
IEEE TRANSACTIONS ON NETWORKING, VOL. X, NO. Y, XXX 201X 1

Reliable and Timely Event Notification for
Publish/Subscribe Services over the Internet

Christian Esposito, Marco Platania, and Roberto Beraldi

Abstract—The publish/subscribe paradigm is gaining atten-
tion for the development of several applications in Wide Area
Networks (WANs), due to its intrinsic time, space and syn-
chronization decoupling properties that meet the scalability
and asynchrony requirements of those applications. However,
while the communication in a WAN may be affected by the
unpredictable behavior of the network, with messages that can
be dropped or delayed, existing publish/subscribe solutions pay
just a little attention to addressing these issues. On the contrary,
applications such as business intelligence, critical infrastructures,
and financial services require delivery guarantees with strict
temporal deadlines.

In this paper, we propose a framework that enforces both re-
liability and timeliness for publish/subscribe services over WAN.
Specifically, we combine two different approaches: gossiping, to
retrieve missing packets in case of incomplete information, and
network coding, to reduce the number of retransmissions and,
consequently, the latency. We provide an analytical model that
describes the information recovery capabilities of our algorithm,
and a simulation-based study, taking into account a real workload
from the Air Traffic Control domain, that evidences how the
proposed solution is able to ensure reliable event notification
over a WAN within a reasonable bounded time window.

Index Terms—Publish/Subscribe, Reliability, Timeliness, Net-
work Coding, Gossip

I. INTRODUCTION

In the last few years, we have been facing the development
of an increasing number of large scale applications such as
online gaming, messaging, social networking, and business
intelligence. In addition, we have see the development of
federations in Large-scale Complex Critical Infrastructures
(LCCIs) of independent critical systems previously designed
for “closed” Local Area Networks (LANs), such as Air Traffic
Control (ATC) systems, financial infrastructure monitoring,
and maritime surveillance. These applications are typically
characterized by a large number of participants scattered
across the world that communicate by exchanging messages
on a Wide Area Network (WAN), such as the Internet.

Manuscript received xx XXX, 200X; revised xx XXX, 200X.
The first author is currently affiliated to the Institute of High Performance

Computing and Networking (ICAR) National Research Council (CNR),
Napoli 80131 (Italy). This work has been conducted when he was affiliated
to Dipartimento di Informatica e Sistemistica (DIS), Universitá Federico
II, Napoli 80125 (Italy). The second author is currently affiliated to Johns
Hopkins University, Dept. of Computer Science, Baltimore, MD 21218, USA.
This work was conducted when he was affiliated to Dipartimento di Ingegneria
Informatica Automatica e Gestionale “A. Ruberti”, Sapienza University of
Rome, 00185 Roma (Italy). The last author is affiliated to the Dipartimento
di Ingegneria Informatica Automatica e Gestionale “A. Ruberti”, Sapienza
University of Rome.

Christian Esposito is the corresponding author (for the e-mail address see
http://wpage.unina.it/christian.esposito/Contacts.htm).

The publish/subscribe paradigm is an appealing solution
as messaging middleware because it offers the time, space
and synchronization decoupling properties [1] that distributed
applications require. However, while this kind of middleware
fits the generic asynchrony and scalability requirements of
large scale applications, it completely or partially lacks the
support of Quality of Service (QoS) guarantees. Existing
solutions, in fact, either provide only a best-effort service [2],
[3], or address just a single requirement at a time (e.g.,
message ordering [4], bounded delivery time [5], or reliable
delivery [6]). While some applications can rely on a best effort
service (messaging, social networking), other applications may
require several non-functional requirements to be met. As a
concrete example, let us consider the new ATC framework
under development within the context of the SESAR EU
Project [7], whose goal is to ensure the safety and fluidity of
air transportation, and to reduce the costs of air traffic man-
agement by switching to off-the-shelf computing equipments
and moving some of the services to the public Internet. The
ATC scenario is characterized by several geographically sparse
actors, such as air traffic controllers, weather stations, airport
staff, and pilots, each of them being both producer (publisher)
and consumer (subscriber) of information that compose the
flight plan of a specific aircraft en route. In this context, a
message loss or a late delivery can compromise the mission
of the overall system, leading to negative consequences in
terms of efficiency, economic losses, consumer dissatisfaction
and even indirect harm to people. On the one hand, since
WANs are affected by data losses [8], [9] that can compro-
mise the correctness of the ATC system, the communication
infrastructure must implement a technique to tolerate these
losses (i.e., published events must be reliably delivered to all
interested subscribers). On the other hand, published data must
be delivered within a known time bound [10] (i.e., information
delivery must respect a timeliness constraint), so that the
system can promptly react to any sudden change of flight route.

The aim of this paper is the design of a framework that
ensures reliable and timely event notification in a WAN and
can be plugged in on top of a generic publish/subscribe system.
Our approach combines two different techniques, each known
to be reliable and timely, respectively: (i) gossip [11], a dis-
tributed retransmission protocol, and (ii) network coding [12],
a Forward Error Correction (FEC) scheme. We consider a
scenario in which a publisher publishes events (i.e., application
level messages) and redundant information on UDP overlay
links built over the Internet, which exhibits a non negligi-
ble probability to have burst losses [8]. Then, the intended
subscribers apply a gossip strategy to recover from possible

2 IEEE TRANSACTIONS ON NETWORKING, VOL. X, NO. Y, XXX 201X

lost data. We provide a theoretical model to evaluate the
potential benefits of gossip to retrieve the missing information.
In addition, we describe a simulation-based study conducted
on a real workload taken from the previously described ATC
scenario, which evidences how the use of coding to send
redundant information is able to reduce the latency and the
message overhead for a reliable event delivery.

Differently from other solutions, our approach addresses
reliability and timeliness at the same time. These two con-
straints, in fact, have been typically considered as separate
aspects, sometimes resulting in conflict between each other,
making current solutions not suitable in the presence of QoS-
demanding systems. A naive solution to achieve reliability is
to use TCP connections. However, the UDP protocol is more
suitable for delay-sensitive applications, because it provides
a minimized transmission delay by avoiding the connection
setup process and allowing a designer to implement his/her
own flow control and retransmission schemes.

Finally, let us remark that the use of IP QoS mechanisms
and architectures, such as IntServ and DiffServ, is not suf-
ficient to solve the problem that we want to address. On the
one hand, the use of these solutions, as well as dedicated links,
imposes a high cost on a service provider, while one of the
main reasons why several applications are moving to the public
Internet is due to cost reduction. On the other hand, a QoS
mechanism, such as DiffServ, lacks granularity in data traffic
policy, which may lead to a degradation of the QoS for all data
flows in the same class even if only one data flow generates
excessive traffic. In addition, DiffServ operates on the per-IP
domain and the per-hop basis: Internet Service Providers, in
fact, typically do not provide a service with QoS guarantees.

The remainder of the paper is organized as follows: Section
II introduces gossip and network coding. Section III discusses
several solutions similar to ours within the context of the
available literature on publish/subscribe services. Section IV
describes the system and network model, while Section V
introduces the proposed solution. The theoretical model and
simulation results are provided in Section VI and Section VII,
respectively. Finally, Section VIII concludes the paper with
some final remarks and plans for future work.

II. BACKGROUND

A. Network Coding

Random linear network coding [12] is a technique that
allows us to convey the information content of n original
packets, x1, x2, ...xn, as a set of n linearly independent com-
binations (encoded packets) and to easily generate redundancy
virtually for any lost packets by means of linear combinations
of original data. Each linear combination is given by

yi =

n∑
i=1

cixi

where coefficients ci are taken uniformly at random over
the set 0, ..., q−1, with the all zero coefficients case excluded.
All operations are performed over the Galois Field GF (2w),
with 2w = q. Each coded packet yi is equipped with the
coefficients ci used to produce that packet and that will be used

by destinations in the decoding phase. Note that the overhead
due to the generation of the coefficients is very modest, as it
is equal to sending nw additional bits (for example, for n =
10 and q = 256 this means just 80 bits; considering a typical
packet size of 1KB, the overhead is less than 0.1%).

The beneficial effect of network coding is twofold. On the
one hand it is well known that network coding can achieve
the mincut bound for a single multicast source on a directed
graph [12], [13]. This allows to exploit transmission bandwidth
for recovery operations. On the other hand, it reduces the
average number of gossip rounds needed to retrieve m missed
packets from O(m log(m)) to O(m) [14]. Overall, network
coding lays the foundations for an efficient and fast recovery
where redundancy is judiciously added to the dissemination
or recovery operations. In fact, in [15] we have previously
shown that the probability that a plain received packet is
useful to reconstruct the whole event increases linearly with
the number of missed packets m, while under a coding scheme
this probability increases exponentially.

B. Gossiping

The gossip paradigm [11] is based on the so-called epidemic
approach, where an event is disseminated like the spread of
a contagious disease or the diffusion of a rumor. Specifically,
a node stores a received message in a buffer of size b, and
forwards it a limited number of times t, named fan-in to a
randomly-selected set of nodes of size f , called fan-out. Many
variants of gossip algorithms exist

1) push: messages are forwarded to the other nodes as soon
as they are received;

2) pull: nodes periodically send to other nodes a set of
recently-received message identifiers. If a missing mes-
sage is detected by comparing the received set with the
local history, then a transmission is requested;

3) push/pull: a node forwards only the identifier of the last
received message. If one of the receivers does not have
such a message, then it makes an explicit pull request.

Gossip-based protocols have several advantages that have
been thoroughly studied: a few initial infection points are
sufficient to quickly infect the whole population as the number
of infected nodes grows with an exponential trend. Moreover,
these algorithms are also strongly resilient to the prema-
ture departure of several nodes, making them very robust
against failures. The gossip approach has been successfully
applied to a variety of application domains, such as database
replication, cooperative attack detection, resource monitoring,
and publish/subscribe-based data dissemination. Taking into
account the properties of an ideal event dissemination service,
most of such algorithms based on the gossip paradigm are
able to deliver a huge amount of events in a geographically
distributed setting with nice reliability properties.

III. RELATED WORK

Although many real world applications require support to
chieve QoS, the majority of current research prototypes [3],
[2], [16] operate on a best-effort basis [17]. Hermes [18]
shows reliability properties just from the fault-tolerance point

RELIABLE AND TIMELY EVENT NOTIFICATION FOR PUBLISH/SUBSCRIBE SERVICES OVER THE INTERNET 3

of view: it uses techniques to enable event brokers to recover
after a failure, but it does not provide support for client-
specific delivery requirements as a service guarantee. On the
contrary, PADRES [6] additionally tolerates message losses
and guarantees publication delivery: overlay path redundancy
is exploited both for the routing process and fast information
recovery. Reliability can also be ensured in JEDI [4] by means
of TCP connections; however, it is well-known that the use
of TCP in multicast tree overlays exhibits a low throughput
[19] in practical applications. IndiQoS [5] focuses on re-
specting timeliness in event dissemination. Subscribers specify
the latency constraint as an attribute of their subscriptions.
Brokers are responsible for reserving a path from subscribers
to publishers based on the aggregate traffic they manage, by
means of a constant number of deterministic attempts in order
to find routes that satisfy those requirements. Finally, note that
several QoS properties (including message ordering, timeli-
ness, and reliability) are ensured by some publish/subscribe
commercial systems, such as Tibco [20], DDS [21] and JMS
[22]. However, these systems are designed to properly work in
small/medium LANs, while their performance poorly degrades
over WANs.

Differently from the previous papers, our goal is to propose
a framework for publish/subscribe systems deployed in WAN
that ensures reliability and timeliness at the same time, by
exploiting gossiping and network coding. One of the first
solutions in combining these two approaches is [23], where
the combination is performed at the receiver side: coding is
used only when a sender has to retransmit in push mode
the received data. We considerably differ from this work by:
(i) applying coding at the publisher side, (ii) investigating
several gossip strategies and the improvement that coding
can bring to them, and (iii) evaluating the effects of coding
not only on the delivery latency but also on the imposed
overhead and in different network conditions. Another similar
work is presented in [24], which differs from ours due to
its theoretical nature (i.e., dissemination approaches are only
studied by means of analytical models), and its evaluation
metrics (i.e., gossiping with and without coding are studied
only with respect to latency). In addition, [24] assumes a
plain data dissemination only performed by means of push-
or pull-based gossip rounds. The authors in [25] propose a
combination of FEC and retransmission schemes to limit, with
a high probability, the packet loss rate of overlay channels to
a target value q. Specifically, the protocol restricts the number
of retransmissions to at most one, in order to minimize the
end-to-end latency.

The main difference with our solution lies in the fact that
the protocol presented in [25] is suitable for streaming appli-
cations, where a minimum packet loss rate can be tolerated,
while we concentrate on more generic and demanding systems,
where reliable delivery is of paramount importance. Finally,
in [15] we have described the benefit of using network coding
combined with gossip, and in [14] we have improved this
description with a theoretical model and a simulation-based
study. Starting from these contributions, we complement the
theoretical model in [14] with an analysis of the recovery ca-
pability of gossip algorithms in a tree-based overlay network.

In addition, we extend the simulation-based study of [14] to
assess the power of network coding during data dissemination;
in [14] network coding was applied only when retrieving
missing information.

IV. SYSTEM AND NETWORK MODEL

A. Node architecture

Each node in the system implements the architecture de-
picted in Fig. 1. It is composed by three building blocks: appli-
cation, Reliability and Timeliness layer and a publish/subscribe
Event Notification Service (ENS).

Fig. 1. Architecture implemented by all system nodes.

Application: The architecture we designed is targeted
for several applications deployed over a WAN, for example
maritime surveillance, air traffic control, collaborative secu-
rity, next generation intelligence platform, stock market, etc.
We individuate two distinct roles: information producers, i.e.
publishers, and information consumers, i.e. subscribers.

Producers of information can be sensors that capture data
from an environment (i.e., temperature, humidity, enlighten-
ment); systems or devices, for example firewalls that produce
log files for monitoring applications; radars or stock market
sites that generate periodic updates; data sources that update
database in a cloud. On the contrary, consumers of information
are systems that infer environmental conditions (i.e., fires,
flooding) by analyzing data detected by sensors; trading ap-
plications that buy and sell actions based on data produced by
stock market sites; flight processors that analyze information
about flight plans.

Applications can be both publishers and subscribers. As
an example, processing engines in complex event detection
applications can be subscribers of raw events generated by
firewalls of the monitored system, and at the same time,
they can also be publishers of complex events obtained by
correlating raw events coming from different sources.

Reliability and Timeliness layer: The Reliability and
Timeliness layer wraps the adopted ENS in order to ensure
reliability and timeliness properties in the event dissemination
as defined below:
• Reliable delivery: each published event is delivered to all

its intended destinations.

4 IEEE TRANSACTIONS ON NETWORKING, VOL. X, NO. Y, XXX 201X

• Timely delivery: Let t be the time when an event is
published and t′ the time when it was delivered to a
subscriber. Any delivered event is such that t′ − t < ∆

This layer intercepts events published by the application or
notified by the ENS, executes several operations to enforce
the two requirements, and then it publishes the events on
the ENS or notifies them to the subscriber application. The
Reliability and Timeliness layer may also require additional
interaction among nodes, and it can be done by accessing
a point-to-point communication primitive that can be offered
by the operating system or by other solution like an overlay
network. In addition, it is worth noticing that the presented
Reliability and Timeliness layer exposes the same interface of
the ENS; thus neither the applications, nor the ENS must be
changed in order to work with our framework.

Event Notification Service: The communication model
used in our architecture follows the event-based paradigm [1],
with exchanged information that takes the form of event. The
interaction among publishers and subscribers is mediated by a
distributed Event Notification Service (ENS), that implements
the following interface:
publish(): invoked to publish events in the system;
subscribe(): invoked by subscribers to declare an interest in a
topic or content;
unsubscribe(): invoked by subscribers to unsubscribe from a
previously declared interest;
notify(): invoked by the ENS to deliver events to subscribers
according to their interests.

B. Network model

We consider system nodes connected through an overlay
network built on top of Internet links. Several works [8], [9]
in literature show that communications over the Internet can
be affected by losses, spanning from a single to several packets
being dropped. Therefore, we assume that links among nodes
are not reliable, and exhibit a loss pattern characterized by
Packet Loss Rate (PLR), which is the probability to lose a
packet, and Average Burst Length (ABL), which is the mean
number of consecutive lost packets. In particular, the adopted
network model is the Gilbert-Elliott [26], one of the most-
commonly applied in performance evaluation studies, due
to its analytical simplicity and the good results provided in
practical applications on wired IP networks [27], [28]. The
adopted Gilbert-Elliott model is a first order Markov chain
with two states: a “Good” state, where packets are not lost,
and “Bad” or lossy state.
The adopted network model is characterized by four transition
probabilities:
• the probability P to pass from the “Good” state to the

“Bad” one;
• the probability 1− P to remain in the “Good” state;
• the probability Q to pass from the “Bad” state to the

“Good” one;
• the probability 1−Q to remain in the “Bad” state.

P and Q are related to PLR and ABL as follows [29]:

P =
PLR ·Q
1− PLR

Q = ABL−1

Fig. 2. The protocol in practise. Dissemination: a publisher p publishes
an event and redundant packets on the ENS. Recovery: based on the
specific gossip strategy in use, a subscriber can recover missing packets.
In the figure above, s1 and s2 have a sufficient number of packets to
reconstruct the original event, while s3 needs a gossip round to gather
the missing information.

V. PROPOSED PROTOCOL

We consider the Reliability and Timeliness layer as a
composition of two independent blocks: (i) one implements
a network coding protocol that aims to reduce the delivery
time of an event over the entire set of subscribers, and (ii) one
implements a gossip-based algorithm to recover from possible
event losses. To this end, we assume that each node can access
a peer sampling primitive [30], [31] to obtain a sample (i.e.,
another subscriber) to gossip with.

The protocol we propose to reliably and timely deliver
events is composed by two phases, as depicted in Fig. 2:
Dissemination: a publisher divides an event into n plain
packets and publishes them over the ENS. Moreover, a
additional packets are also added to the published event.
We call a as the redundancy of the protocol. We separately
consider two different cases: (i) no-coding: the a packets are
randomly selected among the n plain packets; (ii) coding: the
a packets are linear combinations of the n packets;
Recovery: the subscribers use a gossip protocol to gather
possible lost events. This phase strictly depends on the gossip
style in use: if the push or push/pull strategy is enabled, then,
a node that notifies an event (i.e., it has received enough
packets to reconstruct the whole event) disseminates to the
other f nodes the received packets or the event identifier
respectively. When the pull style is enabled, periodically a
node disseminates to other f nodes the identifiers of the last
notified events.

A consideration needs to be done: the delay introduced by
encoding and decoding operations is low for two reasons:
(i) on the encoding side, the operations take not so much
time because they are simple linear combinations and several
libraries can be used to perform them efficiently; (ii) on
the decoding side, operations are progressive, i.e., they are
based on a decoding matrix that is built concurrently with the
reception of packets. The decoding matrix is maintained in the

RELIABLE AND TIMELY EVENT NOTIFICATION FOR PUBLISH/SUBSCRIBE SERVICES OVER THE INTERNET 5

triangular form by using Gaussian elimination [12]. Each time
a new encoded packet arrives, it is inserted into the matrix only
if the new carried coefficients increase the rank of that matrix.
Therefore, the decoding delay overlaps with the transmission
delay. Further details about the delay penalty introduced by
the coding operations can be found in [12].

In the following, before describing the algorithm in detail,
we introduce the local data structure maintained by publishers
and subscribers.

Local data structure to each publisher pi: each
publisher locally maintains the following data structures:

• ide: a unique identifier associated to an event e produced
by pi.

• packets: a set variable, initially empty, that contains all
packets in which an event is fragmented.

• redundancy: a set variable, initially empty, that contains
redundant packets: they can be plain or coded packets.

• coding: a variable that indicates if coding is enabled.
• publishedEvents: a set variable, initially empty, that

contains the couple {e, redundancy}.
Local data structure to each subscriber si: each

subscriber maintains locally the following data structures:

• coding: a variable that indicates if coding is enabled.
• incomingPacketside

: a set variable, initially empty, that
contains all packets received for the event with identifier
ide.

• notifiedEvents: a set variable, initially empty, that con-
tains the tuple {e, eid, t}, where t represents the gossip
fan− in.

• lastNotifiedEvents: a set variable, initially empty, that
contains the identifiers of the recently notified events and
it is used during a pull-based gossip recovery procedure.

• gossip mode: a variable that indicates the gossip strategy
used in the recovery phase of the algorithm.

• contacts: a set variable that contains the identifiers of
the nodes returned by the peer sampling service.

a) PUBLISH(): The algorithm for a PUBLISH() operation
is reported in Fig. 3. To simplify the pseudocode, we defined
the following basic functions:

• fragment(e): it fragments an event e in n plain packets.
• encode(packets, a): it implements the coding operation

by generating a linear combinations of the n plain packets
contained in packets.

• selectPacket(packets, a): it randomly selects a plain
packets among the n contained in packets.

The PUBLISH() operation works as follows: the event e is
fragmented in n plain packets and stored in the packets data
structure (line 01). Then, a redundant packets are generated
(lines 02-05): depending on the variable coding in line 02,
these packets can be linear combinations of the original n
packets (line 03), or random packets selected among the
original ones (line 04). The n+a packets are published on the
ENS (lines 06-11) and, then, stored in the publishedEvents
data structure (line 12).

Note that each published packet is also provided with the
identifier ide and a boolean value that indicates if coding is

operation PUBLISH(e):

(01) packets← FRAGMENT(e);
(02) if (coding = TRUE)
(03) then redundancy ←encode(packets, a);
(04) else redundancy ←selectPacket(packets, a);
(05) endif
(06) for each (pkt ∈ packets);
(07) ENSpublish (< pkt, FALSE, ide >);
(08) endfor
(09) for each (red ∈ redundancy);
(10) ENSpublish (< red, coding, ide >);
(11) endfor
(12) publishedEvents← publishedEvents ∪ {e, redundancy};
(13) packets← {};

Fig. 3. The publish() protocol for a publisher pi.

enabled. The n original packets are always published without
coding (07).

b) NOTIFY(): The algorithm for a NOTIFY() operation
is reported in Fig. 4 and Fig. 5. To simplify the pseudocode,
we defined the following basic functions:
• decode(pkt, ide): it implements the decoding process by

maintaining a triangular matrix for packets related to the
event with identifier ide. It returns a decoded packet.

• canReconstructEvent(incomingPacketside): it is a
boolean function that checks if the received packets are
enough to fully reconstruct the event with identifier ide.
If so, the function returns TRUE, otherwise FALSE.

• reconstructEvent(incomingPacketside
): it actually re-

constructs an event e with identifier ide from the packets
contained in the incomingPacketside data structure.

• getPeer(f): it provides access to the peer sampling
service by returning f random subscribers currently in
the system. f represents the fan − out of the gossip
algorithm.

• pushEvent(e, ide, sj): this function starts a push-based
gossip procedure by sending to a subscriber sj the
received event e.

• pushEventId (ide, sj): this function starts a push/pull-
based gossip procedure by sending to a subscriber sj the
identifier ide of the received event e.

• sendRecentHistory(lastNotifiedEvents, sj): this
function starts a pull-based gossip procedure by sending
to a subscriber sj the identifiers of the last received
events contained in the lastNotifiedEvents data
structure.

The NOTIFY() operation works as follows: upon receiving
a packet, the handlePacket function is called (line 01).
This function implements the core activity for each received
packet; we decided to separate it from the NOTIFY() operation
in order to reuse HANDLEPACKET also for processing the
incoming retransmitted packets during the recovery phase of
the protocol. Depending on the kind of received packet (plain
or coded, line 02), it can be simply added to the set of the
incoming packets (line 03) or it requires a decoding process
first (line 04). At each received packet, the algorithm checks if
there are enough packets to reconstruct the event (line 07). If
so, the reconstructEvent function actually reconstructs that
event (line 08). Note that receiving a number of packets equal
to or higher than n is a necessary but not sufficient condition

6 IEEE TRANSACTIONS ON NETWORKING, VOL. X, NO. Y, XXX 201X

upon ENSNOTIFY(< pkt, coding, eid >):

(01) handlePacket(pkt, coding, eid);
————————————————————————————————

function HANDLEPACKET(pkt, coding, eid):

(02) if (coding = FALSE)
(03) then incomingPacketside ← incomingPacketside ∪ {pkt};
(04) else incomingPacketside ← incomingPacketside∪

{decode(pkt, ide)};
(05) endif
(06) if (|incomingPacketside | ≥ n);
(07) then if (canReconstructEvent(incomingPacketside) = TRUE)
(08) then e = reconstructEvent(incomingPacketside)
(09) trigger notify (e);
(10) notifiedEvents← notifiedEvents ∪ {e, ide, t};
(11) if (gossip mode = PUSH ∨ PUSHPULL)
(12) then contacts← getPeer(f);
(13) endif
(14) if (gossip mode = PUSH)
(15) then for each (sj ∈ contacts)
(16) pushEvent(e, ide, sj);
(17) endfor
(18) else if (gossip mode = PUSHPULL)
(19) then for each (sj ∈ contacts);
(20) pushEventId (ide, sj);
(21) endfor
(22) endif
(23) endif
(24) endif

Fig. 4. The notify() protocol for a subscriber si.

upon TIMEOUT():

(01) for each (< e, ide, t > ∈ notifiedEvents)
(02) lastNotifiedEvents = lastNotifiedEvents ∪ {ide};
(03) t = t− 1;
(04) notifiedEvents← notifiedEvents / {< e, ide, t >};
(05) if (t > 0)
(06) then notifiedEvents← notifiedEvents ∪ {< e, ide, t >};
(07) endif
(08) endfor
(09) contacts← getPeer(f);
(10) for each (cj ∈ contacts)
(11) sendRecentHistory(lastNotifiedEvents, cj);
(12) endfor
(13) lastNotifiedEvents← {};

Fig. 5. The expiration of the timeout fires a new pull-based gossip execution.

to fully reconstruct an event. In fact, without coding it is
required to receive n different packets, while with coding n
independent linear combinations are needed. When an event is
fully reconstructed, the subscriber triggers the notify operation
(line 09) and inserts it in the set of received events (line 10).
Then, if the push or push/pull gossip strategy is enabled, the
subscriber asks to the peer sampling service a set of f random
nodes currently in the system (lines 11-13), and sends them
the received event (lines 14-17 for the push-based style) or its
identifier (lines 18-21 for the push/pull-based style).

Fig. 5 shows the pseudocode for a pull-based gossip
strategy. Periodically a subscriber generates a set with the
identifiers of the last received events (line 02) and sends it to f
random nodes by means of the sendRecentHistory function
(lines 09-12). The number of times that an event identifier can
be sent to other subscribers is regulated by the parameter t,
i.e., the fan− in of the algorithm. Each time an identifier is
inserted in the lastNotifiedEvents data structure, its value
of t is decreased by one (line 03). When t = 0, the tuple related
to that identifier is no more updated in the notifiedEvents
data structure (lines 04-06).

VI. ANALYTICAL MODEL

In this Section we describe a mathematical model to grasp
the recovery ability that gossip brings to our protocol. We de-
rive a success probability for event delivery as the probability
to receive the information after the dissemination and gossip
phases. We also illustrate the benefit of using network coding
to reduce the number of retransmissions, by considering a
pull gossip strategy with fan-out fixed to 1. In Section VII
we extend this analysis with a more detailed simulation-based
study that takes into account a more realistic scenario, several
gossip strategies and a varying fan-out value.

A. Assumption

We assume the ENS implemented as a tree-based overlay
network, with publisher and subscriber roles implemented
by the same nodes that constitute the ENS. Specifically, we
consider a single publisher, i.e., the root of the tree, while
other nodes play the role of subscriber. To make the analysis
simpler, we consider a regular complete tree of depth L and
connectivity D, having DL+1−1 nodes. This assumption will
be relaxed in Section VII, where we consider a generic tree-
based overlay network.

We call rank of a node the rank of its decoding matrix,
i.e., the dimension of the subspace spanned by the linear
combinations received by that node. In addition, we consider
that an event is fragmented in n packets. Then, we make the
following further assumptions:
• A1: the rank of a node holding r coded packets is
min{r, n}, i.e., all packets are linearly independent from
each other;

• A2: the rank of the union of two decoding matrixes with
rank r1 and r2 is min{{r1 + r2}, n};

• A3: nodes are connected through independent Gilbert-
Elliot channels. At the beginning of each round, the
channel state is at the steady state, i.e., it is in the bad
state with probability PLR;

• A4: gossip is synchronous and organized in consecutive
global rounds, during which all nodes execute a gossip
operation. The effect of a gossip operation is visible
only at the end of the round. In addition, a node always
contacts a node belonging to another subtree. This as-
sumption will be weakened later;

• A5: the protocol described in the previous Section con-
siders a recovery strategy in which a subscriber contacts
other subscribers at random. As such, in the theoretical
analysis we assume that the root of the tree cannot be
contacted during a gossip interaction.

Our analysis focuses on how the rank of a generic node
at level h varies over time. We will denote with π

(k)
hi the

probability that at the end of round k the rank of a node at
level h is i. Hence, π(k)

hn is the probability that a level h node
detects the event at round k or earlier.

B. Dissemination phase

The initial dissemination process of packets along the tree
is characterized by the following (n+1)× (n+1) probability

RELIABLE AND TIMELY EVENT NOTIFICATION FOR PUBLISH/SUBSCRIBE SERVICES OVER THE INTERNET 7

matrix

PD =

1 0 . . . 0 . . . 0
P10 P11 . . . 0 . . . 0
...

...
...

...
...

...
Pi0 Pi1 . . . Pii . . . 0
...

...
...

...
...

...
Pn0 Pn1 Pnn

This is a triangular and stochastic matrix where the element
Pij is a probability describing the relationship between two
adjacent nodes. Specifically, Pij is the probability that the rank
of a node at level h is j, given that the rank of its ancestor
node at level h− 1, which is sending the packets to it, is i.

The transmission of packets occurs in L steps. During each
step, nodes at level h send packets to nodes at level h + 1,
using independent channels, so that L steps are required for the
information to reach the leaves. The probability distribution of
the source node, occupying level 0, is trivially characterized
by the following (n+ 1) probability vector

π
(0)
0 = [0, 0, . . . , 1]

indicating that the rank of the source is n. The probability
distribution

π
(0)
h = [π

(0)
h0 , π

(0)
h1 , . . . , π

(0)
hn]

of nodes at level h (h = 1, ..., L) is obtained from the
following iterative equation

π
(0)
h = π

(0)
h−1PD = π

(0)
0 Ph

D (1)

The probability Pij is computed starting from the probabil-
ity that m out of n packets pass through a Gilbert-Elliot (GE)
channel, denoted as PT (n,m), see [32] for its derivation1.

Considering that for sending i packets nodes in general add
ai redundant packets, it is easy to see that for j < i

Pij = PT (i+ ai, j)

i.e., for the rank of the destination node to be j, the node
should receive only j out of the i+ ai sent packets. Finally,

Pii = 1−
∑
j<i

Pij

The probability that a node at level h gets the full event content
is Ph

nn. In addition, Pnn denotes the probability of an event
passing through the GE channel, i.e., the probability that no
more than an packets are erased by the channel. Accordingly,
Pnn can be rewritten as

Pnn =

an∑
d=0

PT (n+ an, d) (2)

1The paper reports the probability PL(n, d) that d out of n packets are
lost; clearly, PT (n,m) can straightforwardly be derived from PL(n, d).

C. Gossip phase

The analysis of the gossip phase follows a similar approach.
The k-th gossip round is characterized by the following (n+
1)× (n+ 1) Gossip matrix PG(k)

PG(k) =

P00(k) P01(k) P0n(k)
0 P11(k) P1n(k)
...

...
...

...
...

...
0 0 . . . Pii(k) . . . Pin(k)
...

...
...

...
...

...
0 0 . . . 0 . . . 1

where Pij(k) is the probability that after round k, the rank of
the gossiping node increases from i to j. As the rank of node
cannot decrease after a gossip round, PG(k) is a stochastic
and triangular matrix.

We can compactly describe the initial probability distribu-
tion of nodes’ rank at the beginning of the gossip process
through the following (L+ 1)× (n+ 1) matrix

Π(0) =

π
(0)
0

π
(0)
1

...
π
(0)
L

 =

π
(0)
00 π

(0)
01 . . . π

(0)
0n

π
(0)
10 π

(0)
11 . . . π

(0)
1n

...
... . . .

...
π
(0)
L0 π

(0)
L1 . . . π

(0)
Ln

where π(0)

hi is the probability that at time 0 the rank of a node
at level h is i, see Equation 1.

The probability π
(k+1)
hj that at the end of round k + 1 the

rank of a node at level h is j is clearly given by

π
(k+1)
hj =

∑
i≤j

π
(k)
hi Pij(k)

which is expressed in matrix form as

Π(k+1) = Π(k)PG(k)

In order to compute Pij(k) it is worth introducing PHr(k),
defined as the probability that the rank of the contacted node
is r. We first observe that due to Assumptions A4 and A5,
the total number of contactable nodes is indeed DL − 1 (we
recall that the root cannot be contacted), whereas the number
of contactable nodes at level h > 0 is Dh−Dh−1; hence, the
level of the contacted node is h with probability

Dh −Dh−1

DL − 1
=

(D − 1)

DL − 1
Dh−1

Now, for the contacted node to have rank r, the following
events should occur
• the level of the contacted node is h, this happens with

probability (D−1)
DL−1D

h−1;
• the rank of such a node is r, this happens with probability
πk−1
hr .

Hence, for r = 0, .., n

PHr(k) =
D − 1

DL − 1

L∑
h=1

Dh−1π
(k−1)
hr

8 IEEE TRANSACTIONS ON NETWORKING, VOL. X, NO. Y, XXX 201X

Let i be the rank of the contacting node, say A, and suppose
that the rank of the contacted node, say B, is r. The rank of
A passes from i to j < n, if the following events occur:
• the rank of B is r, j ≤ i+ r < n, B sends r + ar linear

combinations to A, but ar + r− (j − i) packets get lost;
• the rank of B is r, i + r ≥ n, B sends (n − i) + an−i

linear combinations to A, but an−i + n − j packets get
lost.

Hence, for j < n

Pij(k) =

n−i−1∑
r=j−i

PHr(k)PL(r + ar, ar + r − (j − i))+

n∑
r=n−i

PHr(k)PL(n− i+ an−i, an−i + n− j)

whereas
Pin(k) = 1−

∑
i≤j<n

Pij(k)

Finally, Pnn(k) = 1.

D. Introducing blindness

So far, we have assumed that the selected node B does not
belong to the node’s A subtree. This maximizes the effec-
tiveness of a recovery operation as the two nodes experience
independent loss patterns. In a pure gossip protocol, however,
the selection is blind; thus, A and B may belong to the same
subtree thus reducing the recovery capability. For example, if
B is a child of A, then the first gossip round is not useful at
all, simply because B cannot have received more information
than A. On the other hand, this can be no longer true for
subsequent rounds, as B may have recovered from some node
C on a different subtree.

In order to macroscopically capture this aspect, we introduce
in the previous model an ‘effectiveness’ factor α, which
modifies the transition probability of the recovery phase from
i to j. We can think at this parameter in this way: a recovery
operation is fully effective with probability α, and not useful
with probability 1 − α. The transition probabilities for the
gossip phase are modified as follows

P ′ij = αPij , j > i

while P ′ii = 1 + α(Pii − 1). For α = 0, all gossip rounds are
not useful, i.e., the recovery capability is null, whereas α = 1
means maximum theoretically possible recovery capability.

E. Performance metric

A key performance metric of the protocol is the ability of
nodes to decode an event. In a balanced tree of degree D, the
total number of receivers is

DL+1 −D
D − 1

The success probability of a node at level h at time k

corresponds to π
(k)
hn , whereas the probability that a node in

the network gets the event is obtained as the ratio between

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 1 2 3 4 5 6

Su
cc

es
s

ra
te

Fanin

simulation
alpha=1

alpha=0.7
alpha=0.5

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 1 2 3 4 5

Su
cc

es
s

ra
te

Fanin

simulation
alpha=1

alpha=0.7
alpha=0.5

Fig. 6. Success rate vs fan-in. PLR = 2%, ABL = 2, n = 16. No coding
(top) and coding with redundancy = 3 (bottom). For clarity of presentation,
a different scale has been used on the y-axis of the two plots.

the average number of detected events by the total number of
nodes

Psucc(k) ≈ D − 1

DL+1 −D
∑

1≤h≤L

π
(k)
hnD

h

For k = 0 it is possible to derive a closed form for the success
probability. At the end of the first phase, in fact, the average
number of decoded events, i.e., events that are fully received
by nodes, is

L∑
h=1

Dhph =

L∑
h=1

(Dp)h

where p = Pnn is the probability that at least n out of n+ a
packets pass through a GE channel (see Equation 2).

By dividing this number by the total number of nodes we
get 2

Psucc(0) =
(Dp)L+1 −Dp
DL+1 −D

× D − 1

Dp− 1
(3)

F. Model validation

In this Section we report some numerical result obtained
through the numpy library for Python. We consider a balanced
binary tree with 15 nodes, ABL = 2 and PLR = 2%.
Fig. 6 compares the success probability Psucc predicted by our
theoretical model and the one estimated through a simulation
study (see Section VII). The no coding (top) and coding with
redundancy 3 (bottom) cases are reported. The Figure shows
how coding strengthens the recovery ability of gossip (note

2For p = D−1 the success probability is L(D−1)

DL+1−D
.

RELIABLE AND TIMELY EVENT NOTIFICATION FOR PUBLISH/SUBSCRIBE SERVICES OVER THE INTERNET 9

that for clarity of presentation we have used a different scale
on the y-axis of the two plots).

In Fig. 6, the simulated result is well predicted when
α = 0.5 (the result provides a lower bound), while α = 0.7
provides a good upper bound. It is worth noting that in a binary
tree a node has half of the chances to select a node in the other
subtree. Hence, when α = 0.5 we are conservatively assuming
that recovery with nodes in the same subtrees has no effect
at all. In general, α = D−1

D provides a lower bound. Hence,
the model becomes more and more accurate for fat tree, i.e.,
when D is large. In addition, α = 1 provides the ideal result:
any uninformed gossip algorithm, i.e., that is not aware about
the contacted node’s content in advance, cannot do better than
this.

G. Effect of the channel characteristics

Fig. 7 shows the effect of the channel’s parameters PLR
(top) and ABL (bottom) on the success rate (see Equation 3)
of the dissemination phase of the protocol. The success rate
decreases with PLR, with the effect being contrasted when
additional redundancy is applied. The effect of ABL is more
interesting to analyze. If PLR is constant, an increase in ABL
will modify the loss pattern in a way that a burst of losses is
followed by a no-loss burst of longer duration. Losses are thus
more likely to hit packets of a same event, leaving window of
time during which more events can pass through, without any
of their packets being erased by the channel.

For ABL = 1, a single redundant packet is able to
neutralize the effect of a single loss inside an event. The
success probability increases of a value equal to the probability
that an event gets only a single packet loss (≈ 0.45). However,
if the ABL increases to 2, an event may undergo to more than
a loss and the neutralization effect of the single redundant
packet diminishes. Higher ABL will however create longer
periods of no losses, and this will increase the success rate.
The figure also shows how two redundant packets will protect
the event completely when ABL = 1. An increase in ABL
can now only decrease the success rate.

VII. EVALUATION

In this Section, we report the results of the conducted
simulation analysis, by considering push, push/pull and pull
gossip-based recovery strategies. We also relax some of the
assumptions made in the previous Section, i.e., we consider
a generic overlay network and asynchronous gossip interac-
tions (assumption A4). We have implemented our solution
on OMNET++ and used the SCRIBE implementation of the
OVERSIM library as the ENS. The workload we have used
in the simulations has been taken from the Co-Flight system,
a real deployment of the new ATC framework realized in the
SESAR EU project: (i) 1 publication per second, and (ii)
40 nodes in the system (estimated number of ATM entities
involved in the first Co-Flight deployment). All nodes play
both the publisher and subscriber roles.

The network parameters, instead, are set as follows: commu-
nication delay = 50 msec, PLR = 2%, ABL = 2. These values
represent an approximation of the worst case results collected

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Su
cc

es
s

ra
te

Packet Loss Rate

a=0
a=2
a=4

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

Su
cc

es
s

ra
te

Average Burst Length

a=0
a=1
a=4

Fig. 7. Effects of the channel characteristics on the success rate of the
dissemination phase of the protocol (no recovery). Effect of the Packet Loss
Rate with ABL = 2 (top) and effect of the Average Burst Length with
PLR = 2% (bottom) are reported.

in a previous study [33] on network performance conducted
on PlanetLab. In addition, we have modeled the time to obtain
a coded packet equal to 5 msec, while the time for the dual
operation is equal to 10 ms. We have also assumed the packet
size to be equal to the payload of MTU in Ethernet (i.e., 1472
bytes) so that an event is fragmented into 16 packets. We
have simulated a period of 1000 publications and reported the
average of different experiments on the same scenario.

The metrics we have considered in our study are the
following:
Success rate: the ratio between the number of received
events and the number of the published ones. It is a metric to
evaluate the reliability of the proposed approach.
Loss rate: percentage of the subscribers that have not
received a given event.
Fan-out for complete reliability: gossip fan-out to achieve
a success rate equal to 1.
Overhead: the ratio between the total number of packets
exchanged during an experiment and the number of packets
generated by publishers (that is the number of published
events times the number of packets in which an event is
fragmented to be conveyed by the network). It is a measure
of the traffic load imposed on the network, and should be
kept as lower as possible in order to avoid congestions.
Latency: the time taken to disseminate an event to all
subscribers. The standard deviation indicates possible
performance fluctuations due to the applied fault-
tolerance mechanisms, highlighting timing penalties that
can compromise the timeliness requirement.

10 IEEE TRANSACTIONS ON NETWORKING, VOL. X, NO. Y, XXX 201X

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

No Recovery

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

Lo
ss

 R
at

e Push with Fanout 2

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

Push with Fanout 3

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

 0 25 50 75 100 125 150 175 200 225 250
Event Id

Push with Fanout 4

(a)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

No Recovery

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

Lo
ss

 R
at

e Pull with Fanin 1

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

Pull with Fanin 2

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

 0 25 50 75 100 125 150 175 200 225 250
Event Id

Pull with Fanin 3

(b)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 3 4 5 6

O
cc

ur
re

nc
e

(%
)

of consecutively-dropped events

No Recovery
Push with Fanout 1
Push with Fanout 2
Push with Fanout 3

(c)

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6

O
cc

ur
re

nc
e

(%
)

of consecutively-dropped events

No Recovery
Pull with Fanin 1
Pull with Fanin 2
Pull with Fanin 3

(d)

 0

 2

 4

 6

 8

 10

Push Pull Push/Pull

Fa
no

ut
 fo

r C
om

pl
et

e
R

el
ia

bi
lit

y

Gossip Approach

(e)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6

Fa
no

ut
 fo

r C
om

pl
et

e
R

el
ia

bi
lit

y

Fanin

(f)

Fig. 8. (a-b) Loss rate of single events for push and pull gossip by varying respectively fan-out and fan-in (fan-out set to 2). (c-d) Percentage of
consecutive lost events in push and pull gossip. (e-f) Fan-out for a complete reliability for the three gossip strategies.

TABLE I
LATENCY CONSTRAINTS IN THE CO-FLIGHT SYSTEM.

Category 95% 99.8%
D-1 1 sec 2 sec
D-2 2 sec 4 sec
D-3 5 sec 8 sec

Concerning the timeliness, we consider the three latency
constraints defined in the context of the Interoperability
Consultancy Group (ICOG) for the deployment of the Co-
Flight system3. Table I reports the three latency categories
for exchanging Flight Objects (FO), i.e., a data structure that
contains all information referring to a flight, such as its current
position, airport source, airport destination, etc.:
D-1: FO containing co-ordination data with the next ATC
entity along the aircraft route;
D-2: FO for updating a constraint affecting to the next ATC
entity along the aircraft route;
D-3: FO sent only “for information” to a distant system
instance.
The second and third columns in Table I indicate that 95%
and 99.8% of subscribers must receive a published event
within x and y seconds, respectively. For our simulation
analysis we considered the most demanding category, i.e., D-
1. Hence, with respect to the timeliness definition given in
Section IV, we split the parameter ∆ into ∆1 and ∆2 such
as: (i) ∆1 = 1 sec and ∆2 = 2 sec. In order to meet
the timeliness requirement, our algorithm must ensure that

3Technical note for “ATM Scenarios for Data Distribution”, Software
Initiative between Selex-SI and University of Naples, whose content can not
be publicly disclosed. The content of this deliverable is based on a study
promoted by ICOG to the main industries in the European avionic domain
(i.e., Thales, Indra and Selex-SI), and defines a common solution for ATC-
to-ATC interoperability up to its architectural principles.

95% of subscribers receive an event within ∆1 and 99.8%
of subscribers within ∆2.

The parameters we have varied in our analysis are (i)
Redundancy degree, i.e., number of redundant packets sent
by a publisher and/or a gossiping node in addition to the
original ones; (ii) Gossip fan-out, (iii) Gossip fan-in (when
not explicitly declared, we have assumed that it is set to 1),
and (iv) Pulling interval (when not explicitly declared, we
have assumed that it is set to 1.5 sec).

A. Gossip strategies evaluation without coding

In this Section we show how the network conditions affect
our protocol and how to set gossip parameters to achieve a
reliable delivery of all events without redundancy. Fig. 8(a) and
8(b) show the loss rate for push and pull gossip varying fan-out
and fan-in respectively (in case of pull gossip the fan-out value
is set to 2). In these mentioned figures we have shown a subset
of 250 events, but the same results have been obtained by
considering the whole set of published events, also in different
runs. The Figures show that when applying gossiping schemes,
the loss rate experienced by subscribers is reduced both in
average and in variability. Moreover, the increase of fan-out
has the effect of improving such a reduction, i.e., a higher
fan-out for a push-based gossip implies an average reduction
of the lost events of about 80%, and the same reduction is
observed also in the standard deviation (this improvement
based on a higher fan-out applies in general for every possible
gossiping scheme, as shown in [14]). Fig. 8(e) shows how to
set the fan-out value so that all events are reliably delivered
by subscribers.

For a pull-based scheme also the fan-in affects the provided
success rate. Fig. 8(b) shows that increasing fan-in reduces the
average loss rate and its variability (similarly as achieved by

RELIABLE AND TIMELY EVENT NOTIFICATION FOR PUBLISH/SUBSCRIBE SERVICES OVER THE INTERNET 11

 0

 0.2

 0.4
No Coding

 0

 0.2

 0.4

Lo
ss

 R
at

e Redundancy = 1

 0

 0.2

 0.4
Redundancy = 2

 0

 0.2

 0.4

 0 50 100 150 200 250
Event Id

Redundancy = 3

(a)

 0

 0.2

 0.4
No Coding

 0

 0.2

 0.4

Lo
ss

 R
at

e Redundancy = 1

 0

 0.2

 0.4
Redundancy = 2

 0

 0.2

 0.4

 0 50 100 150 200 250
Event Id

Redundancy = 3

(b)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 3

O
cc

ur
re

nc
e

(%
)

of consecutively-dropped events

No Coding
Redundancy = 1
Redundancy = 2
Redundancy = 3
Redundancy = 4

(c)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 3 4

O
cc

ur
re

nc
e

(%
)

of consecutively-dropped events

No Coding
Redundancy = 1
Redundancy = 2
Redundancy = 3
Redundancy = 4

(d)

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

0 1 2 3 4 5 6

Fa
no

ut
 fo

r C
om

pl
et

e
R

el
ia

bi
lit

y

Redundancy

Push with RD only in send
Push with RLC only in send

Push with RD only in recovery
Push with RLC only in recovery

(e)

 2

 3

 4

 5

 6

 7

 8

0 1 2 3 4 5 6

Fa
no

ut
 fo

r C
om

pl
et

e
R

el
ia

bi
lit

y

Redundancy

Pull with RD only in send
Pull with RLC only in send

Pull with RD only in recovery
Pull with RLC only in recovery

(f)

Fig. 9. (a-b) Lost rate for single event for push and pull gossip with and without coding. (c-d) Consecutive event lost reduction augmenting
redundant coded packets in push and pull gossip. (e) RLC versus RD in event dissemination and push-based recovery.

augmenting fan-out). A direct consequence is that, as depicted
in Fig. 8(f), with an increase of the fan-in the value of fan-out
required for complete reliability is decreased.

In Fig. 8(c) and 8(d) we characterize how consecutive event
losses are distributed in push and pull strategies, with the ABL
set to 2: while during the data dissemination phase without
any recovery up to 6 consecutive events can be lost, with
gossip schemes most of the time we notice 1 or 2 consecutive
losses. An increase of fan-out and/or fan-in value augments
the probability to miss only one event rather than consecutive
ones. Finally, because the push/pull strategy delivers a success
rate that is close to those shown by the pull approach (as
depicted in Fig. 8(e)), we do not consider push/pull in the
next evaluations.

B. Gossip strategies evaluation with coding

We repeated the previous study by introducing redundant
packets. In the following we refer to a coded packet as Random
Linear Combination (RLC), while a plain redundant packet is
referred to as Random Duplication (RD). In Fig. 10(a) we
compare the RD and RLC coding by varying the redundancy
degree. The obtained results show that RLC coding is able
to improve the reliability of an event dissemination protocol
without requiring a high redundancy degree. In fact, with RD a
complete delivery of all events is achieved only with a redun-
dancy equal to 29 (i.e., the event is sent almost three times),
while with RLC the number of redundant packets required
is more than halved. To better highlight the effectiveness of
RLC against RD, let us consider Fig. 9(e) where we show
the effect of these coding approaches in reducing the gossip
fan-out for a reliable delivery of all events. We considered
four different cases: RLC (resp. RD) applied either to the
data dissemination or the push-based recovery strategy. While

applying RD has no effect both in data dissemination and
recovery, RLC provides a remarkable improvement especially
if applied in data dissemination. This is motivated by the
ability of network coding to provide useful packets to fully
reconstruct an event (under the assumption of independent
coefficients [12]), as also discussed in Section II-A. A similar
result is obtained with pull gossip in Fig. 9(f). For this reason,
in the following part of this paper we have considered only
RLC coding.

From Fig. 9(a) to 9(d) we evaluate the event loss rate and
the number of consecutive events lost for the push and the
pull gossip in the presence of coding. The fan-out and fan-
in values are respectively set to 2 and 1. With respect to the
previous analysis, we obtain that coding causes a reduction of
both the percentage of undelivered events and the number of
consecutive losses.

C. Performance of the algorithm

In this Section we show the performance of the proposed
protocol in terms of packet overhead and delivery latency.
Fig. 10(b) compares the measured overhead for a complete
reliability in push- and pull-based schemes, with and without
coding. As expected, the push protocol shows the highest
overhead because it is a proactive strategy: every packet is
forwarded to other nodes as soon as it arrives. On the contrary,
the pull protocol is a reactive approach that operates on a
periodical basis: a node asks for a retransmission only when
needed (i.e., a loss is detected). This obviously reduces the
number of packets sent through the network. As depicted in
Fig. 10(b), the use of network coding decreases the overhead
generated by both strategies. This is a direct consequence of
what we have previously mentioned: coding provides more
useful packets so as to reduce the number of retransmissions.

12 IEEE TRANSACTIONS ON NETWORKING, VOL. X, NO. Y, XXX 201X

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Su
cc

es
s

R
at

e

Redundancy Degree

Random Duplication
Random Linear Coding

(a)

 30

 40

 50

 60

 70

 80

 90

 100

Push no coding Pull no coding Push coding Pull coding

O
ve

rh
ea

d

Gossip Scheme

(b)

 20

 25

 30

 35

 40

 45

 50

 1 2 3 4 5 6 7

O
ve

rh
ea

d

Fanin

Pull with fanout = 1
Pull with fanout = 2
Pull with fanout = 3
Pull with fanout = 4
Pull with fanout = 5

(c)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

Push Push with coding Pull Pull with coding

M
ea

n
La

te
nc

y
(s

ec
)

Gossip Approach

(d)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

Push Push with coding Pull Pull with coding

St
D

ev
 L

at
en

cy
 (s

ec
)

Gossip Approach

(e)

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

%
 o

f e
ve

nt
s

Latency (sec)

Push without Coding
Push with RLC redundancy = 2

Pull without Coding
Pull with RLC redundancy = 2

(f)

Fig. 10. (a) Reduction of redundant packets in data dissemination with network coding. (b) Comparison of the measured overhead with and without
RLC coding. (c) Variations in the measured overhead when varying fan-out and fan-in in pull gossip. (d-e) Mean value and standard deviation of
latency with and without RLC. (f) CDF of the percentage of events delivered by all subscribers with time.

Fig. 10(c) shows that reducing the fan-in in pull gossip requires
a higher fan-out to achieve a reliable delivery, so that the
packet overhead increases. In fact, with a higher fan-in, it is
more likely that, with time, the contacted nodes have already
retrieved most of the missing information; as such, the number
of required retransmission decreases.

Concerning the latency, as expected the push gossip exhibits
a better performance than pull (both in mean value and
standard deviation, as shown in Fig. 10(d) and 10(e)), due to its
periodical dissemination of the last received event identifiers.
Increasing the fan-out has good effects on the mean latency
and its standard deviation since this augments the probability
of a node being contacted to recover lost data. We recall that
a high standard deviation indicates latency fluctuations that
compromise the timeliness requirement of the application. Not
surprisingly, due to its ability to provide useful packets to
recover from possible losses, and then to reduce the number
of retransmissions, network coding has a good effect on the
two metrics. An additional parameter for a pull-based scheme
that affects its behaviour is the pulling period. In the previous
results, it was set to 1.5 sec. If we reduce this value, we
observe a reduction in the mean and standard deviation of
the measured latency, equal respectively to 15% and 28%.
Despite reducing the experienced latency, the performance of
the pull-based gossip is still higher than the push-based one.
On the other hand, such an increase implies a slight growth
in the overhead equal to 2%. However, the reduction of the
pulling interval implies a negligible variation to the average
success rate and the occurrence of the loss patterns (number
of consecutively-dropped events).

Finally, Fig. 10(f) shows the Cumulative Distribution Func-
tion (CDF) of the percentage of events delivered to subscribers
with time. In the simulation we considered push and pull

gossip without redundancy and with two redundant coded
packets (the gossip parameters have been set to fan-out equal
to 2, fan-in to 1 and pull interval to 0.5 sec). The push strategy
is always able to satisfy the timeliness constraints defined
above, even in the absence of redundancy. However, recall
from the previous analysis that push gossip has the highest
overhead. Pull gossip, instead, is able to satisfy the timeliness
requirements only in the presence of redundant coded packets.
Hence, Fig. 10(f) clearly shows that our approach is able to
ensure a timely notification even in the presence of reactive
approaches, that are typically subject to delay penalties.

D. Dependance on network dynamics

In this last series of simulations, we have evaluated the
effects of a sudden change of network conditions on the
measured delivery characteristics with the recovery strategies
mentioned above. In particular, we have altered the PLR from
2% to 5%. Such a change is performed after 250 events have
been published. Fig. 11(a) shows that such a sudden change
implies an increase of the event loss rate (i.e., about 28%).
Even if not reported, we obtained a similar result when using
gossip strategies with coding (fan-out set to 2, 2 redundant
packets and fan-in set to 1 and retransmission period of 0.5
sec in the case of pull). As a concrete example in terms of
success rate, the push-based gossip reduces from 0.942 (when
no variation occurs) to 0.890, while with coding it passes from
0.984 to 0.968.

The reduction of the number of retransmissions when using
coding, evidenced also in the previous results, mitigates a pos-
sible worsening of network conditions. Specifically, Fig. 11(b)
shows the reduction of the obtained success rate between
the coding and no coding cases: the variation of network

RELIABLE AND TIMELY EVENT NOTIFICATION FOR PUBLISH/SUBSCRIBE SERVICES OVER THE INTERNET 13

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400 450 500

Lo
ss

 R
at

e

Event Id

Loss Rate per Event
Average Loss Rate

(a)

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

Push Push with Coding Pull Pull with Coding

R
ed

uc
tio

n
in

 S
uc

ce
ss

 R
at

e
(%

)

Gossip Scheme

(b)

 0

 200

 400

 600

 800

 1000

 1200

1 2 3 4 5 6 7

D
iff

er
en

ce
 in

 O
cc

ur
re

nc
e

of consecutively-dropped events

Push without Coding
Push with Coding

Pull without Coding
Pull with Coding

(c)

Fig. 11. (a) Variation of the event loss rate when PLR moves from 2% to 5%. (b) Reduction in percentage of the measured success rate due to a
network conditions change. (c) Variation in the distribution of consecutive lost events when moving from PLR=2% to PLR=5%.

conditions has a much lower impact when gossip is teamed up
with coding. A similar result is obtained in Fig. 11(c), which
indicates the increase of occurrences of burst losses when
comparing the two cases. The PLR variation has a stronger
impact on the push gossip rather than the pull one; however,
in both strategies the use of coding drastically reduces the
number of consecutive lost events.

E. Final considerations

We have evaluated the impact of coding through a
simulation-based study conducted on a real workload taken
from the ATC scenario. The obtained results demonstrate that
coding helps to decrease the gossip fan-out (Fig. 9(e) and 9(f))
to achieve a reliable delivery of events, due to its ability to
provide useful packets to recover from possible losses. This
also translates into a reduction of the overhead (Fig. 10(b) and
10(c)), the mean notification latency and its standard deviation
(Fig. 10(d) and 10(e)). We also defined a timeliness constraint,
based on the requirements of the described ATC scenario, and
evaluated in Fig. 10(f) how the proposed solution ensures the
satisfaction of these constraint (i.e., 95% of subscribers must
receive an event within 1 sec and 99.8% within 2 sec) We have
shown that the push-based recovery strategy is able to satisfy
the timeliness constraint even without coding. However, this
comes at the cost of a high packet overhead. The use of coding
helps to mitigate the imposed overhead, rather than reducing
the notification interval. On the contrary, network coding is
of paramount importance to meet the timeliness requirement
when using a pull-based gossip strategy. In addition, the
experienced overhead is much less than the one generated by
push gossip, due to the reactive nature of pull. In this case,
however, the retransmission period must be properly set to
avoid delays.

VIII. CONCLUSIONS

The problem of jointly providing reliability and timeliness
over a WAN is still an open issue since reliability improve-
ments are typically obtained at the cost of severe performance
fluctuations, or a stable performance is obtained by weakening
the offered reliability. In this paper, we have proposed a strat-
egy that combines coding and gossip for reliable and timely
event dissemination over the Internet. We have conducted a
theoretical analysis to evaluate the ability of gossip to retrieve
missing information in a small number of rounds. In addition,

we have evaluated the impact of coding through a simulation-
based study conducted on a real workload taken from the ATC
scenario. The obtained results prove that coding improves the
reliability by lowering the number of nodes to be contacted
during a gossip round. In addition, coding has a positive
impact even on the mean notification latency, and its standard
deviation, due to a decrease in the number of retransmissions
required to fully reconstruct a message. As such, a decrease of
latency fluctuations makes the latency itself more predictable
and, in turn, helps to satisfy the timeliness constraints imposed
by the applications.

In the near future, we plan to extend the contribution
of this work by proposing a different mechanism to select
gossip partners during the recovery phase of the protocol.
In this paper we have assumed a random uniform selection
mechanism; however, we can improve the efficiency of such
a solution by selecting nodes with a proper heuristics. To this
end, we plan to use a polarized gossip, in which a subscriber
assigns a weight to a subset of other subscribers returned by
the peer sampling service. The weight assignment follows
the probability that the returned subscriber has a missing
packet. Hence, a subscriber contacts f of the highest-weighted
subscribers returned by the peer sampling service, i.e., those
with the highest probability of having a missed packet. In
particular, we plan to devise two different models for the
weight assignment. One is based on the current network status,
which requires us to infer the mean number of lost packets
for each incoming overlay link. The second is based on the
position of the nodes in the overlay network, with the idea
that nodes closer to the source of information have a lower
probability of having experienced a packet loss.

ACKNOWLEDGMENT

This work has been partially supported by the Italian Min-
istry for Education, University, and Research (MIUR) in the
framework of the Project of National Research Interest (PRIN)
“DOTS-LCCI: Dependable Off-The-Shelf based middleware
systems for Large-scale Complex Critical Infrastructures”, and
by the BLEND Eurostar European Project.

REFERENCES

[1] P. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec, “The many
Faces of Publish/subscribe,” ACM Computing Surveys (CSUR), vol. 35,
no. 2, pp. 114–131, June 2003.

14 IEEE TRANSACTIONS ON NETWORKING, VOL. X, NO. Y, XXX 201X

[2] A. Carzaniga, D. Rosenblum, and A. Wolf, “Design and Evaluation of a
Wide-Area Event Notification Service,” ACM Transactions on Computer
Systems (TOCS), vol. 19, no. 3, pp. 332–383, August 2001.

[3] M. Castro, P. Drushel, A. Kermarrec, and A. Rowstrom, “Scribe: A
Large-scale and Decentralized Application-level Multicast Infrastruc-
ture,” IEEE Journal on Selected Areas in Communications (JSAC),
vol. 20, no. 8, pp. 1489–1499, January 2004.

[4] G. Cugola, E. Di Nitto, and A. Fuggetta, “The jedi event-based infras-
tructure and its application to the development of the opss wfms,” IEEE
Transactions on Software Engineering, pp. 827–850, 2001.

[5] N. Carvalho, F. Araujo, and L. Rodrigues, “Scalable qos-based event
routing in publish-subscribe systems,” in Network Computing and Ap-
plications, Fourth IEEE International Symposium on. IEEE, 2005, pp.
101–108.

[6] E. Fidler, H. Jacobsen, G. Li, and S. Mankovski, “The padres distributed
publish/subscribe system,” in Feature Interactions in Telecommunica-
tions and Software Systems, vol. 8, 2005, pp. 12–30.

[7] EUROCONTROL. (2008, February) The ATM Deployment Sequence,
SESAR Project Milestone Deliverable D4. [Online]. Available:
www.eurocontrol.int/sesar/public/standard page/documentation.html

[8] A. Markopoulou, F. Tobagi, and M. Karam, “Loss and Delay Mea-
surements of Internet Backbones,” Computer Communications, vol. 29,
no. 10, pp. 1590–1604, June 2006.

[9] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah,
Y. Ganjali, and C. Diot, “Characterization of Failures in an Operational
IP Backbone Network,” IEEE/ACM Transactions on Networking (TON),
vol. 16, no. 4, pp. 749–762, August 2008.

[10] R. Baldoni, M. Contenti, S. Piergiovanni, and A. Virgillito, “Modeling
publish/subscribe communication systems: towards a formal approach,”
in Proceedings of the 8th International Workshop on Object-Oriented
Real-Time Dependable Systems. IEEE, 2003, pp. 304–311.

[11] A.-M. Kermarrec, L-Massoulié, and A. J. Ganesh, “Probabilistic Re-
liable Dissemination in Large-Scale Systems,” IEEE Transactions on
Parallel and Distributed Systems (TPDS), vol. 14, no. 2, pp. 1–11,
February 2003.

[12] C. Fragouli, J. L. Boudec, and J. Widmer, “Network coding: an instant
primer,” Computer Communication Review, vol. 36, no. 1, p. 63, 2006.

[13] S. Li, R. Yeung, and N. Cai, “Linear network coding,” IEEE Transac-
tions on Information Theory, vol. 49, no. 2, pp. 371–381, 2003.

[14] C. Esposito, S. Russo, R. Beraldi, M. Platania, and R. Baldoni, “Achiev-
ing reliable and timely event dissemination over wan,” Proceedings
of the 13rd International Conference on Distributed Computing and
Networking (ICDCN), pp. 265–280, 2012.

[15] C. Esposito, S. Russo, R. Beraldi, and M. Platania, “On the benefit of
network coding for timely and reliable event dissemination in WAN,”
Proceedings of the 1th International Workshop on Network Resilience,
pp. 84–89, October 2011.

[16] L. Fiege and G. Muehl, “Rebeca event-based electronic commerce
architecture, 2000.”

[17] G. Muehl, L. Fiege, and P. R. Pietzuch, Distributed event-based systems.
Springer-Verlag, 2006.

[18] P. Pietzuch and J. Bacon, “Hermes: A Distributed Event-Based Mid-
dleware Architecture,” Proceedings of 22nd International Conference
on Distributed Computing Systems Workshops (ICDCSW ’02), pp. 611–
618, July 2002.

[19] K. Birman, G. Chockler, and R. van Renesse, “Toward a cloud comput-
ing research agenda,” SIGACT News, vol. 40, no. 2, pp. 68–80, 2009.

[20] TIBCO, Inc., “Tibco rendezvous,” http://www.tibco.com/products/
automation/messaging/low-latency/rendezvous/default.jsp.

[21] OMG. (2007, January) Data Distribution Service (DDS) for Real-Time
Systems, v1.2. [Online]. Available: www.omg.org

[22] S. Microsystems. (2002, April) Java Message Service, v1.1. [Online].
Available: docs.sun.com/app/docs/doc/816-5904-10

[23] M. Balakrishnan, K. Birman, A. Phanishayee, and S. Pleisch, “Ricochet:
Lateral Error Correction for Time-Critical Multicast,” Proceedings of the
4th USENIX Symposium on Networked System Design & Implementation
(NSDI 07), pp. 73–86, April 2007.

[24] S. Deb, M. Medard, and C. Choute, “Algebraic Gossip: A Network
Coding Approach to Optimal Multiple Rumor Mongering,” IEEE Trans-
actions on Information Theory, vol. 52, no. 6, pp. 2486–2507, June 2006.

[25] L. Subramanian, I. Stoica, H. Balakrishnan, and R. Katz, “Overqos: An
overlay based architecture for enhancing internet qos,” in Proceedings
of the 1st conference on Symposium on Networked Systems Design and
Implementation-Volume 1. USENIX Association, 2004, pp. 6–21.

[26] E. Gilbert, “Capacity of a Burst-Noise Channel,” Bell System Technical
Journal, vol. 39, pp. 1253–1265, 1960.

[27] A. Konrad, B. Zhao, and A. Joseph, “Determining Model Accuracy of
Network Traces,” Journal of Computer and System Sciences, vol. 72,
no. 7, pp. 1156–1171, 2006.

[28] X. Yu, J. W. Modestino, and X. Tian, “The Accuracy of Gilbert Models
in Predicting Packet-Loss Statistics for a Single-Multiplexer Network
Model,” Proceedings of the 24th Annual Joint Conference of the IEEE
Computer and Communications Societies, vol. 4, pp. 2602–2612, March
2005.

[29] G. Hasslinger and O. Hohlfeld, “The Gilbert-Elliott Model for Packet
Loss in Real Time Services in the Internet,” Proceedings of the 14th
GI/ITG Conference on Measuring, Modelling and Evaluation of Com-
puter and Communication Systems, pp. 1–15, March-April 2008.

[30] M. Jelasity, S. Voulgaris, R. Guerraoui, A. Kermarrec, and M. Van Steen,
“Gossip-based peer sampling,” ACM Transactions on Computer Systems,
vol. 25, no. 3, p. 8, 2007.

[31] L. Massoulié, E. Le Merrer, A. Kermarrec, and A. Ganesh, “Peer
counting and sampling in overlay networks: random walk methods,” in
Proceedings of the twenty-fifth annual ACM symposium on Principles
of distributed computing. ACM, 2006, pp. 123–132.

[32] L. Wilhelmsson and L. Milstein, “On the effect of imperfect interleaving
for the Gilbert-Elliott channel,” IEEE Transaction on Communication,
1999.

[33] C. Esposito, “Data Distribution Service (DDS) Limitations for Data Dis-
semination w.r.t. Large-scale Complex Critical Infrastructures (LCCI),”
Mobilab Technical Report (www.mobilab.unina.it), March 2011.

Christian Esposito is a research grant holder at
the Institute for High Performance Computing and
Networking (ICAR) - National Research Council of
Italy (CNR). He graduated in Computer Engineer-
ing at Universitá di Napoli Federico II in 2006,
and got his PhD at the same university in 2009.
His main interests include positioning systems for
mobile ad-hoc networks, benchmarking aspects of
publish/subscribe services, and reliability strategies
for data dissemination in large-scale critical systems.
He regularly serves as a reviewer in several leading

journals and conferences in the field of Distributed and Dependable Systems.

Marco Platania is a Postdoctoral Fellow at the
Department of Computer Science - Johns Hopkins
University (Baltimore, USA). He got the Ph.D.
in Engineering in Computer Science in 2012 at
Sapienza - University of Rome. His main research
interests are P2P systems, publish/subscribe archi-
tecture, cloud computing and critical infrastructure
protection. He regularly serves as a reviewer in
several leading journals and conferences in the field
of Distributed Systems.

Roberto Beraldi is an Assistant Professor at Di-
partimento di Ingegneria Informatica Automatica e
Gestionale, Sapienza - University of Rome, since
2002. He received the Laurea degree in Computer
Science in 1991 and the Ph.D. degree in Computer
Science in 1996 from the University of Calabria.
He has published more than 60 peer-reviewed pa-
pers in various fields, including computer networks,
wireless networks, and distributed systems. He also
participates in many research projects and regularly
serves as a reviewer for international conferences

and journals in the above areas.

