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A large number of phenomena of scientific and technological interest involve multiple phases and
occur at constant pressure of one of the two phases, e.g., the liquid phase in vapor nucleation. It is there-
fore of great interest to be able to reproduce such conditions in atomistic simulations. Here we study
how popular barostats, originally devised for homogeneous systems, behave when applied straightfor-
wardly to heterogeneous systems. We focus on vapor nucleation from a super-heated Lennard-Jones
liquid, studied via hybrid restrained Monte Carlo simulations. The results show a departure from the
trends predicted for the case of constant liquid pressure, i.e., from the conditions of classical nucleation
theory. Artifacts deriving from standard (global) barostats are shown to depend on the size of the sim-
ulation box. In particular, for Lennard-Jones liquid systems of 7000 and 13 500 atoms, at conditions
typically found in the literature, we have estimated an error of 10–15 kBT on the free-energy barrier,
corresponding to an error of 104–106 s�1σ�3 on the nucleation rate. A mechanical (local) barostat
is proposed which heals the artifacts for the considered case of vapor nucleation. © 2018 Author(s).
All article content, except where otherwise noted, is licensed under a Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5011106

I. INTRODUCTION

Atomistic simulations are routinely used to investigate
a variety of multiphase nanoscale systems, such as bubbles,
drops, solid walls in contact with fluids, and solutions. In order
to reproduce experimentally relevant conditions in small sim-
ulation samples far from the thermodynamic limit, barostats
are needed to control the pressure.

The principle inspiring many barostats used in molecular
dynamics (MD) is to generate the correct equilibrium dis-
tribution for the isothermal-isobaric or isoenthalpic-isobaric
ensembles evolving an extended system of equations for the
generalized degrees of freedom connected to the particles and
simulation box. The force driving the expansion or compres-
sion of the system is the imbalance between the current instan-
taneous pressure, which depends on the positions and momenta
of all the particles, and the target pressure. Also the dynam-
ics of the particles are affected by the imbalance between the
present and target pressure via the coupling with the degrees of
freedom of the simulation box.1–4 Because the instantaneous
pressure depends on all particles, in the following we will refer
to this class of barostats as global barostats. Global barostats
are also used in Monte Carlo simulations. In this case, one
typically alternates particles and volume moves.5 The volume
move is accepted or rejected depending on the instantaneous
enthalpy (H + PV, where H is the Hamiltonian, P is the target
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pressure, and V is the volume of the sample) of the system
before and after the move.

Pressure control is relevant also for the simulation of a
variety of multi-phase systems, which is beyond the original
scope of global barostats. What sets these systems apart is that
different subdomains can have different pressures. A broad
range of phenomena falls into this class, including homoge-
neous and heterogeneous vapor nucleation,6–12 nucleation of
polymorphic crystals,13–16 dissolution of bubbles and droplets,
and condensation or evaporation. In this work we show that
in such cases, in which the relative amount of the two phases
changes along the process, the pressure of the preexisting bulk
metastable phase might change during the process when one
uses global barostats, which is different from the condition at
which experiments are carried out.

Here, in order to appraise these effects, we consider the
case of vapor nucleation from a homogeneous metastable
liquid. We present a simple macroscopic theory based on
the sharp-interface model explaining the behavior of global
barostats and their effects on nucleation. Atomistic simula-
tions are performed for a Lennard-Jones (LJ) liquid in the
same nominal thermodynamic conditions as those available
in the literature7,8 (both references use global barostats). A
hybrid restrained Monte Carlo (hRMC) scheme17,18 is adopted
in order to cope with the problem of rare events19 typical of
nucleation and in order to compute the related free energy
profile; the volume of the largest bubble is used as the order
parameter.20 The good agreement between macro- and micro-
scopic results suggests that the intuitive argument of domains

0021-9606/2018/148(6)/064706/10 148, 064706-1 © Author(s) 2018

https://doi.org/10.1063/1.5011106
https://doi.org/10.1063/1.5011106
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/1.5011106
mailto:simone.meloni@uniroma1.it
mailto:alberto.giacomello@uniroma1.it
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5011106&domain=pdf&date_stamp=2018-02-12


064706-2 Marchio et al. J. Chem. Phys. 148, 064706 (2018)

at different pressures is, indeed, at the origin of the artifacts
associated with global barostats.

A solution to these artifacts consists in using a local baro-
stat that imposes the (local) force balance between a piston
and the contacting liquid. Simulations are run using the local
barostat showing that, at variance with global barostats, this
approach is able to maintain the liquid pressure constant at the
target value all along the process.

The manuscript is organized as follows. A macroscopic,
sharp-interface model is introduced in Sec. II. In the same
section, a microscopic formulation of the problem is pre-
sented. It is shown that within the sharp-interface limit the
two representations are consistent. In Sec. III A, the simu-
lation campaign is described in detail, while in Sec. III B
we validate the local barostat for homogeneous systems. In
Secs. III C and III D, the results are discussed. Section IV is
left for conclusions.

II. THEORETICAL ANALYSIS OF CONTINUUM
AND ATOMISTIC MODELS OF A TWO-PHASE
LIQUID/VAPOR SYSTEM

We focus on the homogeneous nucleation of a vapor bub-
ble in a metastable liquid. This deceptively simple case allows
us to analyze the shortcomings of standard barostats in dealing
with multiphase systems domains at different pressures. The
same arguments should also apply to a variety of other multi-
phase systems, including heterogeneous vapor nucleation and
condensation.

We start by introducing a simple continuum model of
vapor nucleation—the sharp-interface—and the associated
classical nucleation theory, CNT.21 This model is based on
a number of approximations, including the fact that the inter-
face is ideally sharp, that are sometimes violated in actual
systems. Nevertheless, within these approximations, it allows
us to obtain an explicit dependence of the liquid pressure and
of the energetics of the process on the volume of the vapor bub-
ble, which helps understanding the shortcomings of standard
(global) barostats. In the results, Sec. III C, we will illustrate
that, even when the sharp-interface model approximations are
violated, e.g., when the system is relatively close to the crit-
ical point, this theory captures the qualitative trend of the
data.

In the sharp-interface model, it is assumed that the bulk
properties of the fluids are valid up to the interface, where a
sharp change in these properties occurs. The liquid and vapor
domains are assumed to be uniform and isotropic. In par-
ticular, the diagonal terms of the stress tensor are all equal
and the off-diagonal terms are zero (this hypothesis is con-
sistent with the empirical observation of simulation data, Fig.
SM1 of the supplementary material). At the (infinitesimal)
interface, these conditions are no longer met and the tan-
gential and normal components of the stress tensor to the
surface are different.22 Within the sharp-interface model, this
imbalance is translated into a surface tension γ acting at the
dividing surface, which has an indirect influence on the liquid
and vapor pressures via the (extended) Laplace equation.10

In such a system, the average pressure of the whole sample
reads

P =
1
V

∫
V

P (x) dx = PL
VL

V
+ PV

VV

V
= PL (1 − χV ) + PV χV ,

(1)

where, consistently with the sharp-interface model, we
assumed that the pressure field is of the form P(x) = PLθL(x)
+ PV θV (x), with θV (·) and θL(·) = 1 � θV (·) characteristic
functions of the liquid and vapor domains, respectively.23 The
interfacial terms do not contribute directly to the average pres-
sure because the interface is sharp, i.e., it has an infinitesimal
volume. VL and VV are the volumes of the liquid and vapor
phases, respectively, V = VL + VV is the total volume, and
χV = VV /V and χL = VL/V are the vapor and liquid volume
fractions. An atomistic justification of Eq. (1) is given below.

Equation (1) can be used to quantify the variation of
the liquid pressure during an isothermal and isobaric bubble
nucleation event. A closed set of equations for evaluating the
liquid pressure can be obtained adding the extended Laplace
law introduced in Ref. 10 or, if one is only interested in the
liquid pressure at the critical nucleus, its conventional form
valid for extremal points of the free energy. Here we use
a simpler empirical approach: we assume that PV is con-
stant and equal to the vapor tension at the simulated tem-
perature; this approximation is then validated by atomistic
simulations.

Conventional barostats used in atomistic simulations,1,2,4

which have been designed for homogeneous systems, con-
trol the average pressure of the sample, P. Thus, within the
sharp-interface model, the pressure of the liquid in a sample
containing one vapor bubble of volume VV is

PL(VV ) = P
1

(1 − χV )
− PV

χV

(1 − χV )
, (2)

where the dependence of the various terms on the volume of
the bubble is made explicit. Since vapor nucleation occurs
when PV > PL, Eq. (2) shows that the actual liquid pres-
sure decreases along nucleation and that the driving force
of the process, ∆P = PV � PL = (PV � P)/(1 � χV ), grows
along it instead of remaining constant as it happens in actual
experiments.

Equation (2) can be used in conjunction with CNT to
quantify the effect of conventional barostats on the free-energy
profile of the process in a finite-size system. In CNT, where
it is assumed that the pressure of the liquid is constant along
the process (P0

L), the free energy difference between the liq-
uid containing a bubble of volume VV and the reference bulk
liquid reads21

∆G0(VV ) = Nv[µV (P0
L) − µL(P0

L)] + γA

' (P0
L − PV )VV + γA,

(3)

where Nv is the number of vapor atoms in the bubble, µV (P0
L)

and µL(P0
L) are the chemical potentials of the vapor and liquid

phases at P0
L, respectively, γ is the surface tension, and A is

the area of the liquid/vapor interface. The second equality in
Eq. (3) follows from a first order expansion of chemical poten-
tials around the vapor tension PV . γ is assumed to be the planar
surface tension of the two phases at coexistence.

Assuming that the liquid is incompressible and that, as
said above, PV is constant and equal to the vapor tension, the
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FIG. 1. Free-energy profiles for homogeneous bubble nucleation computed
via the sharp-interface model for a sample in which one controls the liquid
[Eq. (3), black line] or total sample pressure [Eq. (4), blue and red lines for
samples of 13 500 and 7000 particles, respectively].

free energy profile at variable liquid pressure is

∆G(VV ) = VV

[
PL(VV ) − P0

L

]
+ ∆G0(VV ). (4)

We remark that, owing to the many assumptions of CNT,
Eq. (4) does not necessarily describe in quantitative terms
atomistic results, but it is certainly useful to explain what
are the potential artifacts connected with the use of con-
ventional barostats on the free energy profile. In Sec. III A,
atomistic simulations implementing various methods for con-
trolling the pressure will be used to quantify these effects on
the free-energy profile and nucleation barrier.

Since
[
PL(VV ) − P0

L

]
< 0 [Eq. (2)], the effect of con-

ventional barostats is that of reducing the barrier [Eq. (4)] as
compared to the case of constant liquid pressure [Eq. (3)]. In
Fig. 1, we report both the free-energy profile∆G0(VV ) accord-
ing to Eq. (3) (black line) and the free-energy profile ∆G(VV )
according to Eq. (4) (red and blue lines for systems of 7000
and 13 500 particles, respectively).

In Eqs. (3) and (4), the free energy is computed setting
P0

L = 0.026, PV = 0.046, and γ = 0.098 for the reference liquid
pressure, vapor tension, and surface tension at T = 0.855.7

[Lennard-Jones units are used throughout the article: tem-
perature, pressure, length, and time are reported in reduced
units, ε /kB, ε /σ3, σ, and σ(m/ε)1/2, respectively]. The liq-
uid volume is assumed to be constant during nucleation and
consistent with the bulk density of atomistic systems of N
= 7000 and 13 500 particles: VL = N /ρL, where ρL = 0.58
is the metastable liquid density at the current pressure and

temperature of simulations. Given the difference between the
liquid and vapor densities (ρV = 0.08), this approximation
has a minor effect on free energy. Global barostat free energy
profiles are shown in Fig. 1 and compared with CNT results.
This comparison shows that the free energy profiles with
7000 and 13 500 are below the CNT one; in particular,
the nucleation barrier ∆G†, i.e., the difference between the
maximum and initial free energy, follows the trend ∆G†7000

< ∆G†13500 < ∆G†CNT . Indeed, this is consistent with the obser-
vation that the driving force ∆P grows along nucleation for
global barostats, and its growth is more marked for the smaller
sample.

In order to extend these results to more general sys-
tems, it is worth estimating the error affecting the free energy
barrier as a function of the size of the system and thermo-
dynamic conditions due to the global barostat. Figure 2(a)
reports the size of the sample corresponding to an error on
the barrier of 10 kBT as a function of ∆P = P0

L − PV . As
expected, the closer the system is to two-phase coexistence
(∆P = 0), the larger the critical nucleus is, and the larger
must be the sample to keep the error under the prescribed
threshold. Our model suggests that in the physical conditions
studied in previous work7,8 and in the present work, the atom-
istic system should contain at least ≥104 particles in order to
have an error on the free-energy barrier ≤10 kBT. Panel b of
the same figure presents the percent error on the free-energy
barrier as a function of the ratio between the total volume
and the volume of the critical bubble, V/V†V . The continuum
sharp-interface model shows that, independently of the ther-
modynamic conditions, simulation boxes 15 times larger than
the critical bubble are necessary to have errors on the barrier
≤10%.

The microscopic expression for the pressure of an
isotropic system consisting of n particles interacting via a pair
potential is

P =
1

3V

n∑
i=1

*.
,

p2
i

mi
+

1
2

∑
j,i

rij · f ij
+/
-

, (5)

where pi and mi are the momentum and the mass of the ith
particle, f ij is the force between ith and jth particles, and rij is
their (vector) distance.

If we consider a two-phase system containing nL bulk
liquid, nV bulk vapor particles, and nint interface particles, we
can rewrite Eq. (5) as the sum of three terms, associated with
the liquid, vapor, and interface domains,

FIG. 2. (a) Size of the sample required to have an error
of 10 kBT on the nucleation barrier evaluated via the con-
tinuum theory [Eq. (4)]. (b) Percent error on the barrier
as a function of the volume ratio V/VV of the simulation
box and the critical bubble VV .
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P =
1

3V

nL∑
i=1

*.
,

p2
i

mi
+

1
2

∑
j,i

rij · f ij
+/
-

+
1

3V

nV∑
i=1

*.
,

p2
i

mi
+

1
2

∑
j,i

rij · f ij
+/
-

+
1

3V

nint∑
i=1

*.
,

p2
i

mi
+

1
2

∑
j,i

rij · f ij
+/
-

. (6)

When the interface is vanishingly small, the contribution
of the corresponding term is negligible and the pressure of the
sample is expressed as the sum of the first and second term.
When the liquid and vapor domains are large enough, these
terms can be interpreted as the liquid and vapor pressures,24

PL '
1

3VL

nL∑
i=1

*.
,

p2
i

mi
+

1
2

∑
j,i

rij · f ij
+/
-

(7)

and

PV '
1

3VV

nV∑
i=1

*.
,

p2
i

mi
+

1
2

∑
j,i

rij · f ij
+/
-

. (8)

Thus, consistently with the macroscopic sharp-interface model
in Eq. (1), when the interface thickness is negligible, Eq. (6)
reduces to the volume-weighted average of the liquid and vapor
pressures P ' (VL/V )PL + (VP/V )PV .

III. NUMERICAL SIMULATIONS
A. Simulation details

We considered a system composed of particles inter-
acting via the truncated and force shifted (TFS) Lennard-
Jones (LJ) potential, analogous to those considered in Refs. 7
and 8,

uTFS(rij) = uLJ (rij) − uLJ (rc) −
����
duLJ

dr

����rc

(rij − rc), (9)

where

uLJ (rij) = 4ε


(
σ

rij

)12

−

(
σ

rij

)6
(10)

with a cut-off radius rc = 2.5. In the TFS-LJ potential, the pair
particle forces go to zero smoothly as r goes to rc. The liquid
vapor phase diagram of the TFS-LJ system has been reported
in Refs. 7 and 25.

We compute the vapor nucleation free-energy barrier as
a function of the largest vapor bubble in the system, VV , esti-
mated using the M-method.20 The method consists of several
steps. (i) Particles are labeled as liquid-like if they have more
than five particles closer than 1.6 σ, and vapor-like otherwise.
(ii) The simulation box is partitioned into cells. The size of the
cells is chosen such that they can contain at most one particle.
A cell is labeled liquid or vapor if it contains a liquid-like or
vapor-like particle. Empty cells are classified analysing both
the first and second neighbors cells: If the number of nearest
neighbor face-sharing empty/vapor cells is 7 or more, also the
number of second nearest neighbor face-sharing empty/vapor
is evaluated; if also the number of these cells is 7 or more,
the original empty cell is labeled as vapor. (iii) Finally, a clus-
ter analysis is performed on the vapor cells and the size of
the largest bubble is established as the total volume of largest

FIG. 3. Instantaneous bubble configurations corresponding to increasing bub-
ble sizes (from left to right) at T = 0.855 and PL = 0.026. The spheres represent
the cells of the vapor cluster.

cluster of interconnected cells, i.e., cells sharing a face or a
corner (Fig. 3).

To study vapor nucleation, we employ the hybrid
Restrained Monte Carlo (hRMC) approach,17,18,26 which is
well suited for non-analytical collective variables (CV), such
as the size of the largest vapor bubble used here. hRMC allows
to sample the conditional probability density function at the
current value of the volume of the vapor bubble, and to compute
conditional averages. Thus, one can estimate the mean force by
the conditional average of the observable −k(VV (r)−V ∗V ),17,27

which can be numerically integrated to obtain the free energy
profile along the nucleation process. An in-depth explanation
of the hRMC method is given in the Appendix.

1. hRMC with a global barostat

A typical MC method for sampling constant pressure
ensembles consists in alternating particles and volume moves.
Particle moves are accepted or rejected according to the
Metropolis criterion, which will be detailed below for the
case of hRMC. In volume moves, a random, isotropic expan-
sion/compression is generated and particle positions are
rescaled accordingly. The move is accepted or rejected on
the basis of the energy and PV values before and after the
move.

In the first step, a short NVE MD simulation is inte-
grated, starting from the previous configuration and with the
momenta extracted from a Maxwell-Boltzmann distribution at
the relevant temperature. The acceptance probability is

αacc = min{1, exp[−β[H ′ − H]}, (11)

where H ′ and H are the extended Hamiltonian of the system
before and after the move, respectively. The extended Hamilto-
nian is the sum of kinetic, K(p), and (physical) potential, U(r),
energies plus a biasing potential energy term which forces the
system to visit configurations in which VV fluctuates around
the target value V ∗V : H(p, r; V ∗V ) = K(p) + U(r) + k/2(VV (r)
− V ∗V )2; k is the coupling constant determining the degree
of fluctuations allowed to the volume of the bubble (see the
Appendix for more details). The second MC step consists
in a change of the volume of the system. Scaled particle
positions do not change in this move. The volume move is
accepted/rejected according to the probability,

αacc = min
{
1, exp [− β[(H ′ + PV ′) − (H + PV )]

+ N ln(V ′/V )
}
, (12)

where H ′ and H and V ′ and V are the extended Hamilto-
nians and volumes of the system before and after the move,
respectively, P is the target pressure, and N is the number of
particles.
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FIG. 4. (a) Sketch of the local barostat. The solid walls
act as pistons: at equilibrium, the external force F is bal-
anced by the force exerted on the walls by the liquid
pressure PL . (b) Calibration curve PL vs F for three dif-
ferent solid-liquid LJ interaction parameters ε andσ. The
solid line is the theoretical prediction PL = fnW /A.

2. hRMC with the local barostat

To overcome the artifacts due to global barostats, we also
adopt a local barostat, which consists in enclosing the system
between two moving walls of particles to which a constant
additional force f is applied [Fig. 4(a)]. The wall particles
interact with the fluid via a suitable potential (here LJ) and,
at stationarity, the total force F = fnWall exerted on the liquid
by the nWall particles is equal and opposite to that exerted by
the fluid particles on the walls, i.e., when the external pressure
F/A, with A the area of the walls, is equal to the liquid one, PL.
Thus, with the present barostat, stationarity is determined by
the (local) balance between the forces of the piston and of the
liquid in contact with it rather than on the average pressure of
the sample, including vapor domains.

In the present work, each wall is made of two layers of
TFS-LJ atoms (50 times heavier than the fluid ones) in the fcc
lattice configuration. The LJ parameters are εWW = 10 εWF and
εFF = εWF (W = wall, F = fluid). In Fig. 4(b), the calibration
curve PL vs f is reported for a bulk TFS-LJ liquid; this graph
shows that the macroscopic prediction PL = fnW /A is fulfilled,
confirming the mechanical balance mechanism by which the
local barostat controls the liquid pressure. Figure 4(b) reports
data obtained with different values of εWF and σWF indicating
that the local barostat does not sensitively depend on the cho-
sen solid-liquid interaction potential. In other words, the local
barostat is rather robust and does not require fine tuning of the
solid-liquid interaction.

Other local barostats can also be adopted, e.g., that are
based on a non-interacting particles gas,28 but we found the
moving walls one to be simpler to use in the presence of a gas
phase.

The hRMC simulation protocol used to implement the
local barostat is the following. A short MD NVE trajectory
of both fluid and solid particles is integrated, initializing par-
ticles momenta from a Maxwell-Boltzmann distribution. The
boundary conditions are free in the direction orthogonal to
the walls and periodic in the other directions. The acceptance
probability reads

αacc = min{1, exp[−β[H̃ ′ − H̃]}. (13)

In this case, the extended Hamiltonian is H̃(p, r, V ∗V )
= H(p, r; V ∗V ) +

∑
i=1,2×nW

fzi, where the sum runs over the
2 × nW particles of the moving walls and zi is their position in
the direction orthogonal to the walls.

Before closing this section, it is worth mentioning that the
use of the local barostat is not limited to simple atomic fluids.
For example, one can use the local barostat also with molec-
ular fluids such as water. We show this by simulating a small
box of TIP4P/Ew29 water with two pistons, in which the wall
particles interact with the oxygen atoms of water molecules

via the modified LJ potential ũLJ (rij) = 4ε

[(
σ
rij

)12
− c

(
σ
rij

)6
]
,

where c is a parameter that allows one to tune the hydrophilic-
ity/phobicity of the solid [see Fig. 5(a) and Ref. 30]. Like in
the case of a LJ fluid, the calibration curve of water obeys the
force balance relation PL = fnW /A [Fig. 5(b)].

B. Validation of the local barostat

We validated the local barostat by comparing results
against those obtained with a global one for bulk systems.
In particular, we focused on the distribution of instantaneous
pressures and on the phase diagram (Fig. 6). One notices that

FIG. 5. Local barostat applied to TIP4P/Ew29 liquid
water. (a) Dependence of the Young contact angle on the
coefficient c of the modified LJ potential controlling the
solid-liquid interaction. The graph shows that acting on
this parameter one can tune the hydrophilicity/phobicity
over a broad interval. (b) PL vs f calibration curve of the
local barostat. The panel shows that the local barostat is
able to control the pressure over a range of at least 1000
atm, with both negative and positive values of the pres-
sure. As in the case of the LJ potential, the numerical
results are in very good agreement with the theoretical
predictions, PL = fnW /A (solid line).
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FIG. 6. (a) Comparison between the distribution of instantaneous pressures of a TFS-LJ bulk liquid system obtained by the Martyna-Tobias-Klein (global) and
local barostats. (b) Liquid and vapor binodal curves for the TFS-LJ potential. The blue points are obtained using the local barostat, and the black curves are from
Ref. 25. (c) Comparison between the liquid branches of the TIP4P/Ew water binodal obtained with the global and local barostats and literature data.31

the instantaneous pressure distribution obtained with the local
barostat is, within the error bars, the same as that obtained with
the global one. Also the liquid and vapor branches of the TFS-
LJ binodal obtained with the local barostat match very well
with literature data.25 We also considered the case of more
complex molecular fluids, by comparing the liquid branch of
the binodal of TIP4P/Ew water obtained by the local and global
barostats and literature data31 [Fig. 6(c)]. Also in this case,
there is a very good matching of local barostat results with
reference data.

C. Vapor bubble nucleation

Simulations of vapor nucleation are performed at
T = 0.885 and P = 0.026, i.e., the same conditions used in the
literature.7,8 We considered two computational samples con-
taining 7000 and 13 500 particles. These samples are relatively
large, in particular, the second system is larger than those used
in the literature.6–8 For each sample, we computed the free-
energy profile vs bubble volume with both the global and the
local barostats. The mean forces are estimated at a set of 20
values of the bubble volume VV of the largest vapor bubble in
the sample (see the Appendix and Refs. 17 and 27).

As a first remark, we notice that results obtained with the
local barostat for the two samples of different size are in good
agreement between them (Fig. 7) and with the CNT predictions
(Fig. 1). The barrier and critical size are slightly smaller in the
atomistic case; this effect is well known (see, e.g., Ref. 6) and
is associated with the limits of the continuum model, namely,
to the idealized sharp-interface.

FIG. 7. Atomistic free-energy profiles for homogeneous bubble nucleation
calculated via hRMC simulations.

With the global barostat, the system shows a significant
dependence of the free-energy profile on the sample size. In
particular, the barriers are (22 ± 1) kBT and (30 ± 1) kBT
for the small and large samples, respectively, both signifi-
cantly smaller than the value measured with the local baro-
stat, (40 ± 1) kBT and (39 ± 1) kBT for the small and large
samples, respectively. These results confirm that, in order to
have an accurate prediction of the nucleation barrier, free of
finite size effects arising from the pressure control, one has
either to simulate very large samples or to resort to a local
barostat.

The errors in the free-energy barriers are reflected with
exponential sensitivity on the nucleation rates, which are one
of the final goals of the simulations of nucleation. Assum-
ing that the nucleation rate follows a CNT-like relation,
k = k0 exp(�∆G†/kBT ), and assuming that the kinetic prefactor
k0 is not affected by how pressure is controlled, one estimates
differences of 4–6 orders of magnitude between the local and
global barostat rates, depending on the size of the sample. Even
larger errors are expected in the case of fewer particles often
used in the older literature.

D. Effect of the barostat on the properties of the liquid
and vapor domains

The sharp-interface interpretation of the effect of the
global barostat on the free energy, discussed in Sec. II, is that
the liquid pressure decreases along vapor nucleation. Here we
investigate the variation of the pressure of the liquid domain
and other properties of the system as a function of the vapor
bubble size with the global and local barostats to validate the
theoretical predictions.

1. Density

We start by analyzing the dependence of the (conditional
ensemble averaged) radial density field, ρ(r; VV ) (r is the dis-
tance from the center of the bubble), on the type of barostat.
ρ(r; VV ) has been computed for both the 7000 and 13 500
particles samples and with both barostats in a radial range
encompassing the bubble, interface, and liquid domains. We
considered samples containing bubbles of several sizes, from
very small to supercritical ones. Very small bubbles, VV ≤ 700,
do not present well defined vapor domains. For bubbles larger
than this threshold [Figs. 8(a) and 8(b), VV = 1500, to be
compared with a critical nucleus of V†V ∼ 2500], the radial
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FIG. 8. Radial density with local (a) and global (b) barostats. Data are reported for bubbles of VV = 1000 (being the critical bubble of ∼2500). The solid black
and yellow lines are the target bulk liquid and vapor densities at coexistence at T = 0.855. (c) Fraction of total vapor volume in the NVT simulations at the
average pressure of the last 4 radial density points for vapor bubbles of size 300 (leftmost) < VV < 2300 (rightmost).

density presents the expected profile with bulk vapor and liq-
uid domains separated by an interface. The first observation
is that with both barostats and for both samples the interface,
the region in which the density changes from low (vapor) to
high (liquid) values, is rather thick, ∼8. This large value is not
surprising considering that simulations are performed at pres-
sure and temperature conditions relatively close to the critical
point.

A second observation is that there are important dif-
ferences between the radial densities obtained with the two
barostats. With the local barostat, the density field of both
samples shows two plateaus at small and large r [see the insets
of Fig. 8(a)], corresponding to the vapor and liquid domains,
respectively. The density in the bubble is very close to the value
corresponding to the vapor tension, which confirms the relia-
bility of the approximation on the value of PV used in Sec. II.
At the other end of the radial range, the density in the bulk
liquid reaches the expected value. With the global barostat,
on the contrary, in the smaller system, the radial density does
not reach the vapor and liquid plateaus. In particular, the value
of the radial density at the last point is 3.5% lower than the
liquid bulk value at the target pressure and temperature. In the
large sample, the radial density reaches the target liquid density
value but the curve presents a significant slope in this domain,
which suggests that it does not correspond to the bulk liquid.
This is confirmed by independent NVT simulations performed
at the average density of the last four points of ρ(r; VV ), in
which we measured the total vapor fraction, χtot

V , i.e., the vapor
fraction due to all bubbles present in the liquid [Fig. 8(c)]. Our
results show that the system presents two regimes: for densities
close to the bulk value, the one measured in the liquid domain
of samples containing a small nucleating bubble, χtot

V is small
and constant; for densities corresponding to samples contain-
ing larger nucleating bubble, χtot

V is large and grows with VV ,
i.e., with decreasing ρ.32 This confirms that, with the global

barostat and in the presence of critical bubbles, the liquid does
not behave as a bulk liquid. Concerning ρ(r; VV ) at small r, in
the vapor region the radial density is slightly above the target
value.

We believe that the remarkable effect of the global baro-
stat on the density has two main reasons: (i) the relatively large
compressibility of the LJ liquid and (ii) the thick interface at
the present thermodynamic conditions. We expect that for less
compressible liquids, e.g., water, and at thermodynamic con-
ditions further from the critical point, the effect of the global
barostat on the density would be smaller. This does not mean
that in these cases the barostat-related artifacts on the energet-
ics of nucleation would be smaller, simply it might be more
difficult to identify that simulations are performed with an
inappropriate setup.

2. Liquid pressure

It is important to evaluate the pressure of the liquid domain
in order to validate the assumptions behind the effect of global
barostat. In Fig. 9, we report the pressure of a liquid con-
trol volume far from the vapor bubble and from the solid walls
computed via Eq. (7) with the prescriptions of Irving and Kirk-
wood.33 These results show the expected decreasing trend of
PL with the bubble size. However, since the sub-domains are
small, the large statistical error of the estimated pressure makes
it difficult to draw reliable conclusions. This is especially crit-
ical in samples containing larger bubbles in which the limited
bulk liquid domain imposes to use very small control volumes.
Thus, we also follow a different approach, which consists in
first determining the mean density in the liquid domain, which
converges with the number of hRMC steps faster than the local
pressure, and then computing the pressure via an independent
NVT simulation of a bulk liquid with 3000 particles at the
measured density. The density of the bulk sample is set to the
average density of the last four points of the radial profile for
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FIG. 9. Comparison between the pres-
sure computed via Eq. (7) and via an
NVT simulation at the density of the
bulk liquid domain in a system contain-
ing a bubble of volume Vv . The solid
black line represents the target value
of PL . These results show that the two
approaches are equivalent but the for-
mer has a much larger statistical error
associated with it.

selected values of the bubble volume [Fig. 8(c)]. Results show
that pressures estimated with both methods are consistent, with
lower errors connected with the second one (Fig. 9).

Despite the improved statistical accuracy, due to the rel-
atively large scattering of the density values (see the insets
of Fig. 8), estimated with the second approach is also lim-
ited the overall accuracy of pressure estimated with the sec-
ond approach is also limited. Thus, one should focus on the

FIG. 10. Liquid pressure as a function of the bubble size. The red and blue
symbols represent the pressure controlled by a global barostat for the samples
of 7000 and 13 500 particles, respectively; purple and green points refer to the
pressure for samples controlled by the local barostat. The red and blue lines
are the continuum predictions for the liquid pressure [Eq. (2)]. The black line
represents the target liquid pressure. In the figure, we also report the colormaps
of the density field of two snapshots of the samples with 7000 (upper panel)
and 13 500 (lower panel) particles at VV ∼ 2500. These snapshots show that
the departure of the pressure from the target value is due to the interaction of
the thick interfaces with their periodic images. This problem for bubbles close
to the critical size has already been put forward by Meadley and Escobedo8 for
their simulations on a sample of 10 000 particles at the same thermodynamic
conditions. When a bubble interacts with its periodic image, the radial density
in the liquid domain (Fig. 8) used to compute the pressure is reduced and the
pressure decreases.

qualitative effects of barostats on the PL vs VV curves. With
the local barostat, the liquid pressure is almost constant all
along the process and very close to the target value, typically
within the statistical error from the reference pressure (Fig. 10).
For samples containing larger bubbles, one observes a small
reduction of liquid pressure, which is related to the overlap
of the bubble with its periodic images that lowers the “liquid”
density. On the contrary, in the case of global barostat, the pres-
sure significantly decreases with the bubble size. This occurs
with both samples but the phenomenon is enhanced in the
case of 7000 particles. With the large sample, the liquid pres-
sure is initially close to the target value and then deviates for
VV ≥ 1000.

The dependence of the pressure on the bubble volume
and, for a given VV , on the number of particles in the sample
is consistent with the analysis of Sec. II. However, atomistic
simulations show a larger deviation from the target pressure
than that predicted by the sharp-interface model. We believe
that this is due to two reasons: (i) the limited accuracy in the
estimate of the pressure via the density of the liquid domain34

and (ii) the presence of a very thick interface, which is not
taken into account in the sharp-interface model, i.e., in Eq. (1)
one discards both (a) the continuous change of the normal
pressure in going from the liquid to the vapor domain and (b)
the tangential contribution, which differs from the normal one.
Nevertheless, it is remarkable that even in conditions very far
from those of Sec. II the theoretical predictions are in qualita-
tive (pressure) and quantitative (nucleation barrier) agreement
with atomistic results.

IV. CONCLUSIONS

In this work, we have addressed the issue of controlling
pressure in vapor nucleation from a metastable liquid. Our



064706-9 Marchio et al. J. Chem. Phys. 148, 064706 (2018)

theoretical analysis and numerical simulations show that
global barostats result in an underestimation of the liquid
pressure, which is particularly severe far from two-phase coex-
istence. In turn, this can bring artifacts on the driving force and,
ultimately, on the free energy of the process.

According to our analysis based on the sharp-interface
model, in order to have an error on the nucleation barrier≤10%
in a simulation in which the global pressure is set equal to a
target value, the simulation box volume should be around 15
times larger than the critical bubble volume.

To confirm the theoretical predictions, we have performed
hRMC simulations aimed at computing the free-energy pro-
file along the nucleation pathway. Atomistic data show a
qualitative agreement with the theoretical predictions.

Our results suggest that simulations using standard
barostats,6–8,35 if not performed on a reasonably large system
size, might be affected by errors of the order of 10–15 kBT
on the barrier height, corresponding to an error of 104–106

s�1σ�3 on the rate.
Finite-size effects associated with pressure control can be

eliminated by replacing conventional, global barostats, devel-
oped for single-phase systems, with a local barostat, which
controls the pressure of the liquid phase. This can be achieved
by adding moving solid walls interacting with the liquid via,
e.g., a Lennard-Jones potential. The walls, to which an exter-
nal force is applied, act as pistons compressing the liquid at the
desired pressure all along the nucleation process and make it
possible to perform constant liquid pressure simulations even
with small simulation boxes (e.g., 7000 particles in the present
system).

To conclude, to have an accurate prediction of the nucle-
ation barrier, free of finite-size effects arising from the pressure
control, one has either to simulate significantly larger samples
or to resort to a local barostat.

SUPPLEMENTARY MATERIAL

See supplementary material for the figure with the com-
ponents of the stress matrix in 30 control volumes in a bulk
(LJ) liquid using the global and local barostats.
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APPENDIX: RESTRAINED MONTE CARLO

In our simulations, we estimate the free energy barri-
ers using the hRMC approach presented in Refs. 17 and 18.
In this method, the atoms are subject to the extended poten-
tial U(r) + Uk(r). Here U(r) is the TFS-LJ interaction,

Uk(r) = k/2(VV (r) − V ∗V )2 is the biasing term where VV (r)
is the current volume of the largest bubble in the system esti-
mated with the M-method20 and V ∗V is the target value of the
bubble volume.

Following Ref. 19, we show how the free energy can
be reconstructed from restrained simulations. Consider the
average

f k(z) = −
∫ dr k(VV (r) − V ∗V ) exp

[
−βUk(r, V ∗V )

]

Zk(V ∗V )

= −∇V ∗V
β ln *

,

Zk(V ∗V )

Z
+
-

, (A1)

where Zk(V ∗V )≡ ∫ dr exp
[
−βUk(r, V ∗V )

]
and Z= ∫ dr

exp
[
−βU(r)

]
is the canonical partition function. Since Z is

independent of V ∗V , it was introduced in the second equality in
(A1) in order to interpret f k(V ∗V ) as the derivative of Fk(V ∗V )

=−β ln
(
Zk(V ∗V )/Z

)
. Noting that limk→∞ exp[−βk/2(W (r)

−V ∗V )2]/(2π/βk)1/2 = δ(VV (r) − V ∗V ), in this limit we have
f k(V ∗V ) = ∇V ∗V

Fk(V ∗V ) → −β−1∇V ∗V
ln PVV (V ∗V ). Here PVV (V ∗V )

= ∫ drδ(VV (r) − V ∗V ) exp[−βU(r)]/Z is the probability that
VV (r) = V ∗V . Recalling that the Landau free energy of a vari-
able is defined as F(V ∗V ) = −β−1 ln PVV (V ∗V ), we find that in
the proper limit Eq. (A1) is an estimate of the derivative of the
free energy, ∇V ∗V

F(V ∗V ).
The mean force (A1) can be estimated using hRMC

and the relative free energy via integration. The conventional
approach of MC, in which a single particle is subjected to a
random displacement, makes simulations inefficient since the
order parameter, which in this case is computed through the
expensive procedure described in the main text, must be evalu-
ated at each step. Therefore, in order to increase the efficiency,
we use the hybrid Monte Carlo (hMC) approach in which at
each time step the displacement of a single atom is replaced by
a collective displacement according to a short MD trajectory.
MD is started from the current particle configuration, while
momenta are extracted from a Maxwell-Boltzmann distribu-
tion at the given temperature. Differently from standard MC,
the acceptance criterion takes into account also the initial and
final kinetic energy. In hMC, the Hamiltonian which generates
the MD dynamics could be different from the one adopted in
the acceptance test.36,37 Since the dependence on r in VV (r)
is non-analytical, here we choose to use the physical poten-
tial U(r) to generate the dynamics and the restrained potential
Uk(r) for the MC acceptance.
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