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Introduction

Charles Darwin was a keen observer. He analyzed animal breeders, their methods, their results.
In his masterpiece On the Origin of Species [17], he recognized that Nature was actually a
gigantic breeder, giving a de�nition of the concept of natural selection. Indeed, Charles Darwin
was not a great mathematician: �I have deeply regretted that I did not proceed far enough
at least to understand something of the great leading principles of mathematics, for men thus
endowed seem to have an extra sense [18]�. There are no equations in the Origin of Species. The
one problem that the naturalist did not solve concerned the mechanism that could maintain
diversity in a population for natural selection to operate. It is interesting to note how the
answer was present in the same years, as Gregor Mendel, Austrian monk and botanist, was
making his experiments on plant inheritance, using statistical techniques to con�rm his results.
Mendel's work had already been published [63], but not in English, and remained for years
ignored in the Annals of the Brno Academy of Sciences.

Only in the 1900s a simple mathematical equation was formulated, today recognized as one
of the fundamental principles of evolution under sexual reproduction, the Hardy-Weinberg law
[42] (independently found by the British G.H. Hardy and the German physician W. Weinberg):
Mendelian inheritance does lead to maintenance of genetic diversity under random mating.
Mendelian genetics and Darwinian evolution were uni�ed in the new discipline of mathematical
biology in the early twentieth century, when Fisher, Haldane and Wright produced the modern
evolutionary synthesis [27, 39, 94]. Through their work, fundamental concepts of evolution,
selection, and mutation were for the �rst time embedded in a precise mathematical framework.

This thesis, on the footsteps of these pioneers, focus on population dynamics, the branch
of mathematical biology that studies the composition of populations as dynamical systems
and the biological and environmental processes driving them. We present some classical de-
terministic models of population dynamics and introduce the selection equation (replicator
dynamics) and the quasi-species equation for mutations (see Chapter 1), that presuppose mu-
tations occurring at a homogeneous rate. After that, we recall concepts of Probability theory
(in Chapters 2 and 3) as point processes and stochastic integrals, which will be used in the con-
struction of the models in Chapters 4, 5 and 6. Those models start from the assumption that
mutations must be modeled as rare events that, through jumps, can change the frequencies in
the population. We show in this introduction the fundamental steps.

The �rst principle of population dynamics is widely regarded as the exponential law

of Malthus proposed in the book An Essay on the Principle of Population [55], where the
author predicts a di�cult future for humanity, assuming that there is an exponential growth of
individuals, but linear growth of food resources. This book was an inspiration for Darwin, who
brought it with him when he embarked on the Beagle. The variation in time of the number
of individuals of a population indicated with x(t) is linked to a growth rate R, obtaining the
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simple equation ẋ = Rx.
The initial exponential growth of a population sooner or later slows down, and we can

consider the rate R as a linear function of the population x, i.e. k (1− x) . This choice leads
to the logistic equation (P.F. Verhulst [92]):{

ẋ = kx(1− x),

x(0) = x0 ∈ [0, 1].

The next step is to assume that more than one species can interact with each other, as a
dynamic between prey and predator, as done by Alfred Lotka and Vito Volterra [54]:

ẋ = (α− βy)x,

ẏ = (−γ + δx) y,

x(0) = x0 ∈ R+,

y(0) = y0 ∈ R+.

where the number of the prey and the predator is indicated respectively by the functions x(t)
and y(t). The parameters α and γ takes into account the Malthusian growth of prey and
predator, β and δ are the interaction terms.

A step further in the development of population dynamics for Evolution occurs when Taylor
and Jonker [88] introduced the Replicator Dynamics, a system that describes the evolution
of the frequencies of individuals interacting with each other. Assume a population divided into
D types with frequencies x1, . . . , xD, we have then a dynamic for x(t) on the symplex SD.
The rate of increase of the i-th type ẋ/x is equal to the di�erence between the reproductive
success of an individuals, i.e. the �tness Φi(x), and the average �tness of the population,

Φ̄(x) =
∑

xiΦi(x).

These choices lead to the replicator equation, that can model the essence of selection and
adaptation: {

ẋi = xi
(
Φi(x)− Φ̄(x)

)
,

i = 1, . . . , D.
(1)

The path of the replicator dynamics crosses in the second half of 1900 that of a branch of
mathematics just born and that initially did not seem to have points of contact with Biology,
i.e. Game theory.

Game Theory is a mathematical theory born in the �rst half of 1900s that, as their creators
John von Neumann and Oskar Morgenstern intended [71, 67] is able to study situations, called
games, where behavior of players (that can be individuals, societies) in strategic and economic
decisions is considered. Game theory was further developed by John Nash [69]. At the basis
of this theory is the concept of rational decision-maker, i.e. individuals that are able to make
decision that maximize an expected advantage, or utility. Take as example the Prisoner's
Dilemma where two criminals are accused of committing a crime and, after the arrest, are
divided in two di�erent cells, without the possibility of communicating; two choices are given:
betray by testifying that the other committed the crime, or remain silent. Each pair of choices
made by the criminals provides a certain gain, a greater or lower number of years in jail. The
payo� can be represented using a matrix U :
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U =

(
−4 0
−5 −2

)
,

where the rows represent the choices of the �rst player (betray, remain silent), the columns the
choices of the second, while the values are the gain of the �rst player, based on the strategies
chosen by both. Choosing the best strategy to adopt according to the di�erent payo�s is the
subject of game theory. Interactions of this kind occur in various �elds of knowledge such
as Economics, Social Sciences and Philosophy. It was John Maynard Smith that successfully
applied the theory of games to Biology. As he himself says [57], �paradoxically, Game Theory
is better applied to Biology than to economic behavior, to study which it had been invented�.
According to Maynard Smith the concept of �tness and adaptability �ts perfectly with the
utility function of Game Theory, and there are many examples in which biological behaviors
acquire a deeper sense in the light of this theory. Take the behavior of some armed species,
such as stags, that in the face of a con�ict for food, territory, or a companion, engage in a �ght
that rarely results in a physical confrontation, reducing often to a series of conventional rituals.
This behavior can be explained by a game, called Hawks and Doves. Suppose there are only
two possible behaviors in the population: the �rst type of stags is aggressive (Hawks) and will
look for the physical �ght whenever possible, they will �ght until exhaustion if necessary. The
second type of stags is peaceful (Doves) and will tend to avoid the struggles, face to face with
another peaceful they begin a simulated ritual battle until one goes away, face to face with an
aggressive always run away [44]. This game, as the one presented above, can be represented
by a payo� matrix:

U =

(
G−C

2 G

0 G
2

)
, (2)

where G > 0 is the gain after a �ght, C > G is the cost a Hawk pays after losing a physical
�ght. When we combine the Replicator Dynamics (1) with Game Theory, writing the �tness
as linear functions of an appropriate payo� matrix,

Φ(x) = Ux, Φ̄ (x) = x · Ux,

we can dynamically explain what is about to happen: in a population composed almost entirely
of Doves, a few Hawks would increase in number because, meeting only peaceful animals, have
a gain almost equal to G. In a population of aggressive Hawks, on the other hand, it would
be the Doves to win, because their �tness would remain the same while the Hawks would lose
�ghting with each other. The system leads the population to converge towards the point of
equilibrium with a fraction of Doves equal to G

C . The solution of the equations is often given
by a dynamic that converge to some stable equilibria, that are evolutionary stable, i.e. formed
by a population that is resistant to the occasional appearance of invasive minorities.

One of the limitation of the replicator dynamics is the fact that it does not take into
account mutations. During replication of a genome, mistakes can happen, and those mistakes
are one of the driving forces of evolution. Then, we deal with models that involve mutations,
starting from the classical quasispecies dynamics, proposed by Manfred Eigen and Peter
Schuster [85]: {

ẋk =
(
Φk − Φ̄

)
xk +

∑D
i=1 Φimikxi,

k = 1, . . . , D.
(3)
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This equation is a variation of the replicator dynamics, with added terms given by the matrix
M = (mik)i,k=1,...,D, e�ective mutations matrix. The new terms describe the e�ect of muta-
tions on the dynamics: individuals of type i can mutate and turn into individuals of type k,
according to a rate Φimik ≥ 0; on the other hand, the frequency of a given type k can decrease
when individuals of that type mutate, Φkmkk ≤ 0.

In this thesis, we want to highlight how mutations occur at a di�erent time scale than
selection, in rare and random moments. For this reason, most of the models presented explain
the biological mutation processes using stochastic terms. In particular, point process are used
to model the mutation jumps, so, to introduce them, the de�nition of Poisson random measure
is necessary. We provide here a construction for such a measure, so as to immediately give it
an intuitive interpretation:

Fact. [50] Let (E, ν) be a measurable space, with ν a σ-�nite measure.

� Suppose ν(E) < +∞. De�ne λ := ν(E) and let (Tn)n∈N be the jump times of a homo-
geneous Poisson process on R+, with intensity λ. Let (ξn)n∈N be independent random
variables, identically distributed, uniform on (E, ν). Then, a Poisson random measure
N (ds, dξ) on R+ × E can be expressed as

N (ds, dξ) =
∑
n∈N

δTn(ds)δξn(dξ); (4)

When the measure ν(E) is �nite, we can think a Poisson random measure as a sequence of
random points (Tn, ξn) in the space R+×E. The values in R+ are occurrences of a homogeneous
Poisson that has intensity ν(E). For each event Tn there is a value ξn, uniformly sampled in
E, with measure ν (see Figure 1 for a visual representation of the construction of N ).

A stochastic di�erential equation with jump terms can be therefore formulated in the
following form:

Xt = X0 +

ˆ t

0
b(Xs, s)ds+

ˆ t

0

ˆ
E
K (Xs− , ξ)N (ds, dξ).

and we can write:

ˆ t

0

ˆ
E
K(Xs− , ξ)N (ds, dξ) =

∑
n:Tn≤t

K(XT−n
, ξn);

a point process, therefore, evolves deterministically according to the function b, up to the �rst
time T1. At that moment a jump occurs, and the function K is evaluated in the point (T1, ξ1).
After that moment, the system continues to move according to the deterministic term, until
the subsequent time T2, and so on.
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Figure 1: Visual representation of the construction of a Poisson random measure N on R+×E
(with ν(E) < ∞). The jump times Tn, n ∈ N are from a homogeneous Poisson process; the
succession of independent marks ξn, n ∈ N are uniform on E. The function K acts on the
space R+ × E, i.e. on the pairs (Tn, ξn), n ∈ N.

Another classic example of a random process is the one studied by Robert Brown in
1827, i.e. Brownian motion. Once properly formalized, it is possible to include it in the
theory of di�erential equations. Brownian motion is described by the Wiener process Wt,
a stochastic process, continuous almost surely, with independent increments distributed as
Gaussian random variables. Starting from the Wiener process, it is possible to de�ne the
concept of di�usive stochastic di�erential equation:

Xt = X0 +

ˆ t

0
b(Xs, s)ds+

ˆ t

0
σ(Xs, t)dWs,

for 0 ≤ t ≤ T . The drift term b represents the deterministic motion of the system, while
the di�usion coe�cient σ models the random perturbations due to a Brownian motion. As
mentioned, jump processes will be used to model mutations, while Brownian motion will model
the physical movement of individuals in space.

In the subsequent models we are interested in describing the solutions of stochastic di�er-
ential equations in terms of deterministic quantities, such as expected values or probability
density. It is possible to obtain this results using particular partial di�erential equations, the
Kolmogorov equations (backward and forward). The connection between S.D.E.s and these
P.D.E.s is the in�nitesimal generator of a stochastic process, a partial di�erential operator
that encodes information about the process. The in�nitesimal generator of the process Xt is
the di�erential operator A, de�ned on suitable functions u(x) by:

Au(x) := lim
t→0

E (u(Xt))− u(x)

t
.

Fact. Let Xt the solution of a stochastic di�erential equation with di�usive and jump terms
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on Rn:

Xt = X0 +

ˆ t

0
b(Xs, s)ds+

ˆ t

0
σ(Xs, s)dWs +

ˆ t

0

ˆ
E
K (Xs− , ξ)N (ds, dξ).

Then the generator A takes the form L+ I, where:

Lu(x) =

n∑
i=1

uxi(x)bi(x) +
1

2

∑
i,j

uxixj (x)
[
σσt
]
ij

(x),

Iu(x) =

ˆ
E

[u(x+K(x, ξ))− u(x)] ν(dξ).

The generator is used in the Kolmogorov backward or Feynman-Kac equation (which de-
scribes the evolution of the expected value of the a process) and its L2 adjoint is used in the
Kolmogorov forward or Fokker�Planck equation (which describes the evolution of the proba-
bility density functions of the process). The expected value of a process X at time t, starting
from the initial deterministic value x,

u(x, t) = E
(
h(X(t))e−

´ t
0 Λ(X(u))du|X(0) = x

)
,

can be represented as the solution u(x, t) of the Feynman-Kac equation{
ut(x, t) = Au(x, t)− Λ(x)u(x, t), t > 0

u(x, 0) = h(x),

when h is the identity function and Λ = 0. Assuming that the process Xt has density %(x, t),
% is a solution of the equation{

%t = A∗%, for (x, t) ∈ Rd × (0,∞)

%(t = 0) = %0, for x ∈ Rd
(5)

where A∗ is the adjoint in L2 of the generator of the process, and %0(x) the density of X0.

The model in Chapter 4, presented in [4, 3], is a generalization of the replicator mutator
model (3) and is a starting point for the two successive models, in Chapter 5 and 6. The main
idea is to transform the deterministic term of mutation into a stochastic jump process for the
variable Xt, which in rare and random moments brings the type i to mutate and transform
into the type j:{

Xk
t = X0 +

´ t
0 ak(Xs)dt+

∑
i 6=k
´ t

0 γikX
i
s−dN

ik
s −

∑
i 6=k
´ t

0 γkiX
k
s−dN

ki
s .

k = 1, . . . , D
(6)

The functions ak(X) =
(
Φk(X)− Φ̄(X)

)
Xk are the term of the replicator dynamics with

k = 1, . . . , D. The processes N ik
t model a mutation with a �xed ancestor i and a descendant

of a single di�erent type k, with intensity that depends on the genetic distance between the
type i and the type k but also from the selection: the higher is the �tness Φi(xt−), the more
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types i will reproduce, more often the o�spring will su�er mutations ([4]). For this reason the
processes have non homogeneous stochastic intensity λikΦi(X

−
t ). The proportion between the

descendants of individuals of type i showing the type k after a mutation is constant and equal
to γik ∈ (0, 1]. Intuitively, the population evolves, starting from time 0, in a deterministic way,
according to the law given by a, until the �rst mutation takes place, i.e. the �rst jump occurs,
at time t1. At each mutation event, a random variable selects which of the D genomes mutates,
and in which of the remaining D− 1 it transforms. The probability that the jump from i to j

is chosen proportional to the quantity λijΦi

(
Xt−1

)
. After the selection of the pair (i, j), the

actual mutation occurs and the proportion γijxi of individuals of type i is transformed into
individuals of type j. From this point the dynamic is deterministic, with altered proportions,
until the following jump.

Starting from model (6), we can obtain Feynman-Kac equations for the expected values:{
∂tuk(x, t) = a(x) · ∇uk(x, t) + Iuk(x, t), x ∈ Sn, t > 0

uk(x, 0) = xk, x ∈ Sn,

with the generator of the jump process I:

Iu(x, t) =
∑
i 6=j

λijΦi(x) [u(x+ γijxi(ej − ei), t)− u(x, t)] .

In the simplest case, with two species and constant �tness, we can reduce the number of
variables, x0 = 1− x, x1 = x, and write{

∂tu+ (Φ0 − Φ1) (1− x)x∂xu = λ0f0I0u+ λ1I1u, x ∈ [0, 1] , t > 0

u(x, 0) = x, x ∈ [0, 1]
(7)

where
I0u(x, t) = u(x+ γ0(1− x), t)− u(x, t),

I1u(x, t) = u(x− γ1x, t)− u(x, t).

The function u represents the expected value E (x(t)|x(0) = x) . We can compare (7) to an
equation of homogeneous transport linked to the replicator mutator (3) and understand that
the expected value of the population quantity of the stochastic equation is greater than or
equal to that of the deterministic case, therefore rare mutations increase the survival oppor-
tunities of the lower-�tness species. The next step is to consider an extension of this model,
that takes into account a factor not su�ciently highlighted in previous models, the presence
of a spatial heterogeneous environment, in which the population can move.

In Chapter 5 we expand the stochastic model presented in [4] to take into account how
the natural environment can modify the interactions between individuals, changing the �tness
functions; results presented have been collected in article [5], published in 2017. To intro-
duce heterogeneous environment we increase the observed variables so that the status of the
population is described by a pair (x, y): as before x ∈ SD stands for the composition of the
population, each xi being the fraction of individuals of a �xed type, while the new variable
y ∈ RN stands for the position of the population in the physical N -dimensional space, or can
be seen as an external parameter that can change �tness values over time.
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Example. Take the two strategy game Hawks vs Doves (D = 2), with the payo� matrix U
as in (2). In this new model, we assume that the cost for �ghting can depend of y, C = C(y),
with the function C designed so that at y < 0 the cost lowers and the environment becomes
favorable to the Hawks. Otherwise if y > 0 environment is more favorable to Doves, with the
cost of the �ght that increases.

The population x evolves according to replicator dynamics with rare mutations (6):

xt = x0 +

ˆ t

0
a (xs, ys) ds+

ˆ t

0

ˆ
E
K(xs− , ys, ξ)N (ds, dξ),

where the function a ∈ RD has the �tness allowed to depend from the position y, so that

ak(x, y) = xk(Φ(x, y)− Φ̄(x, y)) as k = 1, . . . D.

Example. The �tness functions for Hawks (x1) and Doves (x2), are respectively

Φ1 = (G− C(y))x1/2 +Gx2, Φ2 = Gx2/2,

then the replicator dynamics (reducing the coordinates only to x ∈ [0, 1], fraction of Hawks)
is

ẋ = x (1− x) (Φ1 − Φ2) = x (1− x) (G− C(y)x) /2.

The environmental variable y changes according to a di�usion with drift:

yt = y0 +

ˆ t

0
v (xs, ys) ds+

ˆ t

0
σ (xs, ys) dWs,

where v ∈ RN stands for the velocity of the population, σ is an N × N matrix and Ws

is an N -dimensional Brownian motion, describing the random component of the movement.
Notice that both the drift and the di�usion may depend on the frequency vector x, allowing
retro-actions of population on the environment itself.

Example. In the Hawk vs Doves game, we can take the deterministic velocity �eld as v = v(x),
assuming that, when the concentration of Doves is high (x ' 0) the population tends to move
towards the positive y, favorable for the majority, towards the negative y when x ' 1.

In general we are facing the following model:
xt = x0 +

ˆ t

0
a (xs, ys) ds+

ˆ t

0

ˆ
E
K(xs− , ys, ξ)N (ds, dξ),

yt = y0 +

ˆ t

0
v (xs, ys) ds+

ˆ t

0
σ (xs, ys) dWs,

(8)

of which we are interested in studying the macroscopic function %(x, y, t) ∈ [0, 1], measuring
the probability of �nding a population distribution x ∈ SD in the position y ∈ RN at time
t. For instance, we may be interested in understanding, at time t > 0 the probability of
having a high proportion of individuals of a certain type i, or the probability of �nding a high
proportion of individuals of type i near at the origin.

To obtain a law that describes the evolution of the function %, we calculate initially, in
line with the arguments of the model (6), the Feynman-Kac equation of the process, then we
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compute L∗, the dual operator in L2 of the in�nitesimal generator. It turns out that, if %0(x, y)
is the probability density of the random pair (x0, y0) describing the initial distribution of the
population, and if the solution (xt, yt) to (8) has a su�ciently smooth probability density
%(x, y, t) for t > 0, then it solves the Fokker-Plank integro-di�erential equation:∂t%−

1
2

N∑
h,k=1

∂2
yhyk

(
(σσt)hk%

)
+ divx (%a) + divy (%v) =

d∑
i=1
J ∗i (Φi%)

%(x, y, 0) = %0(x, y),

(9)

in the closed set (x, y) ∈ SD × RN and t > 0. However, there is no reason to expect that the
density function is smooth enough, due to the point process modeling mutation. We therefore
choose to write the Fokker-Plank equation formally and then to settle it in the framework of
viscosity solution theory. This approach has the advantage of asking very few a-priori regularity
and producing well-posed solutions even in this degenerate elliptic, integro-di�erential case.

A further problem is with operators J ∗i , which are not continuous with respect to x. We
therefore switch to another problem which is set into all RD×RN and is continuous, extending
properly the �tness functions Φi, the drift v, the di�usion σ in a bounded smooth way to all
RD×RN , and Concerning the initial datum %0, it can be extended as %0 ≡ 0 outside SD×RN .
Then we solve the following problem:∂t%−

1
2

N∑
h,k=1

∂2
yhyk

(
(σσt)hk%

)
+ divx (%a) + divy (%v) + c% =

d∑
i=1
J ∗i (Φi%)

%(x, y, 0) = %0(x, y),

(10)

for (x, y) ∈ RD × RN and t > 0. In view of these remarks, we de�ne a solution of the
problem (9) in the symplex SD as a function that solves (10) but that has limited volume,
%(t) ∈ L1(RD × RN ) and %(t) ≥ 0 for t > 0. In these conditions, if the support of the initial
datum %0 is contained in SD ×RN , it can be shown as well that then also the support of %(t)
is contained in SD × RN . The following result then holds:

Theorem. Assume that Φi, v ∈ C1,1(RD × RN ), σ ∈ C2,1(RD × RN ) are bounded together
with their derivatives, with Φi ≥ 0 and σ ≥ ε > 0. Take %0 a Lipschitz-continuous, bounded
function whose support is compact and contained in the interior of SD ×RN such that %0 ≥ 0
and
˜
%0dxdy = 1. Then there exists a unique viscosity solution to (10). Moreover %(t) ∈

L1(RD × RN ) and %(t) ≥ 0 for all t > 0.

In the �nal part of Chapter 5 we provide numerical simulations concerning the two strate-
gist game Hawks vs Doves, as presented in the above examples. We perform various simulations
for the probability density obtained both by a Monte-Carlo method starting from the stochas-
tic system (8), and by a �nite di�erence scheme based on the Fokker-Plank equation (9). We
show how equilibrium of the standard replicator-mutator dynamics can be disrupted by the
e�ect of either random motion or mutations. In some particular cases, the environment itself
allows for the survival of the least aggressive species, as we can see in Figure 2, where the
probability density %(t) is shown. In the simulation we have �fair mutations�, that is, muta-
tions do not favor one strategy in particular. In the �gure, with a red line it is represented
the expected value of Hawks for t → ∞ in absence of mutations, with a blue line the same
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expected value for t→∞ in the presence of mutations. In that case

lim
t→+∞

E[xt] ≈
5

9
,

then the expected value of the proportion of Hawks for t→ +∞ is lower than the one without
mutations, that is 2/3; we see that including the physical space can favor the persistence of
Doves.
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Figure 2: Point-type mutations plus deterministic and Brownian motion, The vector x evolves
according to the game Hawks vs Doves with G function of y. The red line represents the initial
value of Hawks and the expected value of Hawks for t→∞ in absence of mutations. The blue
line is the same expected value for t→∞ in the presence of mutations. Brownian motion has
σ = 0.2, the parameters of the jump process are λ12 = λ21 = 0.2, γ12 = γ21 = 0.1, that is one
tenth of the population mutate each jump and we have �fair jumps�.

The model presented and analyzed in the following Chapter 6 is based on model (6) with
rare mutations, but adds the two main concepts of di�erence between genotype and phenotype
and potentially in�nite genome space. The genotype is the set of characteristics that de�ne
an individual, encoded in the DNA, the information of an organism, replicable and modi�able
due to the random processes of mutations. A �type� of individuals in this model is a group that
shares the same genotype. Each genotype expresses a very speci�c phenotype, and the same
phenotype can be the expression of several di�erent genotypes, on which natural selection
acts. The main forces of Evolution, that are selection/adaptation and mutation, act then at
di�erent levels: the environment select the �ttest individuals, acting on the phenotype, seen
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in contest as a function of the selective pressures, while the source of evolutionary novelty,
mutation, acts instead by randomly modifying the genotypes, producing new and never seen
before ones.

Genotypes. In Nature, a genome can, in the �rst instance, be represented by a sequence of
�nite length of nitrogenous bases, or a �nite string of elements in the alphabet {A,C, T,G}.
Mutations can alter the individual bases, leaving the length intact, or modify for instance
the code in a more substantial way, through deletions or insertions of bases. In this case the
space of the genomes is represented by all the possible strings of �nite length in the alphabet
{A,C, T,G}, that has in�nite elements, i.e.⋃

n∈N
{A,C, T,G}n .

In general, we de�ne the Potential genome space as a set G, countable, whose elements
g are the genomes. The unknown variable of the complete model, N , indicates a population
of genomes, a vector (in�nite) that contains in position k ∈ N the number nk of individuals
of genotype gk. Only a �nite set of genomes are present in the population, therefore only a
�nite number of elements is greater than zero (Figure 3). Formally:

De�nition. In the space of all sequences of scalars N =
(
n1, . . . nk, . . .

)
, nk ∈ R such that

nk = 0 except for �nitely many n, let S∞R be the subset of the successions with compact
support:

S∞R =
{
N =

(
n1, . . . , nk, . . .

)
: nk ≥ 0 ∀k;

∑
nk < +∞; D :=

∣∣∣{k : nk > 0
}∣∣∣ < +∞

}
A population of genomes is an element N ∈ S∞R .

Figure 3: Starting from a genome space G, a population of genomes N is de�ned: the genomes
are shown, with their number. Only a �nite number of genomes have number not null.
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Phenotypes and Selection. Similar to the genotypes, a Potential phenotype space

is a set F , whose element f ∈ F is a phenotype. Each genotype in G express a phenotype,
therefore the two spaces G and F are linked. Such connection is given by a function, the
Genotype-Phenotype map (GP ) [36, 1]:

GP : G → F .

A GP map is not injective, because di�erent genotypes may generate the same phenotype. The
set of genotypes that produce a given phenotype is called the Neutral Space of that phenotype.

The space of the phenotypes F is di�erent from that of genotypes G, and we want that
selection acts only on the phenotypes. Selection can not distinguish two individuals that
have the same phenotype, even if they have di�erent genotypes; a phenotype is associated
to a genotype through the GP -map, and a �tness function is to be de�ned associated to a
phenotype. See Figure 4.

Figure 4: The phenotype-genotype map GP allows genotypes in G to express phenotypes in F ,
and it is non-injective. Fitness function Φ acts exclusively on the phenotype space, ignoring
G.

Given the concepts of genotype, phenotype and �tness, it is possible to reformulate the
equations of the replicator dynamics (1) for a population of genomes N .

First of all, model (1) studies densities of individuals (or assume the population constant
in number). Since we want the mutation process leading to the formation of small groups of
individuals, of very small absolute number (see next paragraph), we need to transform the
Replicator dynamics into an equation for the number of individuals. This, following [44], can
be done knowing that the Replicator dynamics for d types is equivalent to a Lotka-Volterra
system with d− 1 types. The next step is to add a term of logistic growth, then to rewrite the
equations to take into account the space S∞R . Overall, the di�erential system (1) is generalized,
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for all g ∈ G, with N0 ∈ S∞R , as:

Nt = N0 +

ˆ t

0
ã (Ns) ds, (11)

ã (N) =


F (N)∑
j: gj∈G

nj
nk + nk

(
Φk(N)− 1∑

j: gj∈G
nj

∑
j: gj∈G n

jΦj(N)

)
,

k ∈ N

Mutation process. The model (11) without mutations is unnecessarily complex, since the
presence of in�nite space is irrelevant if an initial group of genomes N0 can not explore G.
Mutation is the force that generates new genotypes, consequently increasing the dimensionality
of the problem. Intuitively, we want the evolution of initial number of genotypes to change only
according to selection and adaptation (the deterministic term given by ã), until a mutation
happens. A mutation will occur randomly in the population, with a temporal frequency
proportional to the total number of individuals. When a mutational event occurs, a small
group of individuals of a given genotype transforms into a new group, with a genotype similar
to that of the progenitors. After the mutation, the process increase in dimensionality, and
continue to evolve deterministically until the next mutation.

� A mutation event occurs. The process is based on a non-homogeneous Poisson of intensity
proportional to the number of individuals in the population λ = λ(N). The jumps
happen therefore with frequency proportional to the number of individuals.

� Identi�cation of the mutants. Mutations occur �blindly� by randomly selecting a small
group of individuals with a �xed genome. The choice is proportional to the frequency of
the di�erent types in the population at the time of the mutation.

� Choice of the new genome. Once the genome that changes has been selected, it explores
the space G, changing in a new element of G, which is �near� to him. If we imagine to
follow the evolutionary history of a genome, we would see it moving between one vertex
and another of a graph on G×G, �Evolution is a trajectory through sequence space [73]�;
so we de�ne, �xed g ∈ G, the probability Πg.h that, if a mutation involves g, it will
mutate in h ∈ G. The choice of the new genome must therefore take into account the
graph on G, shown in Figure 5
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Figure 5: Example of graph on the genome space G. The arrows have the weights Πjk and
represents mutation jumps.

Nt = N0 +
∑

n:Tn≤t
1[

0,λ
(
N
T−n

)](zn)
∑
j∈N

1
Ij

(
N
T−n

)(un)γj

(
nj
T−n
, vjn

)
(12)

Combining the deterministic term (11) and the stochastic one (14) we can formulate the
complete process, whose existence and uniqueness is proved at the end of Chapter 6.{

Nt = N0 +
´ t

0 ã (Ns) ds+
´ t

0

´
EK (Ns− , ξ)N (ds, dξ) , t > 0

N0 ∈ S∞R .
(13)

Using the construction (12) for the jump process, and a �nite di�erence algorithm for the
deterministic equation, it is then possible to implement the system numerically (13). An
example, able to summarize the main characteristics of the model, is given by the Fibonacci
GP-map ([36]):

By imposing these characteristics to the jump process, we obtain:

Nt = N0 +

ˆ t

0

ˆ
E
K (Ns− , z, u, v)N (ds, d(z, u, v)) ;

where the mark space E is R+ × [0, 1]× (G × G) and K has the following form:

K (N, z, u, v) = 1[0,λ(N)](z)
∑
k∈N

{
1Ik(N)(u)1{α(k)}×G(v)γk

(
nk, v

)}
. (14)

As stated in (4), if we let (Tn)n∈N be a homogeneous Poisson process with intensity λmax :=
max(λ(N)), and we de�ne three collections of independent random variables, (zn)n∈N ∼
Unif (0, λmax), (un)n∈N ∼ Unif (0, 1), and

(
vjn
)
j,n∈N

∼ Unif ({α(j)} × G), then we can

rewrite the jump process as
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� a genome in G represents a simpli�ed DNA string, in which the nitrogenous bases are
reduced from four to two, 0 and 1. When a mutation occurs in the genome, the string
can have a punctual mutation, i.e. an element chosen randomly within it changes from
0 to 1 or vice versa; the string can have an insertion, i.e. a 0 or a 1 is added into the
genome, in a random position;

� A genome g of length L, g ∈ {0, 1}L, expresses a phenotype f ∈ F , which is a binary
string of length shorter than L, obtained in the following way:

� starting with the �rst digit the sequence is considered �coding� until a �stop codon�
is encountered,

� after the stop codon the sequence is considered �non-coding�.

See Figure 6.

Figure 6: Three examples of genotype sequences, which map two di�erent phenotypes in the
Fibonacci genotype-phenotype map. Reading from the left the sequence is regarded as �coding�
up to the �rst occurrence of the �stop codon� sequence 11. Thereafter the sequence is regarded
as �non-coding�. Each possible coding sequence represents a di�erent phenotype, whereas the
non-coding sequence leaves the phenotype entirely una�ected. Figure by [36].

It is then possible to de�ne �tness functions on the phenotypes, and show how the presence
of a structure in the genotype space can change the trend of the process.

In conclusion, in Chapters 5 and 6 we present the two main and innovative models of
population dynamics with random mutations. In the �rst, published in the article [5], the
presence of a heterogeneous environment, capable of in�uencing �tness functions, changes
the relative proportions of individuals. In particular cases the physical space can favor the
persistence of low �tness strategy. The second presents the evolution over time of a population
of genomes described by a system of ordinary stochastic di�erential equations. The importance
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of the di�erence in action between mutations, which modify the genotypes, and selection,
which through �tness functions changes the proportions between phenotypes, is underlined.
The presence of a potentially in�nite space of available genomes makes sure that variants of
individuals with characteristics never seen before can be generated.

To study the relationship between genotype and phenotype, in this thesis the choice was
made to have functions as GP-map, so that each genotype can express a single phenotype; this
assumption is a simpli�cation of reality, as there exists situations in which a single genome can
give rise to di�erent phenotypes, e.g. due to di�erent environments. A further development
could then concern an expansion of the concept of GP-map. Another path of research could
create a link between the two models, presented imagining the in�uence of a heterogeneous
environment in the genotype and phenotype model; we could therefore obtain a model in
which various populations, interacting with each other through gene exchanges, give rise to
emigration and invasion of more �tted individuals.

In Chapter 9, we present the article A new restart procedure for combinatorial optimization
and its convergence ([83]), written after a collaboration with G. Sebastiani, that deals with
combinatorial optimization, probability and numerical simulation. Although not directly re-
lated to previous di�erential models, many algorithms are inspired by biological phenomena,
such as the Ant Colony Optimization, or the Genetic Algorithms:

� Ant Colony Optimization [23] simulates the behavior of an anthill in optimizing the
path that connects nest and food. Given a search domain, like the Hamiltonian cycles
on a graph, a certain number of ants are released and start to explore it. During the
exploration, each ant releases a trace of pheromone, which highlights the path it has
made, and which is able to attract the other ants. Initially, a certain number of ants
is placed. Then, in each construction step, each ant moves, based on a probabilistic
decision, to a point of the search domain it has not yet visited. This probabilistic choice
is biased by the pheromone trail. Ants prefer paths which are close and connected by arcs
with a high pheromone trail. After all ants have completed the tour construction, the
pheromone trails are updated, �rst by lowering them by a constant factor (evaporation)
and then by allowing the ants to deposit pheromone on the path they have visited. If a
path is not chosen, its associated pheromone trail decreases exponentially; this enables
the algorithm to �forget� bad choices over time. The better the ant's tour is, the more
pheromone is received. In general, paths which are used by many ants and are shorter
will receive more pheromone and therefore will more likely be chosen in future iterations
of the algorithm.

� Genetic Algorithms [65, 82] are inspired by the theory of Evolution, simulating
replication, mutation, crossing-over and selection. Genetic algorithms have been used by
many researchers as a tool for search and optimization. A �nite collection of �genomes�
(the candidate solutions) is given in a model �world�, and a �tness function on this
collection is de�ned, which has to be maximized. Usually, the number of genomes is
very large prohibiting a complete search. Genetic algorithms provide a probabilistic way
to conduct a search in the space of genomes, given a suitable encoding of the candidate
solutions is strings of symbols. A genetic algorithm comprises three phases: mutation,
crossover and �tness selection. These are applied cyclically and iteratively until some
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condition is satis�ed. The model most commonly investigated is the genetic algorithm
with a binary alphabet, where genomes take the form of bit strings.

The article proposes a new iterative procedure to optimize the restart time of a meta-heuristic
algorithm to solve combinatorial optimization problems. Solving a combinatorial optimization
problem (COP) generally consists in �nding an element, in a �nite research domain, that
minimizes a �tness function. The typical example of COP is the Traveling Salesman Problem
(TSP), i.e. �nding the shortest path that connects a given number of points, or cities. Even
if a solution of a COP always exists, �nding it often requires a very high computational cost.
Two di�erent search algorithms can be used: exact or heuristic.

Those of heuristic nature guarantee an exact solution only if in�nite time is available,
or a suboptimal solution in �nite time. The article deals with meta-heuristic algorithms
(MHA), which are heuristic algorithms independent of the particular COP considered. These
algorithms therefore present a methodology for solving a problem, without specifying the
problem in detail. Genetic algorithms and Ant Colony Optimization are of this type.

A natural problem concerns the convergence of this meta-heuristic algorithms. Given
their stochastic nature, they can be studied by probability theory; unfortunately, even when
convergence is guaranteed, algorithms are often too slow to be used in practice. It is in this
contest that the restart procedure is used, which consists in repeating a very high number
of times independent instances of a given MHA, randomly initialized. The best solution,
among those produced, is chosen. With �xed available computational resources, the problem
is to understand how many independent instances to produce, and how long to run them. In
the article a new algorithmic procedure for the restart is proposed, and then it is applied to
instances of (TSP), with hundreds and thousands of cities. As the basic algorithm, Ant Colont
Optimization is used (in a version called Max-Min Ant System).

10 0 10 1 10 2 10 3 10 4 10 5

TIME or PSEUDO-TIME

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7: A TSP instance with 532 cities. The estimated failure probability as function of
time for the standard Ant System (thick line) and the Restart Procedure (thin line). The
time axis is in logarithmic scale. The failure probability of the Restart Procedure decreases
by several orders of magnitude compared to the standard algorithm.
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Using the new procedure we can show how the failure probability decreases by several orders
of magnitude compared to the standard algorithms (see Figure 7), for equal computational
cost. Therefore, given a certain computation resource, by applying this procedure, we are
far more con�dent that the result obtained is a solution of the problem analyzed. Further
developments of this procedure could regard preserving its performance and decreasing the
computational cost, working with the control parameters along the iterations.
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Chapter 1

Evolutionary games

1.1 Population dynamics

Population dynamics is a branch of ecological mathematics that studies, through ordinary
di�erential equations, the interactions between species in an ecosystem and the evolution (in
mathematical sense) of their density over time. In natural ecosystems, thousands of di�erent
species interact by creating the complex structure of the biosphere, making it di�cult, if not
impossible, to provide an all-encompassing mathematical description. In the following we will
analyze classical and simple models for the study of one or more populations that, as a �rst
approximation, consider the e�ects of the struggle for the exploitation of resources (such as
food) and of the competition between di�erent species living in the same environment.

Malthusian growth model. The simplest model for a single species is the one proposed
by Thomas Robert Malthus in the early 1800s, In his book An Essay on the Principle of
Population [55] the author predicts a di�cult future for humanity, assuming that there is an
exponential growth of individuals, but linear growth of food resources. Let R the growth
rate of a population, due to factors such as the abundance of food and the average number
of o�spring, and suppose that this rate is constant. We can then formulate an equation for
the quantity ẋ/x, which represents the variation in time of the number of individuals of a
population indicated with x(t) and obtain the Malthusian growth equation

ẋ = Rx,

which has the solution x(t) = eRtx0, where x0 is the amount of initial population. The
behavior of such a solution is trivial, with an exponential growth for R > 0, a decrease until
extinction for R < 0, a constant population for R = 0.

Despite the simplicity of the model, Malthus' work, mainly a treatise on sociology and
economics, inspired Charles Darwin and Alfred Wallace in the development of the theory of
natural selection. The Malthusian growth for R > 0 can be used as a �rst approximation for
the analysis of the dynamics of a population that invades a new territory in the absence of
constraints that limit its expansion, factors that, eventually, become increasingly important,
limiting the speed of growth.

23
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Logistic growth. The initial exponential growth of a population sooner or later slows down,
as there are fewer resources for each individual and therefore a lower growth rate. In the
simplest case we can consider this rate decreasing linearly as a function of x, that is k (1− x) .
We are assuming in this case that the value 1 is the carrying capacity of the population, which
can not grow further. This choice leads to the logistic equation, �rst named by P.F. Verhulst
[92]: {

ẋ = kx(1− x),

x(0) = x0 ≥ 0.

The behavior of the solution is easy to analyze; the problem can be integrated, has x = 0 and
x = 1 as equilibriums and the explicit solution is:

x(t) =
x0e

kt

1− x0 (1− ekt)
.

Assuming a small initial density x0 and a positive growth rate k, an initial sudden increase in
density occurs, followed by a gradual slowdown, with x(t) that reaches the carrying capacity.

Lotka-Volterra. Di�erent models consider the interaction between several species in the
same environment; among them the classical example is the system proposed indipendently
by Vito Volterra and Alfred Lotka in 1920s [54, 93]. Volterra, in the years following the First
World War, �nds himself analyzing the dynamics of predator and prey among the �sh caught
in the Adriatic Sea. The amount of predators had increased considerably compared to previous
years. The war had naturally in�uenced �shing in those years, but Volterra's question is how
and why there had been a more favorable increase in predators rather than prey. The dynamic
of the system proposed considers two populations, one of prey, one of predators and build a set
of di�erential equations. The density of the prey is indicated by the function x(t), while with
y(t) we indicate that of predators. It is assumed that the growth rate of the prey population,
in the absence of predators, is given by a Malthusian growth, with parameter α, positive.
The growth rate decreases linearly as a function of the density of predators y. Predators are
based on the abundance of prey to live and, in the absence of them, the function y decreases
exponentially by a factor −γ (with γ positive). However, the growth rate of predators increases
linearly with respect to the amount of prey x. The Lotka-Volterra system reads:

ẋ = (α− βy)x,

ẏ = (−γ + δx) y,

x(0) = x0 ∈ R+,

y(0) = y0 ∈ R+.

The system, that has R+ × R+ as an invariant set, admits two distinct equilibria, one trivial
with (x0, y0) = (0, 0) and the other

(x0, y0) =

(
γ

δ
,
α

β

)
.

Because of the function U(x, y) = γ log x − δx + α log y − βy is constant on the solution of
the equation, the dynamics is periodic; the density of prey and predators will oscillate, with
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amplitude and frequency of the oscillations depending on the initial conditions. Thanks to
this model, Volterra is able to give an answer to the problem of the Adriatic Sea: �shing
reduces the rate of increase of the prey and it augments the rate of decrease of the predators.
The average density of predators becomes smaller, the prey's one larger, than the unperturbed
state: ceasing to �sh leads to an increase of predators and a decrease of prey.

1.2 Game theory

Game theory was created, as a unique �eld, by John von Neumann in 1920s with the paper
On the Theory of Games, followed by the book with Oskar Morgenstern in 1944 [71, 67].
They wanted a mathematical theory that was able to study human behavior when strategic
and economic decisions were to be considered. Infact, Game Theory deals in general with
mathematical techniques to analyze situations, called games, in which two or more individuals,
called players, make decisions that in�uence their own and others' �tness. Players are always
supposed to be rational decision-makers, i.e. able to make decisions that maximize their
expected �tness. Game theory was further developed by John Nash in 1950, who in his PhD
thesis [69], de�ned what is now called Nash equilibrium.

To illustrate the kind of problems that the theory tries to treat we can consider a classic
and well-known example since 1950, the Prisoner's Dilemma.

Two criminals are accused of committing a crime. The investigators arrest them both and
close them in two di�erent cells, preventing them from communicating. Each prisoner is given
the opportunity either to betray the other by testifying that the other committed the crime,
or to cooperate with the other by remaining silent. The o�er is:

� if one betrays, but the other remains silent, the betrayer avoid the penalty and is set
free; the other will however be sent 5 years in prison;

� if both criminals each betray the other, they will have a penalty discount and will both
be sent 4 years in prison;

� if they remain silent, both will be sent 2 years to prison, because they are incriminable
exclusively for minor o�enses.

Suppose the two promised to remain silent in case of arrest. They are now locked up in
two di�erent cells and wonder if the promise will be kept on the other. There is therefore a
dilemma: to betray or not to betray. Game theory helps us solve these kinds of problems.

De�nition 1. A normal form game is given by:

� a �nite set G of players (in the above dilemma are the two prisoners);

� a �nite set of pure strategies S1× . . .×SG that players can implement. We are interested
in Si = Sj for every i, j, i.e. when each player draws from the same set of strategies S,
of cardinality |S| (the two criminals can betray or remain silent);

� for each player in G a �tness function, or payo�

Ui : S1 × . . .× SG 7→ R,
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(for each of his choices, the criminal risks more or less years in prison). Note that the
function Ui does not depend only on the behavior of the player i but also from the
strategy that the others implement.

A game between two players can be represented by a payo� matrix U , with the number of
rows equal to the number of possible strategies S, with ui,j payo� of a player who uses the i
strategy against one of strategy j. In the case of two player strategies one has:

s1, strategy s2, strategy
player 2 player 2
↓ ↓

s1, strategy player 1 → u1,1 u1,2

s2, strategy player 1 → u2,1 u2,2

or

U =

(
u1,1 u1,2

u2,1 u2,2

)
.

Once a game has been modeled, we can try to �nd out which strategies represent plausible
outcomes, assuming players are rational and pursuing their own interests. We can now give
the concept of of Nash equilibrium.

De�nition 2. A pure Nash equilibrium of a game withG players is a set of strategies s̄1, . . . , s̄G
such that

Ui(s̄1, . . . , s̄G) ≥ Ui(s̄1, . . . , si, . . . , s̄G),

for each player i = 1, . . . , G and for each choice of strategy si ∈ Si.

The interpretation is as follows: if a game accepts at least one Nash equilibrium, each
player has at his disposal at least one strategy from which he has no interest in moving away if
all the others do not change their strategy. In fact, if the player i plays any other strategy at
his disposal other than s̄i, while everyone else continues to play with s̄j , it could only worsen
its utility or, at most, leave it unchanged. So if players reach a Nash equilibrium, no one
can improve their result by modifying only their own strategy, and is therefore bound to the
choices of others. Since this applies to all players, however, if there is Nash equilibrium and
it is unique, it represents the solution of the game, as none of the players have an interest in
changing strategy.

Example. The prisoner's dilemma can be studied with a payo� matrix U for the strategies
C strategies (cooperating) and D (defectors) in the form(

R S
T P

)
.

If they both cooperate they get a bene�t of R (reward); if both betray, everyone receives
P (punishment); if one of the two cooperates and the other betrays, the cooperator gets S
(payo� of the stupid) while the betrayer gets T (temptation payo�). Parameter are sorted with
T > R > P > S. The strategy (C,C) is the one that guarantees the greatest gain (the least
total number of years in prison) but it is not a Nash equilibrium. If one of the two, convinced
of the honesty of his companion decides to betray, avoid the penalty, and condemn him to



CHAPTER 1. EVOLUTIONARY GAMES 27

many years in prison. The game admits a unique Nash equilibrium, the strategy (D,D), where
are both defectors, choice that causes more damage to both than the alternative (C,C) but
which guarantees less risk and fewer years in prison for the individual. The dilemma is a
very interesting game also at the biological level, so much so that in the articles Prisoner's
dilemma in an RNA virus and Escape from Prisoner's Dilemma in RNA Phage Φ6 [90, 91],
it is explained how more viruses that infect the same cell generate con�icts, the creation and
the intracellular di�usion of viral products and their consequent sharing, allowing the creation
of cooperation and sel�shness behaviours: a viral genotype that synthesizes large quantities
of products is actually cooperating, on the contrary a genotype which synthesizes it less, but
which develops the ability to subtract most of the shared product, is a defector/sel�sh. In the
articles a slightly di�erent payo� matrix is proposed, equivalent to the previous one,(

1 1− s1

1 + s2 1− c

)
,

with all the constants positive. In this way

1 + s2 > 1 >

{
1− s1,

1− c.

With c the cost of the interaction between two sel�sh people is indicated, with s1 the cost paid
by a cooperator for colliding with a sel�sh, with s2 the sel�sh gain on that same occasion.

In a game for two agents (1 and 2) and two pure strategies (S1 and S2) the parameters to
obtain a pure Nash equilibrium can be calculated. We consider the generic payo� matrix:(

a b
c d

)
,

� The pair (1, 1) is a pure Nash equilibrium if a ≥ c;

� The pair (2, 2) is a pure Nash equilibrium if d ≥ b;

� The pair (1, 2) is a pure Nash equilibrium if b ≥ d and c ≥ a, the same for the couple
(2, 1), in fact, applying the de�nition,

However, a game does not always admit a single pure Nash equilibrium, and not always an
equilibrium exists at all, as in the following example, the popular game Rock-Paper-Scissors.

Example. We take into account the three players game, with three pure strategies R (Rock),
P (Paper) and S (Scissors), with payo� matrix U 0 −1 1

1 0 −1
−1 1 0

 .

The game is perfectly symmetrical, with every strategy that is better against one and worse
against the other: none of them is a pure Nash equilibrium.
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Players have no way to �interpolate� between their actions: the selection is between a pure
strategy si, or a di�erent strategy sj . This constraint can be relaxed by allowing players to
select a probability distribution on the choices. For example, a player could select the strategy
si with probability 1/3 and the action sj with probability 2/3 (in general, it could select the
strategy si with probability pi ≥ 0, provided that

∑
pi = 1). Such strategies are mixed, in

contrast to the deterministic or pure strategies and are uniquely determined by the distribution
p = (pi)i=1,...|S|, with pi probabiliy to play the strategy si; they are therefore usually indicated
with the vector. The concept of mixed Nash equilibrium can therefore be de�ned:

De�nition 3. A set of mixed strategies m̄1, . . . , m̄G is a Nash equilibrium if no player can
unilaterally improve his expected utility by switching to a di�erent mixed strategy, so it is
a set of strategies m̄1, . . . , m̄G such that, for each player i = 1, . . . , G and for each choice of
mixed strategy mi of that player:

Ui(m̄1, . . . , m̄G) ≥ Ui(m̄1, . . . ,mi, . . . , m̄G).

Since mixed strategies are a generalization of pure ones, it is not di�cult to show that every
pure Nash equilibrium is also a Nash equilibrium. The inverse is not true and in fact there
are games without pure equilibrium but which admit mixed equilibria. Indeed, much more
is true: every �nite game admits at least one Nash equilibrium, and this is the fundamental
result that John Nash presents in his PhD thesis [69].

Example. The previous game Rock-Paper-Scissors admits a mixed Nash equilibrium, one in
which both players choose the strategy p̄ = (1/3, 1/3, 1/3) that is, they randomly choose one
of the three pure strategies. Consider for example player 1 and check that when player 2 uses
strategy p̄, the former has no incentive to play strategies other than p̄. If the second player
uses p̄ and the �rst uses q = (q1, q2, q3), the expected payo� for player 1 becomes

q1 ·
1

3
· (0) + q1 ·

1

3
· (−1) + q1 ·

1

3
· (+1)+

q2 ·
1

3
· (+1) + q2 ·

1

3
· (0) + q2 ·

1

3
· (−1)+

q3 ·
1

3
· (−1) + q3 ·

1

3
· (+1) + q3 ·

1

3
· (0) = 0.

So the expected utility u1 (q, p̄) is 0, regardless of the choice of q1, q2, q3. The same is true
when player 1 chooses q and player 2 chooses p̄. Since when both players choose the mixed
strategy p̄, the utility is u1 (p̄, p̄) = u2 (p̄, p̄) = 0, then p̄ is a Nash equilibrium:

U1 (p̄, p̄) ≥ U1 (q, p̄) ,

U2 (p̄, p̄) ≥ U2 (p̄, q) .

1.3 Evolutionary games

Game theory is applied in various �elds of knowledge such as Economics, Social Sciences and
Philosophy and can also be successfully applied in the study of Evolution. An example of
behavior that tends to maximize a payo� can indeed be found in Darwinian selection models:
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in a universe where increasing disorder is a physical law, complex organisms (including social
organizations) can survive only if they behave in a way that tends to increase their chances
of survival and reproduction ([8]). Then an argument on evolutionary selection suggests that
individuals tend to maximize the expected value of some measure of natural survival and
reproductive �tness, otherwise they are replaced ([57]).

The theory of evolutionary games is born as an application of the theory of games to
Biology. It was John Maynard Smith, professor of biology at the University of Sussex, who
introduced the notion of evolutionarily stable strategy and successfully applied the theory
of games to evolution. As he himself says in the introduction to his book Evolution and
the Theory of Games [57], paradoxically, game theory is better applied to biology than to
economic behavior, to study which it had been invented. There are two reasons that justify
this assertion: the �rst is that the theory requires that there exists a utility function, which
in human applications could turn out to be an arti�cial concept, whereas in biology one can
associate it with Darwinian adaptability, the reproductive success of an individual or of a
certain genotype. The second and perhaps most important reason is that in seeking the
solution of a game the concept of human rationality is replaced by evolutionary selection. The
advantage, says Maynard Smith, is that there are various reasons to expect the population
to evolve towards stable states while there are many doubts about the rationality of human
behavior.

Before going into the details of the meaning of evolutionarily stable equilibrium and its
connection with the Nash equilibria, we must review the way in which we understand game
theory. As mentioned, in traditional game theory we refer to the cognitive abilities of the
players, we assume that the players are rational decision makers, who are able to understand
that they are playing and are consciously trying to maximize their payo�, trying to predict the
opponent's moves; these facts are used to justify why players should choose strategies that give
rise to Nash equilibria. The theory of evolutionary games, on the other hand, starts from a
very di�erent concept, it assumes that players are individuals with inheritable strategies coded
in their genome, and that they have no control over the strategies they use and generally do
not even know they are players. Individuals reproduce and are subject to the forces of natural
selection, so in general an individual will always implement the same strategy and it is the
entire population that changes the type of strategy over time, moving towards more suitable
strategies, clashing with many other individuals and repeating the same game over and over
again.

History of ritual struggles, Hawks vs Doves

A phenomenon that shows the power of game theory in biological �eld is that expressed with
the name Hawks and Doves (game introduced by Maynard Smith and Price in 1973 [60]),
and starts from a consideration of zoological nature: despite almost all the complex animals
(including us) have bilateral symmetry, as if the left side of the body had been created by
mirroring the right, the males of the violinist crabs of the genus Uca have one of the two
claws larger than the other. In everyday life the overdeveloped claw is a handicap for the
crustacean, forced to live with such an encumbrance. About the social interactions between
males, the violent clashes that would justify possession of such a powerful weapon are a very
rare event, while almost all comparisons by territory and mating result in ritualized struggles
in which the giant claw is shaken up and down rhythmically and they never pass to action
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except in extreme cases; in those moments, however, usually the more peaceful of the two gives
up almost immediately. Why did violinist crabs develop such ritual struggles if they have such
big claws? The most aggressive animals could simply attack mercilessly at the expense of the
peacemakers, win most of the clashes and transmit aggression to o�spring. Why are not they
all aggressive?

Suppose there are two behaviors (strategies) in the colony of Uca, aggressive and peaceful:
during a �ght the aggressives soon get tired of the ritual dances, and attack the opponents
without mercy; face to face with another aggressive, they �ght until exhaustion. The peacefuls,
on the other hand, tend to avoid the struggles; face to face with another peaceful they begin
a simulated ritual battle until one goes away; face to face with an aggressive always run away.
Usually the term Hawks is used to refer to the aggressives, Doves for the peacefuls. Whatever
the reason for the �ght, the contenders are faced according to the following payo� matrix for
the Hawks and Doves strategies [44]:

U =

(
G−C

2 G

0 G
2

)
.

Winning a �ght increases the �tness by a quantity G > 0 (Gain); losing a physical �ght gives
a price to pay in terms of �tness equal to C (Cost). The cost C is chosen greater than the
gain G; abandoning the �ght does not produce variations in the �tness. Then,

� If two Doves meet, they perform ritual dances, then one retires. The winner gets G, the
loser nothing, and on average their �tness increase by G/2;

� A Dove that meets a Hawk escapes by not getting anything, the Hawk takes everything
for itself, earning G;

� A Hawk that meets a Hawk attacks it, �ghts until one of the two gives up. The winner's
�tness increases by G, while the loser's loses C, with an average of (G−C)/2 (the price
to pay for losing a physical battle is greater than the gain, so the average in this case is
negative and results in a loss of �tness).

This game has no pure Nash equilibrium, because in a population composed almost entirely
of Doves a few Hawks would dominate because, meeting only peaceful animals, have a gain
almost equal to G. In a population of aggressive Hawks, on the other hand, it would be the
Doves to win, because their �tness would remain the same while the Hawks would lose �tness
�ghting with each other.

Over time, evolution leads to a balance with a mixed population of G
C , value for which

the �tness of the Hawks is the same as the Doves, solving the problem of ritual struggles:
paradoxically, if the animals are very heavily armed and therefore a physical battle would
lead to serious damage (C is very large), the G/C ratio it is very small and therefore the
population at equilibrium consists of many Doves and a few Hawks. In the case of the Uca,
the big claw is synonymous of great damage during a �ght and then eventually a peaceful
population has evolved, that use to simulate struggles, a social custom in which to show
others the disproportionate limb to remember that a possible �ght would not lead to anything
good.
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Evolutionary stable strategies

We reformulate the language of game theory in terms that we use in the evolutionary case
[44]:

� An individual's strategy is a complete action plan for every situation that may arise; this
completely determines the behavior of the player, that is the actions that the individual
takes at any moment of the game, for every possible game history up to that point. A
strategy consists of possible moves and probability distributions on those moves, which
represent how often every move is implemented.

� A pure strategy de�nes a speci�c move or action that the player follows in every possible
situation in the game. A pure strategy gives a complete and deterministic explanation
of how a player plays his game. The set of a player's strategies is the set of strategies
that are available to that player. In the game of Hawks and Doves an individual who
has the pure Hawk behavior always attacks every individual he �nds.

� A mixed strategy is a probability distribution on pure strategies, allowing the player to
choose a pure strategy based on a given probability distribution. In this context, mixed
strategies have a more natural interpretation: an individual who plays Hawks and Doves
with strategy, for instance, (1/2, 1/2) randomly chooses, with the same probability, what
behaviour to implement in each of the �ght he faces.

We assume that the �ghts take place between two individuals, that we have a game with N
pure strategies S1, . . . , SN and that a player can use mixed strategies; these consist of playing
S1, . . . , SN with probability q1, . . . , qN , with qi non-negative and with sum equal to one. A
strategy is therefore a point q in the simplex

SN =

{
q = (q1, . . . , qN ) ∈ RN : qi ≥ 0;

N∑
i=1

qi = 1

}
.

The elements of the canonical basis of RN , in the form ei = (0, . . . , 1, . . . , 0) represent the pure
strategies, particular mixed strategies in which with probability 1 is chosen the strategySi. Let
ui,j be the payo� for a player who uses pure strategy Ri (represented by ei ∈ SN ) against a
player using pure strategy Rj (the point ej ∈ SN ). The matrix with N rows and N columns
U = (ui,j) is the payo� matrix. If U is the utility function we therefore have that

U(Ri, Rj) = ei · Uej = ui,j .

An individual with pure strategy Ri, against an individual with mixed strategy q ∈ SN has
utility function equal to

U(Ri, q) = ei · Uq = (Uq)i =
∑
j

ui,jqj .

The payo� of a player with mixed strategy p against one of mixed strategy q is

U(p, q) = p · Uq =
∑
i,j

ui,jpiqj .

The concept of Nash equilibrium in this context has a di�erent interpretation,
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De�nition 4. A strategy p̄ ∈ SN is called (symmetric) Nash equilibrium if it is the best
answer to itself, that is if for each strategy p ∈ SN , p 6= p̄,

p · U p̄ ≤ p̄ · U p̄.

If equality is not valid, the equilibrium is strict.

Note that in this formulation we do not have a couple of strategies as in the traditional
de�nition, but a single element of SN , we are imagining that the whole population adopts the
equilibrium strategy. Consider a large population of players: if everyone adopted the strategy
p̄, a strict Nash equilibrium, any new strategy that occurs occasionally (for example through
mutation processes) is penalized and therefore can not supplant p̄. We can not however assume
that every equilibrium is strict, even in the game Hawks and Doves is not, so we can not even
assume that every Nash equilibrium is resistant to the invasion of a dissident minority. The
following de�nition is therefore necessary, introduced and coined by Maynard Smith in 1970s
[58],

De�nition 5. The strategy p̄ ∈ SN is evolutionarily stable (ESS) if for each strategy q ∈ SN
di�erent from p̄, and for each ε > 0 smaller than an appropriate threshold ε̄(q) < 1, this
inequality holds:

q · U (εq + (1− ε)p̄) < p̄ · U (εq + (1− ε)p̄) . (1.1)

The term εq+(1−ε)p̄ indicates a population in which a dissident minority q appeared, therefore
a strategy is an ESS if, when every member of the population has adopted it, no dissident
behavior can invade it, being resistant to the occasional appearance of other strategies

The equation (1.1) can be reformulated as

(1− ε) (p̄ · U p̄− q · U p̄) + ε (p̄ · Uq − q · Uq) > 0,

then p̄ is an ESS if and only if the following two conditions are met:

� equilibrium condition
q · U p̄ ≤ p̄ · U p̄ for all q ∈ SN ;

� stability condition

if q 6= p̄ and q · U p̄ = p̄ · U p̄, then q · Uq < p̄ · Uq.

The condition of equilibrium is the de�nition of Nash equilibrium; an ESS is something more
than just the property of being the best answer to itself, which does not guarantee the security
of not being invaded, because it allows the existence of another strategy that is a better answer
(as in Hawks and Doves, with a population of Doves that can be invaded by Hawks, or vice
versa). The evolutionarily stable strategies are characterized by the following lemma (proved
in [44]),

Lemma 6. The strategy p̄ ∈ SN is an ESS if and only if, for each q 6= p̄ near p̄ in SN it holds:

p̄ · Uq > q · Uq.
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1.4 Replicator Dynamics

Replicator Dynamics, introduced by Taylor and Jonker [88], describes the evolution of the
frequencies of the strategies in a population. Assume that the population is divided into n
types E1, . . . , En with frequencies x1, . . . , xn. The �tness fi of an individual of type Ei is a
function of the composition of the population, i.e. the state x = (x1, . . . , xn) on the simplex
Sn (di�erent from the space of strategy SN , presented above). If the population is very large,
and if the generations pass continuously from one to the other, we can assume that the state
x(t) evolves on Sn as a di�erentiable function of time t. The rate of increase of the population
fraction of type Ei is indicated by ẋ/x, ratio between variation over time ẋ, and quantity x.
According to Darwinism, if the rate of increase is a measure of evolutionary success, we can
express this success as the di�erence between �tness fi(x) of Ei and the average �tness of the
population,

f̄(x) =
∑

xifi(x).

These choices lead to the equation called replicator equation ([44]),{
ẋi = xi

(
fi(x)− f̄(x)

)
,

i = 1, . . . , n.
(1.2)

We observe that the simplex Sn is invariant for the dynamics of (1.2): if x ∈ Sn, then x(t) ∈ Sn
for all time t ∈ R. In fact the sum S = x1 + . . .+ xn resolves:

Ṡ = (1− S) f̄ ,

that has S(t) = 1 as a solution (so if the solution of (1.2) remains on the space
∑
xi = 1). If

xi(0) = 0 then xi(t) = 0 for every t, then the faces of the simplex Sn are barriers that make
Sn invariant.

Interesting is the case when the �tness fi is linear, in this case there is a matrix A = (ai,j)
such that fi(x) = (Ax)i, then f̄(x) = x ·Ax; the equation replicator turns into{

ẋi = xi ((Ax)i − x ·Ax) ,

i = 1, . . . , n.
(1.3)

The equilibrium points in intSn are the solutions of

(Ax)1 = · · · = (Ax)n,
∑
xi = 1,

for xi > 0. In general, except in degenerate cases, there is almost one solution. This case is
closely related to the evolutionary games theory developed earlier because it is the equation
that is naturally obtained with populations playing a game with a payo� matrix U . So de�ne
a game in normal form with N pure strategies R1, . . . , RN and a payo� matrix U . A (mixed)
strategy is a point in SN , then the n types E1, . . . , En of the population correspond to n points
p1, . . . , pn ∈ SN . The state of the population is de�ned by the frequencies xi of types Ei and
the dynamics happens on Sn, with �tness matrix ai,j = pi · Upj and then an equation (1.3)
with

fi(x) =
∑
j

ai,jxj = (Ax)i.
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The values of N and n are di�erent, but it is convenient to create a parallel between the pure
strategies R1, . . . , RN ∈ SN with payo� array U and the types of the population E1, . . . , En ∈
Sn with the �tness matrix A . In particular, we say that a point x̄ ∈ Sn is a (symmetrical)
Nash equilibrium if

x ·Ax̄ ≤ x̄ ·Ax̄,

for each x ∈ Sn and it is an evolutionarily stable state (ESS) if

x̄ ·Ax > x ·Ax, (1.4)

for all x 6= x̄ near x̄ in Sn.
The following results on the replicator equation hold (details in [44]),

Theorem 7. Let x̄ ∈ Sn and consider the equation (1.3).

� If x̄ is a Nash equilibrium of the game with matrix A, then x̄ is an equilibrium point of
the equation.

� If x̄ is the ω-limit of an orbit x(t) in Sn, then x̄ is a Nash equilibrium.

Theorem 8. If x̄ ∈ Sn is an ESS for the game with matrix A, then is an asymptotically stable
rest point for (1.3).

Proof. This result is obtained choosing a function P such that

P (x) =
∏

xx̄ii .

This function has a single maximum in Sn at the point x̄. Infact:

logP (x)− logP (x̄) = log
∏

xx̄ii − log
∏

x̄x̄ii =
∑

x̄i log xi −
∑

x̄i log x̄i,

setting as usual �0 log 0 =∞ log 0 = 0� we can write

=
∑

x̄i log
xi
x̄i

=
∑
x̄i>0

x̄i log
xi
x̄i

;

we can now use Jensen's inequality: if ϕ is a convex function de�ned on some interval I, then

ϕ
(∑

piyi

)
≤
∑

piϕ (yi) (1.5)

for all y1, . . . , yn ∈ I and pi > 0 ∀i,
∑
pi = 1, with equality if and only if y1 = y2 = . . . = yn.

We apply this with yi = xi/x̄i, ϕ = − log, pi = x̄i and we obtain:∑
x̄i>0

x̄i log
xi
x̄i
≤ log

∑
x̄i>0

x̄i
xi
x̄i
≤ log

∑
xi = log 1 = 0.

Then
logP (x)− logP (x̄) ≤ 0

P (x) ≤ P (x̄)

with equality if and only if x = x̄.
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If P > 0 (true for all x ∈ Sn with xi > 0 when x̄i > 0) then we have

Ṗ

P
= D(logP ) = D(

∑
x̄i log xi) =

∑
x̄i>0

x̄i
ẋi
xi

=
∑

x̄i ((Ax)i − x ·Ax) = x̄ ·Ax− x ·Ax.

Since x̄ is evolutionarily stable (1.4) implies Ṗ > 0, for each x 6= x̄ near x̄. Then the function
P is a strict local Lyapunov function for the linear replicator dynamics, and all the orbits that
start near x̄ converge to x̄.

In what follows, we do not explicitly specify the di�erent types in the population, assuming
they correspond to the pure strategies of the game itself, and that therefore n = N and
U = A, i.e. each game is associated with a �pure strategy dynamics�.

Two-strategy games

We conclude this chapter by solving the generic problem of the the equation with two-strategy
game, and with some examples. From the equation (1.3), for n = 2, holds:

ẋ0 =
[
f0(x0, x1)− f̄(x0, x1)

]
x0,

ẋ1 =
[
f1(x0, x1)− f̄(x0, x1)

]
x1,

x0 + x1 = 1.

The last condition allows to further simplify the problem, considering only the second equation
and substituting  x→ x1

1− x→ x0

s = (f0 − f1)


ẋ =

[
f1 − f̄

]
x = [f1 − f1x− f0 (1− x)]x = (f1 − f0)x(1− x),

ẋ = −sx(1− x). (1.6)

with s = f0 − f1. The functions f0 and f1 can be chosen according to a payo� matrix.

Constant �tness. If f0 and f1 are constant, suppose f0 > f1, then s is constant and
positive. Since individuals of type 0 always have a higher �tness than the one of type 1, we
expect an evolution that leads the population to become all of type 0.{

ẋ = −sx(1− x),

x(0) = x0.

The solution is:

x(t) =
x0e
−st

1− x0 (1− e−st)
,

e it has as x = 0 and x = 1 has equilibria, one is attractive, one is repulsive, function of the
sign of s.
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Hawks and Doves. If with x we intend the fraction of population of Hawks, the equation
is

ẋ =
C

2

(
G

C
− x
)
x (1− x) .

We are interested in knowing qualitatively the behavior. The righthand side is null for x = 0
and x = 1, that is, the population does not vary when there are no Hawks or no Doves, but
ther is also the equilibrium, for x = G

C (between 0 and 1 because the cost of the �ght C is
greater than the gain G), which corresponds to the value for which the �tness of the Hawks
is equal to that of the Doves, di�erent from the other two because attractive: the trajectory
will be pushed towards G

C , for every initial x di�erent from 0 and 1. Whatever the initial
population is, even with an in�nitesimal presence of Doves (or Hawks), after a su�ciently long
time it will stabilize around the value G

C .

RNA Virus. Referring to [90, 91], we consider the case of the RNA virus phage Φ6; a
population is divided into cooperators (C, in the variable x), viruses that synthesizes large
quantities of product, and defectors (D, in the variable y), viruses that develops the ability to
subtract most of the shared product, with a payo� matrix U equal to(

1 1− s1

1 + s2 1− c

)
,

with all constant positive. The equation becomes
ẋ =

[
fc(x, y)− f̄(x, y)

]
x,

ẏ =
[
fd(x, y)− f̄(x, y)

]
y,

x+ y = 1,

with

fc =

[
A

(
x
y

)]
1

= x+ (1− s1)y,

fd =

[
A

(
x
y

)]
2

= (1 + s2)x+ (1− c)y,

f̄ = x · [x+ (1− s1)y] + y · [(1 + s2)x+ (1− c)y] .

By reducing the variables, calling y = 1−x, the equation for x becomes ẋ = (fc − fd)x(1−x),
that is

ẋ = [x(s1 − s2 − c)− (s1 − c)]x(1− x).

In addition to the equilibria in 0 and 1 there could also be a mixed equilibrium:

x̄ =
s1 − c

s1 − c− s2
,

� if s1 > c then x̄ < 0 or x̄ > 1 (based on the denominator sign). This is the case in
which the price to pay for a confrontation with a defector is greater than that against
a cooperator. The function s is negative in [0, 1] and pushes the solutions towards 0, a
population of only defectors. In this case the game is a prisoner's dilemma;
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� if s1 < c, then x̄ ∈ [0, 1]. When you pay less to �ght against a cooperator you have
an interesting case. The function s is positive in (0, x̄) and negative in (x̄, 1), therefore
solutions are pushed towards equilibrium with both strategies, a mixed polymorphism.
This is no more a prisoner's dilemma, but a Hawk-Dove game.

In the articles is showed that, starting from a situation where defectors are spreading in
the population, as expected from the Prisoner's Dilemma [90], the game can change and
evolve in a mixed polymorphism one. If the cooperators are allowed to grow under absence
of competitive interactions, these evolved phagi should coexist in a mixed polymorphism with
evolved defectors. �Thus, phage Φ6 is unlikely to be permanently trapped in a Prisoner's
Dilemma. Rather, evolution of Prisoner's Dilemma is likely to be a local phenomenon for
populations experiencing high rates of coinfection. If evolved cooperators were to enter these
populations, the locally adapted defectors would face a mixed polymorphism at best [...]. In
general, the transition from a Prisoner's Dilemma to a Hawks and Dove game can be achieved
either by selection for more cheating and the associated costs (i.e., increasing c) or by selection
for decreased sensitivity to cheaters (i.e., decreasing s1). The experiments indicate that the
latter is a possibility in Φ6. Thus, the mixed polymorphism was achieved because levels of
cooperation are variable in this system.[91] �



Chapter 2

Stochastic di�erential equations

All the models presented in this work are of a stochastic nature, involving Brownian motions
and jump processes. For this reason we give in this chapter recalls of theory of probability
and stochastic processes. See [26] for a more detailed treatment. We recall that a stochastic
process on measurable space (Ω,F ,P) is a collection X = {X(t)}t≥0 or {Xt}t≥0 of random
variables. For each point ω ∈ Ω the function t 7→ X(t, ω) is a trajectory of the process.

Let Xt be a stochastic process. Then

U (t) = U (Xs|0 ≤ s ≤ t) ,

the σ-algebra generated by the random variable Xs for 0 ≤ s ≤ t, is called history of the
process until time t ≥ 0. Then, let assume that E (|Xt|) <∞ for all t ≥ 0. If

Xs = E (X(t)|U (s)) a.s. for all t ≥ s ≥ 0,

then Xs is a martingale.
Every stochastic process X(t) is a function not only of the time t, but also of ω ∈ Ω,

X(t, ω). For simplicity of notation we write X(t) or Xt, leaving the dependency from ω
implicit when possible.

2.1 Wiener and Jump processes

Wiener process

A Wiener process is a stochastic process that describes Brownian motion, the random motion
of particles suspended in a �uid, resulting from their collision with the fast-moving molecules
in the �uid. This motion is named after the botanist Robert Brown, who studied it in 1827,
while looking through a microscope at pollen immersed in water.

De�nition. A real valued stochastic process {Wt}t≥0 on (Ω,F ,P) is a standard Brownian
motion or Wiener process if:

� W0 = 0 almost surely;

� for each t ≥ s ≥ 0, the increments Wt − Ws are distributed as a Gaussian random
variable with expected value 0 and variance t− s;

38
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� it is a process with independent increments, i.e. for each �nite sequence of times0 < t1 <
t2 < . . . < tn, the random variables Wt1 ,Wt2 −Wt1 , . . . ,Wtn −Wtn−1 are independent;

� with probability one, the function t 7→Wt is continue.

In particular, E (Wt) = 0 and E
(
W 2
t

)
= t for all time t ≥ 0.

There is result that more explicitly highlights the physical characteristics of a Wiener
process:

Lemma. Let {B(t)}t≥0 be a real valued stochastic process, with B(0) = x ∈ R,
� with independent increments (the events occurring in successive time intervals have no

memory of those that occurred previously);
� stationary, i.e. B(t + h) − B(t) has the same law as B(s + h) − B(s) for each pair of

times (t, s) positive, for h > 0 (the movement depends only on the length of the time interval,
not on the extremes);

� with continuous trajectories almost surely.
Then there are values b and σ such that B is a Brownian motion of drift b, di�usion

coe�cient σ2 and intial point x, i.e:

B(t) = x+ bt+ σW (t).

A stochastic process on Rn, Wt = (W 1
t , . . . ,W

n
t ) is a n-dimensional standard Wiener

process if W k
t is a Wiener process on R and if the σ−algebras F(W k

t | t ≥ 0) are independent,
for each k = 1, . . . , n.

Construction of the stochastic integral

We can write a di�usion process X in the form

Xt = X0 +

ˆ t

0
b(s)ds+

ˆ t

0
σ(s)dW.

as soon as we have a de�nition for ˆ T

0
GdW,

for an appropriate class of stochastic processes G. The de�nition is not obvious since t 7→
W (t, ω) is with in�nite variation for almost every omega. In fact, we show that the stochastic
integral can have di�erent de�nitions based on the choice made in the approximations of its
construction, with di�erent choices that lead to di�erent theories. The reference texts for this
section are [26] for the di�usion processes, [49, 75] for jump processes.

De�nition. LetW be a one-dimensional Wiener process. The Ito integral
´ T

0 WdW is de�ned
as

ˆ T

0
WdW =

WT
2

2
− T

2
.

The stochastic integral is de�ned for a wide range of stochastic processes, which are adapted
with respect to the history Ft, i.e. Ft-measurable for all time t ≥ 0. The idea is that for every
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time t, the random variable Gt depends only on the information available in the σ -algebra
Ft. A process G is progressively measurable if it is adapted to �ltration Ft and it is jointly
measurable with respect to the variables t and ω together. A progressively measurable process
at any time �depends only on the past history of Brownian motion�.

De�nition. We call L2(0, T ) the class of progressively measurable real processes such that

E
(ˆ T

0
G2dt

)
<∞,

then we de�ne L1(0, T ) the class of process with

E
(ˆ T

0
|G| dt

)
<∞.

The set on which to build Ito integral is L2. Using the above de�nitions is infact possible
to de�ne stochastic integrals for processes in L2, and the following holds:

Lemma. For G ∈ L2(0, T ) Ito stochastic integral
´ T

0 GsdWs is well de�ned, characterized by
the following properties, for almost every ω ∈ Ω,

� E
(´ T

0 G(s, ω)dWs

)
= 0;

� The integral function I(t) =
´ t

0 GdW de�ned for 0 ≤ t ≤ T is a martingale with respect
to Ft.

De�nition. Suppose that X is a stochastic process in the integral form

Xt = X0 +

ˆ t

0
b(s)ds+

ˆ t

0
σ(s)dW.

with b ∈ L1(0, T ), σ ∈ L2(0, T ). This process is a di�usion process, and for 0 ≤ t ≤ T has
stochastic di�erential

dX = bdt+ σdW.

Poisson processes and Markov Chains

In the following, to model mutations, we will use the concept of jump process, i.e. processes
that have discrete movements, jumps, rather than continuous movements, such as the Wiener
process. We recall here the de�nitions of counting process, Poisson process and present a
simple numerical implementation of it.

De�nition. Let (Tn)n∈N be a succession of positive random variables with real values, such
that {

T0 = 0,

Tn < Tn+1. if Tn < +∞
Then de�ne the process {Nt}t≥0:

Nt =

{
n, if t ∈ [Tn, Tn+1)

+∞. if t ≥ T∞

(Nt) is a counting process (for a �xed t, Nt counts the number of events in the interval [0, t]).
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Examples of counting processes include Poisson processes:

De�nition. A process (Nt)t≥0 is a homogeneous Poisson process with intensity λ > 0 if it is
a counting process, N0 = 0, it has independent increments and

Nt −Ns ∼ P (λ(t− s)) ,

for all 0 ≤ s ≤ t and with P(µ) a Poisson distribution with intensity µ, i.e.

P (Nt −Ns = k) = (λ(t−s))k
k! e−λ(t−s), k = 0, 1, . . .

A Poisson process of intensity λ can be easily constructed considering {Ui}i∈N, sequence of
independent random variables identically distributed as Exp(λ), that is, with density function

f(t) =

{
λe−λt, if t ≥ 0

0 otherwise

The process takes the �rst jump at time U1, the second after a time U2 from the �rst and so

on. In fact if we de�ne the arrival times as Tn =

n∑
i=1

Ui the counting process N associated

is Poisson. If U is a random variable distributed as an exponential Exp(λ), then E (U) =
1/λ, so we have an expected number of T · λ jumps in a time interval (0, T ). Simulating a
Poisson process is therefore simple, since it reduces to generate exponential variables starting
from uniforms in (0, 1). Let therefore T and U be random variables, T ∼ Exp(λ) and U ∼
Unif(0, 1), we calculate an appropriate function

g : [0, 1] 7→ R,

such that g(U) = T . For t ≥ 0

P (g(U) ≤ t) = P (T ≤ t) = 1− e−λt,

P (g(U) ≤ t) = P
(
U ≤ g−1(t)

)
= P

(
U ∈ [0, g−1(t)]

)
= g−1(t),

so we choose g such that g−1(t) = 1− e−λt i.e.

T = g(U) = − log (1− U)

λ
.

Because of U is uniform on [0, 1] (1− U) ∼ Uniform(0, 1), so we can consider ḡ,

T = ḡ(U) = − logU

λ
.

Markov Chains. Poisson processes are some of the simplest examples of continuous time
Markov chains. Since during the presentation of the model of Chapter 6 we will use an idea
taken from the construction of a continuous time Markov chain with discrete states, we recall
the most important de�nitions we will need [72].

De�nition. Let I be a countable set. Each i ∈ I is called a state and I is called state-space.
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� the quantity λ = (λi : i ∈ I) is a distribution on I if 0 ≤ λi ≤ 1 for all i ∈ I and∑
i λi = 1;

� a matrix P = (pij), i, j ∈ I is stochastic if every row {pij : j ∈ I} is a distribution;

� A stochastic process Xn, n ∈ N is a Markov chain with initial distribution λ and transi-
tion matrix P , Markov(λ, P ) if

1. X0 has distribution λ, i.e. P (X0 = i0) = λi0;

2. for n ≥ 0, conditional on Xn = i, Xn+1 has distribution {pij : j ∈ I} and is inde-
pendent of X0, . . . , Xn−1, i.e.

P (Xn+1 = in+1|X0 = i0, . . . , Xn = in) = pinin+1

For which it concerns continuous-time chains:

De�nition. Let I be a state space.

� A Q-matrix on I is a matrix Q = (qij), i, j ∈ I satisfying the following conditions:

1. 0 ≤ −qii <∞ for all i; we will write qi as an alternate notation for −qii;
2. qij ≥ 0 for all i 6= j;

3.
∑

j qij = 0 for all i;

Each o�-diagonal entry qij gives the value we interpret as the rate of going from i to j.
The numbers qi are the rate of leaving i. The basic data for a continuos-time Markov chain
on I are given in the form of a Q matrix. From a matrix Q is possible to obtain the jump
matrix Π = (πij), i, j ∈ I, de�ned as:

πij =

{
qij/qi if j 6= i and qi 6= 0

0 if j 6= i and qi = 0,

πii =

{
0 if qi 6= 0

1 if qi = 0,

Here is the de�nitions of a continuous-time Markov and jump chain.

De�nition. De�ne �rst the jump chain Y :

� De�ne a discrete-time Markov(λ,Π) Yn and variables S1, S2, . . . that describe holding
times in each of the states of Yn, as independent exponential random variables of pa-
rameters q(Y0), . . . , q (Yn−1) respectively.

� A right-continuous process Xt, t ≥ 0 on I is a Markov chain with initial distribution λ
and generator matrix Q if it has Yn as jump chain and S1, . . . , Sn as holding times.

We can construct such a process as follows: let Yn, n ≥ 0 be discrete-time Markov(λ,Π) and
let T1, T2, . . . be independent exponential random variables of parameter 1, independent of Yn.
Set Sn = Tn/q (Yn−1), Jn = S1 + . . .+ Sn and

Xt =

{
Yn if Jn ≤ t < Jn+1 for some n

∞ otherwise.

Then (Xt), t ≥ 0 has the required properties.
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Jump processes and Ito integration for jump processes

Let us consider now processes with jump terms and de�ne the concept of stochastic integrals
for this kind of processes too. Let(Ω,F ,P,Ft) be a probability space with a �ltration Ft. A
one-dimensional di�usion process with jumps has the form

Xt = X0 +

ˆ t

0
b(s)ds+

ˆ t

0
σ(s)dWs + J(t), (2.1)

with

� b ∈ L1(0, t) and σ ∈ L2(0, t) for all t (a di�usion process);

� J a pure jump process, adapted to Ft, right continuous and with J0 = 0, with a �nite
number of jumps in each time interval [0, T ], constant between two successive jumps.

A clear expression can be found for pure jump processes, through the de�nition of Poisson
random measure, that allows to de�ne a new type of stochastic di�erential. See [49].

De�nition. Let (E, ν) be a measurable space. A Poisson random measure N (dt, dξ) on
R+ × E is such that:

� for each interval [x1, x2] and each measurable set C ⊂ E, N ([x1, x2] × C) is a Poisson
random measure with parameter (|x2 − x1| · ν(C));

� if [x1, x2] × C and [x′1, x
′
2] × C ′ are disjoint, then N ([x1, x2] × C) and N ([x′1, x

′
2] × C ′)

are independent.

In the case where E is of �nite measure, ν(E) = λ < +∞, a formulation for a Poisson random
measure can be obtained constructively. Infact, let us consider {ξi}n∈N, succession of random
variables with values in E, independent and identically distributed with uniform law on (E, ν):

P (ξi ∈ dξ) =
ν(dξ)

ν(E)
.

Then consider a Poisson process Nt of intensity λ = ν(E). With these ingredients N ([x1, x2]×
C) is the measure that counts the number of points of the type (Ti(ω), ξi(ω)) within [x1, x2]×C,
that is

N (dt, dξ) =
∑
n

δTn(dt) · δξn(dξ). (2.2)

A pure jump process J , according to the de�nition of N (dt, dξ) can be formulated in the
following form:

J(t) =

ˆ t

0

ˆ
E
K(s, ξ)N (ds, dξ).

In N (dt, dξ) are the temporal characteristics of the jumps, in K(t, ξ) their amplitude. It is
also useful to reformulate this form in the following way:

J(t) =

ˆ t

0

ˆ
E
K(s, ξ)

[
N (ds, dξ)− ν(E)

ν(dξ)

ν(E)
ds

]
+

ˆ t

0

ˆ
E
K(s, ξ) · ν(E)

ν(dξ)

ν(E)
ds, (2.3)

such that the second addend is in ds and the �rst verify the lemma below:



CHAPTER 2. STOCHASTIC DIFFERENTIAL EQUATIONS 44

Lemma 9. If, for all t > 0, E
[´ t

0

´
E |K(s, ξ, ·)|ν(dξ)ds

]
<∞, then

ˆ t

0

ˆ
E
K(s−, ξ) (N (ds, dξ)− ν(dξ)ds) (2.4)

is a martingale.

De�nition. A process in the following form,

Xt = X0 +

ˆ t

0
[. . . ] ds+

ˆ t

0
[. . . ] dWs +

ˆ t

0

ˆ
E

[. . . ] (N (ds, dξ)− ν(dξ)ds) .

is a semimartingale.

The complete process (2.1), in martingale form, is

Xt = X0 +

ˆ t

0
b̃(s)ds+

ˆ t

0
σ(s)dWs +

ˆ ˆ
E
K(s, ξ)

[
N (ds, dξ)− ν(E)

ν(dξ)

ν(E)
ds

]
(2.5)

where b̃ is the sum of the function b and the term in ds in (2.3).

2.2 Stochastic di�usive equations

Let Wt be a m−dimensional Wiener process and X0 a n−dimensional random variable inde-
pendente of Wt. Let then

F(t) = F (X0,Ws, 0 ≤ s ≤ t)
be the σ−algebra generated from X0 and from the history of the Wiener process up to time t.

For T > 0, let us de�ne
b : Rn × [0, T ] 7−→ Rn,

with b = (b1, . . . , bn) and
σ : Rn × [0, T ] 7−→Mn×m,

with components

σ =

 b1,1 · · · b1,m
...

. . .
...

bn,1 · · · bn,m

 ,

deterministic assigned functions.

De�nition. The stochastic process Xt, with values in Rn is the solution of the stochastic
di�erential equation {

dX = b(X, t)dt+ σ(X, t)dW,

X(0) = X0,

for 0 ≤ t ≤ T if Xt is progressively measurable in respect of F(t), if b(X, t) ∈ L1
n(0, T ) and

σ(X, t) ∈ L2
n×m(0, T ) and if

Xt = X0 +

ˆ t

0
b(Xs, s)ds+

ˆ t

0
σ(Xs, s)dWs,

almost surely for 0 ≤ t ≤ T . The coe�cient b is the drift, σ is the di�usion coe�cient.
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Theorem 10. Let us suppose that functions b, σ have not only the regularity required in the
previous de�nition, but that the following conditions hold:

� Lipschitz condition

|b(x1, t)− b(x2, t)|2 + |σ(x1, t)− σ(x2, t)|2 ≤ L · |x1 − x2|2 ,

for all times 0 ≤ t ≤ T , for a constant L and for all x1, x2 ∈ Rn;

� Growth condition
|b(x, t)|2 + |σ(x, t)|2 ≤ L ·

(
1 + |x|2

)
,

for all times 0 ≤ t ≤ T , for a constant L and for all x ∈ Rn;

� Initial condition
E
(
|X0|2

)
<∞,

independent of W (t).

Then a unique solution X ∈ L2
n(0, T ) of the di�erential equation exists:{

dX = b(X, t)dt+ σ(X, t)dW,

X(t = 0) = X0.

Remark. A unique solution is unique almost everywhere, that is, if X and X̃ are both solutions
of the same stochastic di�erential equation then

P
(
Xt = X̃t per ogni 0 ≤ t ≤ T

)
= 1.

The proof of the theorem can be found on [26]. In conclusion we state a theorem on the
dependence of the equation from its parameters ([26]).

Theorem 11. Suppose that bk, σk and Xk
0 satisfy the hypotheses of the existence and unique-

ness theorem all with the same constant L. Suppose they are solutions to problems{
dXk = bk(Xk, t)dt+ σk(Xk, t)dW,

Xk(t = 0) = Xk
0 .

Then let us assume that

lim
k→∞

E
(∣∣∣Xk

0 −X0

∣∣∣2) = 0,

and that, for all M > 0,

lim
k→∞

max
0 ≤ t ≤ T
|x| ≤M

(∣∣∣bk(x, t)− b(x, t)∣∣∣+
∣∣∣σk(x, t)− σ(x, t)

∣∣∣) = 0.

Then

lim
k→∞

E
(

max
0≤t≤T

∣∣∣Xk(t)−X(t)
∣∣∣2) = 0,

where X is the only solution of{
dX = b(X, t)dt+ σ(X, t)dW,

X(t = 0) = X0.
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Remark. In particular for almost every ω ∈ Ω the random trajectories of the di�usive stochastic
equation {

dXε = b(Xε)dt+ εdW,

Xε(t = 0) = x0,

converge uniformly on [0, T ], for ε→ 0 to the deterministic trajectory of{
ẋ = b(x),

x(0) = x0.

Then, in the case of small random noises the stochastic trajectories are only a slight disturbance
of the deterministic ones.

2.3 S.D.E.s with jump terms

Regarding the existence and uniqueness of solutions to the stochastic di�erential equation{
dX = b(X, t)dt+ σ(X, t)dW +

´
EK(X, ξ)N (dt, dξ)

X(t = 0) = X0.
(2.6)

we can refer to Atreya [7] where an approach that takes advantage of the piecewise constant
behaviour of the process is used.

First, we assume that b and σ satisfy conditions to guarantee the existence of the process
X̃, satisfying (2.6) with K = 0, i.e. a pure di�usion process. We assume that, for all x ∈ Rn,
the process X̃ does not explode in �nite time. Next we assume that

λ(x) = ν {ξ ∈ E, |K (x, ξ)| 6= 0} <∞

for all x ∈ Rn and λ is bounded on compacts.
These two hypoteses guarantee that the �rst jump time

τ1 := inf

{
t > 0,

ˆ t

0

ˆ
E
K
(
X̃s− , ξ

)
N (ds, dξ) 6= 0

}
ful�lls P (τ1 > 0) = 1 for all initial position X0 = x ∈ Rn. Thus, starting at X0 = x, Xt

evolves as the di�usion X̃t (with X̃0 = x) for t < τ1 and then jumps to

Xτ1 = X̃τ1 +K
(
X̃τ1 , ξ1

)
where (τ1, ξ1) is a point belonging to the Poisson random measure N (·, ·) with the property
that N ((0, τ1)× E) = 0.

Next, starting at Xτ1 , the process evolves as the di�usion X̃t (with X̃0 = Xτ1) up to a
random time τ2, then jumps and so on.

It is clear that under the above assumptions one can de�ne the jump times τ1, τ2, . . .
appropriately and the process Xt is well de�ned for all t < τ∞ := limn→∞ τn. Thus this
construction yields a solution to 2.6 up to explosion time τ∞.

Assuming an uniform bound for λ(x), i.e. λ := supx∈Rn λ(x) <∞ is a su�cient condition
to ensure that τ∞ =∞ with probability one for all initial conditions x(0) = x
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2.4 Numerical implementation of stochastic equations

For both types of processes considered, di�usion and jump, it is possible to construct numer-
ically the stochastic integrals and consequently to implement methods to simulate stochastic
di�erential equations. For what concerns the di�usion processes we will use results of article
[43].

Brownian motion. We repeat for convenience the de�nitions of Wiener process, Wt, con-
tinuous, is a Wiener process if:

1. W (t = 0) = 0 with probability 1;

2. For 0 ≤ s < t ≤ T the increment Wt−Ws is distributed as a Gaussian of expected value
0 and variance t− s, that is

Wt −Ws ∼
√
t− sN(0, 1),

with N(0, 1) a standard Gaussian;

3. For 0 ≤ s < t < u < v ≤ T the increments Wt −Ws and Wv −Wu are independent.

For computational purposes it is convenient to consider a discrete Brownian motion, where
Wt is de�ned only for a discrete set of values of t. Chosen the time interval δt = T/N for an
appropriate N ∈ N, denote with Wj the value of Wtj with tj = jδt. The �rst condition states
that W0 = 0 and the subsequent ones tell us that

Wj = Wj−1 + dWj ,

with j = 1, . . . , N and with dWj a random variable independent of the previous, in the form√
δtN(0, 1). Numerically, it is possible to generate only random variables uniforms in [0, 1],

we can obtain Gaussian variables using the algorithm Box-Muller [11]:

Lemma. Let Z1 and Z2 be two independent random variables, identically distributed, uniforms
on [0, 1]. Then the transformation

V1 =
√
−2 logZ1 cos (2πZ2) ,

V2 =
√
−2 logZ1 sin (2πZ2) ,

transform the couple (Z1, Z2) in the pair (V1, V2), such that V1 and V2 are distributed as
standard Gaussian variables, N(0, 1), independent of each other.

Stochastic di�erential dW and Euler-Maruyama. If we can simulate the process W ,
then the integral

´
dW can also be built, starting from the de�nition of Riemann sum and

considering the approximation with rectangles

ˆ T

0
h(t)dWt '

N−1∑
j=0

h(tj)
(
Wtj+1 −Wtj

)
.
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The Euler-Maruyama method is a numerical method for simulating autonomous stochastic
equations of the type

Xt = X0 +

ˆ t

0
f(Xs)ds+

ˆ t

0
g(Xs)dWs,

for f and g scalar functions with initial datum X0, random variable. To simulate the equation,
it is convenient to switch to compact notation

dXt = f(Xt)dt+ g(Xt)dWt; X(t = 0) = X0. (2.7)

First, the interval [0, T ] on which the problem is de�ned is discretized, so de�ne ∆t = T/L
for some L positive, and de�ne τj = j∆t and Xj = Xτj . It is convenient to choose the step
∆t for the numerical method so that it is an integer multiple of the increment δt = T/N of
the discrete Brownian motion (de�ned on the N times tj = jδt), i.e ∆t = Rδt, so that the set
of points on which the Wiener process is calculated is a subset of the steps for the solution of
the numerical stochastic equation. Calculating the equation in the points τj we get:

Xτj = Xτj−1 +

ˆ τj

τj−1

f(Xs)ds+

ˆ τj

τj−1

g(Xs)dWs,

and by approximating each term we obtain at the Euler-Maruyama method

Xj = Xj−1 + f(Xj−1)∆t+ g(Xj−1)
(
Wτj −Wτj−1

)
,

for j = 1, . . . , L. Brownian increments can be reformulated into

Wτj −Wτj−1 = W (jR∆t)−W ((j − 1)R∆t) =

jR∑
k=jR−R+1

dWk.

Note that in case the function g is null, the method is reduced to explicit Euler for ordinary
equations.

Eulero-Maruyama with jumps. To take account of the jumps it is necessary to add terms
to the Euler-Maruyama structure; focusing only on the new terms we have a S.D.E. of the
form

dXt = K(Xt)dNt,

with Nt Poisson process of intensity λ. Using the de�nition of stochastic integral in N ,

Nt =

ˆ t

0
K(Xs)N (ds) =

∑
n

ˆ t

0
K(Xs)δTn(ds),

then, calculating in the points discretized by ∆t as in the previous case, we get the increase∑
n

ˆ τj+1

τj

K(Xs)δTn(ds) =
∑

τj≤Tn≤τj+1

K(XTn).
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Assuming the interval ∆t small we can approximate XTn with Xj and then write∑
τj≤Tn≤τj+1

K(XTn) ' K(Xj) ·# {Tn : τj ≤ Tn < τj+1} ,

i.e. K(Xj) multiplied by the number of jumps inside [τj , τj+1).
Recalling that X(τn) and Xn are random variables, it is necessary to de�ne a concept of

convergence order of a numerical method.

De�nition. A numerical method for stochastic di�erential equations has a strong convergence
order equal to γ if there is a constant C such that

E (|Xn −Xτ |) ≤ C∆tγ ,

for all τ = n∆t ∈ [0, T ] and for ∆t small.

Euler-Maruyama method, with the functions f and g su�ciently regular, has strong con-
vergence order γ = 1/2. It can be noted that there is a di�erence with the deterministic case,
as choosing g = 0 and initial value X0 constant, the expected value can be eliminated from
the above inequality, which remains true also for γ = 1. One could try to improve the order
of convergence by implementing more complex algorithms, such as the Milstein method or
Runge-Kutta ([43]) methods.



Chapter 3

Stochastic processes and P.D.E.s

A stochastic process can be described in a deterministic way by means of the two Kolmogorov
integro-partial di�erential equations: the backward one, related to expected values, and the for-
ward one, related to the probability density. In this chapter we show how, starting from models
of stochastic equations, it is possible to obtain these equations. We �rst establish a connection
between in�nitesimal generators of stochastic processes, i.e. partial di�erential operators that
encode informations about the process, and parabolic equations describing macroscopic quan-
tities of processes. We use Ito formula, a stochastic equivalent of Taylor's formula, to derive
the Feynman-Kac equation (Kolmogorov backward), then we create a connection between the
latter and the Fokker-Planck equation (Kolmogorov forward). The results presented below
can be found in [75, 76, 49].

3.1 Ito formula

Di�usion processes

Ito formula is a fundamental formula of stochastic calculus that gives us the possibility to
de�ne the concept of in�nitesimal generator, at the basis of Kolmogorov's theorems [26].

Theorem 12. Suppose X a di�usive stochastic process on a probability space (Ω,F ,P), which
solves the stochastic di�erential equation

Xt = X0 +

ˆ t

0
b (Xs) ds+

ˆ t

0
σ (Xs) dWs,

dX = bdt+ σdW,

for b ∈ L1(0, T ), σ ∈ L2(0, T ). Let u : R × [0, T ] 7→ R be a continuous function with ut, ux
and uxx that exist and are continuous. Consider the process

Yt = u(Xt, t).

Then Y solves the stochastic di�erential equation

Yt − Y0 =

ˆ t

0

(
ut(X, s) + ux(X, s)b+

1

2
uxx(X, s)σ2

)
ds+

ˆ t

0
ux(X, s)σdWs. (3.1)

50
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dY = utdt+ uxdX +
1

2
uxxσ

2dt (3.2)

=

(
ut + uxb+

1

2
uxxσ

2

)
dt+ uxσdW,

Note that, since Xt = X0 +
´
bds +

´
σdW , X has continuous trajectories almost surely

and therefore for almost every ω ∈ Ω the functions of times ut(Xt, t), ux(Xt, t), uxx(Xt, t)
are continuous, then the integrals in ((3.1)) are well de�ned. The theorem can be generalized
to the case of multiple stochastic processes with di�erential dXi = bidt + σidW , function
u : Rm × [0, T ] 7→ R continuous with ut,uxi ,uxi,xj continuous for all i, j = 1, . . . ,m to obtain
a generalized Ito formula:

du(X1, . . . , Xm, t) = utdt+
m∑
i=1

uxidX
i +

1

2

m∑
i,j=1

uxi,xjσ
iσjdt.

Obviously we can further extend the argument done in dimension one and get the Ito formula
for processes in dimension n ≥ 1, i.e. dX = bdt + σdW with b ∈ L1

n(0, T ), σ ∈ L2
n×m(0, T );

for i = 1, . . . , n

dXi = bidt+
m∑
j=1

σijdWj .

Lemma 13. Let u be a continuous function with domain in Rn × [0, T ], with ut, uxi , uxixj
continuous for all i and j, then

d (u(Xt, t)) = utdt+
n∑
i=1

uxidXi +
1

2

n∑
i,j=1

uxixj

m∑
l=1

σijσjldt, (3.3)

with derivatives computed in (Xt, t).

Ito for semimartingale

Also in the case of jumping processes, a Ito formula can be calculated:

Lemma 14. [49] Let X be a semimartingale as in (2.3) and (2.5),

dX = bdt+ σdW + dJ,

for b ∈ L1, σ ∈ L2. De�ne u ∈ C2,1 (R× [0,+∞)). Then the process {Yt = u(Xt, t)}t≥0 is a
semimartingale and the following formula holds,

dYs = ut(Xs, s)ds+Au(Xs, s)ds+ dMu
s , (3.4)

with

Au(x, t) = ux(x, t)b(t, ω) +
1

2
uxx(x, t)σ2(t, ω) +

ˆ
E

[u(x+K(t, ξ), t)− u(x, t)] ν(dξ),

and Mu
t a martingale.
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Proof. Let us consider the equation (2.5) between a jump and another, for Ti ≤ t < Ti+1. We
have

Xt = XTi +

ˆ t

Ti

b̃(s)ds+

ˆ t

Ti

σ(s)dWs,

with the jump term that disappears because of the absence of jumps in the considered interval.
In [Ti, Ti+1) Ito formula for di�usion processes can be used,

Yt = YTi +

ˆ t

Ti

[
us(Xs, s) + ux(Xs, s)b̃(s) +

1

2
uxx(Xs, s)σ

2(s)

]
ds

+

ˆ t

Ti

ux(Xs, s)σ(s)dWs. (3.5)

This equation holds while t = T−i+1. Between times T−i+1 and Ti+1 there is a jump and X
changes in value,

X(Ti+1) = X(T−i+1) +K(Ti+1, ξi+1, ω).

Then, for Y ,

Y (Ti+1)− Y (T−i+1) =
[
u
(
X(T−i+1) +K(Ti+1, ξi+1, ω), T−i+1

)
− u

(
X(T−i+1), T−i+1

)]
. (3.6)

We can then rewrite the increment for Y on the whole time interval [0, T ],

Y (t)− Y (0) = Y (t)− Y (TN(t)) + Y (TN(t))− Y (T−N(t))

+ Y (T−N(t))− Y (TN(t)−1) + Y (TN(t)−1)− Y (T−N(t)−1)

+ . . .
+ Y (Ti)− Y (T−i ) + Y (T−i )− Y (Ti−1)
+ . . .
+ Y (T−1 )− Y (0),

that is the sum

Y (t)− Y (TN(t)) +
∑
Ti≤t

[
Y (Ti)− Y (T−i ) + Y (T−i )− Y (Ti−1)

]
.

Using the expressions (3.5), (3.6), the characterization of the jump processes and ordering
integrals appropriately, we obtain:

Y (t)− Y (0) =
´ t

0{
[
us(Xs, s) + ux(Xs, s)b̃(s) + 1

2uxx(Xs, s)σ
2(s)

]
+

´
E [u (Xs− +K(s, ξ), s−)− u(Xs− , s

−)] ν(dξ)}ds

+
´ t

0 ux(Xs, s)σ(s)dWs

+
´ t

0

´
E [u (Xs− +K(s, ξ), s−)− u(Xs− , s

−)] (N (ds, dξ)− ν(dξ)ds) .

In the �rst integral, second line, we are integrating in ds, so it is possibile to replace u (Xs− +K(s, ξ), s−)
with u (Xs +K(s, ξ), s). In the last integral instead we use the regularity of u to write u(s)
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instead of u(s−). Finally,

Y (t)− Y (0) =
´ t

0{
[
us(Xs, s) + ux(Xs, s)b̃(s) + 1

2uxx(Xs, s)σ
2(s)

]
+

´
E [u (X(s) +K(s, ξ), s)− u(Xs, s)] ν(dξ)}ds

+
´ t

0 ux(Xs, s)σ(s)dWs

+
´ t

0

´
E [u (Xs− +K(s, ξ), s)− u(Xs− , s)] (N (ds, dξ)− ν(dξ)ds) ,

that is the target formula, with Mu
t sum of the last two lines.

Generators

We summarize below the Ito formulas for the process Yt = u(Xt, t):

� Formula for di�usive processes in Rn:

dYt = utdt+

 n∑
i=1

uxibi +
1

2

∑
i,j

uxixj
[
σσt
]
ij

 dt+

n∑
i=1

m∑
j=1

uxiσ
ijdW j ,

that, for n = 1 is

dY = utdt+

(
uxb+

1

2
uxxσ

2

)
dt+ uxσdW ;

� Formula for di�usive processes with jumps in Rn:

dY = utdt+

 n∑
i=1

uxibi +
1

2

∑
i,j

uxixj
[
σσt
]
ij

+

ˆ
E

[u(x+K(x, ξ), t)− u(x, t)] ν(dξ)

 dt+dMu,

that, for n = 1 is

dY = utdt+

(
uxb+

1

2
uxxσ

2 +

ˆ
E

[u(x+K(x, ξ), t)− u(x, t)] ν(dξ)

)
dt+ dMu.

In each of the previous, the term in brackets, integrated with respect to dt is called generator.
Generators can be used to obtain a description of the solutions of partial di�erential equations
and have a preponderant role in the next part. So we have:

� Generator of di�usive processes in Rn:

Au(x, t) =

n∑
i=1

uxi(x, t)bi(x) +
1

2

∑
i,j

uxixj (x, t)
[
σσt
]
ij

(x),

that, for n = 1 is

Au(x, t) = ux(x, t)b(x) +
1

2
uxx(x, t)σ2(x);
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� Generator of di�usive processes with jumps in Rn:

Au(x, t) =
n∑
i=1

uxi(x, t)bi(x) +
1

2

∑
i,j

uxixj (x, t)
[
σσt
]
ij

(x)

+

ˆ
E

[u(x+K(x, ξ), t)− u(x, t)] ν(dξ),

that, for n = 1 is

Au(x, t) = ux(x, t)b(x) +
1

2
uxx(x, t)σ2(x) +

ˆ
E

[u(x+K(x, ξ), t)− u(x, t)] ν(dξ).

Remark. In general, from this point on, we indicate with A the generator of a di�usion process
with jumps, specifying with L the term exclusively di�usive and with I the jump term:

Lu(x, t) =
n∑
i=1

uxi(x, t)bi(x) +
1

2

∑
i,j

uxixj (x, t)
[
σσt
]
ij

(x),

Iu(x, t) =

ˆ
E

[u(x+K(x, ξ), t)− u(x, t)] ν(dξ).

3.2 Kolmogorov backward: Feynman-Kac equation

The Feynman-Kac equation establishes a connection between stochastic di�erential equations
and partial di�erential equations. A large class of expected values of stochastic processes can
be calculated using deterministic methods. Using Ito formula, let X is the stochastic process
with generator A, solution of a stochastic di�erential equation with initial deterministic point
X0 = x. Let Λ(x) and h(x) be two smooth and limited functions. It is possible to represent
the solution of the following problem,{

ut = Au− Λu,

u(t = 0) = h.

as an appropriate expected value of the process X,

u(x, t) = E
(
h(X(t))e−

´ t
0 Λ(X(u))du|X(0) = x

)
.

This is the Feynman-Kac formula, of which we give a proof in the case of n = 1 [75].

Theorem 15. Let X be the solution of a stochastic di�erential equation with jumps in the
form

dXt = b(Xt)dt+ σ(Xt)dWt +

ˆ
Z
K(Xt− , ξ)N (dt, dξ),

with X0 = x, deterministic, generator A as in the previous section, and the functions b, σ,
K that verify the hypotesis for existence and uniqueness for X. Let Λ(x) and h(x) be smooth
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and limitated functions (or h(x) limitated and Λ(x) non negative). Consider the di�erential
problem {

ut(x, t) = Au(x, t)− Λ(x)u(x, t), t > 0

u(x, 0) = h(x).
(3.7)

If u(x, t) is a limited and C2,1 solution of the problem, it can be represented as

u(x, t) = E
(
h(Xt)e

−
´ t
0 Λ(Xu)du|X0 = x

)
.

In particular, this solution is limitated on compacts [0, T ] for all T > 0 and is unique.

Proof. The sketch of the proof is showing that the process M = (Ms)s≥0, de�ned as

Ms = u(Xs, t− s)e−
´ s
0 Λ(Xu)du,

is a martingale. If so, since the martingale property E (Mt|Fs) = Ms ∀t ≥ s holds, we can
write

E (Mt|X0 = x) = M0.

We observe that
M0 = u(X0, t) = u(x, t),

so it holds:
u(x, t) = E (Mt|X0 = x) = E

(
u(Xt, 0)e−

´ t
0 Λ(Xu)du|X0 = x

)
= E

(
h(Xt)e

−
´ t
0 Λ(Xu)du|X0 = x

)
,

the theorem is then proved.
However, it remains to be shown that M is a martingale. To do this we have to calculate

dMs and �rst, it is useful to apply Ito formula (3.4) to the functione g(x, s) = u(x, t− s) and
to the process X obtaining

dg(Xs, s) = gs(Xs, s)ds+Ag(Xs, s)ds+ dMg
s .

Considering that

gs(x, s) = −ut(x, t− s),
gxx(x, s) = uxx(x, t− s), gx(x, s) = ux(x, t− s),

and since u is solution of the problem (3.7) we obtain

du(Xs, t− s) = [−ut(Xs, t− s) +Au(Xs, t− s)] ds+ dMg
s

= Λ(Xs)u(Xs, t− s)ds+ dMg
s .

Before calculating dM we de�ne a new process

Ys = e−
´ s
0 Λ(Xu)du,

that has stochastic di�erential
dYs = −YsΛ(Xs)ds.
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Di�erential dM can be calculated as:

dMs = d [u(Xs, t− s)Ys] = du(Xs, t− s) · Ys + u(Xs, t− s) · dYs

= YsΛ(Xs)u(Xs, t− s)ds+ YsdM
g
s − YsΛ(Xs)u(Xs, t− s)ds,

i.e.
dMs = e−

´ s
0 Λ(Xu)dudMg

s ,

and so

Mt =

ˆ t

0
e−
´ s
0 Λ(Xu)dugx(Xs, s)b(Xs)dWs

+

ˆ t

0

ˆ
E
e−
´ s
0 Λ(Xu)du [g (Xs− +K(Xs− , s))− g(Xs− , s)] (N (ds, dξ)− ν(dξ)ds) .

The �rst integral is still a Ito integral, therefore it is a martingale. The second integral is a
martingale, since the process

[g (s,Xs− +K(Xs− , ξ))− g(s,Xs−)] ,

also with the addition of the limited term exp
(
−
´ t

0 Λ(Xu)du
)
continues to satisfy the hy-

potheses. Then M is a martingale and the theorem is proved.

If in (3.7) we consider the function Λ = 0 and if it is possible to take h as the indentity
function (bounded if, for example, x lives in a bounded interval), then the solution of the
problem {

ut(x, t) = Au(x, t), t > 0,

u(x, 0) = x,

can be represented as
u(x, t) = E (Xt|X0 = x) ,

with this interpretation: knowing that the process starts from position x, what is its expected
position at time t?

3.3 Kolmogorov forward: Fokker-Planck equation

As said, Feynman-Kac equation answers the question knowing that the process starts from
position x, what is its expected position at time t?. We could however be interested not so
much in the study of the expected position when the initial condition x changes, rather to the
evolution of the density of a population that has an initial distribution assigned, and which
modi�es this distribution over time.

Let X be a random variable on the space (Ω,F ,P), the law of X is the probability
P (X ∈ Γ) , with Γ ∈ F , region of space on which X is de�ned. X admits a probability
density if a function %(x) exists, such that

P (X ∈ Γ) =

ˆ
Γ
%(x)dx.

To not specify the region Γ in the de�nition, we use the compact form

P (X ∈ dx) = %(x)dx.
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Remark. If the random variable is degenerate, i.e. deterministic, P (X = x0) = 1, there are
no density functions. We refer to this eventuality by saying (with abuse of notation) that X
admits density δx0

Fokker-Planck equation is a partial di�erential equation that describes the evolution of the
probability density of a certain quantity, which is a function of space and time %(x, t), under
the in�uence of forces of deterministic or random origin. A simple and explanatory case is the
analysis of the stochastic equation {

dXt = dWt,

X0 ∼ %0.

standard Wiener process, with initial distribution not necessarily deterministic %0, such that

P (X0 ∈ dx) = %0(x)dx.

The Fokker-Planck equation relative to density %(x, t) of this process turns out to be

∂t%(x, t) =
1

2
∂2
xx%(x, t),

which has solution, starting from %0 = δ0 (degenerate random variable, concentrated in 0)

%(x, t) =
1√
2πt

e
−x2
2t ,

a Gaussian that decrease over time. To get the Fokker-Planck equation, however, it is necessary
to give an idea of Markov's semigroups. The jump-di�usion processes and the stochastic
di�erential equations fall into the Markov process theory, for which an alternative theory
can be studied, with which is possible to give new de�nitions of generator and Kolmogorov
backward equation. What we need to know in this case is just the de�nition of transition
probability, that is

P (Xt ∈ Γ|X0 = x) = P (t, x,Γ),

and to know that the processes we have dealt with can be described through a semigroup of
operators, i.e. a family of linear operators with properties

P0 = I, Pt+s = Pt ◦ Ps for t, s ≥ 0.

Let h ∈ Cb(Rd) be a continuous and limitated function, and de�ne the operator

(Pth) = E (h(Xt)|X0 = x) =

ˆ
Rd
h(y)P (t, x, dy).

This is a linear operator with P0 = I, infact

(P0h)(x) = E (h(X0)|X0 = x) = h(x).

Assuming that Pth is still a function in Cb(Rd), the property (Pt+sh)(x) = Pt ◦ Psh(x) holds,
for the Chapman-Kolmogorov equation ([76]). The semigroup Pt is called Markov semigroup
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of the process. By studying the properties of Markov semigroups, properties of process Xt

can be obtained. For example, the generator can be obtained in this theory by de�ning the
operator

Ah = lim
t→0

Pth− h
t

,

the limit is strong, de�ned in its domain D(A). The de�nition implies that, formally, we can
write

Pt = eAt,(
lim
t→0

(
eAt − I

)
t

= A lim
t→0

(
eAt − I

)
At

= A

)
.

Now consider the function u(x, t) = (Pth)(x) = E (h(Xt)|X0 = x) and calculate its derivative
over time,

ut =
d

dt
(Pth) =

d

dt

(
eAth

)
= A

(
eAth

)
= APth = Au.

More, u(x, 0) = P0h(x) = h(x). As a result, u(x, t ) satis�es the di�erential problem{
ut = Au,
u(x, 0) = h(x).

(3.8)

We have therefore formally obtained the Kolmogorov backward or Feynman-Kac equation and
we can write

u(x, t) =
(
eAth

)
(x),

that formally verify (3.8). We can then de�ne the adjoint semigroup P ∗t , that acts on proba-
bility measure, having as codomain probability measures,

P ∗t µ(Γ) =

ˆ
Rd

P (Xt ∈ Γ|X0 = x) dµ(x) =

ˆ
Rd
P (t, x,Γ)dµ(x).

Formally, semigroup P ∗t is the adjoint in L2 of Pt,ˆ
Pth(x)dµ(x) =

ˆ
h(x)d (P ∗t µ) (x).

We can then write P ∗t = eA
∗t with A∗ adjoint in L2 of A,ˆ

Afhdx =

ˆ
fA∗hdx. (3.9)

With similar reasonings of the case with A, we can obtain the di�erential equation of Kol-
mogorov forward, or Fokker-Planck equation, whose unknown variable is the probability den-
sity of the process Xt, as stated in the following lemma [76].

Lemma 16. Let Xt the solution of the equation of Ito dXt = b(Xt)dt+σ(Xt)dWt with initial
condition the random variable X0, independent of the Brownian motion of the equation, with
density %0(x). Assume that the process Xt has density %(x, t) ∈ C2,1(Rd× (0,∞)). Then % is
a solution to the Fokker-Planck equation{

%t = A∗%, for (x, t) ∈ Rd × (0,∞)

%(t = 0) = %0, for x ∈ Rd
(3.10)

where A∗ is the adjoint of the generator of the process, as de�ned in (3.9).
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Proof. Let E be the expected value with respect to the measure µ with density %0 of X0 (in
fact, respect to the product measure induced not only by µ, but also by the measure of the
Wiener process of the stochastic equation, or the Poisson measure of the jump process, in the
presence of jumps). Remembering that with u(x, t) we indicate the solution of the backward
equation,

E (h(Xt)|X0 = x) = u(x, t),

u(x, 0) = h(x),

we can obtain the expected value for an initial non-deterministic datum by integrating respect
to the density %0,

E (h(Xt)|X0 ∼ %0) =

ˆ
Rd
u(x, t)%0(x)dx

=

ˆ
Rd

(
eAth

)
(x)%0(x)dx,

because it is solution of the backward equation with initial data h

=

ˆ
Rd
h
(
eA
∗t%0

)
(x)dx,

by de�nition of adjoint operator. Since %(x, t) is the density of Xt, we can also write, by
de�nition of expected value, that

E%0 (h(Xt)) =

ˆ
Rd
h(x)%(x, t)dx.

By matching the two expressions found for the expected value at time t, we get
ˆ
Rd
h
(
eA
∗t%0

)
(x)dx =

ˆ
Rd
h(x)%(x, t)dx.

Using a density argument one we extend the equality to each u0 ∈ L2(Rd) and deduce that:

%(x, t) =
(
eA
∗t%0

)
(x),

which solves the equation (3.10), di�erentiating it �rst, imposing t = 0 then.

The whole theory of Markov semigroups can be made mathematically rigorous, see [76].
We want here to undestand the form of the operator A∗, which we can obtain explicitly by
calculating the adjoint of the generator A. Recalling therefore that for a process of pure
di�usion the generator is

Lu(x, t) =

n∑
i=1

uxi(x, t)bi(x) +
1

2

∑
i,j

uxixj (x, t)
[
σσt
]
ij

(x),

we can calculate L∗ in the case of the real line so that for each u, % in Cb(R) holds (ignoring
the time dependency of functions)

ˆ
Rn

(Lu) (x)%(x)dx =

ˆ
Rn
u(x) (L∗%) (x)dx.
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Integrating twice

ˆ
R

(Lu) (x)%(x)dx =

ˆ
R

(
ux(x)b(x) +

1

2
uxx(x)σ2(x)

)
%(x)dx,

and canceling the boundary contributions we obtain

=

ˆ
R
u(x)

(
(−b(x)%(x))x +

1

2
(σ2(x)%(x))xx

)
dx =

ˆ
R
u(x) (L∗%) (x)dx,

i.e.

L∗%(x) = (−b(x)%(x))x +
1

2
(σ2(x)%(x))xx,

and its generalization in Rn

L∗%(x) = −
∑
i

∂

∂xi
(bi(x)%(x)) +

1

2

∑
i,j

∂2

∂xi∂xj

([
σσt
]
i.j

(x)%(x)
)
. (3.11)

Remark. If the process is a di�usion with jumps, i.e, Xt is solution of dXt = b(Xt)dt +
σ(Xt)dWt+Jt the theorem remains valid, but the generator A of the complete process should
be considered, with the addition of the jump term

Iu(x, t) =

ˆ
E

[u(x+K(x, ξ), t)− u(x, t)] ν(dξ).

We obtain the explicit form of this operator in the speci�c case of the model presented in the
next chapter.



Part II

Evolutionary dynamics with rare

mutations
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Chapter 4

Rare mutations

4.1 Random mutations replicator dynamics

We show in this section, using all the theory developed in the previous sections, a model of
stochastic di�erential equations that describe with a greater detail than the classical replicator
dynamics systems of the evolving populations. The model, presented in [4], extends the repli-
cator mutator model to the case of random mutations. The original contributions presented
in the following two chapters will use this model as a basis from which to start, reformulating
it and extending it �rst to the case of a heterogeneous environment (Chapter 5), then to a
population of in�nite genotypes (Chapter 6).

Quasispecies

The replicator dynamics completely ignore rare mutations. Unfortunately ignoring them
means ignoring one of the driving forces of Evolution, so it is necessary to modify the previous
models by adding new terms. Manfred Eigen and Peter Schuster formulated the quasispecies
theory [85], A quasispecies is an group of similar genomic sequences generated by a mutation-
selection process. In chemistry the word �species� refers to a group of identical molecules, but
the species of all RNA molecules does not contain identical sequences, so it is necessary to
introduce the concept of �quasispecies�. During replication of a genome, mistakes can happen;
the probability that replication of individuals of type i results in individuals of type j is given
by qij . This de�ne Q = (qij), that is a stochastic matrix; each rows sums to one, and each
qij ≥ 0. The quasispecies equation is then de�ned as:{

ẋk =
∑n

i=1 xifiqik − f̄xk
k = 1, . . . , n

The variation of fraction of individuals k is obtained by individuals of type i that mutate,
at rate fj times the probability that replication j generates type i. The sum of xk remains
constant because of the presence of f̄ . Note that, when the replication is error-free, i.e. there
are no mutations, Q is the identity matrix and the quasispecies equation reduces to Replicator
Dynamics (1.2) with constant �tness.

Consider as initial condition x(0) in the interior of the simplex, i.e. xi(0) > 0 for all
i; then the replicator equation converges to a homogeneous population that consists only of
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individuals of the �ttest type. If f0 > fi for all i 6= 0, then the stable equilibrium is given by
x0 = 1 and xi = 0.

When the matrix Q is not the identity, mutations occur. This means that there exists
qij > 0 with i 6= j. In addition, we assume that fi >0 for at least one i. In this case, the
equation of the quasispecies admits a single equilibrium x∗, that is globally stable, and does
not necessarily maximize the average �tness f̄ ([73, 24]). Consider again f0 > fi for all i 6= 0.
The population of individuals of the type 0 at the equilibrium will have higher �tness than
the population at equilibrium. Mutations reduce the average �tness at equilibrium.

The quasispecies equation can be reformulated, giving more emphasis to the similarity
with the replicator equation, as the replicator mutator (see [73, 24, 10]) :{

ẋk =
(
fk(x)− f̄(x)

)
xk +

∑n
i=1 fi(x)mikxi,

k = 1, . . . , n.
(4.1)

The �rst addend is nothing else than the replicator dynamics for a population of n distinct
types x = (x1, . . . , xn) with non constant �tness, to which is added a term given by the matrix
M = (mik)i,k=1,...,n, e�ective mutations matrix, which is null in the absence mutations and
has the formM = Q− I, with Q as above. The new term

∑
i 6=k fi(x)mikxi ≥ 0 describes the

increase in frequency of individuals of type k due to the birth of mutants from other individuals,
while the term fk(x)mkkxk ≤ 0 measures the decrease in the frequency of individuals of type k
caused by the presence of mutated descendants among the progeny of such individuals. In this
model we are implicitly assuming that mutations occur homogeneously: at each generation,
a �xed proportion of the progeny will show mutant traits. We want to propose a description
where mutations should not be considered deterministic terms, rather we would like to mimic
random changes of the genome, rare �jumps� that randomly modify the frequencies in the
population.

Random mutation replicator mutator.

Following [4], we transform (4.1) into a stochastic equation imposing the condition that the mu-
tations occur at random times and are therefore described by a jump process. So be (Tn, Zn)n
a succession of times T and pairs Z, random on the �ltered probability space (Ω,F , {Ft} ,P).
The pairs Zn are chosen in the space

Z =
{

(i, k) ∈ {1, . . . , N}2, i 6= k
}
,

therefore we are assuming that each mutation has a �xed ancestor and a descendant of a single
di�erent type. Let

Nt =
∑
n

I(Tn ≤ t), N ik
t =

∑
n

I(Zn = (i, k))I(Tn ≤ t),

be the counting processes that evaluate respectively the total number of mutations and the
number of mutations from type i to the type k, so that Nt =

∑
i 6=kN

ik
t . Suppose then that

the proportion between the descendants of individuals of type i showing the type k after a
mutation is constant and equal to γik ∈ (0, 1]. The stochastic di�erential equation obtained
with these premises is:

dXk
t = ak(Xt)dt+

∑
i 6=k

γikX
i
tdN

ik
t −

∑
i 6=k

γkiX
k
t dN

ki
t . (4.2)
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The function ak(Xt) =
(
fk(Xt)− f̄(Xt)

)
Xk
t is the term of the replicator dynamics with

k = 1, . . . , N . The initial datum can be deterministic or random with initial distribution %0

with support in the simplex SN . We can write the equation in integral form and make the
jump process explicit,

Xt = X0 +

ˆ t

0
a(Xs)ds+

ˆ t

0

ˆ
Z
K(Xs− , z)N (ds, dz). (4.3)

The Poisson measure N (dt, dz) is such that, for all i and k distinct, the intensity of the process,
that is the frequency of the jumps, depends on the genetic distance between the type i and
the type k but also from the selection: the bigger is the �tness fi(xt−), the more types i will
reproduce, more often the o�spring will undergo mutations; for this reason the jumps have
intensity λikfi(X

−
t ).

However, when the �tness vector is constant on the simplex, then the (4.3) can be written
with K (x, (i, k)) = IS(x)γikxi(ek − ei) and with N ([0, T ]× (i, k)) = N ik

t , that is a simple
Poisson process with intensity ν({(i, k)}) = λikfi. The same construction can be obtained by
considering the case of non-constant �tness, linked to the payo� matrix of a given game, but
with intensity of the process independent of �tness, with ν({(i, k)}) = λik.

Existence and uniqueness of the frequency process (4.2) is proved in [4], where the regularity
of f ensures that not only the �eld a verify all the hypothesis of lipschitzianity and sublinearity
necessary for the existence and uniqueness of the solution, but also that the intensity of the
jump process is bounded. It can then be noted that, as in the case of the replicator dynamics,
the simplex is an invariant region for the dynamics of (4.2). If the initial data distribution
support X0 is in SN then Xt remains in the simplex for every positive time. It is easy to note
that when x ∈ SN then x+ γikxi(ek − ei) ∈ SN .
Remark. In the simple case in which the jump process N ik

t is Poisson of constant intensity
λikfi then the equation (4.2) can be reformulated as:

dXk
t =

[(
fk(Xt)− f̄(Xt)

)
Xk
t +

N∑
i=1

fiλikγikX
i
t

]
dt

+
∑
i 6=k

γikX
i
t−dM

ik
t −

∑
i 6=k

γkiX
k
t−dM

ki
t ,

where, compared to the generic case, the function γ = γikX
i
t , the intensity of the process

λ = fiλik, the martingale dM = dM ik. If we take mi,k = λikγik for i 6= k, mk,k = −
∑
λkiγki,

then the equation (4.2) is the replicator dynamics perturbed by random terms of martingale
type. The relationship

mik = λikγik,

creates a parallelism between the deterministic and the random model, highlighting that there
are more pairs (λik, γik) which give rise to the same replicator mutator model. When mik

is null, we can suppose that also γik is null and both models are reduced to the replicator
dynamics. In other cases, we can suppose γik as free parameter and consequently λik =
mik/γik. When γik tends to 0, the temporal intensity λik grows and the trajectories of the
process become continuous. On the contrary, when γik = 1, the temporal intensity reaches
its minimum in mik and mutations are concentrated in rare events that occur simultaneously
throughout the o�spring.



CHAPTER 4. RARE MUTATIONS 65

4.2 Expected values and qualitative study

We can obtain Feynmann-Kac equations for the previous model. Consider the equation (4.2).
Following the de�nition of generator we obtain the equation:{

∂tuk(x, t) = a(x) · ∇uk(x, t) + Iuk(x, t), x ∈ Sn, t > 0

uk(x, 0) = xk, x ∈ Sn,
(4.4)

with
a(x) = (a1(x), . . . , an(x)) ,

ak(x) =
(
fk(x)− f̄(x)

)
xk,

and with the generator of the jump process I,

Iu(x, t) =
∑
i 6=j

λijfi(x) [u(x+ γijxi(ej − ei), t)− u(x, t)] .

We have chosen, with respect to the hypotheses of the Feynman-Kac theorem, Λ = 0 and
h = id (because it is limited to Sn), then the unknown variable uk is the expected value of
the k − th component of x.

Analysis of two-species case.

We now dedicate to the analytical study of the equation, to get an idea of the behavior of the
expected frequencies, in the simplest case: two species with constant �tness. We are therefore
considering the vector �eld of the di�erential equation

ẋ = −sx(1− x),

with s = f0 − f1 e x ∈ [0, 1], and reducing the number of variables[
x0 = 1− x
x1 = x

]
.

If we consider the constant s > 0 we have then that the only asymptotically stable point of
equilibrium is x0 = 1, x1 = 0, that is, x = 0. The Feynman-Kac equation obtained from (4.4),
for the function

u(x, t) = E (x(t)|x(0) = x) ,

is {
∂tu+ s(1− x)x∂xu = λ0f0I0u+ λ1I1u, 0 ≤ x ≤ 1, t > 0

u(x, 0) = x, 0 ≤ x ≤ 1
(4.5)

where
I0u(x, t) = u(x+ γ0(1− x), t)− u(x, t),

I1u(x, t) = u(x− γ1x, t)− u(x.t).

Remark. It can be seen that, in the absence of the mutation term, the (4.5) is the equation of
homogeneous transport that came from replicator dynamics.
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We abbreviated the notations by writing γ0 = γ01, γ1 = γ10, λ0 = λ01, λ1 = λ10. In
this simple case we can analytically compare the dynamics of the stochastic model and the
traditional one of replicator mutator, which in this context has the form{

ẋ = −sx(1− x) +m0f0(1− x)−m1f1x, t > 0

x(0) = x,

with m0 parameter for mutation from species 0 to species 1, m1 vice versa. As we noted, we
can take, for i = 0, 1,

mi = λiγi,

and, according to the previous observation, we consider the equation of homogeneous transport
linked to the replicator mutator, with unknown variable X(x, t),{

∂tX + (sx(1− x)−m0f0(1− x) +m1f1x)∂xX = 0, 0 ≤ x ≤ 1, t > 0

X(x, 0) = x. 0 ≤ x ≤ 1
(4.6)

Now [4] present a series of results,

Proposition 17. The following results on the regularity of the solutions hold:

� The problem (4.5) admit a classic solution u ∈ C∞([0, 1]× [0,∞));

� For all t > 0 and for x ∈ [0, 1], the solution of (4.5) satisfyies

0 ≤ ∂xu(x, t) ≤ e(s−m0f0−m1f1)t;

� For each t > 0 and for x ∈ [0, 1], the solution of (4.5) is convex and there exist two
constants c > 0 and µ ∈ R such that

0 ≤ ∂2
xxu(x, t) ≤ ceµt.

Thanks to this, it is possible to understand that the expected value of the population quantity
of the stochastic equation is greater than or equal to that of the deterministic case, therefore
rare mutations increase the survival opportunities of the lower-�tness species. This is the
result contained in the following proposition,

Proposition 18. Let u and X be respectively solution of (4.5) and (4.6). Then

1 ≥ u(x, t) ≥ X(x, t),

for all 0 ≤ x ≤ 1 and t ≥ 0.

Proof. The solution of (4.5) is u(x, t) ≤ 1 because the constant 1 is a supersolution. We show
that u(x, t) is a supersolution of (4.6):

∂tu+ (sx(1− x)−m0f0(1− x) +m1f1x)∂xu =

∂tu+ sx(1− x)∂xu−m0f0(1− x)∂xu+m1f1x∂xu =
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λ0f0I0u+ λ1I1u−m0f0(1− x)∂xu+m1f1x∂xu =

λ0f0 [u(x+ γ0(1− x), t)− u(x, t)− γ0(1− x)∂xu(x, t)]

+λ1f1 [u(x− γ1x, t)− u(x, t)− γ1x∂xu(x, t)] =

λ0f0

ˆ 1

0
∂xxu(x+ θγ0(1− x), t)dθ + λ1f1

ˆ 1

0
∂xxu(x− θγ1x, t)dθ ≥ 0,

for the convexity.

The analysis addressed in [4] goes further, trying to show if, under appropriate parameter
choices, the dynamics of random mutations can provide unexpected results with respect to the
classical replicator mutator. First of all we can state a lemma about the existence of solutions
for long times.

Proposition 19. For each choice of the parameters, the function

ū(x) = lim
t→∞

u(x, t),

is well de�ned for all x ∈ [0, 1]. If, then, m1 > 0, or m1 = 0 and m0 ≥ s/f0, then the limit ū
is constant.

For some parameter choices, the random model gives the same results as the classic prob-
lem. This happens, for example, if m0 = 0, when there are no mutations of type 0 to type 1.
In this case the mutated descendants have higher �tness than the progenitors, and mutations
help selection in �xing type 0 in the population. Even in the opposite situation, when m1 = 0
and m0 ≥ s/f0, the behavior of the two models coincides. In this case the only mutations
are those from the highest �tness type, and the mutation rate is high enough to overcome the
mutation e�ect. In the case where instead the coe�cient m1 is null, but the mutation rate m0

is not su�ciently high, i.e. m0 < s/f0, something new happens. The �nal state depends on the
intensity of the jump process that governs the mutations and no longer necessarily follows the
deterministic model of replicator mutator. All these statements are mathematically justi�ed
in the aforementioned article.



Chapter 5

Spatial heterogeneous environment

We propose in this chapter a stochastic model that is an extension to the spatial case of [4],
where individuals can mutate changing their strategies randomly (but rarely) and explore the
external environment. This environment a�ects the selective pressure by modifying the payo�
arising from the interactions between strategies. We derive a Fokker-Plank integro-di�erential
equation and provide Monte Carlo simulations for the Hawks vs Doves game. In particular we
show that, in some cases, taking into account the external environment favors the persistence
of the low-�tness strategy. This chapter is the extended version of the article [5].

5.1 Introduction

Evolutionary Dynamics describes biological systems subject to Darwinian Evolution by taking
into account the main mechanisms and phenomena of Evolution itself. In [60], Maynard Smith
and Price propose an instance of this approach by considering a population modi�ed according
to the replicator dynamics. A population is formed by d types, or behaviors, E1, . . . , Ed, with
fractions corresponding to relative abundance in the vector x = (x1, . . . , xd), which corresponds
to a point in the simplex Sd. The selection and adaptation mechanism is described by means
of a system of di�erential equations in the following form:

ẋk
xk

= fk(x)− f̄(x), (5.1)

as k = 1, . . . d. The rate of increment ẋk/xk of the type Ek is given by its absolute �tness,
denoted with fk, balanced with the average �tness of the population f̄ , which has the form

f̄(x) =

d∑
k=1

xkfk(x).

In evolutionary matrix game theory the vector of absolute �tness f = (f1, . . . , fd) is de�ned
as

f(x) = U(x)x,

where U(x) is the matrix of payo� that rules the interplay between di�erent strategists (and
possibly depends on the frequencies of di�erent species themselves). In this regard, the �tness
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of the type Ek is de�ned as the result that an individual of that type gets colliding against
another individual on average, i.e.

fk(x) = [U(x)x]k =
d∑
i=1

uki(x)xi.

However, it is clear that the basic element for the generation of evolutionary novelties are
mutations. The quasispecies equation, dating back to the 1970s, modi�es the growth rate of
each species by considering the dispersion due to the birth of mutated o�spring [85]:

ẋk =
d∑
i=1

fi qik xi − f̄xk. (5.2)

Here the coe�cient qik express the proportion of o�spring of k-type from a progenitor i, which
shows up at any procreation. An important aspect of mutations stands in their randomness,
which is quite underrated in (5.2). Since then many more re�ned models have been proposed
to put into the right light randomness; we refer for instance to [14] showing that one single
stochastic microscopic process can generate di�erent macroscopic models of adaptive evolution.
More recently, in [4], it has been proposed a macroscopic stochastic model where mutations
occur at a di�erent time scale than selection. This approach goes into the direction of adaptive
dynamics, but di�erentiates from trait substitution sequence because it is not assumed that
there is complete adaptation (namely invasion or extinction of the mutant trait) between
subsequent mutations. Within the framework of social dilemma, where the types Ei are read
as strategies, a �mutation� happens when a player changes his strategy. The model in [4]
assumes that such events happen on rare and random occasions, even more than once before
the system reaches its stable state. See the previous chapter for a more detailed review of [4],
and see also the numerical paper [3], focused on Prisoner's Dilemma.

In this Chapter we take a step further and address our attention to the environment, seen
as a place where individuals can evolve but also as a factor that can in�uence the dynamics of
interaction between strategists. The model presented in [4] is then expanded to take into ac-
count how the natural environment can modify the interactions between individuals, changing
selective pressures. We add a new variable y ∈ RN to the variable x, in the simplex, so that
the status of the population is described by the pair (x, y). The new variable y stands for the
position of the population or, more widely, for an external parameter that a�ects the results
of the interplay between strategies. It changes according to a velocity, partly deterministic,
partly stochastic, and in�uences the selection mechanism because the payo� matrix depends
on y. In the following Section 5.2 we recall the stochastic model for replicator dynamics with
point-type mutations introduced in [4]. With the aim of performing Monte-Carlo simulations,
we give an alternative (but equivalent) description of the process by using a single Poisson
random measure. Starting from this description, we generate an algorithm to simulate our
process. Next, the spatial environment is introduced as a further stochastic variable, whose
dynamics is ruled by a SDE. Therefore, we end up with two coupled SDE for the character-
position variables (x, y): see (5.7), (5.8).

In Section 5.3 we derive a Fokker-Plank integro-di�erential equation for (5.7), (5.8), (see
(5.12) later on). The classical regularity assumptions requested by the Hormander theory are
not satis�ed because of the presence of a non-local term, which is the deterministic counterpart
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of the point process modeling mutations. We therefore read it in the viscosity sense, even if
the problem (5.12) does not �t plainly in the standard framework of viscosity solutions for
integro-di�erential equations: the main di�culty comes from the domain where it is set, which
is closed. Actually, the model does not justify any attempt to impose a boundary condition.
Moreover the nonlocal term does not depend continuously on x. These di�culties are overcome
by extending in a suitable way the problem to the whole space (5.13) and noticing that the
produced solution can actually be interpreted as a probability density for the couple character-
position (x, y).

Finally Section 5.4 provides numerical simulations concerning the two strategist game
Hawks vs Doves, used by Maynard Smith to explain the high frequency of conventional dis-
plays, rather than all-out �ght, among animals (especially within heavily armed species) [44].
We modify the standard model by assuming that the cost for �ghting changes according to
the location, and perform various simulations for the probability density obtained both by a
Monte-Carlo method starting from the stochastic system (5.7), (5.8), and by a �nite di�erence
scheme based on the Fokker-Plank equation (5.13). The equilibrium of the standard replicator-
mutator dynamics can be disrupted by e�ect of either random motion or mutations. In some
particular cases, the environment itself allows for the survival of the low �tness species.

5.2 A stochastic model for mutations in heterogeneous environ-

ment

We propose to describe the frequencies of di�erent phenotypes in the population according to
a stochastic di�erential equations (SDE) in the general mathematical framework (see Chapter
2):

Xt = X0 +

ˆ t

0
a (Xs) ds+

ˆ t

0
b(Xs)dW (s) +

ˆ t

0

ˆ
E
K(Xs− , ξ)N (ds, dξ). (5.3)

Here Xt is a process on a probability space (Ω,F ,P), where a, b,K are Borel measurable
functions of appropriate dimensions. W (s) is a standard Brownian motion and N (ds, dξ) is a
Poisson random measure on R+ ×E, with mean measure l× ν, l Lebesgue measure on R+, ν
a σ-�nite measure on a measurable space (E, E).

The process of classic replicator dynamics (5.1) is obtained when X = (x1, . . . xd) is the
vector of relative frequencies of d various phenotypes, a is the vector of relative �tness, i.e.
a(X) = (. . . , ak(X), . . .), with

ak(X) = xk
(
fk(X)− f̄(X)

)
,

and b and K are null, so that (5.3) is totally deterministic.
In [4], mutations are described by means of a pure point process that alters replicator

dynamics and the Brownian motion term is zero (b = 0). Any mutation has a �xed progenitor
(type i) and a unique descendant (type j): this gives 2

(
d
2

)
= d(d − 1) di�erent mutations,

precisely all those that transform a type i in a type j as

(i, j) ∈ I =
{

(i, j) ∈ {1, . . . , d}2 ; i 6= j
}
.
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The mutation from type i to type j is driven by a non-homogeneous point process N ij
t with

stochastic intensity λijfi(Xt−). The process N ij
t makes unit jumps with a frequency depending

on the process itself, according to the �genetic distance� between the types i and j (λij) and
the �tness of i (fi): the higher the �tness, the higher the rate of reproduction of individuals
of that kind, the more they will su�er mutations. A further coe�cient γij ∈ (0, 1) measures
the proportion of individuals involved in mutations: the population of type i decreases by a
fraction γijxi, while the population of type j increases by the same amount. This yields a
jump of the population frequency vector of size γijxi(ej − ei), ei standing for the unit vector
pointing in the direction i. The resulting SDE is

xk,t = xk(0) +

ˆ t

0
ak(Xs)ds+

∑
i 6=k

ˆ t

0
γikxi,tdN

ik
t −

∑
i 6=k

ˆ t

0
γkixk,tdN

ki
t . (5.4)

Let us notice by now that the number of variables depicting the character can be reduced by

observing that xd = 1−
d−1∑
i=1

xi and setting the problem in the closed set

Σd = {(x1, . . . xd−1) : xi ≥ 0,
d−1∑
i=1

xi ≤ 1}.

With a little abuse of notations we shall continue to write x ∈ Σd and

fk(x) =fk(x1, . . . xd−1, 1−
d−1∑
i=1

xi),

ak(x) =ak(x1, . . . xd−1, 1−
d−1∑
i=1

xi) = (fk − fd)(1− xk)xk −
d−1∑
i=1
i 6=k

(fi − fd)xixk.

In the same paper [4], a Kolmogorov integro-di�erential equation describing the expected
frequencies is derived and investigated analytically, with particular attention to the long term
equilibrium. Analytical investigation is satisfactory in the case of constant �tness (quasispecies
equation), but there are some gaps concerning variable �tness, that has been tackled by a
numeric approach in the subsequent paper [3]. In the present work we are mainly concerned
with Monte-Carlo simulations. That is why, before enriching the model by including the e�ect
of heterogeneous environment, it is worth giving an alternative description and present an
algorithmic approach.

The SDE (5.4) can be written in standard form (5.3) by taking d(d − 1) independent
Poisson random measures Nij(ds, dξ) on R+ × R+, de�ning the amplitudes of jumps as

Kij(X, ξ) = γijxi(ej − ei)1[0,λijfi(X))(ξ), (5.5)

and then invoking the Poisson embedding [16].
It is possible to set up an equivalent mode (i.e. with the same probability distribution)

with only one random measure N (ds, dξ) on R+ × E with E = R+ × [0, 1]. To this aim we
look at the sum of the stochastic intensity of each individual process
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Λ(X) =
∑
i 6=j

λijfi(X),

split the unit interval into d(d − 1) disjoint intervals Iij of length λijfi(X)/Λ(X), and take
the amplitude of jumps as

K (X, ξ) = K (X,u, θ) = 1[0,Λ(X))(θ)
∑
i 6=j

[
γijxi (ej − ei) 1Iij (u)

]
. (5.6)

The two processes just described coincide indeed.

Lemma 20. The processes (5.5) and (5.6) have the same in�nitesimal generator, so they have
the same probability distribution.

Proof. The generator of (5.6) is

´
(0,1)

´
R

[
φ
(
X + 1(0,Λ(X)](θ)

∑
i 6=j γijxi(ej − ei)1Iij (u)

)
− φ(X)

]
dudθ

= Λ(X)
´

(0,1)

[
φ
(
X +

∑
i 6=j γijxi(ej − ei)1Iij (u)

)
− φ(X)

]
du

= Λ(X)
∑

i 6=j
´
Iij [φ (X + γijxi(ej − ei))− φ(X)] du

= Λ(X)
∑

i 6=j |Iij | [φ (X + γijxi(ej − ei))− φ(X)]

=
∑

i 6=j λijfi(X) [φ (X + γijxi(ej − ei))− φ(X)] ,

i.e. the same in�nitesimal generator of (5.5), as in [4].

This alternative construction, albeit equivalent to the �rst one, can be turned into a sim-
ulation more easily and with a more compact and e�cient code, because it involves only one
jump process instead of d(d−1) independent ones. In view of Monte Carlo approximations, we
therefore give an intuitive interpretation of this last process, based on the existence theorem
for Poisson random measures in [50].

Let T > 0 a �xed time horizon and

Λmax = max
X

Λ(X).

The evolution process can be simulated by the following steps:

1. Build a priori a homogeneous Poisson process with intensity Λmax, whose jump times
will be denoted by Tn lower than T ;

2. Simulate the replicator dynamics till T1;

3. Extract uniformly a random number ξ ∈ [0, 1];

(a) if Λmaxξ > Λ(XT−1
) no jump occurs,

(b) if Λmaxξ ≤ Λ(XT−1
) a jump occurs indeed. To decide which kind of mutation

occurs, extract another random number u ∼ Unif(0, 1) and look at which interval
Iîĵ it belongs (which is always the case because the sets Iij form a partition of

[0, 1]). Then shift a quantity γîĵxî,T−1
from î to ĵ.

4. Restart from step 2.
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5.2.1 Heterogeneous environment

In the present model the only observed variables are the frequencies of the various phenotypes,
as well as in the classical replicator equation. The rules of the play are �xed once and for
all by means of the payo� matrix U , and nothing depends on the physical position of the
population, as if the individuals were not able to move, or if the environment were completely
homogeneous. A more realistic picture has to take into account that environmental changes
a�ect the results of interaction between di�erent behaviors.

To introduce heterogeneous environment we increase the observed variables so that the
status of the population is described by a pair X = (x, y): as before x = (x1, . . . , xd−1) ∈ Σd

stands for the character of the population, each xi being the fraction of individuals of type Ei

(and xd = 1 −
d−1∑
i=1

xi the fraction of type Ed), while the new variable y ∈ RN stands for the

position of the population. More widely this new variable can be seen as an external parameter
that a�ects the results of the interplay between strategies. The payo� matrix depends on y,
i.e. U = U(y), consequently also the respective �tness

fk(x, y) =

d−1∑
i=1

uki(y)xi + uid(y)(1−
d−1∑
i=1

xi)

varies with y.
The character x evolves according to a suitable version of equation (5.4):

xt = x0 +

ˆ t

0
a (xs, ys) ds+

ˆ t

0

ˆ
E
K(xs− , ys, ξ)N (ds, dξ). (5.7)

Here

� a ∈ Rd−1 stands for the vector �eld of the replicator dynamics. It has the same structure
as in the former case, but with an important di�erence: the �tness are allowed to depend
from y, so that

ak(x, y) = xk(f(x, y)− f̄(x, y)) as k = 1, . . . d.

� The jump amplitude K and the random measure N describe the mutation process as
before. The location y a�ects the mutation process through the �tness, as

Λ(x, y) =
∑
i 6=j

λijfi(x, y),

K (x, y, u, θ) = 1[0,Λ(x,y))(θ)
∑
i 6=j

γijxi (ej − ei) 1Iij(x,y)(u),

where the intervals Iij(x, y) have length equal to λijfi(x, y)/Λ(x, y) and form a partition
of the unit interval, as i 6= j ∈ {1, . . . , d}.

The environmental variable y changes according to a di�usion with drift:

yt = y0 +

ˆ t

0
v (xs, ys) ds+

ˆ t

0
σ (xs, ys) dWs, (5.8)

where
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� v ∈ RN stands for the velocity �eld of the population. For any given y, v(ei, y) is the drift
of the type Ei, while a composite population described by the character x is inclined to
move according to v(x, y).

� σ is an N × N matrix and Ws is an N -dimensional Brownian motion, describing the
random component of the displacement.

Notice that both the drift and the di�usion may depend of the frequency vector x, allowing
retro-actions of population on the environment itself.

The well posedness of the process (5.7), (5.8) is assured by classical arguments (see [49, 7]).
Monte-Carlo simulations do not require substantial changes compared to the non-spatial case:
the additional Brownian motion can be e�ectively simulated in a standard way.

5.3 A Fokker-Plank equation for the probability density

The stochastic process (5.7), (5.8) can be described in a deterministic way by means of two
Kolmogorov integro-partial di�erential equations: the backward one, also known as Feynman-
Kac equation (related to expected value), and the forward one, also known as Fokker-Plank
equation (related to the density).

With minor changes from [4], one easily sees that the in�nitesimal generator of the process
(5.7) (settled in Σd), (5.8) is

Lφ = a ·Dxφ+ v ·Dyφ+
1

2
Tr
(
σσtD2

yyφ
)

+ J φ. (5.9)

Here Dx and Dy stand for the vectors of �rst derivatives w.r.t. x ∈ Rd−1 and y ∈ RN ,
respectively, D2

yy stands for the N ×N matrix of the second order derivatives w.r.t. y, a, v,
σ are the same functions appearing in (5.7), (5.8), and J is a non-local functional related to
a discrete measure:

J (x, y, φ) =

ˆ
Rd−1

(φ(x+ z, y, t)− φ(x, y, t)) dµx,y(z),

µx,y(z) =

d−1∑
i,j=1
i 6=j

λijfi(x, y)δ{γijxi(ej−ei)}(z) +

d−1∑
i=1

λidfi(x, y)δ{−γidxiei}(z)

+

d−1∑
i=1

λdifd(x, y)δ
{γdi(1−

d−1∑
k=1

xk)}
(z).

The expected value at time t of a population which is at state (x, y) at time t = 0 is described
by u(x, y, t), the solution to the Feynman-Kac system

∂tuk − a ·Dxuk − v ·Dyuk − 1
2Tr

(
σσtD2

yyuk
)

= J uk,

uk(x, y, 0) =

{
xk as k = 1, . . . d− 1,

yk−d as k = d, . . . d+N − 1.

(5.10)
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Otherwise, one can be interested into the macroscopic function %(x, y, t) ∈ [0, 1], measuring

the probability of �nding a population distribution (x1, . . . xd−1, 1−
d∑
i=1

xi) ∈ Sd in the position

y ∈ RN at time t. For instance at time t > 0 the quantity

Pi(t) =

¨

(Bε(ei)∩Σd)×RN

%(x, y, t)dxdy

depicts the probability of having a high proportion of individuals of type i, while

Pi(t, δ) =

¨

(Bε(ei)∩Σd)×Bδ(0)

%(x, y, t)dxdy

depicts the probability of �nding a high proportion of individuals of type i near at the origin.
This can be done if the starting point is one population with character x in the position y

(that is the initial datum is a Dirac mass centered at (x, y)), or if the initial status is a random
variable with density function %0(x, y). A rigorous deduction of the Fokker-Plank equation
requests a-priori regularity of the density function. The topic of regularity can be addressed by
the classical Hormander theory (see, for instance, the book [74]) and requests some technical
assumptions, also in the di�usive setting (i.e. in absence of mutations). In the present setting
there is no reason to expect that the density function is smooth enough, due to the anisotropy
of di�usion and to the point process modeling mutation. We therefore choose to write the
Fokker-Plank equation formally and then to settle it in the framework of viscosity solution
theory. This approach has the advantage of asking very few a-priori regularity and producing
well-posed solutions even in the degenerate elliptic, integro-di�erential setting arising from
rare mutations.

Following Pavliotis [76] we compute L∗, the dual operator in L2(Σd×RN ) of the in�nites-
imal generator:

L∗φ =
1

2

N∑
h,k=1

∂2
yhyk

(
(σσt)hkφ

)
− divx (φa)− divy (φv) +

d∑
i=1

J ∗i (fiφ), (5.11)

where now

J ∗i (x, y, φ) =

ˆ
Rd−1

(φ(x+ z, y, t)− φ(x, y, t)) dµix,y(z),

dµix,y(z) =

d−1∑
j=1
j 6=i

λij(1 + γ∗ij) 1Σd(x+ γ∗ijxi(ei − ej))δ{γ∗ijxi(ej−ei)}(z)

+ λid(1 + γ∗id) 1Σd(x+ γ∗idxiei)δ{−γ∗idxiei}(z),

as i = 1, . . . d− 1 and

µdx,y(z) =
d−1∑
j=1

λdj(1 + γ∗dj) 1Σd(x− γ∗dj(1−
d−1∑
k=1

xk)ej)δ
{γ∗dj(1−

d−1∑
k=1

xk)ej}
(z),
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for γ∗ij = γij/(1− γij).
It turns out that, if %0(x, y) is the probability density of the random variable X0 = (x0, y0)

describing the initial distribution of subpopulations, and if the solution Xt = (xt, yt) to (5.7),
(5.8) has a su�ciently smooth probability density %(x, y, t) for t > 0, then it solves the initial
value problem∂t%−

1
2

N∑
h,k=1

∂2
yhyk

(
(σσt)hk%

)
+ divx (%a) + divy (%v) =

d∑
i=1
J ∗i (fi%)

%(x, y, 0) = %0(x, y),

(5.12)

in the closed set (x, y) ∈ Σd × RN and t > 0.
Let us explicitly remark that nonlocal operators J ∗i are not continuous w.r.t. x: this fact

may have a huge instability e�ect. We therefore switch to another problem which is set into
all Rd−1 × RN and is continuous. To this end we extend the �tness functions fi, the drift v
and the di�usion σ in a bounded smooth way to all Rd × RN so that fi ≥ 0 have support
contained in a cylinder, say BR(0)×RN . Concerning the initial datum %0, it can be extended
as %0 ≡ 0 outside Σd × RN . We thus look into the problem∂t%−

1
2

N∑
h,k=1

∂2
yhyk

(
(σσt)hk%

)
+ divx (%a) + divy (%v) + c% = J̃ %

%(x, y, 0) = %0(x, y),

(5.13)

for (x, y) ∈ Rd × RN and t > 0, where now

J̃ (x, y, φ) =

ˆ
Rd−1

(φ(x+ z, y, t)− φ(x, y, t)) dµx,y(z),

dµx,y(z) =

d−1∑
i,j=1
j 6=i

mij(x, y)δ{γ∗ijxi(ej−ei)}(z)

+
d−1∑
i=1

mid(x, y)δ{−γ∗idxiei}(z) +
d−1∑
j=1

mdj(x, y)δ
{γ∗dj(1−

d−1∑
k=1

xk)ej}
(z),

mij(x, y) =(1 + γ∗ij)λijfi(x+ γ∗ijxi(ei − ej), y),

as i, j = 1, . . . d− 1, with i 6= j, and

mid(x, y) =λid(1 + γ∗id)fi(x+ γ∗idxi, y),

mdi(x, y) =λdi(1 + γ∗di)fd(x− γ∗di(1−
d−1∑
k=1

xk)ei, y),

as i = 1, . . . d− 1,

c(x, y) =
d∑

i,j=1
i 6=j

(λijfi(x, y)−mij(x, y)) .
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It is worth clarify that the equation in (5.13) does not coincide with the one in (5.12) even
if x ∈ Σd. Although they do coincide for that functions % which are zero for x outside Σd.
On the other hand if the support of %0 is contained in Σd × RN and %(t) ∈ L1(Rd−1 × RN ) is
nonnegative, then also the support of %(t) is contained in Σd × RN .

To see this fact, let

Ak ={x ∈ Rd−1 : xk < 0} as k = 1, . . . d− 1,

Ad ={x ∈ Rd−1 :

d−1∑
k=1

xk > 1},

Ik(t) =

¨

Ak×RN

%(t)dxdy as k = 1, . . . d.

It su�ces to check that
d

dt
Ik(t) ≤ 0. For simplicity we perform computations only in the case

d = 2. Integrating the equation in (5.13) on A1 × RN gives

d

dt
I1(t) =−

ˆ

RN

(a1%)(0, y)dy + λ12

¨

A1×RN

((1 + γ∗12)(f1%)((1 + γ∗12)x, y, t)− (f1%)(x, y, t)) dxdy

+ λ21

¨

A1×RN

((1 + γ∗21)(f2%)(x− γ∗21(1− x), y, t)− (f2%)(x, y, t)) dxdy

remembering that a1(0, y) ≡ 0 and performing the obvious transformations in the second and
third integrals yields

= −λ21

ˆ
RN

dy

ˆ 0

−γ∗21
dx(f2%)(x, y, t) ≤ 0

because f2% ≥ 0. Similarly, since a1(1, y) ≡ 0 one gets

d

dt
I2(t) = −λ12

ˆ
R
dy

ˆ 1+γ∗12

1
dx(f1%)(x, y, t) ≤ 0.

It has also to be stressed that, in order to read the solution %(t) as a probability density, its
total mass has to be 1, that is

M(t) =

¨

Rd−1×RN

%(x, y, t)dxdy = 1 for all t > 0,

provided thatM(0) =
˜

Σd×RN
%0(x, y)dxdy = 1. Again, integrating the equation in (5.13) gives

d

dt
M(t) =λ12

¨

R×RN

((1 + γ∗12)(f1%)((1 + γ∗12)x, y, t)− (f1%)(x, y, t)) dxdy

+ λ21

¨

R×RN

((1 + γ∗21)(f2%)(x− γ∗21(1− x), y, t)− (f2%)(x, y, t)) dxdy = 0
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after a trivial change of variables. Hence the total mass is preserved in the modi�ed problem
(5.13).

In view of these remarks, we can read as the probability density of the process (5.7), (5.8)
a solution %(t) to the Cauchy problem (5.13) with the properties %(t) ∈ L1(Rd−1 × RN ) and
%(t) ≥ 0 for t > 0. The existence of such a solution is assured in the viscosity framework.

Theorem 21. Assume that fi, v ∈ C1,1(Rd−1 × RN ), σ ∈ C2,1(Rd−1 × RN ) are bounded
together with their derivatives, with fi ≥ 0 and σ ≥ ε > 0. Take %0 a Lipschitz-continuous,
bounded function whose support is compact and contained in the interior of Σd×RN such that
%0 ≥ 0 and

˜
%0dxdy = 1. Then there exists a unique viscosity solution to (5.13). Moreover

%(t) ∈ L1(Rd−1 × RN ) and %(t) ≥ 0 for all t > 0.

Proof. First of all the equation in (5.13) has to be written in the standard form of the viscosity
solution framework, which is nonvariational. This can be done if the coe�cients fi, v, σ have
the regularity requested by hypothesis. So we write

∂t%+ a∂x%+ b∂y%+ c%− 1

2
σ2∂2

yy% =

2∑
i=1

λ̃iIi (%) (5.14)

where now

λ̃1(x, y) =λ12(1 + γ∗1)f1(x+ γ∗1x, y),

λ̃2(x, y) =λ21(1 + γ∗2)f2(x− γ∗2(1− x), y),

and consequently

c(x) = ∂xa+ ∂yv −
1

2
∂2
yyσ

2 +
2∑
i=1

(λifi − λ̃i)

are continuous and bounded. This problem satis�es the assumptions in [2], therefore it has
a unique continuous viscosity solution %(x, y, t) which is Lipschitz-continuous w.r.t. x, y and
bounded. Moreover, comparison principle holds. In particular one can �nd suitable parameters
c1, c2, c3 so that

0 ≤ % ≤ exp(c1t− c2

√
1 + x2 − c3y

2) in R2 × [0,∞). (5.15)

In particular %(t) ∈ L1(R2) for all t.

Remark 22. The assumption σ ≥ ε > 0 has only been used to obtain the estimate from above
in (5.15) and infer the integrability of the solution and the equation into all R2. The hypothesis
can be removed by asking something more to the drift v in order to assure some decay w.r.t.
y.

In view of the biological applications, it is suitable to allow the initial density %0 to be a
probability measure. For instance modeling the evolution of one population whose initial state
(x, y) is known deterministically requests to take a %0 as a Dirac mass centered at (x, y). This
would hugely increase the mathematical di�culty. The paper [53] presents interesting results
in this direction, which are modeled on the fractional Laplacian and therefore do not include
the discrete non-local operator appearing here.
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5.4 Hawks and Doves: a numerical study

In this section we take as a case study the two strategy game Hawks vs Doves (d = 2), with
the following payo� matrix:

U =

(
G−C

2 G

0 G
2

)
,

where the coe�cients are both positive. The �tness functions for Hawks (x1) and Doves (x2),
are respectively

f1 = (G− C)x1/2 +Gx2, f2 = Gx2/2,

then the replicator dynamics (reducing the coordinates only to x ∈ [0, 1], fraction of Hawks)
is

ẋ = x (1− x) (f1 − f2) = x (1− x) (G− Cx) /2.

Besides the pure-strategies equilibria x = 0 (all Doves) and x = 1 (all Hawks), a mixed
strategies equilibrium can occur, x̄ = G/C, when C > G: in this case the real Hawks vs
Doves game occurs, with x̄ attractive and the other two values 0 and 1 which become unstable
equilibria. Notice that when the cost of the �ght C increases, the percentage of Hawks at
the equilibrium x̄ decreases. Instead, when the cost of �ghting is less or equal than the gain,
C ≤ G, the only equilibria are the pure-strategies ones, with x = 1 attractive; the population
tends to become only Hawks.

We add to the two strategies game also the space component, with y ∈ R (N = 1). In
particular we assume that the cost for �ghting depends on y as

C(y) =
3G

2

[
1 +

2

π
arctan(y)

]
.

The function C is designed so that, at y = 0, the cost for �ghting is C = 3G/2 > G and we
have a coexistence equilibrium x̄ = 2/3. At y < 0 the cost lowers untill it becomes equal to
the gain for y = −

√
3/3, so for smaller values of y the coexistence equilibrium disappears,

Hawks increase and the only attracting equilibrium is x̄ = 1. Otherwise if y > 0 environment
is more favorable to Doves, because the cost increases up to 3G, so that the fraction of Hawks
at equilibrium x̄(y) is a decreasing function of y, tending towards 1/3 as y → +∞. Summing
up, for any �xed y, the standard replicator dynamics has its equilibrium at

x̄(y) =

{
1 y < −

√
3/3,

G/C(y) y ≥ −
√

3/3,
(5.16)

which is well known to be a global attractor. In particular the initial state (x0, y0) = (2/3, 0)
is an equilibrium for the standard replicator dynamics (i.e. neither mutations or motions
are allowed), and also when a deterministic motion with v(2/3, 0) = 0 is considered. All
the simulations that follow represent the probability density %(x, y, t) evolving from the same
initial state (x0, y0) = (2/3, 0), and show that the equilibrium can be disrupted by Brownian
motion in a heterogeneous environment and/or by mutations. They have been obtained in
MATLAB using Monte-Carlo methods and, in the last section, using a numerical method for
the I.P.D.E. (5.13).
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5.4.1 Monte Carlo simulations.

Roughly speaking, large number of independent runs of the stochastic process is performed,
to statistically estimate the density.

� Fixed the �nal time, T , we discretize the time interval [0, T ] in, at least, N = 28 sub-
intervals with the same length. Fixed an accuracy α, the number N increases up to
make sure that the probability of the event �up to one jump in each interval� is greater
than (1− α)%;

� We choose the number of iterations of the method, itermax. We �x two values, Nx, Ny

and the interval [ymin, ymax] in which we want to display the density. Then we create
a grid on [0, 1] × [ymin, ymax], dividing the �rst interval in Nx parts, the second in Ny

(ymin = −5, ymax = 5, Nx = Ny = 50). We de�ne the array H in three dimensions,
Nx ×Ny ×N , that will contain the following information:

H(i, j, t) =
# {processes s.t. at time t are in the cell grid (i− 1, i)× (j − 1, j)}

itermax
;

� For each iteration, we generate a Brownian motion on the N time points; then we
generate a homogeneous Poisson process with intensity λmax ≥ maxx λ(x) on [0, T ]. Let
{T1, . . . , Tk} be the jump times;

� We simulate, with Euler-Maruyama method, the stochastic process without jumps, until
the nearest time Ti;

� Following the de�nition of the jump process and the intuitive interpretation presented
before, we decide (acceptance-rejection) if the jump of the homogeneous process should
be counted or not for the non-homogeneous one: if not, we continue Euler-Maruyama
until the next jump. If so, we modify the population fractions in appropriate manner;

� We update the array H.

5.4.2 Numerical methods for the Fokker-Planck equation.

We implement a numerical method for the equations (5.13), that in this case has the form:

∂t%−
1

2
σ2%yy + (%a)x + (%v)y = J1(%, x, y) + J2(%, x, y),

J1(%, x, y) = λ12

[
1

1− γ12
(f1%)

(
x

1− γ12
, y, t

)
1[0,1−γ12](x)− (f1%) (x, y, t)

]
,

J2(%, x, y) = λ21

[
1

1− γ21
(f2%)

(
x− γ21

1− γ21
, y, t

)
1[γ21,1](x)− (f2%) (x, y, t)

]
.

We obtain a �nite di�erences scheme by discretizing with central di�erence the second order
di�usive term and the transport term in y, and with a upwind method, that varies depending
on the sign of the function a, for the transport term in x. The time is discretized using an
explicit method. We denote with ∆x and ∆y the space steps, with ∆t the time step, with
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xi, yj the grid points and tn the discrete times. Without considering the integral term (related
to jumps) the method is conservative, and has the following form:

%n+1
i,j − %ni,j

∆t
=

σ2

2 (∆y)2

(
%ni,j+1 − 2%ni,j + %ni,j−1

)
− 1

2∆y

(
(v%)ni,j+1 − (v%)ni,j−1

)
− 1

2∆x

[
(a%)ni+1,j − (a%)ni−1,j −

(∣∣∣(a%)ni+1,j

∣∣∣− 2
∣∣∣(a%)ni,j

∣∣∣+
∣∣∣(a%)ni−1,j

∣∣∣)] ,
where %ni,j = %(xi, yj , tn).

Regarding the non-local jump terms J1, J2 the functions f1, f2 are well de�ned on non-
grid points, but we have to approximate the value of %n in xi/(1− γ12), so we follow [3], using
linear interpolation between the grid points xî and xî+1, where î = min{j : xj ≤ xi/(1− γ)}:

%n
(

xi
1− γ12

)
=

(
%n
î+1
− %n

î

)
∆x

(
xi

1− γ12
− xî

)
+ %n

î
.
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5.4.3 Replicator Dynamics perturbed by random motion.
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Figure 5.1: Replicator Dynamics perturbed by random motion, simulated by 105 iterations of
the Monte Carlo method. The population moves randomly in space, subject to the selection of
a changing environment. The red line is the function x̄(y), fraction of Hawks at the equilibrium
for the standard Replicator Dynamics starting at y. The deterministic speed is zero, v = 0,
jumps are absent, the coe�cient of the Brownian motion is σ = 0.2. Other parameters:
T = 30, N = 28, ymin = −5, ymax = 5, Nx = Ny = 50.

In this Monte Carlo simulation the population just moves randomly in space, subject to the
selection of a changing environment. To do this, we imagine that jumps are absent, i.e. K = 0
in (5.7), and that (5.8) gives a homogeneous Brownian motion for the variable y, i.e. the drift
v is zero and the di�usion coe�cient is σ = 0.2. If the Brownian motion were absent, the
character xt of a population starting at (x0, y0) would tend as t→ +∞ towards the attractor
x̄(y0) introduced in (5.16) and depicted by a red line in Figure 5.1. But now yt follows (5.8),
which reduces to a homogeneous Brownian motion, so that its marginal density is a Gaussian
function with expected value y0, kernel of the heat equation,

%(y)(y, t) =
1√

2πσ2t
exp

{
−(y − y0)2

2σ2t

}
.

Meanwhile the SDE (5.7) reduces to the standard replicator dynamics and moves xt towards
the asymptotically stable equilibrium x̄(yt), which depends by yt and therefore by time. We
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can see how, with t� 0, the density is approximately

%(x, y, t) ∼ x̄(y)%(y)(y, t)

with an expected global frequency of Hawks given by
´
R x̄(y)%(y)(y, t)dy, see Figure 5.1.

5.4.4 Replicator Dynamics plus Brownian motion with drift.
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Figure 5.2: Replicator Dynamics plus Brownian motion with drift, simulated by 105 iterations
of the Monte Carlo method. The vector x evolves according to the game Hawks vs Doves with
G function of y. The red line represents the expected value of Hawks for t→∞, that is equal
to the initial value of Hawks. The deterministic speed is chosen as v = 1 − 3

2x, jumps are
absent, the coe�cient of the Brownian motion is σ = 0.2. Other parameters: T = 30, N = 28,
ymin = −5, ymax = 5, Nx = Ny = 50.

We assume again that the character xt follows the replicator dynamics with no jumps, i.e. we
take K = 0 in (5.7). But now the we take a non-null drift in the environmental dynamics
(5.8), depending on the character of the population:

v(x) = vD (1− x) + vHx;

where vD > 0 represents the drift of the Doves, moving towards positive values of y, and
vH < 0 the drift of the Hawks. When vD = 1 and vH = −1

2 :
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v(x) = 1− 3x/2. (5.17)

The drift is decreasing as a function of x (the proportion of Hawks): it has its maximum,
v = 1, at x = 0 (high concentration of Doves) and its minimum, v = −1/2, in x = 1 (high
concentration of Hawks). Moreover the drift is null at x = 2/3, which is taken as the initial
state. As noticed at the beginning of this section, if the Brownian component were absent the
initial state (x0, y0) = (2/3, 0) would be an equilibrium and the resulting dynamics would be
trivial. In the simulation depicted in Figure 5.2 the dynamics is not trivial, and we can identify
two di�erent behaviors of the process, because of the presence of the Brownian component
with σ = 0.1. The support of the probability density function splits in two di�erent regions,
and it means that the population moves either towards negative values of y, or towards positive
values, respectively with probability p1 and p2. In the �rst case, the proportion of Hawks at the
equilibrium increases (as a function of −y), until the process oversteps the value y = −

√
3/3,

after which x = 1 is the only equilibrium (all Hawks). We can see the gradual extinction
of each Dove. In the other case, the cost of the �ght increases with time, the density tends
to concentrate toward the coexistence of both strategies, with greater concentration of Doves
(x = 1/3). However, the expected value of the proportion of Hawks for t→ +∞ (highlighted
by a red line in Figure 5.2) is the same as the initial one, 2/3. In fact, as we can see numerically,
each of the two regions have mass 1/2, so p1 = p2 and

lim
t→+∞

E[xt] = 1 · p1 +
1

3
· p2 =

2

3
.
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5.4.5 Point-type mutations plus Brownian motion with drift.
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Figure 5.3: Point-type mutations plus deterministic and Brownian motion, simulated by 105

iterations. The vector x evolves according to the game Hawks vs Doves with G function of y.
The red line, as in Figure 5.2, represents the initial value of Hawks and the expected value of
Hawks for t→∞ in absence of mutations. The blue line is the same expected value for t→∞
in presence of mutations. The deterministic speed is chosen as v = 1− 3

2x, Brownian motion
has σ = 0.2, the parameters of the jump process are λ12 = λ21 = 0.2, γ12 = γ21 = 0.1, that is
one tenth of the population mutate each jump and we have �fair jumps�. Other parameters:
T = 30, N = 28, α = 0.1, ymin = −5, ymax = 5, Nx = Ny = 50.

We take now a point-type mutation process for xt, with λ12 = λ21 = 0.2; γ12 = γ21 = 0.1 in
(5.6). Concerning motion, we take here σ = 0.2 and v given by (5.17), so that the position yt
changes deterministically with speed v and stochastically because of the Brownian motion. Let
us remark that at each time that a mutation occurs, the probability that Hawks (respectively
Doves) su�er a mutation only depends on �tness. At the initial state (2/3, 0), the probability
that Hawks are the �rst to su�er mutations is 1/2, just like Doves. In this sense mutations
produce random perturbations similar to the Brownian motion introduced in the previous
example (5.4.4). The simulations presented in Figure 5.3 show two di�erent regions also in
this case. It is remarkable that the fact that at the equilibrium Hawks are more abundant
than Doves brings as a consequence that mutations favor Doves, so that the region of the
probability density moving rightwards will have higher mass (the ratio between right region
and left region is 2:1 ca.), i.e. the coexistence of both strategies occurs with higher probability
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(p1 < p2), unlike example (5.4.4). The expected value of the proportion of Hawks for t→ +∞
(highlightened by a blue line in Figure 5.3 is lower than the initial one:

lim
t→+∞

E[xt] = 1 · p1 +
1

3
· p2 ≈

5

9
.

We therefore see that including the physical space can favour the persistence of the low-�tness
strategy, when mutations can happen in both directions.

5.4.6 Monte Carlo and Finite Di�erences simulations

Monte Carlo, t=12
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Finite Differences, t=12
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Figure 5.4: Replicator Dynamics plus Brownian motion, with drift and jumps, with di�erent
algorithms, both at time t = 12. On the left the graphic for Monte Carlo method, simulated
by 104 iterations (the grid is dense, to show the single runs). On the right the scheme for the
partial di�erence equation, with ∆x = ∆y = 0.02.

Here we compare the Monte Carlo algorithm, showed in the previous cases, and the �nite
di�erences approximation, presented at the beginning of Section (5.4). Let us take as study
case the same problem as above, in Subsection (5.4.5). After the �attening of the initial
datum (Dirac delta), which is slightly faster in the I.P.D.E. approximation, the two simulations
run parallel (see Figure 5.4) creating the two regions with di�erent masses, moving towards
opposite directions. In the I.P.D.E. case, as in the Monte Carlo one, the ratio between the
right region and left region masses is 2:1 ca.

Even if we choose a thick grid for the I.P.D.E. algorithm (500 cells of size ∆x, 1000 cells of
size ∆y, 6000 time steps), its execution is about 5 times faster than the Monte Carlo simulation
with 104 iterations. However, despite the speed, this algorithm, approximating the non-local
jump term with linear interpolation, does not preserve the mass for the whole simulation. In
a simulation, the mass at time T = 15 is 90% ca. of the initial one. Then, the choice of
a singular initial point as a Dirac delta causes numerical dissipation in the transport terms,
especially noticeable in simulations in which the Brownian motion is absent. For these reasons,
Monte Carlo simulations have been privileged in Sections 5.4.3, 5.4.4 and 5.4.5.



Chapter 6

A Genotype-Phenotype model with

mutations

In this chapter we build the equations for a new model of population dynamics, which follows
over time a group of individuals undergoing Darwinian evolution. The basic models that in-
spired the new one are those of replicator dynamics with random mutations [4], in which a
system of di�erential equations, deterministic and stochastic, is used to represent the di�erent
�types� in the population. The base of the new model is in the concept of �di�erence between
genotype and phenotype�. The genotype is the set of characteristics that de�ne an individual,
encoded in the DNA; a �type� of individuals is a group that shares the same genotype, and
in the model there is an equation for each individual group in the population. Each genotype
expresses a very speci�c phenotype, and the same phenotype can be the expression of sev-
eral di�erent genotypes, on which natural selection acts. The two main forces of Evolution,
selection/adaptation and mutation, act at di�erent levels: the environment select the �ttest
individuals, acting on the phenotype. The source of evolutionary novelty, or mutation, acts
instead by randomly modifying the genotypes, producing new and never seen before ones.

In this chapter, after a section of motivations (6.1), we begin to construct a model, which
is completed in Section 6.9. Growth equations, such as the Replicator dynamics (1.2), on
which this model is based, are formulated for the frequencies of individuals in a population
of multiple �types�. These equations are reformulated in Section 6.2 to take into account the
actual number of individuals. If the population is composed of an in�nite number of types, then
a new mathematical concept of population is necessary, since a symplex SD takes into account
only (at most) D di�erent species, just as it is necessary to reformulate the previous equations
in an adequate space. This is what is done in Section 6.3. In the following sections we discuss
the concept of �type�; the previous equations were de�ned for generic �types�. In this model the
types, the unknowns of the equations, are the genotypes; the concept of potential space and
population of genotypes is provided in Section 6.4. Equations can be written for genotypes
only if �tness has a speci�c form. In Section 6.5 the concept of �tness is linked to that of
phenotype, expression of a given genotype; the passage between genotype and phenotype is
given by GP-map. If the selection is the force that acts on the phenotypes, through �tness,
mutations totally concern the genotypes, and they act by ignoring the type of phenotype that
a genome will express. After a section (6.7) dedicated to further theory of jump processes, the
equations are then completed in Section 6.8, building a stochastic jump process. A proof of

87
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existence and uniqueness of the process is given in Section 6.9.
See Figure 6.1 for a scheme of the Chapter.
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Figure 6.1: Diagram of the structure of Chapter 6 on the construction of the model.
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6.1 Basics and motivations.

As we have seen in Part I, the basic model of replicator dynamics [73, 44] represents the
trend of a population divided into D di�erent types, E1, . . . , ED, with relative frequency
x = (x1, . . . , xD) in the simplex SD. The law governing their dynamics is{

ẋk = ak (x) = xk
(
Φk(x)− Φ̄(x)

)
,

k = 1, . . . , D,

with Φk �tness function of the type k and Φ̄ average �tness in the population:

Φ̄(x) =
∑

xkΦk(x).

with the structure of the �tness function that changes from context to context, and can be,
according to the evolutionary game theory approach [44, 57], linked to a payo� matrix U : Φ1(x)

...
ΦD(x)

 = Ux.

The replicator dynamics model turns into a stochastic process when we consider random
mutations that can transform a fraction of one type of individuals into another, through a
series of Poisson processes (one for each pair of types (i, j) with i 6= j), non-homogeneous and
with intensity proportional to a rate related to the �tness of the mutating type and to the
�genetic distance� between mutant and mutated [4]. We refer from now to the model presented
in [4] in the following way:

Xt = X0 +

ˆ t

0
a (Xs) ds+

∑
i 6=j

ˆ t

0
γ(Xs−)Nij(ds). (6.1)

Motivations

In the following we analyze the main restrictions of (6.1), that are the basis for the main
novelties of the new model.

As M.Nowak writes in the introduction of his book [73], �the basic building blocks of evolu-
tionary dynamics i.e. replication, selection and mutation apply to any biological organization
anywhere in our or other universes and do not depend on the particular details of which
chemistry was recruited to embody life. Any living organism has arisen and is continually
modi�ed by these three principles. More generally, these mechanisms are functional to any
type of life, biological or not.� From this perspective, the presented model is built not to be
a phenomenological model, but a theoretical model of biological evolution, a �skeleton�, which
must be covered each time with the most suitable application. In the following, we will de�ne
the concepts of space of the potential genomes, of �distance� between genomes that is linked
to mutations, of genotype-phenotype map, of �tness function, which regulates the interaction
between di�erent phenotypes.
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Genotype and phenotype. The concept of �genotype-phenotype di�erence� is the base
of the new model. As in [4], each equation represents a �type� of individuals, where in this
case �type� means �genotype�, then in the new model there is an equation for each group of
individuals that shares the same genotype. A well-de�ned phenotype corresponds to each
genotype, on which natural selection acts. The main forces of Evolution, selection, adaptation
and mutation, act on di�erent layers: the environment acts on the phenotype, selecting the
�ttest, while the randomness of the mutations a�ects the genotype. To show the di�erentiated
e�ect, in the new model we have a system of equations for the genotypes, similar to the
replicator dynamic, but with the �tness that is function only of the phenotypes. Mutations
are random and act on genotypes, regardless of the phenotype expressed by that genotype. Two
individuals with a �similar� phenotype have genotypes that can be very di�erent. Similarly,
a genotype that mutate is, with high probability, very similar to its predecessor, but the
phenotypes may be very di�erent.

We need to be clear about the de�nitions used from here for genotype and phenotype, as
in [1]:

�Reproduction, as a fundamental property of biological systems, depends on the storage,
processing and transfer of biological information. That information is typically stored in the
form of sequences, such as DNA, RNA or amino acid sequences, and is more generally referred
to as the genotype. In abstract models of biological evolution, the genotype can take more
general forms, such as for genetic algorithms [65], where the genotypes are often binary strings.
Genotypes are almost always linear and discrete representations of biological information.� By
genotype we mean in a general sense the information of an organism, which is replicable
and modi�able due to the random processes of mutations. We do not require the level of detail
that brings each individual to present a di�erent genotype from each other, then we will group
more individuals with similar genotype in the same quasispecies.

�Instead, the de�nition of a phenotype is almost impossibly wide�[1]. At any level of
resolution of biological structure, any higher-level outcome resulting from a sequence can be
seen as a phenotype: the amino acid to which a given triplet codon maps can be considered
a phenotype. The structure and interactions of RNA and proteins are phenotypes, and, on a
longer time scale, the development of an organism can also be seen as a phenotype, as well as
its interaction with its ecosystem. Each organism actually has a phenotype a bit di�erent from
any other. However, in this model by phenotype we intend an organism as a function of the
selective pressures that act on it. If two organisms have di�erent features, but the selection
forces do not notice these di�erences, then in the model those two organisms have the same
phenotype.

To highlight the di�erence between genotype and phenotype, we use in this model the
concept of Genotype-Phenotype map (GP map), a function that associates to each genotype
the relative phenotype [1].

One of the most immediate connection between genotype and phenotype can be shown
with the study of the protein folding problem [19], the spatial rearrangement of an amino
acid sequence into a protein structure. It has been known since Mendel [63] that genetic
mutations can cause phenotypic changes. In the early twentieth century, Fisher, Haldane and
Wright produced the modern evolutionary synthesis [27, 39, 94], introducing the idea of �tness
landscape [94], building on Mendel's and Darwin's [17] work. �A �tness landscape relates the
space of genotypic variation to survival. It, therefore, contains a GP map implicitly. But the
�tness landscape really consists of two distinct mappings: one is the GP map, and the other
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is the mapping from phenotypes to �tness values.[1]�
Kimura [51] takes a step forward in this direction postulating that many mutations that

are important for evolution must be neutral, meaning that they do not a�ect the �tness of the
phenotype. Neutrality refers to selection rather than phenotypic change, and while it is possible
for di�erent phenotypes to be equally �t, it is reasonable to suppose that many mutations are
not only neutral in terms of selection, but leave the phenotype entirely unchanged. This
idea was substantially extended by Maynard Smith in 1970 [59], who addressed the apparent
contradiction [81] between the vast number of possible amino acid sequences and the tiny
fraction of these sequences that give rise to the proteins observed in nature. Maynard Smith
postulates that �functional proteins must form a continuous network which can be traversed
by unit mutational steps without passing through non-functional intermediates� [59], which
is similar to the de�nition of what is now commonly referred to as a neutral network. Such
networks mean that functional proteins occupy connected subsets of genotype space, which
makes their discovery through an evolutionary process, driven by random mutations, feasible.
�Maynard Smith arguably laid the foundations for the modern study of GP maps by proposing
the concept of a protein space of all possible amino acid sequences, in which neighbours are
de�ned by single amino acid substitutions.�

GP maps have been analyzed from a statistical point of view, highlighting their structural
characteristics and fundamental properties [36, 1]. In this model they are used in a dynamic
way, to modify the replicator dynamics and to allow mutations and selection to act di�erently,
see Section 6.4.

In�nite dimension of genome space and meaning of mutations. Another restriction
in [4] concerns the number of potential genotypes that can be generated. Because the model
lives on the simplex SD, it is not possible that more than D di�erent types may exist in the
population. This undermines the concept of mutation as a source of evolutionary novelty. In
the new model we imagine that, from a population initially formed by a few types, with time
and because of mutations, we can generate new genotypes, similar to those of the progenitors.
A naive solution could be to de�ne the process on a simplex of dimension D, very large, and
de�ne the initial data with only D0 non-zero components, with D0 � D, i.e. consider X0

that lives on an appropriate simplex of dimension D0. The replicator dynamics system evolves
remaining on the simplex of size D0, with the only changes that may lead to the formation of
individuals with a �new� genome in the population.

Example 23. Let us take as an example the evolutionary game Rock-Paper-Scissors [44]. In
this situation three types are in the population, R,P, S (Rock, Paper, Scissors), and the payo�
matrix is

U =

 0 −1 1
1 0 −1
−1 1 0

 ,

the average �tness is 0 while the equations for the fractions x = (xR, xP , xS) are
ẋR = xR (xS − xP ) ,

ẋP = xP (xR − xS) ,

ẋS = xS (xP − xR) .
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If we suppose x0 with the third component null, that is x0 =
(
x0
R, x

0
P , 0

)
, i.e. the type �Scissors�

does not exist in the population, and in the absence of mutations, the system quickly converges
to the �Paper only� equilibrium (the system is reduced to the equivalent on S2);{

ẋR = −xRxP ,
ẋP = xRxP .

If instead of the replicator dynamics we had taken into account the system (6.1), eventually the
mutations would have generated the missing type, up to restore the balance between the three
and give rise to the oscillating rock-paper-scissors dynamics. In this example, the �Scissors�
type is a �novelty� in the population, generated as a mutation of already existing types.

This approach, however, shows a problem, namely the need to de�ne a priori types not
yet present in the population, almost completely nullifying the concept of novelty. Keeping
in mind the example of DNA, it is possible that, starting from a �xed genome, the mutation
can act by changing any base, or changing the length of the code, or in general by making
changes that can potentially generate an in�nite number of variants. For this reason, one of
the fundamental steps is to de�ne a space of potential, in�nite and countable genomes that
the system will explore step by step. This space contains all the possible genomes that can be
created with the model, whether they are obtained or not. In the theoretical treatment of the
process, the space of the genomes will therefore be known a priori, but in this case the concept
of evolutionary novelty will become evident when the logic of numerical implementation of the
model is shown. In fact, such logic is designed to mimic the steps of true biological behavior,
and the desired e�ect of not having decided a priori where a mutation lead is achieved. A
similar approach, without a genotype to phenotype mapping, can be found in [48], where a
model of evolutionary dynamics is presented, in which every mutation leads to a di�erent game
characterized by a dynamic payo� matrix, growing and shrinking when a mutation occurs.

A limitation of models with mutations based on replicator dynamics is hidden in the form
of the unknown variables: they represent fractions of individuals with mutations that are pro-
portional to �tness, or to the fraction of individuals itself. By its nature, a mutation occurs
randomly in the population, without depending on �tness or the fraction of individuals, gener-
ating a small group of newborns, small in the sense of absolute number. For this reason in the
model we avoid to use fractions of individuals in the simplex SD and begin to consider actual
number of individuals N . In this case, the mutation of a type k does not change a fraction of
individuals of that type but transforms a small number, possibly random, but independent of
type k, unlike before, where it was an actual number dependent on the mutant, of individuals
in new ones.

6.2 Number of individuals

As said in the previous section, models as the replicator dynamics, on which [4] is based, have
the assumption that the population is constant in number. If this hypothesis is no longer
valid, we must consider a new equation for the real number of individuals Nt, and transform
the replicator equation (1.2), written for the frequencies, into an equivalent equation for the
number. When, later in the text, the model is complete, the mutations will lead to the
formation of small groups of individuals, of very small absolute number, regardless of how
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large the total number of individuals in the population is. For this reason, the changes we
make below are necessary. Hofbauer and Sigmund, in [44], show the following:

Lemma. [44] There exists a di�erentiable, invertible map from SD onto RD−1
+ mapping the

orbits of the replicator equation
ẋk = xk

(
Φk − Φ̄

)
onto the orbits of the Lotka-Volterra equation,

ṅk = nk

(
rk +

D−1∑
i=1

akin
i

)
,

for k = 1, . . . , D − 1 and appropriate choices of rk and aki.

Below, on the same steps, we present a way to transform the replicator dynamics on SD
in a model for the number on RD+ , adding a term of logistic growth in the population.

6.2.1 From number to frequencies

Let N =
(
n1, . . . , nD

)
, nk ≥ 0 for k = 1, . . . , D be the vector of number of individuals in a

population divided in D types (at this level we are not yet distinguishing between geno-types
and pheno-types); with X =

(
x1, . . . xD

)
, xk ≥ 0, for k = 1, . . . , D,

∑
k x

k = 1 we indicate
the fractions of individuals in the same population. We imagine that this population grows
according to the following law: 

ṅk = Fk (N) ,

nk(0) ≥ 0,

k = 1, . . . , D;

with F = (F1, . . . , FD) that assure existence and uniqueness of the di�erential equation. To
get the equation for the frequencies, we change the coordinates as:

xk := nk∑
nj

;

k = 1, . . . , D
N tot :=

∑
nj .

Carrying out the calculations:

Ṅ tot =
˙(∑
nj
)

=
∑

ṅj =
∑

Fj(N) =
∑

Fj(X,N
tot);

ẋk =
˙(
nk∑
ni

)
=

(
ṅkN tot − nkṄ tot

(N tot)2

)
=

ṅk

N tot
− xk ˙N tot

(N tot)2 =
Fk(X,N

tot)

N tot
−
xk
∑
Fi
(
X,N tot

)
N tot

=
1

N tot

(
Fk − xk

∑
Fi

)
= xk

[
1

N tot

(
Fk
xk
−
∑

Fi

)]
.

We can de�ne the �tness functions Φk:

Φk = Φk

(
X,N tot

)
:=

Fk
N totxk

, Φ̄ =
∑

xkΦk =
∑ 1

N tot
Fk. (6.2)
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In conclusion we transform the initial equation into:
ẋk = xk

(
Φk − Φ̄

)
,

Ṅ tot = N totΦ̄,

x0 =
(
x1

0, . . . , x
D
0

)
∈ SD,

N tot
0 > 0;

Lotka-Volterra

The Lotka-Volterra growth equations (see Chapter 1), for the number of individuals in a
population of prey (n1) and predators (n2),{

ṅ1 =
(
α− βn2

)
n1,

ṅ2 =
(
−γ + δn1

)
n2,

(6.3)

are transformed into a replicator dynamics equation with �tness Φ1 and Φ2 that are functions
of the number N tot and the fractions x1, x2, according to (6.2):

Φ1

(
N tot, x1, x2

)
= α− βN totx2,

Φ2

(
N tot, x1, x2

)
= −γ + δN totx1.

De�ning x1 =: x ∈ [0, 1], i.e. the fraction of prey, and consequently x2 = 1− x, the equation
for fractions of prey (and number N tot ∈ R+) is:{

ẋ = (Φ1 − Φ2)x(1− x)
˙N tot = N tot [Φ1x+ Φ2 (1− x)]

(6.4)

The system for the number of individuals on R+ × R+ admits the non trivial equilibrium:

(n1
eq, n

2
eq) =

(
γ

δ
,
α

β

)
,

that, for the system in [0, 1]× R+ becomes:

(
N tot
eq , xeq

)
=

(
αδ + γβ

βδ
,

γβ

αδ + γβ

)
;

In Figure 6.2 it is possible to graphically visualize the trend of the two systems.
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Figure 6.2: Lotka Volterra model with number of individuals and frequencies. In the �rst
picture, the solution of the model for the number (6.3); in the second, the total number N tot,
and the number of prey N totx1, computed from model (6.4); in the third the frequency of prey
x1. The initial datum is chosen (1, 1) for model (6.3), i.e. (2, 0.5) for model (6.4). Parameters
are chosen as α = 2, β = 4, γ = δ = 1.
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6.2.2 From frequencies to number

Let X =
(
x1, . . . , xD

)
∈ SD be the vector of frequency and N =

(
n1, . . . , nD

)
the vector of

number of individuals in a population divided in D types, as before. The system is modi�ed
according to the law of the replicator dynamics, plus an equation for the number N tot:

ẋk = xk
(

Φk −
∑D

i=1 x
iΦi

)
,

Ṅ tot = F
(
N tot, X

)
,

X0 ∈ SD,
N tot

0 > 0.

To obtain the equations for the number, we change the coordinates:

nk = N totxk,
k = 1, . . . , D

N =
(
n1, . . . , nD

)
.

Carrying out the calculations:

ṅk = ˙(N totxk) = Ṅ totxk +N totẋk = F (N)xk +N totxk
(

Φk(N)−
∑

xjΦj(N)
)

= F (N)xk+nk
(

Φk(N)− 1∑
nj

∑
njΦj(N)

)
=
F (N)nk∑

nj
+nk

(
Φk(N)− 1∑

nj

∑
njΦj(N)

)
.

In conclusion we transform the initial equation into:{
ṅk = F (N)∑

nj
nk + nk

(
Φk(N)− 1∑

nj

∑
njΦj(N)

)
,

k = 1, . . . , D
(6.5)

6.3 Replicator dynamics on in�nite space.

As we have seen in Section 6.1, we must set our problem in a framework with an in�nite number
of types, de�ning what is a population in this case, and how to generalize the equations (6.5).
As we will see in the following Sections, in the model we can have a �nite set of initial types
that, with the passage of time, can generate new types, increasing the dimensionality of the
problem. At each �xed time we will then have a �nite set of types, but with cardinality that
tends to (countable) in�nity when time increases. We can then de�ne a population:

De�nition 24. In the space of all sequences of scalars N =
(
n1, . . . nk, . . .

)
, nk ∈ R such

that nk = 0 except for �nitely many n, let S∞R be the subset of the successions with compact
support:

S∞R =
{
N =

(
n1, . . . , nk, . . .

)
: nk ≥ 0 ∀k;

∑
nk < +∞; D :=

∣∣∣{k : nk > 0
}∣∣∣ < +∞

}
A population is an element N ∈ S∞R .
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The populationN is therefore a vector (in�nite) that contains in position k ∈ N the number
of individuals of type k. N is not really an in�nite vector, because only a �nite number of
elements are non-zero (see Figure 6.3). If we imagine the number of individuals constant,
without loss of generality equal to 1,

∑
nk = 1, then we can see how, in this case, S∞R is an

�in�nite union of symplexes�, with a given element N that belong to a �xed symplex SDN .

Figure 6.3: A population N = (0, . . . , ni1 , . . . , ni2 , . . . , ni3 , . . . , ni4 , . . . , ni5 , . . . , 0, . . .) ∈ S∞R .
At positions ik ∈ N the numbers of individuals nik are shown. In this case, only �ve of the nk

are not null.

On a population on S∞R we can de�ne the model (6.5) and the �tness functions.
The �tness of the type k, for k ∈ N is a function Φk, with

Φk : S∞R 7−→ R.

The di�erential system (6.5) is then generalized, with N0 ∈ S∞R , as:

Nt = N0 +

ˆ t

0
a (Ns) ds, (6.6)

a (N) =


F (N)∑
j∈N n

j n
k + nk

(
Φk(N)− 1∑

j∈N n
j

∑
j∈N n

jΦj(N)
)
,

k ∈ N

Remark. It should be noted that in equation (6.6), given the choice of the initial datum, only a
�nite number of types is non-zero (only those in the initial datum support). The equations are
therefore a system on an appropriate SD, masked. Switching to S∞R is justi�ed when we want
to add to the process terms that can change the number of types in the population, making
them increase over time. This is done in Section 6.8; before that, in the next two sections
the two concepts of Genotype and Phenotype are presented (and inserted in the logic of the
model), which specifes the concept of �type� in the population, left intentionally generic up to
this point.



CHAPTER 6. A GENOTYPE-PHENOTYPE MODEL WITH MUTATIONS 99

6.4 Genotypes

Up to this point we indicated as types the groups of individuals on which the selection operates
in the model (6.6), indicating a population of types with N (or with X in the case of fractions).
As noted in Section 6.1, in this model we want to take a step forward and distinguish, at the
level of mathematical construction, the role of genotype and phenotype.

The unknown variable of the complete model, that we continue to represent with N ,
indicates a �population of genomes�. We imagine the genomes as elements of a large set that
represents �all possible potentially existing genetic codes�.

In Nature, a genome can, in the �rst instance, be represented by a sequence of �nite length
of nitrogenous bases, or a �nite string of elements in the alphabet {A,C, T,G}. Mutations can
alter the individual bases, leaving the length intact, or modify the code in a more substantial
way, through deletions or insertions of bases. In this case, therefore, the space of the genomes
will be represented by all the possible strings of �nite length (not �xed) in the alphabet
{A,C, T,G}. These requests lead us to the following de�nition:

De�nition 25. Potential genome space is a set G, countable. An element g ∈ G is a
genome

The concept of genome is the basis of the complete process, so we give justi�cation of the
choices in the de�nition. Since the process must represent mutations as a source of evolu-
tionary novelty, the space of the genomes is explored starting from an initial genome through
mutations. For this reason, the space G must represent the complete set of all possible vari-
ants of a given genome. In the realistic example of a genome as a string of nitrogenous bases,
the possibilities are unlimited; from this consideration the choice of G not necessarily �nite.
On the other hand, in the model we want, to trace the type of mutations in DNA, that the
variations are quantized, and there is not a continuous in�nity of genomes; hence the choice
of G at most countable.

Because the set G is countable, it is possible to de�ne a sorting function α, so that it is
possible to refer to the genomes with a number in N. This, which seems a useful technicality
for the writing of the model, has an important role in the logic of simulation, as we will see
later.

De�nition 26. We de�ne the function α : N 7−→ G, which is an order on G, so that it is
possible to associate each genomes to a progressive number (i.e. mutation from the genome i
to the genome j).

Using the de�nition of α is then possible to de�ne a population of genomes as a point
N ∈ S∞R , indicating with nk the number of individuals that shows the genotype gk := α(k)
(see Figure 6.4). Before de�ning the equations for the evolution of the population of genomes
N , that are a variant of (6.6), it is necessary to identify what is the role of the phenotype in
the model, and how, through a GP -map, genotype and phenotype are linked.
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Figure 6.4: Starting from a genome space G, sorting all the individuals, a population of
genomes is de�ned, as in Figure 6.3. On the x axis, the genomes are shown, with their number
on the y axis. Only a �nite number of genomes have number not null.

6.5 Phenotypes and GP-maps

In our model, a phenotype must be associated with each genotype, expression of that given
genotype. The genetic information that is stored in DNA, represented in its primary structure
as a string of nitrogenous bases and in the set G, is clearly not a random set of characters, just
as a random set of genes does not generate a living organism. If a nucleic acid is mathematically
represented as a string with letters in the alphabet A,C, T,G, strings which do not represent
anything that is biologically valid can also be formed with the same letters. In addition, if
we assume that mutations are a selection-blind force that acts by modifying the structure of
DNA strings, the probability that, after a number (even high) of mutations, we can pass from
a biologically valid string to a nonsense one it is greater than zero. The role of GP -maps is
therefore transforming valid strings into individuals who will participate in the struggle for
adaptation posed by the environment, and not to recognize as individuals the genomes that
instead represent nothing (those individuals will be called non-viable);

We de�ne then the phenotype space and genotype-phenotype map as:

De�nition 27. Potential phenotype space is a set F , countable; an element f ∈ F is
a phenotype. In F there may exist an element, which we indicate with ′0′, called non-vital
phenotypes. Given a genotype space G and a phenotype space F a Genotype-Phenotype
map GP is a function:

GP : G → F .

A GP map is not injective, because di�erent genotypes may generate the same phenotype. The
set of genotypes that produce a given phenotype is called the Neutral Space of that phenotype;
in particular, G0 indicates the neutral space of ′0′ ∈ F , i.e. G0 = GP−1 (′0′).
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The space of the phenotypes F is di�erent from that of genotypes G, and the Darwinian
selection acts on the phenotypes. In our model, selection should not be able to distinguish
two individuals that have the same phenotype, even if they have di�erent genotypes. A
phenotype is associated to a genotype through a GP -map and a �tness function is associated
to a phenotype, as a function of the other genotypes in the population (see Figure 6.5).

GENOTYPES 7−→ PHENOTYPES
GP −map ↑

Fitness

Figure 6.5: The phenotype-genotype map GP allows genotypes in G to express phenotypes
in F , and it is non-injective. The �tness function Φ acts exclusively on the phenotype space,
ignoring G. When added, in Section 6.8, mutations will act exclusively on the genome space
G.

6.6 Fitness for phenotypes

We propose here to insert the concepts of genotype and phenotype presented Sections 6.4 and
6.5 in the model on S∞R (6.6). Let us consider the genome space G and the population of
genomes N on S∞R . The GP -map GP de�nes a population of phenotypes M ∈ S∞R :

M =
(
m1, . . . ,mk, . . .

)
∈ S∞R

where mk is the number of individuals of phenotype fk.

mk =
∑

gi∈G:GP (gi)=fk

ni;
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on F − {′0′} we de�ne the �tness function Φ̃ =
(

Φ̃k

)
fk∈F−{′0′}

, such that for each phenotype

fk:
Φk : S∞R 7−→ R,

M 7−→ Φ̃k (M) .

The functions Φk depends on the other phenotypes and their abundance in the population,
i.e. Φk is a function of M . Since we want the equations of the system to be for the population
of genotypes N , we write the function Φ̃ in the variable N obtaining a �tness function de�ned
for each genotype in G, except G0, function of the whole population of genotypes, i.e. Φ̃k is a
function of N . Φ = (Φk)gk∈G−G0 :

Φk : S∞R 7−→ S∞R 7−→ R,

N 7−→M 7−→ Φ̃k (M) = Φk (N) .

With this choice of �tness function, it is therefore possible to formulate the model (6.6) for each
g ∈ G−G0. As we have seen, only genotypes that express a vital phenotype (g ∈ G−G0) interact
according to the mechanism of Replicator Dynamics on S∞R (6.6), while we want all g ∈ G0

to rapidly extinguish, without interacting with the others. This group, once generated, must
disappear in very short time. Then we imagine that these individuals decrease exponentially,
so we add a decrease term for each of these,

ṅk = −λnk, λ� 0, k : gk ∈ G0.

Overall, the di�erential system (6.6) is generalized for all g ∈ G, with N0 ∈ S∞R , as:

Nt = N0 +

ˆ t

0
ã (Ns) ds, (6.7)

ã (N) =


F (N)∑

j: gj∈G−G0
nj
nk + nk

(
Φk(N)− 1∑

j: gj∈G−G0
nj

∑
j: gj∈G−G0 n

jΦj(N)

)
, k : gk ∈ G − G0

−λnk, λ� 0. k : gk ∈ G0

k ∈ N

Remark. The model without mutations is unnecessarily complex. Until now, we have not
been interested in mutations, and we have developed a model where selection and adaptation
act on phenotypes. However, in the absence of mutations, the presence of in�nite space is
irrelevant. In fact, mutation is the force that generates new genotypes, consequently increasing
the dimensionality of the problem. With no mutations, even if the population composition
varies, the number of individuals does not change. Infact, let us consider the model (6.7) on
G. Since N0 is in S∞R , only a �nite number of nk0 are null, without loss of generality, nk = 0
for all k > D, with {g0} = G0. There are no functions that increase the dimensionality of the
problem, that is indistinguishable from a system on RD+1:

ṅk =


F (N)∑D
j=1 n

j
nk + nk

(
Φk(N)− 1∑D

j=1 n
j

∑D
j=1 n

jΦj(N)

)
, k = 1, . . . , D

−λn0, λ� 0.
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On the other hand, the absence of mutations makes the presence of the GP -map irrelevant
too, since all the equations of genotypes in the same neutral space have the same form, and
the model, from the system on RD+1 can be traced back to a system with the number of
phenotypes as unknowns, on Rd+1, with d < D:

ṁk =


F (M)∑d
j=1m

j
mk +mk

(
Φk(M)− 1∑d

j=1m
j

∑D
j=1m

jΦj(M)

)
, k = 1, . . . , d

−λm0, λ� 0.

with
mk =

∑
gi∈G:GP (gi)=fk

ni.

As stated in this remark, therefore, the construction made up to now is unnecessarily
complex, unless there are mutations. In the next two sections we then construct the process
of mutations, so we can justify the presence of in�nite space, and we show that mutations act
on the genotype, regardless of the type of phenotype that genotype expresses.

6.7 Jump processes, general interpretation

In Section 6.8 we construct the mutation process for the genomes. For this reason we premise
this theoretical section where we develop the theory of jump process (refer to Chapter 2)
reporting the details of the construction of a random Poisson measure and of some types of
processes, from an �algorithmic� point of view. Moreover, reasoning in this optic will also be
useful the understand more clearly the interpretation. In this section, we're going to consider
processes of pure jump in this form:

Xt −X0 =

ˆ t

0

ˆ
E
K(Xs− , ξ)N (ds, dξ),

in RD, on a probability space (Ω,F ,P), with a right-continuous �ltration {Ft, t ≥ 0}. K is
Borel measurable function, N (ds, dξ) is a Poisson random measure on R+ × E with mean
measure l× ν, l Lebesgue measure on R+, ν a σ-�nite measure on a measurable space (E, E).
A jump process is then identi�ed by the space of markers E and from the intensity function
K. We are therefore going to build in detail both E and K, at a technical and interpretative
level.

Remark. Since this section is purely theoretical, solutions Xt do not have any kind of biological
meaning. They do not indicate, for example, fractions of individuals.

6.7.1 Poisson random measure

In Chapter 2 we introduced the concept of random Poisson measure and presented a �rst
construction of it, taken from the book [50], when the measure of the marks space E was
�nite. Below we expand that construction, considering a generic random measure. After that
we present a series of examples, which will lead to the construction of the �nal model.

Lemma 28. [50] Let N (ds, dξ) be a Poisson random measure on R+ × E, with (E, ν) a
measurable space, ν σ-�nite measure.
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� Suppose ν(E) < +∞. De�ne λ := ν(E) and let (Tn)n∈N be the jump times of a homoge-
neous Poisson process on R+, with intensity λ. Let (ξn)n∈N be independent random vari-
ables, identically distributed, uniform on (E, ν). Then, the random measure N (ds, dξ)
can be expressed as

N (ds, dξ) =
∑
n∈N

δTn(ds)δξn(dξ)

� Suppose ν(E) = +∞ and use the σ-�niteness, so you can have a sequence (Ek) of disjoint
sets, with

⋃
Ek = E and ν(Ek) < +∞ for all k. On these sets, de�ne {νk = νIEk},

νk(A) = ν(A ∩ Ek) and repeat the above process. Generate the sequence of random
measure {Nk} . The measure N can be obtained as sum of all the {Nk},

N (ds, dξ) =
∑
k

Nk(ds, dξ).

When the measure ν(E) is �nite, we can think a Poisson random measure as a succession of
random points (Tn, ξn) in the space R+×E. The values in R+ are occurrences of a homogeneous
Poisson that has intensity ν(E). For each event Tn there is a value ξn, uniformly sampled in
E, with measure ν. Thanks to this, the role of the function K becomes clear, in fact, we can
write: ˆ t

0

ˆ
E
K(Xs− , ξ)N (ds, dξ) =

∑
n:Tn≤t

K(XT−n
, ξn);

A jump process, therefore, at a �xed time t ∈ R+ calculatesK on each pair (Tn, ξn) with Tn ≤ t
(see Figure 6.6 for a visual representation of the costruction in Lemma 28). To construct a
process it is therefore necessary to establish precisely what the form of the function K is and
what the space E is, a space of �marks�, which can be shaped to give the desired structure to
the process.

When the set of marks E has in�nite measure, ν (E) = ∞, the construction presented
above can be repeated, provided that it has to be replicated for each subset of �nite measure
E1, . . . , Ei, . . ., that form a partition of E: there will be a succession of pairs (T in, ξ

i
n) for each

subset Ei.
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Figure 6.6: Visual representation of the costruction in Lemma 28 of a Poisson random measure
N on R+ × E (with ν(E) < ∞). On the x axis the jump times Tn, n ∈ N of a homogeneous
Poisson process are reported; on the y axis the succession of marks ξn, n ∈ N in E. The
function K acts on the space R+ × E, i.e. on the pairs (Tn, ξn), n ∈ N.

In the following, some example of simple processes:

Homogeneous Poisson process A homogeneous Poisson process of intensity λ is obtained
by choosing as space E = (0, λ), ν = LebR, e K(x, ξ) = 1. Times Tn are from a Poisson process
with intensity ν (E) = λ and the marks ξn (uniform variables on (0, λ)) are unused in this
case:

Xt −X0 =

ˆ t

0

ˆ
E
K (x, ξ)N (ds, dξ) =

∑
Tn<t

1 = # {Tn < t}

With the time t �xed, we count the pairs (Tn, ξn) with Tn ≤ t.

Non-homogeneous Poisson process We choose to write now a jump process Xt with
non-homogeneous intensity, function of the process itself, λ = λ(Xt−). The function λ(x) is
positive and limited (0 < λ(x) ≤ λmax < ∞). This process is obtained by choosing as a
state space E = (0, λmax), as measure ν = LebR and K(x, ξ) = 1{ξ<λ(x)}(ξ). With a process
of acceptance-rejection, we consider a homogeneous Poisson process with higher frequency of
jumps and, at each occurrence of a jump, we evaluate the function λ(·) before the jump. Only
if the mark ξ is less than λ(x) the jump of the homogeneous process is accepted and actually
takes place (see Figure 6.7).

Xt −X0 =

ˆ t

0

ˆ λmax

0
1{ξ<λ(Xs− )}(ξ)N (ds, dξ) (6.8)
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Figure 6.7: Visual representation of the process (6.8). Of all the pairs (Tn, ξn) of the Poisson
random measure, only those under the function λ(·) (in red) are estimated by the function K,
those above are ignored. In this way, through an algorithm of acceptance and rejection, the
homogeneous Poisson process with intensity ν (E) = λmax becomes non-homogeneous with
intensity λ(·).

Process with marks that select an event Let Xt be a process that, with at its base
a homogeneous Poisson process of intensity λ, at each jump does not have unit increments,
but has D possible outcomes: with probability pi it has a jump of amplitude fi (possibly
dependent on the process itself, fi = fi(x)), for i from 1 to D (of course

∑
pi = 1). We can

simulate this process by choosing E = [0, λ], ν = LebR and dividing the space E in D disjoint
intervals Ii, each of measure λpi. Then we de�ne K(x, ξ) =

∑
fi(x)1I1 (ξ). Every time a jump

occurs (at time Tn), we randomly extract the mark ξn, uniformly distributed in E = [0, λ]. If
this mark falls in the interval Ii (and it occurs with probability pi) then K will be worth the
desired quantity fi (see Figure 6.8).

Xt −X0 =

ˆ t

0

ˆ λ

0

D∑
i=1

fi(Xs−)1I1 (ξ)N (ds, dξ) (6.9)
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Figure 6.8: Visual representation of the process (6.9). The space E is divided in D disjoint
intervals Ii and the function K evaluate the pairs (Tn, ξn) ∈ R+ × E based on their position
on the y axis. If ξn is in the interval with length λpk , hen there will be a jump with amplitude
fk. In this case, for example, the second pair (T2, ξ2) produces a jump with amplitude f1.

Single process, sum of homogeneous Poisson processes. Let
(
N i
t

)
t≥0

, i = 1, . . . , D
be independent homogeneous Poisson processes, each with intensity λi. The process Xt has
jumps of a constant amplitude γi whenever the N

i
t process has a jump (with the necessary

modi�cations, this is the basic structure of the rare-mutations model [4], as shown in Chapter
5, Section 5.2); it is possible to write the process as the sum of jump processes in the form
presented above:

Xt = X0 +
D∑
i=1

ˆ t

0

ˆ
Ei

γiN (ds, dξi)

You can then use the mark space to reformulate the process and write an equivalent one with
the same in�nitesimal generator that contains only one random measure. In fact, we de�ne,
λmax =

∑
λi; E = [0, λmax], with Lebesgue measure. The random measure associated with

R×E generates a Poisson process Nmax
t with intensity given by the sum of the intensity of

the individual processes. The marks are used to select, after a jump of Nmax
t , which of the

N i processes has to be considered. As above, de�ning K(ξ) =
∑
γi1Ii (ξ), with Ii of measure

λi, partition of [0, λmax], the process takes the form:

Xt = X0 +

ˆ t

0

ˆ
E
K (ξ)N (ds, dξ) = X0 +

ˆ t

0

ˆ
[0,λmax]

D∑
i=1

γi1Ii (ξ)N (ds, dξ) .

6.7.2 Markov Chains as jump processes

An additional di�culty occurs when there is the need to construct a process in which the
jumps are a function of the �state before the jump�, in which both the frequency and the set
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of possible outcomes of the jump are exclusively dependent on the previous state. We use
to deal with this a discrete states continuous Markov chain, where for every state there is a
coe�cient of permanence in the state, and a set of states reachable with relative probability.
Here below we write the explicit expression of a pure jump process that is a Markov chain.
This expression will be the basis of the complete process.

Fact. [84] Let Xt be a Markov chain, continuous, with space state M = Z and transition
matrix Q = (qij)i,j∈M . De�ne the function K : M × R 7−→ R as

K (i, ξ) =
∑
j∈M

(j − i) 1Γij (ξ),

then the continuous time Markov chain Xt satis�es the SDE:

Xt = X0 +

ˆ t

0

ˆ
R
K (Xs, ξ)N (ds, dξ)

where N is a Poisson random measure with intensity measure dtdξ.

We recall that row i contains all the information needed for the state i:

�

∑
j∈M qij = 0; qij ≥ 0 for j 6= i and −qii =

∑
i 6=j qij ;

� qi := −qii represents the average time of permanence in state i, that is an exponential
random variable with intensity qi;

� qij for j 6= i are proportional to the jump probabilities, P (Xi 7−→ Xj) =
qij
−qii .

We suppose that
∑

i∈M qi =∞. The idea is to use mark space (E, ν) = (R, LebR) (of in�nite
measure) and divide it into �nite-dimensional subspaces qi as done previously. Each one will
be related to a di�erent state. On each subspace we consider a Poisson process with intensity
qi, independent of each other. The intensity function of the jumpK, function of (i, ξ) ∈M×R,
is non null only when ξ belongs to the subspace related to status i, the one of measure qi.
More in detail:

Let Γij be de�ned as:

Γ12 = [0, q12) ,Γ13 = [q12,q12 + q13) , . . .

Γ21 = [q1, q1 + q21) ,Γ23 = [q1 + q21, q1 + q21 + q23) , . . .

...

Γn1 =

[
n−1∑
i=1

qi,
n−1∑
i=1

qi + qn1

)
, . . .

Let the sets Γi be de�ned as
Γi =

⋃
j 6=i

Γij .

Note that the intervals Γi measures qi. The intervals Γij are disjoint and their union gives R,
i.e.,

Γij ∩ Γkl = ∅ if (i, j) 6= (k, l)
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⋃
i, j ∈M
i 6= j

Γij =
⋃
i∈M

Γi = R

Also, de�ne the function K : M × R 7−→ R as

K (i, ξ) =
∑
j∈M

(j − i) IΓij (ξ), (6.10)

then the continuous time Markov chain Xt satis�es the SDE:

Xt = X0 +

ˆ t

0

ˆ
R
K (Xs, ξ)N (ds, dξ)

where N is a Poisson random measure with intensity measure dt× dξ.
The variable ξ lives on the real line, with Lebesgue measure, therefore E has in�nite

measure. For this reason we decide to divide the real line in the disjoint intervals {Γi}i∈N,
measuring m (Γi) = qi. The random measure will therefore consist of the sum of the measures
Ni on Γi, each a sequence of pairs

(
T in, ξ

i
n

)
, with n ∈ N and every i related to a state in M .

The times
(
T in
)
n∈N are the arrival times of the homogeneous Poisson process N i with intensity

qi, independent of any other process N j . The random variables
(
ξin
)
n∈N are uniform on Γi,

thus they belong with probability
m(Γij)
m(Γi)

to the interval Γij . As long as the process is in the
state j ∈ M , the function K is not null in Γj , therefore it will ignore all the other in�nite
Poisson processes which, at the same time, occur on Γi, i 6= j, obtaining all the characteristics
of a Markov chain (see Figure 6.9 for a visual representation of this costruction).

Figure 6.9: Visual representation of the space E = R+ for the construction presented above
for a continuous time Markov chain. Since the measure of space E is in�nite, the construction
presented in (6.9) is repeated for each interval Γj . For each interval Γj a Poisson process is
generated, independent from any other, and the function K (6.10) will select jumps in Γj only
if the current state of the process is j ∈ N.
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6.8 Mutation process

After the previous Section we have all the tools to build the model of mutations (pure jump)
in S∞R , i.e. to complete the model (6.7):

Nt = N0 +

ˆ t

0
ã (Ns) ds.

This model takes into account the selection and adaptation mechanism, acting on the pheno-
types. We want to add a stochastic process to (6.7), obtaining:

Nt = N0 +

ˆ t

0
ã (Ns) ds,+

ˆ t

0

ˆ
E
K(Ns− , ξ)N (ds, dξ) .

The underlying biological process is the following: the number of individuals in a population
divided inD di�erent initial genotypes changes only according to selection and adaptation (the
deterministic term given by ã), until a mutation happens. A mutation occurs randomly in the
population, with a temporal frequency proportional to the total number of individuals, and
transform a small number of them with the same genotype (1 to 3) into new individuals, with
a similar, but di�erent, genotype. After the mutation, the process increase in dimensionality
(there are now D + 1 di�erent genotypes), and continue to evolve deterministically until the
next mutation. In detail, we are trying to build, with a logic similar to the one used for Markov
chains in Section 6.7, a jump process with space (E, ν) and an appropriate function K. We
require that the mark space E takes into account the following phenomena:

� the temporal frequency of the process, that has to be function of the total number of
individuals;

� identi�cation of the individuals (all with the same genome) that su�er a mutation;

� choice, in proportion to the type of genome identi�ed, of the type of genome that the
newborns express.

In what follows we construct the space E, with elements ξ, with measure ν and de�ne the
function K.

Mutation event and identi�cation of the mutants

A mutation event occurs. The process is based on a non-homogeneous Poisson of intensity
proportional to the number of individuals in the population λ = λ(N), with λ(N) positive and
bounded by λmax. The jumps happen therefore with frequency proportional to the number of
individuals (with constant population the Poisson is homogeneous). To take into account this
type of temporal frequency of the process, we de�ne the �rst variable of the mark space E as
z ∈ R (with Lebesgue measure) and we write:

K (N, ξ) = 1[0,λ(N)](z)K̄ (N, ξ)

We divide the set R into �nite intervals, one of which is [0, λmax], and we ignore everything
that happens outside of this. With an acceptance-rejection mechanism, we have the target
intensity of the Poisson process.
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Identi�cation of the mutants. Mutations occur �blindly� by randomly selecting a small
group of individuals with a �xed genome. The choice is proportional to the frequency of the
di�erent types in the population at the time of the mutation. To write this in the model we
consider the unit interval [0, 1]. Then we consider the family of sets {Ii}i∈N, a partition of
[0, 1] (

⋃
Ii = [0, 1], Ii ∩ Ij = ∅ for i 6= j), such that Leb (Ii) = ni∑

nj
. For each genome then

we associate a set with measure equal to its frequency. It should be noted that only a �nite
number of subsets has non-null measure, e�ectively dividing the interval into a �nite number
of parts. Calling u a variable that lives in [0, 1], the function K̄ it is de�ned as follows:

K̄ (N, ξ) =
∑
i∈N
{1Ii(u)Ki (N, ξ)} ;

Choice of the new genome

Once the genome that changes has been selected, the new genome must be similar to it. To
achieve this we use the construction presented above in Section 6.7 for Markov chains.

�There are many more possible proteins than available protons [in the Universe] and hence
evolution will explore a vanishingly small subset of all possible proteins. What is true of
proteins is also true of genes and genomes. We can imagine all nucleotide sequences arranged
in a way the nearest neighbors di�er in one position. Evolution is a trajectory through sequence
space [73]�.

First, it is necessary to de�ne a concept of �distance� between the genomes, in terms of
mutations: a genome explores space through mutations, which transform it into a new element
of G , which is �near� him, in some sense; on G × G we de�ne a weighted graph. If we imagine
to follow the evolutionary history of a genome, we would see it moving between one vertex
and another, following the transition probabilities of a Markov chain:

De�nition 29. Let Gt be a discrete Markov chain on state space (G,P (G),P). On the
cartesian product G × G is then de�ned a jump matrix Π, such that:

Gt = genome g ∈ G at time t;

Πij := P (Yt+1 = j|Yt = i) .

Π is an irreducible matrix.

The graph of the Markov chain, representation of the jump matrix, makes evident a mea-
sure of closeness between one genome and another. The matrix Π has been chosen irreducible,
so that it is always possible, with a su�cient number of mutations, to move from one geno-
type to another. The choice is in line with the evolutionary theory, which presupposes all the
species descending from a single common genome, as long as we suppose the single mutational
events reversible.

As said above, we want to use a construction similar to the one in Section 6.7 for Markov
chains; in that case the space R was divided into subsets, each related to a state of the chain.
When the process was in the state i, the function K allowed the variable ξ to move only in
the subset relative to i, and to select the value of the jump according to the row i of the
transition matrix. Unlike that construction, the space to be divided here is not the real line,
but the Cartesian product G × G. We impose that when the mutation a�ects the genome g,
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the function K allows the variable ξ to move only in the subset relative to the state g, that
is {g} × G. On this space, thanks to the jump matrix Π we de�ne µg, which measures the
probability that g has to change into other genomes.

De�nition 30. Fixed g ∈ G, the measure ηg : G 7−→ R+ is de�ned as ηg(h) := Πg.h. ηg is a
probability measure on G, for all g ∈ G.

On G × G is therefore de�ned the measure η:

De�nition 31. η is a measure,η : G × G 7−→ R+, such that η((g, h)) := ηg (h), i.e. η|{g}×G =
ηg. The measure η clearly is not a probability measure, because η(G × G) =

∑
g∈G ηg(G) =∞.

See Figure 6.10.

Example. In Nature, indicating a genome as a string of �nite length of letters {A,C, T,G},
i.e. the space of potential genomes

G =
⋃
n∈N
{A,C, T,G}n ;

we can de�ne the jump matrix Π thanks to the Hamming distance [40];

De�nition 32. The Hamming distance dH between two strings of equal length is the number
of positions in which the corresponding symbols are di�erent. In other words, the Hamming
distance measures the number of substitutions necessary to convert one string into another,
or the minimum number of mutations that have led to the transformation of one genome into
another.

By simplifying, if we imagine that only point mutations exist, and that no more than one
mutation can occur simultaneously, then a string of DNA can only change into another that
has Hamming distance 1 from it. For example AAA can only change into a string that contains
A in two positions out of three. Fixed the genome gi ∈ G:

ηi(gj) = Πij =

{
1

3Lj
if dH (gj , gi) = 1

0 otherwise

where 3 is the number of genomes in which g can be transformed by changing one nucleotide
and Lj is the length of the genome gj .
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Figure 6.10: Example of graph on the genome space G. The arrows have the weights Πjk and
represents mutation jumps. Note that Πjk = ηj (k).

In line with above, it is possible to de�ne Ki, function of the variable v on G × G :

Ki(N, ξ) = 1{α(i)}×G(v)γi(N, ξ)

With γi we indicate the intensity of the jump. The amplitude of the jump is r, a very small
value (1 to 3), if there are at least r individuals to change; otherwise they all change. With
ei we indicate the element of the canonical base of S∞R , ei(k) := δik, k ∈ N. The jump moves
from individuals with genome gi = α(i) to individuals of the new type v2, where v = (α(i), v2),
that is

γi (N, ξ) = min (ni, r)
(
eα−1(v2) − ei

)
.

See Figure 6.11 for a visual representation of the mark space E = (R+ × [0, 1]× (G × G)).
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Figure 6.11: Visual representation of the mark space E = (R+ × [0, 1]× (G × G))
for the complete model, with function K equal to K (N, ξ) =
1[0,λ(N)](z)

∑
i∈N
{

1Ii(u)1{i}×G(v) ·min
(
ni, r

) (
eα−1(v2) − ei

)}
. The variable z ∈ R+ (not

shown) makes the process non-homogeneous and of the desired intensity, as in equation (6.8).
The pair of variables (u, v), living in the space shown in the �gure (u ∈ [0, 1], on the axis y,
v ∈ G × G on the axis x), regulate the choice of the genome that will change (u), and evaluate
which one will change (v). Note the parallelism with the construction for Markov chains
presented in Section 6.7, where the set E, of in�nite measure, is divided into subsets of �nite
measure ((G, ηi) here, Γk for a Markov chain)

Complete jump process. The mutation process has then the form:

Nt = N0 +

ˆ t

0

ˆ
E
K (Ns− , ξ)N (ds, dξ) ;

de�ning, for ease of notation, γk
(
nk, v

)
:= min

(
nk, r

) (
eα−1(v2) − ek

)
, K has the following

form:
K (N, ξ) = 1[0,λ(N)](z)

∑
k∈N

{
1Ik(N)(u)1{α(k)}×G(v)γk

(
nk, v

)}
ξ = (z, u, v) ∈ E = R+ × [0, 1]× (G × G)

{Ii(N)}i∈N partition of [0, 1], m (Ii(N)) =
ni∑
nj
.

ν(E) = ν
(
R+ × [0, 1]× (G × G)

)
= +∞.

To give an intuitive explanation, we follow the construction for Poisson random measures
presented in Section 6.7 ([50]). Let (Tn)n∈N be a homogeneous Poisson process with intensity
λmax := ‖λ‖∞, let (zn)n∈N, (un)n∈N (vn)n∈N be collections of independent random variables,

zn ∼ Uniform ([0, λmax]) ,
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un ∼ Uniform ([0, 1]) ,

vn ∼ Uniform (G × G) ;

then the process can be rewritten as:

Nt = N0 +
∑

n:Tn≤t
1[

0,λ
(
N
T−n

)](zn)
∑
j∈N

1
Ij

(
N
T−n

)(un)1{α(j)}×Gγj

(
nj
T−n
, vn

)
. (6.11)

This expression presents only random variables independent of each other, and we can give a
clearer idea of how the process works. Intuitively, the pure jump process:

� calculates a sequence of times (Tn)n∈N of a homogeneous Poisson process with intensity
λmax;

� at each occurrence of a jump Tn calculates zn, a uniform variable uniform in [0, λmax]

and accepts it if zn ≤ λ
(
NT−n

)
;

� the �rst two steps and the succession of random variables zn therefore are used
to generate a process with a non-homogeneous intensity dependent on the process
itself λ(·)

� if the jump is accepted calculates a variable un ∼ Unif (0, 1) and calculates j such that

un ∈ Ij
(
NT−n

)
;

� variables un select the type of genome that will undergo a mutation;

� only at this point the variable vn is generated, on which calculate the function γj .

� Note that, �xed j, the function K is non null only if vn ∈ {α(j)} × G, so, instead
of vn we can imagine a variable vjn on vn ∈ {α(j)} × G is generated, using ηj as
measure

� variables vn select, starting from the genome that is changing, a new born similar
to the predecessor (according to the measure η), which will be generated in small
quantities.

6.9 Complete process, existence and uniqueness

Let us now write the complete equations for the model and rely on [7] for what regards the
existence and uniqueness of the process.

Consider the stochastic equation{
Nt = N0 +

´ t
0 ã (Ns) ds+

´ t
0

´
EK (Ns− , ξ)N (ds, dξ) , t > 0

N0 ∈ S∞R ,
(6.12)
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in S∞R on a probability space (Ω,F ,P), with a right-continuous �ltration {Ft, t ≥ 0}, ã and
K Borel-measurable functions of appropriate dimensions:

ã (N) =

{
F (N)∑

vit
nk + nk

(
Φk(N)− 1∑

vit

∑
j: gj∈G−G0 n

jΦj(N)
)
, k : gk ∈ G − G0

−λnk, λ� 0, k : gk ∈ G0

(6.13)

where Σvit =
∑

j: gj∈G−G0 n
j , F equation of a logistic growth with carrying capacity KF and

rF rate of increase,

F (N) = rF

(
1−

∑
j: gj∈G−G0 n

j

KF

) ∑
j: gj∈G−G0

nj ;

(Φk)k∈N �tness functions with

sup
j: gj∈G−G0

|Φk (N)| = L <∞;

The jump term K is

K (N, ξ) = 1[0,λ(N)](z)
∑
i∈N

{
1Ii(u)1{i}×G(v) ·min

(
ni, r

) (
eα−1(v2) − ei

)}
. (6.14)

Remark. A solution of the process presented above is a cadlag process with values in S∞R
de�ned on the probability space, such that Nt is Ft−adapted and there exist an Ft−stationary
Poisson process having Poisson random measure N (·, ·) on R+ × E,

E = (R+ × [0, 1]× (G × G)) ,
ξ = (z, u, v) ,

with mean measure m× ν:
ν = LebR+ × Leb[0,1] × η,

ν σ−�nite measure on a measurable space (E, E) such that (6.12) holds a.s. and N0 ∈ F0 is
independent of the Poisson increments.

Theorem 33. Under the assumption of the above remark, a solution of (6.12)(6.13)(6.14)
exists and is unique for all t ≥ 0.

Proof. If there are no jumps, i.e. the process is Ñt (6.12), with K = 0, is deterministic and is
set on RD, where D is the number of non-zero elements in the support of N0.

nkt =

{
nk0 +

´ t
0 ãk (Ns) ds, if nk0 is one of the D non-null elements of N0

0, otherwise

There are no way, except for mutations, to increase (or decrease) the dimension of the problem.
Then, we can use classical arguments to guarantee existence and uniqueness for the solution
of:ṅk = F (n1,...,nd)∑d

k=1 n
j
nk + nk

(
Φk(n

1, . . . , nd)− 1∑d
k=1 n

j

∑d
j=1 n

jΦj(n
1, . . . , nd)

)
k = 1, . . . , d

ṅ0j = −λn0j , j = 1, . . . , v

with d+ v = D, λ� 0, N0∈S∞R , i.e. N0 ∈ RD, nk0 > 0 for k = 1, . . . D,
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� ã : Ω ⊆ R × RD 7−→ RD is smooth near the initial datum (t0, N0) = (0, N0), so it
is locally lipschitz in the open set Ω 3 (0, N0), then the solution exists and is unique
locally;

� Ntot :=
∑D

k=1 n
k is such that Ṅtot = F (N+)−λ

∑ν
j=1 n

0j , with F logistic, soNtot ∈ [0,K]

for all t ≥ 0 when nk0 ≥ 0 for all k;

� nk(t) = 0, for t ≥ 0, is a solution; then nk(t) can not change in sign. Because of, for all
k nk0 > 0, then 0 ≤ nkt ≤ K.

� ã is bounded, so the solution exists globally in time.

d∑
k=1

∣∣∣∣∣∣F (n1, . . . , nd)∑d
j=1 n

j
nk + nk

Φk(n
1, . . . , nd)− 1∑d

j=1 n
j

d∑
j=1

njΦj(n
1, . . . , nd)

∣∣∣∣∣∣+
v∑
j=1

∣∣−λn0j
∣∣

≤
d∑

k=1

nk

rF
∣∣∣∣∣
(

1−
∑d

j=1 n
j

KF

)∣∣∣∣∣+ |Φk|+
1∑d
j=1 n

j

d∑
j=1

nj
∣∣f j∣∣

+ λ

v∑
j=1

n0j

≤
d∑

k=1

nk

rF + L+
maxN∈RD |Φj |∑d

j=1 n
j

d∑
j=1

nj

+ λ

v∑
j=1

n0j

≤
d∑

k=1

nk {rF + 2L}+ λ
v∑
j=1

n0j ≤ max {rF + 2L; λ}KF .

Next, we use the results in [7]. If we de�ne the function Λ:

Λ(N) := ν {ξ ∈ E, |K(N, ξ)| 6= 0} ,

Λ(N) := ν

{
(z, u, v) ∈ E,

∣∣∣∣∣1[0,λ(N)](z)
∑
i∈N

{
1Ii(u)1{α(i)}×G(v) ·min

(
ni, r

) (
eα−1(v2) − ei

)}∣∣∣∣∣ 6= 0

}
,

we can show that Λ(N) <∞: the amplitude of the jump γi (N, ξ) = min
(
ni, r

) (
eα−1(v2) − ei

)
is null only when ni is null, so the function K is null only when z ∈ [0, λ(N)] , and for all i ∈ N
u ∈ Ii, ν ∈ {α(i)} × G, then

Λ(N) = ν

{
[0, λ (N)]×

⋃
i∈N

Ii × ({α(i)} × G)

}
≤ ν

{
[0, λmax]×

⋃
i∈N

Ii × ({α (i)} × G)

}

= λmax ·
∑
i∈N

m (Ii) η ({α(i)} × G) = λmax ·
∑
i∈N

m (Ii) = λmax <∞.

These calculations guarantee that τ1 = inf
{
t > 0,

´ t
0

´
EK

(
Ñs− , ξ

)
N (ds, dξ) 6= 0

}
ful�lls

P (τ1 > 0) = 1 for all initial positions N0 ∈ S∞R [7]. Starting at N0, Nt evolves as Ñt for t < τ1

and then jumps to
Nτ1 = Ñτ1 +K(Ñτ1 , ξ1),
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where (τ1, ξ1) is a point belonging to the Poisson random measure N (·, ·). Next, starting at
Nτ1 , the process evolves as Ñt (with Ñ0 = Nτ1). Now, after the �rst jump, if the mutation has
created a new genome, the deterministic process is on RD+1, and we can prove again existence
and uniqueness with the above assumptions. The process evolves up to a random time τ2 and
so on. We can de�ne the jump times τ2, τ3, . . . appropriately and the process Nt is well de�ned
for all t < τ∞ := limn→∞ τn. Because of

sup {N ∈ S∞R , Λ(N)} = λmax <∞,

then τ∞ = ∞ with probability 1 for all initial conditions [7]. Then global existence and
uniqueness are veri�ed.

Conclusions

In this chapter we built a population dynamics model of selection, adaptation and mutation
that generalizes the replicator dynamics with rare mutations presented in [4, 5] (see Chapters
4 and 5). The model is structured to follow the evolution over time of a population of di�erent
types of potentially in�nite genotypes. For this reason the setting has shifted from the simplex
SD of the replicator dynamics to a space of in�nite size, S∞R . The genotypes are subject to
mutations, which occur randomly in the population, without favoring one type over another,
and generating individuals with features never seen before, exploring with time the in�nite
set of potential genotypes. We have therefore constructed a stochastic process that takes
these characteristics into account. Each genotype expresses a given phenotype, or a set of
characteristics that are subject to natural selection. After de�ning the GP functions, which
map genotypes into phenotypes, we have written the equations that regulate the selection and
adaptation of these phenotypes. The model thus obtained was written in a formal manner and
its existence and uniqueness were discussed. After this chapter of model setup, in the next
we analyze some examples, without speci�c biological relevance, which highlight particular
dynamic characteristics of the process.



Chapter 7

Simulations of the

Genotype-Phenotype model

7.1 Numerical implementation

We present in this chapter various examples of applications of the model in the previous
chapter, see Section 6.9. Using the intuitive interpretation of the mutation process given in
Section 6.8, we implement the model in the following way:

� We de�ne the initial parameters, such as the �nal time T , the time step ∆t, the mortality
rate of individuals with non-vital phenotype, the maximum intensity λmax of the Poisson
process for mutations.

The time step of the simulation, necessary to approximate the non-stochastic di�erential
equations, is chosen so that within it the probability to have at most a mutational jump
is almost one (is above a threshold chosen a priori).

� The homogeneous Poisson process of intensity λmax is generated until time T and the
succession of jump times Tn is saved;

� We de�ne the initial data by choosing a �nite number D of genomes that are in the
population; D is the actual size of the problem.

The initial number of individuals N0 is de�ned here, which is split into D di�erent types,
with relative genotypes and phenotypes in a vector with D components, �nite. Although
in theory the problem is on S∞R , the simulation considers a �nite vector, on RD.

The iterations start. For each time interval:

� A mutation occurs if in the considered interval there is a jump of the homogeneous
Poisson process; if so (let t̄ be the time) an acceptance-rejection technique is carried out
to check if this jump can be considered.

The homogeneous random variable zn is sampled with uniform distribution on [0, λmax];
if this number is less than or equal to λ(Nt̄−), then the jump is accepted and a mutation
occurs.

� If a mutation occurs:

119
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� A random genome gk, k = 1, . . . , D is chosen in the population, proportionally
to the amount of individuals with that genome, using the random variable un ∼
Unif (0, 1): the higher is nk, the higher is the probability to be chosen.

� A new genome is generated starting from the chosen one; the function responsible
for this step takes the parent's genome as input and outputs the genome obtained
by applying a step to the Markov chain with transition matrix Π. The new born is
labeled as the (D + 1)th genome and the problem changes its actual size, increasing
by one.

It is important to note that the matrix Π may not be known a priori, as the func-
tion of the program provides an algorithm to modify the initial genome randomly,
obtaining a new one, without explicitly calculating the values of Π. For example,
if the genome gk were a string of nitrogenous bases, the function could act as a
�natural� point mutation, choosing one of the random nitrogenous bases, and mod-
ifying it, at random. As the new born is labeled as (D + 1)th genome, the process
becomes a vector on RD+1 (the mutation can rarely transform a genome into one
already present in the population and not generate a new genome, in which case
the problem remains on RD).
In theory, the new genome is already present in the population vector N , element
of S∞R in an appropriate position, given a priori from the sorting function α; in the
simulation, however, from a �nite vector, we obtain a vector of size greater than
one, with the new born that occupy the position D+ 1. In this way, with time, the
sorting is obtained step by step and represents the temporal order of appearance
of a given genome in the population.

� The number of individuals changes according to the law of the process, which
eliminates min(nk, r) individuals of the type k and creates as many of the new type
D + 1.

� The GP -map of the new genotype is calculated, de�ning its phenotype.

The passage between genotype and phenotype is summarized here; the GP-map
function is de�ned for each genotype. Given the nature of the problem considered,
this function can be computationally heavy (as in cases where the map is the
development of a cellular automaton), but in any case it is calculated only once,
when the creation of the given genome happens.

� After the possible mutation, a step in the deterministic process is made, using Heun's
method.

� The phenotypes are divided between vital and non-vital (the latter indicated with
′0′);

� The vital phenotypes undergo a step of the replication dynamics with growth func-
tion:

* an intermediate value ñkt+1 is calculated using Euler's method:

ñkt+1 = nkt + ∆tã
(
N+
t

)
;
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* the �nal approximation nkt+1 is obtained as:

nkt+1 = nkt +
∆t

2

[
ã
(
N+
t

)
+ ã

(
Ñ+
t

)]
;

� Non-vital phenotypes decrease exponentially, nkt+1 = nkt e
−λ∆t;

It should be noted that the �tness function can not take genotypes as input, thus being
invariant for individuals in the same neutral space.

� The variables of the problem are updated, including the vector containing the number
of individuals and the vectors containing genotypes and phenotypes present at that time
in the population, the actual dimension of the problem, which could be increased.

7.2 Examples of applications

We propose here di�erent examples to highlight the features of the genotype-phenotype model
(6.12)(6.13)(6.14). As de�ned, in the model, the space of the G genomes, the matrix relative
to the mutations Π, the GP -map and the �tness functions Φ, are not speci�ed. When these
parameters are changed, di�erent models are obtained; for this reason, for each example we
initially detail the choices made.

Fibonacci GP-Map.

A structurally simple example, but able to summarize the main characteristics of the model,
is that built from the �Fibonacci GP-map�, presented in [36].

Genome space and mutations. The genome space G is the set of binary strings of �xed
length, G =

⋃
n∈N {0, 1}

n, a genome therefore represents a simpli�ed DNA string, in which
the nitrogenous bases are reduced from four to two, 0 and 1. When a mutation occurs in the
genome, two di�erent events may happen:

� with probability (1− p) , p ∈ (0, 1) the string undergoes a punctual mutation, i.e. an
element chosen randomly within it changes from 0 to 1 or vice versa;

� with probability p instead an insertion occurs, i.e. a 0 or a 1 is added into the genome,
in a random position; through insertions, the e�ective dimensionality of the problem
increases by one;

GP-map. A genome g of length L, g ∈ {0, 1}L ⊂ G expresses a phenotype f ∈ F , which is
a binary string of length shorter than L, obtained in the following way:

� starting with the �rst digit the sequence is considered �coding� until a �stop codon� is
encountered,

� after the stop codon the sequence is considered �non-coding�.
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Each possible sequence up to the �rst occurrence of the stop codon 11 uniquely maps to a
distinct phenotype. The sequence after the �rst stop codon, on the other hand, gives rise to
the neutral space of that phenotype. If the stop codon does not exist, then the phenotype
obtained is non-vital, and it is indicated with 0.

Figure 7.1: Three examples of genotype sequences, which map two di�erent phenotypes in
the Fibonacci genotype-phenotype map. Reading from the left the sequence is regarded as
�coding� up to the �rst occurrence of the �stop codon� sequence 11. Thereafter the sequence
is regarded as �non-coding�. Each possible coding sequence represents a di�erent phenotype,
whereas the non-coding sequence leaves the phenotype entirely una�ected. Figure by [36].

Fitness 1. Let us de�ne the �tness matrix of the two-strategist game Hawks and Doves, for
G = 2, C = 3,

U =

(
G−C

2 G

0 G
2

)
=

(
−1

2 2
0 1

)
;

�xed time t, the �tness of phenotype fk is obtained by playing multiple times the game of
matrix U against the phenotype which has the higher number of individuals in the population
at that time, namely fmax,t, in the following way:

� de�ne l = max (length of fk, length of fmax,t)

� for i from 1 to l, the two players challenge each other, choosing their strategy based on
what they have encoded in position i of their genotype:

� if position i is equal to 0, the player choose Dove;

� if position i is equal to 1, the player choose Hawk;

� if position i is greater than the length of the genome, the player choose Hawk.

fenotype fk has a reward of φ(i, fk, fmax,t) each time.
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� After the l �ghts, the result are averaged.

Φk(N, t) =
1

l

l∑
i=1

φ(i, fk, fmax,t).

Examples. Suppose that p = 0, i.e. that no insertion mutations can occur, only punctual;
the initial length of the genomes is L = 3, and because of p = 0, can not increase. In
this situation, only 8 di�erent genotypes can be generated by mutation, with the following
genotypes:

g
GP
7−→ f

000 0
001 0
010 0
011 011
100 0
101 0
110 11
111 11

The only vital phenotypes are therefore f1 = 011 and f2 = 11; the value 0 represents the
strategy �Dove�, while the value 1 the strategy �Hawk�.

Figure 7.2: Genome space G with graph given by Π when there are no insertion mutation
and L = 3. Genomes 111 and 110 are the neutral space of phenotype 11 (in red) while 011
is the only element in the neutral space of phenotype 011; all other genotypes are non-vital
(phenotype 0).

In a population initially formed by the majority of individuals of phenotype f1 = 011,
�tness are calculated challenging an individual that use the set of strategies 011, i.e. �First
Dove, then Hawk, then Hawk�:
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� Fitness of phenotype f1. Individuals of phenotype f1 �ght a total of 3 times, the �rst
time acting like Doves (0), the second and third acting like Hawks (11).

Φ011>11
011 =

G
2 + G−C

2 + G−C
2

3
=

3G− 2C

6
= 0;

� Fitness of phenotype f2. Individuals of phenotype f2 �ght 3 times, acting always like
Hawks,

Φ011>11
11 =

G+ G−C
2 + G−C

2

3
=

2G− C
3

=
1

4
;

individuals of strategy 11 therefore are the ones that will increase, until they become the
majority. In that situation, with a population with majority of f2 = 11, i.e. �First Hawk, then
Hawk� �tness result:

� Fitness of phenotype f1. Individuals of phenotype f1 �ght a total of 3 times, the �rst
time acting like Doves (0), the second and third acting like Hawks (11).

Φ11>011
011 =

0 + G−C
2 + G−C

2

3
=
G− C

3
= −1

3
;

� Fitness of phenotype f2: Individuals of phenotype f2 �ght 2 times, acting always like
Hawks,

Φ11>011
11 =

G−C
2 + G−C

2

2
=
G− C

2
= −1

2
.

In a population with majority of strategist �First Hawk, then Hawk� the most cautious strategy
�First Dove, then Hawk� is rewarded, bringing individual of type f1 to increase.

The population will initially tend to oscillate and stabilize towards an equilibrium with
the same number of individuals of both phenotypes (see Figure 7.3)
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Figure 7.3: Genotypes and Phenotypes model (6.12)(6.13)(6.14) with Fibonacci GP-map.
Time of execution is T = 50. The maximum intensity of the Poisson process is 0.1, there are
no insertional mutations.

With the passage of time, however, the structure of the genome space G begins to determine
a di�erent equilibrium: any non-vital phenotype, although it may appear after a mutation,
will not have time to mutate before disappearing, leaving room only for the neutral spaces of
the vital phenotypes, distributed as shown in Figure 7.2. The neutral space of phenotype 11
has two elements, while 011 a single one, with 011 and 110 that can mutate only in 111. This
situation leads to an imbalance that, for long times, leads to the dominance of the strategy
11, as can be seen in Figure 7.4.
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Figure 7.4: Genotypes and Phenotypes model (6.12)(6.13)(6.14) with Fibonacci GP-map.
Time of execution is T = 10000. The maximum intensity of the Poisson process is 0.1, there
are no insertional mutations.

When the probability of having an insertion mutation is positive, then new strategies can
arise in the population, complicating the �nal result (Figure 7.5); the phenotype to a�rm
itself in the population is 11, with the largest neutral space. When the length of the genome
becomes very large, the neutral space of the phenotype 11 grows exponentially in size (there

are 2L̃−2 genomes of length L̃ that express this phenotype); since individuals in the same
neutral space are indistinguishable from natural selection, after su�cient time each genome of
this space will have about the same number of individuals. The Fibonacci GP-map therefore
ceases to be representative when the number of genomes in the same neutral space is much
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larger than the total number of individuals in the population, leading to the formation of
populations with less than one individual for each genotype.
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Figure 7.5: Genotypes and Phenotypes model (6.12)(6.13)(6.14) with Fibonacci GP-map.
Time of execution is T = 2000. The maximum intensity of the Poisson process is 0.1, inser-
tional mutations happen with probability p = 0.1.

Life-like cellular automaton

Here is an example showing the di�erence in action of mutation and selection in a clear way,
using a Life-like cellular automaton. From [25]:

�One may de�ne cellular automata on grids of high dimensions or on neighborhood struc-
tures more general than grids. The set of neighbors of a cell may be only those other cells
nearest to it in the grid or may fall within a neighborhood of larger than unit radius. The state
of a cell may depend only on the states of neighboring cells in the previous time step, or it
may depend on the states of neighbors over several previous time steps. The number of states
of each cell may be any �nite number or even a continuously variable value, and researchers
have considered update rules that are asynchronous, randomized, or quantum mechanical.�

We restrict in this example our attention to set of rules that are very similar in structure
to Conway's Game of Life [29]. Speci�cally, we consider binary cellular automata such that:
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� The cells of the automaton form a two-dimensional square lattice.

� The neighbors of each cell are the eight lattice squares that are orthogonally or diagonally
adjacent to it (Moore neighborhood).

� Each cell may be in one of two states, alive (1, black) or dead (0, white).

� All cells are updated simultaneously, and the time is discrete.

� In time step i, the state of any given cell is a function of the state of the same cell in
time step i− 1 and of the number of live neighbors it had in time step i− 1.

In a cellular automaton of this type, a single cell may do one of four things within a single time
step: if it was dead but becomes alive, then it is born; if it was alive and remains alive, then it
survives; if it was alive and becomes dead, then it dies; and if it was dead and remains dead,
then it is quiescent. The standard convention for naming these cellular automata is given by
a sequence of characters in the form �BxxxSyyy�. The xxx part of the rule string is a subset
of the digits from 0 to 8, representing numbers of neighbors such that a dead cell with that
many neighbors would become alive in the next time step, causing a birth event: the B stands
for birth. The yyy part of the rule string is another subset of digits, representing numbers of
neighbors such that a live cell with that many neighbors would remain alive in the next time
step, causing a survival event: the S stands for survival.

For instance, Conway's Game of Life itself is represented by the rule string B3S23: a
dead cell with three live neighbors leads to a birth event, and a live cell with two or three
live neighbors leads to a survival event. All other combinations of cell state and number of
neighbors lead to death or quiescence and can be inferred from the birth and survival parts of
the rule string.

Genome space and mutations. The genome space G is {0, 1}L
2

, for L ≥ 1, set of the
L× L grids with elements in {0, 1}; for what regards the distance between genomes given by
mutations, each element in the matrix of the genome g has probability p to change, changing
from 0 to 1, with p = k/L2, so that there are k average changes every mutation. So for all
g1, g2 ∈ G P (g1 7−→ g2) > 0 and

P (g1 7−→ g2) = pdH(g1,g2) (1− p)L
2−dH(g1,g2) ,

where dH is the Hamming distance, calculated on the elements in G.

GP-map and �tness. Starting from a genome g, the GP map consists into generate a
cellular automaton that has g as initial state, for a �xed number of iterations: this automaton
is the variant B5678S45678 of Conway's Game of Life: at discrete time steps, the status of
each cell is updated based on the previous state of it and of the 8 cells that surround it; if the
target cell is alive, it continues to be alive in the next iteration if it has 4 or more living cells
surrounding it; if instead it is dead, it borns if it has 5 or more live cells sorrounding him.
This particular rule brings the initial state to group together creating characteristic patterns,
distinct zones of living cells of various sizes; survival is assured only for a high number of
neighbors and birth only for 5 or greater, bringing solitary or slightly aggregated cells to
disappear. This model is able to show well the di�erent action of selection and mutation,
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since the genome is a chaotic set of points, while the con�gurations generated by this variant
of the game are similar to liveries of animals. Let de�ne Nmax the number of iterations chosen,
and H the map that performs an iteration of the algorithm, then the GP -map results in:

GP := HNmax : G 7−→ F ⊂G

g ∈ G 7−→ H(g) ∈ G 7−→ . . . 7−→ Hn(g) ∈ G 7−→ . . .

Because the rule does not include births for 0, 1, 2 or 3 neighbors, then it is not possible
for an initial pattern entirely contained in a bounding box to get out of it, so the algorithm
eventually leads to periodic con�gurations [25]. From numerical simulations, choosing L ≤ 30
and Nmax ≥ 30, any computed random initial data gk converges to a �xed point fk = H (fk)
in less than Nmax iterations. From this consideration it is therefore possible to check how the
GP -map generates a phenotype space F ⊂ G of cardinality lower than G. Infact, chosen an
initial genome gk which converges to fk in less than Nmax iterations, each element Hn (gk)
will express the same phenotype of gk.

Figure 7.6: GP-map of Life like automaton model. The genotype, on the left, is a L×L matrix
(L = 30) with elements in {0, 1}. The genotype is the inital status for the B5678S45678 version
of Game of Life. The phenotype, on the right, is the equilibrium con�guration (obtained in
less than 30 iterations). The �gure in the center is the cellular automaton in an iteration
preceding the �nal one. nz counts the living cells of the square.

It is possible to de�ne the �tness by working on the �apparent� characteristics of the
phenotypes, evaluating the number of connected components and total area occupied: a binary
array can be represented by a black and white image, where 1 represents a black pixel, and 0 a
white pixel: two black pixels belong to the same connected component if it is possible to trace
a path, moving between neighboring cells, which connects the two pixels; the number is then
divided by the greatest number of connected components of an individuals in the population.
The measure of the total area occupied is a measure of density, obtained by dividing the
number of pixels equal to 1 for the total number of elements in the genome, L2.

Φk :=
#connected components of fk

max {#connected components of f , with f in the population}

+
#number of pixels of fk equal to 1

L2
. (7.1)
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Examples. Even if it is �nite, for L = 20 the cardinality of G is 2L
2 ∼ 10120 elements. With

the simulation times used, it was therefore possible to explore only a small subset of this space.
In Figure 7.7 is possible to display the results of a simulation for T = 1000, obtained from
an initial random genome. More simulations have been carried out, with di�erent L, starting
with the same initial genome (Figure 7.9 to 7.17), each time obtaining di�erent phenotypes;
albeit di�erent from each other, the phenotypes obtained show all the characteristics favored
by the selective pressure applied on them: greater number of connected components compared
to the ancestral and higher density of living cells.
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Figure 7.7: Genotypes and Phenotypes model (6.12)(6.13)(6.14) with Life-like automaton.
The dimension of the grid is set at L = 20, the �nal time is T = 1000 for the �rst two run,
T = 5000 for the third. We show the �nal phenotypes and genotypes of three di�erent runs
of the process starting from the same genome.

For the simulation in Figure 7.8, we have chosen as �nal time T = 5000 and we display
the best phenotypes over time, reporting their �tness (increasing over time) and the time they
appear the �rst time.
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Figure 7.8: Genotypes and Phenotypes model (6.12)(6.13)(6.14) with Life-like automaton.
Simulation for T = 5000. The table shows the characteristics of all the phenotypes that, in a
given time, have represented the majority of individuals; in the table, in the line Phenotype
we indicate after how many mutations the represented phenotype has been generated; in the
line T the �rst time after which it reached the majority in the population. In the line (cc, δ)
we indicate respectively the number of connected components of the represented phenotype
and the number of live cells of this con�guration (with a maximum of 400). In the line Φ we
indicate the �tness of the various phenotypes, imagining that they are in the same population
(so in (7.1) max {#connected components of f , with f in the population} is 6).

More simulations. In the following �gures we report di�erent executions of the simulation
algorithm, showing the trend over time of the distribution of genotypes in the population, for
L = 10, 15, 20.

Figure 7.9: Initial phenotypes for subsequent simulations. In order, genotype and phenotype
for L = 15, phenotype for L = 10, phenotype for L = 20.
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Figure 7.10: Phenotypes for model (6.12)(6.13)(6.14) with Life-like automaton. First simula-
tion for T = 1000, dimension of the grid L = 15. The starting genotype and phenotype are
shown in Figure 7.9. All genotypes and phenotypes with at least 1% of the maximum number
of individuals are shown, with their number.
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Figure 7.11: Phenotypes for model (6.12)(6.13)(6.14) with Life-like automaton. Second sim-
ulation for T = 1000, dimension of the grid L = 15. The starting genotype and phenotype
are shown in Figure 7.9. All genotypes and phenotypes with at least 0.5% of the maximum
number of individuals are shown, with their number.
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Figure 7.12: Phenotypes for model (6.12)(6.13)(6.14) with Life-like automaton. First simula-
tion for T = 1000, dimension of the grid L = 10. The starting phenotype is shown in Figure
7.9. All phenotypes with at least 1% of the maximum number of individuals are shown, with
their number.
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Figure 7.13: Phenotypes for model (6.12)(6.13)(6.14) with Life-like automaton. Second simu-
lation for T = 1000, dimension of the grid L = 10. The starting phenotype is shown in Figure
7.9. All phenotypes with at least 1% of the maximum number of individuals are shown, with
their number.
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Figure 7.14: Phenotypes for model (6.12)(6.13)(6.14) with Life-like automaton. Third simu-
lation for T = 1000, dimension of the grid L = 10. The starting phenotype is shown in Figure
7.9. All phenotypes with at least 1% of the maximum number of individuals are shown, with
their number.
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Figure 7.15: Phenotypes for model (6.12)(6.13)(6.14) with Life-like automaton. First simula-
tion for T = 1000, dimension of the grid L = 20. The starting phenotype is shown in Figure
7.9. All phenotypes with at least 1% of the maximum number of individuals are shown, with
their number.
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Figure 7.16: Phenotypes for model (6.12)(6.13)(6.14) with Life-like automaton. Second simu-
lation for T = 1000, dimension of the grid L = 20. The starting phenotype is shown in Figure
7.9. All phenotypes with at least 1% of the maximum number of individuals are shown.
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Figure 7.17: Phenotypes for model (6.12)(6.13)(6.14) with Life-like automaton. Third simu-
lation for T = 1000, dimension of the grid L = 20. The starting phenotype is shown in Figure
7.9. All phenotypes with at least 1% of the maximum number of individuals are shown.
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Replicator mutator

In this example, we consider a �nite genome space, composed by only 4 elements. We show
numerically how convergence at equilibrium is slower if mutations occur at a di�erent level of
selection.

Genome space and mutations. The genome space in this simpli�ed model is G = {1, 2, 3, 4},
there are only 4 possible genomes in the population; one genome can mutate into another if
it has exactly 1 di�erent base, i.e. according to the jump matrix Π of a random walk on G:

G = {1, 2, 3, 4} (7.2)

P =


0 1 0 0
1
2 0 1

2 0
0 1

2 0 1
2

0 0 1 0

 ,

GP-map and �tness. The GP map generates two di�erent phenotypes, A and B, with
GP (i) = A for i = 1, 2, 3 and GP (4) = B; on these phenotypes we consider constant �tness,
fA = 1 and fB > fA (see Figure 7.18).

Figure 7.18: Graph of the Markov chain on the genome space G, given by the matrix Π; the
GP map with the neutral spaces are displayed, with phenotype A in blue, B in red.

Examples. In this model, all individuals are equally likely to mutate, as the temporal fre-
quency of mutations of a genotype gi is proportional only to its frequency in the population.
We decide to compare this model with the simplest example of quasispecies (see Chapter 4),
(4.1): {

ẋk =
(
Φk − Φ̄

)
xk +

∑n
i=1 Φimikxi,

k = 1, . . . , n,

with 2 types, imposing the probability that replication of individuals of a type results in
individuals of the other equal, i.e. the mutation terms are the same, m0 := m12 = m21,
obtaining the di�erential equation (reducing the variables to x1 only):

ẋ1 = (f1 − f2)x1(1− x1) + f2m0 (1− x1)− f1m0x1.
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We compare the above equation with a version of model (7.2) that has no structure in the
genotype space. So let G1 be the space of genomes {1, 2}, each of which can mutate into the
other. If we take the identity as the GP-map, there is no di�erence between genotype i and the
phenotype it expresses (which we can call i, see Figure 7.19), it can be assumed that �tness
acts on the genotype.

Figure 7.19: Graph of the simplest case of genome space G1, with two genotypes that have the
same probability to mutate in each other. The GP-map is the identity.

In Figure 7.20 we simulate both models, obtaining a value for m0 that produces similar
transient and �nal equilibrium.

We then replace the space G1 with G and imagine two di�erent situations: in both initially
there are only individuals that show the phenotype A, with lower �tness; in the �rst case,
the individuals are of genotype 3, which has probability 1/2 to mutate into genotype 4; in
the second case instead, the individuals are of genotype 1, and can generate individuals of
phenotype B with lower probability, mutating �rst in 2, then in 3, �nally in 4. Although they
are equivalent (phenotypically), the presence of a structure in the genotype space changes the
trend of the process. In both cases, eventually, the genotype 4 will be generated and, having
higher �tness, will grow in number, but in the second case we expect that individuals at lower
�tness will last for longer. In Figure 7.21 the result is shown when the initial genome is chosen
randomly, while in Figure 7.22 the initial genomes are chosen, one at a time, 4, 3 and 2. The
convergence time at equilibrium can be then modi�ed by the structure of the space of the
genomes.
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Figure 7.20: Quasispecies model for 2 types, in green and red, compared to expected value
of genotype-phenotype model (averaged on 500 independent runs) in red and blue. λ (N) =
1, therefore the process underlying the mutations is homogeneous. The mutation term of
quasispecies is m0 = 0.02. Fitness Φ1 = 1, Φ2 = 2, initial population is formed only by
individuals of type 1. T = 25.
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Figure 7.21: Quasispecies model for 2 types, in green and red, compared to expected value
of genotype-phenotype model (averaged on 5000 independent runs) in red and blue. λ (N) =
1, therefore the process underlying the mutations is homogeneous. The mutation term of
quasispecies is m0 = 0.02. Fitness Φ1 = 1, Φ2 = 2. The initial density of quasispecies is
equally distributed between the two initial types; during each run of the genotype-phenotype
model, the initial population is formed by individuals of the same genotype i, i ∈ {1, 2, 3, 4},
with i chosen randomly, so as to have, statistically, uniform distribution of initial phenotypes:
so the probability of having as initial genotype 4 (the only one expressing the phenotype 1) is
three times greater than having one of the others as the initial genotype. T = 100.
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Figure 7.22: Quasispecies model for 2 types, in green and red, compared to expected value
of genotype-phenotype model (averaged on 500 independent runs) in red and blue. λ (N) =
1, therefore the process underlying the mutations is homogeneous. The mutation term of
quasispecies is m0 = 0.02. Fitness Φ1 = 1, Φ2 = 2. The initial population of quasispecies
is divided equally between the two initial types; the initial population of each run of the
genotype-phenotype process is di�erent in each �gure. Respectively, in the �rst �gure the
initial population is made up exclusively of individuals of genotype 3, in the second of genotype
2, in the third of genotype 1. The more the initial genotype is �distant� from 4, which expresses
a di�erent phenotype, the longer it takes the system to converge to equilibrium (�nal times
are, respectively, 30, 100, 150).
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7.3 Conclusions

In this chapter we dealt with the problem of �nding a model for the theory of Evolution,
which starts from the concept of rare mutations shown in [4] and in Chapter 5. We have
proposed a model for the dynamics of individuals of genotypes, de�ning a space of potential
genomes G, which can also have in�nite cardinality. We have therefore constructed a mutation
process that acts on the genotypes; such a process explores the space G, producing over
time individuals with features never seen before. Another step was to di�erentiate the e�ect
of the selection, making it act on the phenotype, that is the environmental expression of
a genotype. Two genotypically di�erent individuals may express the same phenotypes, and
for this reason subjected to same selective pressures from the environment. A phenotype is
therefore characterized not only by a �tness, but represents a whole space of genotypes that
produce it, which can have di�erent size; the mere presence of such a space can therefore
alter the dynamics of selection and adaptation, modifying the proportions of individuals or
the times of convergence to equilibrium.

Further developments, in line with the model developed in Chapter 5, could concerns dy-
namics in which spatiality has a role. In this model of ordinary equations there is a spatially
homogeneous population, which we can imagine concentrated in one point. To study a model
in which various populations, arranged at di�erent points in a geographic region, interact with
each other through gene exchanges could lead to consider immigration and emigration phe-
nomena, invasion of more �tted types. It would be possible to imagine di�erent environmental
conditions in di�erent points of the space, obtaining di�erent �tness landscapes. This idea
could be developed by considering populations as nodes in a network, connected by �ows of
genetic informations, or as functions of space, thus developing models of partial derivatives
equations.

We could then focus on the dynamics of extinction and low number of individuals. In this
model, in fact, it is not possible for one type of individuals to become extinct: even when it
is disadvantaged by selection, at most the decrease is exponential, leading to disappearance
only in in�nite time. The only case in which we can have an extinction is after a mutation,
when a type, already very rare in the population, is transformed completely into a new one.
When the number decreases, we could think of a model that turns into particle-based, in which
individuals are treated as single entity, so that we can take into account phenomena such as
bottlenecks, founder e�ect and genetic drifts, related to statistical �uctuations of populations
composed of few individuals [35, 61].

Both of these ideas deserve further investigations.
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Chapter 8

Introduction and Algorithms

This part, composed of two chapters, is the extended version of a paper written with Giovanni
Sebastiani (IAC-Rome) about a procedure (called restart procedure) for the optimization of
opportune combinatorial optimization problems, which is currently accepted [83]. The basic
algorithms of the work, that are Ant Colony optimization andGenetic algorithms are of explicit
natural inspiration, and are presented in this Chapter. Then, in Chapter 9, the real problem
is addressed; after the �rst part of the theoretical treatment of the problem, there is a Section
where the nature-inspired algorithm are numerically implemented and used together with the
new procedure. In general, solving a combinatorial optimization problem (COP) consists of
�nding an element, within a �nite search domain, which minimizes a given �tness function.
The domain has typically a combinatorial nature, e.g. the space of the hamiltonian paths
on a complete graph. The COP prototype is the Traveling Salesman Problem (TSP), whose
solution is a Hamiltonian cycle on a weighted graph with minimal total weight [6]. Although
a solution of a COP always exists, �nding it may involve a very high computational cost.
The study of the computational cost of numerical algorithms started in the early 1940s with
the �rst introduction of computers. Two di�erent kinds of algorithms can be used to solve
a COP problem: exact or heuristic. A method of the former type consists of a sequence
of non-ambiguous and computable operations producing a COP solution in a �nite time.
Unfortunately, it is often not possible to use exact algorithms. This is the case for instances of
a NP-complete COP. In fact, to establish with certainty if any element of the search space is a
solution, requires non-polynomial computational cost. Alternatively, heuristic algorithms can
be applied. Such type of algorithms only guarantee either a solution in an in�nite time or a
suboptimal solution. Of great importance are the meta-heuristic algorithms (MHA) [9] which
are algorithms that are independent of the particular COP considered, and often stochastic.
Among them, there are Simulated Annealing [52], Tabu Search [33], Genetic Algorithms [34]
and Ant Colony Optimization (ACO) [23].

8.1 Ant Colony Optimization and Genetic Algorithms

8.1.1 Ant Colony Optimization

Ant Colony Optimization (ACO) is a recently developed, population-based approach which
has been successfully applied to several NP-hard combinatorial optimization problems. As
the name suggests, ACO has been inspired by the behavior of real ant colonies, in particular,

155
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by their foraging behavior. One of its main ideas is the indirect communication among the
individuals of a colony of agents, called (arti�cial) ants, based on an analogy with trails of
a chemical substance, called pheromone, which real ants use for communication [46]. The
�rst ACO algorithm, called Ant System (AS), was applied to the Traveling Salesman Problem
(TSP) [23, 20].

ACO algorithms make use of simple agents called ants which iteratively construct candidate
solutions to a combinatorial optimization problem. The ants' solution construction is guided by
(arti�cial) pheromone trails and problem-dependent heuristic information. In principle, ACO
algorithms can be applied to any combinatorial optimization problem by de�ning solution
components which the ants use to iteratively construct candidate solutions and on which
they may deposit pheromone. An individual ant constructs candidate solutions, then, after
the solution construction is completed, the ants give feedback on the solutions they have
constructed by depositing pheromone on solution components which they have used in their
solution. Typically, solution components which are part of better solutions or are used by
many ants will receive a higher amount of pheromone, and hence, will more likely be used
by the ants in future iterations of the algorithm. To avoid the search getting stuck, typically
before the pheromone trails get reinforced, all pheromone trails are decreased by a factor %.

The ants' solutions are not guaranteed to be optimal with respect to local changes and
hence may be further improved using local search methods; take as example a 3-opt local
search algorithm, that proceeds by systematically testing whether the current tour can be
improved by replacing at most three arcs. Based on this observation, the best performing
ACO algorithms for many NP-hard static combinatorial problems are in fact hybrid algorithms
combining probabilistic solution construction by a colony of ants with local search algorithms.
In such hybrid algorithms, the ants can be seen as guiding the local search by constructing
promising initial solutions, because ants preferably use solution components which, earlier in
the search, have been contained in good locally optimal solutions.

Traveling Salesman Problem. The TSP can be represented by a complete graph G =
(N,A) with N being the set of nodes, also called cities, and A being the set of arcs fully
connecting the nodes. Each arc (i, j) ∈ A is assigned a value dij which represents the distance
between cities i and j. The TSP then is the problem of �nding a shortest closed tour visiting
each of the n = |N | nodes of G exactly once.
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Figure 8.1: Best solution (Hamiltonian cycle with minimal total weight) of the Travel Salesman
problem for eil51, a problem taken from the TSPLIB benchmark library [95]; there are 51 cities,
each identi�ed by a position (xi, yi) ∈ R2. The edge weight dij is given by the Euclidean
distance between city i and city j.

Applying AS to the TSP. When applying AS to the TSP, arcs are used as solution
components. A pheromone trail τij(t), where t is the iteration counter, is associated with
each arc (i.j); these pheromone trails are modi�ed during the run of the algorithm through
pheromone trail evaporation and pheromone trail reinforcement by the ants. Initially, m ants
are placed on m randomly chosen cities. Then, in each construction step, each ant moves,
based on a probabilistic decision, to a city it has not yet visited. This probabilistic choice
is biased by the pheromone trail τij (t) and by a locally available heuristic information ηij .
The latter is a function of the arc length; AS and all other ACO algorithms for the TSP use
ηij = 1/dij . Ants prefer cities which are close and connected by arcs with a high pheromone
trail and in AS an ant k currently located at city i chooses to go to city j with a probability:

pkij(t) =
[τij(t)]

α [ηij ]
β∑

l∈N ki [τil(t)]
α[ηil]

β

if j ∈ N k
i , (8.1)

where α and β are two parameters which determine the relative importance of the pheromone
trail and the heuristic information, and N k

i is the feasible neighborhood of ant k, that is, the
set of cities which ant k has not visited yet. Each ant k stores the cities visited in its current
partial tour in a list, that is, each ant has a limited memory which is used to determine N k

i in
each construction step and thus to guarantee that only valid Hamiltonian cycles are generated.
Additionally, it allows the ant to retrace its tour, once it is completed, so that it can deposit
pheromone on the arcs it contains.

After all ants have completed the tour construction, the pheromone trails are updated.
This is done �rst by lowering the pheromone trails by a constant factor (evaporation) and
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then by allowing the ants to deposit pheromone on the arcs they have visited. In particular,
the update follows this rule:

τij (t+ 1) = %τij(t) +

m∑
k=1

∆τkij(t),

where the parameter % (with 0 ≤ % < 1) is the trail persistence (thus, 1− % models the evapo-
ration) and ∆τkij(t) is the amount of pheromone ant k puts on the arcs it has used in its tour.
The evaporation mechanism helps to avoid unlimited accumulation of the pheromone trails.
While an arc is not chosen by the ants, its associated pheromone trail decreases exponentially;
this enables the algorithm to �forget� bad choices over time. In AS, ∆τkij(t) is de�ned as
follows:

∆τkij(t) =

{
1/Lk(t) if arc (i, j) is used by ant k in iteration t,

0 otherwise.

where Lk(t) is the tour length of the kth ant. The better the ant's tour is, the more pheromone
is received by the arcs belonging to this tour. In general, arcs which are used by many ants
and which are contained in shorter tours will receive more pheromone and therefore will more
likely be chosen in future iterations of the algorithm.

8.1.2 MAX −MINAnt System.

Research on ACO has shown that improved performance may be obtained by a stronger
exploitation of the best solutions found during the search. MAX −MIN Ant System, which
has been speci�cally developed to meet these requirements by T.Stutzle ([86, 87]), di�ers in
three key aspects from AS.

1. To exploit the best solutions found during an iteration or during the run of the algorithm,
after each iteration only one single ant adds pheromone. This ant may be the one which
found the best solution in the current iteration (iteration-best ant) or the one which
found the best solution from the beginning of the trial (global-best ant).

2. To avoid stagnation of the search the range of possible pheromone trails on each solution
component is limited to an interval [τmin, τmax].

3. Additionally, we deliberately initialize the pheromone trails to τmax, achieving in this
way a higher exploration of solutions at the start of the algorithm.

In MMAS only one single ant is used to update the pheromone trails after each iteration.
Consequently, the modi�ed pheromone trail update rule is given by

τij (t+ 1) = %τij(t) + ∆τbestij ,

where ∆τbestij = 1/f
(
sbest

)
and f

(
sbest

)
denotes the solution cost of either the iteration-

best (sib) or the global-best solution (sgb). The use of only one solution, either sib or sgb, for
the pheromone update is the most important means of search exploitation inMMAS. When

using only sgb, the search may concentrate too fast around this solution and the exploration of
possibly better ones is limited, with the consequent danger of getting trapped in poor quality
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solutions. This danger is reduced when sib is chosen for the pheromone trail update since the
iteration-best solutions may di�er considerably from iteration to iteration and a larger number
of solution components may receive occasional reinforcement.

Search stagnation may occur. This can happen if at each choice point, the pheromone
trail is signi�cantly higher for one choice than for all the others. In the TSP case, this means
that for each city, one of the exiting arcs has a much higher pheromone level than the others.
In this situation, due to the probabilistic choice governed by Eq. 8.1, an ant will prefer this
solution component over all alternatives and further reinforcement will be given to the solution
component in the pheromone trail update. In such a situation the ants construct the same
solution over and over again and the exploration of the search space stops. By limiting the
in�uence of the pheromone trails one can easily avoid the relative di�erences between the
pheromone trails from becoming too extreme during the run of the algorithm. To achieve
this goal, MMAS imposes explicit limits τmin and τmax on the minimum and maximum
pheromone trails such that for all pheromone trails τij(t), τmin ≤ τij(t) ≤ τmax. Note that by
enforcing τmin > 0 and if ηij < ∞ for all solution components, the probability of choosing a
speci�c solution component is never 0.

InMMAS the pheromone trails are initialized in such a way that after the �rst iteration
all pheromone trails correspond to τmax. This type of trail initialization is chosen to increase
the exploration of solutions during the �rst iterations of the algorithm. The experimental
results con�rm the conjecture that the larger exploration of the search space due to setting
τ(1) = τmax improvesMMAS' performance.

The computational results given in the article show that MMAS, in general, is able to
�nd very high quality solutions for all instances from the TSPLIB benchmark library [95],
that has been used in many other studies and partly stem from practical applications of the
TSP; furthermore, for almost all instancesMMAS �nds the optimal solution in at least one
of the runs. This result shows the viability of the ant approach to generate very high quality
solutions for the TSP. Note that the computational results with local search are also much
better than those obtained without local search; additionally, the computation times with
local search are much smaller.

8.1.3 Genetic Algorithms

In the 1950s and the 1960s several computer scientists independently studied evolutionary
systems with the idea that evolution could be used as an optimization tool for engineering
problems. The idea in all these systems was to evolve a population of candidate solutions to a
given problem, using operators inspired by natural genetic variation and natural selection. In
the 1960s, Rechenberg [79, 80] introduced �evolution strategies�, a method he used to optimize
real valued parameters for devices such as airfoils. Fogel, Owens, and Walsh [28] developed
�evolutionary programming�, a technique in which candidate solutions to given tasks were
represented as �nite state machines, which were evolved by randomly mutating their state
transition diagrams and selecting the �ttest.

Genetic algorithms (GAs) were invented by John Holland in the 1960s and were developed
by Holland and his students and colleagues at the University of Michigan in the 1960s and
the 1970s. In contrast with �evolution strategies� and �evolutionary programming�, Holland's
original goal was not to design algorithms to solve speci�c problems, but rather to formally
study the phenomenon of adaptation as it occurs in nature and to develop ways in which the
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mechanisms of natural adaptation might be imported into computer systems. Holland's 1975
book Adaptation in Natural and Arti�cial Systems [45] presented the genetic algorithm as an
abstraction of biological evolution and gave a theoretical framework for adaptation under the
GA. Holland's GA is a method for moving from one population of �chromosomes� (e.g., strings
of ones and zeros, or �bits�) to a new population by using a kind of �natural selection� together
with the genetics inspired operators of crossover, mutation, and inversion. Each chromosome
consists of �genes� (e.g., bits), each gene being an instance of a particular �allele� (e.g., 0 or
1). The selection operator chooses those chromosomes in the population that will be allowed
to reproduce, and on average the �tter chromosomes produce more o�spring than the less �t
ones. Crossover exchanges subparts of two chromosomes, roughly mimicking biological recom-
bination between two single chromosome (haploid) organisms; mutation randomly changes
the allele values of some locations in the chromosome; and inversion reverses the order of a
contiguous section of the chromosome, thus rearranging the order in which genes are arrayed.

Genetic algorithms have been used by many researchers as a tool for search and optimiza-
tion. A given optimization task is encoded in such a way that instances such as a path in
a weighted graph are understood as elements in a �nite collection C of creatures (candidate
solutions) in a model �world�, and a �tness function f : C 7−→ R+ exists, which has to be
maximized. Usually, the number of elements in C is very large prohibiting a complete search
of C. Genetic algorithms provide a probabilistic way to conduct a search in C for arbitrary f
given a suitable encoding of creatures or instances into strings of symbols.

A genetic algorithm comprises three phases (operations): mutation, crossover and �tness
selection. These are applied cyclically and iteratively to �xed-size, �nite populations consisting
of elements (chromosomes) of C until a saturation condition, or another boundary condition
is satis�ed. The model most commonly investigated is the genetic algorithm with a binary
alphabet (where chromosomes take the form of bit strings, with each locus that has two
possible alleles: 0 and 1), multiple bit mutation, one-point crossover, and proportional �tness
selection.

Fitness selection models reproductive success of adapted organisms in their environment.
This operator selects chromosomes in the population for reproduction. The �tter the chromo-
some, the more times it is likely to be selected to reproduce.

Crossover models the exchange of genetic information of creatures, inspired by exchange
of genetic information in living organisms, e.g., during the process of sexual reproduction,
and mimics biological recombination between two haploid organisms. This operator randomly
chooses a locus and exchanges the subsequences before and after that locus between two
chromosomes to create two o�spring. For example, the strings 10000100 and 11111111 could be
crossed over after the third locus in each to produce the two o�spring 10011111 and 11100100.

Mutation models random change in the genetic information of creatures, and is inspired by
random change of genetic information in living organisms, e.g., through the e�ects of radiation
or chemical mismatch. This operator randomly �ips some of the bits in a chromosome. For
example, the string 00000100 might be mutated in its second position to yield 01000100.
Mutation can occur at each bit position in a string with some probability, usually very small.



CHAPTER 8. INTRODUCTION AND ALGORITHMS 161

Below we present an example of GA, that will be used to test the procedure presented in
the following sections.

� Take 4m individuals, binary strings of N elements; C = {0, 1}N ;

Repeat the following until the termination condition is obtained:

� Order the individuals accordingly to the value of the �tness function to be minimized:

f(x) =

∣∣∣∣∣
N∑
i=1

xi −
N − 1

2

∣∣∣∣∣ ,
so, for example, 11101 is listed above 00001 (see Fig. 8.2 to see f plotted versus the
number of 1);

� Keep the �rst half individuals of the list, 2m;

� Draw without replacement random pairs of individuals from the remaining 2m;

� For each pair, two new individuals are produced by using single-point crossover; so, for
example, from 00001 and 01101, by a single-point crossover in the third position, 01001
and 00101 are obtained;

� For each individual in the population, �ip a component of the binary string chosen
uniformly and independently, and replace the old chromosome only in the case that the
new one increases the value of the �tness function; so, for example, a mutation of 00110
produces 10110 that has higher �tness;
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Figure 8.2: Plot of the considered pseudo-Boolean function value versus the number of 1s of
the binary string.

A more detailed review of genetic algorithms can be found in the books [65, 82].

A natural issue for meta-heuristic algorithms (MHA) concerns their convergence [32, 37,
70, 38, 82]. Due to the stochastic nature of such algorithms, they have to be studied probabilis-
tically; unfortunately, even when their convergence is theoretically guaranteed, it is often too
slow to successfully use them in practice. One possible way to cope with this problem is the
so called restart approach, which is used more generally for simulating rare events [30, 31, 64].
It consists of several independent executions of a given MHA: the executions are randomly
initialized and the best solution, among those produced, is chosen. When implementing the
restart on a non-parallel machine, the restart consists of periodic re-initialitations of the un-
derlying MHA, the period T being called restart time. In the next chapter, we analyze in
detail a new restart procedure, also using the algorithms presented above.



Chapter 9

A new restart procedure for

combinatorial optimization

Despite the fact that the restart approach is widely used, very little work has been done to
study it theoretically for combinatorial optimization [41, 66]. In [41], the restart is studied
in its dynamic form instead of the static one considered here. Some results are provided for
a speci�c evolutionary algorithm, i.e. the so called (1+1)EA, used to minimize three pseuso-
Boolean functions. In [66] the �xed restart strategy is considered as done here. The �rst
two moments of the random time TR for the restart to �nd a solution (optimization time)
are studied as a function of T . An equation for T is derived, whose solution minimizes the
expected value of TR. However, this equation involves the distribution of the optimization
time of the underlying MHA, which is unknown.

In practice, the underlying MHA is very commonly restarted when there are negligible
di�erences in the �tness of the best-so-far solutions at consecutive iterations during a certain
time interval. This criterion may not be adequate when we want to really �nd the COP
solution and we are not satis�ed with suboptimal ones.

In this Chapter we propose a new iterative procedure to optimize the restart procedure
for a combinatiorial optimization problem. Each iteration of the procedure consists of either
adding new MHA executions or extending along time the existing ones. Along the iterations,
the procedure uses an estimate of the MHA failure probability where the optimal solution is
replaced by the best so far one. We recall that the failure probability of a stochastic algorithm
p(k) is the probability that the optimal solution has not been found up to iteration k. We
prove that, with probability one, the restart time of the proposed procedure approaches, as
the number of iterations diverges, the value that minimizes E[TR].

We also show the results of the application of the proposed restart procedure to several
TSP instances, whose solution is known, with hundreds or thousands of cities. As MHA we
use di�erent versions of the ACO algorithm Max-Min Ant System (MM-AS). Based on a
large number of experiments, we compare the results from the restart procedure with those
from the MMAS. This is done by considering the failure probability of the two approaches for
the same total computation cost. This comparison shows a signi�cant gain when applying the
proposed restart procedure. Similar results are obtained when applying the RP to the MMAS
or to a GA for solving some instances of a pseudo-Boolean problem. The algorithms have been
implemented in MATLAB or in C.

163
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9.1 The procedure

In this section, we �rst give some mathematical details of the restart, that will be then used
to de�ne the RP. In the following part, we present the procedure in details, also providing a
pseudocode. Following [12], the failure probability at iteration k of the restart is the probability
that the optimization time of the restart TR is larger than k:

P(TR > k) = p(T )b
k−1
T cp

(
k −

⌊
k − 1

T

⌋
T

)
, (9.1)

where p(t) is the failure probability of the underlying MHA, i.e. the probability that the
optimal solution has not been found up to time t. We notice that the �rst factor in (9.1) is
the probability that the optimal solution has not been found in each of the previous

⌊
k−1
T

⌋
re-initializations. The second factor is the probability that the optimal solution has not been
found up to iteration k−

⌊
k−1
T

⌋
T of the current re-initialization. The restart failure probability

is geometrically decreasing towards zero with the number
⌊
k−1
T

⌋
of re-initializations, the base

of such geometric sequence being p(T ). Therefore, a short restart time T may result in a
high value of p(t) and a slow convergence. On the contrary, if the restart time T is high, we
may end up with a low number of re-initializations

⌊
k−1
T

⌋
and high value of the restart failure

probability. Then, a natural problem is to �nd an �optimal value� of T when using a �nite
amount of computation time.

The restart could be optimized by choosing a value for T that minimizes the expected
value of the time TR:

E[TR] =
∞∑
k=1

P(TR > k). (9.2)

In fact for any random variable not negative X it is possible to write

E[X] =

ˆ ∞
0

P(X > t) dt. (9.3)

In our case, the random variable TR is discrete and the integral in (9.3) is replaced by a series
whose generic term is P(TR > t).

We now derive an upper bound for the r.h.s. of (9.3):

E[TR] ≤
∞∑
k=1

p(T )b
k−1
T c ≤

∞∑
k=1

p(T )
k−1
T
−1 =

1

(1− p(T )
1
T )p(T )

. (9.4)

By means of this bound, we can then optimize the RP by minimizing the function g(x) :=[
(1− p(x)

1
x )p(x)

]−1
.

Whenever this function does not have a global minimum, there is no advantage to use the
restart. In the other case, an optimal value for the restart time is provided by the �rst value
tm where the function g assumes its absolute minimum. However, this criterion cannot be
applied in practice since the MHA failure probability is unknown.

The restart procedure (RP) starts by executing r0 independent replications of the underly-
ing MHA for a certain number of time steps T0. Let us denote by Xi(t) the solution produced
by the replication i of the underlying algorithm at time t.
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Let Yi(t) be the �tness function value of the best solution found by i-th replication until
time t i.e. Yi(t) = min{f(Xi(s)), s = 1, ..., t}, where f is the function to minimize. Each
{Yi(t), t = 1, 2, . . .}, i = 1, 2, . . . is an independent realization of the same process. Then, at
the end of iteration k, based on the criterion described later in this section, the RP either
increases the number of replications from rk to rk+1 by executing rk+1− rk replications of the
underlying algorithm until time Tk, or it continues the execution of the existing rk replications
until time Tk+1 > Tk. Therefore, the RP can be described by a sequence {YAk , k = 0, 1, . . .}
of nested �nite matrices, extracted from the in�nite matrix Y:

Y =


Y1(1) Y1(2) · · · Y1(t) · · ·
Y2(1) · · · · · · · · · · · ·
...

...
...

...
...

Yi(1) · · · · · · Yi(t) · · ·
...

...
...

...
...

 ,

where Ak := {(i, t) : i = 1, . . . , rk t = 1, . . . , Tk}. The matrix YAk corresponds to the �rst
rk rows and Tk columns of Y. Let Ỹk denote the minimum value of this matrix at the end
of iteration k: Ỹk = minYAk = min

(i,t)∈Ak
Yi(t). We estimate the failure probability sequence by

means of the empirical frequency

p̂k(t) =


1

rk

rk∑
i=1

1{Yi(t)>Ỹk} t = 1, . . . , Tk,

0 otherwise.

Next, consider the function gk(t) = [(1 − p̂k(t)
1
t )p̂k(t)]

−1, t = 1, . . . , Tk, and de�ne σ̂k the
�rst time with a left and right increase of the function gk (relative minimum). Let λ be a
number in (0, 1). If σ̂k < λ · Tk, then the RP increases the number of replications by means
of a certain rule rk+1 := fr(rk). Otherwise, the RP increases the restart time according to
Tk+1 := fT (Tk). We assume that ∀x we have fr(x) > x and fT (x) > x. As a consequence,

for any �xed x > 0, it holds f
(k)
r (x), f

(k)
T (x)→∞, k denoting the consecutive application of a

function for k times. Therefore, the recursive formula for (rk, Tk) is

(rk+1, Tk+1) =

{
(fr(rk), Tk) if σ̂k < λ · Tk,
(rk, fT (Tk)) otherwise.

Below there is the pseudocode for RP.
The RP pseudocode:

r = r0;
T = T0;
for replication i = 1, 2, . . . , r do

� perform execution Ai of MHA until time T0;

� save Ai(T0);
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end for

save YA0 ;
compute σ̂0 from YA0 ;
for iteration k = 1, 2, . . . do

� if σ̂k−1 ≥ λ · Tk−1 then

� Tk = fT (Tk−1);

� rk = rk−1;

� for replication i = 1, 2, . . . , rk do

* continue the execution of Ai until Tk;
* save Ai(Tk);

� end for

� else then

� rk = fr(rk−1);

� Tk = Tk−1;

� for replication i = rk−1 + 1, rk−1 + 2, . . . , rk do

* execute Ai until Tk;
* save Ai(Tk);

� end for

� end if

� save YAk ;

� compute σ̂k from YAk ;

end for

9.2 RP convergence

In this section, we describe some theoretical properties of the RP. The main result, i.e. The-
orem 38, concerns with the RP convergence. Speci�cally, we prove that, woth probability
one, the restart time of the RP approaches, as the iteration number diverges, the value tm
that minimizes E [TR]. This is done as follows. In Lemma 35, we prove that the number of
replications rk diverges, and that the RP eventually �nds the optimal solution. This lemma
is then used to prove the technical Lemma 36. Finally, this lemma and Theorem 37 are used
to prove the main result.

We denote by fm the value of the solution of the optimization problem. Moreover, we
recall the functions g(t) = [(1− p(t)

1
t )p(t)]−1, where p(t) is the failure probability and gk(t) =

[(1− p̂k(t)
1
t )p̂k(t)]

−1, whose domain is {1, . . . , Tk}.
In order to derive the following results, we assume that
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1. g (·) admits absolute minimum at the time tm of its �rst local one, and it is strictly
decreasing for t ≤ tm,

2. p(1) < 1.

We notice that if the absolute minimum of g (·) is reached after the time tm of its �rst local
one, the RP restart time still converges to tm, so providing only a suboptimal value for restart
time. Point 2 in practice does not give limitations. In fact, we can always aggregate the �rst
iteration of the algorithm with failure probablity less than one and those before it into a single
one.

Remark 34. We notice that, by the assumptions on the functions fr and fT , and by the RP
de�nition, the probability that both the sequences rk and Tk are bounded is zero.

Lemma 35. Let p(t) be as above. Let (rk, Tk) be the sequence of random variables which
describes the RP. Then, it holds

1. P (rk →∞) = 1,

2. P
({
∃k : Ỹk = fm

})
= 1.

Proof. 1. If P (rk →∞) < 1, then, with positive probability, the following three conditions
hold for a certain positive integer r:

1. rk = r eventually;

2. Tk diverges (for Remark 34);

3. σ̂k ≥ λTk eventually (from 2.) and the de�nition of the RP).

Eventually, there are only two mutually exclusive possibilities: either the underlying r
copies of the algorithm have all reached the optimum or only some r′ < r of them will have
experienced it. In both cases, it follows that p̂h(t) as well as gh (t) will not change for h large
enough. Hence, eventually σ̂h does not change as h increases, which is a contradiction with 3.
Therefore P (rk →∞) = 1.

2. Since rk = r eventually, and since p(1) < 1, with probability one, there exists i such
that Yi(1) = fm; for all k so large that rk ≥ i it will be Ỹk = fm. This proves the point.

Lemma 36. For each t ∈ N, it holds

P
({

sup
k
Tk < t

}
∪
{

sup
k
Tk ≥ t , lim

k→∞
p̂k(t) = p(t)

})
= 1 (9.5)

Proof. Let us consider the case when the event Et := {supk Tk ≥ t} happens, then we can
eventually compute p̂k(s), for s = 1, . . . , t. By point 1 of Lemma 35 and the strong law of
large numbers, we get

P

(
Ek , lim

k→∞

1

rk

rk∑
i=1

1{Yi(t)>fm} = p(t)

)
= P (Ek) . (9.6)

Hence, using point 2 of Lemma 35, we obtain that
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P

(
Ek , lim

k→∞

1

rk

rk∑
i=1

1{Yi(t)>fm} = p(t)

)
is equal to

P

(
Ek , lim

k→∞

1

rk

rk∑
i=1

1{Yi(t)>Ỹk} = p(t)

)
.

Since, by de�nition

p̂k(t) =
1

rk

rk∑
i=1

1{Yi(t)>Ỹk},

we have

P
(
Ek , lim

k→∞
p̂k(t) = p(t)

)
= P (Ek) ,

from which the thesis follows.

Theorem 37. For the RP it holds

P
(

sup
k
Tk >

tm
λ

)
= 1.

Proof. Let us assume that the thesis is not true. Then, there exists an integer numberM such
that M ≤ tm

λ and P ({supk Tk = M}) > 0. On the event {supk Tk = M}, by both Lemma 36
and the continuous mapping, we have the convergence gk(t) → g(t), for any t ≤ M . This

means that, for any ε > 0 there is a positive probability that
M⋂
t=1

{|gk(t)− g(t)| < ε}, when

k is large enough. Let us de�ne M̃ := min(M, tm). We then have gk(M̃) < g(M̃) + ε and
gk(t) > g(t) − ε for any 1 ≤ t < M̃ . Subtracting the �rst inequality from the last one, we
obtain

gk(t)− gk(M̃) > g(t)− g(M̃)− 2ε.

Since g is strictly decreasing until tm, the r.h.s. of the last inequality is strictly larger than
g(M̃ −1)−g(M̃)−2ε. By taking ε su�ciently small, we get gk(t)−gk(M̃) > 0 for any t < M̃ .
Hence, with a positive probability, we get eventually σ̂k ≥ M̃ .

If M ≤ tm, then M̃ = M and with positive probability eventually we have σ̂k ≥M .
Since σ̂k ≤ Tk ≤ supk Tk = M , we have eventually σ̂k = Tk = M . For one of such k, it

holds
σ̂k
Tk

= 1 > λ, so that, by the de�nition of the RP, at the following iteration with positive

probability we have Tk+1 > Tk = M = supk Tk, which is impossible.

In the other case, tm < M ≤ tm
λ
, we have M̃ = tm, and there is a positive probability

that tm = M̃ ≤ σ̂k ≤ Tk ≤ supk Tk = M for k large enough; for any of these values of k,

we get
σ̂k
Tk
≥ tm
Tk
≥ tm
M
≥ λ. As a consequence, with positive probability eventually we have

Tk+1 = fT (Tk) > Tk, which is a contraddiction with supk Tk = M .

Theorem 38. If we de�ne T :=

⌈
tm
λ

⌉
, it holds
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1. P

(
T⋂
t=1

lim
k→∞

p̂k(t) = p(t)

)
= 1,

2. P
(

lim
k→∞

σ̂k = tm

)
= 1.

Proof. 1. By Theorem 37, for any t = 1, 2, . . . , T , with probability one we can eventually
compute p̂k(t). Hence, by the two statements of Lemma 35 and the strong law of large
numbers, we get

P

(
T⋂
t=1

lim
k→∞

p̂k(t) = p(t)

)
= 1,

that completes the proof of this point.
2. From 1 and the continuous mapping, with probability one, it holds

lim
k→∞

gk(t) = g(t),

for t = 1, . . . , T , with T > tm. Therefore, the sequence σ̂k converges to tm.

Remark 39. The e�ciency of the RP depends on the expected value of the ratio supk Tk/tm.
Although we do not have derived upper-bounds for this ratio, in all applications we performed,
it remains su�ciently close to one.

9.3 Numerical Results

Below, we describe some results of the application of the RP to solve di�erent instances
of the TSP studied in [86] and two istances of a pseudo-Boolean problem. The underlying
algorithm used here in the RP is mainly the ACO proposed in [86], known as MMAS; for
the TSP instances, it is combined with di�erent local search procedures [86]. In addition,
for the pseudo-Boolean problem, we also use a GA with a population of 20 individuals. At
each GA iteration, �rst the individuals are ordered accordingly to the value of the �tness
function. Then, the �rst half individuals of the list are kept. The remaining individuals are
replaced by new ones, obtained from the �rst group in the following way: we �rst draw without
replacement random pairs of indivduals; for each pair, two new individuals are produced by
using single-point crossover. The new population is �nally obtained by �ipping a component
of the binary string chosen uniformly and independently for each individual, in the case that
this decreases the value of the �tness function.

The RP setting is as follows: rk+1 = fr(rk) := c1 · rk and Tk+1 = fT (Tk) := c2 ·Tk $ where
c1 = 1.2, c2 = 1.1. The initial values for r0 and T0 are 20 and 100, respectively. Finally, we
set λ = 4

5 .
For both the TSP instances and the pseudo-Boolean problem considered here, the optimal

solution is known. This information can be used to estimate the failure probability of the RP
and of the underlying algorithm. However, obviously this information cannot be used when
applying the RP.

In order to compare the results from the two algorithms with the same computational e�ort,
we consider for the RP a pseudo-time t, de�ned as follows: for the initial RP iteration, the
�rst T0 instants of the pseudo-time correspond to the �rst T0 iterations of the �rst replication
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of the underlying algorithm; the following T0 pseudo-time instants correspond to the �rst T0

iterations of the second replication and so on until replication r0. At the end of the k-th RP
iteration, we have produced rk executions (replications) for Tk times and the �nal pseudo-time
instant is t = rk · Tk. At the (k + 1)-th iteration, we have a certain (rk+1, Tk+1), with either
rk+1 > rk and Tk+1 = Tk or rk+1 = rk and Tk+1 > Tk. In the �rst case, the pseudo-time
instant t = Tk · rk + 1 corresponds to the �rst iteration time of the rk + 1 replication and it
is increased until the end of that replication. We proceed in the same way until the end of
rk+1 replication. In the second case, the pseudo-time instant t = Tk · rk + 1 corresponds to
the iteration time Tk + 1 of the �rst replication and is then increased until the iteration time
Tk+1 of that replication. Then, the same procedure is applied for the remaining replications
based on their number.

We denote by Ỹ (t) (t = 1, 2, . . . ) the process describing the best so far solution of the RP
(MMAS or GA) corresponding to the pseudo-time (time) instant t. Hence, based on a set of
m independent replications of the RP, we can estimate the failure probability pRP (t) that the
optimal solution has not been found up to pseudo-time t by using the classical estimator

p̂RP (t) =
1

m

m∑
i=1

1{Ỹi(t)6=fm}, (9.7)

and analogously with p̂(t) for the MMAS or GA. By the law of large numbers this estimator
converges to the failure probability pRP (t) (to p(t) for the MMAS or GA).

We start with the example where we want to minimize the following pseudo-Boolean func-
tion

f(x) = −

∣∣∣∣∣
N∑
i=1

xi −
N − 1

2

∣∣∣∣∣ , (9.8)

with respect to all binary strings of length N . In Fig. 9.1, this function is plotted versus the
number of 1s in the case of N = 50 considered now.
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Figure 9.1: Plot of the considered pseudo-Boolean function value versus the number of 1s of
the binary string.
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Figure 9.2: Pseudo-Boolean problem. The estimated failure probability as function of time or
pseudo-time for the standard MMAS (thick line) and the RP (thin line).The time axis is in
logarithmic scale. The f.p. curves of both the RP and the underlying algorithm are computed
by the estimator in (9.7) based on 500 and 1000 replications, respectively.

This function has two local minima but only one of them is global. The �rst base algorithm
considered is the MMAS, for which the pheromone bounds τmin and τmax ensure that at any
time, there is a positive probability to visit each con�guration, e.g. the global minimum.
Therefore, with probability one this algorithm will �nd the solution. However, if it reaches
a con�guration with few 1s, it takes in average an enormous amount of time, not available
in practice, to move towards the global minimum. Therefore, we expect that in this case the
restart will be successful.

In Fig. 9.2, we show the estimated failure probability (f.p.) p̂(t) for the MMAS algorithm
to minimize the pseudo-boolean function of Fig. 9.1 (thick line). In the same �gure, the
estimated f.p. p̂RP (t) of the RP is plotted versus the pseudo-time (thin line). We notice that
there is a clear advantage to use the RP when compared to the standard MMAS. For this
problem, we also use the GA described before. In this case we have N = 300 (boolean300).
The curves obtained are very similar to those in Fig. 9.1. The f.p. estimated values are shown
in Table 9.1.

We consider now an instance of the TSP with 532 cities (att532) solved by MMAS with
the same setting as in [86]. After �ve hundreds of thousands of iterations, the underlying
algorithm has an estimated f.p. of 0.38 ca. Instead, at the same value of the pseudo-time, the
RP has a signi�cantly lower f.p. (0.004 ca), as clearly shown in Fig.9.3. We remark that, until
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the value 3900 ca for the time or pseudo-time, the f.p. of the underlying algorithm is lower
than the one of RP. This is due to the fact that the RP is still learning the optimal value of
the restart time. After that, the trend is inverted: the RP overcomes the MMAS and gains
two orders of magnitude for very large values of the pseudo-time.
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Figure 9.3: The TSP instance with 532 cities (att532). The estimated failure probability as
function of time or pseudo-time for the standard MMAS (thick line) and the RP (thin line).
The time axis is in logarithmic scale. The f.p. curves of both the RP and the underlying
algorithm are computed by the estimator in (9.7) based both on 500 replications. The vertical
segment shows the 99% level con�dence interval.

We notice that the value σ̂k approaches the optimal restart time tm. In fact, as an example,
in Fig. 9.4, we show the denominator of the function gk(t) at the end of a single RP execution.
A global maximum appears at approximately the value of 430, the di�erence with the value
of tm, computed from the estimate p̂(t), being less than 1%.
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Figure 9.4: The TSP instance with 532 cities (att532). The denominator of the function gk(t)
at the end of a single RP replication.

Finally in Fig. 9.5, we compare the f.p. curve for the RP with the one obtained applying
the restart with the estimated optimal restart time. We remark that to use this approach in
practice would require much longer computation than to execute the RP. In fact, we need to
provide �rst an estimate of tm by means of a su�ciently large sample of independent runs
of the base algorithm. We notice that the RP curve starts to decrease signi�cantly after the
other one. This is due to the fact that the RP is still searching for the optimal value of the
restart, whereas it is set from the beginning in the other (ideal) case. At about pseudo-time
7000, the two f.p.s become almost equal. After that, the f.p. of the MMAS goes to zero faster,
even if the di�erence between the two f.p.s remains less than 0.05 ca. Finally, at pseudo-time
5 · 105, the estimated f.p. value of the RP is 4 · 10−3, comparable to the estimated f.p. value
of the standard restart at same time.

We notice that curves similar to those as in Fig.9.3, 9.4 and 9.5 were obtained for all the
other TSP instances considered. The relative results are shown in Table 9.1.
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Figure 9.5: The TSP instance with 532 cities (att532). Comparison between the failure
probability curve of the RP that appears in Fig. 9.3 (thin line) and the one obtained applying
the restart periodically with the optimal restart time (thick line). The f.p. curves of both
the RP and the underlying algorithm are computed by the estimator in (9.7) based on 500
replications.

Istance BaseMHA Tc BaseMHAf .p.. RPf .p.

boolean50 MMAS 300000 0.34 2.1 · 10−3

boolean300 GA 10000 0.43 0

pcb442 MMAS-3opt 100000 0.22 4.0 · 10−3

att532 MMAS-3opt 500000 0.38 4.0 · 10−3

lin318 MMAS-2.5opt 30000 0.44 0

d1291 MMAS-3opt 700000 0.57 2.0 · 10−3

d198 MMAS-2.5opt 100000 0.67 0

Table 9.1: Results of the application of the RP and the base MHA to TSP istances with known
optimal solution and to istances of a preudo-boolean problem. The estimated f.p. values are
computed at the time Tc reported in the third column (pseudo-time for the RP) based on at
least 500 elements.

By looking at the results in Table 9.1, it is evident the advantage of using the RP instead
of the underlying algorithm. In fact, for each case, the estimated f.p. value of the RP is several
orders of magnitude lower than the one of the base MHA.
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9.4 Conclusions

Given a combinatorial optimization problem, it is often needed to apply stochastic algorithms
exploring the space using a general criterion independent of the problem. Unfortunately,
usually there is a positive probability that the algorithm remains in a sub-optimal solution.
This drawback can be coped by applying periodic algorithm re-initializations. This strategy
is called restart. Although it is often applied in practice, there are few works studying it
theoretically. In particular, there are no theoretical information to be used in practice to
choose a convenient value for the restart time.

In this chapter, we propose a new procedure to optimize the restart (RP) and we study it
theoretically. The iterative procedure starts by executing a certain number r0 of independent
replications of the underlying algorithm for a prede�ned time T0. At the end of any iteration
k of the RP, we have rk independent replications each composed by Tk iterations of the
underlying algorithm. We then compute the minimum value Ỹk of the objective function f (·)
on these rkTk points. Hence, for each time t = 1, . . . , Tk, we compute an estimate p̂k(t) of the
failure probability p(t), i.e. the probability that we have not yet reached the value Ỹk. We

now consider the function gk(t) = [(1− p̂k(t)
1
t )p̂k(t)]

−1, that is the analogous of the function

g(t) = [(1 − p(t)
1
t )p(t)]−1. We recall that the �rst time tm at which the absolute minimum

of g(t) is reached corresponds to an �optimal value� of the restart time, that minimizes the
expected time to �nd a solution. We then compute the position σ̂k of the �rst minimum
of gk (t). If σ̂k is close to the end of the current execution time frame Tk of the underlying
algorithm, Tk is increased; otherwise this is done for the number of replications rk. This is
controlled by the parameter λ ∈ (0, 1).

The theory predicts that the RP eventually will �nd the optimal value of the restart time.
In fact, the theorems prove that, with probability one, p̂k(t), gk(t) and σ̂k converge to p(t),
g(t) and tm, respectively.

In this work, we illustrate some results obtained by applying the RP to two versions of the
MMAS ACO algorithm [86] for solving several TSP instances, whose solution is known, with
hundreds or thousands of cities. The results obtained show that the estimated values of the
failure probability of the RP are several orders of magnitude lower than those of the underlying
algorithm, for equal computational cost. Therefore, given a certain computation resource, by
applying the RP, we are far more con�dent that the result obtained is a solution of the COP
instance analyzed. The procedure proposed could be improved preserving its performance and
decreasing the computational cost. A possible way to do it is to increase the parameter λ
along iterations. In fact, once we have a reasonably good estimate of g(t), we would like to
reduce the possibility that, by chance, we increase too much the time interval length. This
can be done by increasing the value of λ.
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