill 0.01 

Nug_range 0 

Exp_psill 0.17 

Exp_range 512.97 

Table 42 - Theoretical values of FS variogram in 2010 

 

 

Figure 80 - Variogram and theoretical model for FS and 2010 

 

  

Figure 81 - Variability maps of spatial predictions (left) and variances (right) of FS in 2010 
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In order to have an overview of the spatial variability of FS, predictions and 

variances have been estimated.  

A considerable variability is located between the right side and the left, affecting 

in particular the toe of the slope. On the left, colour distribution shows a 

longitudinal variability that crosses the slope from upstream to downstream, 

highlighting the landslide area and the eastern side of the slope at minimum 

values. 

The variance is instead kept constant along the longitudinal profile with values 

that are around the 0 along the landslide body. 

 

 
Graph 46 - Scatterplot between initial and estimated values of FS in 2010 

 

The scatterplot (Graph 46) relative to the estimates of FS shows good 

approximations for higher values, while it deviates more for the lower ones.  

In particular, the results show that the smoothness of Kriging has involved an 

appreciable overestimation of low values and a slight underestimation of higher 

values. 

 

RMSE and MAE below, quantify the variation of the errors. As the values are 

close to zero, it indicates a good model performance giving acceptable results. 
 

 
FS 

MAE 0.17 

RMSE 0.22 

Table 43 - Performance criteria between predicted and observed values of FS in 2010 

 

 

Initial values 

P
re

d
ic

te
d

 v
a

lu
es

 



142 

 

 

 

4.5.2 Interventions as conditioning elements: Instability Simulation 

 

The same new considerations about FS after the stabilization works have been 

made with the reliability approach. The variability of FS and P(FS) has been 

analyzed and simulated, as following shown: 
 

ID_tile z (m) β (°) ϕ' (°) c’ (kPa) zw (m) FS P(FS) 

1 12 14 28 11 10.02 0.97 0.85 

2 17 14 29 10 15.27 1.35 0.99 

3 22 14 30 8 15.27 1.59 1.00 

4 21 14 31 6 7.85 2.02 1.00 

5 22 14 28 7 7.85 1.82 1.00 

6 20 14 29 7 5.65 1.98 1.00 

7 20 14 29 9 5.65 2.00 1.00 

8 15 14 26 8 3.58 1.84 1.00 

9 14 14 28 9 3.58 2.00 1.00 

10 15 10 29 10 3.83 2.94 1.00 

11 16 10 29 9 3.83 2.93 1.00 

12 16 10 29 9 8.87 2.44 1.00 

13 19 10 27 9 8.87 2.35 1.00 

14 11 10 27 9 10.02 1.35 0.99 

15 14 10 28 10 13.56 1.76 1.00 

16 11 10 26 10 10.02 0.82 0.69 

17 10 10 26 12 9.20 0.71 0.51 

18 18 10 26 11 16.24 1.51 1.00 

19 11 10 28 9 10.02 0.86 0.61 

20 9 10 24 10 8.49 0.92 0.80 

21 7 10 28 9 6.59 0.74 0.57 

22 12 20 30 11 9.50 1.10 0.93 

23 11 20 29 11 9.50 1.02 0.89 

Table 44 - Soil parameters and values after interventions per tile 

 

The maps below (Figure 82) represent FS and P(FS) obtained from the use of input 

data altered by the realization of the works. FS assumes values that are 

significantly higher than the stability condition, except for some areas upstream 

which maintain critical conditions with respect to stability. The probability vice 

versa is attested to low values in those areas, meaning that the forecast does not 

have a high potential for occurrence. 
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Figure 82 – Spatial values of FS and P(FS) after stabilization works 

 

Probability theory and statistics may aid this process of geological mapping in at 

least two ways. First, they may be used to make inferences about the geology of 

unobserved parts of a site (or region) that are more powerful than those based on 

intuition, and those inferences may be associated with measures of precision and 

accuracy. Second, they may be used to optimize the way exploration effort is 

allocated across a site or among different means of collecting data, balanced 

against competing investments in sampling for material properties or finding 

geological anomalies. 

Nonetheless, probability theory and statistics have been relatively little used in 

rationalizing how we do this mapping, and the undertaking is often viewed as 

more art than science. Therefore, there are fewer tangible results in the literature 

on quantitative mapping than on other aspects of quantitative site 

characterization. This is a shame, and it is likely to change, because increasing use 

of remote sensing, global positioning, and other sensing technologies has 

generated an abundance of data on geology that might feed more rational and 

efficient approaches to mapping. 
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Chapter V 
 

Conclusions 
 

 

In determining the probability that a mass movement is activated, it is 

fundamental to consider the conditions that cause this situation of instability. 

Conditioning variables, such as geology, geometry, height, groundwater level, 

soil geotechnical properties, i.e. those factors that predispose a slope to instability 

and make it susceptible to failure, were considered, analyzed and evaluated. 

Afterwards, loading factors as triggering variables, such as soil and water weight 

were included in the study, bringing the slope from a marginal stability condition 

to a state of instability to failure.  

 

Stochastic analysis on empirical variables and their theoretical distribution have 

been performed using quantitative methods, such as multivariate Statistics, 

Geostatistics and Reliability approaches, depending on how the predisposing 

factors were considered and related to local and regional effect within the 

landslide area. 

Stability analysis and data processing, together with those of surveying, 

monitoring and modelling processes, were performed to verify the effectiveness 

of an integrated use of different approaches. 

Thanks to the effectiveness and versatility shown by these approaches to the 

landslide system, the possibilities of wider applications of statistics and 

probabilistic tools and the integration of further quantitative modelling, would 

provide complementary information for assessing slope instability phenomena. 

Furthermore, the stochastic assessment might allow to establish the efficiency of 

stabilization works or to guide planning of new mitigation measures and their 

position. Anyway, it should be remembered that, the efficiency of the undertaken 

activities must be evaluated by observing the time history of the velocity recorded 

at critical points, not considered within the study. 

 

Soil characterization of the Montaguto earth flow has revealed the existence of 

heterogeneous conditions (Terra et al., 2013) and isotropic spatial correlation 

likely due to continuous soil mixing for reactivation activity. Indeed, the landslide 

is characterized by complex morphology and different activation times  (Terra et 

al., 2013). 

Slope stability assessment has led to identify the presence of more unstable areas 

representing the most critical portion of the slope to failure; these areas match 
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perfectly with those highlighted by conditioning soil parameters so then by the 

Factor of Safety maps. 

Sectors and unstable zones are characterized by a low value of strength and non- 

smoothness of geometries.  

Probability of failure increases more in some area than in other sectors or/and at 

different period of times (i.e. years). 

Changes in landslide activity, however, are only reflected in the temporal 

sensitivity as the susceptibility is not changed for the scenarios  (Terra et al., 2013). 

 

A clear model advantage is the nature of the slope stability model. The model 

simulates changes in landslide susceptibility, which might arise from adaptations 

in the morphology and the soil properties of a slope under temporal sensitivity 

variations. 

The awareness of having, at least in part, achieved the goal was represented by a 

clear correspondence in terms of temporal-space evolution and distribution of the 

most unstable areas, observed between the developed stochastic models and the 

measurements obtained through investigation and monitoring. 

 

There are several advantages in using a reliability-based approach versus the 

traditional approach. It allows to quantify the reliability, and load and resistance 

components to achieve consistent levels of reliability among different potential 

scenarios. 

By quantifying reliability, it is possible to perform cost-benefit analyses to balance 

mitigation costs against the risk of slope failure. 

 

The model was calibrated using measured time series and observed earth flow 

activity and might be re-calibrated for application at other slope instabilities. 

The application of these innovative-methodological mapping and interpretative 

approaches, and predictive models at the Montaguto earth flow permitted to 

obtain further information about landslide characteristics and instability 

evolution of the earth flow complementary to those provided by past researches. 

 

The model has reached a higher validation degree as the input data were acquired 

through measurements taken at sampling rates (geological and geotechnical 

parameters). All output is basically composed of stacks of maps, reported at each 

time step (year) and main interesting depths. 

The model validity is affected by random and systematic errors. Random errors 

represent statistical fluctuations (in either direction) in the measured data due to 

inherent variability component and usually to the precision limitations of the 

measurement instruments as well. Systematic errors, by contrast, are 

reproducible inaccuracies that are consistently in the same direction. Systematic 
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errors are often due to a problem which persists throughout the entire 

experiment. 

A reduction of random errors may be done by averaging over a large number of 

observations while systematic errors are difficult to detect. 

 

The results of second-moment statistics in the form of mean value, coefficient of 

variation and coefficients of correlation between properties, as well as suitable 

probability distributions of conditioning parameters, should not be used 

uncritically in design purposes. It is due to statistics of those geo-information 

which are related to in-situ state then significantly dependent upon the site. 

For these parameters, it is difficult to identify typical values. Also, in geo-

engineering it is often possible to measure the same parameter using two or more 

testing methods and/or procedures. Different testing procedures are generally 

characterised by different testing uncertainty. Moreover, using more than one 

testing procedure will result in different measured values because the 

measurement occurs in a different way (Denora, Romano and Cecaro, 2013). 

Hence, the testing method should be specified when reporting statistics from a 

source site.  

Lastly, it is generally not possible to evaluate the degree of homogeneity in the 

soil units from which the statistics are calculated. If such information is not 

provided, descriptive and inferential statistics will be misleading (Popescu, 

Prevost and Deodatis, 1998).  

 

Therefore, main limitations concern rounding errors and data limitations that 

originate from the heterogeneous distribution of soil investigations as well as 

discretisation of slope stability model. 

Certainly, we highlight the effective integrated modelling system, obtained by 

analyzing the results of every surveys campaigns and by the comparison between 

them in term of spatial variability and distribution. This was made possible thank 

to previous information from past studies on the site as well. 

 

Finally, future predictions should not be deterministic. They should be 

probabilistic.  

The current practice in forward-prediction modelling is to research several 

historical events similar to the target event over a range of physical characteristics. 

These historic events are then individually back-analysed, using expert 

judgement to select the best-fit rheologies and parameters.  

By recommending a specific set of parameters based on the physical 

characteristics of an event, the preliminary hazard map may be rapidly produced, 

reducing the cost to make landslide analysis a more accessible tool for decision 

makers. The recommended parameters also provide context-specific starting 
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parameters so that an expert practitioner may fine-tune model parameters in the 

usual iterative process for parameter selection in the construction of a more 

detailed hazard map. 

This thesis is highly dependent on the accuracy of reported observations, from 

the recorded soil characteristics to accurate maps of pre- and post-event 

topography. No attempt was made to verify or reinterpret reported observations. 

 

 

Recommendations and Further Developments 

 

The paper provides an overview of selected techniques for modelling the spatial 

and temporal variability of soils. A perspective as practical as possible was 

pursued, with wide reference to available literature. 

Examples from probabilistic slope stability analyses were illustrated to highlight 

the benefits and limitations of approaches with various levels of complexity.  

Most statistics available in the literature are strongly site- and case-specific, and 

the data should be examined with caution if they are to be applied at other sites. 

Research may help simplify the use of variability-modelling techniques, thus 

assisting the practitioner. However, even the most powerful modelling technique 

may yield unreliable results if input data are insufficient in quantity and quality. 

Geological and geotechnical practice makes use of data sets which invariably 

indicate variability in any soil property. The variability information is often lost 

in the characterisation and design processes. A first step towards an uncertainty-

based approach might be the explicit reporting of properly obtained data statistics 

and probabilistic information. 

At present, research efforts focus on a variety of aspects of soil variability 

modelling but the gap between research and practice needs to be narrowed. 

Therefore, the joint effort of researchers and practitioners should aim towards a 

full recognition of the benefits of such development. 

 

More research should be completed to improve the characterization of Montaguto 

earth flow especially related to using quantitative data for stability analysis.  

Possible future research, might improve or grow from these results, developing 

the following aspects, or at least some of them: 

 

• A comparative analysis of geotechnical parameters in FS evaluations, 

should be carried out using different values in 2006 and 2010. It would be a 

more realistic assumption as the landslide occurred in the period between 

the two. 

• A geostatistical analysis should be applied for each parameter used in the 

calculation of FS, to have a more accurate spatial comparison: a Sensitivity 
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analysis based on the “real” spatial distribution of soil parameters, not in 

the random one. 

• Sensitivity analysis should also be done on the Coefficient of Correlation for 

a comparison between 2006 and 2010 soil values and stochastic modelling. 

• The application of numerical methods that also consider the deformability 

of materials, in this case certainly high as well as variable, could allow an 

interesting back-analysis of the reactivations which occurred in 2006 and 

2010. 

 

Doing so, the theme of research might be improved on in the future. The methods 

and approaches might be also successfully applied elsewhere for improving 

knowledge of landslide phenomena and their relation to environmental drivers 

with spatial and temporal variability. 
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Appendix 1 
 

Kolmogorov - Smirnov test 
 

 

In statistics, is a non-parametric test (Massey, 1951) of the equality of continuous, 

one-dimensional probability distributions that may be used to compare 

a sample with a reference probability distribution (one-sample K-S test), or to 

compare two samples (two-sample K-S test). The Kolmogorov-Smirnov test may 

be used as a goodness of fit test (Justel, Peña and Zamar, 1997).  

The Kolmogorov-Smirnov statistic quantifies a distance between the empirical 

distribution function of the sample and the cumulative distribution function of 

the reference distribution (Fasano and Franceschini, 1987), or between the 

empirical distribution functions of two samples.  

The null distribution of this statistic is calculated under the null 

hypothesis (Lopes, 2011) that the samples are drawn from the same distribution 

(in the two-sample case) or that the sample is drawn from the reference 

distribution (in the one-sample case). 

 In each case, the distributions considered under the null hypothesis are 

continuous distributions but are otherwise unrestricted. 

The two-sample K-S test is one of the most useful and general non-parametric 

methods for comparing two samples, as it is sensitive to differences in both 

location and shape of the empirical cumulative distribution functions of the two 

samples (Lilliefors, 1967).  

 

 

Following the one-sample K-S routine used for two soil parameters: 

 

 
> fit1<-fitdistr(s1$V1,"normal") 

 

> ks.test(s1$V1,"pnorm",fit1$estimate) 

 

        One-sample Kolmogorov-Smirnov test 

 

data:  s1$V1 

D = 0.7781, p-value > 1.23 

 
> fit2<-fitdistr(s2$V2,"normal") 

 

 

> ks.test(s2$V2,"pnorm",fit2$estimate) 
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        One-sample Kolmogorov-Smirnov test 

 

data:  s2$V2 

D = 0.7855, p-value > 3.34 

 

 

Since both p-value > 0.05, we accept the null hypothesis: the vectors are from 

Gaussian distributions. 

 

 
 

Following the two-sample K-S routine used for the two soil layers: 

 

 
 > ks.test(s1$V1,s2$V2) 

 

        Two-sample Kolmogorov-Smirnov test 

 

data:  s1$V1 and s2$V2 

D = 0.4587, p-value = 1.89 

 

 

Since p-value > 0.05, we accept the null hypothesis: the vectors are from the same 

distribution (Gaussian distribution). 
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Appendix 2 
 

Regression model with interactions 

 
 

Ordinary Least Squares (OLS) or linear least squares (Ricci, 2006) is a method for 

estimating the unknown parameters in a linear regression model. The goal 

consists of minimizing the differences between the observed responses in some 

arbitrary dataset and the responses predicted by the linear approximation 

(Lewis-Beck, 1980) of the data (visually this is seen as the sum of the vertical 

distances between each data point in the set and the corresponding point on the 

regression line - the smaller the differences, the better the model fits the data). The 

resulting estimator may be expressed by a simple formula, especially in the case 

of a single regressor on the right-hand side (Kelley and Bolin, 2013). 

 

The OLS estimator is optimal in the class of linear unbiased estimators when 

the errors are uncorrelated (Loh, 2002). Under these conditions, the method of 

OLS provides minimum variance mean-unbiased estimation when the errors 

have finite variances. The primary assumption of OLS is that there are zero or 

negligible errors in the independent variable, since this method only attempts to 

minimise the mean squared error in the dependent variable (Loh, 2002). 

 

It is common to assess the goodness-of-fit of the OLS regression by comparing 

how much the initial variation in the sample may be reduced by regressing onto X 

(William D. Berry & Stanley Feldman, 1985). The coefficient of determination R2 is 

defined as a ratio of "explained" variance to the "total" variance of the dependent 

variable. 

 

Following the command to perform the OLS regression (lm command) to obtain 

soil indices: 

 

 
> soil.index <-lm(formula = prof ~ (A + L + S + G)^2 + (A + L + S 

+ G)^3 + (A +     L + S + G)^4 + (A + L + S + G), data = soil) 

 

> summary(soil.index) 

 

Call: 

lm(formula = prof ~ (A + L + S + G)^2 + (A + L + S + G)^3 + (A +  

    L + S + G)^4 + (A + L + S + G), data = soil) 

 

http://en.wikipedia.org/wiki/Linear_regression_model
http://en.wikipedia.org/wiki/Dataset
http://en.wikipedia.org/wiki/Statistical_estimation
http://en.wikipedia.org/wiki/Simple_linear_regression
http://en.wikipedia.org/wiki/Statistical_error
http://en.wikipedia.org/wiki/UMVU
http://en.wikipedia.org/wiki/Coefficient_of_determination
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Residuals: 

     Min       1Q   Median       3Q      Max  

-15.9094  -4.5094  -0.1867   4.3133  20.7523  

 

Coefficients: 

                          Estimate Std. Error t value Pr(>|t|)     

(Intercept)                9.8303     5.0854   1.933 0.053352 **   

A-1.174                    38.2221    10.6134   3.601 0.000323 *** 

A-0.628                   12.0649     5.4344   2.220 0.026507 *   

A1.556                    30.1995    11.7210   2.577 0.010040 **   

L-1.603                   -33.3298     8.3312  -4.001 6.51e-05 *** 

L2.225                    -22.0024     5.8865  -3.738 0.000190 *** 

S0.838                    -15.7927     4.0439  -3.905 9.67e-05 *** 

G-0.102                   -33.6264     6.5731  -5.116 3.37e-07 *** 

G1.114                   -25.0300    10.4354  -2.399 0.016536 *   

A-1.174:L-0.646           -0.4040     4.4419  -0.091 0.927545 ***    

A-0.628:L-0.646           32.8958     7.2888   4.513 6.70e-06 *** 

L-0.646:S0.838             16.4173     2.6242   6.256 4.67e-10 *** 

L1.268:S0.838              13.7643     2.6969   5.104 3.59e-07 *** 

A-0.628:L1.268:G-0.102                NA         NA      NA       NA 
... 

... 

 

--- 
 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 7.009 on 2375 degrees of freedom 

Multiple R-squared:  0.8326,    Adjusted R-squared:  0.825  

F-statistic: 43.83 on 27 and 2375 DF,  p-value: < 2.2e-16 

 

 

 

If the p-value observed is less than the theoretical p-value (usually 0.05) so the 

used model explains a significant proportion of the variance of the phenomenon. 
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Appendix 3 
 

Statistics and probability distribution of soil 

properties 
 

 
 

The results of second-moment modelling of soil properties are generally provided 

in tabular form. The compilation of descriptive statistics is not an entirely 

mechanical procedure (Phoon et al., 2006a).  

Subsequently, the results of a literature review of second-moment statistics are 

provided below. 

 

Phoon and Kulhawy (1999) reported the results of an extensive literature review 

of coefficients of variations of inherent variability for some laboratory-measured 

geotechnical properties. Unfortunately, not all the data may be classified 

properly, because the importance of reporting test types with the strength 

properties is only gradually being recognised.  

Table 45 summarizes the soil type, the number of data groups and tests per group, 

and the mean and COV of the soil property (Phoon and Kulhawy, 1996). A 

description of soil type is useful because the site-specific COVs tabulated may be 

extrapolated to other locations, provided the soil deposits are of similar geologic 

formation and environmental history. The number of tests is a useful indicator of 

the accuracy of the mean and COV estimates (Phoon, 1999). The number of tests 

per group typically is large, which implies that the errors in the statistical 

estimates are minimal. The presentation of the mean in conjunction with the COV 

also is important to ensure that the COV is not misinterpreted as being applicable 

to all possible mean values (Kulhawy, Phoon and Prakoso, 2000). 
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Table 45 - Strength properties (mean and COV value) per soil type  

(source: Phoon and Kulhawy, 1996) 

 

 

The inherent variability of some common field measurements is summarized in 

the following Table 46. There are important sub-divisions within each field test. 

The soil type, number of data groups and tests per group of the field 

measurement are also summarized, which reports also typical ranges of mean 

values and COVs of laboratory and in-situ testing parameters (Phoon and 

Kulhawy, 1999). 

Details and references to original sources may be found in (Phoon, 1995; Phoon 

and Kulhawy, 1996; Lacasse and Nadim, 1996; Phoon, 1999; Kulhawy, Phoon and 

Prakoso, 2000). 
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Table 46 - Strength properties (mean and COV value) per test type (source: Phoon et al., 2006c) 
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Different probability distribution models have been selected, even for the same 

soil property, by different authors (Phoon et al., 2006a). This suggests that 

distributions are site- and parameter-specific, and that there is no universally 

“best” distribution for soil properties. In-situ effects, which may result in a spatial 

trend, may also be relevant (Phoon et al., 2006a). 

 

Based on cone penetration data from artificial and natural deposits, Popescu, 

Prevost and Deodatis (1998) observed that the distribution of soil strength in 

shallow layers were prevalently positively skewed, while for deeper soils the 

corresponding distributions tended to follow more symmetric distributions.  

Corotis and Azzouz (1975) investigated whether a number of properties of three 

groups of soils might be described by the normal or lognormal distribution.  

Lacasse and Nadim (1996) reported the results of a review of probability 

distribution selection for some soil properties. It should be noted that best-fit 

probability distributions may also depend on soil type. 

 

 

Table 47 - Probability distributions for various soil units (source: Phoon et al., 2006c) 

 

As a general observation, points corresponding to the same property for different 

soil units generally plot in different areas of the chart; this reflects the influence 

of soil type and in-situ state on data distribution. Hence, it is difficult to associate 

a specific probability distribution to a soil property a priori (Nadim, 2016). 
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