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Chapter 1

Introduction

1.1 Introduction
Nematic liquid crystals are mesophases between the liquid and the solid phases.
Nematic molecules typically have elongated shape, approximately rod-like, and can
translate freely, like in a liquid, but, in doing so, their long axes tend to align along
some common direction. This feature is the key for the extreme responsivity of
nematics to external stimuli, which in turn is the reason why they are so useful in
technological applications (some of which are perhaps very surprising, cfr. [118] and
references therein). Macroscopic configurations of nematics are better described by
continuum theories rather than by molecular models [52, 113, 6, 7]. Among continuum
models, the most successful is the phenomenological Landau-de Gennes (LdG) theory
[52, 113].

Call Ω ⊂ R3 the region of space containing the nematic liquid crystal under study;
Ω will be assumed to be bounded and simply-connected, with smooth boundary. In
the LdG theory the state of the system is described by a map Q : Ω→ S0, where

S0 = {M ∈M3×3(R) : M = M t and TrM = 0}. (1.1.1)

Note that S0 ' R5 as linear spaces; we endow S0 with the norm |M | =
√
MijMij ,

where summation convention is understood. The map Q is called Q-tensor order
parameter. The state of the system at x ∈ Ω is said to be

• isotropic, if Q(x) = 0;

• uniaxial, if Q(x) 6= 0 and Q(x) has two equal eigenvalues;

• biaxial, if Q(x) has three distinct eigenvalues.

Following a common convention, we shall often include the isotropic case into the
uniaxial one; moreover, we shall always label the eigenvalues λ1(x), λ2(x), λ3(x) of
Q(x) in the increasing order.

A convenient measure of biaxiality is provided by the biaxiality parameter β2 [81],
defined as

β2(Q(x)) = 1− 6Tr(Q3(x))2

Tr(Q2(x))3 . (1.1.2)

It holds β2(Q(x)) = 0 if and only if Q(x) is uniaxial and β2(Q(x)) = 1 if and only if
Q(x) is maximally biaxial [106].
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CHAPTER 1. INTRODUCTION

Observable configurations of nematics are described in the LdG theory as minimiz-
ers of an appropriate energy functional ELdG(Q; Ω), whose precise form depends on
the physical effects one wish to include, defined on an appropriate space of functions
subject to the imposed boundary conditions. Thus, amazingly complicated choices
are possible but we will work only with the simplest form for ELdG(Q; Ω), assuming
Dirichlet boundary conditions. We take

ELdG(Q; Ω) :=
ˆ

Ω
e(∇Q,Q) dx, (1.1.3)

where

e(∇Q,Q) = L

2 |∇Q|
2 − A(T ∗ − T )

2 TrQ2 − b

3 TrQ3 + c

4(TrQ2)2. (1.1.4)

Here T is the absolute temperature, T ∗ is a critical temperature, depending on the
material. A, b, c > 0 are material constants. L > 0 is a constant approximately
depending only on the material [109]. We will work at fixed temperature, so that
a := A(T ∗ − T ), b, c can be considered constant. When T > T ∗, the system behave
like an isotropic fluid, while T < T ∗ is called the nematic regime. In this case, a > 0.

Since we aim to do a variational theory, a natural class of functions on which defin-
ing the functional ELdG is W 1,2(Ω,S0); as we assume Dirichlet boundary condition,
we further suppose that Q = Qb on ∂Ω in the trace sense, with Qb ∈ C∞(∂Ω,S0).
We set

F (Q) := −a2 TrQ2 − b

3 TrQ3 + c

4(TrQ2)2 (1.1.5)

Actually, F is well-defined on matrices and one can show that it is bounded below
[102] on S0. Since F is bounded below, the functional

F̃ (Q) := F (Q)− inf
Q
F (Q) (1.1.6)

is nonnegative. The infimum of F is achieved on the subclass of matrices in S0 of the
special form

M = s+

(
n⊗ n− 1

3I
)
, n ∈ S2, (1.1.7)

where I is the identity 3× 3-matrix and s+ a positive constant given by [106]

s+ = b+
√
b2 + 24ac
4c (1.1.8)

Notice that on simply connected domains, thanks to a lifting theorem of Ball&Zarnescu
[9], the set of minimizers of F can be written as the following manifold:

Qmin :=
{
Q ∈ S0 : Q = s+

(
n⊗ n− 1

3I
)
, n ∈W 1,2(Ω, S2)

}
' RP 2. (1.1.9)

The infimum of F (Q) will be achievied on the classes of maps that will be of our
interest [102, 106]; this will allow us to subtract the minimum of F (Q) in (1.1.6).
Notation. With a slight abuse of notation, from now on we will write F (Q) meaning
F̃ (Q). Furthermore, we will drop the subscript “LdG” and write simply E(Q; Ω) for
the energy functional.
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1.1. INTRODUCTION

For a long time, it was widely believed that equilibrium configurations of nematics
should be uniaxial. In 2004, experiments revealed that they could also be biaxial [101].
The possibility of having biaxial minimizers was already seriously considered since long
time before, both in theoretical [100, 120] and in numerical studies [133, 84, 85, 47].
In particular, the numerical simulations [84, 85, 47] shows that in the regime called
deep nematic phase the energy minimizers subject to certain physically-significant
boundary conditions are particular configurations, called biaxial torus solutions. The
deep nematic phase may be characterized in terms of the material costants as the
situation in which the reduced temperature1

t := 27ac
b2

= 27A(T ∗ − T )c
b2

(1.1.10)

is much greater than 1. More naively, it is often said that “b is much smaller than
both a and c” or that the temperature is “sufficiently lower” than T ∗.

In this work, we follow two main threads. The first is producing some rigorous
arguments in the direction of minimality biaxial torus solutions both in similar
situations to those studied in numerical simulations and with different boundary data.
Recent interest in this kind of problems is witnessed by [5, 142, 143]. The second
thread is studying the behavior of minimizers when the boundary data are suitably
rearranged.

In order to do this, as a preliminary step we have to clarify what we mean by
“biaxial torus solution”. Since apparently there are no codified definitions of this
concept in the mathematical literature, we extracted the features we judged essential
from the phenomenological picture, see Section 2.5.7 for an account and Section 2.5.8
for some discussion. Before giving our definition of biaxial torus solution, we find it
convenient to redefine the biaxiality parameter in order it can distinguish between
positive uniaxiality (the two lowest eigenvalues are identical) and negative uniaxiality
(the two highest eigenvalues are identical). This is done by setting

β̃(Q(x)) =
√

6 Tr(Q3)
(Tr(Q2))

3
2
. (1.1.11)

Since Tr(Q3) = 3λ1λ2λ3 because of the tracelessness constraint, we have −1 ≤ β̃ ≤ +1
and β̃(Q(x)) = −1 if and only if λ2(x) = λ3(x), β̃(Q(x)) = +1 if and only if
λ1(x) = λ2(x) and β̃(Q(x)) = 0 if and only if Q is maximally biaxial at x ∈ Ω.

Next, we establish the following definition of linking compact sets.

Definition 1.1 (Linking compact sets). Let Ω ⊂ Rn be a set and let K1,K2 ⊂ Ω
be compact sets. We say that K1,K2 are linking if we have both that K1 is not
contractible in Ω \K2 and K2 is not contractible in Ω \K1.

Now we can state

Definition 1.2 (Biaxial torus solution). Let Q be a smooth critical point of the LdG
energy functional E(·; Ω), defined as in (1.1.3), on some admissible class of functions.
We call Q a biaxial torus solution in Ω if Q has the following properties:

(a) Q 6= 0 everywhere;

(b) there exist linking compact sets U+,U− ⊂ Ω so that β̃(Q) ≡ 1 in U+, β̃(Q) ≡ −1
in U−.

1The are various ways of defining a quantity playing the same rôle; we take the one of [105].
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CHAPTER 1. INTRODUCTION

To comply our program, in this work we study three kind of minimum problems
for the functional E(Q;B1). We will always work deep in the nematic phase.
In this situation, both physically-grounded arguments (due to Lyuksyutov [100]) and
numerical studies [84, 85] (and, to some extent, rigorous arguments [105]) suggest
that the norm of the Q-tensor order parameter may be considered constant inside Ω.
Thus, in particular, Q cannot melt inside Ω and reacts to strong deformations through
exchanges in the eigenvalues and entering biaxial states [84, 85]. We shall always
assume the validity of this norm constraint, customary called the Lyuksyutov
constraint, and further we rescale Q-tensors so that

|Q|2 = QijQij = 1. (1.1.12)

Thus, Q takes values in the unit sphere S4 into S0. In each case under studying,
we set

Ω = B1,

as in most numerical simulations [85, 47, 32, 75], where B1 denotes the open unit
ball in R3 centered at the origin. Taking the map

Qb(x) =
√

3
2

(
x

|x|
⊗ x

|x|
− 1

3I
)
∈ C∞(S2;S4) (1.1.13)

as (physically-significant) boundary condition and defining the admissible class

AQb =
{
Q ∈W 1,2(B1;S4) : Q = Qb on S2 in the trace sense

}
, (1.1.14)

we first study, in Chapter 4, the regularity of minimizers of the LdG energy functional
E(·;B1) in the class AQb . Although the analysis here does not present particular
elements of novelty, details appear to be missing in the literature; moreover, the
ε-regularity theorem (Theorem 4.6) and higher regularity theorems (Section 4.5)
proven there are actually valid for any minimizer appearing in this work. The main
outcome here is the following complete regularity theorem.

Theorem 1. Let Q ∈ AQb be a minimizer of the LdG energy (1.1.3) in the class
(1.1.14), with Qb as in (1.1.13). Then Q is real-analytic in B1.

The second problem we shall study is the regularity of minimizers of the LdG
energy (1.1.3) in the class

Aax
Qb

= AQb ∩ {Q ∈ AQb : Q is S1-equivariant}, (1.1.15)

with Qb as in (1.1.13). By S1-equivariance, we mean that the Q-tensor satisfies

Q(Rx) = RQ(x)Rt, for a.e. x ∈ B1, (1.1.16)

for any rotation R about some fixed axis, which we always identify with the z-axis of
a cartesian coordinate system centered at the origin.

Our motivation for approaching this problem is that we have a simple topological
argument (Theorem 5.1) proving that smooth S1-equivariant minimizers of E(·;B1)
in the class (1.1.15) with Qb as in (1.1.13) are biaxial torus solutions in B1, in the
sense of Definition 1.2. Our main result here is the following dichotomy.
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1.1. INTRODUCTION

Theorem 2. Let Q ∈ Aax
Qb

be a minimizer of the LdG energy (1.1.3) in the class
(1.1.15), with Qb as in (1.1.13). Then there exists a δ > 0 so that Q is smooth in a
δ-neighborhood of S2 and, in the interior, either Q has a finite number of singularities
of dipole kind or Q is a biaxial torus solution in B1, in the sense of Definition 1.2.

Here the term dipole refers to a specific structure of the singularities, which in
particular have to come out in pairs; we use it in analogy to [21], as it will become
clear at the end of the analysis in Chapter 7. Even if the theorem cannot exclude
singularities, contrary to our plan, it allows only for a peculiar kind of singular
solution, bearing a remarkable resemblance with the metastable split core solutions
found in [47] (see also Section 2.5.7 for a comparison to biaxial torus solutions). In
analogy to [47], we call the singular S1-equivariant minimizers allowed by the theorem
split solutions and we extend this name also to any S1-equivariant minimizer of the
LdG energy having a finite number of dipoles.

The last problem we tackle, in Chapter 8, is the examination of the behavior
of minimizers when the boundary data are arranged in suitable ways. We show
that there exist smooth boundary data whose minimizers are biaxial torus solutions
(Theorem 8.2), smooth boundary data whose minimizers necessarly have singularities
(Theorem 8.3) and also smooth boundary data whose minimizers are biaxial torus
solutions in a subregion of B1 but have singularities outside (Theorem 8.4). We
summarize these results in the following

Theorem 3. Let E(·;B1) the LdG energy functional defined in (1.1.3) over the class
Aax
Qb

defined in (1.1.15). Then

(i) There exist boundary data Qb such that the corresponding minimizers are biaxial
torus solutions in B1.

(ii) There exist boundary data Qb such that the corresponding minimizers have
singularities in B1.

(iii) There exist boundary data Qb such that the corresponding minimizers have
singularities in B1 but they are biaxial torus solutions in Ω ⊂⊂ B1.

We also complement the analysis by extending some well-known theorems in
harmonic maps [2, 65], such as generic uniqueness of minimizers, uniform distance
between singular points, convergence of singularities to singularities and we discuss
the possibility of having smooth boundary data with at least two minimizers of
different character: one a biaxial torus solution in B1 and the other a split solution.

Our approach to regularity will be in the spirit of geometric measure theory, more
specifically, of very classic works by Schoen & Uhlenbeck [130, 131, 132] and of more
recent works with similar structure of the Euler-Lagrange equations associated to the
energy functional, such as [119]. Thus, the main issue in the quest for regularity will be
ruling out all nonconstant minimizing tangent maps. In this direction, the symmetry
constraint is a major cause of troubles, since it prevent us from applying well-known
results in the literature and, especially, the Liouville theorem of Schoen&Uhlenbeck
[132, Theorem 2.7], which is by far the most delicate point. We partly remedy this
lack by classifying, in Chapter 6, all possible S1-equivariant tangent maps. Next, we
exploit the form of S1-action to identify, for most tangent maps, directions along
which push them to lower their energy. Anyway, in the S1-equivariant case there are
nonconstant minimizing tangent maps, Theorem 7.6. This circumstance yields both

5



CHAPTER 1. INTRODUCTION

the obstruction in proving full regularity under the boundary condition (1.1.13) and
the interesting phenomenon of multiple minimizers mentioned above.

This dissertation is organized as follows. Chapter 2 and Chapter 3 contain review
material on nematic liquid crystals and on harmonic maps respectively. In this work,
harmonic maps appear as asymptotic objects in the blow-up analysis (i.e., as tangent
maps), thus the discussion of this huge topic is geared exclusively towards relevant
aspects to our needs. Chapter 4 deals with the minimization problem in the class
(1.1.14). Chapters 5, 7 tackle the minimization problem in the class (1.1.15). The
classification of the S1-equivariant harmonic maps in Chapter 6 is a necessary step in
the analysis in Chapter 7 but it is also of strong independent interest. In Chapter 8
we study the behavior of minimizers for different boundary data.

The results in this Ph.D. thesis will constitute the core of publications in prepara-
tion with V. Millot (Paris Diderot) and A. Pisante (Sapienza – Univerità di Roma).
Some problems are still open, such as (for instance) proving that split solutions are
not minimizing w.r.t. the hedgehog boundary condition and the question whether
gap happens or not in this setting (in analogy to [63]). These are part of a line of
research, involving also the uniqueness issue, worth to investigate, possibly in the
near future.

Notations. We will use quite standard notations. Bn
R(x0) = {x ∈ Rn : |x− x0| < R}

denotes the n-ball of radius R centered at x0. For balls centered at the origin, we
drop the specification of the center. The unit ball in R3 centered at the origin will
be denoted B1. SdR(x0) denotes the d-sphere of radius R with center at x0; we drop
both x0 and the subscript 1 for unit spheres and, as for balls, the specification of the
center when x0 = 0.

Vectors in Rn will usually be written in small Latin letters. Sometimes, vectors
will be emphasized writing them in bold letters; anyway, this will rarely happen and
mostly when it is useful to distinguish them from other kind of quantities or they
stands for quantities universally written in bold capital letters (as for the magnetic
field H). Scalar product of vectors are usually denoted with a dot and the euclidean
norm with |·|.

Matrices will usually be written in capital Latin letters. The symbol TrM denotes
the trace of the matrix M . M t is the transpose of M . Scalar products of matrices are
usually denoted with brackets: 〈A,B〉 = Tr(AtB) = ∑

i,j AjiBij . |A| =
√

Tr(AtA)
indicates the Hilbert-Schmidt norm of A (no confusion will arise with the euclidean
norm).

As a general rule, summation convention on repeated indexes will be understood,
but sometimes we will explicitly indicate the sum.

The symbol W 1,2
ϕ (M,N) denotes the space of W 1,2-functions u : M → N that

agree ϕ on ∂M , in the trace sense. We will also write

u|∂M = ϕ or tr(u) = ϕ

to mean the same thing. Here the only trace spaces occurring are that of traces of maps
in W 1,2(M,N); for brevity, they are denoted H 1

2 (M,N) rather than W 1
2 ,2(M,N).

The gradient on open domains in Rn is denoted ∇. ∇T denotes the tangential
gradient on a surface, almost always a sphere. The subscript T will be dropped when
no confusion can arise.

Often, following a common convention, area and volume elements will be dropped
in integrals appearing in fairly long formulae.

6



1.1. INTRODUCTION

Most often, the material constant L will not play any significant rôle and thus
will be tacitly set to 1 for convenience.
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Chapter 2

Liquid crystals: main theories
for nematics

Synopsis. In this chapter we give a quick introduction, by no means intended to
be exhaustive, to the main continuum theories for nematic liquid crystals (or, shortly,
nematics). These are the Oseen-Frank theory (Section 2.3), the Leslie-Ericksen theory
(Section 2.4) and the Landau-de Gennes theory (Section 2.5). The main difference
between them is the definition of the order parameter, the mathematical tool encoding
the physical concept of orientational ordering. This difference is highlighted in Section
2.2 while the relation between the above-mentioned theories is a key field of research,
briefly exposed in Section 2.5. The focus is however on Landau-de Gennes theory and,
more specifically, on those topic directly connected to our problem. In particular, we
discuss two asymptotic limits: the large body limit (§ 2.5.4) and the Lyuksyutov limit
(also termed low-temperature limit) (§ 2.5.4); we give an account of the phenomenology
of biaxial torus solutions as evinced from numerical simulations (see Section 2.5.7)
and, in light of this account, we comment on our definition of biaxial torus solution
(Section 2.5.8).

2.1 Nematic liquid crystals

Some organic materials do not show a single transition from solid to liquid but rather
they exhibit a certain number of intermediate phases (technically, mesomorphic
phases), often called liquid crystals phases. Among them, the main ones are the
nematic phase, the smectic phase and the columnar phase. Liquid crystals are said
to be thermotropic when the main physical parameter governing phase transitions
is temperature and lyotropic if such parameter is instead the concentration of the
liquid crystals molecules into a solution. Here we shall concerned exclusively with
thermotropic nematics, which are simplest to study and yet sources of very challenging
mathematical problems; for information about all other types we refer to the classic
textbook [52].

Nematic liquid crystals are anisotropic fluids whose constituent molecules typically
have elongated shape; the molecules are free to translate (i.e., they flow like in liquids)
but their distinghuished axes tend to align, in average, along a common preferred
direction, labelled by a unit vector n, usually called the director. The direction n is
arbitrary in space [52, § 1.3.1] and n and −n are indistinguishable; as a consequence,
nematic liquid crystals are not ferroelectric even if they carry a permanent electric
dipole and diamagnetic [52]. Nematic phases occurs only with achiral materials.

9
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Nematic liquid crystals are said uniaxial if n is an axis of complete rotational
symmetry of the system and biaxial otherwise [113]. Biaxiality in thermotropic
nematics has been observed only relatively recently [101]. Rigid rods are the simplest
type of objects giving rise to nematic behavior and this is the way we will think of
nematic molecules in the sequel.

Nematics are characterized by an extreme responsivity to external inputs. This
makes them suitable for many technological applications, among which the most
known is certainly in the industry of digital displays; a perhaps surprising list of various
other employments, with references to the literature, can be found in [118]. Another
consequence is that nematics may be observed making recourse to a number of different
techniques, in particular microscopy and NMR (Nuclear Magnetic Resonance).

Liquid crystals may be modelled at various levels of detail; in principle, one would
aim at deriving their macroscopic properties starting from molecular processes but
such a detailed description appear to be unviable up to now [6, 7]. Continuum model
are instead much more suitable to describe macroscopic configurations of nematics.
In continuum models, the main quantity of interest is the order parameter, which
provides a measurament of orientational order. There are various continuum theories
available for nematics, each with a different definition of the order parameter (and,
consequently, of the function space where the theory takes place). Continuum theories
may be classified into mean-field approaches and phenomenological approaches [8].
The most successful continuum theory is the phenomenological mesoscopic Landau-de
Gennes theory, the development of which was a major reason1 to award P.J. de Gennes
with the Nobel prize in physics in 1991. The order parameter in the Landau-de
Gennes theory is a second-order tensor, called the Q-tensor order parameter. In
the next sections, we will briefly introduce also other notable continuum theories,
such as the Oseen-Frank theory, the Leslie-Ericksen theory (which can be viewed as
particular cases of Landau-de Gennes theory) and we will spend some words about
the relation between mean field approach and the phenomenological approach to the
Q-tensor order parameter.

A striking feature of liquid crystals is that they show a vast variety of defects.
Accordingly to [6], by a defect we mean a point, curve or surface in the neighborhood
of which the order parameter varies very rapidly (depending on the theory on use,
this abrupt change may or may not result in a mathematical singularity of the order
parameter). Defects are observed optically and often forms impressively suggestive
patterns. An example of such patterns (a so-called Schlieren texture) is shown in
Figure 2.1.

The Landau-de Gennes theory can account for all types of defects observed in
real nematics [52]. In general, the analysis of defects in ordered media is one of most
active fields of physics [84] and liquid crystals stand out from other ordered media for
the multiplicity of possible defects and the chance of controlling their appearance and
morphology by choosing suitably the confining geometry and the boundary conditions
[84]. Landau-de Gennes theory looks particularly appropriate to investigate the fine
structure of defects [84]. A detailed account on defects can be found in [52, Chapter
4] while in Section 2.5.2 some notions directly relevant to this work can be found.

1The Nobel Prize in Physics 1991. NobelPrize.org. Nobel Media AB 2018. Sun. 14 Oct 2018.
<https://www.nobelprize.org/prizes/physics/1991/summary/>
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Figure 2.1: Example of Schlieren texture in nematic 5CB. Image downloaded from
http://blitiri.blogspot.com/search/label/schlieren.

2.2 Order parameters and continuum theories for ne-
matics

Broadly speaking, in condensed matter physics the orientational order of the con-
stituent molecules arises from first principles of entropy and energy2 and can be
usefully quantified, in continuum theories, by the means of well chosen quantities,
depending on the problem, generally called order parameters.

Remark 2.2.1. We shall not insist more on the relation between molecular models
and continuum theories, which is in fact not precisely known at the moment being [6].
As a consequence of this uncertainty, the genesis of order parameters from molecular
models is not completely clear.

Remark 2.2.2. In this work, we are not interested in dynamics but only in equilibrium
configurations, so that there will be no dependence on the time anywhere. Of course,
dynamics is a topic of great interest. Some comments will be given at the end of
Section 2.5.2.

The choice of the order parameter is essential, as it forces one to choose an
appropriate function space, thus conditioning the whole subsequent theory. We shall
deal with three important continuum theories for nematics, the following:

• Oseen-Frank theory, whose order parameter is a vector field n : Ω ⊂ R3 →
S2/{±1} ' RP 2, termed the director, which assigns, to each point of the
domain, the preferred direction of alignment. Note that we take the quotient
by {±1} because of the statistical head-to-tail symmetry of the molecules.

• Leslie-Ericksen theory, whose order parameter is the director n as before coupled
with a scalar field s : Ω→ R, describing the local average degree of orientation.

2Cfr. [118].
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• Landau-de Gennes theory, whose order parameter is a field of 3× 3-traceless
matrices, also called Q-tensor order parameter. Roughly speaking, the eigenvec-
tors of the matrices indicates the preferred directions of alignment and the two
independent eigenvalues the degree of alignment.

Note that, the higher the dimensions of the order parameter, the richer the
information contained in it. The director n has three degree of freedom and we
can think of it as a special case of the couple (s, n), so that Oseen-Frank theory
is conceivably a special case of Leslie-Ericksen theory. In the same fashion, the
five-dimensional Q-tensors include the four-dimensional Leslie-Ericksen couples as a
special case. Indeed, the above inclusions can be made more precise, meaning that
all the results known for the Oseen-Frank theory can be obtained by means of the
Leslie-Ericksen theory and all those of the Leslie-Ericksen theory can be recovered by
the Landau-de Gennes theory, at least from a physical point of view. In fact, there
is a general consensus on that the Landau-de Gennes theory is the most effective
continuum theory for nematics.

2.3 Oseen-Frank theory
The Oseen-Frank theory is the oldest and the simplest continuum theory for nematics
still of use today. As we already said, the order parameter of the Oseen-Frank theory
is a line field n : Ω ⊂ R3 → RP 2, where Ω represent the region of space in which
the sample is enclosed, which we will suppose to be simply-connected with Lipschitz
boundary. Defects are identified in this theory with the (mathematical) singularities
of n. The Oseen-Frank free energy is customary assumed to be3 (see, for instance,
[60])

W (∇n, n) :=1
2
{
K1(divn)2 +K2(n · curln)2K3 |n× (curln)|2

+(K2 +K4)
[
Tr(∇n)2 − (divn)2

]}
,

(2.3.1)

where K1,K2,K3,K4 are generally assumed to satisfy [60] the Ericksen inequalities

K1 > 0, K2 > 0, K3 > 0, K2 > |K4| , 2K1 > K2 +K4. (2.3.2)

Fixed n0 : ∂Ω→ S2 a Lipschitz function, the equilibrium configurations are the
solutions to the problem

inf
u∈AOF

n0

ˆ
Ω
W (∇n, n), (2.3.3)

where

AOF
n0 :=

{
u ∈W 1,2(Ω, S2) : u = n0 on ∂Ω

}
. (2.3.4)

The reason for asking n0 Lipschitz is that, in this case, AOF
n0 is always nonempty [60,

Lemma 1.1].
3This form for the energy density was firstly proposed by Frank [43], who get it under the

request that W must be a quadratic function of its arguments and the assumptions of frame
indifference: W (∇n, n) = W (R∇nRt,Rn) for any rotation R in R3 and statistical head-to-tail
symmetry: W (∇n, n) = W (−∇n,−n).

12
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Remark 2.3.1. Although from the mathematical point of view it is always legitimate
to consider Dirichlet boundary conditions, one may wonder whether this imposition
is really physical significant. The answer is in the affirmative, because there are
various physical and chemical treatments of the walls of the container that permit to
essentially prescribe values of n on ∂Ω (see [52, Section 3.1.4] for a justification).

Note that the last term in W (∇n, n) is formally a divergence:

Tr(∇n)2 − (divn)2 = div
(
(∇n)2n− (divn)n

)
. (2.3.5)

This is the reason why it is very common the assumption K2 = −K4 in the physical
literature. From a rigorous point of view, it can be proven [60, Lemma 1.2] that such
a term is a number depending only on n0, thus neglecting it in W (∇n, n) or changing
the value of K4 will not affect equilibria. Indeed, we shall assume K4 = 0 below.
Remark 2.3.2. Although we shall not consider other liquid crystals than nematics, let
us remark that a similar treatment can be done for cholesterics [60] (and references
therein).

In [60, Theorem 1.5] it is demonstrated that the minimum problem (2.3.3) has
always a solution in the class (2.3.4).

The main concern is now the regularity of equilibrium configurations. To start
with, let us note that in the equal elastic constant case K := K1 = K2 = K3, K4 = 0
the energy of n reduces to

E(n; Ω) = K

ˆ
Ω
|∇n|2 dx, (2.3.6)

so that its critical points are harmonic maps from Ω into S2. For such maps, the
regularity theory has been developed by Schoen & Uhlenbeck in [130, 131, 132].
Recalling fundamental results in [21], we can state the following

Theorem 2.1. Suppose that K1 = K2 = K3, K4 = 0, in the energy density W (∇n, n)
in (2.3.1). Let n0 : ∂Ω → S2 be a Lipschitz function and let n ∈ W 1,2(Ω, S2) be a
minimizer of the energy in the class AOF

n0 . Then the singular set singn of n is discrete
and n is real-analytic in Ω \ singn. Moreover, in the vicinity of each singularity
a ∈ singn, n behaves like Ra

(
x−a
|x−a|

)
, where Ra is a rotation in R3.

Remark 2.3.3. The regularity at the boundary depends on n0 ad on the regularity of
the boundary. For sufficiently regular n0 and boundaries (i.e., C2,α for some α ∈ (0, 1)),
the minimizers inherit the same regularity in the vicinity of the boundary. For less
regular boundary and boundary data, the situation is slightly more complicated and
the interested reader can consult [60, Section 6] for more information.

A similar statement [60, Theorem 2.6] holds also in the general case of elastic
constant satisfying (2.3.2). In the subsequent sections of the quoted paper, various
generalizations are taken into account (including also the presence of electric and
magnetic fields).

Although we are reporting here only those results that are directly relevant to our
purposes, we have to remark that there is a plently of rigorous statements for the Oseen-
Frank theory, and the reason for this is twofold. The first, as we already mentioned
above, is the reduction (essentially) to the harmonic maps problem. The other is the
resemblance with the well-studied Ginzburg-Landau theory of superconductivity (see,
for instance, [13]), which was a rich source of analogies and inspiration for rigorous
developments in the Oseen-Frank theory.

13
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Remark 2.3.4. In particular, one may wonder whether some of the nonuniqueness
results for the Dirichlet problem for harmonic maps carry over to the Dirichlet problem
for the Euler-Lagrange equations associated to the Oseen-Frank energy. Hong [71] has
shown that this is indeed the case under suitable hypotheses on the elastic constants
Ki (such restrictions are consistent in a significant range of elastic constants with
Ericksen inequalities).

To conclude this short review of the Oseen-Frank theory, we mention some results
on the axially symmetric case, which are essentially due to Hardt, Kinderlehrer &
Lin [61].

Let (r, φ, z) ∈ R+× [0, 2π]×R be the standard cylindrical coordinates on R3. Call
u : Ω ⊂ R3 → S2 k-axially symmetric if there exists a real-valued function ϑ = ϑ(r, z),
usually called an angle function [61, 63], such that

u = uϑ = (cos kφ cosϑ, sin kφ cosϑ, sinφ).

Note that we have

u ◦Rφ = Rkφ ◦ u

for any φ ∈ [0, 2π]. This implies that u cannot have concentration points4 off the
z-axis. Indeed, recall that the concentration set of a W 1,2(Ω, S2) function has always
Hausdorff measure strictly smaller than 1 [53, Proposition 9.21]. Thus, if a was a
concentration point located off the z-axis, the whole orbit of a under the S1-action
defined before would be of concentration points and this is impossible. In the sequel
of this short exposition, let us set k = 1.

Now consider the Oseen-Frank energy in the one-elastic constant approximation
and set K = 1 for convenience. Then the Oseen-Frank energy of u reduces to the
Dirichlet energy of u and u is a critical point of this energy iff the angle function ϑ
satisfies (in the distribution sense) the Euler-Lagrange equations

∂

∂r

(
r
∂ϑ

∂r

)
+ ∂

∂z

(
r
∂ϑ

∂z

)
+ 1

2r
−1 sin 2ϑ = 0 (2.3.7)

in the half-disk

D =
{

(r, z) : 0 ≤ r2 ≤ 1− z2
}
.

Also, let B1 the unit ball in R3 and observe that B1 is generated by rotating D of an
angle 2π about the z-axis.

Note that (2.3.7) is a system of semilinear elliptic equations, the solutions of which
are real-analytic off the z-axis (where the differential operator becomes degenerate)
by standard elliptic regularity arguments. In particular, this leads quite easily to a
small-energy regularity theorem (see [61, Lemma 4.2]) which in turn yields that a
concentration point is a singular point for u (i.e., a point at which u is not continuous)
and viceversa. Moreover, in [61] the following partial regularity theorem for minimizers
among axially symmetric maps is proven.

Theorem 2.2 ([61, Theorem 4.2]). Suppose u : B1 → S2 is energy minimizing
among axially symmetric maps. Then u is real-analytic in B1 away from a set of
isolated points on the z-axis. If u|∂B1 is Lipschitz, then u is Hölder continuous in a
neighborhood of ∂B.

4See Eq. (3.3.1).
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The technique used by the quoted authors suits the spirit of the Schoen &
Uhlenbeck theory, with the modifications needed to account for the symmetry. The
authors first note that axially symmetric minimality gives again a monotonicity
formula as in [130], then they blow-up the given minimizer around points on the
z-axis and, by constructing suitable comparison maps exploiting a clever slicing of
the ball, they show that the blown-up maps converge strongly (on a subsequence) in
W 1,2

loc to a minimizing tangent map. The strong convergence also allows to use the
Federer’s reduction principle [53, Theorem 10.18] to conclude that the singular set of
u must consist of isolated point. They were also able to classify all possible tangent
maps which, up to a sign, are of the form [61, Lemma 4.3]

Λ+(x) = (x1, x2, x3)
|x|

or Λ−(x) = (x1, x2,−x3)
|x|

.

Reference to [61] will also be done in the sequel, especially in the proof of the
strong compactness theorem, Theorem 5.13.

Observe that all the regularity theorems above exclude, in particular, a line of
singularities for the director. We already pointed out that a defect may or may not
correspond to a singularity of the order parameter depending on the order parameter
itself. In the case of the Oseen-Frank theory, a defect correspond to a singularity (i.e.,
a discontinuity) of the director. The previous theorems imply that the Oseen-Frank
theory can account only for point defects. This feature is for sure the main drawback
of the Oseen-Frank theory but such a problem is solved by the Leslie-Ericksen and
Landau-de Gennes theories.

2.4 Leslie-Ericksen theory
The Leslie-Ericksen theory, elaborated by Ericksen [37] in 1991, reminescent of older
works by Leslie [89], dating back to 1968, and Fan [41], 1971, overcomes the main
trouble of the Oseen-Frank theory and can accomodate all types of defects actually
observed in experiments until that time [139].

The main idea of Ericksen consists in coupling the director5 n with a variable
scalar order parameter s = s(x), x ∈ Ω. Defects are then defined within this theory
as the sets

DLE = {x ∈ Ω : s(x) = 0}.

In other words, defects are interpreted in Leslie-Ericksen theory as points, lines or
surfaces at which the liquid crystal melts, performing a transition from a uniaxial
state to the isotropic state. The singularities of the director n are cured by letting
s→ 0 at the defect site, in such a way that melting happens.

In the simplest setting, the free energy in the Leslie-Eriscksen theory can be
written6

ELE(s, n; Ω) = KE

ˆ
Ω

(K |∇s|2 + s2 |∇n|2) +W0(s), (2.4.1)

where W0(s) is a potential satisfying [37, § 5], [92]

(i) lims→1W0(s) = lims→−1/2W0(s) = +∞;
5The original idea of Leslie was allowing the director having arbitrary norm [139].
6The wonderful derivation of Ericksen of the complete free energy can be found in [37] and [139].

The form we are reporting for the energy has been established by Lin [92].
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(ii) W0(0) > W0(s∗) := mins∈[−1/2,1]W0(s), for some s∗ ∈ (0, 1);

(iii) W0
′(0) = 0.

Rigorous results have been derived mostly by Lin [92] and Hardt [58]. The
important novelty, with respect to the Oseen-Frank theory, is that now minimizers
are locally Hölder continuous in the interior and smooth off DLE, as one may expect
on the basis of the ansatz on how interpreting defects. The regularity at the boundary
depends on the regularity of the boundary and on that of the datum. Details can be
found in [92, Theorem 6.1]. Some improvements to these results were given by Hardt
& Lin [62]. Generalizations to less restrictive forms of the energy can be found in [92]
and in [94].

2.5 Landau-de Gennes theory

2.5.1 The Q-tensor order parameter

Before entering into some details about Landau-de Gennes theory, let us say some
words about the Q-tensor order parameter.

There are two main approaches to define theQ-tensor: the first is phenomenological
and the second is a mean-field approach.

Let us start with the phenomenological method. Within this, there are several
different ways of defining the Q-tensor in terms of quantities measurable by a macro-
scopic observer [52]. Some are based on static response functions and others on
dynamical response functions. It is a common convention [52] to take the magnetic
susceptibility χ as static response function and then define Q as its anisotropic part
([52, Eq. 2.32]):

Q = G

(
χ− 1

3 Trχ
)
, (2.5.1)

where G is a normalization constant. Thus, Q is real, symmetric and traceless and
can be represented by a real, symmetric and traceless 3× 3 matrix. Recall that the
tensor χ relates the magnetic moment per unit volume M (due to the diamagnetism
of nematic molecules) and the magnetic field H through

Mi = χijHj .

The magnetic field H is under the control of the experimenter; we then will suppose
H is static, so that χ is symmetric.

As a dynamical response function, it is usually considered the dynamical dielectric
tensor ε(ω) at some standard frequency ω. This has the advantage of being directly
related to refractive indices, which can be accurately obtained [52]. The advantage of
the approach through static response functions is instead that the relation between
the macroscopic quantity χ and relevant microscopic quantities (known as ordering
matrices, see [52, §2.1.1.3]) is much better understood, at least when the molecules can
be considered as rigid rods [52]; nonetheless, the relation between Q and microscopic
quantities is more involved, cfr. [52, §2.1.3] for a detailed discussion.

In the mean-field framework, the state of alignment of the nematic molecules is
described by a probability distribution function % on the unit sphere and Q is defined
in terms of the second moment of %. The passage from microscopic to macroscopic
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quantities is made by means of a coarse graining procedure which actually is not
perfectly rigorous [6]. The argument goes as follows [6].

Let us consider rod-like molecules stored in a regular (say, C2) bounded domain
Ω ⊂ R3. The main point for the sequel of the construction is that, picked x ∈ Ω,
we can find7 δ > 0 such that the ball B(x, δ) contains a statistically significant
number of molecules and, nonetheless, B(x, δ) can be identified, from the macroscopic
point of view, with the material point x. Let N = N(x) the number of molecules
entirely contained in B(x, δ). Picking at random molecules from those N , we obtain
a probability measure µx on the unit sphere S2 given by

µx = 1
N

N∑
i=1

1
2(δpi + δ−pi), (2.5.2)

where ±pi denotes the orientation of the ith molecule. We require that

µx(E) = µx(−E) for all µx-measurable E ⊂ S2. (2.5.3)

Exploiting again the smallness of statistically significant regions on the macroscopic
scale, we can consider µ to be a continuously distributed measure dµ(p) = %(p)dp,
where dp denotes the surface area element on S2 and % ∈ L1(S2) satisfies

% ≥ 0,
ˆ
S2
%(p) dp = 1, %(p) = %(−p) for a.e. p ∈ S2.

In particular, if the orientation of molecules is equally distributed, we say that µ is
isotropic and we clearly have µ = µ0, with

dµ0(p) = 1
4πdp,

i.e., with %0 = 1
4π .

Now, in principle µ contains all the information about the orientation of the
molecules, and it would be natural to take µ as the order parameter. However, µ
represent an infinite-dimensional state at each point x ∈ Ω, so that it is convenient to
employ, as order parameter, a finite-dimensional approximation consisting of a finite
number of moments of µ. This is what we are going to do. We note that the first
moment

m1 =
ˆ
S2
p dµ(p)

vanishes identically, because of the head-to-tail symmetry. Next, we note, according
to Ball [6, p. 6], that, due to the head-to-tail symmetry, n is better understood as a
line field, i.e., as a map Ω → RP 2. As precisely proven in [6, pp. 6-7], elements of
RP 2 can be identified with matrices p⊗ p, with p ∈ S2. Thus, the second moment of
µ can be written

M =
ˆ
S2
p⊗ p dµ(p).

Observe that M is a symmetric non-negative tensor satisfying TrM = 1 and that,
for µ = µ0 we have

7See, for instance, [6, p.6]; however, such typical numbers can be found spread all over the
literature on nematics.
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M0 = 1
3I.

Since we want to measure the deviation from isotropy, we take as the principal
quantity of interest in our study

Q̃ := M −M0 =
ˆ
S2

(
p⊗ p− 1

3I
)

dµ(p). (2.5.4)

In this framework, Q̃ defined in 2.5.4 is termed the Q-tensor order parameter. It is
immediate from the definition that Q̃ is a symmetric traceless 3 × 3-matrix on R.
Noting that (

Q̃+ 1
3I
)
e · e ≥ 0 for all e ∈ S2,

it is justified the common notation Q̃ ≥ −1
3I. We remark that, if µ = µ0, then

Q̃ = 0 but the converse does not hold: one can have Q̃ = 0 even if µ 6= µ0 (see [6, p.
9]). This is possible because higher order moments are neglected in this approach.
Following the common practice of labeling the eigenvalues λi, i = 1, 2, 3, of Q̃ in the
increasing order, we have

λ1 = λmin, λ2 = λmid, λ3 = λmax.

Note that, since Q̃ ≥ −1
3I, each λi satisfies λi ≥ −

1
3 and, due to the tracelessness

constraint, we also have

− 1
3 ≤ λi ≤

2
3 , i = 1, 2, 3. (2.5.5)

Note that there is no hint of the eigenvalue constraints (2.5.5) in (2.5.1). This
circumstance marks a significant difference between Q and Q̃ and may have conse-
quences in that (2.5.5) are often view as physicality constraints on nematic states [6,
§4.3], [8]. Accepting Q̃ as Q-tensor order parameter may therefore imply ruling out
some states, for instance biaxial torus solutions as obtained in many simulations8

(see §2.5.7). Thus, the question whether the two approaches are in contrast arises
naturally.

To investigate this issue, we first need to understand in terms of which measured
quantities % is inferred. According to de Gennes & Prost [52, § 2.1.1], average
molecular orientations are deduced via analysis of NMR spectra; microscopic ordering
matrices Sαβij are built this way:

Sαβij = 1
2 〈3iαjβ − δαβδij〉 .

Here, α, β = x, y, z are indexes referring to the laboratory frame, i, j = a, b, c are
related to an eigenframe of the molecule and δαβ, δij Kroenecker symbols. The
brackets 〈·〉 represent thermal averages.

The ordering matrices may be connected to the magnetic susceptibility χ making
the hypothesis that the macroscopic response function is simply the sum of individual
molecule responses [52, § 2.1.3.1]. This leads to set

8Anyway, this does not mean that biaxial torus solutions are incompatible with (2.5.5): in [32]
the eigenvalue constraints are imposed and biaxial torus solutions are found.
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χαβ −
1
3δαβχγγ = cAijS

αβ
ij ,

where c denotes the number of molecules per unit volume and Aij the magnetic
polarizability tensor of one molecule.

Relating microscopic ordering matrices to dynamical response functions is more
difficult, because dynamical response functions depend not only on the angular
distribution function but also on a correlation function g for (at least) two molecules,
as a function of their relative distance and orientation, on which arbitrary assumptions
are done in the literature [52, § 2.1.3.2].

Now, the distribution % should be expressed, in the mean-field approach, in terms
of the gran canonical partition function Z, see [8] for details, which in turn should
be related to the ordering matrices through appropriate self-consistency conditions
(see [52, 136]). Because of simplifying assumptions anyway made to link microscopic
and macroscopic quantities, it is not really clear (to the writer, at least) whether Q
and Q̃ may really be identified. It appears to us that (2.5.1) has simpler connections
with experimentally measured quantities and that accepting it as the definition of
the Q-tensor may avoid to deal with many subtleties requiring a deep meditation
rooted on the physical ground. We will then stick by the phenomenological
definition (2.5.1). The whole following discussion relies only on the fact that the
Q-tensor order parameter can be represented by a symmetric traceless 3× 3-matrix,
and this is true for both Q and Q̃. For very interesting developments in the mean-field
approach, we address the reader to [8], [6] and references therein.

Symmetric traceless 3× 3-matrix on R form a vector space which we indicate S0
(already defined in (1.1.1)):

S0 = {M ∈M3×3(R) : M = M t and TrM = 0}

We endow S0 with the norm |·| induced by the scalar product

〈A,B〉 := Tr(AtB) = Tr(AB), A,B ∈ S0.

Note that S0 ' R5 as linear spaces. Thus, Q-tensor order parameter may be seen as
a map

R3 ⊃ Ω 3 x 7→ Q(x) ∈ S0.

In order the terms in the energy functional make sense (see Section 2.5.2), Q will
be assumed belonging to W 1,2(Ω;S0).

Recall that Q describes the local state of the liquid crystal at any point x ∈ Ω ⊂ R3.
Such a state is said to be

• isotropic, if Q(x) = 0;

• uniaxial, if Q(x) has exactly two equal eigenvalues;

• biaxial, if Q(x) has three distinct eigenvalues.

Often, according to a common convention, we shall include the isotropic case in
the uniaxial case for convenience (Q would then be more precisely characterized by
saying that Q has two equal eigenvalues). As before, the eigenvalues of Q will be
always labeled in the increasing order. A nematic liquid crystal is then said to be (a)
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isotropic, if Q(x) = 0 for a.e. x ∈ Ω; (b) uniaxial, if Q(x) is uniaxial for a.e. x ∈ Ω;
(c) biaxial, otherwise.

A convenient measure of the biaxiality of Q (6= 0) at a point x ∈ Ω is provided by
the so-called biaxiality parameter, introduced in [81] (see also [47] and [106]):

β2(Q(x)) = 1− 6Tr(Q3(x))2

Tr(Q2(x))3 . (2.5.6)

Indeed, it can be proven [106], [6]
Proposition 2.3 ([106, Lemma 1, (i)]). Let Q ∈ S0 \ {0}. Then β2(Q) ∈ [0, 1] and
β(Q) = 0 iff Q is uniaxial.

A point x ∈ Ω is said to be of maximal biaxiality if β2(Q(x)) = 1. Note that the
traceless condition then implies λ1(x) = −λ3(x), with λ3 ∈ (0, 1/3], so that λ2(x) = 0
if x is a point of maximal biaxiality.

The following proposition, although elementary, is very useful [104]
Proposition 2.4. Let Q ∈ S0. Then, for any n ∈ N,

TrQn =
3∑
i=1

λni . (2.5.7)

Moreover, an easy calculation yields

TrQ3 = 3λ1λ2λ3, (2.5.8)
thus, if β2(Q) = 1, then Tr(Q3) = 0 (and viceversa, if Q 6= 0).

Note that β2(Q) gives no information on the sign of the eigenvalues of Q. Defining

β̃(Q(x)) :=
√

6 TrQ3(x)
(TrQ2(x))3/2 , (2.5.9)

we have −1 ≤ ˜β(Q) ≤ +1 and

• β̃(Q(x)) = −1 if and only if Q(x) is uniaxial at x with λ2(x) = λ3(x);

• β̃(Q(x)) = 0 if and only if Q(x) is maximally biaxial at x;

• β̃(Q(x)) = +1 if and only if Q(x) is uniaxial at x with λ1(x) = λ2(x).

The representation formulae for Q-tensors below are proven with the aid of the
spectral theorem and the tracelessness condition.
Proposition 2.5 ([106, Proposition 1]). A matrix Q ∈ S0 can be represented in the
form

Q = s

(
n⊗ n− 1

3I
)

+ r

(
m⊗m− 1

3I
)
, (2.5.10)

with n and m unit-length eigenvectors of Q, n ·m = 0 and

0 ≤ r ≤ s

2 or s2 ≤ r ≤ 0. (2.5.11)

In particular, a uniaxial Q ∈ S0 can be written

Q = s

(
n⊗ n− 1

3I
)
, (2.5.12)

with s ∈ R \ {0} and n ∈ S2 the distinguished unit-length eigenvector of Q.
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The scalar parameter s is said scalar order parameter. An equivalent characteri-
zation of uniaxiality is given by:

Proposition 2.6 ([6, Proposition 1]). A matrix Q ∈ S0 is uniaxial with scalar order
parameter s iff

Tr(Q2) = 2s2

3 , detQ = 2s3

27 . (2.5.13)

The following Proposition is proved in [106].

Proposition 2.7 ([106, Proposition 14]). Let Q be a real analytic function Q : Ω ⊂
R3 → S0. Then the set where Q is uniaxial or isotropic is either Ω itself or has zero
Lebesgue measure.

Remark 2.5.1. We aware the reader that, in the physical and chemical literature, the
terms uniaxial and biaxial are used both in the sense above, i.e., for arrangements of
molecules, and for the molecules themselves. A molecule is said to be uniaxial when
it has an axis of rotational symmetry and it is said to be biaxial when there is no axis
of rotational symmetry but there are two axes of reflective symmetry. The picture
to have in mind is a rod for uniaxial molecules and a plank for biaxial molecules.
We are here interested only in uniaxial molecules and in their uniaxial or biaxial
arrangements.

2.5.2 Generalities

The Landau-de Gennes (LdG) theory can handle both uniaxial and biaxial nematics,
differently from Oseen-Frank and Leslie-Ericksen theories, which can account only for
uniaxiality. The order parameter of the LdG theory is a map Q ∈W 1,2(Ω,S0), where
Ω, as usual, is a smooth bounded domain in R3, representing the region occupied by
the material. The energy functional may be amazingly complicated, because of the
rich variety of interactions in which nematics can be involved. In any technological
application, at least the following terms should be considered:

• A thermotropic energy, related to the bulk, dictating the preferred state of the
liquid crystal when there are no external influences;

• an elastic energy penalizing distortions from the preferred state;

• an electromagnetic term, describing the interaction with external fields and/or
the self-interaction due to dielectric and spontaneous polarization effects;

• a surface energy, accounting for the interaction of the nematic molecules with
the walls of the container.

A readable account of all these terms can be found in [113] and a standard very
deep reference for the LdG theory is, of course, [52]. See also [25] and [140].

We shall deliberately ignore the electromagnetic term, in the sense that in this
work we will be concerned only with free liquid crystals (i.e., not subject to external
fields). Next, there will be no surface energy in our treatment, since we will suppose
the walls coated so that the contribution of the surface energy becomes equivalent to
prescribing a Dirichlet boundary condition (also called a strong/infinite anchoring in
this context in the physical literature [113]).

Thus, we are left with an elastic term and a thermotropic term. The energy
functional will then be of the form
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ET (Q; Ω) =
ˆ

Ω
ψ(Q(x),∇Q(x), T ) dx, (2.5.14)

where T denotes temperature and ψ : S0 × (S0)3 × R → R is the total free energy
density, whose form we are going to determine. The physical principles helping
us to do this are frame-indifference and material symmetry, already exploited for
determining the elastic energy in the Oseen-Frank and Leslie-Ericksen theories, that
is, the invariance of the material under rotations and translations of the sample.
Adopting the passive point of view, we can say that two observers, differing for a
rigid transformation, must measure the same free energy density. More precisely,
let x = (x1, x2, x3) be the Cartesian coordinates used by the first observer and
z = x̄+R(x− x̄), where x̄ is a fixed point in Ω and R a fixed rotation in SO(3); we
then require that

ψ(Q∗(z),∇Q∗(z), T ) = ψ(Q(x),∇Q(x), T ). (2.5.15)

A function ψ satisfying (2.5.15) is said hemitropic. Both nematics and cholesterics
have hemitropic free energies but for nematics (2.5.15) actually holds for anyR ∈ O(3).
A function ψ satisfying (2.5.15) for any R ∈ O(3) is called isotropic.

Thus, we are looking for an isotropic function ψ(Q,∇Q,T ). We decompose

ψ(Q,∇Q,T ) = ψ(Q, 0, T ) + (ψ(Q,∇Q,T )− ψ(Q, 0, T ))
= ψB(Q,T ) + ψEl(Q,∇Q,T ).

(2.5.16)

The term ψB(Q,T ) := ψ(Q, 0, T ) is the bulk energy density while ψEL(Q,∇Q,T ) is
the elastic energy density. Usually it is assumed that ψEL(Q,∇Q,T ) is quadratic in
∇Q. There are three linearly independent invariant isotropic functions:

I1 = Qij,kQij,k, I2 = Qij,jQik,k, I3 = Qik,jQij,k.

Further, there are 6 possible linearly independent cubic terms quadratic in ∇Q, and
the one usually included in the nematic elastic energy is

I4 = QlkQij,lQij,k

which is invariant.
The Landau-de Gennes elastic energy is thus a linear combinantions of the terms

Ii with coefficients Li > 0. These elastic coefficients depend on the material but
are approximately independent of temperature [109]. Anyway, we shall consider, as
before and besides this introductory section, a one-constant approximation, so that
for us the elastic energy density will reduce to

ψEl(Q,∇Q) = L

2Qij,kQij,k ≡
L

2 |∇Q|
2 . (2.5.17)

Now we have to determine the form of the bulk term. We appeal to the following
results, whose proofs can be found in [6].

Proposition 2.8 ([6, Proposition 3]). A function f(Q) of a real, symmetric, 3×
matrix Q is isotropic if and only if f(Q) = g(TrQ,TrQ2,TrQ3) for some function g,
and if f is a polynomial so is g.

The above proposition readily yields
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Proposition 2.9 ([6, Proposition 4]). The bulk energy ψB(Q,T ) satisfies the frame-
indifference condition (2.5.15) if and only if

ψB(Q,T ) = g(TrQ2,TrQ3, T ) (2.5.18)

for some function g. If, for a given temperature T , ψB(Q,T ) is a polynomial in Q,
then g(TrQ2,TrQ3, T ) is a polynomial in TrQ2, TrQ3.

Recall that we work at fixed temperature; for this reason, we will drop the
dependence on T henceforth (in particular, the coefficients Li will be constant for us).

To step further in the determination of ψB, we make a couple of remarks. The first
observation is that, at high enough temperature, ψB should have a unique minimum
for Q = 0, i.e., in the isotropic state. At lower temperatures, the minima of the
thermotropic bulk energy must be uniaxial states, as shown in [100] on the physical
ground. The possible biaxial character is then due to the competition between the
bulk term and the elastic term. Elastic distortion is typically induced by the constraint
of satisfying the assigned boundary condition(s)9.

Experiments show that bulk minima move in a continuous way with temperature,
a typical picture is as in Fig. 2.2. This means, of course, that there are three
characteristic temperatures for nematics. In the increasing order, the first, usually
denoted T ∗, is the temperature at which the isotropic phase loses its stability; the
second, TNI, is that at which the energy of the isotropic and nematic states are exactly
equal; beyond the third, T+, the nematic phase disappears.

The second observation is that, for the above behavior to be possible, ψB(Q)
should behave like a quartic (at least) polynomial. Next, note that, being Q symmetric
and traceless, we have TrQ4 = 1

2
(
TrQ2)2. Taking into account also Proposition 2.9,

the easiest thing to do, in order to obtain a bulk energy density function suitable for
our purposes, is a Taylor expansion of the putative complete bulk function ψB near
Q = 0, truncated to the fourth order. We then have

ψB(Q) = A

2 TrQ2 + B

3 TrQ3 + C

4
(
TrQ2

)2
. (2.5.19)

In the above formula, we neglected the zero-order term since it does not affect the
minima. The coefficients A,B,C are determined experimentally. Experiments show
that B < 0 and C > 0 are both (approximately) independent of temperature, while
A has a linear dependence on temperature:

A = α(T − T ∗), (2.5.20)

where α > 0 is a material constant and T < T ∗ (thus, A < 0). Relabeling

a = −α(T − T ∗), b = −B, c = C,

we then have a, b, c > 0 and

F (Q) := ψB(Q) = −a2 TrQ2 − b

3 TrQ3 + c

4
(
TrQ2

)2
,

which is exactly the potential energy already introduced in (1.1.5).

9Obviously, it may also arise under the influence of external fields, when present.
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Figure 2.2: Typical plot of F (Q) vs temperature. Picture taken from the review [112].
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Remark 2.5.2. It is worth stressing that, due to our construction of the bulk potential
function, the Landau-de Gennes theory can be a priori valid only for Q ≈ 0, that is,
only for temperatures close to TNI. Anyway, this turns out to be not an inconvenient:
experimental data on heat of transitions (see references quoted in [100]) strongly
suggest that the transition nematic-isotropic is of the first kind, nearly of the second,
and, furthermore, the temperature range of nematic phase is much smaller than the
transition temperature [100]. Therefore, it is believed that Landau-de Gennes theory
is a reliable description of a nematic over its whole range of existence [100].

Note that F (Q) has good properties with respect to the physical requests above.
Indeed, it can be proved

Proposition 2.10 ([104, Proposition 1]). The stationary points of the bulk energy
density F (Q) are given by either uniaxial or isotropic Q-tensors of the form

Q = s

(
n⊗ n− 1

3I
)
,

where s ∈ R is a scalar order parameter and n one of eigenvectors of Q.

Moreover, the minimum of F (Q) is attained on the class of uniaxial Q-tensors
with constant scalar order parameter [104, 106]. Thus, we can subtract this minimum
to F (Q) and then redefine the bulk energy density to be nonnegative. With a slight
abuse of notation, we continue to denote F (Q) the nonnegative bulk energy density.
Further, for T > T ∗, the first term in F (Q) is positive so that the unique minimum
of F (Q) becomes Q = 0.

We now look at the complete free energy

ELdG(Q; Ω) :=
ˆ

Ω

{ 4∑
i=1

LiIi + F (Q)
}

dx (2.5.21)

and we ask about the existence of minimizers. A quite general result has been proven
by Davies & Gartland [31] (we quote below the statement in [6]).

Proposition 2.11 ([6, Proposition 11]). Let Ω ⊂ R3 be a bounded domain with
Lipschitz boundary ∂Ω. For fixed T > 0, let F (Q) in (2.5.21) be continuous and
bounded below on S0 and assume that the constants Li satisfy

L1 > 0, −L1 < L3 < 2L1, L1 + 5
3L3 + 1

6L3 > 0, L4 = 0. (2.5.22)

Let Qb : ∂Ω → S0 belong to H
1
2 (Ω,S0). Then the energy functional ELdG(Q; Ω) in

(2.5.21) attains a minimum on

A =
{
Q ∈W 1,2(Ω,S0) : Q|∂Ω = Qb

}
.

The condition L4 = 0 is delicate. Indeed, an extremely desirable feature of the
LdG model is the equivalence with Oseen-Frank theory, when both are applicable.
To understand the problem caused by L4 = 0, let us consider Q a uniaxial Q-tensor
with constant scalar order parameter, i.e., of the form

Q = s

(
n⊗ n− 1

3I
)
, n ∈ S2, s ∈ R \ {0},
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and let us calculate formally the elastic energy for Q in terms on n, ∇n. This gives [6,
§ 6] the Oseen-Frank energy functional (2.3.6) up to an additive constant, enforcing
the following relations between the coefficients Li and the Frank’s elastic constants
Ki:

K1 = 2L1s
2 + L2s

2 + L3s
2 − 2

3L4s
3,

K2 = 2L1s
2 − 2

3L4s
2,

K3 = 2L1s
2 + L2s

2 + L3s
2 + 4

3L4s
3,

K4 = L3s
2.

Setting L4 = 0 implies K1 = K3, which is generally untrue [6, p. 28]. On the
other hand, it is a result of Ball & Majumdar (see [6, Theorem 11]) that allowing
L4 6= 0 under the same hypothesis of the Davies & Gartland theorem yields ELdG(·; Ω)
unbounded below for any boundary condition [8].

There are expedients to overcome this difficulty [6] but we do not enter in greater
detail. For us, the important thing is that in the one-constant approximation this
problem does not arise and indeed we can prove existence for any boundary condition
we will deal with, as we shall see in Chapters 4, 5, 8.

Relation between LdG theory and OF theory. Going back to the relation
between the Landau-de Gennes theory and the Oseen-Frank theory, it is readily
realized that a major difference between the two theories is the fact that the Q-tensor
order parameter is invariant under the transformation n 7→ −n, and so is the Landau-
de Gennes theory, while the invariance of the Oseen-Frank theory is a priori unclear.
Said another way, the issue is whether a line field can be oriented, i.e., turned into a
vector field by assigning an orientation at each point. It is clear that this can always
be done but the problem is that if we can do this in a smooth way.

To settle the question a little more precisely, let us define, for n ∈ S2 and s 6= 0
constant, the set

Q =
{
Q ∈ S0 : Q = s

(
n⊗ n− 1

3I
)}

.

When the target of Q-tensor parameters is restricted to Q, we speak of constrained
Landau-de Gennes theory. More specifically, our concern will be understand under
what conditions the constrained Landau-de Gennes theory and the Oseen-Frank
theory are equivalent.

Given Q ∈W 1,1(Ω,Q), we say that Q is orientable if we can write

Q(x) = s

(
n(x)⊗ n(x)− 1

3I
)
,

where n ∈ W 1,1(Ω, S2). When Q is orientable, we also say that it has a lifting, the
lifting being n, to W 1,1(Ω, S2). In particular, since n ∈ L∞(Ω), if Q ∈W 1,p(Ω, S2) is
orientable for some 1 ≤ p ≤ ∞, then n ∈W 1,p(Ω, S2). An orientable Q has exactly
two liftings (see [6, Theorem 8]).

Ball & Zarnescu [9] exhibited examples of nonorientable smooth line fields in
domains that are not simply-connected. Thus, simple connectivity plays an important
rôle in the lifting problem for Q-tensors. Indeed, Ball & Zarnescu also proved
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Proposition 2.12 ([9]). If Ω ⊂ R3 is a bounded simply-connected domain of class
C0 and Q ∈W 1,2(Ω,Q), then Q is orientable.

As a straighforward corollary, we have that

In a simply-connected domain the constrained Landau-de Gennes theory and
the Oseen-Frank theory are equivalent.

The above results explain why people often work in simply-connected domains in
the context of Landau-de Gennes theory.
Remark 2.5.3. The above observation notwithstanding, there are however interesting
and physically meaningful situations in which the domain is not simply-connected, as
the case of a nematic film spread on an annular region.

Relation between LdG theory and LE theory. The way of interpreting defects
in the Ericksen theory has the side effect that s and n are not independent. One
can pair s and n to form a uniaxial Q-tensor order parameter, i.e., a Q-tensor order
parameter of the special form

Q(x) = s(x)
(
n⊗ n− 1

3I
)
.

However, strictly speaking, it is incorrect to say that two paradigma are equivalent.
They are so when consistency conditions are imposed, so that the energy does not
blow-up around defects. These conditions, due to Ericksen (see [37, § 7,8] or [139,
§ 6.2.3]) are always assumed in LE theory but they do not explicitly appear in the
energy functional (2.4.1) because we assumed the simplest form of the free energy,
i.e., the one coming from a one-constant approximation. Another reason for the
importance of the constistency conditions lies in the fact that there are physical
reasons, correlated to the way of experimentally observing the optic properties of
liquid crystals [52, Chapter 4], for according to Q the status of preferred variable to
describe the state of nematic liquid crystals, cfr. [37]. Thus, Leslie-Ericksen theory
can be viewed as a particular case of Landau-de Gennes theory.

Defects. There appear to be no general agreement on how interpreting defects in
Landau-de Gennes theory, because the rôle played by the two additional degrees of
freedom offered by biaxiality w.r.t. uniaxiality is not always clear. However, following
the point of view of P. de Gennes [51], the isotropic/uniaxial, isotropic/biaxial and
uniaxial/biaxial interfaces are usually viewed as defects; their common feature is,
of course, the change in the eigenvalues structure of the Q-tensor. This ansantz
includes that of Ericksen, thus it is somewhat corroborated by experiments, though
the discussion is still open (arguibly, mainly because biaxiality has been experimentally
investigated only recently). In a mathematical way, one can then take the point of
view [143, 142] that defects are discontinuities in the eigenframe. To be precise [144],
a point x0 has to be regarded as a discontinuity in the eigenframe if it is not possible
to find in a neighborhood of x0 some continuous ei(x), i = 1, 2, 3, with ei · ej = δij ,
so that Q(x)ei(x) = λi(x)ei(x) for some eigenvalue λi. An explicit example can be
found in [144].

Defects in liquid crystal may be points, lines or surfaces. Actually, surface defects
do not occur in free nematic liquid crystals [52, § 4.2.1], thus we will ignore them
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hereafter. Point and line defects are classified by a number M , called disclination
index or also topological charge [52, Chapter 4]. M is defined w.r.t. the surrounding
nematic director field n, which is singular (i.e., discontinuous) exactly at the defect
site. Around the defect the director rotates of an angle 2πM . In dimension 3, M is
a relative integer for point defects while for line defects it can also take half-integer
values. Lowest values of |M | are preferred. Defects with |M | > 1 appear rarely. Line
defects are often called disclinations or disclination lines. This way of classifying
defects reflects the point of view, adopted by workers, of adopting Oseen-Frank theory
“far enough” from the defects and the LdG theory to study the cores of defects, when
needed.

Remarks about dynamics. Although in this work only static configurations are
considered, dynamics is actually a topic of great interest, deserving a particularly
careful treatment. Here we write down some short remarks for the convenience of the
interest reader: indeed, several different approaches can be found in the literature
and the situation may look rather intricate at first sight. Here we follow [7], where a
short but very focused discussion can be found.

Liquid crystals must be viewed as complex non-Newtonian fluids. The first step
for a dynamical theory is establishing if the fluid may be considered incompressible
or not. Indeed, the corresponding variational problems are very different and thus
also the related theory of existence and regularity of solutions. Often, the fluid is
considered incompressible.

Next, the set of dynamical equations is very different when the Leslie-Ericksen
model is used to describe the system and when a Q-tensor model is employed. In the
first case, the dynamical equations are similar to the Navier-Stokes system but with
added difficulties, such as the norm constraint on the director. Within the framework
of the Q-tensor theory, a model currently studied is that of Beris&Edwards, which
is structurally related to a forced Navier-Stokes system, coupled with a parabolic
system. It has desirable features also in the direction of its relation with the Leslie-
Ericksen model. In both cases, are known results about the existence of global weak
solutions and about the existence of strong solutions, in some cases. Apparently,
higher regularity results are not known. We refer to [7] for an up-dated account of
the relevant literature.

2.5.3 One-constant approximation

Let us consider the LdG energy functional

ELdG(Q; Ω) =
ˆ

Ω

{
L

2 |∇Q|
2 + F (Q)

}
dx,

where L > 0, |∇Q|2 and F (Q) are as introduced in the previous section, on the class

A =
{
Q ∈W 1,2(Ω,S0) : Q = Qb on ∂Ω in the trace sense

}
,

where Qb ∈ C∞(∂Ω,S0) is an assigned boundary datum.
The first question is that of existence of minimizers of ELdG(·; Ω) in the class A.

The answer is clearly in the affirmative, whenever A is nonempty: indeed, the energy
density is convex in ∇Q, coercive in Q and bounded below (recall that F (Q) ≥ 0, see
the previous section); moreover, the admissible class A is weakly closed in W 1,2(Ω,S0)
(which is a Hilbert space) because Qb is a Dirichlet boundary condition. The direct
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method (see, e.g., [40, Theorem 8.2.1]) applies, giving the existence of minimizers of
ELdG(·; Ω) in the class A.

The second, natural, question is that of regularity of minimizers. To answer this
question, we note that Q ∈ A is a critical point of the functional ELdG(·; Ω) if and
only if is a solution of the Euler-Lagrange equations [104, 106]

L∆Qij = aQij + b

(1
3δij TrQ2 −QikQkj

)
+ cQij TrQ2, (2.5.23)

subject to the boundary condition Q = Qb on ∂Ω. The derivation of Eqs. (2.5.23)
is straightforward, the only point to which pay attention being the tracelessness
constraint (which is the reason for the first term in round brackets at r.h.s.).

Eqs. (2.5.23) form a system of semilinear elliptic equations of second order. Using
the embedding W 1,2 ↪→ L6 (in R3) and Hölder inequality to obtain the r.h.s. of
(2.5.23) is in L2, elliptic regularity gives Q ∈W 2,2 ↪→W 1,6 ↪→ L∞, hence the r.h.s. of
(2.5.23) is actually inW 1,2. Elliptic regularity gives back Q ∈W 1,3 and bootstrapping
we obtain Q ∈ C∞. Now, due to results of Friedman [44], any smooth solution is real-
analytic. Hence, any critical point (not only minimizers) of the functional ELdG(·; Ω)
on the class A is completely smooth (more precisely, real-analytic) in the interior and
smooth as the boundary datum and boundary allow at the boundary.
Remark 2.5.4. In contrast, we will add a constraint on the norm of Q-tensors and turn
Eqs. (2.5.23) into a quasilinear system of elliptic equations (see (4.2.1)), to which
the elliptic regularity scheme cannot be applied as before, since the nonlinearity will
be no more polynomial but will involve also the gradient of Q.

To say something more about minimizers, we now restrict to a class of physically-
significant boundary conditions. Let Qmin ' RP 2 the subset of S0, already defined in
(1.1.9), on which F (Q) attains its minimum. As in [106], we shall consider boundary
conditions Qb such that Qb(x) ∈ Qmin is smooth and given by

Qb = s+

(
nb ⊗ nb −

1
3I
)
, nb ∈ C∞(∂Ω, S2). (2.5.24)

Then it can be proven

Proposition 2.13 ([106, Proposition 3]). Let Ω ⊂ R3 be a bounded and simply-
connected domain with smooth boundary. Let Q be a global minimizer of ELdG(·; Ω),
in the space A, w.r.t. a boundary condition Qb as in (2.5.24). Then

‖Q‖L∞(Ω) ≤
√

2
3s+, (2.5.25)

where s+ is defined in (1.1.8).

Further, the following monotonicity inequality holds.

Proposition 2.14 ([106, Lemma 2]). Let Q be a global minimizer of ELdG(·; Ω), in
the space A, w.r.t a boundary condition Qb as in (2.5.24). Then

ELdG(Q, x, r) ≤ ELdG(Q, x,R), ∀x ∈ Ω, r ≤ R so that B(x,R) ⊂ Ω, (2.5.26)

where
ELdG(Q, x, r) := 1

r

ˆ
Br(x)

{1
2 |∇Q|

2 + F (Q)
L

}
dx.
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2.5.4 Asymptotic limits

Probing the extremal regions of the parameters space is often an interesting source
of information and helps to describe, at least qualitatively, the behavior of true
minimizers in an easy way. However, this kind of analysis usually involves performing
some limiting process, which must be taken with care.

The material parameters entering the Landau-de Gennes energy density are, in
first place, established once and for all by the physical and chemical properties of
the material itself, at a level of atomic and molecular interactions, thus we are not
allowed to change their value (the material and the external conditions being fixed),
performing a limit. Further, the parameters are not pure numbers, they have
appropriate physical dimensions and thus it does not make any sense to speak about
smallness or comparing the absolute values of parameters having different units of
measure in order to decide whether some are negligible with respect to others.

Note that Q-tensor order parameters are dimensionless by definition but, since
ELdG(·; Ω) must have the dimensions of energy, we have that [L] = Jm−1 and
[α] = [b] = [c] = Jm−3, while a = −α(T − T ∗) has [a] = Jm−3 K−1. Rough typical
numbers for such constants are

L ≈ 10× 10−11 Jm−1, α, b, c ≈ 10× 10−5 Jm−3.

As a preliminary step to any asymptotic analysis, we have to non-dimensionalize
the problem, that is, we have to suitably rescale the parameters in such a way that
the new rescaled parameters become pure numbers and a sensible notion of smallness
may be afforded. The most effective way to do this depends on the specific problem
at hand. In the case of Landau-de Gennes theory, the above observations have been
explicitly highlighted by Gartland [45], although practitioners were well-aware of
these issues since long time before. The main contribution of the Gartland’s paper
[45] is giving a clear interpretation of two important asymptotic limits in the context
of the Landau-de Gennes theory: the commonly called vanishing elastic constant
(which should be named, more properly, large-body limit), studied in [106] (see also
[143]), and the so-called Lyuksyutov limit, analyzed in [105] (whose authors already
explicitly non-dimensionalized the problem) and in [29].
Remark 2.5.5. The paper [106] is not the only one studying the large-body limit (see
[45] and references therein) but it is the most directly relevant to our purposes.
Remark 2.5.6. We must observe that physicists are usually very skeptics about
asymptotic limits involving the material parameters. In particular, also rescalings are
to be taken with special care, in order to not fall into unphysical regimes. Then, the
following discussion must not be taken too literary and should be considered only as
a first step towards a deep understanding of the issues they refer to.

Vanishing elastic constant limit

As explained before, the name vanishing elastic constant limit is misleading, since
associated to an incorrect limiting process from the physical point of view, and we
should not use it; we do so only because this name has acquired some popularity in
force of the similarity of the limit with the well-known London limit in the context of
Ginzburg-Landau theory. Below we follow Gartland [45] (but see also [143]).

Consider the energy functional (1.1.3) and let R denote a characteristic geometric
length scale of the problem; since the domain Ω is assumed to be bounded, we can
take R = diam Ω. Rescale lengths by R:
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x̄i = xi
R
, i = 1, 2, 3,

so that

∇ = 1
R
∇̄, dx = R3 dx̄, diam Ω̄ = 1.

Let aNI the value of a at T = TNI and let us accord to aNI the status of characteristic
bulk parameter10. Although Q is dimensionless, it is convenient to rescale it as

Q = γQ̄, γ := 1√
27
b

c
.

We then obtain

Ē(Q̄; Ω̄) =
ˆ

Ω̄

[1
2 ξ̄

2
NI

∣∣∣∇̄Q̄∣∣∣2 + t

2 Tr(Q̄2)−
√

3 Tr(Q̄3) + 1
4 Tr(Q̄2)2

]
dx̄, (2.5.27)

where

Ē = E

γ2aNIR3 , ξ̄NI = ξNI
R
, ξNI :=

√
L

aNI
, t := a

aNI
= T − T ∗

TNI − T ∗
. (2.5.28)

The parameter ξNI is usually called nematic correlation length while t is known as
reduced temperature. Note that we have the following correspondences:

T = T ∗, TNI, T
+ ↔ t = 0, 1, 9/8.

Typical numbers for ξNI and R are [45, 84, 85]

ξNI ≈ 10 nm, R ≈ 10 µm,

thus ξ̄2
NI is typically of order 10−6.

Remark 2.5.7. The nematic correlation has a statistical-physics interpretation: it is
the characteristic distance at which thermal fluctuations (that try to get the order
parameter out of its equilibrium value) are exponentially damped, see [140, Chapter
10] for a satisfactory discussion of this topic.

The rescaled EL equations are

− ξ̄2
NI∆Q̄ij = tQ̄ij − 3

√
3Q̄ikQ̄kj + Q̄ij Tr(Q̄)2. (2.5.29)

The (non-physical) limit L → 0, considered in [106], then corresponds to the
physically meaningful11 limiting situation in which

0 < ξ̄NI � 1 ⇐⇒ 0 < ξNI � R,

that is, when the nematic correlation length is much smaller than the typical geometric
length of the system, explaining why we called this the large-body limit.
Remark 2.5.8. We considered only the one-elastic constant case; a similar treatment
carry over also to more general situations [45].

10This choice is arbitrary; we could take, for instance, b, c or even ratios of them.
11Or at least conceivable.
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Below we report the main results of [106]. For ease of comparison, we do not change
the statements of Majumdar & Zarnescu to incorporate the above considerations.
Anyway, their conclusions continue holding true, although they are better interpreted
in light of the non-dimensional analysis above; the interested reader may write down
details easily. We shall give a more physically grounded interpretation of their results
at the end of the short presentation below.

Call a limiting uniaxial harmonic map a map Q(0) : Ω → Qmin, where Qmin
is defined in (1.1.9), which is a minimizer of the energy functional (1.1.3) in the
restricted class

A(0)
Qb

:=
{
Q ∈W 1,2

Qb
(Ω, S4) : Q(x) ∈ Qmin almost everywhere x ∈ Ω

}
, (2.5.30)

where Qb is as in (2.5.24). Then Q(0) is of the form

Q(0) = s+

(
n(0) ⊗ n(0) − 1

3I
)
, (2.5.31)

where n(0) is a global minimizer of the corresponding one-elastic constant Oseen-Frank
functional, i.e.,

ˆ
Ω

∣∣∣∇n(0)(x)
∣∣∣2 dx = min

n∈An

ˆ
Ω
|∇n(x)|2 dx,

in the admissible class

An =
{
n ∈W 1,2(Ω;S2) : n = nb on ∂Ω

}
,

with nb and Qb related as in (2.5.24). It follows from standard results in harmonic
maps that Q(0) has at most a finite number of isolated point singularities (some of
the theory of harmonic map is reviewed in the next Chapter).

The first important result of [106] — see Lemma 3 therein — is the W 1,2-
convergence to the limiting harmonic map as L→ 0, up to subsequences. Using the
W 1,2-convergence Q(L) → Q(0), the authors are able to prove the uniform convergence
of the bulk energy density to its minimum (i.e, to zero) on those compact sets
K ⊂ Ω not containing any singularities of Q(0) (Proposition 4). Then they obtain a
Bochner-type inequality for the energy density eL(Q(L)) (Lemma 6):

−∆eL(Q(L))(x) ≤ Ce2
L(Q(L)(x)) (2.5.32)

on those balls Bρ(x)(x) such that
∣∣∣Q(L)(y)− s+

(
m(y)⊗m(y)− 1

3I
)∣∣∣ < ε0, with

m(y) ∈ S2, for all y ∈ Bρ(x)(x), with suitable ε0 > 0 and the constant C > 0 both
independent of L.

The relevance of the Bochner-inequality (2.5.32) stays in its crucial rôle in proving
uniform energy density estimates (Lemma 7), which in turn are used to yield uniform
convergence (up to subsequences) Q(L) → Q(0) on the compact sets K ⊂ Ω free of
the singularities of Q(0) (Proposition 5). The uniform convergence results may be
sharpened to give smooth convergence in the compact sets K ⊂ Ω not containing any
singuarities of the limiting harmonic map, see [114].

Established the uniform convergence into the interior, Majumdar & Zarnescu
then study the situation near the boundary. In doing this, they are reminiscent
of techniques used in Ginzburg-Landau theory (see references in [106]). As a first
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step, they obtain a boundary monotonicity formula (Lemma 9), which is the main
ingredient to show the uniform convergence up to the boundary of F (Q(L)) to its
minimum (i.e, to zero) as L→ 0 (up to subsequences), see Proposition 6.

Various consequences of the convergence results are examined in Section 5 of
[106] while in Section 6 the authors obtain estimates on the size of the regions where
minimizers deviate from uniaxiality and on that of the regions where they are strongly
biaxial, that is, where their biaxiality parameter is strictly positive, and also of the
regions where it is greater than an assigned threshold.

We now elucidate a little the interpretation of the above results. Recalling that the
unphysical limit L→ 0 corresponds to the more physically reasonable limit ξNI

R → 0,
R = diam Ω, and observing that L is fixed a phyisical quantity (approximately)
depending only on the material, we see that we must regard the limiting harmonic
map as the object to which minimizers tend when the sample is sufficiently enlarged.
Larger the sample, better the approximation, at least well-away from the singular
set of the limiting harmonic map. This is consistent with the fact that Landau-de
Gennes theory is mesoscopic while Oseen-Frank theory is macroscopic [45]. Although
equivalent in a mathematical sense in simply-connected domains, they have different
ranges of reliability in accounting for experimental results, the Oseen-Frank theory
being appropriate when the characteristic geometric lengths of the system are large
enough compared to intrinsic length scales. Thus it makes sense that the (simpler)
minimizers of the OF-energy may approximate the (more complex) minimizers of the
LdG-energy only when the typical geometric length-scale of the physical system is
large. However, accordingly to Gartland [45, § 3], we note that, when the sample is
too large, thermal fluctuations may destroy any orientational order, thus the limit
ξ̄NI → 0 must be thought of as an idealization which, anyway, may yield interesting
information.

Lyuksyutov limit

Besides the extension of the sample, there is another physical parameter under the
control of the experimentalist and it is clearly temperature. In [105] and in [29] the
regime of low-temperature is studied.

The notion of low-temperature regime requires some words of explaination: indeed,
the nematic phase takes usually place in a relatively narrow range of temperatures
(few Kelvin degrees, often one or two dozens [52, 139]); for lower temperatures, the
liquid crystal will change mesophase or become a crystal. However, an appropriate
rescaled variable connected to temperature can be found so that an asymptotic
analysis involving limiting values of this variable is actually a physically meaningful
idealization of real situations. It turns out that the reduced temperature defined in
(2.5.28) is (almost) suitable for playing this rôle. This notwithstanding, the non-
dimensionalization below will be different, even if related, from the previous one, and
there are good physical reasons for this. On the other hand, we already remarked
that the method of non-dimensionalization is problem-dependent.

Lowering the temperature sufficiently below TNI, they are observed: an increasing
of the orientational order; a deepening of the potential wells in F (Q) (while the
barriers between the wells become smaller); a reduction of correlation lengths and
defect core sizes. The net result of the combination of these features are a weaker
penalization of biaxiality and encouragment of localized biaxiality as a way to avoid
isotropic melting. A good scaling should take all these features into account. Below
we use the rescaling of [105]; that in [29] differs from this by constant factors, thus
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there is no a significant difference between them.
Let Ω ⊂ R3 be a simply-connected smooth bounded domain, let R be a character-

istic length scale of the Ω and define

Q̃ = 1
s+

√
3
2Q.

Let

t := 27ac
b2

, h+ = 3 +
√

9 + 8t
4 , x̃i = xi

R
, L̃ := 27c

2R2b2
L. (2.5.33)

and set

Ẽ(Q̃; Ω) := 3L̃
2Ls2

+R
E(Q̃; Ω),

where

3L̃
2Ls2

+R
E(Q̃; Ω) =

ˆ
Ω

L̃

2
∣∣∣∇̃Q̃∣∣∣2+ t

8
(
1− Tr Q̃2

)2
+h+

8

(
1 + 3

(
Tr Q̃2

)2
− 4
√

6 Tr Q̃3
)

dx̃.

(2.5.34)
The corresponding rescaled EL equations are

L̃∆Q̃ij = t

2Q̃ij
(
Tr Q̃2 − 1

)
+ 3h+

2

[
Q̃ij Tr Q̃2 −

√
6Q̃ikQ̃kj +

√
2
3δij Tr Q̃2

]
.

Define the biaxial correlation lenght

ξb =
√

L

bs+
. (2.5.35)

The regime studied in [105] and [29] is ξNI � ξb � R, corresponding to taking

t→∞ and L̃

h+
→ 0 simultaneously.

Note that this limit and the large-body limit are not unrelated, being Q̄, Q̃ and Ē, Ẽ
proportional by direct comparison of the definitions. The scaling above is however
more adapt to our purposes, see comments in [45, § 2.2].

For each t > 0, let Q̃t be a global minimizer of the Landau-de Gennes energy
(2.5.34) subject to boundary conditions that are rescaled versions of those encompassed
by (2.5.24). Relying also on techniques inspired by [106], the authors of [105] can
prove strong W 1,2-convergence, up to subsequences, Q̃tj → Q̃(0). The map Q̃(0) is the
same limiting harmonic map in (2.5.31), up to rescaling. The strongW 1,2-convergence
is then improved, by the same arguments as in [106], to locally uniform convergence,
away from the singular set of the limiting harmonic map. Moreover, appealing to
arguments in [29] they can prove uniform convergence

∣∣∣Qtj ∣∣∣ → 1 on Ω as j → ∞
and they also have an estimate on the size of strongly biaxial regions showing that
their diameters behaves like t−1/4

j for j large enough. In addition, both uniaxiality
and maximal biaxiality are achieved in the closure of strongly biaxial regions, the
uniaxial subregions having vanishing Lebesgue measure. In particular, a minimizer
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cannot be purely uniaxial at sufficiently low temperatures (note that “sufficiently low”
should not be understood in absolute terms but in terms of the reduced temperature;
it may be that a large range in terms of reduced temperature turns out to be a narrow
range in term of absolute temperature).
Remark 2.5.9. In an earlier version of [105] published as preprint before the publication
of [29], the statement on the attainment of maximal biaxiality was missing. Indeed,
its proof constitutes a major novelty of [29]. In more recent versions of [105], the
maximal biaxiality statement is proven via a slighty different reasoning than in [29]
(whose authors deduce it as a consequence of a lemma of Canevari [24], stated in [24]
for planar domains but with a proof actually valid also in dimension 3, as observed in
[29]).

We want to stress the uniform convergence
∣∣∣Qtj ∣∣∣→ 1 in Ω: this result represents

the first rigorous justification of the Lyuksyutov constraint (see next section), whose
introduction was legitimated by Lyuksyutov [100] by energy comparisons, i.e., on the
physical ground.

2.5.5 Lyuksyutov constraint

In his as short as remarkable paper [100], dating back to 1978, I. F. Lyuksyutov firstly
argued that it may be not restrictive setting the norm of Q-tensor order parameters
equal to a constant. The argument exposed by Lyuksyutov goes as follows. Suppose
the material constant b = 0. Then, the potential energy reduces to

Fb=0(Q) = −a(T − T ∗)
2 Tr(Q2) + c

4
(
Tr(Q2)

)2
.

Minimizing Fb=0(Q) gives

TrQ2 = a(T ∗ − T )
2c = const., (2.5.36)

so that Q takes values in the unitary sphere S4 ⊂ R5 ' S0.
Now suppose that b 6= 0 and that its value is small w.r.t. to a(T − T ∗) and

c. Here “small" means that the nematic-isotropic correlation lenght ξNI, defined in
(2.5.28), is small w.r.t. the biaxial correlation lenght ξb, defined in (2.5.35). This
makes sense from the physical point of view, because of the fact that measuraments
of the latent heat during the isotropic-nematic transition indicate that the transition
is only weakly first order, meaning that the contribution from the cubic term to the
energy is modest. According to [84], in order to make quantitative this hint, let us set

ξ(τ) :=


ξNI√
τ
, for τ > 1,
√

2ξNI√
−4τ+ 9

2 + 3
2
√

9−8τ
, for τ ≤ 1,

and let us define

µ(τ) := ξb(τ)
ξ(τ) .

The numerics in [84] strongly suggest that the Lyuksyutov constraint (2.5.36) may be
taken as valid when µ(τ)� 1. Assuming the constraint (2.5.36) amounts to assume
that the liquid crystals responds to distortions, even strong, in a way that leaves
TrQ2 unchanged, typically by exchange of the eigenvalues. This is plausible deep in
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the nematic phase, because a(T ∗ − T ) TrQ2, c(TrQ2)2 are large enough to remain
comparable to the elastic term L |∇Q|2, even for large values of |∇Q|2, due to the
typical smallness of the elastic constant L.
Remark 2.5.10. Recalling (2.5.5), we see that assuming the Lyuksyutov constraint
may drive minimizers out of the range [−1/3, 2/3] for the eigenvalues. Indeed, along
the 180◦-disclination ring of the biaxial torus solutions of [84, 85] (see also §2.5.7),
we have λ1 = −2/3 and λ2 = λ3 = 1/3. Apparently, this problematic has never
been reported in the literature. We content ourselves to highlight it and to suggest
cautiously that this incompatibility may be the signal that in some regimes more
multiples of the distribution function than only the second are needed to fully specify
the nematic state at some points.

The possibility to escape to biaxiality in order to avoid melting motivated the
conjecture that defect cores may posses a biaxial fine structure. Taking all the above
considerations into account, Lyuksyutov argued that, deep in the nematic phase,
melting at the defect sites may be exceedingly costing. In this direction, he noted
that, when the characteristic geometric lenght R of the system is greater than ξb, then
the Oseen-Frank theory may be applied and, due to the topology of the target space
(i.e., RP 2) of the order parameters, point singularities and line singularities alike are
allowed. On the contrary, when ξb > R, a description involving the full Q-tensor
order parameter is needed. In this regime, the constraint (2.5.36) may be assumed.
He then remarks that the topology of S4 does not allow point nor line singularities
and then he also discussed an example of removal of a singularity on a disclination
line in the range ξb > R, suggesting a way to experimentally verify such a prediction.

Since Lyuksyutov’s arguments sound reasonable from a physical point of view,
his conclusions were often assumed as a starting point in many works in the physical
literature, especially the numerical simulations [47, 84, 85, 137]. However, a rigorous
– although partial – justification of the Lyuksyutov constraint, deep in the nematic
phase, lacked until the papers [105, 29], as we saw above.

2.5.6 The hedgehog solution

Let us consider the LdG energy (1.1.3) on the admissible class

AH :=
{
Q ∈W 1,2(BR;S0) : Q =

√
3
2

(
x

|x|
⊗ x

|x|
− 1

3I
)

on ∂BR
}
,

where R > 0. The name radial hedgehog solution is customarily given to solutions of
the EL equations associated to the LdG energy functional (1.1.3) on AH of the form

Hh =
√

3
2h(|x|)

(
x

|x|
⊗ x

|x|
− 1

3I
)
, (2.5.37)

where h is a radial function minimizing the energy functional

I(h; [0, R]) =
ˆ R

0
r2
(

1
2

(
dh

dr

)2
+ 3h2

r2 + f(h)
)

dr,

where, using the notation introduced in 2.5.33,

f(h) = −h
2

2 −
h+
t
h3 + h2

+
2t h

4,

in the admissible class
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Ah =
{
h ∈W 1,2([0, R],R);h(0) = 0 and h(R) = 1

}
.

Note that Hh is SO(3)-equivariant. It can be proven [103] that

E(Hh;BR) ≤ 12πR.

A natural question is whether the radial hedgehog solution is actually a global
minimizer of the LdG energy in the class Ah. To investigate this question, one is
naturally led to examine the simpler issue of the stability of the radial hedgehog.
Various analyses have been carried out over the years [46, 125, 103, 77] in various
ranges of the parameter R and of reduced temperature t. Without entering too specific
details, it turns out that radial hedgehog solutions are stable for sufficiently high
values of t and for sufficiently small R [103, 77], or in narrow classes of perturbations
[125], while thery are unstable w.r.t. more general biaxial perturbations for sufficiently
low temperatures and sufficiently large balls [47, 103, 77]. In particular, under the
Lyuksyutov constraint we have h ≡ 1 and H1 is unstable also w.r.t. S1-equivariant
perturbations in the unit ball (we prove this explicitly in Chapter 7 but it is not a
new result as it was already contained in the quoted works above).

2.5.7 Biaxial torus solutions

Though early recognized, the possibility of allowing biaxiality in Q-tensor theory was
not really exploited, or even explicitly ignored, for a long time, because of the lacking of
any experimental evidence of biaxial phases in nematics. According to [14], the earliest
experimental hint of biaxiality is maybe contained in [33]. Anyway, the first commonly
recognized evidences of biaxiality in thermotropic nematics were produced only in
2004 [99, 101]. Nevertheless, Lyuksyutov [100] early suggested in 1978 that escaping
to biaxiality may save energy in equilibrium configurations, deep in the nematic
phase, and avoid the isotropic melting. The mechanism proposed by him, already
mentioned at the end of §2.5.5, exploits the additional room provided by biaxiality to
remove the isotropic core on a disclination line through, in few words, a broadening
of the isotropic core to a 180◦-disclination ring12 linking the axis containing the
singularity line (which we always identify with the z-axis). Importantly enough, this
should happen even when homeotropic boundary conditions13 are imposed, against
the accepted fact [87, 120] that such boundary conditions enforce the arising of point
singularities, and despite the fact that the thermotropic nematic bulk can have only
uniaxial minima. Since both these facts induced to believe that the equilibrium
configuration should be the hedgehog in all nematic regimes, Lyuksyutov’s argument
raised the doubt that this may not actually be the case.

Lyuksyutov’s predictions were then later (1987) confirmed numerically by Schopohl
& Sluckin14 [133], who were able to describe the picture more accurately. They worked
in an infinite domain and, choosing uniaxial asymptotic values for the Q-tensor order
parameter, they observed a sort of symmetry breaking in approaching the core, in the
sense that far from the core three parameters were sufficient to specify the Q-tensor

12The ring is thus a line defect of strenght |M | = 1
2 corresponding to a uniaxial/biaxial interface.

13In the language commonly adopted in the physical literature, homeotropic boundary conditions
are Dirichlet boundary conditions such that the boundary Q-tensor is uniaxial with leading eigenvector
everywhere normal to the boundary.

14Actually, Schopohl and Sluckin do not quote the work of Lyuksyutov. Since the two papers are
separated by a decade, it may be plausible that Lyuksyutov’s ideas were already become part of the
common lore of theoretical physics.
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(so that it was uniaxial there) while near the core five parameters, that is a full biaxial
Q-tensor, were needed. In particular, they found a 180◦-disclination ring around
the core on which the Q-tensor parameter becomes again uniaxial but whose scalar
order parameter changed sign w.r.t. to that it had on the z-axis and far (i.e., outside
10ξb from the defect line, where ξb is the biaxial correlation lenght introduced in
(2.5.35)) from the core. Around the core they found another ring of diameter ≈ 2ξb
where the maximal biaxiality was attained. Moreover, the analysis of the eigenvalues
showed that melting never happens. Perhaps, the first rigorous revision of Lyuksyutov
arguments is contained in [15], whose authors also detail much more thoroughly
biaxial escaping and explain that, when escaping happens, then a negative uniaxial
disclination line is naturally surrounded by a toroidal surface of maximal biaxiality.
Furthermore, [15] puts Lyuksyutov argument in a more precise perspective. However,
the authors of [15] are not able to say whether escaping actually happens.

In 1986 Lavrentovich & Terent’ev [87] observed in real nematic droplets a related
phenomenon but of different origin (it was due to changes in elastic constants
caused by tuning temperature) and a much larger radius of the ring described above,
strengthening however the idea of a somewhat universal attitude of singularities
towards broadening.

Later, in 1989, Penzenstadler & Trebin [120] elaborated on the above results
and other experimental works and assuming the Lyuksyutov constraint showed
theoretically that there are classes of Q-tensors exhibiting the 180◦-disclination ring
as above that are also more stable than the radial hedgehog solution. The natural
question then became whether real minimizers have this structure.

Various numerical analyses have been produced studying this issue, mostly in the
setting in which the domain is axially symmetric [137, 84] or, more specifically, a ball
(i.e., a droplet) [137, 85, 47], and the Dirichlet boundary condition is the hedgehog. In
[84, 85] the Lyuksyutov constraint is assumed while in [137, 47, 32] it is not. In any
case, it turns out that, deep in the nematic phase, the minimizers have the structure
already encountered by Schophol & Sluckin and Penzenstadler & Trebin. At higher
temperatures, very near to the isotropic-nematic transition, the hedgehog appear to
be preferred. Accordingly to [47], there is also another configuration, called by the
authors of [47] the split core solution, which is strongly biaxial near the z-axis and
uniaxial along the z-axis with a disclination segment ending in two isotropic points,
see Fig. 2.5c. This solution is only metastable and only within a narrow intermediate
range of temperatures. The estimates on the size of the 180◦-disclination ring and on
critical lenght scales agree with that in [133]. In [137] no mention is made of the ring
of maximal biaxiality while in [84] it is shown that the disclination ring is actually
enrolled by a solid torus on the surface of which the maximal biaxiality is attained.
The torus, like the ring, is linking the z-axis, as can be appreciated from Fig. 2.4a.
This kind of solution is called in [84] a biaxial torus solution. We tried to encode their
features in Definition 1.2, stressing the linking property. Fig. 2.4a and Fig. 2.4b will
clarify the structure of biaxial torus solutions as derived in the above-quoted works.
The three possible competing equilibria are sketched in Fig. 2.3. Their tensor fields
can be compared looking at Fig. 2.5. Protoypical plots of the biaxiality parameter
β2 for biaxial torus solutions and split core solutions are reported to comparison in
Fig. 2.6 and the corresponding eigenvalues are plotted in Fig. 2.7.

In [85] (and later in [32]) the further theme of the universality of such structures
was tackled, specifically of their independence of the confining geometry, and it was
there seen that they are independent of the confining geometry when the typical
geometric scale of the system is large enough.
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Figure 2.3: Figure from the preprint of [47] available at http://icm.mcs.kent.
edu/reports/2000/ICM-200002-0001.pdf — Reproduced with permission of E.C.
Gartland.

Remark 2.5.11. Recalling (2.5.5), we see that, if one accepts both the mean-field
derivation of Q and the Lyuksyutov constraint, then biaxial torus solutions have to
be regarded as unphysical states, since their eigenvalues on the negative uniaxiality
ring lie outside the physical range. Anyway, we use the phenomenological definition of
Q given by (2.5.1), which does not entail constraints on the eigenvalues. Remarkably,
in [32] the eigenvalue constraints are assumed and yet biaxial torus solutions are
retrieved. It would be a very interesting (and, presumably, very difficult) problem
in the Calculus of Variation finding biaxial torus solutions assuming the mean-field
definition of Q.

Remark 2.5.12. In order to make tractable a computationally expensive problem, the
authors of [84, 85, 47] restricted to S1-equivariant Q-tensors. Such a restriction has
been removed in [32, 75], so that nowadays biaxial torus solutions appear as a fairly
general feature of nematics deep in the nematic phase.

2.5.8 Comments on the definition of biaxial torus solution

Here we make some remarks on the definition we chose of biaxial torus solution. First
of all, we note that biaxial torus solutions as obtained in numerical simulations [47,
84, 85, 137] have a high degree of symmetry. It is unclear whether this feature is
universal or due to the symmetry of the domain and/or of the boundary condition
(although [85] strongly suggest that the rôle of the confining geometry is negligible,
at least for large enough domain), so we preferred not to encode it directly into the
definition.

Next, biaxial torus solutions appear as smooth solutions in the quoted simulations
and we required smoothness in Definition 1.2 for a twofold reason: on the one hand, the
EL equations associated to the LdG energy functional (1.1.3) should be semilinear in
physically reasonable regimes (recall that the imposition of the Lyuksyutov constraint,
to which the quasilinear character of our EL equations15 is due, is a mathematical
idealization), thus their solutions have to be smooth (by arguments in §2.5.3). On
the other hand, we need smoothness in the semidisk argument, Theorem 5.1. Further,
the analysis of the eigenvalues of biaxial torus solutions show that isotropic melting is
avoided; again, this is also needed for the semidisk argument, hence we asked Q 6= 0

15See Chapters 4 and 5.
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(a) Schematic representation of biaxial torus
solution. The Q-tensor is represented as a
field of ellipses in this section. The points
where the ellipses degenerate into discs, are
those traversed by the ring of negative uniaxi-
ality.

(b) Logarithmic plot of the biaxiality parame-
ter β2 on a plane through the symmetry axis
of the core.

Figure 2.4: Figures from the version of [85] freely available at https://www.
researchgate.net/publication/230987935_Universal_fine_structure_of_
nematic_hedgehogs — Reproduced with permission of S. Kralj.

in Definition 1.2. Let us stress that the semidisk argument is a mere technical tool;
nonetheless, we need it, in the sense that we at the moment we have no other ways
to convert minimizers into biaxial torus solutions.

The peculiarities of biaxial torus solution are, however, the fact that there are
regions of positive and negative uniaxiality that are linking and the fact that these
are separated by a surface on which the maximal biaxiality is attained; moreover, this
surface is topologically the surface of a torus of revolution. There are various subtle
points in translating the phenomenological picture into mathematical language.

In the first place, numerical simulations take only axially symmetric domains
(capillary tubes or spheres) with the hedgehog as the boundary condition into account.
The picture coming out of them is very neat. The positive uniaxial region is made
up by the boundary and the symmetry axis, while the negative uniaxial region is
a ring in a plane orthogonal to the symmetry axis and linking the symmetry axis.
The maximal biaxiality is attained on the surface of a solid torus of circular section
and the negative uniaxial ring passes exactly through its center; biaxiality increases
from the center towards the surface. On the other hand, [85] suggest that biaxial
torus solutions should be minimizers also in more general domains, at least when
they are large enough. Because of this, in Definition 1.2 we did not specify any
particular domain. Lacking the symmetry of the domain, it is not clear whether the
final picture may be neat as before. Said another way, the geometrical properties
of the biaxial torus solutions resulting from simulations may be a byproduct of the
various symmetries employed to make the problem tractable but their topological
features appear to be universal. This point of view seems to be confirmed by [32, 75].
This is the main reason why we required the existence of two linking compact sets,
one of positive uniaxiality and the other of negative uniaxiality, without ask anything
about their shape or their regularity. In particular, U− in Definition 1.2 need not be
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(a) Radial hedgehog.
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(b) Biaxial torus solution.
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(c) Split core.

Figure 2.5: Tensor fields of competing equilibria. Tensor fields are visualized as
fields of rectangular boxes aligned with the eigenframe of the Q-tensors with axes
scaled proportionally to eigenvalues; a fixed constant is added to the eigenvalues,
so that they are all nonnegative. Lenghts are expressed in units of ξ0 :=

√
27cL
b2 .

For more information about scaling and the physical parameters, see [47]. Figures
from the preprint of [47] available at http://icm.mcs.kent.edu/reports/2000/
ICM-200002-0001.pdf — Reproduced with permission of E.C. Gartland.
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(a) Biaxial torus solution.
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(b) Split core solution.

Figure 2.6: β2 for biaxial torus solutions and split core solutions. Lenghts are
expressed in units of ξ0 :=

√
27cL
b2 . For more information about scaling and the physical

parameters, see [47]. Figures from the preprint of [47] available at http://icm.mcs.
kent.edu/reports/2000/ICM-200002-0001.pdf — Reproduced with permission of
E.C. Gartland.
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(a) Biaxial torus solution.
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(b) Split core solution.

Figure 2.7: Prototypical eigenvalue plots for biaxial torus solutions and and split
core solutions. Lenghts are expressed in units of ξ0 :=

√
27cL
b2 . For more information

about scaling and the physical parameters, see [47]. Figures from the preprint of
[47] available at http://icm.mcs.kent.edu/reports/2000/ICM-200002-0001.pdf
— Reproduced with permission of E.C. Gartland.
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a closed curve. One may prefer to ask, instead, the existence in Ω \
{
β̃ = 1

}
of a

non-contractible closed curve c ∈ π1(Ω) such that

c : S1 →
{
β̃ = −1

}
.

Although clearer, this position may be source of problems. To see this, observe
that β̃(Q) has the same regularity as Q. In particular, it is real-analytic whenever
Q is. Thus, for any regular value c ∈ [−1,+1], β̃(Q)−1{c} is a smooth submanifold
of B1 [108, Lemma 3.1]. By Sard’s theorem, a.e. c ∈ [−1,+1] is a regular value
for β̃(Q). The main problem here is that we are not assured at all that c = −1 is
actually a regular value for β̃(Q). Thus, β̃(Q)−1{−1} may be not a manifold, for
instance it may be a union of crossing curves, and in general it has multiple connected
components. A way to overcome this obstacle, suggested by the physical view-point,
may be substituting the sharp value c = −1 with a narrow range I of values and
then looking for closed curves in β̃(Q)−1{I}. However, the consequent picture looks
difficult to handle and it would deserve further analysis. Thus, requiring the existence
of a curve as in the above seems a little more demanding than our request of two
linking compact sets of opposite uniaxiality.
Remark 2.5.13. With reference to the Introduction, one may want to be able to
exhibit biaxial torus solutions even without the symmetry constraint, of course. In
this respect, Definition 1.2, although still making sense, looks a little too demanding
w.r.t. that one may reasonably hope to prove, because of the sharpness of the
requirements. A more suitable definition would involve a fattening of the levels
β̃ = −1 and β̃ = +1 and the existence of two linking compact sets U+ and U− such
that

max
U−

β̃(Q) < min
U+

β̃(Q).

Thus, in a more general setting (but always thinking to homeotropic-like boundary
conditions) one may consider the following

Definition 2.1 (Biaxial torus solution, revised). Suppose Ω is a bounded simply
connected domain in R3 with smooth boundary. A smooth critical point Q ∈
W 1,2
Qb

(Ω,S0) ∩ C0(Ω,S0) of the LdG energy E(·; Ω) w.r.t. some assigned Dirichlet
boundary condition Qb is called a biaxial torus solution in Ω if there exist in Ω two
linking compact sets U−, U+ so that:

(i) Q 6= 0 in Ω;

(ii) We have
− 1 ≤ max

U−
β̃(Q) < min

U+
β̃(Q) ≤ 1. (2.5.38)
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Chapter 3

Harmonic maps

Synopsis. In this Chapter we recall basic facts about harmonic maps. In this work
harmonic maps appear as asymptotic objects in the blow-up analysis, more precisely
as tangent maps from R3 into S4, see below and Chapters 4, 7. Thus, the present
exposition is geared toward the regularity theory (§3.3) and peculiar properties of
harmonic maps between spheres (§3.6).

3.1 Weakly harmonic maps
Let (Mm, g) and (Nn, h) be Riemannian manifolds, M possibly with boundary but
not N . For our purposes, assuming that (M, g) and (N,h) are smooth is not a
restriction. If N is compact, there exist, by the Nash-Moser embedding theorem,
k ∈ N and an isometric embedding J : N → (Rk, 〈·, ·〉), where 〈·, ·〉 denotes the
standard Euclidean inner product. One can then consider the space

W 1,2
J (M,N) =

{
u ∈W 1,2(M,Rk) : u(x) ∈ J (N) a.e.

}
,

on which the Dirichlet integral

E(u) = 1
2

ˆ
M
|du|2T ∗M⊗Rk dvolM

makes sense. In local coordinates,

|du|2T ∗M⊗Rk =
∑
i,j,α,β

gij
∂uα

∂xi
∂uβ

∂xj
hαβ and dvolM =

√
det gij dx.

For brevity, we shall often write |du|2T ∗M⊗Rk ≡ |∇u|
2 in the sequel.

Note that, generally, the isometric embedding J is not unique, so that the
definition of W 1,2

J (M,N) (and so the value of E(u)) actually depends on the choice of
the embedding. However, assuming M is also compact, then all spaces W 1,2

J (M,N)
are homeomorphic and E(J2 ◦J −1

1 ◦ u) = E(u) for each pair of isometric embeddings
J1,J2 [69]. Taking M compact, we shall then simply write W 1,2(M,N) without
specifying the embedding. Further, to simplify notations, we can think of M as an
open domain in Rd (this is not a restriction because our main issues will be of local
nature) and write more succinctly

E(u) = 1
2

ˆ
M
|∇u|2 dx.
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Let O be a neighborhood of N in Rk and let ΠN : O → N the nearest point
projection (well-defined and smooth, because N is smooth and compact). Let u ∈
W 1,2(M,N). For any map v ∈W 1,2(M,Rk)∩L∞(M,Rk) and any ε sufficiently small,
we have u+ εv ∈ O so that the map

uvε := ΠN (u+ εv) (3.1.1)
is well-defined and uvε ∈ W 1,2(M,N). The family of maps {uvε} is called an outer
variation of u.
Definition 3.1 (Weakly harmonic map). Let u ∈ W 1,2(M,N), v ∈ W 1,2(M,Rk) ∩
L∞(M,Rk) and let uvε be defined as in (3.1.1). The map u is called weakly harmonic
iff it holds

dE(uvε)
dε

∣∣∣∣
ε=0

= 0

for any v ∈W 1,2(M,Rk) ∩ L∞(M,Rk).
A direct computation (detailed, e.g., in [111] or in [134]) shows that the above

property is equivalent to say that u solves, in the sense of distributions, the Euler-
Lagrange equations

∆gu+Au(∇u,∇u)u = 0, (3.1.2)
where ∆g is the Laplace-Beltrami operator on (M, g) and Au(·, ·) the second fun-
damental form of the immersion N → Rk evaluated at u. Equations (3.1.2) are a
system of coupled quasilinear elliptic partial differential equations of second order.

A natural question is that of regularity of weakly harmonic maps. If m = 1, (3.1.2)
is the geodesics ODE, so that in this case harmonic maps are geodesics and hence
they are smooth (as the domain and the target manifolds permit). For m = 2, weakly
harmonic maps are again smooth by Hélein’s theorem (see next sections). In general,
because of the quasilinearity of (3.1.2), the regularity of weakly harmonic maps is a
hard problem. Indeed, in general they are not regular at all, as shown by Rivière [123,
124]. Partial regularity and even full regularity are possible with extra assumptions,
as we shall see later. In particular, any continuous weakly harmonic map is smooth
by standard bootstrap arguments (see, for instance, [70, 86, 129] and Chapter 4).
However, continuity is usually very difficult to prove. The singular set of a weakly
harmonic map u is defined as the set of points in M at which u is discontinuous.

Besides outer variations, one can consider also inner variations: given a 1-
parameter family of diffeomorphisms φt : M → M such that φ0 = id, one can
consider the family of maps

ut := u ◦ φt, (3.1.3)
for u ∈ W 1,2(M,N). The family {ut} is called an inner variation. We state the
following definition.
Definition 3.2 (Weakly stationary harmonic map). Let u ∈W 1,2(M,N) and let ut
be defined as in (3.1.3). The map u is called a weakly stationary harmonic map if (i)
it is weakly harmonic and (ii) it holds

dE(ut)
dt

∣∣∣∣
t=0

= 0

for any inner variation ut.
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If u is a smooth harmonic map (that is, a continuous weakly harmonic map), then
it is also stationary, as can be easily seen integrating by parts the Euler-Lagrange
equations. In general, there is no connection between being weakly harmonic and
being weakly stationary harmonic (that is, satisfying (ii); see counterexample in [66,
Example 1.4.19]1). A detailed analysis of stationary harmonic maps is given in [91].

Stationarity is a very important property in the quest for regularity. Indeed,
weakly stationary harmonic maps enjoy the following monotonicity formula, firstly
proven by Price [121].

Proposition 3.1 (Monotonicity formula for weakly stationary harmonic maps, [121]).
Let u ∈W 1,2(M,N) be a weakly stationary harmonic map. Then we have

R2−m
2

ˆ
BR2 (x0)

|∇u|2 dx−R2−m
1

ˆ
BR1 (x0)

|∇u|2 dx

= 2
ˆ
BR2 (x0)\BR1 (x0)

|x|2−m
∣∣∣∣∂u∂r

∣∣∣∣2 dx,
(3.1.4)

where BR1(x0) ⊂ BR2(x0) ⊂⊂M and ∂
∂r denotes the radial derivative.

The quantity

ER,x0(u) := R2−m
ˆ
BR(x0)

|∇u|2 dx (3.1.5)

is called the rescaled energy of u in BR(x0); its relevance will become clear in the
sequel.

To end this section, we establish the fundamental definition ofminimizing harmonic
map.

Definition 3.3 (Minimizing map). A map u ∈W 1,2(M,N) is (energy-)minimizing
iff for each x ∈ M there exists a compact neighborhood Kx such that for each
w ∈W 1,2(M,N) with u = w a.e. in M \Kx we have E(u) ≤ E(w).

If u is minimizing, it is a weakly stationary harmonic map. Schoen & Uhlenbeck
built in [130, 131, 132] an elegant partial regularity theory for minimizing harmonic
map which has been extended to weakly stationary harmonic maps by Evans [40] and
Bethuel [11]. We shall review this theory below.

3.2 Examples of harmonic maps
Here we collect some examples of harmonic mappings which are particularly useful to
know. For more examples, see, e.g. [34, 35, 69, 141]. As before, M and N are smooth
compact Riemannian manifolds.

• Constant maps u : M → N and the identity map id : M →M are obviously
harmonic maps.

• Isometries are harmonic maps. Further, composition of harmonic maps with
isometries preserves harmonicity.

1In Hélein’s terminology, a map u ∈W 1,2(M,N) having the property (ii) is called weakly Noether
harmonic.
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• If M = Rm and N = Rn, the harmonic maps are mappings u : Rm → Rn
whose components are harmonic functions on Rm. Thus, any harmonic map is
completely smooth in this case.

• If u : M → Rn, u is a harmonic map iff its components are harmonic functions
on M .

• Geodesics a smooth curve γ : I ⊂ R→ N , I an open interval, is harmonic iff
it defines a geodesics (i.e., iff it is parametrized by a multiple of the arc-length).

• The following is perhaps the most important example of harmonic map. LetM =
Bm and N = Sm−1. The map x

|x| : Bm
1 → Sm−1 belongs to W 1,2(Bm

1 , S
m−1)

and it clearly satisfies the harmonic map equation for maps into spheres

∆u = − |∇u|2 u,

in the weak sense, therefore it is weakly harmonic. Actually, this map is
minimizing in any dimension m ≥ 3, by results of Brezis, Coron & Lieb [21]
(for m = 3) and Lin [93] (for the general case). It is worth remarking explicitly
that this example shows that minimizing harmonic map need not to be smooth
nor even continuous.

• LetM = Bm
1 and N = Sm. The map ω = Bm

1 → Sn defined by ω(x) :=
(
0, x|x|

)
,

called the equator map [79], belongs to W 1,2(Bm
1 , S

m) and is weakly harmonic.
Further, it is minimizing iff m ≥ 7 by results of Jäger & Kaul [79].

3.3 Partial interior regularity

In their pioneering paper [36], Eells & Sampson proved the existence of smooth
harmonic maps into manifolds of nonpositive sectional curvature. When the curvature
hypothesis is not satisfied, the situation becomes much more involved. Existence
usually comes from the direct method in the calculus of variations [69, Section 5]; for
example, this is the case when the class of maps E ⊂W 1,2(M,N), E 6= ∅, of interest
is defined by some Dirichlet boundary condition. Indeed, under this circumstance
E is closed with respect to the weak topology of W 1,2(M,N). Let (un)n ⊂ E be a
minimizing sequence. Note that minimizing sequences have bounded energy. Since
the Dirichlet energy is weakly lower-semicontinuous, it thus follows from the direct
method (e.g., [40, Theorem 8.21]) that there exist u? ∈ E such that

(i) un ⇀ u? in W 1,2(M,N);

(ii) un → u? in L2(M,Rk) by the Rellich-Kondrachov compactness theorem and
hence, up to subsequences, pointwise a.e. (thus, u?(x) ∈ N for a.e. x ∈M);

(iii) u? is a minimizing map, and so it is weakly stationary harmonic.

We now ask about the regularity of minimizing harmonic maps. The beautiful
theory by Schoen&Uhlenbeck [130] shows that they are partially regular and in general
no more than that. More precisely, they proved2

2We borrow the formulation of most of the following results from the nice report of Hardt [59].
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Theorem 3.2 (Schoen&Uhlenbeck’s regularity theorem). An energy-minimizing map
u : M → N is smooth away from a closed (singular) subset of M that is discrete in
M if m = 3 and has Hausdorff dimension ≤ m− 3 if m ≥ 4.

This theorem is optimal, as the celebrated example of the map x
|x| : Bm

1 → Sm−1

shows. The key ingredient in their proof is the following gradient estimate.
Theorem 3.3 (Schoen&Uhlenbeck’s ε-regularity theorem). There are positive con-
stants ε0 = ε0(m,N), C = C(m,N) so that if u : Bm

1 → N is an energy-minimizing
map with ε =

´
B1
|∇u|2 dx ≤ Cε0, then

sup
B1/2

|∇u|2 ≤ Cε.

In [27], Chen and Lin give a terse quick proof of this result involving a Ginzburg-
Landau approximation.

Liao verified in [90] that ε-regularity does not hold for general weakly harmonic
maps. Indeed, looking at the proof of the ε-regularity theorem, it is easy realized
that the key property is the monotonicity formula. Evans [38] established ε-regularity
for stationary harmonic maps into spheres by exploiting the special structure of the
Euler-Lagrange equations due to the geometry of the sphere. This particular structure
was previously revealed by Hélein [67] who in fact successfully derived in that paper
the smoothness of weakly harmonic maps from a Riemannian surface into spheres.
In another fundamental paper, Hélein [68] developed a moving frame technique for
weakly harmonic maps (a moving frame is a special frame for the tangent bundle along
the image of weakly harmonic maps) and used it to prove smoothness for general
weakly harmonic maps from a surface. Bethuel [11] then used Hélein’s tecnique and
the compensated compactness phenomen discovered in [28] to extend the ε-regularity
theorem of Evans to general target manifolds. He also proved a partial regularity
theorem for weakly stationary harmonic maps; before stating it, we need to introduce
some useful tools.

Observe that, by the monotonocity formula, the rescaled energy of u, defined in
(3.1.5), i.e.,

ER,x0(u) = R2−m
ˆ
BR(x0)

|∇u|2 dx,

is nondecreasing with R, so it has a limit as R→ 0 at each point x0, which is called
the density of u at the point x0 ∈M , often denoted Θu(x0):

Θu(x0) := lim
R→0

R2−m
ˆ
BR(x0)

|∇u|2 dx.

The important property of the function Θu is being upper-semicontinuous [134, Section
2.5], that is,

xj → x0 ∈M =⇒ Θu(x0) ≥ lim sup
j→∞

Θu(xj).

Note that, due to Lebesgue differentiation theorem, Θu vanishes at regular points.
Next, we define the concentration set Zu of u ∈W 1,2(M,N) as

Zu :=
{
x0 ∈M : lim

R→∞
R2−m

ˆ
BR(x0)

|∇u|2 dx > 0
}
. (3.3.1)

Then we state
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Theorem 3.4 (Bethuel’s regularity theorem). Any stationary harmonic map u :
M → N is smooth on M \ Zu, where Zu, defined in (3.3.1), is closed in M and has
Hm−2(Zu) = 0.

Remark 3.3.1. According to [59], although all known examples of stationary harmonic
maps u have Hm−3(Zu) = 0, this fact has not yet proven in full generality.

Note that Bethuel’s theorem is not as good as Schoen&Uhlenbeck’s theorem. To
understand the reason, let us first simplify the notation by taking M = Ω, Ω ⊂ Rm
an open set (since regularity is a local issue, this is not a restriction). Then, let us fix
a ∈ Ω and consider the family of rescaled maps {ur}r>0, where

ur(x) := u(a+ rx), x ∈ Rm. (3.3.2)
The thing making the difference between minimizing and weakly stationary har-
monic maps is that [98] for the first ones there is a sequence ri → 0 such that
the sequence (uri)ri converges strongly in W 1,2

loc (Ω, N) to a limiting harmonic map
u∞ ∈W 1,2

loc (Ω, N) as i→∞. The map u∞ is called a tangent map at x. Minimality
passes to strong limits, so that u∞ is minimizing (hence called a minimizing tangent
map, MTM). Observe that the existence of a tangent map at each point follows by
the monotonicity formula but for weakly stationary (nonminimizing) harmonic maps
the convergence fails to be strong in general [73, Example 3.2].

Moreover, along with the monotonicity formula, the strong convergence implies
that the density function Θu is upper-semicontinuous with the respect to the joint
variables uri and xri , meaning that (see [134, § 2.11], [53, Proposition 10.26] and
Chapter 5)

xri → x0 ∈ Ω =⇒ Θu(x0) ≥ lim sup
i→∞

Θuri
(xri).

In particular, it easy proved that

Θu∞(0) = Θu(a),
i.e., that u∞ is homogeneous of degree 0 (see, e.g., [134, Chapter 3] for a detailed
proof of this assertion).

The strong convergence to a minimizing tangent map and the joint upper-
semicontinuity of the density are the keys of the so-called dimension reduction
argument (see [53, Theorem 10.18] its application in this context and [42] for the origi-
nal idea) that yields the improvement from Bethuel’s theorem to Schoen&Uhlenbeck’s
theorem.

The result in [98], due to Luckhaus, plays a very important rôle in the theory
of minimizing harmonic maps and we will be concerned in finding analogues for the
situations considered in this work. The one in the above is actually an application of
a more general result, customary called Luckhaus’ compactness theorem that is worth
recalling:

Theorem 3.5 (Luckhaus’ compactness theorem, [98]). Let uj be a sequence of
minimizing harmonic maps in W 1,2(Ω, N) with locally equibounded energies, that is,

sup
j

ˆ
Bρ(y)

|∇uj |2 dx < +∞

for each ball Bρ(y) ⊂ Ω. Then there is subsequence (ujk)jk converging strongly in
W 1,2

loc (Ω, N) as k →∞ to a minimizing tangent map u∞ ∈W 1,2
loc (M,N).
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We now ask about complete regularity. The already-mentioned example of the
map ω(x) = x

|x| : Bm
1 → Sm−1 shows that, in general, minimizing harmonic maps

need not to be smooth. This example also shows that the dimensions of the domain
and of the target manifold are important. In general, in order to have complete
regularity, we need to rule out all possible nonconstant minimizing tangent maps
at any point. A theorem establishing that all minimizing tangent maps have to be
constant is customary called a Liouville-type theorem.

Usually, a Liouville theorem is a very difficult property to get, see, for example,
[119] for a case where much work is needed. Schoen&Uhlenbeck proved a Liouville-
type theorem for minimizing tangent maps with values into spheres in [132] (see also
[95, 115] for various refinements of their result). The main point is that a minimizing
map is stable, meaning that its second variation is a positive-definite quadratic form
(i.e., the map cannot loose energy in any direction), thus giving an integral inequality
(called a stability inequality). Precisely,

Definition 3.4 (Stable harmonic map). Let u : M → N be a weakly harmonic map.
Then u is said to be stable if it holds

d2E(uε)
dε2

∣∣∣∣∣
ε=0

= d2

dε2

(ˆ
M

1
2 |∇uε|

2 dvolM
)∣∣∣∣∣
ε=0
≥ 0 (3.3.3)

for any admissible outer variation {uε}ε>0.

Interestingly, at least in the case of maps with values into spheres, the stability
inequality depends on the dimension of the target but it is independent of that of
the domain. Another integral inequality, in the inverse direction and involving the
dimension of the domain but not that of the target, can be derived by integration of
the Bochner identity recalled in Appendix B (see [95, Section 2] for optimal results
when the target manifold is a sphere). Comparing the above-mentioned inequalities,
one deduces that, for appropriate values of the dimensions of the domain and of
the target manifolds, the only possibility for the map to be stable is to be constant.
Hence minimizing tangent maps have to be constant in these cases. In particular,
stable tangent maps from R3 into S4 are all constant.
Remark 3.3.2. One of the main difficulties in the present work is that the available
stability/instability theorems (recalled in Section 7.1.1) does not hold when S1-
equivariance is imposed. Indeed, their proofs rely on arguments that are generally
incompatible with equivariance and so they need to be proved again with the aid
of ad hoc constructions that preserve equivariance at each step. It could be, and
it actually happens in our context (see Chapter 7), that equivariance is so strong
that it prevents us from destabilizing some tangent maps (even those that, without
equivariance, would be unstable).
Remark 3.3.3. In connection also with the previous remark, besides that as a matter
of principle, let us observe explicitly that what we really need is not proving the
instability of all nonconstant tangent maps, which is a sufficient condition, but proving
that nonconstant tangent maps are not minimizing. Stability implies local minimality
but not global minimality, in general. So, when stable nonconstant tangent maps
are found, one has to test whether they are really minimizing or not. We prove that,
in the S1-equivariant context, there are nonconstant minimizing tangent maps (see
Theorem 7.6).

Finally, it may be interesting to recall the relationship between stability and
regularity in the general setting. In this direction, the simplest thing to do is dealing
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with weakly stationary harmonic maps satisfying a stability inequality3. This has been
done in [72] and [73], where such maps are called stable-stationary harmonic maps,
yielding the following important result, which can be regarded as an improvement of
the Bethuel’s theorem when the additional assumption of stability is made.

Theorem 3.6 (Hong&Wang, [73]). Let u ∈ W 1,2(M,N) be a stationary harmonic
map which satisfies the following stability inequality: there exists a positive constant
A (depending possibly on u) such that

ˆ
M
|∇V |2 ≥ A

ˆ
M
|∇u|2 |V |2 ∀V ∈ C1

c (M,Rk).

Then there exists a closed set Σ ⊂M , whose Hausdorff dimension is at most m− 3,
such that u ∈ C∞(M \ Σ, N).

3.4 The Dirichlet problem for harmonic maps
The Dirichlet problem for harmonic maps from a Riemannian manifold M with
boundary ∂M into a Riemannian manifold (without boundary) N consists in the
assignment of a boundary datum ϕ on ∂M and then in looking for solutions u of the
Euler-Lagrange equations such that u = ϕ in the trace sense on ∂M . For technical
reasons (i.e., in order to have sensible estimates), a certain amount of regularity is
required on the manifolds and on the boundary datum. In their important work
[131] concerning the Dirichlet problem for minimizing harmonic maps, Schoen and
Uhlenbeck assume M is C2, ∂M of class C2,α and φ ∈ C2,α(∂M,N). Similar
hypotheses are assumed also in [10, 64, 97].

Having already proved partial interior regularity, the main point in the Dirichlet
problem for harmonic maps is proving some boundary regularity. The path is
analogous to that for the interior regularity. One needs to prove:

(i) A boundary monotonicity formula;

(ii) a boundary ε-regularity theorem;

(iii) a boundary strong compactness theorem for rescaled maps;

(iv) that any minimizing tangent map has to be constant.

Due to topological reasons (cfr. [131], p. 253), one has to expect that boundary
regularity is in fact stronger than interior regularity. Indeed, for smooth boundary
data, any minimizing harmonic map is completely smooth near the boundary.

Theorem 3.7 ([131, Theorem 2.7]). LetM be a compact manifold with C2,α boundary.
Suppose φ ∈ C2,α(∂M,N) and u ∈ W 1,2(M,N) is a minimizing map with u = ϕ
on ∂M . Then there exists δ > 0 such that u is C2,α in a full δ-neighborhood of
∂M . Moreover, if M,N are C∞ and ϕ ∈ C∞(M,N), then u is also C∞ in a full
neighborhood of ∂M .

We do not enter into greater details here because we shall do so when dealing
the boundary regularity in our specific cases, in Chapters 4 and 7. However, let us
mention that, when M = B1 ⊂ R3 and N = S2, fundamental results in particular on

3The stereographic projection provides us an example of a stable-stationary harmonic map which
is not minimizing, so that stable-stationarity is a weaker property than minimality [73].
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the number of singularities have been obtained by Almgren and Lieb [2]. In particular,
they show that there exists a universal constant CAL such that the number N of
interior singularity of an energy minimizing map u ∈W 1,2

ϕ (B1, S
2), where ϕ : S2 → S2

is smooth, is bounded by

N ≤ CAL

ˆ
S2
|∇Tϕ|2 dvolS2 . (3.4.1)

Remark 3.4.1. Note that the situation is quite different for weakly stationary (non-
minimizing) harmonic maps. Indeed, in this case, a boundary monotonicity formula
does not follow from stationarity. For more details, cfr. [91] and [97, Section 4.4].

3.4.1 Nonuniqueness

Naturally related to the solvability of the Dirichlet problem is the question of the
uniqueness of solutions. Although a general result seems to be lacking, it is however
true that in some important cases nonuniqueness occurs (even in spectacular ways).
In particular, it is known

Theorem 3.8 (Benci & Coron, [10]). Let D =
{
(x, y) ∈ R2 : x2 + y2 < 1

}
and let

γ : ∂D → S2 be a C2,δ(∂D) for some δ ∈ (0, 1). If γ is not constant then there exist
at least two functions in C2,δ(D,Sn) which are solutions of the Dirichlet problem{

−∆u = |∇u|2 u in D,
u = γ on ∂D.

Moreover, Rivière proved

Theorem 3.9 (Rivière, [122]). Let Ω ⊂ R3 be a smooth bounded domain, N a surface
diffeomorphic to S2 ⊂ R3, ϕ : ∂Ω→ N be a given smooth map. If ϕ is non-constant,
there exists infinitely many weakly harmonic maps from Ω into N equal to ϕ at the
boundary.

Some complementary results were given by Isobe [78]. Pakzad [116] later extended
Rivière’s theorem to cover the case of weakly harmonic mappings from a regular
bounded domain in Rn into, again, S2. Precisely,

Theorem 3.10 (Pakzad, [116]). Let Ω be a regular domain in Rn, n ≥ 3, and ϕ a
non-constant smooth map from ∂Ω into S2. Then ϕ admits infinitely many weakly
harmonic extensions.

On the other hand, Almgren & Lieb proved that the set of boundary data having
unique minimizers is dense in H 1

2 (S2, S2), a result known as "generic uniqueness" of
minimizers [2, Theorem 4.1].

3.4.2 Lavrentiev gap phenomenon

The nonuniqueness phenomenon is often related to another one, the so-called Lavren-
tiev gap phenomenon. Let M,N be Riemannian manifold, ∂M 6= ∅, N without
boundary and let ϕ : ∂M → N . Let us set

µϕ := inf
u∈W 1,2

ϕ (M,N)

ˆ
M
|∇u|2 dvolM , µ∗ϕ := inf

u∈C∞ϕ (M,N)x

ˆ
M
|∇u|2 dvolM .
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It is plain that µϕ ≤ µ∗ϕ. The point is that the inequality can actually be strict,
as firstly shown by Hardt & Lin4 [64]. This occurrence is called the Lavrentiev gap
phenomenon. Moreover, the construction of Hardt and Lin allows for prescribing the
number of singularieties a priori [64]. Precisely, they proved

Theorem 3.11 (Hardt & Lin, [64]). For any positive integer N , there exists a
smooth function g : S2 → S2 that has degree zero so that any energy-minimizing map
v ∈W 1,2

g (B1, S
2) must have at least N singularities.

They proved also

Theorem 3.12 (Hardt & Lin, [64]). For any positive integer N , there exists a smooth
function g : S2 → S2 that has degree zero for which there is the gap

inf
u∈W 1,2

g (B1,S2)
E(u) ≤ 1

2N <
1
2 ≤ inf

u∈W 1,2
g (B1,S2)∩C0(B1)

E(u)

Another important result, due to Bethuel, Brezis & Coron [12], also shows the
relation with the nonuniqueness phenomenon:

Theorem 3.13 (Bethuel, Brezis & Coron, [12]). Let Ω ⊂ R3 be a smooth bounded
domain, ϕ : ∂Ω→ S2 be a given smooth map. Suppose ϕ satisfies

(i) degϕ = 0 and µϕ < µ∗ϕ or

(ii) degϕ 6= 0.

Then there exists infinitely many weakly harmonic maps with boundary value ϕ.

Recently, Mazowiecka and Strzelecki [107], elaborating on the Hardt and Lin
results, exploited a modification of the installing singularities trick by Almgren &
Lieb [2, Theorem 4.3] to prove that Lavrentiev gap phenomenon holds for a dense
subset of the set of smooth degree zero boundary data ϕ : S2 → S2, where “dense” is
referred to the W 1,p-topology, 1 ≤ p < 2. Their result is sharp w.r.t. p: it fails for
p = 2.
Remark 3.4.2. Sometimes, especially in applications in mathematical physics, and
mostly in the theories of liquid crystals and elasticity, the Lavrentiev gap phenomenon
is interpreted by saying that the fuction space is part of the model [6, 7]. It occurs
also when the function spaces are not W 1,2 and C∞ but, for instance, when one is
SBV and the other a W 1,2 space [6]. Although we shall not purse this point of view
here, larger function spaces can accommodate wilder behavior and this sometimes
leads to lower energies and other advantages (along with some disadvantages).

3.4.3 Stability of singularities

One may wonder whether singularities of minimizing harmonic maps are stable w.r.t.
perturbations of the boundary datum. In [65], Hardt & Lin proved

Theorem 3.14 (Stability of singularities). Suppose Ω ⊂ R3 is a smooth bounded
domain in R3, ψ ∈ Lip(∂Ω, S2), and v is the unique energy-minimizing map from Ω
to S2 with v|∂Ω ≡ ψ. There exists a positive number β and, for any positive ε, a

4The theorem by Hardt and Lin has receveid much attention and some generalizations over the
years, notably that due Giaquinta, Modica & Soucek [54] (which we will not state here).
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positive number δ so that for any ϕ ∈ C1,α(∂Ω, S2) with ‖ϕ− ψ‖Lip ≤ δ and for any
energy-minimizing u ∈W 1,2(Ω, S2) with u|∂Ω ≡ ϕ, one has

‖u− v ◦ η‖Cβ ≤ ε

for some bi-lipschitz transformation η of Ω with ‖η − idΩ‖Lip ≤ ε. In particular, η
maps the singularities of u onto the singularities of v.

3.5 Harmonic maps from surfaces

Let u : (M, g) → (N,h) be a smooth map and Ψ : M → M be a conformal
diffeomorphism, i.e., Ψ∗g = λ2g, with λ a smooth function. Then it can be checked
(see, for instance, [66, Chapter 1] or [141, Section 1.2.1]) that

E(u ◦Ψ) =
ˆ
M
λ2−m |∇u|2 dvolM .

Let (M2, g) be a two-dimensional Riemannian manifold. Then the Dirichlet energy
is conformally invariant. In particular, any smooth harmonic map is weakly conformal.
Other special things happen: as for the case of harmonic functions, the property of
being a harmonic map depends only on the conformal structure of the surface [3].
We have a special way of writing locally the tension field in terms of the isothermal
coordinates on open sets of M ; further, if M is oriented, we can choose an atlas of
oriented isothermal coordinates (x, y) on M and, setting, z = x+ iy, we can endow
M with a complex structure so that it becomes a Riemann surface. Any holomorphic
or antiholomorphic map is then harmonic with respect to any Hermitian metric. In
particular, due to the Liouville theorem for holomorphic functions on C, if M = S2,
then any harmonic map from S2 to any Riemannian manifold is weakly conformal
and a map from S2 to S2 is harmonic iff it is holomorphic or antiholomorphic [88].

For the regularity of weakly harmonic maps from a surface, note that the mono-
tonicity formula (3.1.4) becomes an identity. Using this fact, the conformality of
the energy integral and a special moving frame technique, Hélein [67, 68] proved the
following fundamental theorem.

Theorem 3.15 (Hélein). Any weakly harmonic map from a two-dimensional compact
Riemannian manifold to any compact Riemannian manifold is smooth.

3.6 Harmonic maps into spheres

Harmonic maps into euclidean spheres have been and are extensively studied because
the geometry of the sphere gives rise to a particularly simple situation. Let (M, g)
be a Riemannian manifold, Sn the euclidean n-sphere endowed with the standard
metric. The harmonic maps equation then reads

∆gu = − |∇u|2 u. (3.6.1)

This is a system of quasilinear coupled elliptic partial differential equations of second
order. Regularity of solutions depends on both M and n and we have already seen
that it is known when M is a Riemannian surface, by a result of Hélein [67]. On the
other hand, when dimM ≥ 3, there exist weakly harmonic maps discontinuous at
every point [123, 124]. Stationary harmonic maps behave better, as shown by Evans
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[40], who extended Hélein’s technique to higher-dimensional domains and obtained a
partial regularity result. The case of minimizing harmonic maps into spheres has been
treated by Schoen & Uhlenbeck, with later refinements especially by Okayasu [115]
and Lin & Wang [95]; some of these results are of direct interest for us and recalled
in Chapter 7. Also minimizing maps need not to be smooth when dimM ≥ 3.

There would be many topics to be discussed about harmonic maps into spheres
but we shall limit ourselves only to those that are directly relevant to the sequel: some
useful consequences of harmonicity; the classification of harmonic maps S2 → S2

and the result of Brezis, Coron & Lieb on the structure of minimizing tangent maps
R3 → S2. Another very significant topic, that of axially symmetric harmonic maps
from the ball B1 ⊂ R3 into S2, has been already discussed at end of Section 2.3.

3.6.1 Useful identities

Let us note some useful identities holding for harmonic maps from S2 into the sphere
Sn. Let u : S2 → Sn be harmonic, think the sphere Sn as a submanifold of Rn+1

and let (ei)n+1
i=1 be the canonical basis of Rn+1. We can then write u = ∑n+1

i=1 uiei.
Note that, by Hélein’s theorem, each component ui is a smooth function real-valued
function on the sphere. Thus, we can use the harmonic map equation pointwise.

Take the scalar product of the harmonic map equation with ei and then integrate
both members on S2. By the divergence theorem we have

ˆ
S2
ui |∇u|2 dvolS2 = 0. (3.6.2)

By a similar device, other identities can be derived for any integer power p of ui. In
particular, for p = 2,

ˆ
S2
u2
i |∇u|

2 dvolS2 =
ˆ
S2
|∇ui|2 dvolS2 . (3.6.3)

Of course, the above identities hold also for tangent maps ω : R3 → Sn, because
of harmonicity and degree-zero homogeneity.

3.6.2 Classification of harmonic maps S2 → S2

Harmonic maps from S2 into S2 can be classified by their topological degree as a
consequence of a result of Hopf (see [88, § 8]). The classification, due to Lemaire [88],
exploits the standard identification of the sphere S2 with the extended complex plane
C ∪ {∞}. More specifically, Lemaire first shows that any harmonic map between
a Riemannian suface of genus 0 and a Riemannian surface must holomorphic or
antiholomorphic [88, Corollaire 2.9]. Next, let f : S2 → S2 be harmonic; without
loss of generality, we can suppose f holomorphic. When the target is the sphere, one
can view f as a meromorphic function and it is well-known that such functions are
rational. Thus, denoting π : S2 → C the stereographic projection and g = π ◦ f ◦ π−1,
one can write

g =
∑r
i=0 aiz

i∑s
j=0 bjz

j
, ai, bj ∈ C.

The degree d of f is thus the maximum between r and s. There are harmonic maps
of any degree and their energy is
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E(f) = 4π |d| .

In particular, harmonic maps of degree 1 are of the form

π ◦ f ◦ π−1 = az + b

cz + d
,

with a, b, c, d ∈ C. As observed in [21, p. 678], up to fixed rotations of the domain
and of the target, one can assume c = 0, d = 1, a = γb, with γ > 0, thus reducing to

π ◦ f ◦ π−1 = b(z + γ), b 6= 0.

In Chapter 6 we will go into further details because we will need to classify the
S1-equivariant harmonic maps S2 → S2.

3.6.3 Minimizing harmonic maps from R3 into S2 and the Brezis-
Coron-Lieb theorem

In the fundamental paper [21], Brezis, Coron & Lieb addressed two relevant problems
concerning harmonic maps from a domain Ω in R3 into S2: (a) determining the
minimum energy when the location and the topological degree of the singularities
are prescribed, and (b) assigned a boundary condition g on ∂Ω, determining in what
cases g(x/ |x|), i.e., the homogeneous degree zero extension of the boundary datum,
minimizes the energy. This last problem has, evidently, a direct application in the
study of tangent maps and hence on the regularity theory for harmonic maps into S2.

For our purposes, the main result of [21] can be cast in following form found in
[30].

Theorem 3.16 (Brezis, Coron & Lieb). The map u : B1 → S2 is a minimizing
tangent map if there exists R ∈ SO(3) such that u(x) = ±Rx/ |x|.

In particular, x
|x| is minimizing in its own class. The proof relies on the classification

in the previous subsection and on some ingredients introduced in [21]. The first is
the center-of-mass condition (see also Chapter 6), that is, any weakly stationary
harmonic map u : B1 → S2 must satisfy

ˆ
S2
xi |∇u|2 dvolS2 = 0, i = 1, 2, 3.

The second ingredient is the fact that for any tangent map with degree |d| ≥ 2
the energy may be decresead by splitting the singularity {0} into |d| distinct points
(by means of the so-called dipole construction, also introduced in [21]). The final
step is showing that x

|x| is minimizing, a fact proven in [21, Theorem 7.3] and later
generalized, with a much quicker argument, by Lin [93].
Remark 3.6.1. The dipole construction has also another important application in
the construction of Rivière’s pathological examples [123, 124] of weakly harmonic
maps discontinuous everywhere. It is worth highlighting that the map constructed by
Rivière in [123] is axially symmetric.
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Chapter 4

Landau-de Gennes theory with
norm-constraint and without
symmetry

Synopsis. In this Chapter we prove existence and full regularity of minimizers of
the LdG energy (1.1.3) in the class AQb defined in (1.1.14), with Qb given in (1.1.13).
Existence is a straightforward consequence of the direct method of the Calculus of
Variations, regularity requires more work and it is subdived into interior regularity and
boundary regularity. The main difficulty here is that the Euler-Lagrange equations
(4.2.1) are quasilinear. We follow an approach typical of geometric measure theory:
we first derive a monotonicity formula, Theorem 4.3, and then we use it to prove
an ε-regularity theorem (Theorem 4.6) and a compactness theorem for blow-ups in
the strong topology of W 1,2

loc (R3,S0) (Theorem 4.11). Blowing-up around putative
singularities gives tangent maps which are locally minimizing harmonic maps from R3

to S4. The Liouville theorem of Schoen&Uhlenbeck [132, Corollary 2.8] implies that
all minimizing tangent maps (MTM) are constant in this case, so that, by ε-regularity
theorem, we have Hölder continuity around each interior point. Higher regularity
follows by bootstrap arguments in Section 4.5. Then we prove boundary regularity.
The approach is analogous to that for the interior regularity, the main steps being
obtaining a boundary monotonicity formula (formula (4.8.3)) and finding a suitable
way of extending the map across the boundary. Once we got these, the proofs of
ε-regularity theorem and of compactness theorem are readily adapted. Then the
conclusion is achieved by ruling out all possible nonconstant MTM at boundary
points, exploiting [97, Theorem 2.4.3].

4.1 Existence of minimizers

We prove the existence of minimizers of the LdG energy in the class (1.1.14). This
serves also as an occasion for introduce the important map

H(x) =
√

3
2

(
x

|x|
⊗ x

|x|
− I

3

)
. (4.1.1)

Note that H is S4-valued and that it is the homogeneous degree-zero extension to B1
of the boundary datum Qb in (1.1.13).
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Proposition 4.1. Let E(·;B1) be the LdG energy, defined as in (1.1.3) and considered
over the class AQb , where the boundary condition Qb is given in (1.1.13). Then there
exists at least one minimizer of E(·;B1) in the class AQb.

Proof. The proof is a simple application of the direct method. We have to prove that
AQb is nonempty and that E(·;B1) is lower semicontinuous with respect to the weak
topology of AQb .

To see that AQb 6= ∅, it suffices to note that the map H given in (4.1.1) belongs
to AQb .

Next, observe that, since Qb is a Dirichlet boundary condition, AQb is weakly
sequentially closed in W 1,2(B1, S

4) (see, for example, [69, Section 5.2]), hence it
inherits the weak sequential topology by that of W 1,2(B1, S

4) and, in turn, by that of
W 1,2(B1,S0) (since W 1,2(B1, S

4) is strongly and weakly closed in W 1,2(B1,S0) [35]).
Lastly, we see that E(·;B1) is bounded below and lower semicontinuous in the

weak topology of W 1,2(B1,S0). Indeed, by writing E(·;B1) ≡ E(∇Q,Q, x), we have
that its energy density is convex in ∇Q and that E(∇Q,Q, x) is coercive in Q. Then
[40, Theorem 8.2] applies and thus E(·;B1) is lower semicontinuous with respect to
the weak topology of W 1,2(B1,S0) and, in turn, with respect to the weak topology of
AQb .

In view of the above considerations, the direct method applies and the conclusion
follows.

4.2 Euler-Lagrange equations
In this section we find out the Euler-Lagrange equations associated to the LdG energy
functional considered over the class AQb . As we shall see, they form a system of
quasilinear elliptic equations of the second-order.

Proposition 4.2 (Euler-Lagrange equations). Let E(·;B1) the LdG energy functional
defined in (1.1.3) over the class AQb given in (1.1.14) with Qb as in (1.1.13) and
let Q ∈ AQb be a critical point of E(·;B1). Then Q is a solution in the sense of
distributions of the following boundary value problem:

 L∆Qij + L |∇Q|2Qij = b
(
Qij Tr(Q3)−QikQkj + 1

3δij
)

on B1

Qij = (Qb)ij in the trace sense on ∂B1.
(4.2.1)

Proof. The derivation is standard, the only two points to which pay attention being
the traceless constraint and the norm constraint. For notational convenience, we set
L = 1 within this proof.

Let φ ∈ C∞c (B1,S0). Since |Q| = 1 a.e., we have |Q+ tφ| 6= 0 a.e. for sufficiently
small t > 0. To take the tracelessness constraint into account, we add a term λTrQ
to the energy density, where λ is a Lagrange multiplier to be found. We calculate

d

dt

∣∣∣∣
t=0

E

(
Q+ tφ

|Q+ tφ|

)
=
ˆ
B1

Qij,k

(
φij,k −

∂

∂xk
(QijQlmφlm)

)
+ ∂F

∂Qij
(φij −QijQlmφlm) + λδij(φij −QijQlmφlm) dx.

Since |Q|2 = 1, we have QijQij,k = 0 for all k, so that
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ˆ
B1

Qij,k
∂

∂xk
(QijQlmφlm) dx =

ˆ
B1

|∇Q|2Qijφij dx,

where we relabeled the dummy indexes. Further, we have

δijQijQlmφlm = QiiQlmφlm = 0
because of the tracelessness constraint. Next, we have

∂F

∂Qij
= (c− a)Qij − bQikQkj ,

hence

∂F

∂Qij
φij = [(c− a)Qij − bQikQkj ]φij

and

∂F

∂Qij
(QijQlmφlm) = [(c− a)Qij − bQij Tr(Q3)]φij ,

where again we relabeled saturated indexes. Hence we get

d

dt

∣∣∣∣
t=0

E

(
Q+ tφ

|Q+ tφ|

)
=
ˆ
B1

Qij,kφij,k +
[
− |∇Q|2Qij + b

(
Qij Tr(Q3)−QikQkj

)
+ λδij

]
φij dx.

Integrating
´
B1
Qij,kφij,k dx by parts, we obtain

d

dt

∣∣∣∣
t=0

E

(
Q+ tφ

|Q+ tφ|

)
=
ˆ
B1

[
−Qij,kk − |∇Q|2Qij + b

(
Qij Tr(Q3)−QikQkj

)
+ λδij

]
φij dx.

Requiring d
dt

∣∣∣
t=0

E
(
Q+tφ
|Q+tφ|

)
= 0, we have

∆Qij + |∇Q|2Qij − b
(
Qij Tr(Q3)−QikQkj

)
− λδij = 0 (4.2.2)

in the sense of distributions, by the arbitrariness of φ.
In order to determine λ, we multiply both sides of (4.2.2) by δij ,

∆Qii + |∇Q|2Qii − b(Qii Tr(Q3)−QikQik)− 3λ = bQikQik − 3λ = 0

which implies

λ = b

3 .

Finally, in the sense of distributions, we have

∆Qij + |∇Q|2Qij − b
(
Qij Tr(Q3)−QikQkj + 1

3δij
)

= 0,

hence the conclusion.
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4.3 Monotonicity formula
In this section we obtain the monotonicity formula for the minimizers of the LdG
energy in the class AQb . The proof closely follows that of [119, Proposition 4.3]. We
shall also see some useful corollaries.

Theorem 4.3 (Monotonicity formula). Let Q ∈W 1,2(B1, S
4) be a stationary point for

E(Q;B1) defined (1.1.3) with respect to inner variations (see (4.3.3)), let x0 ∈ B1 and
suppose that BR1(x0) ⊂ BR2(x0) ⊂ B1. Then Q satisfies the following monotonicity
formula:

1
R2

ˆ
BR2 (x0)

e(∇Q,Q)− 1
R1

ˆ
BR1 (x0)

e(∇Q,Q)

= L

ˆ
BR2 (x0)\BR1 (x0)

1
|x− x0|

∣∣∣∣∂Q∂r
∣∣∣∣2 + 2

ˆ R2

R1

dR
R2

ˆ
BR(x0)

F (Q), (4.3.1)

where r = (x− x0)/ |x− x0| and ∂
∂r denotes the derivative in the direction of r.

Proof. Pick ε > 0. If ε is sufficiently small, the mappings

x 7→ x+ εφ(x), φ ∈ C∞c (B1,R3), (4.3.2)
are a one-parameter family of diffeomorphisms of B1. Define

Ψε(x) = x+ εφ(x)

and set

Qε(x) := (Q ◦Ψε)(x) = Q(x+ εφ(x)). (4.3.3)
The mapping ε 7→ E(Qε;B1) is C1 (see, e.g., [129] or [66, Chapter 1]) so it makes
sense to calculate

d

dε

∣∣∣∣
ε=0

E(Qε;B1). (4.3.4)

Let’s calculate the expression in (4.3.4) and then put the variation equal to zero.
Following [119, Lemma 4.2], we first note that, for ε > 0 sufficiently small, it holds

DΨ−1
ε (x) = 1− ε divφ(x) +O(ε)

uniformly on B1. Furthermore, for all f ∈ L1 and all g ∈ C1,

d

dε

∣∣∣∣
ε=0

ˆ
f(Ψε(x))g(x) dx = −

ˆ
f(x)g(x) divφ(x) dx−

∑
c

ˆ
f(x) ∂g

∂xc
φc(x) dx.

(4.3.5)
For Qε as in (4.3.3),

∂Qε
∂xj

(x) =
∑
c

∂Q

∂xc
(Ψε(x))∂(Ψε)c(x)

∂xj

=
∑
c

∂Q

∂xc
(Ψε(x))

(
δcj + ε

∂φc
∂xj

) (4.3.6)
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Applying repeatedly equations (4.3.5), (4.3.6), we have

d

dε

∣∣∣∣
ε=0

∑
j

ˆ
∂Qε
∂xj

∂Qε
∂xj

= −
∑
j

ˆ
divφ(x) ∂Q

∂xj

∂Q

∂xj
+ 2

∑
j,c

ˆ
∂φc
∂xj

(x) ∂Q
∂xj

∂Q

∂xc
.

Set
y = x+ εφ(x);

then Qε(x) = Q(y) and

d

dε

∣∣∣∣
ε=0

Q(y) =
∑
j

∂Q(x)
∂xj

dyj
dε

∣∣∣∣
ε=0

. (4.3.7)

By the chain rule, it follows

∂Q(y)
∂yj

=
∑
k

∂Q(y)
∂xk

∂xk
∂yj

. (4.3.8)

Clearly

xk = yk − εφk(x), (4.3.9)

hence

∂xk
∂yj

= δkj − ε
∂φk
∂yj

(x). (4.3.10)

Applying the chain rule and retaining only those terms that injected into (4.3.10)
give a contribution of order at most ε,

∂φk
∂yj

=
∑
a

∂φk
∂xa

∂xa
∂yj

=
∑
a

∂φk
∂xa

(
δaj − ε

∂φk
∂yj

)
≈ ∂φk
∂xj

hence we have

∂xk
∂yj

= δkj − ε
∂φk
∂xj

,

and

∂Q

∂yj
(y) =

∑
k

∂Q

∂xk
(y)

(
δkj − ε∂φk

∂xj

)
,

and

d

dε

∣∣∣∣
ε=0

Qε(x) =
∑
j

∂Q

∂xj
(x)φj(x) ≡ (φ · ∇Q)(x). (4.3.11)

Since the integrand in E(Q;B1) satisfies (with respect to ε) the hypotheses of the
theorem for interchanging the integral sign and derivative, we can differentiate with
respect to ε under the integral sign.

By translational invariance of the formula (4.3.1), it suffices to prove it for x0 = 0.
Imitating [119, Proposition 4.3], we take h ∈ C∞(R) increasing with h(t) ≡ 0 for
t < 0 and h(t) ≡ 1 for t ≥ 1 and we select

φ(x) = h(R− |x|)x,
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for R > 0 such that BR ⊂ B1. Then

divφ(x) = 3h(R− |x|)− |x|h′(R− |x|), (4.3.12)

where the factor 3 is due to the dimension of the domain (in general, for an m-
dimensional domain Ω ⊂ Rm, the constant factor would be m). We then have

∂φc
∂xj

= δcj −
xcxj
|x|

h′, (4.3.13)

∑
c

∂Q

∂xc

∂φc
∂xj

= ∂Q

∂xj
h− xj

∂Q

∂r
h′, (4.3.14)

where ∂
∂r stands for the directional derivative in the radial direction x/ |x| and r = |x|.

Put (4.3.12) and (4.3.13) into (4.3.7) and, in turn, into (4.3.4), then set the
variation equal to zero:

0 =
∑
j

ˆ
BR

−(3h− |x|h′)L2
∂Q

∂xj

∂Q

∂xj
+ 2

∑
j,c

ˆ
BR

(
δcjh−

xcxj
|x|

h′
)
L

2
∂Q

∂xc

∂Q

∂xj

+
ˆ
B1

d

dε

∣∣∣∣
ε=0

F (Qε) dx.

(4.3.15)

By (4.3.11) and the fact that F (Q) is a polynomial in Q, it follows

d

dε

∣∣∣∣
ε=0

F (Qε) = φ · ∇F (Q). (4.3.16)

Hence
ˆ
B1

d

dε

∣∣∣∣
ε=0

F (Qε) dx =
ˆ
B1

φ · ∇F (Q) dx. (4.3.17)

After an integration by parts,

ˆ
BR

φ · ∇F (Q) = −
ˆ
BR

divφF (Q) dx = −3
ˆ
BR

hF (Q) +
ˆ
BR

|x|h′F (Q) dx,

(4.3.18)
because h is compactly supported in BR.

We recall that

∑
c

∂Q

∂xc
φc = |x| ∂Q

∂r
h (4.3.19)

and we insert (4.3.18) and (4.3.19) into (4.3.15), so that we get

0 =
ˆ
BR

−hL2 |∇Q|
2 +

∑
j

ˆ
BR

|x|h′ ∂Q
∂xj

∂Q

∂xj
dx− L

ˆ
BR

h′
∣∣∣∣∂Q∂r

∣∣∣∣2
− 3

ˆ
BR

hF (Q) +
ˆ
BR

|x|h′F (Q)
(4.3.20)
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Letting h → χ{t>0} (i.e., hφ to the characteristic function of BR and hence h′φ to
measure concentrated on ∂BR) gives

0 = −
ˆ
BR

L

2 |∇Q|
2 +R

ˆ
∂BR

L

2 |∇Q|
2 − 3

ˆ
BR

F (Q) +R

ˆ
∂BR

F (Q)

− LR
ˆ
∂BR

∣∣∣∣∂Q∂r
∣∣∣∣2 . (4.3.21)

Keeping in mind the definition of the energy density e(∇Q,Q), we rewrite (4.3.21)
in the following fashion:

0 = −
ˆ
BR

e(∇Q,Q) +R

ˆ
∂BR

e(∇Q,Q)− LR
ˆ
∂BR

∣∣∣∣∂Q∂r
∣∣∣∣2 − 2

ˆ
BR

F (Q). (4.3.22)

Recall that, for all integrable functions f and for a.e. R > 0,

Rm−1 d

dr

(
R2−m

ˆ
BR

f

)
= (2−m)

ˆ
BR

f −R
ˆ
∂BR

f, (4.3.23)

where m is the dimension of the domain. Divide both members of (4.3.22) by R2 and
use (4.3.23):

0 = d

dR

(
1
R

ˆ
BR

e(∇Q,Q)
)
− L

ˆ
∂BR

1
R

∣∣∣∣∂Q∂r
∣∣∣∣2 − 2

R2

ˆ
BR

F (Q). (4.3.24)

Now integrate with respect to R from R1 to R2 and use

d

dR

ˆ
BR

f =
ˆ
∂BR

f (4.3.25)

which holds for all integrable functions f and almost every R > 0. We then have the
monotonicity formula:

1
R2

ˆ
BR2

e(∇Q,Q)− 1
R1

ˆ
BR1

e(∇Q,Q)

= L

ˆ
BR2\BR1

1
|x|

∣∣∣∣∂Q∂r
∣∣∣∣2 + 2

ˆ R2

R1

dR
R2

ˆ
BR

F (Q).
(4.3.26)

Since F (Q) ≥ 0, the right hand side is nonnegative. This concludes the proof.

The following corollaries are straightforward consequences of the monotonicity
formula.

Corollary 4.4. For all R1 ≤ R2 such that BR1(x0) ⊂ BR2(x0) ⊂ B1,

1
R2

ˆ
BR2 (x0)

e(∇Q,Q) ≥ 1
R1

ˆ
BR1 (x0)

e(∇Q,Q), (4.3.27)

i.e., the rescaled energy ER,x0 := 1
R

´
BR(x0) e(∇Q,Q) is nondecreasing for all 0 < R <

dist(∂B1, BR(x0)).
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Corollary 4.5. The limit

lim
R→0

1
R

ˆ
BR(x0)

e(∇Q,Q)

exists for all x0 ∈ B1.

4.4 ε-regularity theorem
Hoping that any weak solution to the Euler-Lagrange equations (4.2.1) is smooth is
too much: indeed, counterexamples to regularity and even to partial regularity are
obtained by factorization to RP 2 of Rivière’s pathological examples of completely
discontinuous weakly harmonic maps from B1 into S2. Thus, we have to ask something
more to weak solutions in order to prove their regularity. As in the harmonic map
theory, the crucial additional property is a monotonicity formula.
Remark 4.4.1. As in the case of harmonic maps into spheres [40, 68], Eq. (4.3.1) and
the possibility of recasting the Euler-Lagrange equations in the form (4.4.11) is all
that we need in our arguments. Thus, we do not need to ask to weak solutions to
be stationary but only to satisfy (4.3.1). This fact will be very important when we
will deal with the symmetric case. Indeed, it is not easy to write down a condition of
stationarity w.r.t. inner variations for S1-equivariant maps while it is not difficult to
derive a monotonicity formula for minimizers in the symmetric class, see Section 5.7.

The aim of this section is to prove the following theorem.

Theorem 4.6 (ε-regularity). Let Q ∈W 1,2(B1, S
4) be a weak solution of the Euler-

Lagrange equations (4.2.1) satisfying (4.3.1) and let x0 ∈ B1. There exist ε > 0 and
β > 0 such that, if BR0(x0) ⊂ B1 and

1
R0

ˆ
BR0 (x0)

1
2 |∇Q|

2 dx ≤ ε, (4.4.1)

then Q ∈ C0,β(BR0/2(x0), S4).

Theorem 4.6 is very similar to [119, Proposition 4.5]. In fact, it is an elaboration
of that result in a slightly different context.

We now come to explaining the strategy of the proof. First of all, we point out a
remark.
Remark 4.4.2. Condition (4.4.1) readily implies, by the monotonicity formula, that

sup
x̄∈BR0 (x0)

sup
0<r≤R0

1
r

ˆ
Br(x̄)

1
2 |∇Q|

2 dx ≤ 2ε. (4.4.2)

In other terms, at sufficiently small scales the scaled energy is locally uniformly
bounded by its limit at any point.

The main idea of the proof, tracing back to [26], is to exploit the integral character-
ization of Hölder continuity for functions in L2(BR0/2(x0),R5) given by Campanato.
To this end, we show that Q belongs to BMO(BR0(x0)) and that there is a quantitive
decay of the BMO norm at smaller and smaller scales. Up to choose R0 sufficiently
small, this implies, via the John-Nirenberg inequality, that Q belongs to the Cam-
panato space L2,η(BR0/2(x0),R5) for some η ∈ (3, 5]. Now, Campanato’s theorem
(see, for instance, [53, Theorem 5.5] or [134, Lemma 1.1]) implies that

L2,η(BR0/2(x0),R5) ' C0,β(BR0/2(x0),R5),
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with β = η−3
2 , i.e., Q is Hölder continuous with exponent β in BR0/2(x0). To say

it more precisely, the L2-class of Q contains a Hölder continuous representative.
Remembering that Q is S4-valued, the thesis follows.

We now recall the definition of Campanato and BMO spaces. Let Ω ⊂ Rm be a
domain with the following property [53, Section 5.1] : there exists a constant A > 0
such that for all x0 ∈ Ω, ρ < diam Ω, we have

|Bρ(x0) ∩ Ω| ≥ Aρm.

This property is sometimes called extension property. Every Lipschitz domain enjoys
this property.

Take 1 ≤ p ≤ +∞, x0 ∈ Ω and set Ω(x0, ρ) := Ω ∩ Bρ(x0). For each λ ≥ 0, the
Campanato space Lp,λ(Ω) is defined as the space

Lp,λ(Ω) :=
{
u ∈ Lp(Ω) : [u]pp,λ := sup

x0∈Ω
sup
ρ>0

ρ−λ
ˆ

Ω(x0,ρ)

∣∣∣∣∣u−
 

Ω(x0,ρ)
u

∣∣∣∣∣
p

< +∞
}
.

[u]p,λ is the Campanato (p, λ)-seminorm of u. Fixed a ρ0 > 0, [u]pp,λ is equivalent to

sup
x0∈Ω

sup
0<ρ≤ρ0

ρ−λ
ˆ

Ω(x0,ρ)

∣∣∣∣∣u−
 

Ω(x0,ρ)
u

∣∣∣∣∣
p

(4.4.3)

which says that only small radii are relevant in proving that a function belongs to a
Campanato space. This fact will be very useful in the proof.
Theorem 4.7 (Campanato). Let Ω ⊂ Rm be a domain with the extension property.
For m < λ ≤ m+ p and α = λ−m

p we have

Lp,λ(Ω) ' C0,α(Ω).

Moreover, the seminorms [·]C0,α and [·]Lp,λ are equivalent.

We further recall that, if Ω ⊂ Rm is open and u ∈ L1
loc(Ω), u ∈ BMO(Ω) if

‖u‖BMO(Ω) = sup
D

 
D
|u− uD| < +∞,

where uD =
ffl
D u and the supremum is taken over all balls D ⊂ Ω. It is evident from

the definition that, if A ⊂ B, then ‖u‖BMO(A) ≤ ‖u‖BMO(B). Indeed, the sup in the
right hand side is taken over a family of balls which surely includes the family of all
balls contained in A. In other words, the BMO norm is monotonic with respect to
the inclusion of domains.
Remark 4.4.3. There is no universal (i.e., function independent) way to estimate how
much the BMO norm in A is smaller than BMO norm in B, even if one knows how
much A is smaller than B. To estimate the difference without giving explicitly a
function, further information is required. This is why we require the condition of
ε-smallness (4.4.2), as we shall see.

The following result is of capital importance to our strategy.
Theorem 4.8 (John-Nirenberg inequality). Let u ∈ BMO(Ω). For each p ∈ (1,∞),
there exists Cp > 0 (depending only on p and m) such that

‖u‖BMO(Ω) ≤ sup
D

( 
D
|u− uD|p

)1/p
≤ Cp‖u‖BMO(Ω) < +∞, (4.4.4)

with the sup taken over all balls D ⊂ Ω.
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John-Nirenberg inequality is exploited to link between BMO and Campanato
spaces when a quantitative decay of the BMO norm happens. Note that John-
Nirenberg inequality implies that, if u ∈ BMO(Ω), then

ˆ
D

∣∣∣∣u−  
D
u

∣∣∣∣p ≤ C̃pp,mRmD (4.4.5)

for each m-ball D (whose radius is RD) contained in Ω, where C̃p,m > 0 is a constant
which accounts for the p-th John-Nirenberg constant and for the volume factor.

We shall make use of the following lemmas. The first one will allow to control the
decay of the BMO-norm with a power of the scale, that is the property needed in the
definition of Campanato spaces.

Lemma 4.1. Let R > 0 be fixed and let ϕ : (0, R]→ R be monotonically increasing.
Suppose there exists σ ∈ (0, 1), γ > logσ

(
1
2

)
and a constant C1 > 0 such that

ϕ(σt) ≤ 1
2ϕ(t) + C1t

γ (4.4.6)

for all t ∈ (0, R] and that there exists C2 > 0 a (finite) constant such that

ϕ(R) ≤ C2. (4.4.7)

Then
ϕ(t) ≤ C

(
t

R

)α
, (4.4.8)

where α = logσ
(

1
2

)
and C = C2 + 2C1R

γ.

Proof. Since (4.4.6) holds for each t ∈ (0, R], picking t′ = σk̃−1t, k̃ ≥ 1 an integer, we
get

ϕ(σk̃t) ≤ 1
2ϕ(σk̃−1t) + C1(σk̃−1)γtγ .

Again, (4.4.6) implies

ϕ(σk̃−1t) ≤ 1
2ϕ(σk̃−2t) + C1(σk̃−1)γtγ .

Repeating (k̃ − 1)-times, we find

ϕ(σk̃t) ≤
(1

2

)k̃
ϕ(t) + C1t

γ
k̃−1∑
j=0

σγ(k̃−1−j)2−j . (4.4.9)

Since σ < 1, each term in the sum is smaller than the corresponding term in the
geometric sum ∑k̃−1

j=0

(
1
2

)j
which in turn is obviously smaller than the sum of the

corresponding series. Hence we have

ϕ(σk̃t) ≤
(1

2

)k̃
ϕ(t) + 2C1t

γ . (4.4.10)

Now, choose k ≥ 1 an integer such that t ∈ [σkR, σk−1R). By the monotonicity
of ϕ in (0, R], (4.4.10) and (4.4.7), it follows

ϕ(t) ≤ ϕ(σkR) ≤
(1

2

)k
ϕ(R) ≤

(1
2

)k
C2.
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Set α = logσ
(

1
2

)
. Then

(
1
2

)k
= σαk. Since t ≥ σkR, we have

σkα ≤
(
t

R

)α
.

Hence,
ϕ(t) ≤ C2

(
t

R

)α
+ 2C1t

γ .

Since γ > α and t/R < 1, we have

tγ = Rγ
(
t

R

)γ
≤ Rγ

(
t

R

)α
from which (4.4.8) follows.

Note that logσ
(

1
2

)
= ln ( 1

2)
lnσ , from which it is easily seen that α is positive and it

is an increasing function with σ.
The second lemma is a standard a priori estimate for the gradient of a solution

of certain elliptic systems.

Lemma 4.2. Let m ≥ 3, BR̄ ⊂ Rm an open ball of radius R̄ > 0. Let q ∈
(

m
m−1 , 2

)
and let s = qm

q+m . Then there exists C > 0, depending only on q, such that, if
A ∈ L2(BR̄,Rn), g ∈ L2(BR̄) and u ∈W 1,2

0 (BR̄) is a weak solution to

∆u = divA+ g, (4.4.11)

then

‖∇u‖Lq(BR̄) ≤ C
(
‖A‖Lq(BR̄) + ‖g‖Ls(BR̄)

)
. (4.4.12)

Proof. Calculations in [53, §7.1.2] may be readily adapted to yield the claim.

We now prove Theorem 4.6.

Proof of the ε-regularity theorem. To begin with, note that, if Q satisfies (4.4.2), then
Q ∈ BMO(BR0(x0)) and ‖Q‖BMO(BR0 (x0)) ≤ C

√
ε. Indeed, by Cauchy-Schwarz and

Poincaré inequalities,

‖Q‖BMO(BR0 (x0)) ≤ sup
Dr⊂BR0

√√√√ 
Dr

∣∣∣∣∣Q−
 
Dr

Q

∣∣∣∣∣
2

≤ C sup
Dr⊂BR0

√
1
r

 
Dr

|∇Q|2 ≤ C
√
ε.

(4.4.13)
The goal is now to obtain a quantitative decay for ‖Q‖BMO(D), for all ballsD contained
in BR0/2(x0), so that we can exploit the John-Nirenberg inequality to conclude that
Q belongs to a Campanato space isomorphic to a Hölder space.

Let σ ∈ (0, 1/8] be fixed but to be specified later. For each x̂ ∈ BR0/2 and for
each t ∈ (0, R0/2], let Dt = Dt(x̂) ⊂ BR0 be an open ball of radius t. For each
x̄ ∈ Dσt = Dσt(x̂), let r ∈ (0, t) be such that Bσr(x̄) ⊂ Dσt. Then Br(x̄) ⊂ Dt ⊂ BR0

and, for r̄ ∈ (r/2, r), the bound

1
r̄

ˆ
Br̄(x̄)

|∇Q|2 dx ≤ Cε (4.4.14)
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still holds.
Within the range of this demonstration, it is often useful to explicitly consider

that each element of W 1,2(B1, S
4) is, in particular, an element of W 1,2(B1,S0) '

W 1,2(B1,R5). Let T0 ∈ S0 be a constant matrix. We show that there exists r̃ ∈ (r/2, r)
such that

ˆ
∂Br̃(x̄)

|Q− T0| ≤
8
r̃

ˆ
Br̃(x̄)

|Q− T0| . (4.4.15)

More precisely, we show that (4.4.15) holds in (r/2, r) up to a set Σ of measure at
most r/8. Remember that for all g ∈ L1 the identity

ˆ r

r/2

ˆ
∂Bσ(x0)

g dσ =
ˆ
Br(x0)\Br/2(x0)

g dx

holds. Now suppose, for the sake of a contradiction, that it holds
ˆ
∂Br̃(x̄)

|Q− T0| >
8
r̃

ˆ
Br̃(x̄)

|Q− T0|

on a set Σ′ ⊂ (r/2, r) of measure bigger than r/8. Using the previous identity, we get

ˆ
Br(x̄)\Br/2(x̄)

|Q− T0| =
ˆ

Σ′

ˆ
∂Br̃(x̄)

|Q− T0| dr +
ˆ
I\Σ′

ˆ
∂Br̃(x̄)

|Q− T0| ,

where we set I := (r/2, r). The last addendum at second member is surely nonnegative,
while the first is, by hypothesis, greater than |Σ′| 8r−1 ´

Br(x0)\Br/2(x0) |Q− T0|. Hence
|Σ′| > r/8 leads to a contradiction.

After having verified the existence of r̃ as above, pick one of them and set r̄ = r̃.
We are going to obtain the BMO norm decay by an iterative procedure, whose

starting point is Lemma 4.2. However, to apply the lemma, we have to cast the
system in the form

∆u = divA+ g,

for u ∈W 1,2
0 (Br̄,R5). Let’s start by rewriting the Euler-Lagrange equations (4.2.1)

in the form

∆Qij = − |∇Q|2Qij + fij ,

with

fij = − 1
L
b

[
Qij Tr(Q3)−QikQkj + 1

3δij
]
. (4.4.16)

Clearly, f ∈ L∞(B1,R5) and, since B1 is bounded, we have f ∈ Lp for all p ≥ 1.
We now claim that there exists a harmonic extension h of Q|∂Br̄ in Br̄. More

precisely, h ∈W 1,2(Br̄,R5), h = Q|∂Br̄ on ∂Br̄ and h ∈ C∞ in the interior.
Indeed, since Q ∈ W 1,2(B1,R5), asking h = Q|∂Br̄ on ∂Br̄, we have h − Q ∈

W 1,2
0 (Br̄,R5) and it is well known [55, Theorem 8.9] that a solution of the Dirichlet

problem {
∆h = 0 in Br̄,
h = Q|∂Br̄ on ∂Br̄,
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exists, it is unique and it enjoys the desired properties (C∞-regularity in the interior
follows by Weyl’s lemma, see, for instance, [134, Section 1.5]).

Because of the harmonicity of h, Q− h ∈W 1,2
0 (Br̄,R5) is still a weak solution to

the system

∆(Q− h) = − |∇Q|2Q+ f.

To cast the system in the appropriate form for the application of Lemma 4.2, we
use a trick by Hélein, that allows to rewrite the nonlinearity in a more convenient
fashion. Since Q is S4-valued, |Q|2 = QijQij = 1, that implies

1
2∇(|Q|2) = Qkl∇(Qkl) = 0,

hence

Qkl∇(Qij) · ∇(Qkl) = 0.

On the other hand,
∣∣∇Q2∣∣Qij = (∇(Qkl) · ∇(Qkl))Qij . Subtracting this equation to

the previous one,

|∇Q|2Qij = (∇(Qkl)Qij −∇(Qij)Qkl) · ∇(Qkl).

Define

Aklij = − (∇(Qkl)Qij −∇(Qij)Qkl)

and write
− |∇Q|2Qij = Aklij · ∇(Qkl).

Remark 4.4.4. In these calculations, the indexes i, j are fixed, while the indexes k, l
are summed. For i, j fixed, Aklij is a vector field.

We now try to get a divergence in the second member (the raising of other terms
without derivatives is allowed1). We note that, in the sense of distributions,

div(AklijQkl) = div(Aklij )Qkl +Aklij · ∇(Qkl).

Let’s calculate div(Aklij ). Let ϕ ∈ C∞c (Br̄).
Remark 4.4.5. According to Remark 4.4.4, div(Aklij ) is a scalar field and hence has to
be tested against a scalar field.

Thus,

ˆ
Br̄

div(Aklij )ϕdx = −
ˆ
Br̄

Aklij · ∇ϕdx

= −
ˆ
Br̄

(∇(Qkl)Qij −∇(Qij)Qkl) · ∇ϕdx.

Observe that

Qij∇ϕ = ∇(Qijϕ)− (∇(Qij))ϕ, (4.4.17)
Qkl∇ϕ = ∇(Qklϕ)− (∇(Qkl))ϕ. (4.4.18)

1Even terms growing as |∇Q| are acceptable, see the proof of [119, Proposition 4.5].
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hence

−Aklij · ∇ϕ = ∇(Qkl) · [∇(Qijϕ)− ϕ∇(Qij)]−∇(Qij) · [∇(Qklϕ)− ϕ∇(Qkl)]
= ∇(Qkl) · ∇(Qijϕ)−∇(Qij) · ∇(Qklϕ).

Using the Euler-Lagrange equations,

ˆ
Br̄

∇(Qkl) · ∇(Qijϕ)−∇(Qij) · ∇(Qklϕ) dx

= −
ˆ
Br̄

(∆Qkl)Qijϕdx+
ˆ
Br̄

(∆Qij)Qklϕ dx

=
ˆ
Br̄

(
|∇Q|2QklQij + fklQij

)
ϕ dx−

ˆ
Br̄

(
|∇Q|2QijQkl + fijQkl

)
ϕ dx

= −
ˆ
Br̄

(fklQij − fijQkl)ϕdx.

Hence, in the sense of distributions,

div(Aklij ) = fijQkl − fklQij .

Substituting back,

Aklij∇(Qkl) = div(AklijQkl) + (fklQij − fijQkl)Qkl
= div(AklijQkl)− fij + fklQklQij︸ ︷︷ ︸

:=gij

Note that, if T0 ∈ S0 is a constant matrix, then

div(Aklij (Qkl − (T0)kl)) = div(Aklij )(Qkl − (T0)kl) +Aklij · ∇(Qkl),

so that we have

∆Q = div(A · (Q− T0)) + g. (4.4.19)

Before going on, we remark that for ∇h the following estimate holds:

|∇h(x)|p ≤ Cr̄−p
 
Br̄(x̄)

|Q− T0|p , (4.4.20)

with T0 ∈ S0 the aforementioned constant matrix. Indeed, h is a harmonic function,
so h− T0 is harmonic as well and hence, thanks to the mean property of harmonic
functions, we have

sup
Bθr̄(x̄)

r̄ |∇h| ≤ C
 
∂Br̄(x̄)

|h− T0|

for each θ ∈ (0, 1). Since h and Q agree on the boundary of Br̄(x̄), h−T0 and Q−T0
also agree on ∂Br̄(x̄). Thus, by estimate (4.4.15) and by Jensen inequality, (4.4.20)
follows.

Before we can apply Lemma 4.2, we have to prove the estimates on the norms of
A · (Q− T0) and g required in its statement. We prove that
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‖A · (Q− T0)‖Lq(Br̄(x̄)) ≤ C
√
ε
√
r̄‖Q− T0‖

L
2q

2−q (Br̄(x̄))
, (4.4.21)

and that

‖g‖Ls(Br̄(x̄)) ≤ Cr̄
3
s . (4.4.22)

The second one is straightforward, since g ∈ L∞(Br̄,R5). For the first one, observe
that |A(x)| ≤ C |∇Q(x)| for each x ∈ BR̄. Hence, by Hölder inequality with conjugate
exponents 2

q and 2
2−q by (4.4.2), (4.4.21) follows.

Estimates (4.4.21) and (4.4.22) contribute to give the following:

 
Br̄(x̄)

|∇(Q− h)|q ≤ Cεq/2r̄−q
( 

Br̄(x̄)
|Q− T0|

2q
2−q

) 2−q
2

+ Cr̄−q r̄2q. (4.4.23)

Indeed, thanks to (4.4.21) and (4.4.22), we can apply Lemma 4.2, that gives (4.4.23),
once one has gathered a factor r̄3 to have the volume mean.

Now, let

p = q∗ = 3q
3− q > q

and let
ρ = σr < r̄ < r.

We now prove the central estimate

( 
Bσr(x̄)

|Q− h(x̄)|p
)1/p

≤ (σ−d/pε1/2 + σ)‖Q‖BMO(Dt) + Cσ−d/pt2, (4.4.24)

Since ρ < r̄, clearly

 
Bσr(x̄)

|Q− h(x̄)|p ≤ C

ρ3

ˆ
Br̄(x̄)

|Q− h|p + C

ρ3

ˆ
Bσr(x̄)

|h− h(x̄)|p . (4.4.25)

By the mean value theorem, for all y ∈ Bσr(x̄),

|h(y)− h(x̄)| ≤ |∇h(ξ)| |y − x̄| ,

where ξ is the unknown point of Lagrange on the segment [y, x̄] joining y and x̄; since
its length is surely at most diamBσr(x̄), being σ ≤ 1/8, we have

C

ρ3

ˆ
Bσr(x̄)

|h− h(x̄)|p ≤ Cρp sup
Br̄/4(x̄)

|∇h|p .

Recalling (4.4.20), we estimate the second term in (4.4.25) as follows:

C

ρ3

ˆ
Bσr(x̄)

|h− h(x̄)|p ≤ Cσp
 
Br̄(x̄)

|Q− T0|p . (4.4.26)

We now deal with the first term in (4.4.25). Since Q− h ∈W 1,2
0 (Br̄,R5) and p = q∗,

Sobolev-Gagliardo-Nirenberg inequality gives
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C

ρ3

ˆ
Br̄(x̄)

|Q− h|p ≤ C

ρ3

(ˆ
Br̄(x̄)

|∇(Q− h)|q
)p/q

= C
r̄3p/q

ρ3

( 
Br̄(x̄)

|∇(Q− h)|q
)p/q

≤ C

ρ3 r̄
3p/q

r̄−pεp/2( 
Br̄(x̄)

|Q− T0|
2q

2−q

)p 2−q
2q

+ Cr̄p

 ,
the last inequality follows by (4.4.23). Being σ = ρ

r and r̄ < r, we have σ−1 > r̄
ρ .

Write

r̄3p/q−p = r̄3r̄3p/q−p−3 =: r̄3r̄c,

r̄3p/q+p = r̄3r̄3p/q+p−3 =: r̄3r̄b.

By the definition of p, we see that c ≡ 0 and b = 2p, thus

C

ρ3

ˆ
Br̄(x̄)

|Q− h|p ≤ Cσ−3

ε̄p/2( 
Br̄(x̄)

|Q− T0|
2q

2−q

)p 2−q
q

+ r̄2p

 . (4.4.27)

By (4.4.27), (4.4.26) and the definition of σ, we have

 
Bσr(x̄)

|Q− h(x̄)|p ≤ Cσ−3

ε̄p/2( 
Br̄(x̄)

|Q− T0|
2q

2−q

)p 2−q
2q

+ r̄2p


+ Cσp

 
Br̄(x̄)

|Q− T0|p , (4.4.28)

so

( 
Bσr(x̄)

|Q− h(x̄)|p
)1/p

≤ Cσ−3/p

ε̄1/2
( 

Br̄(x̄)
|Q− T0|

2q
2−q

) 2−q
2q

+ r̄2

1/p

+ Cσ

( 
Br̄(x̄)

|Q− T0|p
)1/p

. (4.4.29)

Fix T0 =
ffl
Br̄(x̄)Q. Noting that r̄ < r, so that Br̄(x̄) ⊂ Br(x̄) ⊂ Dt, John-Nirenberg

inequality gives

( 
Bσr(x̄)

|Q− h(x̄)|p
)1/p

≤ C
(
σ−3/pε1/2 + σ

)
‖Q‖BMO(Dt) + Cσ−3t2 (4.4.30)

Since constant matrices coincide with their means, we can bring them in and out the
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means when convenient. Then Hölder inequality and (4.4.30) imply

 
Bσr(x̄)

∣∣∣∣∣Q−
 
Bσr(x̄)

Q

∣∣∣∣∣ ≤
( 

Bσr(x̄)
|Q− h(x̄)|2

)1/2

≤
( 

Bσr(x̄)
|Q− h(x̄)|p

)1/p

≤ C
(
σ−3/pε1/2 + σ

)
‖Q‖BMO(Dt) + Cσ−3/pt2.

Since x̄ was arbitrary among points in Dσt such that the ball with radius σr and
center x̄ was contained Dσt, we can take the supremum over the balls Bσr ⊂ Dσt, so
that

‖Q‖BMO(Dσt) ≤ C
(
σ−3/pε1/2 + σ

)
‖Q‖BMO(Dt) + Cσ−3/pt2. (4.4.31)

Now, choose σ ∈ (0, 1/8] and ε > 0 so small that C(σ−3/pε1/2 + σ) < 1
2 . Hence,

for some sufficiently large constant C(q, σ, ε) > 0 (independent of Q, x̂ and t) and
each t ∈ (0, R0/2], we have

‖Q‖BMO(Dσt) ≤
1
2‖Q‖BMO(Dt) + C(q, σ, ε)t2. (4.4.32)

Set α = logσ
(

1
2

)
and note that, for σ ∈ (0, 1/8], we have α ∈ (0, 1/3]. Hence,

in virtue of the monotonicity of the BMO-norm and (4.4.13), by Lemma 4.1 with
ϕ(t) = ‖Q‖BMO(Dt), R = R0/2 and γ = 2 and by (4.4.32), it follows

‖Q‖BMO(Dt) ≤
(
2ασ−α

√
εC ′ + 2R2

0

)( t

R0

)α
= C ′′

(
t

R0

)α
(4.4.33)

where C ′ denotes the constant appearing in (4.4.13).
Now, by definition of BMO norm and the John-Nirenberg inequality, it follows

 
Dt(x̂)

∣∣∣∣∣Q−
 
Dt(x̂)

Q

∣∣∣∣∣
2

≤ C2‖Q‖2BMO(Dt(x̂)),

with C2 the John-Nirenberg constant for p = 2. By (4.4.33),

 
Dt(x̂)

∣∣∣∣∣Q−
 
Dt(x̂)

Q

∣∣∣∣∣
2

≤ C̃
(
t

R0

)2α
,

where C̃ is constant accounting for the John-Nirenberg constant and for the square
of C ′′. Set

β = 2α.

According to (4.4.5), we have

ˆ
Dt(x̂)

∣∣∣∣∣Q−
 
Dt(x̂)

Q

∣∣∣∣∣
2

≤ C̃
(
t

R0

)β+3
. (4.4.34)

Since x̂ was arbitrary in BR0/2(x0), (4.4.34) says exactly that Q belongs to the
Campanato space L2,β+3(BR0/2(x0),R5). From Campanato’s theorem, we have Q ∈
C0,β(BR0/2(x0),R5). Since Q is S4-valued, the thesis follows.
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Remark 4.4.6. Theorem 4.6 is qualitatively different from the analogous theorem
for harmonic maps by Schoen & Uhlenbeck. Indeed, Schoen & Uhlenbeck theorem
[130, 134] apply to minimizing harmonic maps, while here we ask only stationarity.
Moreover, Schoen-Uhlenbeck theorem provides also an estimate for the gradient
in terms of the rescaled energy. However, in low dimensions, precisely at most 3,
continuity allows to get L4-integrability of the gradient (cfr. Proposition 4.9) that is
the threshold at which it is possible bootstrapping as in proof of Theorem 4.10.

4.5 Higher regularity

For higher regularity we use a bootstrap argument, as in [119, Proposition 5.2]. In
order to start the iteration, it is however necessary to show that if Q is a weak
solutions of the Euler-Lagrange equations and it is continuous, then it is actually a
strong solution. More precisely, we prove the following.

Proposition 4.9. Let Q ∈W 1,2(B1, S
4) be a weak solutions of the Euler-Lagrange

equations (4.2.1). If Q ∈ C0(B1, S
4), then Q ∈W 1,4(B1, S

4) ∩W 2,2(B1, S
4).

Proof. We follow the proof of [119, Proposition 1]. Rewrite the Euler-Lagrange
equations in the form

∆Q = F(f(Q(x)), Q,∇Q) = F (x,Q,∇Q), (4.5.1)

where F : (S0)3 × S0 × (S0)3 → S0 is a real-analytic map (indeed, it is polynomial
in its arguments). Since f(Q(·)) (defined in (4.4.16)) is smooth and Q is S4-valued,
F (x, s, p) satisfies (by construction) on the image of Q the structure hypothesis

|F (x, s, p)|+ |∇sF (x, s, p)| ≤ c0(1 + |p|2), (4.5.2)
|∇F (x, s, p)|+ |∇pF (x, s, p)| ≤ c1(1 + |p|2), (4.5.3)

on B1 × S4 × (S0)3. Using now [80, Lemma 8.5.1] and [80, Lemma 8.5.3], each
continuous solution of (4.5.1) is locally W 1,4 ∩W 2,2 and the conclusion follows by
taking a finite covering of B1.

Theorem 4.10 (Higher regularity). Let Q ∈W 1,2(B1, S
4) be a weak solution of the

Euler-Lagrange equations (4.2.1). If Q ∈ C0(B1, S
4), then Q is real-analytic.

Proof. By Proposition 4.9, Q ∈W 1,4(B1, S
4) ∩W 2,2(B1, S

4). By Sobolev embedding
theorem, ∇Q ∈ L6 and by (4.5.2) it follows F (x,Q,∇Q) ∈ L3. Linear elliptic
regularity for (4.5.1) gives Q ∈ W 2,3 and in turn ∇Q ∈ Lp for all p < ∞ again by
Sobolev embedding. Now, if ∇Q ∈ Lp for all p <∞, then the same is true (because of
(4.5.2)) also for F (x,Q,∇Q) and the linear elliptic regularity for Q gives Q ∈W 2,p

for all p < ∞. By Sobolev-Morrey embedding, it then follows Q ∈ C1,α for all
α ∈ (0, 1). Going back to Euler-Lagrange equations, a bootstrap argument in the
Hölder spaces C l,α, l ≥ 1 leads us to the chain of implications

Q ∈ C l,α =⇒ ∆Q ∈ C l−1,α =⇒ Q ∈ C l+1,α,

so that Q ∈ C∞(B1, S
4). Since f(·) is smooth, the results in [110, Chapter VI] imply

that each smooth solution of the Euler-Lagrange equations is in fact real-analytic.

76



4.6. THE COMPACTNESS THEOREM

4.6 The compactness theorem

Let Q ∈ AQb be a minimizer of the LdG energy in the class AQb . Let x0 ∈ B1 and
denote

R0 = max
{
r > 0 : Br(x0) ⊂ B1

}
. (4.6.1)

Clearly, 0 < R0 ≤ 1. Pick R > 0. We set

QR(x) := Q(x0 +Rx) (4.6.2)

for all x ∈ R3 such that the right hand side makes sense. As R varies in (0, R0], we
get a family of maps {QR}R. We call each map as in (4.6.2) a scaled map or a blow-up
of Q with center x0. We note few facts.

First, note that, for R fixed, QR is well-defined on each ball B ρR0
R

with ρ ∈ (0, 1].
Second, the balls B ·

R
become bigger and bigger as R decreases.

We now prove that {Q}R is locally equibounded in W 1,2
loc (R3, S4).

Lemma 4.3. Let Q ∈ AQb be a minimizer of the LdG energy (1.1.3). Pick σ > 0
and, for R < R0/σ, define scaled maps QR as in (4.6.2). Then

lim sup
R→0

ˆ
Bσ

|∇QR|2 dx < +∞ (4.6.3)

for each σ > 0. In other words, the family {QR}R is locally equibounded in
W 1,2

loc (R3, S4).

Proof. Let σ > 0 be arbitrary. For all R < R0/σ, by the monotonicity formula (4.3.1)
we have

1
σ

ˆ
Bσ

|∇QR|2 dx ≤ 1
σ

ˆ
Bσ

|∇QR|2 + 2R2F (QR) dx

≤ 2
σR

ˆ
BσR(x0)

1
2 |∇Q|

2 + F (Q) dx

≤ 2
R0
E(Q;BR0(x0)),

hence

lim sup
R→0

ˆ
Bσ

|∇QR|2 dx < +∞

for each σ > 0.
By the very definition of QR, we clearly have that {Q}R is locally equibounded

in L2
loc(R3, S4). Since each compact set in R3 can be enclosed in a sufficiently large

ball centered at the origin, the second claim follows.

Remark 4.6.1. We observe that, in particular, each QR is well-defined on BR0 . This
means that, up to a fixed translation and a fixed dilation, we can assume x0 = 0 and
R0 = 1.
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For the sake of a lighter notation, from now on we take Remark 4.6.1
into account.

Following e.g. [130, 39, 60, 98], we next define scaled energy functionals. Set

ER
(
Q̃;B 1

R

)
=
ˆ
B 1
R

1
2
∣∣∣∇Q̃∣∣∣2 +R2F (Q̃) dx. (4.6.4)

ER
(
·;B 1

R

)
is well defined for Q̃ ∈W 1,2

(
B 1
R
,S0

)
. Note that

ER (QR;B1) = 1
R
E(Q;BR),

so that ER (QR;B1) increases as R↗ 1 by the monotonicity formula (4.3.1).
We now prove a lemma analogous to [119, Lemma 4.6].

Lemma 4.4. Let Q ∈ AQb be a minimizer of the LdG energy in AQb. Let R, QR,
ER as above. Let ρ ∈ (0, 1) and let {vR}R ⊂ W 1,2(B1, S

4) be a family of mappings
such that vR = QR on ∂Bρ. Then

lim inf
R→0

ˆ
Bρ

|∇QR|2 dx ≤ lim inf
R→0

ˆ
Bρ

|∇vR|2 dx. (4.6.5)

Proof. Define ṽR(x) = vR(R−1x) so that ṽR ∈W 1,2(BρR, S4). Since ṽR = Q on ∂BρR
we can extend ṽR as Q on the whole B1 \BρR. We have

E(ṽR;B1)− E(Q;B1) = E(ṽR;BρR)− E(Q;BρR)

=
ˆ
BρR

1
2 |∇ṽR|

2 + F (ṽR) dx−
ˆ
BρR

1
2 |∇Q|

2 + F (Q) dx

≥ 0,

because Q minimizes E(·;B1) in AQb .
Since F ∈ L∞, it follows∣∣∣∣∣

ˆ
BρR

F (ṽR) dx−
ˆ
BρR

F (Q) dx
∣∣∣∣∣ ≤ Cρ3R3,

for some constant C > 0. Scaling back gives
ˆ
Bρ

1
2 |∇QR|

2 dx+O(R) ≤
ˆ
Bρ

1
2 |∇vR|

2 dx,

so we can pass to the limit inferior on both sides as R→ 0 and then we get (4.6.5).

Before stating the compactness theorem, we recall the Luckhaus’ lemma [98, 134]
whose statement below is directly written for our specific context.

Lemma 4.5 (Luckhaus). Let u, v ∈W 1,2(S2, S4). Then, for each λ ∈ (0, 1) there
is w ∈W 1,2(S2 × (1− λ, 1),S0) such that w|S2×{1} = u,w|S2×1−λ = v,

ˆ
S2×(1−λ,1)

|∇w|2 ≤ Cλ
ˆ
S2

(
|∇Tu|2 + |∇T v|2

)
+ Cλ−1

ˆ
S2
|u− v|2 (4.6.6)

and
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dist2(w(x), S4) ≤ Cλ−2
(ˆ

S2

(
|∇Tu|2 + |∇T v|2

)) 1
2
(ˆ

S2
|u− v|2

) 1
2

+ Cλ−3
ˆ
S2
|u− v|2

(4.6.7)

for a.e. x ∈ S2 × (1− λ, 1). Here ∇T is the gradient on S2.

The proof can be found, along with some useful corollaries, for instance in [134,
Chapter 2].

Theorem 4.11 (Compactness theorem in the nonsymmetric case). Let Q ∈ AQb be
a minimizer of E(·, B1) in the class AQb. Let R ∈ (0, 1] and let QR be as in (4.6.2)
(with Remark 4.6.1 understood). Then there is Q0 ∈ W 1,2

loc (R3, S4) and there is a
sequence (QRj )Rj , Rj → 0 as j →∞, which converges to Q0 in the strong topology
of W 1,2

loc (R3,S0) as j → ∞. In addition, Q0 is a locally minimizing harmonic map
and it is degree-zero homogeneous.

Proof. We essentially follow the proof of [119, Proposition 4.4] (which in turn retraces
that by Lin and Wang [97, Lemma 2.2.13]) up to minor modifications.

By Lemma 4.3, {QR}R is locally equibounded in W 1,2
loc (R3, S4) and so it is each

sequence (QRj )Rj , with Rj → 0 as j → ∞, extracted from it. By the Rellich-
Kondrachov theorem there exists Q0 ∈ W 1,2

loc (R3,S0) so that, up to subsequences,
we have QRj ⇀ Q0 (weakly) as j → ∞ in W 1,2

loc (R3,S0) and QRj → Q0 strongly in
L2

loc(R3, S4). Thus, in particular, Q0(x) ∈ S4 a.e., i.e., Q0 ∈ W 1,2
loc (R3, S4). By the

monotonicity formula (4.3.1) and the equiboundedness of the potential (so that it
disappears in the limit R→ 0), it easily follows (mimicking, for instance, [130, Lemma
2.6] or the reasoning in [134, Section 3.2]) that Q0 is degree-zero homogeneous. Thus,
it is enough to show strong convergence and minimality in some ball Bρ ⊂ B1 to get
the same properties on any Bρ ⊂ R3 for any ρ > 0, by the scale invariance of Q0 and
the existence of the full limit of 1

R

´
BR
|∇Q|2 dx as R→ 0.

Let δ ∈ (0, 1) be a fixed number and let w̄ ∈W 1,2(B1, S
4) be such that w̄ ≡ Q0

a.e. on B1 \B1−δ. By Fatou’s lemma and Fubini’s theorem, there exists ρ ∈ (1− δ, 1)
such that

lim
j→∞

ˆ
∂Bρ

∣∣∣QRj −Q0
∣∣∣2 dH2 = 0,

and
ˆ
∂Bρ

(∣∣∣∇QRj ∣∣∣2 + |∇Q0|2
)

dH2 ≤ C < +∞.

Applying Lemma 4.5 to

λ = λRj < δ, u = QRj (ρ·), v = w̄(ρ·) ≡ Q0(ρ·),

for a decreasing sequence of numbers λRj → 0, we conclude that there exists a
sequence wRj ∈W 1,2(Bρ,S0) such that if we choose e.g.

λRj =
(ˆ

∂Bρ

∣∣∣QRj −Q0
∣∣∣2 dH2

)1/6

< δ,
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then we have

wRj (x) =

w̄
(

x
1−λRj

)
, |x| ≤ ρ(1− λRj ),

QRj (x), |x| = ρ.
(4.6.8)

ˆ
Bρ\Bρ(1−λRj )

∣∣∣∇wRj ∣∣∣2 ≤ C
[
λRj

ˆ
∂Bρ

(∣∣∣∇TQRj ∣∣∣2 + |∇TQ0|2
)

+ λ−1
Rj

ˆ
∂Bρ

∣∣∣QRj −Q0
∣∣∣2] j→∞−→ 0.

(4.6.9)

dist(wRj , S4) j→∞−→ 0 uniformly on Bρ \Bρ(1−λRj ). (4.6.10)

Define comparison maps (vRj )Rj ⊂W 1,2(Bρ, S4)

vRj (x) =

w
(

x
1−λRj

)
, |x| ≤ ρ(1− λRj )

Π(wRj (x)), ρ(1− λRj ) ≤ |x| ≤ ρ,

where Π : O → S4 is the nearest point projection (O a sufficiently narrow neighbor-
hood of S4 so that Π is well-defined and smooth as needed). Then, by Lemma 4.4,
(4.6.9) and (4.6.10),

ˆ
Bρ

|∇Q0|2 ≤ lim inf
j→∞

ˆ
Bρ

∣∣∣QRj ∣∣∣2
≤ lim inf

j→∞

ˆ
Bρ

∣∣∣∇vRj ∣∣∣2
= lim

j→∞

ˆ
Bρ(1−λRj )

∣∣∣∣∣∇w
(

·
1− λRj

)∣∣∣∣∣
2

+
ˆ
Bρ\Bρ(1−λRj )

∣∣∣∇(Π ◦ wRj )
∣∣∣2


≤ lim
j→∞

(1− λRj )
ˆ
Bρ

|∇w|2 + C Lip(Π)2
ˆ
Bρ\Bρ(1−λRj )

∣∣∣∇wRj ∣∣∣2


=
ˆ
Bρ

|∇w|2 .

(4.6.11)

Since w is arbitrary, inequality (4.6.11) implies both minimality of Q0 and strong
convergence QRj → Q0 in W 1,2(Bρ, S4) as j →∞.

An easy consequence of Theorem 4.11 is the (joint) upper semicontinuity of the
density of Q0. Together with Theorem 4.6, this readily implies that the singular
set of a minimizer Q ∈ AQb of the LdG energy in the class AQb is a finite set
of isolated points. We shall give explicit proofs for the analogous results in the
equaviarant case. In fact, the proofs are exactly the same in the two cases, up to
typographical modifications which make the equivariant case a little more delicate
(compare Corollaries 5.15, 5.16).
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4.7 Liouville theorem and global interior regularity

In the nonsymmetric case, the Liouville theorem of Schoen-Uhlenbeck [132, Corollary
2.8] applies, hence we have that minimizing tangent maps are constant and from this
global regularity for minimizers of the LdG energy follows.

To summarize, we state

Theorem 4.12 (Global interior regularity of nonsymmetric minimizers). Let Q ∈
AQb be a minimizer for the LdG energy (1.1.3) within the class AQb, defined in
(1.1.14), with Qb as in (1.1.13). Then Q is real-analytic in the interior of B1; i.e.,
Q ∈ Cω(B1, S

4).

Proof. By the ε-regularity theorem, Theorem 4.6, Q is (Hölder-)continuous in a
neighboorhood of each point at which there is no concentration of energy. By the
monotonicity formula, the singular set of Q coincides with its concentration set, hence
a point where Q is not singular is in fact a regular point. Moreover, the singular
set is a closed subset of B1 of Hausdorff dimension strictly less than one (see, for
instance, [53, Proposition 9.21]). To decide whether a point x0 ∈ B1 is singular or
not, blow-up Q around it. The compactness theorem, Theorem 4.11, implies that,
whatever x0, blown-up maps around it converges in the strong W 1,2

loc (R3, S4)-topology
to a minimizing tangent map Q0 ∈W 1,2

loc (R3, S4). Q0 is a homogeneous-degree zero
harmonic map from R3 into S4, so it is smooth on R3 \ {0} by the Hélein’s theorem
[68], in fact constant by the Liouville theorem of Schoen& Uhlenbeck [132, Corollary
2.8]. Then Q is Hölder continuous in a neighborhood of x0. Since x0 is arbitrary,
Q0 is Hölder continuous everywhere. Hence Q0 is a strong solution of the Euler-
Lagrange equations (4.2.1), so that it fits hypotheses of the higher-regularity theorems,
Proposition 4.9 and Theorem 4.10. Thus we have the conclusion.

Note that the Liouville theorem of Schoen&Uhlenbeck does not hold in the
symmetric case. Its lack is the main difficulty in the study of the S1-equivariant
problem.

4.8 Boundary regularity

We now extend the regularity results up to the boundary. More precisely, we prove
that there exists a full neighboorhood of the boundary S2 of B1 on which Q is Hölder
continuous (hence smooth as the datum and the boundary allow by higher-regularity
theorems). The argument is similar to that for interior regularity. Hence, following
[131] and [97, Section 2.4], we need a boundary monotonicity formula, a boundary
ε-regularity theorem, a boundary compactness theorem and we have to prove the
nonexistence of nonconstant minimizing tangent maps at any boundary point.

Actually, the main step towards boundary regularity is the boundary monotonicity
formula. Indeed, once we got this, we can use it to prove the boundary versions of
ε-regularity theorem and of the compactness of blow-ups with a small modification
of the argument that we shall indicate afterwards. Moreover, the last step can be
accomplished by [97, Theorem 2.4.3] (which we state below for our specific case).

Theorem 4.13 ([97, Theorem 2.4.3]). Any minimizing harmonic map u0 ∈W 1,2(B+
1 , S

4)
that is homogeneous of degree zero and that is constant on B1 ∩ {xn = 0} must be
constant.
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Before stating the result, we introduce a bit of notation. Let x0 ∈ ∂B1 = S2. We
denote

Ωr := B1 ∩Br(x0) (4.8.1)

and we let n be the outward unit normal to ∂Ωr. The area element on ∂Ωr is denoted
dσ. Throughout this section, we set L = 1 for ease.

We now state the result.

Theorem 4.14 (Boundary monotonicity formula). Let Q ∈ AQb be a minimizer of
the LdG energy in the class AQb, where Qb is given in (1.1.13) and let x0 ∈ ∂B1.
Define

Er = 1
r

ˆ
Ωr

1
2 |∇Q|

2 + F (Q) dx. (4.8.2)

Then there exist R0 > 0 and a constant C = C(a, b, c,Qb, R0), C > 0, so that

dEr
dr
≥ −C(a, b, c,Qb, R0), ∀0 < r < R0. (4.8.3)

Proof. The main idea is to follow the proof of [106, Lemma 9]. The only problem
with this is that calculations in it require Q ∈ W 3,2(B1, S

4) ∩ C1,α(B1, S
4) for all

α ∈ (0, 1), and we do not known if this is the case. To overcome the problem, we use
the following trick: for any ε > 0, define

Eε(P ;B1) := E(P ;B1) + 1
4ε2

ˆ
B1

(
1− |P |2

)2
dx+ 1

2

ˆ
B1

|P −Q|2 dx,

on

AQb(S0) :=
{
P ∈W 1,2(B1, S

4) : P = Qb on S2
}
.

Since the norm constraint has been removed, the Euler-Lagrange equations cor-
responding to Eε(·;B1) are semilinear with a polynomial nonlinearity. Thus, any
critical point of Eε(·;B1) is completely smooth up to the boundary and hence we get
a boundary monotonicity formula as in [106] (of course we will have also some extra
terms generated by the two penalization we introduced). If we now consider a family
{P ε}ε>0 of minimizers of Eε(·;B1), then it is easy to prove2 that P ε → Q strongly in
W 1,2(B1, S

4) and hence we obtain a boundary monotonicity formula for Q passing to
the limit in the boundary monotonicity formulae for the P εs. Since the extra terms
vanish in the limit, we get Eq. (4.3.1).

Once the boundary monotonicity formula is given, we can extend the ε-regularity
theorem also to balls intersecting the boundary. In order to do this, a suitable
reflection argument of the map across the boundary is needed. Indeed, in order the
argument via John-Nirenberg inequality works, we have to define the map in a full
ball and to control the energy of the extension with the energy of the original map, via
the monotonicity formula. On the other hand, we also need that the extended map
satisfies an appropriate version of Lemma 4.2, thus the extension must be constructed
with care. A suitable way is the following: write x′ = x

|x| and define

2The proof of this statement is completely analogous to the one we shall give in Chapter 5 for
S1-equivariant minimizers. Since the symmetric case is less explored, we feel more convenient to give
full details for that case and being more concise here, in order to contain the volume of this thesis.
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Q̂(x) :=

Q(x), if x ∈ B1,

Q
(

x
|x|2
)
, if x ∈ B2 \B1.

(4.8.4)

Writing the system of the Euler-Lagrange equations in the shortened form{
−∆Q = |∇Q|2Q+ f(Q), in B1,

Q = Qb, on ∂B1,

and recalling that, if u : B1 → R and v(x) = u
(

x
|x|2
)
for x ∈ B2 \B1 it holds

ˆ
B2\B1

1
|x|2
|∇v|2 dx =

ˆ
B1\B1/2

|∇u|2 dx,

we are led to−div
(

1
|x|2∇Q̂

)
= 1
|x|2

∣∣∣∇Q̂∣∣∣2 Q̂+ 1
|x|6 f(Q̂), in B2 \B1,

Q̂ = Qb, on ∂B1.
(4.8.5)

Therefore

−∆Q̂ =
∣∣∣∇Q̂∣∣∣2 Q̂− ( x

|x|2
· ∇
)
Q̂+ 1

|x|4
f(Q̂), in B2 \B1 (4.8.6)

in the weak sense.
Notation. For P,N ∈ S0, we let P ⊗N the linear mapping S0 → S0 given by

(P ⊗N)Q := 〈N,Q〉P. (4.8.7)

The map ⊗ is bilinear on S0 × S0.
For x ∈ B2, we define

Q̃(x) =
{

(2Qb(x′)⊗Qb(x′)− I) Q̂(x), if 1 < |x| < 2,
Q(x), if |x| < 1.

(4.8.8)

Observe that for |x| > 1

∂Q̃

∂r
(x) =

(
2Qb(x′)⊗Qb(x′)− I

) ∂Q̂(x)
∂r

=
(
I − 2Qb(x′)⊗Qb(x′)

) 1
|x|2

∂Q

∂r

(
x

|x|2

)

= 1
|x|2

∂Q

∂r

(
x

|x|2

)
− 2

〈
Qb(x′),

∂Q

∂r

(
x

|x|2

)〉
Qb(x′)

= 1
|x|2

∂Q

∂r

(
x

|x|2

)
− 2

〈
Qb(x′)−Q

(
x

|x|2

)
,
∂Q

∂r

(
x

|x|2

)〉
Qb(x′),

so that ∂Q̃
∂r = ∂Q

∂r on ∂B1, which leads to

ˆ
B2

〈
Q̃, ϕ

〉
dx =

ˆ
B1

〈−∆Q,ϕ〉 dx+
ˆ
B2\B1

〈
−∆Q̃, ϕ

〉
dx ∀ϕ ∈ C∞c (B2,R5).
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The fact that the previous equality holds for any ϕ ∈ C∞c (B2,R5) and not only for
those vanishing on ∂B1 follows from arguments in [127, 128], since the reflection map
satisfies the same relevant properties.
Remark 4.8.1. For N ∈ S0, |N | = 1, the mapping N 7→ (2N ⊗N − I) is isometric
and (2N ⊗N − I)(2N ⊗N − I) = I.

Easy computations give

−∆Q̃ = (2Qb ⊗Qb − I)(−∆Q̂) + (terms of order ≤ 1)

=
∣∣∣∇Q̂∣∣∣2 Q̃+ (terms of order ≤ 1)

=
∣∣∣∇Q̃∣∣∣2 Q̃+ (terms of order ≤ 1),

where we used (4.8.6), in the weak sense in B2 \B1. Thus,

−∆Q̃ =
∣∣∣∇Q̃∣∣∣2 Q̃+ g(x, Q̃,∇Q̃), in B2 \B1, (4.8.9)

with
∣∣∣g(x, Q̃,∇Q̃)

∣∣∣ ≤ C (1 +
∣∣∣∇Q̃∣∣∣). We can now state

Theorem 4.15 (Boundary ε-regularity theorem). Let x0 ∈ ∂B1 and let Q ∈ AQb be
a weak solution of the Euler-Lagrange equations (4.2.1) satisfying (4.8.3). There exist
R > 0 and ε > 0 such that, if

1
2R

ˆ
Ω2R

|∇Q|2 dx ≤ ε,

and if Qb ∈ C∞(∂B1,S0), then Q ∈ C∞
(
B1 ∩BR/4(x0),S0

)
.

Proof. The small energy assumption on Q implies, by means of the boundary mono-
tonicity formula, small energy for Q̃ in B2R(x0). Now, we would like to apply Theorem
4.6 to Q̃ and prove Hölder continuity in the ball BR(x0) ⊂ B2, and thus the Hölder
continuity of Q̃ near BR(x0)∩ ∂B1. In order to do this, it suffices to observe that the
additional terms due to the reflection procedure can still be accommodated within
the proof of Theorem 4.6, see the proof of [119, Proposition 4.5] for details.

Established the Hölder continuity of Q̃ in BR(x0), we write (4.8.9) as

−∆Q̃ = H(x, Q̃,∇Q̃),

where
∣∣∣H(x, Q̃,∇Q̃)

∣∣∣ ≤ C

(
1 +

∣∣∣∇Q̃∣∣∣2). As in [129] (one could equally well appeal
to results in Section 4.5), we get

‖∇Q̃‖L∞(BR/2(x0)) ≤ C

and from here the linear theory gives Q ∈ C∞
(
B1 ∩BR/4(x0),S0

)
.

Remark 4.8.2. In the case of a more general domain, another issue arises and must be
taken into account, that is, the deformation of the metric on the domain due to how the
reflection is made. Let η denote the deformed metric. In this respect, one must verify
that the system can be cast in the form (4.4.11), with

∣∣∣g(x, Q̃,∇ηQ̃)
∣∣∣ ≤ C (1 +

∣∣∣∇ηQ̃∣∣∣),
and div and ∆ to be understood as the divergence and the Laplace-Beltrami operators
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w.r.t. the metric η. Observe that η may not be smooth (and, in general, will not).
Next, harmonicity of functions must be understood w.r.t. the metric η and thus some
care is needed to obtain gradient estimates analogous to Eq. (4.4.20). In the case
above, the transformation involved by the reflection is the Kelvin transform, which
is conformal and, because of this, it is quite harmless in both directions, as we saw
above.

As a consequence of Theorem 4.15, the singular set and the concentration set
of Q coincide up to the boundary. Thus, it suffices to show strong convergence of
blow-ups to minimizing tangent maps constant on the boundary of ∂R3

+ to conclude,
in view of Theorem 4.13. We have the following theorem.

Theorem 4.16 (Boundary strong compactness theorem). Let x0 ∈ ∂B1 and let
Q ∈ AQb be a minimizer of the E(·;B1) in the class AQB . Let R ∈ (0, 1] and define
QR,x0 := Q(x0 +Rx), where x ∈ R−1(B1 \ {x0}). Then there exist a sequence (Rj)j,
with Rj → 0 as j → ∞, and Q0 ∈ W 1,2

loc (R3
+, S

4) so that QRj ,x0 → Q0 strongly in
W 1,2

loc (R3
+,S0). In addition, Q0 is a locally minimizing harmonic map into S4 with

Q0|∂R3
+

= const.. Moreover, Q0 is degree-zero homogeneous.

Proof. Clearly, {QR,x0}R is bounded in norm and hence there exist a sequence (Rj)j ,
Rj → 0 as j → ∞, and a weak limit Q0 ∈ W 1,2

loc (R3
+,S0). By Rellich-Kondrachov

theorem, up to subsequences, the convergence is strong in L2
loc and hence we can

assume Q0(x) ∈ S4 a.e.. Since Q agrees with Qb on ∂B1 (in the trace sense) and Qb
is smooth, by weak convergence and the continuity of the trace operator, we have
Q0|∂R3

+
= const. on the boundary. From now on, owing to the boundary monotonicity

formula, the proof goes exactly as in the interior case but considering the domains
Ωr and their suitable homothetic restrictions instead of full balls.

Thus, an application of Therem 4.13 gives

Theorem 4.17 (Boundary regularity). Let Q ∈ AQb be a minimizer of E(·;B1) in
the class AQb, with Qb as in (1.1.13). Then there exist a δ > 0 and a neighborhood
Oδ of ∂B1 such that Q ∈ Cω(Oδ, S4). Thus, Q ∈ Cω(B1, S

4).

Proof. Due to Theorem 4.13, any minimizing tangent map at the boundary is constant.
Thus, the concentration set of Q is empty in a full neighborhood of the boundary.
By Theorem 4.15, Q is completely smooth around any boundary point (and also
real-analytic, by the linear theory, since Qb is such). By covering, we have both
assertions.

Remark 4.8.3. Nothing here really depends on the specific form of the boundary
datum Qb. Smoothness up to the boundary and interior real-analyticity will hold
true also for data like those considered in [106], i.e. Qb =

(
nb ⊗ nb − 1

3I
)
, where

nb ∈W 1,2(S2, S2).
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Chapter 5

Landau-de Gennes theory with
norm-constraint and with
symmetry, I

Synopsis. In this Chapter we add another constraint to the norm constraint already
considered in Chapter 4, that is we require the Q-tensors to be also S1-equivariant,
see Eq. (1.1.16). The reason for doing this is provided by Theorem 5.1, which
essentially converts smooth S1-equivariant solutions into biaxial torus solution, in
the sense of Definition 1.2. Although such a conversion is logically the final step of
the process, we place Theorem 5.1 at the very beginning of our discussion here to
motivate our approach to the problem. Note that, in principle, there is no relation
between S1-equivariant minimizers and critical points of the nonsymmetric problem,
see Sections 5.2, 5.3. Since symmetry is plugged by hand, we have to provide a bridge
between the two things in order that our approach makes sense. This is done in
Section 5.5, where an ad hoc version of Palais’ Principle of Symmetric Criticality [117]
is proven, ensuring that a S1-equivariant minimizer is indeed a critical point also
of the nonsymmetric problem. We then follow the same steps as in Chapter 4: we
obtain a monotonicity formula in Section 5.7 and the strong compactness of blow-ups
in Section 5.8. To step further, we need a classification of all possible tangent maps,
an issue deserving an its own chapter (also because of the fact that it is of its own
interest) and developed in Chapter 6. Stability of the possible tangent maps will be
studied in Chapter 7.

5.1 The semidisk argument

In this section we prove a topological result ensuring that smooth S1-equivariant
minimizers of the LdG energy functional (1.1.3) with respect the boundary con-
dition (1.1.13) are indeed biaxial torus solutions. We shall also give some slight
generalizations.

Theorem 5.1 (The semidisk argument). Let Q ∈ Aax
Qb

be a S1-equivariant minimizer
of the LdG energy functional (1.1.3), with Qb as in (1.1.13). If Q is smooth in B1, Q
is a biaxial torus solution in B1, in the sense of Definition 1.2.

Proof. Take any plane Πz containing the z-axis. Let D be the disk be the disk
obtained intersecting B1 and Πz and let D+ be one of the two congruent semidisks
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in which D splits. Let us write ∂D+ = A ∪ C, where A is the segment [−1,+1] on
the z-axis and C the semicircle connecting the end-points of A.

Let Q be a minimizer of E(Q,B1) as in the statement. Let λ1 ≤ λ2 ≤ λ3 denote
the eigenvalues of Q. Clearly, Q = Qb on C and thus λ1 = λ2 on C; moreover, by
equivariance, λ1 = λ2 on A. If we follow the change of direction of the eigenvector of
the highest eigenvalue λ3 of Qb along ∂D, we get the nontrivial path in RP 2.

We now claim that there exists x̄ ∈ D so that λ2(x̄) = λ3(x̄). Indeed, suppose
that such a point does not exists. Then λ3 would a simple eigenvalue in the whole
D, hence the corresponding eigenspace would be well-defined and continuous in D.
Thus, we would have a map from D into RP 2 that is homotopic to a constant and,
at the same time, nontrivial on the boundary. Since Q is smooth and nonvanishing,
this is impossible and a point x̄ ∈ B1 with the claimed property must exists.

Now, by equivariance we get a whole circle of such points, this circle lying in
a plane perpendicular to the z-axis and linking the boundary of D. Hence, Q is a
biaxial torus solution, in the sense of Definition 1.2.

Remark 5.1.1. It is crucial in the above argument that Q 6= 0 everywhere in D (and
hence in B1). Proving that {x ∈ B1 : Q(x) = 0} 6= ∅ promises to be very difficult; in
the nonsymmetric case, this is has been proven by Contreras & Lamy [29] assuming
reduced temperature (see §2.5.4) sufficiently large. Assuring the nonvanishing of Q is
precisely why we assume the Lyuksyutov constraint, which is approximately valid
deep in the nematic phase [100, 120]. The Lyuksyutov constraint is assumed in some
simulations (such as [84, 85, 137]) but not in all (e.g., [47, 32, 75]). In any case, deep
in the nematic phase the biaxial torus solutions turn out to be preferred versus the
hedgehog.

Notice that, in the above proof, it is not really important that Qb is uniaxial
with identical lowest eigenvalues; in this respect, all we need to conclude is in fact
that the highest eigenvalue remains always simple on the boundary. This observation
immediately yields

Corollary 5.2. Let Q ∈ Aax
Qb

be a S1-equivariant minimizer of the LdG energy
functional (1.1.3), with Qb ∈ C∞(∂B1, S

4) a smooth S1-equivariant boundary datum
such that its highest λ3 is simple everywhere on the boundary. If Q is smooth in B1,
then Q is a biaxial torus solution in B1, in the sense of Definition 1.2.

5.2 Transformation groups and equivariance

Let M,N be smooth manifolds, G a group acting on M and N by diffeomorphism by
means of representations

πM : G→ Diff M, (5.2.1)
πN : G→ Diff N, (5.2.2)

and let u : M → N ; we say that u is (πM , πN )-equivariant if and only if the diagram:

M
u−−−−→ N

πM
y yπN
M

u−−−−→ N
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commutes, namely, iff the following intertwining relation is satisfied:

u(πM (g)x) = πN (g)u(x), ∀g ∈ G, ∀x ∈M. (5.2.3)

Informally, this is the same to say that acting on x ∈M and then applying u is the
same than acting on u(x) ∈ N .
Notation. Sometimes, for the sake of a lighter notation, we write g· to mean the
action of the element g ∈ G by means of an already-specified action on objects
following g·.

Triples (M,G, πM ) are said transformation groups when the action of G on M is
compatible with the structure on M . In case M is a smooth manifold, requiring G
be a Lie group acting by diffeomorphisms (i.e., πM (g) : M →M is a diffeomorphism
for each g ∈ G) ensures that the group action is compatible with the differentiable
structure on M . We then say that M is a G-manifold and that πM is a G-action (of
G on M).

Suppose we are interested in a class A of maps u : M → N . We can use (5.2.3)
to induce an action of G on A setting

g · u ≡ πN (g−1)u(πM (g)·). (5.2.4)

Equivariant maps are then the fixed points of this twisted action.
The interpretation in this case requires little more care. For instance, when

A ≡ C∞(M,N), then (5.2.4) defines in fact a G-action in the above sense. The
same when A = W 1,2(M,V ), with V a linear space. When A = W 1,2(M,N), then1

g ·u ∈W 1,2(M,N) if u ∈W 1,2(M,N), so (5.2.4) is meaningful. However,W 1,2(M,N)
is not a manifold when dimM > 1 [66], so there is no smooth structure to preserve.
Nevertheless, if G is a topological group, then the action is continuous; said another
way, the function

Ψ(g, u) = g · u

is continuous with respect to g as a function on G×W 1,2(M,N) (endowed with the
product topology).

Some standard references for the theory of transformation groups are [82, 19, 83].
Below, we recall some result of interest for us in the sequel.

If M is a smooth manifold, G a compact Lie group and (M,G, πM ) is a transfor-
mation group, for any x ∈M the orbit

Gx :=
{
πM (g)(x) : g ∈ G

}
is an embedded submanifold of M . As a consequence of the Tubular Neighborhood
Theorem [19, Theorem IV.2.2], an entire tubular neighborhood of Gx will have
orbits of at least the same dimension. Thus, the function x 7→ dimGx is lower
semicontinuous.

Now, let M,N be compact Riemannian manifolds (M with or without boundary,
N without boundary) and let G act by isometries onM,N . Since G acts by isometries
on M and N , it is possible pulling-back vector fields on M and N by πM (g), resp.,
πN (g) for all g ∈ G. Let X be a vector field on M . We write

1The claim is true without modifications if G acts by isometries on M and N . If G acted by
diffeomorphism, we had have to consider pullback metrics on M . We do not stress this point in our
notations because we deal mainly with isometries.
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g ·X = πM (g)∗X, (5.2.5)

meaning

(πM (g)∗X)(p) := dπM (g−1)πM (g)(p)(X(πM (g)(p))), ∀p ∈M. (5.2.6)

We use analogous notations for vector fields on N .
Now, suppose u : M → N is equivariant (for the time being, assume u is smooth;

later we will indicate how to generalize to the Sobolev case) and let Z be a section of
the pull-back bundle u∗TN (i.e., a vector field along u). Then

(g · Z)(p) = dπN (g−1)u(πM (g)(p))Z(πM (g)p), ∀p ∈M. (5.2.7)

For u : M → N a smooth map, the differential du of u can be interpreted as a
u∗TN -valued one-form on M ; i.e., as a section of the bundle T ∗M ⊗ u∗TN . Let D̃
denote the covariant derivative induced by the Levi-Civita connection on the product
bundle �2T ∗M⊗u∗TN . The trace (with respect to the metric onM) of the covariant
differential D̃(du) of u is called the tension field of u and it is denoted τ(u) [34]. It is
a vector field along u, to which (5.2.7) applies when u is equivariant (in fact, more is
true, see below).

When u ∈ W 1,2(M,N), we have to renounce the intrinsic view; however, the
above discussion still makes sense if we embed N in Rn via Nash-Moser theorem and
view all the objects extrinsically (i.e., Rn-valued), interpreting all the equalities in
the sense of distributions. With some care, it is then possible to prove the following
lemma [74, Lemma 6] (we refer to [74] for a proof).

Lemma 5.1 ([74, Lemma 6]). Suppose that u ∈ W 1,2(M,N) is equivariant. Then
the following identities hold in the sense of distributions for every g ∈ G.

(i) g · du(X) = du(g ·X) for every smooth tangent vector field X on M .

(ii) g · DXZ = Dg·X(g · Z) for every Z ∈ L2(u∗TN) and every smooth tangent
vector field X on M (here DX denotes the covariant derivative induced by the
Levi-Civita connection on u∗TN).

(iii) g · τ(u) = τ(u).

Remark 5.2.1. When u ∈W 1,2(M,N), τ(u) is a little better than a distribution: it
belongs to H−1 + L1 (with gain of integrability L2 via Sobolev embedding). Usually
[111, Chapter 2] it is given the name tension field only when it belongs to L1

loc(M,Rn).
These subtleties are immaterial for our purposes: we shall content ourselves to consider
τ(u) as a Rn-valued distribution on M .

5.3 Minimization in a symmetric class
Let M be a set, G a group acting on M and E : M → R be a functional. Let Σ
denote the set of symmetric (equivariant) points of E , i.e.,

Σ = {u ∈M : g · u = u ∀g ∈ G} ,

where g · u is defined in (5.2.4).
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Definition 5.1 (Critical equivariant point). Let M be a set, G a group acting on
M , Σ the set of equivariant points of M and let E : M → R be a functional. We say
that u ∈ Σ is a critical equivariant point of E if it is an extremal of E with respect
all allowed2 equivariant variations.

Clearly, u is a critical equivariant point of E iff it is a critical point of E |Σ (since
this restricts admissible variations to those belonging to Σ).

The following question arises naturally.

Problem. Under what conditions on M , G and E it turns out that a critical
equivariant point of E is in fact a critical point of E in M ?

Restrictions are needed. Palais has shown this in [117] by counterexamples. In
the same remarkable paper, Palais has also given sufficient conditions on M , G and
E so that it is in fact true that critical equivariant points are equivariant critical
points. This last statement is usually known as the Principle of symmetric criticality
(abbreviated herein to “the Principle”).

In particular, the Principle holds when M is a Riemannian manifold (of finite or
infinite dimension), G a group acting on M by isometries and E a smooth G-invariant
functional. This is the simplest setting because of the comfortable framework provided
by Riemannian geometry, helping in both calculations and interpretation.

One can weaken the hypotheses on M at price of strengthening those on G. In
particular, one can ask M be a smooth Banach G-manifold and then the Principle
continues holding true if G is assumed to be a compact Lie group. In the case G
is a semisimple Lie group, the Principle is true for finite dimensional real-analytic
G-manifolds. In any case, however, a smooth structure on M is required, in order to
give a precise meaning to the objects involved.

We now consider the problem of minimizing E(·;B1) in Aax
Qb

. We observe that Aax
Qb

is weakly closed in AQb = W 1,2
Qb

(B1, S
4). However, W 1,2

Qb
(B1, S

4) is not a manifold
[66]. This is definitely a problem, since none of Palais’ results applies. One can think
to get round the problem considering that W 1,2

Qb
(B1,S0) is in fact a Hilbert space, so

that the Principle applies and a critical point of E(·;B1) restricted to

Σ =
{
Q ∈W 1,2

Qb
(B1,S0) : Q = g−1 ·Q(g·) ∀g ∈ S1

}
is in fact a critical point for E(·;B1) in W 1,2

Qb
(B1,S0). However, here the point is

that the norm constraint generates a curvature term in the Euler-Lagrange equations
(compare (5.6.1) and [106, Eq. (14)], so that a critical point of E(·;B1) in Aax

Qb
satisfies a different system of equations than a critical point of E(·;B1) in Σ. In other
words, we cannot avoid facing directly the lacking of a smooth structure on AQb .

Fortunately, the main idea of Palais still holds. We describe it in few words below.
Suppose u ∈ Σ is a critical point of E |Σ. Then ∇Eu (∇E is the gradient vector field
associated to E ) is orthogonal to TuΣ (the tangent space to Σ at u). To show that u
is a critical point of E in M , then it is sufficient to prove that ∇Eu ∈ TuΣ.

Of course, we cannot speak of tangent spaces, gradients and so on in our setting
but we can substitute ∇Eu with the Euler-Lagrange operator, seen as a distribution,
and we can replace the membership to TuΣ (i.e., the vanishing of the differential dEu)
with the vanishing in the sense of distributions. If Q is a critical point of E(·;B1) in
Aax
Qb

, we then have the vanishing of the Euler-Lagrange operator E (Q) in the sense of
2Depending on the problem, the set of allowed variations can be smaller than Σ.
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distributions when tested against equivariant variations. We then test E (Q) against
arbitrary test functions. Using the fact that S1 is a compact topological group, we
have an invariant Haar integral on S1 and we can use this invariance to transfer the
equivariance of Q to the test function. Hence we are led again to testing E (Q) against
equivariant variations and so it vanishes in the sense of distribution. We shall see
details in Section 5.5.

5.4 Existence of minimizers

Here we prove the existence of minimizers of the LdG energy in the class AQb given
in (1.1.15) of the S1-equivariant Q-tensors.

Proposition 5.3 (Existence of minimizers). Let E(·;B1) the LdG energy, defined as
in (1.1.3) and considered over the class Aax

Qb
given (1.1.15), with Qb as in (1.1.13).

Then there exists at least one minimizer of E(·;B1) in the class (1.1.15).

Proof. As we saw in the proof of Proposition 4.1, the map H(x) =
√

3
2

(
x
|x| ⊗

x
|x| −

I
3

)
belongs to AQb and so it will suffice to observe that it is S1-equivariant (in fact,
SO(3)-equivariant) to conclude that Aax

Qb
is nonempty.

We already know from Proposition 4.1 that E(·;B1) is bounded below and lower
semicontinuous with respect to the weak topology on AQb . We now take a minimizing
sequence (vk)k ⊂ Aax

Qb
and we show that it converges to a limit in Aax

Qb
. Indeed,

as in the proof of [40, Theorem 2 in 8.2], by convexity, coercivity and Poincaré
inequality, (vk)k is bounded in W 1,2(B1, S

4). Then we can extract a subsequence
weakly convergent in W 1,2(B1, S

4), hence in AQb (because AQb is weakly closed).
Let v denote its weak limit. By the Rellich-Kondrachov theorem, we can extract a
further subsequence (vkj′ )kj′ strongly convergent in L2(B1, S

4) to v and hence we
pick up another subsequence converging pointwise a.e.. Since S1-equivariance is a
pointwise-property, it then follows that v is S1-equivariant. Hence v ∈ Aax

Qb
.

5.5 Symmetric criticality for S1-equivariance of Q-tensors

As we already seen in Section 5.3, it is not immediate that a critical point of
E(·;B1)|Aax

Qb
is a critical point of E(·;B1)|AQb . Here we show that this is indeed the

case.
Remembering Definition 5.1, a critical equivariant point Q ∈ Aax

Qb
solves the Euler-

Lagrange (4.2.1) in the sense of distributions when we permit only S1-equivariant
variations. Our aim is to show that we can allow arbitrary variations and the same
continues holding true.

Since AQb is not a manifold [66], Palais’ results do not apply. However, we can
borrow the same principle, as explained at the end of Section 5.3. We supply the
lacking of a differentiable structure on AQb by exploiting the Haar invariant integral
on S1 in such a way to transfer the equivariance from a critical point Q ∈ Aax

Qb
to

variantions against it is tested. This technique is inspired by the proof of [49, Theorem
1] and by arguments in [74].

Notation. In what follows, −f(Q) denotes the right-hand side of (4.2.1). We set

τ(Q) = ∆Q+ |∇Q|2Q. (5.5.1)
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hS1 denotes the Haar measure on S1. We recall that hS1 a regular biinvariant Borel
probability measure; it is the unique Borel probability measure on S1 with this
property [126, Theorem 5.14].

Before stating the theorem, we recall from Section 5.2 (cfr. [74, Lemma 6(c)])
that τ(Q) is equivariant (i.e., a fixed point of the S1(-twisted)-action on maps):

τ(Q) = g · τ(Q).

We further observe that also f(Q) is equivariant:

f(Q) = g · f(Q).

Theorem 5.4. Let Q ∈ Aax
Qb

a critical point of E(·;B1)|Aax
Qb
. Then Q is a critical

point of E(·;B1) in the class AQb.

Proof. Let φS1 ∈ C∞c (B1,S0) be a S1-equivariant variation. Since |Q| = 1 a.e., we
have

∣∣∣Q+ tφS
1
∣∣∣ 6= 0 for sufficiently small t > 0. Then, by hypothesis,

d

dt

∣∣∣∣
t=0

E

(
Q+ tφS

1∣∣Q+ tφS1∣∣
)

= 0.

Now let φ ∈ C∞c (B1,S0) be arbitrary. Using Haar’s theorem [126, Theorem 5.14]
and the equivariance of τ(Q), f(Q), we have

d

dt

∣∣∣∣
t=0

E

(
Q+ tφ

|Q+ tφ|

)
=
ˆ
B1

[τ(Q) + f(Q)]φ dx =
ˆ
B1

ˆ
S1

[τ(Q) + f(Q)]φ dhS1 dx

=
ˆ
B1

ˆ
S1

[g · τ(Q) + g · f(Q)]φ dhS1 dx =
ˆ
B1

ˆ
S1
g · [τ(Q) + f(Q)]φ dhS1 dx

=
ˆ
B1

[τ(Q) + f(Q)]
ˆ
S1

(g−1 · φ) dhS1 dx =
ˆ
B1

[τ(Q) + f(Q)]ϕS1 dx,

where ϕS1 =
´
S1 g

−1 · φ dhS1 . We note that ϕS1 is S1-equivariant. Indeed,

πS
4(m)ϕS1(x) =

ˆ
S1
πS

4(m)πS4(g)φ(πB1(g−1x)) dhS1

=
ˆ
S1
πS

4(g)φ(πB1(g−1m)x) dhS1

= ϕS
1(πB1(m)x), ∀m ∈ S1,

where we repeatedly used Haar’s theorem.
We now have

d

dt

∣∣∣∣
t=0

E

(
Q+ tφ

|Q+ tφ|

)
=
ˆ
B1

[τ(Q) + f(Q)]ϕS1 = 0,

hence the conclusion follows by the initial remark.
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5.6 Euler-Lagrange equations

As a consequence of Theorem 5.4, the Euler-Lagrange equations (4.2.1) carry over to
the S1-equivariant case with no modifications. We report them below for convenience.

Proposition 5.5 (Euler-Lagrange equations). Let E(·;B1) the LdG energy functional
defined in (1.1.3) over the class Aax

Qb
given in (1.1.15), with Qb as in (1.1.13), and

let Q ∈ Aax
Qb

be a critical point of E(·;B1). Then Q is a solution in the sense of
distributions of the following boundary value problem:

 L∆Qij + L |∇Q|2Qij = b
(
Qij Tr(Q3)−QikQkj + 1

3δij
)

in B1,

Qij = (Qb)ij in the trace sense on ∂B1.
(5.6.1)

5.7 Monotonicity formula

Our strategy for obtaining a monotonicity formula for minimizers in the class Aax
Qb

consist in getting it by taking the limit in the monotonicity formulae for approximate
minimizers. To state this program more precisely, we start by fixing the minimizer3

Q? ∈ Aax
Qb

for which we want to derive the monotonicity formula and picking arbitrarily
ε > 0. Then we define the energy functional

Eε(Q̃;B1) =
ˆ
B1

1
2
∣∣∣∇Q̃∣∣∣2 +F (Q̃) dx+ 1

4ε2

ˆ
B1

(
1−

∣∣∣Q̃∣∣∣2)2
dx+ 1

2

ˆ
B1

|Q−Q?|2 dx,

(5.7.1)
where F (·) is the potential appearing in the LdG energy and we consider Eε(·;B1)
defined over the class

Aax
Qb

(S0) :=
{
Q̃ ∈W 1,2

Qb
(B1,S0) : Q̃ is S1-equivariant

}
. (5.7.2)

Note that we already know, by Proposition 5.3, that Aax
Qb

(S0) is nonempty.
We call a functional of this kind a penalized energy functional for the LdG energy.

Note that, if Q̃ = Q?, then it makes sense to evaluate Eε(Q?;B1) and in fact we have
Eε(Q?;B1) = E(Q?;B1) for any ε > 0.

The reason for introducing penalized functionals lies in the following observations.
First of all, we note that

Proposition 5.6. The Euler-Lagrange equations for the energy functional Eε(·;B1),
defined as in (5.7.1) over the class (5.7.2), are

∆Q̃ij = −aQ̃ij−b
(
Q̃ikQ̃kj −

1
3δij

)
+cQ̃ij Tr(Q̃)2+ 1

ε2 Q̃ij

(∣∣∣Q̃∣∣∣2 − 1
)

+
(
Q̃ij −Q?ij

)
.

(5.7.3)

The derivation is standard, the only detail to which pay attention being the
tracelessness constraint. This is taken into account by adding a Lagrange multiplier
to the energy density as in proof of Theorem 4.2 (calculations are much easier now
because there is no norm constraint).

3The trick of adding a penalization for being far from the fixed minimizer has been suggested by
V. Millot (private communication).
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We point out that the system (5.7.3) is semilinear, with a polynomial nonlinearity.
Regularity is then trivial in this case. Hence, any solution of the boundary-value
problem formed by (5.7.3) and the boundary condition in (5.7.2) is real-analytic
in the interior and smooth as the boundary datum and the boundary permit in a
neighborhood of the boundary.

Next, observe that solutions to (5.7.3) do exist; indeed, we have

Proposition 5.7. Let ε > 0 and let Eε(·;B1) be defined as in (5.7.1) over the class
(5.7.2). Then there exists a minimizer Q̃ε for Eε(·;B1) in the class Aax

Qb
(S0).

Proof. We already observed that the admissible class is not empty. Obviously,
Eε(·;B1) is bounded below. Being Qb a Dirichlet boundary condition, W 1,2

Qb
(B1,S0)

is closed with respect to the weak topology of W 1,2(B1,S0). To show that Eε(·;B1) is
weakly lower semicontinuous in the weak topology of W 1,2

Qb
(B1,S0), we note that the

corresponding energy density is convex in ∇(·) and that it is coercive in (·). Indeed,
the first integral in (5.7.1) is exactly the LdG energy which we have already shown to
be weakly lower semicontinuous with respect to the weak topology of W 1,2(B1,S0),
while the second integrand is clearly coercive in (·). To conclude, we take a minimizing
sequence (vk)k in Aax

Qb
(S0). The convexity of E(·;B1) in ∇(·) and its coercivity in (·),

together with Poincaré inequality, imply that (vk)k is bounded in W 1,2
Qb

(B1,S0), hence
it converges to a limit Q̃ε ∈ W 1,2

Qb
(B1,S0) (because W 1,2

Qb
(B1,S0) is weakly closed).

By Rellich-Kondrachov theorem, we can extract a subsequence strongly convergent
in L2(B1,S0) to Q̃ε and then a further subsequence converging pointwise a.e. to
Q̃ε. Then Q̃ε must be S1-equivariant because S1-equivariance passes to pointwise
limits.

By the principle of symmetric criticality, cfr. Section 5.3, a minimizer of Eε(·;B1)
is a solution in the sense of distributions of the Euler-Lagrange equations (5.7.3); in
fact, it is in particular a smooth classical solution, as we remarked.

Now, let ε > 0 and let Q̃ε a minimizer for Eε(·;B1). Being a smooth critical point,
Q̃ε is stationary with respect both external variations and internal variations, so that
a monotonicity formula for Q̃ε is simply derived by multiplying (5.7.1) by xk∂kQij
and then integrating by parts. We have the following result.

Proposition 5.8 (Monotonicity formula for minimizers of penalized functionals).
Fix a minimizer Q? of the LdG energy, Q? ∈ Aax

Qb
. Let ε > 0 and let Eε(·;B1) defined

as in (5.7.1) over the class (5.7.2). Suppose Q̃ε is a minimizer of Eε(·;B1) in the class
(5.7.2). Then, for every x0 ∈ B1 and every 0 < R1 < R2 such that BR2(x0) ⊂⊂ B1,
the following monotonicty formula holds:

1
R2

ˆ
BR2 (x0)

Eε(∇Q̃ε, Q̃ε)−
1
R1

ˆ
BR1 (x0)

Eε(∇Q̃ε, Q̃ε)
ˆ
BR2 (x0)\BR1 (x0)

1
|x− x0|

∣∣∣∣∣∂Q̃ε∂r

∣∣∣∣∣
2

+ 2
ˆ R2

R1

dR
R2

ˆ
BR(x0)

F (Q̃ε) + 2
ˆ R2

R1

dR
R2

ˆ
BR(x0)

(
1−

∣∣∣Q̃ε∣∣∣2)2

4ε2

+ 2
ˆ R2

R1

dR
R2

ˆ
BR(x0)

∣∣∣Q? − Q̃ε∣∣∣2
2 +

ˆ R2

R1

dR
R2

ˆ
BR(x0)

〈
Q̃ε −Q?, x · ∇Q?

〉
, (5.7.4)
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where

Eε(∇Q̃ε, Q̃ε) = 1
2
∣∣∣∇Q̃ε∣∣∣2 + F (Q̃ε) + 1

4ε2

(
1−

∣∣∣Q̃ε∣∣∣2)2
+ 1

2
∣∣∣Q̃ε −Q?∣∣∣2

and ∂
∂r means the directional derivative in the radial direction (x− x0)/ |x− x0|.

Proof. By translational invariance, it suffices to prove (5.7.4) for x0 = 0. We will
henceforth drop the specification of the center of the balls.

Multiply (5.7.3) by xk∂kQ̃ε and then integrate by parts on a ball BR such that
BR ⊂ B1. We are readily led to

0 =
ˆ
BR

xk∂kQ̃
ε
ij(x)

{
∆Q̃εij(x)

−

∂F (Q̃ε(x))
∂Q̃εij

+
1−

∣∣∣Q̃ε(x)
∣∣∣2

ε2 Q̃εij(x) + (Q̃εij −Q?ij)−
1
3δij Tr[(Q̃ε(x))2]


 dx.

Since Tr Q̃ε = 0,

ˆ
BR

xk∂kQ̃
ε
ij(x)

(1
3δij Tr[(Q̃ε(x))2]

)
dx = 1

3

ˆ
BR

xk∂k Tr Q̃ε(x) Tr[(Q̃ε(x))2] dx ≡ 0.

Hence

0 =
ˆ
BR

xk∂kQ̃
ε
ij(x)

∆Q̃εij(x)

∂F (Q̃ε(x))
∂Q̃εij

+
1−

∣∣∣Q̃ε(x)
∣∣∣2

ε2 Q̃εij(x)

+ (Q̃εij −Q?ij)


=
ˆ
BR

∆Q̃εij(x)xk∂kQ̃εij(x)−
ˆ
BR

xk∂kQ̃
ε
ij(x)∂F (Q̃ε(x))

∂Q̃εij

−
ˆ
BR

xk∂kQ̃
ε
ij

1−
∣∣∣Q̃ε(x)

∣∣∣2
ε2 Q̃εij(x) + (Q̃εij(x)−Q?ij(x))Q̃εij(x)

≡ I1 + I2 + I3 + I4.

We have

I1 =
ˆ
BR

xk∂kQ̃
ε
ij(x)∆Q̃εij(x) dx

≡
ˆ
BR

xk∂kQ̃
ε
ij(x)Q̃εij,ll(x) dx

= −
ˆ
BR

Q̃εij,l(x)(δlkQ̃εij,l(x) + xkQ̃
ε
ij,kl(x)) dx+

ˆ
∂BR

Q̃εij,l(x)xkQ̃εij,k(x)xl
R

dσ

=−
ˆ
BR

Q̃εij,l(x)Q̃εij,l(x) dx+ 3
ˆ
BR

1
2Q̃

ε
ij,l(x)Q̃εij,l(x) dx

−
ˆ
∂BR

Q̃εij,l(x)Q̃εij,l(x)
2

xkxk
R

dσ +
ˆ
∂BR

(Q̃εij,k(x)xk)2

R
dσ.

(5.7.5)
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Similarly,

I2 = −
ˆ
BR

xk∂kQ̃
ε
ij(x)∂F (Q̃ε(x))

∂Qij
dx

= −
ˆ
BR

xk∂kF (Q̃ε(x)) dx

= 3
ˆ
BR

F (Q̃ε(x)) dx−
ˆ
∂BR

F (Q̃ε(x))xkxk
R

dσ.

(5.7.6)

Observe that

Q̃εij(x)∂kQ̃εij(x)

1−
∣∣∣Q̃ε(x)

∣∣∣2
ε2

 = ∂k


(

1−
∣∣∣Q̃ε(x)

∣∣∣2)2

4ε2

 ,
so that it follows

I3 = −
ˆ
BR

xk∂kQ̃
ε
ij(x)

1−
∣∣∣Q̃ε(x)

∣∣∣2
ε2 Q̃εij(x) dx

= −
ˆ
BR

xk∂k


(

1−
∣∣∣Q̃ε(x)

∣∣∣2)2

4ε2

 dx

= 3
ˆ
BR

(
1−

∣∣∣Q̃ε(x)
∣∣∣2)2

4ε2 dx−
ˆ
∂BR

(
1−

∣∣∣Q̃ε(x)
∣∣∣2)2

4ε2
xkxk
R

dσ.

(5.7.7)

Analogously,

I4 = 3
ˆ
BR

∣∣∣Q̃ε −Q?∣∣∣
2

2

dx−
ˆ
∂BR

∣∣∣Q̃ε −Q?∣∣∣2
2

xkxk
R

dσ −
ˆ
BR

〈
Q̃ε −Q?, x · ∇Q?

〉
dx.

(5.7.8)
Joining (5.7.5), (5.7.6), (5.7.7), (5.7.8) and recalling the definition of radial deriva-

tive, we have

0 =
ˆ
BR

1
2
∣∣∣∇Q̃ε∣∣∣2 −R ˆ

∂BR

∣∣∣∇Q̃ε∣∣∣2 +R

ˆ
∂BR

∣∣∣∣∣∂Q̃ε∂r

∣∣∣∣∣
2

+ 3
ˆ
BR

F (Q̃ε)−R
ˆ
∂BR

F (Q̃ε)

+ 3
ˆ
BR

(
1−

∣∣∣Q̃ε∣∣∣2)2

4ε2 −R
ˆ
∂BR

(
1−

∣∣∣Q̃ε∣∣∣2)2

4ε2

+ 3
ˆ
BR

∣∣∣Q̃ε −Q?∣∣∣
2 −R

ˆ
∂BR

∣∣∣Q̃ε −Q?∣∣∣2
2 −

ˆ
BR

〈
Q̃ε −Q?, x · ∇Q?

〉
.

Comparing to the expression for the energy density Eε given in the statement,
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0 =
ˆ
BR

Eε(∇Q̃ε, Q̃ε)−R
ˆ
∂BR

Eε(∇Q̃ε, Q̃ε) +R

ˆ
∂BR

∣∣∣∣∣∂Q̃ε∂r

∣∣∣∣∣
2

+ 2
ˆ
BR

F (Q̃ε) + 2
ˆ
BR

(
1−

∣∣∣Q̃ε∣∣∣2)2

4ε2

+ 2
ˆ
BR

∣∣∣Q̃ε −Q?∣∣∣2
2 +

ˆ
BR

〈
Q? − Q̃ε, x · ∇Q?

〉
.

Divide both members by R2 and use (4.3.23),

d

dR

(
1
R

ˆ
BR

Eε(∇Q̃ε, Q̃ε)
)

= 1
R

ˆ
∂BR

∣∣∣∣∂Q∂r
∣∣∣∣2 + 2

R2

ˆ
BR

F (Q̃ε)

+ 2
R2

ˆ
BR

(
1−

∣∣∣Q̃ε∣∣∣2)2

4ε2 + 2
R2

ˆ
BR

∣∣∣Q̃ε −Q?∣∣∣2
2 + 1

R2

ˆ
BR

〈
Q? − Q̃ε, x · ∇Q?

〉
.

Now integrate on [R1, R2]. It follows:

1
R2

ˆ
BR2

Eε(∇Q̃ε, Q̃ε)−
1
R1

ˆ
BR1

Eε(∇Q̃ε, Q̃ε) =
ˆ
BR2\BR1

1
|x|

∣∣∣∣∣∂Q̃ε∂r

∣∣∣∣∣
2

+ 2
ˆ R2

R1

dR
R2

ˆ
BR

F (Q̃ε) + 2
ˆ R2

R1

dR
R2

ˆ
BR

(
1−

∣∣∣Q̃ε∣∣∣2)2

4ε2

+ 2
ˆ R2

R1

dR
R2

ˆ
BR

∣∣∣Q̃ε −Q?∣∣∣2
2 +

ˆ R2

R1

dR
R2

ˆ
BR

〈
Q? − Q̃ε, x · ∇Q?

〉
.

So far we have proved that, for each ε > 0, the functional Eε(·;B1) is well-defined
and have minimizers Q̃ε in the class Aax

Qb
(S0) which satisfy the monotonicity formula

(5.7.4). Therefore, as ε > 0 runs, we get families

{Eε(Q̃ε;B1)}ε>0, {Q̃ε}ε>0.

We now show that they are both equibounded, the first one in R and the second one
in Aax

Qb
(S0).

Lemma 5.2. Fix a minimizer Q? of the LdG energy, Q? ∈ Aax
Qb
. For each ε > 0, let

Eε(·;B1) be defined as in (5.7.1) over the class (5.7.2) and let Q̃ε be a minimizer of
Eε(·;B1) in the class (5.7.2). Then the family {Eε(Q̃ε;B1)}ε>0 is equibounded in R;
i.e., there exists some finite constant C > 0 such that

sup
ε>0

Eε(Q̃ε;B1) ≤ C
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5.7. MONOTONICITY FORMULA

Proof. As we already pointed out, it makes sense to evaluate Eε(·;B1) for the fixed
LdG minimizers Q? ∈ Aax

Qb
. For each ε > 0 we have

Eε(Q̃ε;B1) ≤ Eε(Q?;B1).

because Q̃ε is a minimizer of Eε(·;B1). Since LdG minimizers in Aax
Qb

have finite LdG
energy, there exists C > 0 such that E(Q;B1) = C, so that

sup
ε>0

Eε(Q̃ε;B1) ≤ C.

The equiboundedness of {Q̃ε}ε>0 requires more work. Before proving it, we
observe the following simple fact.

Lemma 5.3. Fix a minimizer Q? of the LdG energy, Q? ∈ Aax
Qb
. For each ε > 0, let

Eε(·;B1) be defined as in (5.7.1) over the class (5.7.2) and let Q̃ε be a minimizer of
Eε(·;B1) in the class (5.7.2). Pick a sequence (Q̃εj )εj , εj → 0 as j → ∞, from the
family {Q̃ε}ε>0 and suppose it has a weak limit Q∞ (i.e., a limit in the weak topology
of W 1,2(B1;S0)) as j →∞. Then Q∞ is S1-equivariant and it is S4-valued.

Proof. By the equiboundedness of {Eε(·;B1)}ε>0, there is some finite constant C > 0
such that

1
4ε2

ˆ
B1

(
1−

∣∣∣Q̃ε∣∣∣2)2
dx ≤ C =⇒

ˆ
B1

(
1−

∣∣∣Q̃ε∣∣∣2)2
dx ≤ C1ε

2 (5.7.9)

for each ε > 0. Note also that, since (Q̃εj )εj converges weakly, it is bounded in
the W 1,2-norm, so Rellich-Kondrachov theorem implies that, upon passing to a
subsequence (which we not relabel) if necessary, Q̃εj → Q∞ strongly in L2(B1;S0).
This ensures that there exists another subsequence (not relabeled) on which Q̃εj (x)→
Q∞(x) for a.e. x ∈ B1 as j → ∞. Pointwise convergence a.e. implies in turn that
Q∞ is S1-equivariant, since the Q̃εj -s are. By Fatou’s lemma and (5.7.9),

ˆ
B1

(
1− |Q∞|2

)2
=
ˆ
B1

lim inf
j→∞

(
1−

∣∣∣Q̃εj ∣∣∣2)2
≤ lim inf

j→∞

ˆ
B1

(
1−

∣∣∣Q̃εj ∣∣∣2)2
≤ 0.

Since
(
1− |Q∞|2

)2
≥ 0, this implies |Q∞| = 1 a.e. and we are done.

We now recall from [106, Lemma 1] that for each Q̂ ∈ S0 we have

Tr(Q̂3) ≤

∣∣∣Q̂∣∣∣3
√

6
. (5.7.10)

Lemma 5.4. Fix a minimizer Q? of the LdG energy, Q? ∈ Aax
Qb
. For ε > 0, let

Eε(·;B1) be defined as in (5.7.1) over the class (5.7.2) and let Q̃ε be a critical point
for Eε(·;B1) in the class (5.7.2). Then

‖Q̃ε‖L∞(B1,S0) ≤ 1. (5.7.11)
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Proof. We closely follow the argument of [106, Proposition 3]. Suppose, for the sake
of a contradiction, that there exists x∗ ∈ B1 such that

∣∣∣Q̃ε∣∣∣ (x∗) > 1. If Q̃ε is a critical
point for Eε(·;B1) in the class (5.7.2), it is actually a free critical point by the results
quoted in Section 5.3, and it solves the boundary-value problem

∆Q̃εij = −aQ̃εij − b
(
Q̃εikQ̃

ε
kj −

1
3δij

)
+ cQ̃εij Tr(Q̃ε)2

+ 1
ε2 Q̃

ε
ij

(∣∣∣Q̃ε∣∣∣2 − 1
)

+ (Q̃εij −Q?ij) in B1,

Q̃ε = Qb on ∂B1.

By our choice of the boundary condition,
∣∣∣Q̃ε∣∣∣ = 1 on the boundary. Since the

function
∣∣∣Q̃ε∣∣∣2 : B1 → R must attain its maximum at x∗ ∈ B1, we necessarily have

that

∆
(1

2
∣∣∣Q̃ε∣∣∣2) (x∗) ≤ 0. (5.7.12)

Multiplying both sides of the Euler-Lagrange equations by Q̃εij , we obtain

∆
(1

2
∣∣∣Q̃ε∣∣∣2) (x∗) = −aTr((Q̃ε)2)− bTr((Q̃ε)3) + c

(
Tr(Q̃ε)2

)2

+
∣∣∣∇Q̃ε∣∣∣2 + 1

ε2

∣∣∣Q̃ε∣∣∣2 (∣∣∣Q̃ε∣∣∣2 − 1
)

+ 1
ε2 Q̃

ε
ij

(
Q̃εij −Q?ij

)
. (5.7.13)

We note that

− aTr((Q̃ε)2)− bTr((Q̃ε)3) + c
(
Tr(Q̃ε)2

)2
≥ f

(∣∣∣Q̃ε∣∣∣) , (5.7.14)

where

f
(∣∣∣Q̃ε∣∣∣) = −a

∣∣∣Q̃ε∣∣∣2 − b√
6

∣∣∣Q̃ε∣∣∣3 + c
∣∣∣Q̃ε∣∣∣4

by (5.7.10). Next we note that

f
(∣∣∣Q̃ε∣∣∣) > 0 for

∣∣∣Q̃ε∣∣∣ > 1,

and that ∣∣∣Q̃ε∣∣∣2 (∣∣∣Q̃ε∣∣∣2 − 1
)
> 0 for

∣∣∣Q̃ε∣∣∣ > 1,

and
Q̃εij(Q̃εij −Q?ij) ≥

∣∣∣Q̃ε∣∣∣ (∣∣∣Q̃ε∣∣∣− 1
)
> 0 for

∣∣∣Q̃ε∣∣∣ > 1,

which together (5.7.13) and (5.7.14) imply

∆
(1

2
∣∣∣Q̃ε∣∣∣2) (x) > 0

for all interior points x ∈ B1 with
∣∣∣Q̃ε(x)

∣∣∣ > 1. This contradicts (5.7.12) and thus
gives the conclusion.
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Corollary 5.9. Fix a minimizer Q? of the LdG energy, Q? ∈ Aax
Qb
. For each ε > 0,

let Eε(·;B1) be defined as in (5.7.1) over the class (5.7.2) and let Q̃ε be a minimizer
of Eε(·;B1) in the class (5.7.2). Then the family {Q̃ε}ε>0 is equibounded in the
W 1,2-norm, i.e., there exists a constant C > 0 such that

sup
ε>0
‖Q̃ε‖W 1,2(B1,S0) ≤ C.

Proof. Since {Eε}ε>0 is equibounded by Lemma 5.2, it follows that there exists a
constant C1 > 0 such that

sup
ε>0
‖∇Q‖2L2(B1,S0) ≤ C1.

By Lemma 5.4 and by the boundedness of B1, it follows that

sup
ε>0
‖Q̃ε‖2L2(B1,S0) ≤ C2

for some constant C2. Then

sup
ε>0
‖Q̃ε‖2W 1,2(B1,S0) ≤ C,

where C = C1 + C2.

Then we have

Proposition 5.10. Fix a minimizer Q? of the LdG energy, Q? ∈ Aax
Qb
. For each

ε > 0, let Eε(·;B1) be defined as in (5.7.1) over the class (5.7.2) and let Q̃ε be a
minimizer of Eε(·;B1) in the class (5.7.2). Then, for each sequence (Qεj )εj , where
εj → 0 as j → ∞, picked up from the family {Q̃ε}ε>0, there is a subsequence (not
relabeled) such that:

(a) Qεj ⇀ Q? in W 1,2(B1,S0) as j →∞;

(b) Qεj → Q? in L2(B1,S0) as j →∞;

Proof. By Corollary 5.9, {Qε}ε>0 is equibounded and so is every sequence picked up
from it. Thus, for any such sequence there exists a weak limit Q∞ ∈W 1,2(B1,S0). By
Rellich-Kondrachov theorem and by Lemma 5.3, both conclusions in the statement
hold for Q∞. We now show that Q∞ = Q? in L2(B1,S0). Since Eε(Q?;B1) =
E(Q?;B1), by the weak lower semicontinuity of the first and third integrals in
Eε(·;B1) (which do not depend on ε), equiboundedness of {Eε(·;B1)}ε>0 and Fatou’s
lemma, we have

ˆ
B1

1
2 |∇Q

∞|2 + F (Q∞) dx+ 1
2

ˆ
B1

|Q∞ −Q?|2 dx

≤ lim inf
j→∞

Eε(Q̃εj ;B1) ≤ lim sup
j→∞

Eεj (Q̃εj ;B1) ≤ E(Q?;B1).

Since Q? is a minimizer of the LdG w.r.t. its boundary condition and we have already
proven that Q∞ ∈ Aax

Qb
, we must have

E(Q∞;B1) ≥ E(Q?;B1).
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Thus, the above inequalities clearly imply
ˆ
B1

|Q∞ −Q?|2 dx = 0,

i.e., Q∞ = Q? in L2(B1,S0) and thus both conclusions follow at once.

The W 1,2-convergence in the above result is actually strong.

Corollary 5.11. Under the hypotheses of Proposition 5.10 (we retain the same
notations), we have Q̃εj → Q? strongly in W 1,2(B1,S0) as j →∞.

Proof. Since we already have the weak convergence Q̃εj ⇀ Q? as j →∞ and since
W 1,2(B1,S0) is a Hilbert space, it suffices to prove that

ˆ
B1

1
2
∣∣∣∇Q̃εj ∣∣∣2 dx→

ˆ
B1

1
2 |∇Q

?|2 dx (5.7.15)

as j →∞.
Now, Q? is a minimizer of the LdG energy. On the other hand, it is also the weak

sequential limit of (Q̃εj )εj and hence

E(Q?;B1) ≤ lim inf
j→∞

Eεj (Q̃εj ;B1) ≤ lim sup
j→∞

Eεj (Q̃εj ;B1) ≤ E(Q?;B1), (5.7.16)

which implies

lim
j→∞

E(Q̃εj ;B1) = E(Q?;B1) (5.7.17)

which forces
lim
j→∞

1
4ε2
j

ˆ
B1

(
1−

∣∣∣Q̃εj ∣∣∣2)2
dx = 0 (5.7.18)

Now, observe that

F (Q̃εj )→ F (Q?) strongly in L2(B1,S0), (5.7.19)

since Q̃εj → Q? strongly in L2(B1,S0) and F (·) is a polynomial function. Therefore
we have

lim
j→∞

ˆ
B1

F (Q̃εj ) dx =
ˆ
B1

F (Q?) dx (5.7.20)

which together with (5.7.16) and (5.7.18) enforces (5.7.15), thus the conclusion
follows.

Corollary 5.11 qualifies in a precise sense the minimizers Q̃εs as approximate
minimizers for the LdG energy. We can now state the main result of this section. In
fact, it is a simple consequence of Corollary 5.11. Nevertheless, in view of its global
importance in the present work, we prefer to state it as a theorem.

Theorem 5.12 (Monotonicity formula). Fix a minimizer Q? of the LdG energy,
Q? ∈ Aax

Qb
. For each ε > 0, let Eε(·;B1) be defined as in (5.7.1) over the class (5.7.2)

and let Q̃ε be a minimizer of Eε(·;B1) in the class (5.7.2). Pick a sequence (Q̃εj )εj ,
εj → 0 as j →∞, from the family {Q̃ε}ε>0 and let Q? ∈ Aax

Qb
its strong W 1,2-limit

(see Corollary 5.11). Then Q? satisfies the following monotonicity formula:
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1
R2

ˆ
BR2 (x0)

e(∇Q?, Q?)− 1
R1

ˆ
BR1 (x0)

e(∇Q?, Q?)

=
ˆ
BR2 (x0)\BR1 (x0)

1
|x− x0|

∣∣∣∣∂Q?∂r

∣∣∣∣2 + 2
ˆ R2

R1

dR
R2

ˆ
BR(x0)

F (Q?), (5.7.21)

where x0 ∈ B1, R1 < R2 are such that BR2(x0) ⊂⊂ B1 and e(∇Q,Q) is the LdG
energy density as defined in (1.1.4). As always, ∂

∂r means the directional derivative
in the radial direction (x− x0)/ |x− x0|.

Proof. Write (5.7.4) for Q̃εj and take the limit j →∞ on both sides. Then

lim
j→∞

(
1
R2

ˆ
BR2 (x0)

Eεj (∇Q̃εj , Q̃εj )− 1
R1

ˆ
BR1 (x0)

Eεj (∇Q̃εj , Q̃εj )
)

= lim
j→∞


ˆ
BR2 (x0)\BR1 (x0)

1
|x− x0|

∣∣∣∣∣∂Q̃εj∂r

∣∣∣∣∣
2

+ 2
ˆ R2

R1

dR
R2

ˆ
BR(x0)

F (Q̃εj )

+ 2
ˆ R2

R1

dR
R2

ˆ
BR(x0)

(
1−

∣∣∣Q̃εj ∣∣∣2)2

4ε2 + 2
ˆ R2

R1

dR
R2

ˆ
BR(x0)

∣∣∣Q̃ε −Q?∣∣∣2
2

+
ˆ R2

R1

dR
R2

ˆ
BR(x0)

〈
Q̃ε −Q?, x · ∇Q?

〉)
, (5.7.22)

First, note that the strong convergence ∇Q̃εj → ∇Q? as j →∞ implies the strong
convergence

∂Q̃εj

∂r
→ ∂Q?

∂r
as j →∞ in L2(B1,S0).

Indeed, by definition of directional derivative,

0 ≤
ˆ
B1

∣∣∣∣∣∂Q̃εj∂r
− ∂Q?

∂r

∣∣∣∣∣
2

dx ≤
ˆ
B1

∣∣∣∇Q̃εj −∇Q?∣∣∣2 dx

and the last member tends to 0 as j →∞. Next, observe that (5.7.18) implies

lim
j→∞

1
4ε2
j

ˆ
BR

(
1−

∣∣∣Q̃εj ∣∣∣2)2
= 0, ∀0 < R < 1,

since
(

1−
∣∣∣Q̃εj ∣∣∣2)2

≥ 0. In view of the strong W 1,2-convergence of Qεj towards Q?,
(5.7.19), (5.7.18) and the above remark, all the limits involved in (5.7.22) do exist, so
that the limit of the sum becomes the sum of the limits and we get (5.7.21).

Remark 5.7.1. This argument actually holds entirely also in the nonsymmetric case.
In a previous version of this work, the trick of fixing a minimizer and then penalizing
being distant from it was not recognized. Because of this, the approximation argument
was less powerful and gave a monotonicity formula only for a class of minimizers,
those that can be obtained as strong limits of minimizers of Ginzburg-Landau-type
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penalizations of the LdG energy. Thus, even if all the computations were valid also
without symmetry, there was a substantial reason to not extend the argument also in
the nonsymmetric setting. In this version of the work, we retained the inner-variations
method in §4.3 for a threefold reason: to not change too much the new version w.r.t.
the one approved by the referees (even if one of them envisaged the possibility of
extension to all minimizers); to detail a second way to get the monotonicity formula
(which avoids requiring explicitly stationarity) and to highlight an important difference
between the symmetric and the nonsymmetric case.

5.8 The compactness theorem

In this section we prove a strong compactness theorem for blow-ups of S1-minimizers
Q of E(·;B1) in the class Aax

Qb
.

The main difficulty in the proof is the lack of the Luckhaus’ lemma (Lemma 4.5)
whose proof is indeed nonequivariant, in the sense that comparison maps constructed in
it are generally not equivariant. Looking at the proof of Theorem 4.11 to understand
the problem, we see that it would not be legitimate to invoke the minimality of
scaled maps QR, since they are minimizing only among equivariant maps. We shall
remedy this inconvenient by constructing by hand comparisons maps having the same
properties as those given by the Luckhaus’ lemma but that are also equivariant. We
note that there is in literature an equivariant version of the Luckhaus’ lemma, proved
by Gastel [49]. However, it cannot be used in this context without some adaptations
because of the fact that our energy functional is not the Dirichlet energy but the
LdG energy. Moreover, we do not need the full power of the Luckhaus’ lemma and
we do not aim to full generality, so we preferred to make a more explicit construction
modeled over the specific case at hand. For the construction, we followed the line
of earlier results, limited to the context of axially symmetric harmonic maps from
B1 into S2, due to Grotowski [56] who in turn detailed a sketchy argument of Hardt,
Kinderlehrer & Lin [61].

We point out three important remarks. First, let x0 ∈ B1 and consider the family
of blown-up maps {QR}R (of course, the center of blowing-up is understood to be x0).
Then maps QR-s are generally not equivariant. Indeed, blowing-up is easily seen not
to preserve equivariance in general. However, if x0 ∈ {z-axis} ∩ B1, then blow-ups
are equivariant.

Secondly, the ε-regularity theorem, Theorem 4.6, and higher-regularity theorems
hold without modifications even for Q ∈ Aax

Qb
minimizing the LdG energy. Indeed,

Theorem 5.4 maps Q into a critical point of the free problem. Criticality, along with
a monotonicity formula, is all that is needed in the proof of Theorem 4.6.

Thirdly, S1-minimizers Q of E(·;B1) cannot have singularities located off the
z-axis. Indeed, any Q ∈W 1,2(B1, S

4) has H1-null concentration set [53, Proposition
9.21] and, by the monotonicity formula and the ε-regularity theorem, singQ = Σ(Q).
Hence, all possible singularities of Q are contained into the z-axis. Since the rôle of
blowing-up is allowing to decide whether a point is singular or not, we see that we
need to blow-up Q only around points belonging to the z-axis.

In view of the previous remarks, definitions and auxiliary results in Section 4.6
carry over without modifications, except for the fact that blowing-up centers are
always understood as points belonging to the z-axis and that all the statements must
be understood in the S1-equivariant setting. Keeping this in mind, we now restate,
for the sake of convenience, some of that results. Proofs are exactly the same and we
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shall not rewrite them here. Plainly, when the monotonicity formula is evoked, we
now mean formula (5.7.21).

Let x0 ∈ {z-axis} ∩B1 and let Q ∈ Aax
Qb

be a minimizer of the LdG energy (1.1.3)
in the class Aax

Qb
. Let R0 as in (4.6.1). We define maps QR as in (4.6.2). In view of

the previous remarks, each QR is S1-equivariant. We have

Lemma 5.5. Let Q ∈ Aax
Qb

be a minimizer of the LdG energy (1.1.3) in the class
Aax
Qb
. Fixed x0 ∈ {z-axis} ∩ B1, pick arbitrarily σ > 0 and, for R < R0/σ, define

scaled maps QR as in (4.6.2). Then

lim sup
R→0

ˆ
Bσ

|∇QR|2 dx < +∞ (5.8.1)

for each σ > 0. In other words, the family {QR}R is locally equibounded in
W 1,2

loc (R3, S4).

From now on, we take Remark 4.6.1 into account. So, all QR-s are well-defined
on B1. Scaled energy functionals are defined exactly as in (4.6.4) but, of course,
restricted to S1-equivariant maps.

It still holds, with the same proof, the following lemma.

Lemma 5.6. Let Q ∈ Aax
Qb

be a minimizer of the LdG energy in Aax
Qb
. Let R, QR be

as above. Let ρ ∈ (0, 1) and let {vR}R ⊂W 1,2(B1, S
4) be a family of S1-equivariant

mappings such that vR = QR on ∂Bρ. Then

lim inf
R→0

ˆ
Bρ

|∇QR|2 dx ≤ lim inf
R→0

ˆ
Bρ

|∇vR|2 dx. (5.8.2)

We can now prove

Theorem 5.13 (Compactness theorem in the equivariant case). Let Q ∈ Aax
Qb

be a
minimizer of the LdG energy in Aax

Qb
. Fix x0 ∈ {z-axis}∩B1 and let R, QR, ER be as

above and consider the family {QR}R. Then there is Q0 ∈W 1,2
loc (R3, S4) and there is

a sequence (QRj )Rj , Rj → 0 as j →∞, which converges to Q0 in the strong topology
of W 1,2

loc (R3,S0). In addition, Q0 is a S1-equivariant locally minimizing harmonic
map and it is degree-zero homogeneous.

Proof. As we said, the proof must be different from that of Theorem 4.11 because
of the fact that Luckhaus’ lemma does not apply. On the other hand, by results
above, this is the only actual difference and we shall remedy the lack by constructing
S1-equivariant competitors that satisfy all needed properties by hand. The rest of
the proof goes essentially like that of Theorem 4.11.

By Lemma 5.5, {QR}R is locally equibounded in W 1,2
loc (R3, S4) and so it is each

sequence (QRj )Rj , with Rj → 0 as j → ∞, extracted from it. By the Rellich-
Kondrachov theorem there exists Q0 ∈ W 1,2

loc (R3,S0) so that, up to subsequences,
we have QRj ⇀ Q0 (weakly) as j → ∞ in W 1,2

loc (R3,S0) and QRj → Q0 strongly in
L2

loc(R3, S4). Thus, in particular, Q0(x) ∈ S4 a.e., i.e., Q0 ∈W 1,2
loc (R3, S4). Moreover,

Q0 is S1-equivariant, because the pointwise limit of a sequence of S1-equivariant maps
is itself S1-equivariant. By the monotonicity formula (5.7.21) and the equiboundedness
of the potential (so that the potential disappears in the limit R→ 0), it easily follows
(mimicking, for instance, [130, Lemma 2.6] or the reasoning in [134, Section 3.2]) that
Q0 is degree-zero homogeneous. Thus, it is enough to show strong convergence and
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minimality in some ball Bρ ⊂ B1 to get the same properties on any Bρ ⊂ R3 for any
ρ > 0, by scale invariance of Q0 and the existence of the full limit of 1

R

´
BR
|∇Q|2 dx

as R→ 0.
Let δ ∈ (0, 1) be a fixed number and let w ∈W 1,2(B1, S

4) be such that w ≡ Q0
a.e. on B1 \B1−δ. By Fatou’s lemma and Fubini’s theorem, there exists ρ ∈ (1− δ, 1)
such that

lim
j→∞

ˆ
∂Bρ

∣∣∣QRj −Q0
∣∣∣2 dH2 = 0, (5.8.3)

and
ˆ
∂Bρ

(∣∣∣∇QRj ∣∣∣2 + |∇Q0|2
)

dH2 ≤ C < +∞. (5.8.4)

Let us choose

λRj =
(ˆ

Bρ

∣∣∣QRj −Q0
∣∣∣2 dH2

)1/6

.

Then λRj < δ for j large enough and λRj → 0 as j →∞.
Before introducing comparision maps, we slice Bρ in a convenient way, following

ideas in [61]. We set
Bρ = B(1−λRj)ρ ∪ Eρ,j ∪ Fρ,j , (5.8.5)

where

Fρ,j =
{
x ∈ Bρ : (1− λRj )ρ ≤ |x| ≤ ρ, |(x1, x2)| ≤ λRjρ |x|

}
(5.8.6)

and

Eρ,j =
(
Bρ \B(1−λRj)ρ

)
\ Fρ,j . (5.8.7)

Of course,

Fρ,j = F+
ρ,j ∪ F

−
ρ,j ,

with F±ρ,j congruent caps, one in the northen hemisphere (+) and the other in the
southern hemisphere (-).

Next, we define comparison maps following [61]. We set

vRj =


w

(
·

1−λRj

)
, on B(1−λRj)ρ,

JRj , on Eρ,j ,
ĴRj , on F±ρ,j .

(5.8.8)

Above, ĴRj denotes the homogeneous degree-zero extension with center at z±ρ,j =(
0, 0,±

(
1− 1

2λRj

)
ρ
)
of the boundary trace on ∂F±ρ,j to the interior of F±ρ,j .

The definition of JRj requires a little of care. We would like to define

JRj (x) = Π(γRj (x)) for (1− λRj )ρ ≤ |x| ≤ ρ,

where Π : O → S4 is the nearest point projection (O a sufficiently narrow neighbor-
hood of S4 so that Π is well-defined and smooth as needed) and γRj (x) indicates the
linear interpolation between
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w

(
x

1− λRj

)
= Q0

(
x

1− λRj

)
= Q0

(
ρ
x

|x|

)
, x ∈ S2

(1−λRj )ρ,

(the first equality above follows from these facts: when (1− λRj )ρ ≤ |x| ≤ ρ, we have
|x| /(1 − λRj ) ≥ ρ; being ρ ∈ (1 − δ, 1), we have x

1−λRj
∈ B1 \ Bρ ⊂ B1 \ B1−δ, on

which Q ≡ w by the choice of w) and QRj (ρx/ |x|); precisely, we set

γRj (x) = (ρλR)−1(ρ−|x|)Q0(ρx/ |x|)+(ρλR)−1(|x|−ρ(1−λR))QRj (ρx/ |x|). (5.8.9)

However, two problems can arise: first, when γRj (x) = 0, JRj is not even defined;
second, when Q0(ρx/ |x|) and QRj (ρx/ |x|) are antipodal points on S4 the projection
is ambiguous. Both of these are solved by taking j sufficiently large. Indeed, since
QRj → Q0 strongly in L2(Bρ, S4), if j is sufficiently large, then almost every point
γRj (x) lies in a fixed neighborhood of S4 (we choose j so large that such a neighborhood
is away from 0) and almost every QRj (x) lies sufficiently close to Q0(x) to avoid
ambiguities. So, by taking j sufficiently large, JRj is well-defined and also Lipschitz.

Looking at (5.8.8), we see that

vRj |∂B(1−λRj)ρ = Q0(ρ·), vRj |∂Bρ = QRj (ρ·).

Moreover, the vRj -s are S4-valued. We now need Luckhaus-type estimates to conclude.
As we pointed out, for j large enough, JRj is Lipschitz, hence∣∣∣∇JRj ∣∣∣2 ≤ Lip(Π)2

∣∣∣∇γRj ∣∣∣2 (5.8.10)

almost everywhere.
Putting a spherical coordinate system (r, ω) on R3 (of course, r = |x|), we have

ρ
x

|x|
= ρ

rω

r
= ρω,

thus

ˆ
Eρ,j

|∇γρ,j(x)|2 dx ≤
ˆ
Bρ\B(1−λRj )ρ

|∇γρ,j(x)|2 dx

=
ˆ ρ

(1−λRj )ρ

ˆ
∂Bσ

(∣∣∣∣∂γρ,j(r, ω)
∂r

∣∣∣∣2 + 1
r2

∣∣∣∇TγRj (r, ω)
∣∣∣2) r2dr dω

≤ C

ˆ ρ

(1−λRj )ρ

ˆ
∂Bσ

(ρλRj )−2
∣∣∣QRj (ρω)−Q0(ρω)

∣∣∣2 r2dr dω

+λRj
ˆ
∂Bρ

|∇TQ0(ρω)|2 +
∣∣∣∇TQRj (ρω)

∣∣∣2 dH2
)

≤ C1

(
λ−1
Rj

ˆ
∂Bρ

∣∣∣QRj −Q0
∣∣∣2 dH2 + λRj

ˆ
∂Bρ

|∇TQ0|2 +
∣∣∣∇TQRj ∣∣∣2 dH2

)

(5.8.11)

Note that the r.h.s. of (5.8.11) approaches zero as j →∞ by the choice of λRj and
the strong convergence QRj → Q0 in L2.
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By definition of degree-zero homogeneous extension, the Fubini’s theorem and
the same calculations above, we get also

ˆ
Fρ,j

∣∣∣∇vRj ∣∣∣2 dx =
ˆ
Fρ,j

∣∣∣∇ĴRj ∣∣∣2 dx ≤ CλRj
ˆ
∂Bρ

∣∣∣∇TJRj ∣∣∣2 dH2

≤ CλRj
ˆ
∂Bρ

∣∣∣∇TγRj ∣∣∣2 dH2 ≤ C2λRj

ˆ
∂Bρ

|∇TQ0|2 +
∣∣∣∇TQRj ∣∣∣2 dH2

(5.8.12)

whose r.h.s. tends to zero as j →∞ because of (5.8.4).
Summarizing, we proved

ˆ
Bρ

∣∣∣∇vRj ∣∣∣2 dx ≤
ˆ
B(1−λRj )ρ

∣∣∣∣∣∇w
(

·
1− λRj

)∣∣∣∣∣
2

dx

+ C1

(
λ−1
Rj

ˆ
∂Bρ

∣∣∣QRj −Q0
∣∣∣2 dH2 + λRj

ˆ
∂Bρ

|∇TQ0|2 +
∣∣∣∇TQRj ∣∣∣2 dH2

)

+ C2λRj

ˆ
∂Bρ

|∇TQ0|2 +
∣∣∣∇TQRj ∣∣∣2 dH2

(5.8.13)

We are now close to the conclusion. Indeed, since F (·) is essentially bounded, we
have

lim inf
j→∞

ERj (QRj ;Bρ) = lim inf
j→∞

ˆ
Bρ

∣∣∣∇QRj ∣∣∣2 dx

and

lim inf
j→∞

ERj (vRj ;Bρ) = lim inf
j→∞

ˆ
Bρ

∣∣∣∇vRj ∣∣∣2 dx.

By Lemma 5.6 and (5.8.13) we get
ˆ
Bρ

|∇Q0|2 ≤ lim inf
j→∞

ˆ
Bρ

∣∣∣∇QRj ∣∣∣2 ≤ lim inf
j→∞

ˆ
Bρ

∣∣∣∇vRj ∣∣∣2
= lim

j→∞

ˆ
B(1−λRj )ρ

∣∣∣∣∣∇w
(

·
1− λRj

)∣∣∣∣∣
2

+
ˆ
Bρ\Bρ(1−λRj )

∣∣∣∇vRj ∣∣∣2


≤ lim
j→∞

[
(1− λRj )

ˆ
Bρ

|∇w|2

+ C1

(
λ−1
Rj

ˆ
∂Bρ

∣∣∣QRj −Q0
∣∣∣2 dH2 + λRj

ˆ
∂Bρ

|∇TQ0|2 +
∣∣∣∇TQRj ∣∣∣2 dH2

)

+C2λRj

ˆ
∂Bρ

|∇TQ0|2 +
∣∣∣∇TQRj ∣∣∣2 dH2

]

=
ˆ
Bρ

|∇w|2 .

(5.8.14)

Since w is arbitrary, inequality (5.8.14) implies both minimality of Q0 and strong
convergence QRj → Q0 in W 1,2(Bρ, S4) as j →∞.
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We now prove some easy corollaries of Theorem 5.13.

Corollary 5.14. Let Q0 ∈W 1,2
loc (R3, S4) the S1-equivariant degree-zero homogeneous

harmonic map given in Theorem 5.13. Then Q0 ∈ C∞(R3 \ {0}, S4).

Proof. Since Q0 is degree-zero homogeneous, it is in particular a harmonic map from
S2 into S4. Hence, by Hélein’s theorem [68], it is smooth as a map S2 → S4. By
degree-zero homogeneity, it is smooth in R3 \ {0}.

Exactly as in [134, Sections 2.5, 2.11], [53, Proposition 10.26], we can prove joint
upper semicontinuity (with respect to joint variables Q0 and y, see below) of the
density. The strong convergence of the blown-up maps is essential to the argument.

Corollary 5.15. Let Q, (QRj )Rj and Q0 as in the statement of Theorem 5.13, let
y ∈ {z-axis}∩B1 and let (yRj )Rj ⊂ {z-axis}∩B1 be a sequence converging to y. The
density function of Q0, ΘQ0, is jointly upper semicontinuous with respect to Q0 and
y, meaning that

ΘQ0(y) ≥ lim sup
j→∞

ΘQRj
(yRj ).

Proof. By Theorem 5.13, QRj → Q0 strongly in W 1,2
loc . Let (yRj )Rj , y, yRj → y as in

the statement and let us fix ρ, ε > 0 such that Bρ+ε(y) ⊂ B1. For j large enough,∣∣∣yRj − y∣∣∣ < ε, hence Bρ(yRj ) ⊂ Bρ+ε(y), implying

ΘQRj
(yRj ) ≤

1
ρ

ˆ
Bρ(yRj )

∣∣∣∇QRj ∣∣∣2 dx ≤ 1
ρ

ˆ
Bρ+ε(y)

∣∣∣∇QRj ∣∣∣2 dx.

By the W 1,2
loc -convergence, for j large enough,

1
ρ

ˆ
Bρ+ε(y)

∣∣∣∇QRj ∣∣∣2 dx ≤ 1
ρ

ˆ
Bρ+ε(y)

|∇Q0|2 dx+ ε.

Letting ε→ 0 first and then ρ→ 0 completes the proof.

Corollary 5.15 plays a fundamental role in the proof of the next result about the
reduction of the dimension of the singular set. Here, we closely follow the line of the
corresponding theorem for (nonsymmentric) minimizing harmonic maps [53, Theorem
10.18].

Corollary 5.16. Let Q ∈ Aax
Qb

be a minimizer of the LdG energy (1.1.3) in the class
Aax
Qb
. Then its singular set sing(Q) is a finite set of isolated points located on the

z-axis.

Proof. We recall that the singular set sing(Q) coincides with the concentration set
Σ(Q) in view of ε-regularity theorem and higer-regularity theorems.

Let (xν)ν be a sequence of singular points converging to x0 (of course, all these
points lie on the z-axis). Up to translations, we can assume x0 = 0. For each ν, let
Q(ν) := Q(2 |xν |x); the maps Q(ν) are an equibounded sequence of blown-up maps
with singularities yν = xν

2|xν | , |yν | =
1
2 . Up to subsequences, by Theorem 5.13 we can

assume Q(ν) → v strongly W 1,2
loc (R3,S0), where v is energy minimizing. We can also

assume yν → y0, with |y0| = 1
2 . By Corollary 5.15, y0 is a concentration point, hence

a singular point by Theorem 4.6.
We now claim that v is (positively) degree-zero homogeneous: by the W 1,2

loc -
convergence, we have
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1
ρ

ˆ
Bρ

|∇v|2 dx = lim
ν→∞

1
ρ

ˆ
Bρ

∣∣∣∇Q(ν)
∣∣∣2 dx

= lim
ν→∞

1
2ρ |xν |

ˆ
B2ρ|xν |(0)

|∇Q|2 dx

= ΘQ(0),

hence the left-hand side does not depends on ρ. Then, by the monotonicity formula
(5.7.21),

∣∣∣ ∂v∂R ∣∣∣ = 0 a.e. and the claim follows. We now have that the whole segment
{λy0 : λ > 0} ∩B1 is singular, hence H1(Σ(Q)) > 0 and this is absurd.
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Chapter 6

Classification of S1-equivariant
harmonic spheres from S2 into
S4

Synopsis. In this Chapter we classify all S1-equivariant harmonic spheres from S2

into S4. As a preliminary step, we first classify all S1-equivariant harmonic spheres
from S2 into S2 (§6.1). Then we note that it follows from a theorem of Almgren [1]
and Calabi [23] that only two cases are possible for harmonic maps S2 → S4: either
the span of the range of the map is a three dimensional linear subspace of R5 ' S0,
or it is linearly full; i.e., the span of its range is a five dimensional linear subspace of
R5 ' S0. We decompose S0 into subspaces invariant under the S1-action (§6.2.1) and
we find that S0 can be written as the direct sum L2⊕L1⊕L0, where Lks are invariant
subspaces on which S1 acts by rotations of degree k. It turns out that the only three
dimensional invariant subspaces are L1 ⊕ L0 and L2 ⊕ L0, thus harmonic spheres
from S2 into the unit sphere in Ld ⊕ L0 (d = 1, 2) must have degree d and hence
they arise as special cases of the more general classification in §6.1. In particular,
they must have energy 4π and 8π, respectively. For the general case, we exploit the
properties of the twistor fibration τ : CP 3 → S4 (§ 6.2.3) to reduce the study of
S1-equivariant harmonic spheres S2 → S4 to the much simpler study of horizontal
algebraic curves CP 1 → CP 3 of degree 3 that are equivariant w.r.t. the appropriate
lifting of the S1-action. The result (Theorem 6.2) is that all S1-equivariant harmonic
spheres S2 → S4 can be classified in terms of two complex parameters. It also follows
that linearly full maps must have energy 12π.

6.1 S1-equivariant harmonic maps S2 → S2

We now classify all S1-equivariant harmonic maps S2 → S2. In this case, the
classification is particularly easy because it is possible to give a very explicit description
of the maps involved. Moreover, as we shall see, S1-equivariant harmonic maps
S2 → S2 are those S1-equivariant harmonic maps S2 → S4 that are not linearly full.

Let us start looking at S2 as an embedded submanifold of R3. Every nonconstant
harmonic map ω : S2 → S2 has degree degω 6= 0 and it is holomorphic or antiholo-
morphic; this fact is linked to the synergy between the structure of the energy and
the geometry of the problem. In particular, it can be shown that
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E(ω) =
ˆ
S2

1
2 |∇ω|

2 d volS2 = 4π |degω| .

Let us denote π : S2 \ {S} → C the stereographic projection from the south pole
and let

π−1 : C→ S2 \ {S} : z 7→
(

2z
1 + |z|2

,
1− |z|2

1 + |z|2

)

the inverse map. The projection π is a homeomorphism between S2 \ {S} and
C which extends to an homeomorphism between S2 and C ∪ {∞} via one-point
compactification. We can regard S2 as C ∪ {∞} and the application between spheres
x 7→ ω(x) as an application C ∪ {∞} → C ∪ {∞} whose restriction between C and
C is a ratio of polynomials in z or in z̄ (not both1), f(z) = P (z)

Q(z) , with P,Q ∈ C[z]
coprime, whose topological degree is d = max{degP,degQ}. The poles of Q coincide
with the points that are mapped to the south pole. In this sense, the singularities of
the (anti)meromorphic map f are artificial; i.e., they are due to the inadequacy of
the coordinate system induced by the stereographic projection from the south pole in
describing the behavior of the function near the south pole.

Thus, ω is harmonic iff f = π ◦ ω ◦ π−1 is a rational function in z or in z̄. We
explicitly remark that, for each polynomial f in z or in z̄ (with positive degree), the
application π−1 ◦ f ◦ π is a harmonic map. In particular, all harmonic maps S2 → S2

having topological degree 1 are obtained from polynomials of the form f(z) = az+b
cz+d ,∣∣ a b

c d

∣∣ 6= 0 (analogously for polynomials in z̄).
We note that

ω−1({N}) = {P = 0}, ω−1({S}) = {Q = 0}.

Dealing with the point at infinity separately is particularly uncomfortable when
S1-equivariance is taken into account. Then, it is convenient looking at S2 as CP 1

and describing maps in terms of homogeneous coordinates on CP 1. Then we have:

x ∈ S2 ↔ [z0, z1] ∈ CP 1,

(N 6=)x 7→ [1, π−1(x)],
N 7→ [0, 1],

so we can look at ω as the application

[z0, z1] ω7−→ [D(z0, z1),N (z0, z1)],

with N , D coprime polynomials of the same degree, obtained by homogeneization of
P and Q respectively:

N (z0, z1) = zd0P

(
z1
z0

)
, D(z0, z1) = zd0Q

(
z1
z0

)
.

We now take S1-equivariance into account, where S1-equivariance means S1-equivariance
with respect to S1-actions on S2 specified by representations ρ : S2 → Diff(S2) on the

1Say, in z, to fix notations.
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domain and ρ′ : S2 → Diff(S2) on the target. A map ω : S2 → S2 is (ρ, ρ′)-equivariant
iff intertwines ρ e ρ′:

ω ◦ ρ = ρ′ ◦ ω.

From the above, S2(⊂ R3) ' C ∪ {∞} ' CP 1. We write x = (x′, x3), x′ ∈ R2, for
points of S2 seen into R3, and we identify g ∈ S1 as a rotation R around the axis of
equivariance when we look S2 as a submanifold of R3 and we indentify g = eiφ in the
remaining cases. We set up the ρ-action as follows:

gx = (Rx′, x3)↔ gz = eiφz ↔ ρ(g)([z0, z1]) = [z0, e
iφz1].

Similarly, we let S1 act on S2 as a rotation of fixed degree k ∈ Z \ {0}.
By comparison of explicit representations of ω in terms of homogeneous coordinates

and observing that the (ρ, ρ′)-action of S1 preserves the degree and the property of
two polynomials of being coprime, we have that the harmonicity of ω implies that
ω ◦ ρ and ρ′ ◦ ω are also harmonic. Thus we can ask

Problem. What are all (ρ, ρ′)-equivariant harmonic maps?

We note that N and S are left fixed by every ρ(g), g ∈ S1, so that

ω(N) = ρ′(g) ◦ ω(N), ω(S) = ρ′(g) ◦ ω(S).

On the other hand, ω(N) and ω(S) are left fixed by ρ′(g) for all g ∈ S1. Then we
have

{ω(N), ω(S)} = {N,S},

so that only two cases are possible: either ω fixes the poles or ω exchanges the poles.
Furthermore, there are no other points left fixed by the (ρ, ρ′)-action of S1. These
facts allow to deduce the explicit form of all (ρ, ρ′)-equivariant harmonic maps.

Suppose that the north pole is left fixed. The counterimages of the north pole are
the zeros of the denominator of the polynomial representation of ω. Hence, there is
only one possible zero, namely, z = 0. Since S is also fixed, the only point mapped
into S is S itself. Thus, there is no point (other than the point at infinity) at which
Q vanishes, so that Q must be constant. A similar argument holds when ω exchanges
the poles.

If ω has degree d, 4 possibilities are left:

f1(z) = λzd, f2(z) = λz−d, f3(z) = λz̄−d, f4(z) = λz̄d.

Among these, f1 and f4 fix the poles while f2 and f3 exchange the poles. Further,
only f1 and f3 are compatible with the (ρ, ρ′)-equivariance respect to the S1-actions
previously specified. Hence, as λ ∈ C \ {0} varies2, the maps of the form λzd or λz̄−d
provide, by pre-composition with the stereographic projection π and post-composition
with π−1, all (ρ, ρ′)-equivariant harmonic maps S2 → S2 of degree d.

2We shall see that for a class of minimizing maps in the equivariant class equivariance and
stationarity together imply |λ| = 1.
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6.2 Classification of S1-equivariant linearly full harmonic
spheres S2 → S4

6.2.1 Decomposition of S0 into invariant subspaces

Notation. Throughout this section E(ω) will denote the Dirichlet energy of the map
ω : S2 → S4. Bold letters denote vectors in R3 (seen as column vectors).

Let ω : S2 → S4 be harmonic, ω noncostant. Then E(ω) = 4π |d|, d ∈ Z \ {0}, see
[138]. Denote V = span Ranω; two cases are possible: either

dimV ≤ 3,

or
dimV = 5;

the case dimV = 4 reduces to dimV = 3 because of the theorems of Almgren [1] and
Calabi [23] (compare also [132, Lemma 1.1]). We note that, because of equivariance,
the images of the maps are invariant subsets of S0, hence V is also invariant in any
case.

When we see S2 as a submanifold of R3, we look at R ∈ S1 as a (2× 2)-matrix (a
rotation in the plane orthogonal to the axis of equivariance) and we denote

π(R) = R̃ =
(
R 0
0 1

)
the representation of elements in S1 in terms of automorphisms of S0, where R is the
(2× 2)-block mentioned above.

For elements in S0, we employ the notation

Q =
(
Q0 q
qt q0

)
,

where q0 is a scalar and Q0 a 2× 2 matrix. The S1-action on S0 by conjugation can
be written explicitly, in terms of automorphisms, as

R̃tQR̃ =
(
RtQ0R R̃q
(R̃q)t q0

)
. (6.2.1)

We decompose S0 as a direct sum in a fashion that will allow us to describe easily all
its invariant subspace. To do this, it is enough to determine a basis for each block,
paying attention to the fact that basis matrices must be traceless and symmetric.
Remark 6.2.1. The decomposition we are going to introduce is not new. It appeared,
for instance, in [137], although in a nonequivariant context.

We start with

e0 = 1√
6

−1 0 0
0 −1 0
0 0 2

 . (6.2.2)

Looking at (6.2.1), it is straightforward to deduce that the subspace

L0 = Re0 (6.2.3)
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is invariant.
The remaining matrices will have the component (3, 3) equals to zero. Let’s start

by considering the “vector” blocks, in the sense of (6.2.1). We choose first

e1 = 1√
2

0 0 1
0 0 0
1 0 0

 (6.2.4)

and then

e2 = 1√
2

0 0 0
0 0 1
0 1 0

 . (6.2.5)

The subspace
L1 = Re1 ⊕ Re2 (6.2.6)

is invariant (we remark explicitly that none of the blocks are, if taken separately,
since the S1-action by conjungation maps each one onto the other).

It remains the (2× 2)-block. We select first

e3 = 1√
2

1 0 0
0 −1 0
0 0 0

 (6.2.7)

so that the matrix

e4 = 1√
2

0 1 0
1 0 0
0 0 0

 (6.2.8)

completes the basis. The subspace

L2 = Re3 ⊕ Re4 (6.2.9)

is invariant.
Clearly,

S0 = L2 ⊕ L1 ⊕ L0

is a decomposition of S0 into invariant subspaces. We note that the invariant subspaces
of dimension 3 are

L1,0 = L1 ⊕ L0 (6.2.10)

and

L2,0 = L2 ⊕ L0. (6.2.11)

Thus, all invariant (proper) subspaces of S0 are L0, L1, L2, L1 ⊕ L0, L2 ⊕ L0.
With the exception of constant maps, we have that

V = L1 ⊕ L0

or
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V = L2 ⊕ L0

or otherwise dimV = 5.
Let us study L2 more closely. It is plain that

L2 '
{(

a b
b −a

)
, a, b ∈ R

}
⊂M2×2(R).

The application C : M2×2(R) → M2×2(R) mapping
(
a b
c d

)
7→

(
a b
−c −d

)
squares to the identity; it can be represented by the matrix

C =
(

1 0
0 −1

)
and it establishes an isomorphism between L2 and C. Indeed,

CL2 =
{(

a b
−b a

)
, a, b ∈ R

}
' C.

Thus we can see C as an application L2 → C, more precisely, as an isometric
isomorphism which associate to each A ∈ L2 a unique complex number z = CA. The
first observation we make is that the S1-action by conjungation corresponds to the
S1-action on C by rotations of degree 2. Precisely,

Lemma 6.1. Let A ∈ L2 and let R ∈ S1. Then

RtAR = CR2CA

Proof. We have

CR2CA = CR2z = CR(Rz) = CR(zR) = (CR)(zR) = (CR)tzR = RtC2AR = RtAR,

where we used CA = z for some z ∈ C and the fact that, if we look at R as a
rotation in the complex plane, R = eiφ, then we have Rz = zR since the complex
multiplication in commutative. Finally, CR is a symmetric matrix.

Corollary 6.1. Let π : S1 → Aut(L2) denote the S1-action on L2 by conjugation and
let π̃ : S1 → Aut(C) the action by rotations of degree 2: S1 3 R 7→ {z 7→ R2z} ∈ C.
Then π = Cπ̃.

Proof. Obvious from the lemma.

Noting that L1 = Re1 ⊕ Re2, we see that L1 ' C, where the isomorphism is
provided by the identity and, in analogy with the above discussion, that the S1-action
on C induced by the S1-action on L1 is by rotations of degree 1.

To recapitulate, if dimV = 3, we have either

V = L1 ⊕ L0
I' C⊕ R,

or

V = L2 ⊕ L0
C' C⊕ R.
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In the first case, if ω : S2 ⊂ R3 → S2 ⊂ L1 ⊕ L0 is a harmonic map, S1-equivariance
means

ω(R̃p) = R̃ω(p),

where p = (p0, p1, p2) ∈ S2 ⊂ R3 and R̃p = (p0, e
iθ(p1 + ip2)). This implies

E(ω) = 4π.

Looking at the classification in Section 6.1, this means that all equivariant harmonic
maps ω : S2 → S2 ⊂ L1 ⊕L0 are of the form λz ∈ C or λ

z̄ with λ ∈ C \ {0}. Actually,
we can restrict ourselves to consider only the first case because the second reduces to
the first one up to a fixed isometry (i.e., the antipodal map). We shall do so from
now on without explicit mention.

In the second case, if ω : S2 ⊂ R3 → S2 ⊂ L2 ⊕ L0 is harmonic, S1-equivariance
means that

ω(R̃p) = R̃2ω(p),

with p as above and hence
E(ω) = 8π.

Each ω : S2 → S2 ⊂ L2 ⊕ L1 equivariant is of the form λz2, with λ ∈ C \ {0}.

Remark 6.2.2. We remark that equivariance firmly fixes the energy of the harmonic
maps into the two classes. Indeed, harmonic maps S2 → S2 can have, a priori,
arbitrarly high energy, i.e., arbitrarily high degree. On the other hand their explicit
description in terms of polynomials in z implies that the degree have to be the
maximum between the degree of the denominator and that of the numerator. The
request of equivariance fixes the degree of admissible polynomials, hence the topological
degree and, in turn, the energy. This implies that, in low image dimensions (= 3),
the energy is also low (≤ 8π). On the contrary, a map having “high” energy (≥ 12π)
is necessarily linearly full (i.e., dimV = 5) and vice versa.

In Section 6.1 we exploited the fact that S2 and CP 1 are isomorphic to get a
very explicit description of harmonic maps ω : S2 → S2. Similarly, we can observe
that the twistor fibration3 τ maps CP 3 onto S4. We can thus think to replicate the
previous strategy and thus study algebraic curves CP 1 → CP 3 of degree 3, and then
projecting them on S4 by means of τ . Actually, we start with linearly full harmonic
maps ω : S2 → S4, so, first of all, we have to check that each linearly full harmonic
map ω : S2 → S4 has a lifting ω̃ : CP 1 → CP 3 and that this lifting is an algebraic
curve, i.e., we have to prove that the following diagram:

CP 3

S2 S4

τω̃

ω

commutes, that is, ω = τ ◦ ω̃. In order to treat the problem systematically, we
introduce the twistor fibration following [16, 17, 18].

3Bolton and Woodward [16, 17, 18] make use of the symbol π which can be cause of confusion in
this work.
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6.2.2 The twistor fibration τ : CP 3 → S4

Let Σ be a Riemann surface. The fiber bundle τ : SO(2m+ 1)/U(m)→ S2m is called
twistor fibration in the case τ is a Riemannian submersion with the further property
that the composition with τ sets up a bijection between holomorphic horizontal maps
Σ→ SO(2m+ 1)/U(m) and superminimal maps Σ→ RP 2m.

Remark 6.2.3. We shall not introduce the notion of superminimality, mentioned only
for the sake of completeness, since we are interested only to the case Σ = S2, in which
case any harmonic map is superminimal [22]; the interested reader can consult the
paper by Bryant [22] for further information. We will make clear in a moment what
we mean by horizontality, restricting to our concrete case for simplicity.

Let m = 2. Then SO(5)/U(2) ' CP 3 and the twistor fibration τ : CP 3 → S4

is the composition of the Hopf map4 CP 3 → HP 1 with the standard identification
HP 1 ' S4 ⊂ H⊕R ' C⊕C⊕R given by the stereographic projection from the south
pole into the 4-equatorial plane H in HP 1. Explicitly, H 3 q 7→ [1, q] ∈ HP 1 and

[q1, q2] ∈ HP 1 ↔ (2q1q2, |q1|2 − |q2|2)
|q1|2 + |q2|2

∈ S4.

Looking at R5 as C⊕C⊕R, the twistor fibration is given by the explicit formula [16]

τ([z1, z2, z3, z4]) = (2(z1z3 + z2z4), 2(z1z4 − z2z3), |z1|2 + |z2|2 − |z3|2 − |z4|2)
|z1|2 + |z2|2 + |z3|2 + |z4|2

.

If CP 3 is endowed with the Fubini-Study metric of constant sectional holomorphic
curvature +1, τ becomes a Riemannian submersion [22, 16]. The horizontal distri-
bution on CP 3 consists of those tangent vectors to CP 3 that are orthogonal to the
fibers of τ . If we see ω̃ : CP 1 → CP 3 as a curve from C⊕C into C⊕C⊕C⊕C and
if we define the 1-form over C⊕ C⊕ C⊕ C

η = z2 dz1 − z1 dz2 + z4 dz3 − z3 dz4,

the horizontality condition can be written

ω̃∗η = 0. (6.2.12)

Since S2 is compact and it is isomorphic to CP 1 (via the identification built in Section
6.1), each ω̃ : CP 1 → CP 3 holomorphic horizontal curve is an algebraic horizontal
curve [18] and ω = τ ◦ ω̃ is harmonic [16, 17]. Conversely, each linearly full harmonic
map ω : S2 → S4 is of the form ±τ ◦ ω̃ for some unique linearly full horizontal
algebraic curve ω̃, called the twistor lifting of ω. The symbol ± denotes the possible
application of the antipodal map. If we denote d the algebraic degree of ω̃, its energy
is 4πd. Summing up, after having made precise sense of the objects appearing in the
diagram at end of Section 6.2.1, we can assert that it commutes.

4Identyfing H2 ' C4 through (z1, z2, z3, z4) ↔ (z1 + z2j, z3 + z4j), the Hopf map ρ takes the
complex line Cv in C4 and associate with it the quaternionic line Hv. Explicitly, ρ([z1, z2, z3, z4]) =
[z1 + z2j, z3 + z4j].
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6.2.3 S1-equivariance of the twistor fibration.

We are concerned with maps S2 → S4 that are S1-equivariant. We now introduce a
S1-action on CP 3 which is compatible with the S1-actions on CP 1 and on S4. Put
g = eiφ ∈ S1 and

[z1, z2, z3, z4] ρ
′′(g)7−→ [z1, e

3iφz2, e
2iφz3, e

iφz4]. (6.2.13)

Such an action is well-defined: indeed, we get [0, 0, 0, 0] if and only if we start from
[0, 0, 0, 0]. Furthermore, each g ∈ S1, ρ′′(g) is the representation of an automorphism
of CP 3, i.e., a matrix belonging to PGL4(C).

Lemma 6.2 (Equivariance of the twistor fibration). Let ρ′′ : CP 3 → PGL4(C) be
the representation of the S1-action on CP 3 defined in (6.2.13). Then

τ(ρ′′([z1, z2, z3, z4])) = R̃tτ([z1, z2, z3, z4])R̃, (6.2.14)

with R̃ =
(
eiφ 0
0 1

)
.

Proof. Plainly,

τ(ρ′′([z1, z2, z3, z4])) = τ([z1, e
3iφz2, e

2iφz3, e
iφz4])

= (2e2iφ(z1z3 + z2z4), 2eiφ(z1z4 − z2z3), |z1|2 + |z2|2 − |z3|2 − |z4|2)
|z1|2 + |z2|2 + |z3|2 + |z4|2

∈ L2 ⊕ L1 ⊕ L0,

hence the conclusion.

Since τ preserves S1-equivariance, the diagram

CP 3

S2 S4

τ

S1

ω̃

S1 ω
S1

commutes, so that we can use the twistor fibration to study linearly full equivariant
harmonic maps from S2 to S4. We aim to adapt the strategy already exploited for
maps S2 → S2 and so trying to carry out an explicit classification.
Remark 6.2.4. We already noticed in Section 6.2.1 that the physics of the problem
supports linearly full maps having the lowest energy, i.e, 12π. On the other hand,
without some extra hypotheses, we cannot exclude the possibility of higher energy
maps. The further request of compatibility between all S1-actions implies (6.2.13)
and fixes to 12π the energy of S1-equivariant linearly full harmonic maps from S2

into S4.

6.2.4 Classification theorem

As we already remarked in Section 6.2.3, the relevance of twistor fibration to the theory
of harmonic maps from S2 to S4 comes from the fact that [16, 17] the τ -projection
of any horizontal linearly full algebraic curve ψ into CP 3 is a linearly full harmonic
map and, conversely, for each linearly full harmonic map ω : S2 → S4 there exists
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a unique linearly full algebraic curve ω̃ into CP 3 which is its twistor lift. Moreover,
equivariance for ω implies equivariance for ω̃. Indeed, by equivariance, ω · ρg = πg · ω,
so that the twistor lifts coincide too and the claim follows.

The request of compatibility between the ρ-action on CP 1 and the π-action on S4

fixes ρ′′ as the S1-action on CP 3 (with our conventions about the relevant variable on
CP 1). Hence, very restrictive conditions are imposed on the homogeneous coordinates
of ω̃([λ0, λ1]).

If ω̃ is an algebraic curve having degree 3, the homogeneous coordinates of an image
point are necessarily coprime homogeneous polynomials of degree 3. Equivariance
with respect to the ρ′′-action implies that the polynomials Pi in

ω̃([λ0, λ1]) = [P1(λ0, λ1), P2(λ0, λ1), P3(λ0, λ1), P4(λ0, λ1)],

are the following:

P1 = µ1λ
3
0, P2 = µ2λ

3
1, P3 = µ3λ

2
1λ0, P4 = µ4λ

2
0λ1,

the coefficients µi are complex numbers.
Up to now, the µi are arbitrary. However, since ω̃ must be linearly full, µ1 6= 0

so that, without loss of generality, we may set µ1 = 1. Next, horizontality sets up
a relation between the other variables, so that one is a function the other two. By
(6.2.12), we have that horizontality yields

(3µ2 − µ3µ4)λ2
0λ

2
1(λ1 dλ0 − λ0dλ1) = 0,

and, by arbitrariness of λ0, λ1, we get

3µ2 = µ3µ4. (6.2.15)

Hence, every horizontal linearly full algebraic curves of degree 3 is of the form

ω̃([λ0, λ1]) =
[
λ3

0,
µ3µ4

3 λ3
1, µ3λ

2
1λ0, µ4λ

2
0λ1

]
(6.2.16)

where (µ3, µ4) ∈ C⊕ C, hence

(τ ◦ ω̃)([λ0, λ1]) = 1
D

(
2µ3λ2

0λ
2
1

(
|λ0|2 + |µ4|2 |λ1|2

3

)
,

2µ4λ0λ1

(
|λ0|4 −

|µ3|2 |λ1|4

3

)
,

|λ0|4 (|λ0|2 − |µ4|2 |λ1|2) + |λ1|4
(
|µ3|2 |µ4|2 |λ1|2

9 − |µ3|2 |λ0|2
))

(6.2.17)

with

D = |λ0|4 (|λ0|2 + |µ4|2 |λ1|2) + |λ1|4
(
|µ3|2 |µ4|2 |λ1|2

9 + |µ3|2 |λ0|2
)
.

Note, in particular, that setting µ3 = µ4 =
√

3 gives back the hedgehog.
Summarizing, we have proven the following classification theorem.
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Theorem 6.2. Each horizontal (ρ, ρ′′)-equivariant linearly full algebraic curve ω̃ :
CP 1 → CP 3 of degree 3 has the form (6.2.16) for some (µ3, µ4) ∈ C⊕C, hence, each
(ρ, π)-equivariant linearly full harmonic map ω : S2 ' CP 1 → S4 ⊂ C⊕C⊕R having
energy 12π has the form (6.2.17) for some (µ3, µ4) ∈ C⊕ C.

In terms of coordinates (θ, φ) on the sphere5, we can write

ω =
(
ω2(θ)e2iφ, ω1(θ)eiφ, ω0(θ)

)
. (6.2.18)

The expression of the components of ω in spherical coordinates, in terms of the
parameters µ3, µ4, is given by (A.1). Note that, by Hélein’s theorem, the components
ωi are smooth functions on S2. Observe also that S1-equivariance forces

ω2(0) = ω2(π) ≡ 0 and ω1(0) = ω1(π) ≡ 0. (6.2.19)

Remark 6.2.5. Observe that the function ω0 is always real-valued, while ω1, ω2 are
complex valued whenever the parameters µ3, µ4 are such and real-valued otherwise.
Notation. In the following, when recurring to (6.2.18), we will often drop the
argument θ of the functions ωi.

6.3 The Center-of-Mass condition
We recall that it is a general property of stationary harmonic maps with values
into spheres, firstly highlighted in [21, Remark 7.6] for harmonics S2 → S2 and
then generalized by [96, Theorem C], that the center-of-mass (CoM) of the measure
|∇ω|2 dx must be placed at the origin. In the case of S2-valued maps, this fact
reduces the arbitrariness in the parameter of the maps to a fixed phase, which is
however inessential for what concerns stability. In the case of linearly full maps, it
links the two arbitrary parameters, so that only one remains actually independent.

6.3.1 The CoM condition for S2-valued maps

In the case of maps with values in S2, the CoM condition suffices to state that the
parameter λ of Section 6.1 has to be a fixed phase [21].

6.3.2 The CoM condition for S4-valued maps

Linearly full maps are classified up to two arbitrary complex parameters. For each
map, up to a fixed rotation of the domain S2, one of them (say, µ4) can always be
thought of as real. We now show that the CoM condition determines one parameter
as a function of the other. To this end, it is found convenient rescaling µ4, setting

µ4 := µ̃4

|µ3|2
with µ̃4 ∈ R \ {0}.

Write x = (x1, x2, x3); S1-equivariance implies that
ˆ
S2
x

∣∣∣∣∇ω ( x

|x|

)∣∣∣∣2 dvolS2 = 0 ⇐⇒
ˆ
S2
x3

∣∣∣∣∇ω ( x

|x|

)∣∣∣∣2 dvolS2 = 0.

5We follow the convention more frequently adopted in physics, according to which θ is the latitude
and φ the colatitude.
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In terms of the complex variable z (by means of the stereographic projection π : S2 →
C ∪ {∞}), we have

x3 = 1− |z|2

1 + |z|2
and dvolS2 = 4dz(

1 + |z|2
)2 .

Then we have
ˆ
S2
x3

∣∣∣∣∇ω ( x

|x|

)∣∣∣∣2 dvolS2 =
ˆ
C

1− |z|2

1 + |z|2
|∇Tω(z)|2S2

4dz(
1 + |z|2

)2 .

Here ∇T denotes the gradient on S2 and |·|S2 the norm with respect to the canonical
metric on S2. Denoting ∇z the gradient on C w.r.t. the complex variable z, we have

ˆ
C

1− |z|2

1 + |z|2
|∇Tω(z)|2S2

4dz(
1 + |z|2

)2 =
ˆ
C

1− |z|2

1 + |z|2
|∇zω(z)|2 dz.

Let ξ = µ4z. Since every harmonic map from S2 into a compact Riemannian manifold
is conformal, we find that

ˆ
C

1− |z|2

1 + |z|2
|∇zω(z)|2 dz =

ˆ
C

1− |ξ|2

|µ4|2

1 + |ξ|2

|µ4|2

∣∣∣∇zω(µ3)(ξ)
∣∣∣2 dξ.

The index (µ3) remarks that µ3 is held fixed. Let us consider the second member
above as a function of |µ4|:

h(|µ4|) =
ˆ
C

1− |ξ|2

|µ4|2

1 + |ξ|2

|µ4|2

∣∣∣∇zω(µ3)(ξ)
∣∣∣2 dξ.

Recall that |µ4| ∈ (0,+∞). Define

gξ(|µ4|) = |µ4|2 − |ξ|2

|µ4|2 + |ξ|2
, |µ4| ∈ (0,+∞).

Note that gξ(·) is an increasing continuous function with

gξ(0+) = −1 and gξ(+∞) = +1.

It then follows that h is also increasing and continuous, with

h(0) = −E(ω) and h(∞) = E(ω).

The intermediate value theorem then implies that, for each µ3 ∈ C∗, there exists
a unique |µ̂4| such that h(|µ̂4|) = 0. So, for stationary maps, |µ4| is a continuous
function of µ3, actually a smooth function by the implicit function theorem.
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Chapter 7

Landau-de Gennes theory with
norm-constraint and with
symmetry, II

Synopsis. In this Chapter we prove stability and instability results for the S1-
equivariant tangent maps that can appear as strong limits of blow-ups (centered at
points of the z-axis) of S1-equivariant minimizers of the LdG energy in the class Aax

Qb
.

Of course, in principle we aimed at ruling out all nonconstant tangent maps, thus
getting a Liouville theorem and, in turn, global interior regularity for minimizers.
Recall that in the previous Chapter we classified all possible nonconstant tangent
maps and we learned, in particular, that — due to equivariance — their restriction
to the sphere can only have energy 4π, 8π or 12π. The span of their ranges is
included, respectively, into L1⊕L0, L2⊕L0 or into a 5-dimensional linear subspace of
L2⊕L1⊕L0. Unfortunately, and quite surprisingly in view of the explicit classification,
we did not succeed in completing the program, because tangent maps with values
into L1 ⊕ L0 turned out to be minimizing in their class (Theorem 7.6) and we have
no reasons for be assured that singularities associated to this kind of tangent maps is
actually avoided by minimizers of the LdG energy in the S1-equivariant class Aax

Qb
.

As expected, tangent maps with values into L2 ⊕ L0 and linearly full tangent maps
are instead unstable, see Theorem 7.8 (or Section 7.1.4 for more detailed calculations
for maps into L2 ⊕ L0). Thus, we have only a partial regularity theorem, Theorem
7.10, but with the further knowledge of the possible singularities and their structure.
Such a knowledge will allow us to explore interesting behaviors of minimizers w.r.t.
to special boundary data in Chapter 8.

In the following, we shall carry out explicit computations whenever possibile, even
if this may produce some repetitions. In fact, this way we are able to investigate
more deeply the structure of S1-equivariant harmonic maps between spheres, a topic
of its own interest, see e.g. [48, 50].

7.1 Results on the stability and the instability of S1-
equivariant tangent maps

7.1.1 Approach to instability

In this section, we shall prove stability and instability results for the S1-equivariant
tangent maps given by Theorem 5.13. We recall that a harmonic map ω : M → N is
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said to be stable if it happens

d2E(ωt)
dt2

∣∣∣∣∣
t=0

= d2

dt2

(ˆ
M

1
2 |∇ωt|

2 dvolM
)∣∣∣∣∣
t=0
≥ 0 (7.1.1)

for all admissible outer variations ωt. Otherwise, ω is called unstable. We note
that d2E(ωt)

dt2

∣∣∣
t=0

is a quadratic form, firstly computed by Smith [135]. Important
results are known about the (in)stability of nonsymmetric harmonic maps when the
domain and/or the target are special manifolds. In particular, we recall the following
theorems.

Theorem 7.1 (Schoen&Uhlenbeck, [132]). For k ≥ 3, define d(3) = 3 and d(k) =
bmin{k/2 + 1, 6}c for k ≥ 4. Then, for k ≥ 3 and n ≤ d(k), there is no noncostant
minimizing map from Rn to Sk.

Theorem 7.2 (Lin&Wang, [95]). For m ≥ 2 and k ≥ 3, if ω ∈ C∞(Rm+1, Sk) is a
stable tangent map, then (m−1)2

4m ≥ k−2
k .

As Y. Xin remarks in [141, Section 6.3], stability in the equivariant case is much
different from nonsymmetric stability. Indeed, he says, it could actually happen that
an unstable harmonic map is a stable equivariant harmonic map.

Xin’s prophecy actually comes true in our case, because, as we shall see, tangent
maps with values in S2 ⊂ L1 ⊕ L0 are stable. In fact, we shall prove the stronger
statement that these maps are even minimizing.

On the contrary, tangent maps with values in S2 ⊂ L2 ⊕ L0 and linearly full
tangent maps are unstable.

For further reference, we recall below the sharp Hardy inequality in Rn.

Theorem 7.3 (Sharp Hardy inequality). Let n ≥ 3 and let ψ ∈W 1,2(Rn). Then(
n− 2

2

)2 ˆ
Rn

|ψ|2

|x|2
dx ≤

ˆ
Rn
|∇ψ|2 dx. (7.1.2)

The constant
(
n−2

2

)2
is sharp.

7.1.2 Second variation formula

Let ω be a tangent map given by Theorem 5.13. Let V ∈ C∞c (R3,R5) be S1-equivariant
and define

ωt(x) := ω(x) + tV (x)
|ω(x) + tV (x)| (x ∈ R3).

Since ω is S4-valued, ωt is well-defined for sufficiently small t, because in this case
ω(x) + tV (x) 6= 0 for all x ∈ R3. We are really interested only in small t, so we will
henceforth drop this specification. The family {ωt} is an admissible outer variation
of ω. Indeed, ωt ∈W 1,2

loc (R3, S4) for all t and ωt is S1-equivariant:

ωt(Rx) = ω(Rx) + tV (Rx)
|ω(Rx) + tV (Rx)| = Rω(x)R−1 + tRV (x)R−1

|Rω(x)R−1 + tRV (x)R−1|

= R(ω(x) + tV (x))R−1

|R(ω(x) + tV (x))R−1|
= R

(
ω(x) + tV (x)
|ω(x) + tV (x)|

)
R−1

= Rωt(x)R−1 ∀x ∈ R3, ∀R ∈ S1,
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because of the linearity of the S1-action by conjugation on S4 and the fact that this
action is by isometries.

Let us set

Q(V ;ω) := d2E(ωt)
dt2

∣∣∣∣∣
t=0

=
[
d2

dt2

(ˆ
R3

1
2 |∇ωt|

2 dx
)]

t=0
. (7.1.3)

Proposition 7.4 (Second variation formula). Let ω, V and Q(V ;ω) as above. Then

Q(V ;ω) =
ˆ
R3

{
(4(ω · V )2 − |V |2) |∇ω|2 − |∇(ω · V )|2 − 4(ω · V ) 〈∇V,∇ω〉+ |∇V |2

}
dx

=
ˆ
R3

{
− |VT |2 |∇ω|2 + |∇VT |2

}
dx,

(7.1.4)

where

VT = V − (ω · V )ω,

is the tangential part of V to the image of ω.

Proof. For brevity, we will hencefort omit the argument x. As in [132], we calculate

d(|∇ωt|2)
dt

= d 〈∇ωt,∇ωt〉
dt

= 2
〈
∇
(
dωt
dt

)
,∇ωt

〉
,

d2(|∇ωt|2)
dt2

= 2 d
dt

〈
∇
(
dωt
dt

)
,∇ωt

〉
= 2

〈
∇
(
d2ωt
dt2

)
,∇ωt

〉
+ 2

〈
∇
(
dωt
dt

)
,∇
(
dωt
dt

)〉
.

We set ω̇ = dωt
dt

∣∣∣
t=0

. Then,

d(|∇ωt|2)
dt

∣∣∣∣∣
t=0

= 2 〈∇ω̇,∇ω〉 , (7.1.5)

d2(|∇ωt|2)
dt2

∣∣∣∣∣
t=0

= 2 〈∇ω̈,∇ω〉+ 2 〈∇ω̇,∇ω̇〉 . (7.1.6)

Being

dωt
dt

= d

dt

(
ω + tV

|ω + tV |

)
= V

|ω + tV |
− ω + tV

|ω + tV |3
· (V · ω + tV · V ),

we have

ω̇ = V − (ω · V )ω

and
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ω̈ = 3(ω · V )2ω − (V · V )ω − 2(ω · V )V.

Then

1
2
d2

dt2
(|∇ωt|2)

∣∣∣∣∣
t=0

= 〈∇ω̈,∇ω〉+ 〈∇ω̇,∇ω̇〉

=
〈
∇[3(ω · V )2ω − (V · V )ω − 2(ω · V )V ],∇ω

〉
+ 〈∇[V − (ω · V )ω],∇[V − (ω · V )ω]〉

= 3
〈
∇[(ω · V )2ω],∇ω

〉
− 〈∇[(V · V )ω],∇ω〉 − 2 〈∇[(ω · V )V,∇ω〉

+ 〈∇V,∇V 〉 − 2 〈∇V,∇[(ω · V )ω]〉+ 〈∇[(ω · ω)ω],∇[(ω · V )ω]〉 .

Easy calculations in components (taking advantage of the fact that ωi∂kωi = 0 because
ω is S4-valued) lead to the first line in (7.1.4). The second line follows as in the proof
of [97, Proposition 1.6.1]

Recall that we have classified S1-equivariant harmonic spheres S2 → S4 in terms
of two complex parameters. We now observe that the number of free parameters can
be reduced when studying stability. Indeed, trivially, one of the two parameters, say
µ4, can always be taken real and positive, up to a fixed rotation of S2. Thus, we are
left with a free real parameter and a free complex parameter. However, we claim
that, for what concerns the stability issue, both µ3 and µ4 can be taken real and,
moreover, positive. More precisely, it is trivial to prove the following

Lemma 7.1. Let µ3 ∈ C, µ4 ∈ R, ω : S2 → S4, ω = (ω2e
2iφ, ω1e

iφ, ω0), be the
harmonic sphere whose parameters are µ3, µ4. Define ω(α) : S2 → S4 setting

ω(α) = (ω2e
iαe2iφ, ω1e

iφ, ω0)

for any α ∈ R. Then, for any α ∈ R,

(i) ω(α) is harmonic;

(ii) ω satisfies the CoM condition if and only if ω(α) satisfies the CoM condition;

(iii) ω is stable if and only if ω(α) is stable;

Proof. (i) Indeed, for any α ∈ R, ω(α) we clearly have
∣∣∣∇ω(α)

∣∣∣2 = |∇ω|2. By the
definition of α and the harmonicity of ω, ω(α) satisfies

∆ω(α) = −
∣∣∣∇ω(α)

∣∣∣2 ω(α),

thus ω(α) is a weakly harmonic map.

(ii) It follows trivially from the equality |∇ω|2 =
∣∣∣∇ω(α)

∣∣∣2.
(iii) We prove that ω is unstable if and only if ω(α) is unstable. Suppose ω is unstable

and let V ∈ C∞c (R3,R5) be a S1-equivariant vector field such that Q(V ;ω) < 0,
where Q(V ;ω) is given by (7.1.4). Let VT = V − (ω · V )ω. Then, by (7.1.4),
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Q(V ;ω) = Q(VT ;ω) =
ˆ
R3

{
|∇VT |2 − |VT |2 |∇ω|2

}
.

Since |∇ω|2 =
∣∣∣∇ω(α)

∣∣∣2, we have

Q(V ;ω) = Q(VT ;ω) = Q(VT ;ω(α)) = Q(V ;ω(α)) < 0,

so that ω(α) is unstable. The converse follows exchanging the rôle of ω and ω(α).

It is then clear that, written µ3 = |µ3| eiα, taking ω(−α) proves our claim. In
particular, for what concerns the stability issue, the functions ω1, ω2 can
always be thought of as real-valued.

7.1.3 Stability and minimality of L1 ⊕ L0-valued tangent maps

Due to the classification result in [21], all minimizing maps u ∈ W 1,2 from R3 into
S2 ' L1 ⊕ L0 such that u(x) = x on S2 are obtained from x

|x| (sometimes called the
radial projection, cfr. [3]) by rotations and traslations of the origin, i.e., they are of
the form R

(
x−a
|x−a|

)
, for a ∈ R3 and R a rotation in R3. Since these transformations

are isometries, it is sufficient to our purposes to consider the case R = identity and
a = 0. The corresponding L1 ⊕ L0-valued tangent map (often called the equator map,
cfr. [4, 76, 79]) in our framework can be written

ω =
(

0, x
|x|

)
∈ L2 ⊕ (L1 ⊕ L0). (7.1.7)

Let z denote the variable in C. The most general deformation vector field
V ∈ C∞c (R3;L2 ⊕ L1 ⊕ L0) compatible with the S1-equivariance is of the form

V (r, z) =
(
f2(r, |z|)e2iφ, f1(r, |z|)eiφ, f0(r, |z|)

)
,

with f2, f1, f0 of compact support, f2, f1 complex-valued functions vanishing at poles.
For such a V , the second variation of the energy of ω is of course given by (7.1.4).
However, since ω has no components along L2, such a variation splits into the sum of
two pieces, namely

Q2 = Q(f2(r, |z|)e2iφ, 0, 0);ω) and Q1,0 = Q(0, f1(r, |z|)eiφ, f0(r, |z|);ω). (7.1.8)

Since ω is minimizing as a map into L1 ⊕ L0, Q1,0 is nonnegative definite, so that it
suffices to consider Q2. In this case, the second variation formula reduces directly to
the second line of (7.1.4).

We now prove the following stability result.

Theorem 7.5 (Equivariant stability of the equator map.). The tangent map ω : R3 →
S2 ⊂ L1⊕L0 ⊂ L2⊕L1⊕L0 defined by ω(x) =

(
0, x|x|

)
is stable w.r.t. S1-equivariant

variations, meaning that, for any S1-equivariant V ∈ C∞c (R3;L2 ⊕ L1 ⊕ L0), the
second variation Q(V ;ω), computed as in (7.1.4), is nonnegative.
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Proof. The above remarks show that it suffices to prove that Q2 ≥ 0, where Q2 is as
in (7.1.8), only for all S1-equivariant V ∈ C∞c (R3;L2 ⊕ L1 ⊕ L0) of the special form

V (r, z) = (f2(r, |z|)e2iφ, 0, 0) ∈ L2 ⊕ L1 ⊕ L0,

with f2 a smooth function of compact support. Note that, in this case, the second
variation formula reduces directly to the second line of (7.1.4). Recall that, a priori,
f2 is complex-valued. The argument below will show that actually it suffice to consider
f2 real-valued.

Suppose first f2 is real-valued. Let us start by rewriting Q2 in terms of integrals
in polar coordinates in the complex plane. To this end, first observe that, switching
from cartesian to spherical coordinates in R3, we have (recall that ω is homogeneous
of degree zero)

Q2 =
ˆ
R3

{
− |f2|2 |∇ω|2 +

∣∣∣∇(f2e
2φ)
∣∣∣2} dx

=
ˆ
S2×(0,+∞)

{
−|f2|2

r2 |∇Tω|
2 +

∣∣∣∣∂f2
∂r

∣∣∣∣2 + 1
r2

∣∣∣∇T (f2e
2iφ)

∣∣∣2} r2dr dvolS2 .

By the Fubini’s theorem, we can integrate firstly over r and then over S2. Recall that
S2 and C ∪ {∞} are diffeomorphic through the stereographic projection; the change
of coordinates theorem implies that

|∇Tω|2 dvolS2 = |∇zω|2 dz,

where ∇z denotes the gradient w.r.t. the complex coordinate z on C. Similarly,∣∣∣∇T (f2e
2iφ)

∣∣∣2 dvolS2 =
∣∣∣∇z(f2e

2iφ)
∣∣∣2 dz

and, moreover,

dvolS2 = 4(
1 + |z|2

)2 dz.

Recalling that |∇Tω|2 = 2, from the above we have

Q2 =
ˆ
C
dz

ˆ +∞

0

− 8(
1 + |z|2

)2
|f2|2

r2 + 4(
1 + |z|2

)2

∣∣∣∣∂f2
∂r

∣∣∣∣2 + 1
r2

∣∣∣∇z (f2e
2iφ
)∣∣∣2
 r2 dr.

Now, by the sharp Hardy inequality we have
ˆ
C

ˆ +∞

0

∣∣∣∣∂f2
∂r

∣∣∣∣2 r2dr dz ≥
ˆ
C

ˆ +∞

0

1
4
|f2|2

r2 r2dr dz,

hence,

Q2 ≥
ˆ
C
dz

ˆ +∞

0

− 8(
1 + |z|2

)2
|f2|2

r2 + 1(
1 + |z|2

)2
|f2|2

r2 + 1
r2

∣∣∣∇z (f2e
2iφ
)∣∣∣2
 r2 dr.
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We now use again the Fubini’s theorem to revert the order of integration. Thus,
if the following integral:

ˆ
C

− 7(
1 + |z|2

)2 |f2|2 + 1
r2

∣∣∣∇z (f2e
2iφ
)∣∣∣2
 dz

is nonnegative for any choice of f2, then the equator map ω is stable.
To show that this is indeed the case, it is convenient to switch from the complex

coordinate z to polar coordinates ρ = |z| and φ ∈ [0, 2π) in the complex plane. Denote
the partial derivative w.r.t. ρ with a prime. Observe that∣∣∣∇z (f2e

2iφ
)∣∣∣2 =

∣∣f ′2∣∣2 + 4
ρ2 |f2|2 .

Being ρ the Jacobian of the coordinates transformation, we have

Q2 = 2π
ˆ +∞

0
r2 dr

ˆ ∞
0

{
− 7ρ

(1 + ρ2)2
|f2|2

r2 + ρ

r2
∣∣f ′2∣∣2 + 4

r2ρ
|f2|2

}
dρ.

(Note that nothing depends on φ, so that the φ-integral factors out by the Fubini’s
theorem.)

Thus, we have further reduced our question to show that

ˆ ∞
0

{
− 7ρ

(1 + ρ2)2 |f2|2 + ρ
∣∣f ′2∣∣2 + 4

ρ
|f2|2

}
dρ ≥ 0 for any choice of f2,

i.e, that

ˆ ∞
0

{
−7ρ2 + 4

(
1 + ρ2)2

ρ (1 + ρ2)2 |f2|2 + ρ
∣∣f ′2∣∣2

}
dρ ≥ 0 for any choice of f2. (7.1.9)

But we have

−7ρ2 + 4
(
1 + ρ2

)2
= 4 + ρ2 + 4ρ4,

which is strictly positive for all ρ ∈ (0,+∞). Thus, the integral (7.1.9) is positive for
all f2 not identically zero, and obviously zero otherwise. Hence, ω is stable.

Now suppose f2 is complex-valued. In this case it is slightly more transparent
writing V as R5-valued:

V = (g1 cos(2φ), g2 sin(2φ), 0, 0, 0) ,
where g1, g2 are smooth real-valued functions of compact support such that

f2e
2iφ = (g1 cos(2φ), g2 sin(2φ)).

Quick calculations show that

|∇V |2 = |∂rg1|2 cos2(2φ) + |∂rg2|2 sin2(2φ)

+ 1
r2

(
|∂θg1|2 cos2(2φ) + |∂θg2|2 sin2(2φ)

)
+

4
(
|g1|2 + |g2|2

)
r2 sin2 θ
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and

|V |2 = g2
1 cos2(2φ) + g2

2 sin2(2φ).
Substituting |∇V |2 and |V |2 into the second variation formula and using Fubini’s
theorem to perform an integration w.r.t. φ, we are led to the sum of two pieces, one
containing only g1 and the other only g2, both of which with the same structure as
in the previous part. Hence, the argument above gives that both contributions are
nonnegative and, again, the stability of ω.

We now prove a much stronger statement, that is, the equator map is actually
minimizing among S1-equivariant S4-valued harmonic maps with the same boundary
condition. Clearly, equivariance will be crucial for the argument; without it, the
stament would be false, by well-known results by Jäger and Kaul [79].

Before stating our theorem, some important remarks are in order.
The previous equivariant stability theorem stimulates the natural question whether

this new piece of information could be used to deduce minimality. We remark that a
similar question1 is investigated in [76] (cfr. Proposition 5.2 there) and it is there
proven that stability in a fixed direction not explored by the map in the target space
implies minimality. One may wonder whether the same continues holding true in
the S1-equivariant case for the homogeneous degree-zero extension of the equator
map, also in view of its minimality as a map from R3 into S2 ⊂ L1⊕L0. We must be
aware that the situation is not exactly the same: on the one hand, there is no fixed
direction in the target space not explored by the equator map, because of the fact
that equivariance intertwines the directions within invariant subspaces. On the other
hand, the equivariant stability with respect L2-valued perturbation is much weaker
than the stability required in the statement of [76, Proposition 5.2], because it holds
only for W 1,2

0 ∩L∞(B1,R) functions w of the special form w(r, θ, φ) = v(r, θ)e2iφ. So,
we should expect that complications will arise. If one tries to adapt the proof, it turns
out that the main trouble is the weakness of the equivariant stability; this makes the
elegant method of [76] very difficult to pursue. In particular, also upon using other
useful inequalities such as [77, Eq. (2.10)] to step forward and gain control on as
more terms as possible, a term whose sign is not clear remains and apparently one
is left without further weapons at disposal. For these reasons, we approached the
problem in a different way. It remains an open question whether equivariant stability
with respect general equivariant perturbation actually implies equivariant minimality
or not.
Notation. For the sake of a lighter notation, we write ω also for the homogeneous
degree-zero extension of the equator map on to the whole unit ball B1.

Theorem 7.6 (S1-equivariant minimality of the equator map). The tangent map
ω : R3 → S2 ⊂ L1 ⊕ L0 ⊂ L2 ⊕ L1 ⊕ L0 defined by ω(x) =

(
0, x|x|

)
is minimizing

among S1-equivariant S4-valued harmonic maps R3 → S4 with the same boundary
condition.

Proof. Let u : R3 → S4 be a S1-equivariant harmonic map such that u|S2 = ω|S2 .
Since u and ω coincide on ∂B1 = S2, let us extend u to ω outside B1 and let us still
call, with a slight abuse of notation, this extension u. We write

u = (u2e
2iφ, u1e

iφ, u0) ∈ L2 ⊕ L1 ⊕ L0,

1In a non-equivariant context.
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where ui = ui(r, θ), i = 0, 1, 2. Note that equivariance forces u1, u2 to be vanishing at
poles and that the boundary condition implies, in particular, that u2 must vanish in
a neighbourhood of S2 (while u1 coincides in the trace sense with sin θ and u0 with
cos θ there).

Now we use a trick similar to that exploited by Ignat, Nguyen, Slastikov &
Zarnescu in the proof of [76, Theorem 1.3], that is, from u we construct the map

ũ =
(

0,
√
u2

2 + u2
1e
iφ, u0

)
.

Then ũ ∈W 1,2(B1, S
2), S2 ⊂ L1 ⊕ L0, ũ is S1-equivariant, ũ|S2 = ω|S2 and we claim

that
E(ũ) ≤ E(u).

Indeed, we have

|∇ũ|2 =
∣∣∣∣∂ũ1
∂r

∣∣∣∣2 + 1
r2

∣∣∣∣∂ũ1
∂θ

∣∣∣∣2 + 1
r2

∣∣∣∣∂u0
∂θ

∣∣∣∣2 +
∣∣∣∣∂u0
∂r

∣∣∣∣2 + 1
r2 sin2(θ)

∣∣∣∣∂ũ1
∂φ

∣∣∣∣2
= |∇r,θũ1|2 + |∇r,θu0|2 + u2

2 + u2
1

r2 sin2(θ) ,

where |∇r,θũ1|2, |∇r,θu0|2 are defined in an obvious way from the first line above.
Now, note that

|∇r,θũ1|2 = 1
u2

2 + u2
1
|u2∇r,θu2 + u1∇r,θu1|2

= 1
u2

2 + u2
1

(
u2

2 |∇r,θu2|2 + u2
1 |∇r,θu1|2 + 2u2u1∇r,θu2 · ∇r,θu1

)
≤ |∇r,θu2|2 + |∇r,θu1|2 ,

where the last inequality follows since, by Cauchy and Cauchy-Schwartz inequalities,

(u2
2 + u2

1)(|∇r,θu2|2 + |∇r,θu1|2) = u2
2 |∇r,θu2|2 + u2

1 |∇r,θu2|2 + u2
2 |∇r,θu1|2 + u2

1 |∇r,θu1|2

≥ u2
2 |∇r,θu2|2 + u2

1 |∇r,θu1|2 + 2u2u1∇r,θu2 · ∇r,θu1.

To conclude that E(ũ) ≤ E(u), it now suffices to observe that, from the above,

|∇u|2 = |∇r,θu2|2 + |∇r,θu1|2 + |∇r,θu0|2 + 4u2
2 + u2

1
r2 sin2(θ) ≥ |∇ũ|

2 .

Thus, ũ is a map in W 1,2(B1, S
2), S2 ⊂ L1 ⊕ L0, that coincides with ω on ∂B1 = S2,

having lower energy than u. But ω is minimizing among W 1,2(B1, S
2) maps subject

to its own boundary condition, hence

E(ω) ≤ E(ũ) ≤ E(u),

and this concludes the proof.

Remark 7.1.1. Note that, as we already remarked, equivariance is essential for the
argument, because it yields E(ũ) ≤ E(u). If we do not require equivariance (or, more
mildly, if we do not know that the φ-part of the gradient of ũ is smaller than that of
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u), then there is no reason for E(ũ) to be smaller than E(u). Indeed, competitors u
with component u2 having arbitrary dependence on φ (here including no dependence
at all) must be taken into account. This provides enough space to make the conclusion
false (see, for instance, [79]; compare also [76, Example 1.6]).

Remark 7.1.2. Let us explicitly remark that the trick used in the proof is not in
contrast with the result of Jäger & Kaul, in the sense that it cannot be used to try
to invalidate their instability theorem, as one might think at first sight. Indeed, let
u : R3 → S4 be any harmonic map that coincides with ω on S2. Then, one may
think to mimic the above argument, “bringing u1 into u2” this time, thus getting
ũ =

(√
u2

2 + u2
1, 0, u0

)
(here there is no request of equivariance, so indexes are merely

labels and ui = ui(r, θ, φ)). Then |ũ| = 1 but it is clear that ũ does not agree with
ω = (0, sin(θ)eiφ, cos(θ)) on S2, so this procedure does not make any sense. For the
same reason, it makes no sense to consider û =

(
u2, 0,

√
u2

1 + u2
0

)
.

7.1.4 Instability of L2 ⊕ L0-valued tangent maps

We now prove that tangent maps with values into L2 ⊕ L0 are unstable. Here, we
shall prove this by direct computation. The technique we shall use for linearly full
maps extends also to the present case; however, we believe that it may be interesting
to carry out explicit computations, where possible, for the sake of a deeper control of
the objects under studying.

Theorem 7.7 (Instability of L2 ⊕ L0-valued tangent maps). Let ω : R3 → S2 ⊂
L2⊕L0 ⊂ L2⊕L1⊕L0 be a S1-equivariant minimizing tangent map given by Theorem
5.13. Then ω is constant.

Proof. By the classification in Section 6.1, it suffices to consider the map ω corre-
sponding to π−1

((
π
(
x
|x|

))2
)
. We recall that this map is minimizing among the

L2⊕L0-valued harmonic maps with the same degree. It then follows that, to make ω
unstable, we have to push it in the L1-direction.

As a function from S2 ' C ∪ {∞} into C ⊕ C ⊕ R ' L2 ⊕ L1 ⊕ L0, ω can be
written

ω(z) =
(
ω2(|z|)e2iφ, 0, ω0(|z|)

)
,

with

ω2(|z|)e2iφ = 2z2

1 + |z|4
and ω0(|z|) = 1− |z|4

1 + |z|4
.

In what follows, working in spherical coordinates will be more convenient, because
it will be more apparent how to choose the deformation field. Let us then set

V (r, θ, φ) = g(r, θ)
(
0, ψ(θ)eiφ, 0

)
,

with g : (0,∞) × [0, π] → R and ψ : [0, π] → C ' R2 smooth functions of compact
support and such that g(0)ψ(0) = g(π)ψ(π) = 0 to be chosen. Then the second
variation formula becomes
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Qψ(g;ω) =
ˆ
R3

{
−g

2

r2

(
|ψ|2 |∇Tω|2 −

1
sin2(θ) |∂φV |

2 − |∂θψ|2
)

+ |ψ|2 |∂rg|2 + |ψ|
2

r2 |∇T g|
2
}

dx.

We clearly have |∂φV |2 = g2 |ψ|2. A quick computation shows that

|∇Tω|2 = 8 sin2(θ)
(1 + cos2(θ))2 .

A careful look at these formulae gives insight on the choice of ψ(θ). Let us take g a
radial function. Setting

ψ(θ)eiφ = 1√
2

(sin(θ) cos(φ), sin(θ) sin(φ)),

we get

|ψ|2 = sin2(θ) and |∂θψ|2 = cos2(θ),

so that

|ψ|2 |∇Tω|2 −
1

sin2(θ) |∂φV |
2 − |∂θψ|2 = 8 sin4(θ)

(1 + cos2(θ))2 − (1 + cos2(θ)).

Observe that nothing depends on φ. Switching to spherical coordinates in R3 in the
integrals (using the Fubini’s theorem), we then need only to calculate

ˆ π

0

8 sin4(θ)
(1 + cos2(θ))2 sin(θ)dθ and

ˆ π

0
(1 + cos2(θ)) sin(θ)dθ.

Both integrals are elementary. The second one reduces to
ˆ 1

−1
(1 + t2) dt = 8

3
and the first one gives

ˆ π

0

8 sin4(θ)
(1 + cos2(θ))2 sin(θ)dθ = 8

ˆ π

0

(
1− cos2(θ)
1 + cos2(θ)

)2

sin(θ)dθ

= 8
ˆ 1

−1

(
1− t2
1 + t2

)2

dt

= 8
[
−2 arctan(t) + 2t

1 + t2
+ t+ C

]1

−1

> 6.8.

We then have 6.8− 8
3 ≥ 4. Turning back to Qψ(g;ω), we have

4
3Qψ(g;ω) ≤

ˆ ∞
0

(
−3g

2

r2 + |∂rg|2
)
r2dr. (7.1.10)

Since 3 > 1
4 , the sharp Hardy inequality (7.1.2) is violated and we can find g ∈

C∞c ((0,∞)) so that the r.h.s. of (7.1.10) is negative. Hence, the conclusion follows.
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7.1.5 Instability of linearly full tangent maps

We now prove that any S1-equivariant tangent map ω : R3 → S4 with not identically
zero component along L2 is unstable. Note that explicit calculations are out of
question for general linearly full maps, because of overwhelming difficulties due to the
amazing complexity of the expression for |∇ω|2, see (A.3). Our proof proceeds by
contradiction and relies on the identification of a suitable stability inequality, given
by the following lemma.

Lemma 7.2. Let ω : R3 → S4 be a stable S1-equivariant tangent map. Then, ω
satisfies the following stability inequality:

ˆ
S2
g2 |∇ω|2 dvolS2 ≤

ˆ
S2

{
1
4g

2 + |∂θg|2 + g2

sin2 θ

}
dvolS2 , (7.1.11)

for all g ∈ C∞([0, π]) vanishing at poles, that is: g(0) = g(π) ≡ 0.

Proof. Let V ∈ C∞c (R3,R5) a deformation vector field of the form

V =
(
0, ψ(r, θ)ieiφ, 0

)
, (7.1.12)

with ψ ∈ C∞c ((0,+∞)× [0, π],R) vanishing at poles:

ψ(·, 0) = ψ(·, π) ≡ 0. (7.1.13)

Then, ω · V ≡ 0, so that the second variation Q(V ;ω) is given directly by the second
line in (7.1.4). We have (recall that ω is degree-zero homogeneous)

Q(V ;ω) =
ˆ
R3

{
−ψ

2

r2 |∇Tω|
2 + |∂rψ|2 + 1

r2

(
|∂θψ|2 + ψ2

sin2 θ

)}
dx.

We now decompose

ψ(r, θ) = ϕ(r)g(θ),

with

ϕ ∈ C∞c ((0,+∞)) and g ∈ C∞([0, π]) : g(0) = g(π) ≡ 0.

Hence,

Q(V ;ω) =
ˆ
R3

{
−ϕ

2g2

r2 |∇Tω|
2 + g2 |∂rϕ|2 + ϕ2

r2

(
|∂θg|2 + g2

sin2 θ

)}
dx.

We now optimize w.r.t. ϕ using the sharp Hardy inequality (7.1.2), as in [95,
Proposition 2.1]. Claiming stability, we must have that quadratic form in g:

Q(g;ω) =
ˆ
S2

{
−g2 |∇ω|2 + 1

4g
2 + |∂θg|2 + g2

sin2 θ

}
dvolS2

is nonnegative definite, i.e., Q(g;ω) ≥ 0 for any g ∈ C∞([0, π]) vanishing at 0 and at
π. This yields (7.1.11).

We can now state the main result.
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Theorem 7.8 (Instability of tangent maps that are not into L1 ⊕ L0). Any S1-
equivariant tangent map ω : R3 → S4 with a non-identically vanishing component
along L2 is unstable.

Proof. Let us write ω in the form

ω =
(
ω2(θ)e2iφ, ω1(θ)eiφ, ω0(θ)

)
.

Let ω2 6≡ 0 and suppose, for a contradiction, that ω is stable. Observe that ω2 fits
the same hypotheses as g in the statement of Lemma 7.2, so that it can be plugged2

into (7.1.11). Doing this gives:

ˆ
S2
ω2

2 |∇ω|
2 dvolS2 ≤

ˆ
S2

{
1
4ω

2
2 + |∂θω2|2 + ω2

2
sin2 θ

}
dvolS2 . (7.1.14)

On the other hand, by (3.6.3) the l.h.s. above is given by

ˆ
S2
ω2

2 |∇ω|
2 dvolS2 =

ˆ
S2

∣∣∣∇ (ω2e
2iφ
)∣∣∣2 =

ˆ
S2

{
|∂θω2|2 + 4ω2

2
sin2 θ

}
dvolS2 .

Comparing to (7.1.14), we see that stability forces
ˆ
S2

3ω2
2

sin2 θ
dvolS2 ≤

ˆ
S2

1
4ω

2
2 dvolS2 ,

which is clearly impossible, unless ω2 ≡ 0. Thus, ω cannot be stable.

As a particular case, we have recovered instability of tangent maps into L2 ⊕ L0,
already proven by explicit calculation in Theorem 7.7.

Particular case: instability of the hedgehog

We have two other proofs for the instability of the hedgehog. The first proof takes
advantage of the fact that the hedgehog actually enjoys the full SO(3)-equivariance.
The second proof is achieved showing that, assuming stability, the sharp Hardy
inequality is violated.

Lemma 7.3. Let ω, V and Q(V ;ω) as in Proposition 7.4. Set V = ϕe0, with
ϕ = ϕ(r, θ). Then

Q(ϕe0;ω) =
ˆ
R3

{
|∇ϕ|2 (1− ω2

0) + ϕ2
[
2 |∇ω0|2 − (1− ω2

0) |∇ω|2
]}
. (7.1.15)

Proof. Setting V = ϕe0 in Q(V ;ω), given by (7.1.4), we find

Q(ϕe0;ω) =
ˆ
R3

{
ϕ2(4(ω · e0)2 |∇ω|2 − |∇ω|2 − |∇(ω · e0)|2 + |∇ϕ|2 (1− (ω · e0)2)

−6ϕ(ω · e0)∇ϕ · ∇(ω · e0)} . (7.1.16)
2Recall that ω2 can always be thought of as real-valued when studying stability, see Lemma 7.1.
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We note that 6ϕω0∇ϕ · ∇ω0 = 3
2∇ϕ

2 · ∇ω2
0. As in [132], we integrate by parts, using

∆ω0 = −ω0 |∇ω|2 ,

which follows from the harmonic maps equations because e0 is constant. This yields
the conclusion.

Theorem 7.9. The tangent map given by the hedgehog, H(x) =
√

3
2

(
x
|x| ⊗

x
|x| −

1
3

)
,

is unstable.

First proof. Since the hedgehog is SO(3)-equivariant, it is S1-equivariant with respect
all axes through the origin. The equivalence of all directions allows to proceed exactly
as in the Schoen-Uhlenbeck proof, choosing an orthonormal basis in R5 and then
summing all the corresponding contributions. This removes the dependence on the
direction in the quadratic form and, on the other hand, all the contributions are equal.
Then the argument of Schoen-Uhlenbeck in the last part of the proof of [132, Theorem
2.7] implies that the quadratic form Q(ϕe0;H) is not positive-definite (ϕ ∈ C∞c (R3)
radial).

Second proof. Recalling the decomposition

ω =
(

Ω0 v
vt w0

)
and the form of the matrices ei of the basis we selected for L2 ⊕ L1 ⊕ L0, we have

ω · e0 = ω0 =
√

3
2w0.

In particular, for the hedgehog we have

ω0 =
√

3
2h0 = 3

2

(
x2

3
r2 −

1
3

)
= 3

2

(
cos2 θ − 1

3

)
,

where h0 is w0 evaluated for the hedgehog.
Pick ϕr ∈ C∞c (R3) a radial function. Then we have

Q(ϕre0;H) =
ˆ ∞

0

ˆ π

0

ˆ 2π

0

{
|∂rϕr|2

(3
4 −

9
4 cos4 θ + 3

2 cos2 θ

)
+ϕ2

r

(
18 cos2 θ − 18 cos4 θ −

(3
4 −

9
4 cos4 θ + 3

2 cos2 θ

)
|∇H|2

)}
r2 sin θdφ dθ dr.

Recalling that |∇H|2 = 6
r2 , we reduce to

Q(ϕre0;H) =3
2π

ˆ ∞
0

ˆ π

0

{(3
4 −

9
4 cos4 θ + 3

2 cos2 θ

)
|∂rϕr|2

+ ϕ2
r

r2

(
−9

2 cos4 θ + 9 cos2 θ − 9
2

)
r2 sin θdθ,dr.

The θ-integrals are elementary and we get

Q(ϕre0;H) = 5
4π ×

ˆ ∞
0

(
|∂rϕr|2 − 3ϕ

2
r

r2

)
r2dr. (7.1.17)

Since 3 > 1
4 , the sharp Hardy inequality (7.1.2) is violated and hence the conclusion

follows.
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7.2 Partial interior regularity
The results in Section 7.1 can be summarized to give the following partial interior
regularity theorem.
Theorem 7.10 (Partial interior regularity theorem for S1-equivariant minimizers).
Let Q ∈W 1,2(B1, S

4) be a minimizer of the LdG energy (1.1.3) in the class (1.1.15),
with Qb as in (1.1.13). Then Q ∈ Cω(B1 \ Σ(Q), S4), where Σ(Q) ⊂ {z-axis} is a
finite set of isolated points, possibly empty, of even cardinality. Moreover, if a ∈ Σ(Q),
then the tangent map of Q at a is the equator map, up to an isometry.

Proof. Q cannot have singularities off the z-axis, thus it is continuous in B1 \ (B1 ∩
z-axis) and hence real-analytic by higher regularity theorems in Chapter 4. By
Theorem 5.13, Σ(Q) is a finite set of isolated points located on the z-axis.

Next, by Theorem 7.6 and Theorem 7.8, every nonconstant tangent map, if any,
must be obtained by the equator map ω =

(
0, x|x|

)
with an isometry. We have only

to prove that the number of singular points must be even.
Let a ∈ Σ(Q). Then, passing through a along the z-axis, Q suffers a discontinuity

and its leading eigenvector, which must be directed along the z-axis because of
equivariance, changes sign. If there are n discontinuities, then the sign changes n
times. But, denoting H the hedgehog map, at the poles we have

Q(N) = H(N) = H(S) = Q(S),
hence n must be even.

Remark 7.2.1. More succintly, Σ(Q) consists of a finite number of dipoles, in the sense
of [21].
Remark 7.2.2. In order to achieve complete regularity, we have to rule out all the
possible dipoles. This appears to be a very difficult task, for the following reason. In
[47], Gartland & Mkaddem numerically showed the existence of a metastable solution,
by them called the split core solution, bearing a remarkable resemblance with singular
single-dipole solutions allowed by Theorem 7.10. This strongly suggests that the
removal of potential dipoles, whenever possible, must be a highly nonlinear effect
due to minimality. Said another way, this issue cannot be addressed looking only at
the linearized problem.
Remark 7.2.3. Note that here nothing really depends on the specific form of the
boundary condition Qb, provided it is S1-equivariant and takes the same values at
the poles (otherwise singularities are unavoidable).

The following dichotomy is an easy consequence of the above partial regularity
result.
Corollary 7.11. Let Q ∈ Aax

Qb
be a minimizer of the LdG energy (1.1.3) in the class

(1.1.15), with Qb as in (1.1.13). Then either Q is singular with a finite number of
dipoles or Q is a biaxial torus solution in B1, in the sense of Definition 1.2.

Proof. If Q has singularities, then they must form a finite number of dipoles by
Theorem 7.10. Otherwise, Q is a smooth S1-equivariant minimizer of the LdG energy
(1.1.3) and then it is a biaxial solution in B1 by Theorem 5.1.

Remark 7.2.4. Corollary 7.11 extends to the case of any smooth S1-equivariant
boundary condition Qb that satisfies β̃(Qb) ≡ +1, Qb(N) = Qb(S) and whose leading
eigenspace perform the nontrivial path in RP 2 on S2.
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7.3 Boundary regularity

Due to symmetry, boundary regularity is somewhat simpler in the equivariant case
but, nonetheless, it deserves some special care.

The first step is a boundary monotonicity formula. The argument giving the
interior boundary monotonicity formula actually holds up to the boundary and hence
we have

Theorem 7.12 (Boundary monotonicity formula). Let Q ∈ Aax
Qb

be a minimizer of
E(·;B1) in the class Aax

Qb
, with Qb as in (1.1.13) and let x0 ∈ ∂B1. Define

Er = 1
r

ˆ
Ωr

1
2 |∇Q|

2 + F (Q) dx. (7.3.1)

Then there exist R0 > 0 and a constant C = C(a, b, c,Qb, R0), C > 0, so that

dEr
dr
≥ −C(a, b, c,Qb, R0), ∀0 < r < R0. (7.3.2)

Proof. The proof exploits the approximation trick used for the interior monotonicity
formula and goes exactly as in the proof of Theorem 4.14.

Once the boundary monotonicity formula is given, we can use it to extend the
ε-regularity theorem and the strong compactness theorem for rescaled maps. Note
that the extension argument in Section 4.8 preserves equivariance, so it can be used
also in this case and hence the ε-regularity theorem still holds, since it is valid for
any weak solution of the Euler-Lagrange equations (4.2.1) satisfying also (4.8.3), and
thus in particular for minimizers in the symmetric class, by the theorem above.

For what concerns the strong compactness theorem, differently from the non-
symmetric case, we now need to show compactness for rescaled maps only at poles.
Indeed, off the z-axis we cannot have concentration and the boundary monotonicity
formula implies strong convergence to a constant around any point off the z-axis.
With a slight modification of Theorem 5.13, we get

Theorem 7.13 (Boundary strong compactness theorem in the symmetric case). Let
Q ∈ Aax

Qb
be a minimizer of E(·;B1) in the class Aax

Qb
, with Qb as in (1.1.13). Let

R ∈ (0, 1] and define QR,N := Q(N +Rx), where x ∈ R−1(B1 \ {N}) and N is the
north pole of B1 (analogous definitions for the south pole S). Then there exist a
sequence (Rj)j, with Rj → 0 as j →∞, and Q0 ∈W 1,2

loc (R3
+, S

4) so that QRj ,x0 → Q0

strongly in W 1,2
loc (R3

+,S0). In addition, Q0 is a locally minimizing harmonic map into
S4 with Q0|∂R3

+
= const.. Moreover, Q0 is degree-zero homogeneous.

Proof. Thanks to the boundary monotonicity formula, the proof is similar to that of
Theorem 5.13. The only difference is that we now have to construct competitors in
the region(s) Ωr = Br(N) ∩ ∂B1 (analogous for S instead of N) and consider their
suitable homothetic restrictions instead of full balls. To this end, we slice Ωr in a
similar way as in Theorem 5.13 and hence we define comparison maps in the same
way. Analogous calculations then lead to the conclusion.

Since we are in dimensions 3, full regularity now follows from Wood’s theorem
[131] and the fact that singularities form at most a discrete set. Thus,
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Theorem 7.14 (Boundary regularity in the symmetric case). Let Q ∈ Aax
Qb

be a
minimizer of E(·;B1) in the class Aax

Qb
, with Qb as in (1.1.13). Then there exist a

δ > 0 and a neighborhood Oδ of ∂B1 such that Q ∈ Cω(Oδ, S4).

Proof. Theorem 7.13 implies that, for both N and S, Q0 : S2
+ → S4 is constant on

∂S2
+ and hence [131, Lemma 2.5] implies that Q0 is constant in both cases. Thus,

the energy of Q cannot concentrate in N and S and hence, by Theorem 4.15, Q is
completely smooth there. Since the singular set of Q is at most discrete, then one
can walk upward from the south pole or downward from the north pole along the
z-axis for at least a distance δ > 0 without encountering singularities.
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Chapter 8

Biaxial torus solutions and
singular minimizers for special
boundary data

Synopsis. Here we produce boundary data so that the corresponding minimizers
are biaxial torus solutions in B1 (§8.2); boundary data so that the corresponding
minimizers have singularities (§8.3) and boundary data so that the corresponding
minimizers are biaxial torus solutions in a subregion of B1 and have singularities
outside (§8.4). We next (§8.5) exploit the classification of all possibile tangent maps
carried out in Chapter 7 to extend well-known theorems in harmonic maps, such
as generic uniqueness and convergence of singularities to singularities, in order to
use them to investigate to some extent the question whether there are boundary
conditions that are critical in the sense they have at least two minimizers of different
character: a biaxial torus solution and a split solution.

8.1 A S1-equivariant version of Luckhaus’ compactness
theorem

In what follows, we shall need the result below, which is an S1-equivariant version of
the Luckhaus’ compactness theorem. Actually, its proof will involve exactly the same
estimates as in the proof of Theorem 5.13, which is indeed a particular instance of
this more general statement.

Theorem 8.1 (S1-equivariant Luckhaus’ compactness theorem). Let {Qs}s∈[0,1] be
a family of minimizers (with respect their own boundary data) of the LdG energy with
locally equibounded energies, i.e. there is C > 0, independent of s, such that

sup
s
E(Qs;Bρ(x)) ≤ C < +∞,

for any ball Bρ(x) ⊂ B1. Then there exist Q∗ ∈ W 1,2
loc (B1, S

4) and a sequence (sj)j,
sj → 0 as j → +∞, such that Qsj → Q∗ strongly in W 1,2

loc (B1, S
4). In particular, Q∗

is a S1-equivariant local minimizer of the LdG energy (1.1.3) w.r.t. its own boundary
condition.

Proof. We sketch here only the main points, referring to the proof of Theorem 5.13
for explicit calculations.
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The equiboundedness condition on the energy actually implies, in view of the fact
that |Qs| = 1, the equiboundedness of the family {Qs}s∈[0,1] in W 1,2(B1, S

4). Thus,
there is Q∗ ∈ W 1,2(B1,R5) and there is a sequence (sj)j , sj → 0 as j → +∞, such
that Qsj ⇀ Q∗ as j →∞. By the Rellich-Kondrachov theorem, there is a subsequence
(not relabeled) on which Qj → Q∗ strongly in L2 and hence a further subsequence
(again, not relabeled) on which Qj(x)→ Q∗(x) pointwise a.e.. Thus, we have that
Q∗ belongs to W 1,2(B1, S

4) and that Q∗ is S1-equivariant (since S1-equivariance is a
pointwise property).

It remains to prove that Q∗ is locally minimizing w.r.t its own boundary condition.
By the weak lower semicontinuity of the Landau-de Gennes energy, weak convergence
W 1,2, and the fact the F (Q) is a polynomial in Q, plus the strong L2-convergence of
Qsj to Q∗, this would follow automatically if the convergence was strong in W 1,2

loc (i.e.,
if also the elastic energies of the Qs’s converge to the elastic energy of Q∗). In order
to prove strong convergence, we first observe that, by Fatou’s lemma and Fubini’s
theorem, we can fix δ ∈ (0, 1) and find ρ ∈ (1− δ, 1) so that

lim
j→+∞

ˆ
∂Bρ

|Qsj −Q∗|2 dH2 = 0

and
ˆ
Bρ

(
|∇TQsj |2 + |∇TQ∗|2

)
dH2 ≤ C < +∞,

which are exactly (5.8.3) and (5.8.4). We then choose λj as below (5.8.4) and slice
Bρ as explained in (5.8.5), (5.8.6), (5.8.7). Then we take w ∈W 1,2(B1, S

4) such that
w = Q∗ a.e on B1 \B1−δ and we construct comparison maps (vj)j as in (5.8.8). The
subsequent estimates then follow at once, leading to the conclusion.

8.2 A family of boundary data whose minimizers are
biaxial torus solutions

In this section we shall prove the following theorem.

Theorem 8.2 (Biaxial torus solutions for special boundary data). There exist non-
trivial S1-equivariant boundary data Qb ∈ C∞(S2, S4) such that the corresponding
S1-equivariant minimizer of the LdG energy (1.1.3) are biaxial torus solutions in B1.

The proof will be constructive: we shall craft a family of boundary data {Qsb}s∈[0,1]
such that the family {Qs}s∈[0,1] of corresponding minimizers satisfy, for small s, the
conclusion of the theorem.

Proof. As anticipated above, we construct a family of special boundary data and,
correspondingly, a family of minimizers of the LdG energy that exhibit the required
property. The idea behind the construction is the following. Suppose that we have
a family {Qs} of minimizers (with respect to their own boundary condition) of the
LdG energy, labeled by a parameter s ∈ [0, 1], and that this family converges, as
s→ 0, to a minimizing map, which is also smooth in B1. If the convergence is strong
enough, then all minimizers sufficiently near to the limiting smooth minimizer inherit
smoothness from it (because a strong enough convergence will keep the rescaled energy
small and hence Theorem 4.6 applies). If now the minimizers fullfill the conditions for
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applying the semidisk argument in Section 5.1, then they are biaxial torus solutions
in B1, at least for s sufficiently small.

In order to craft the desired family of minimizers, we shall assign appropriately
the family of their boundary data. To do this, we observe that, from the point of
view of the semidisk argument, a good behavior is that of the hedgehog map H while,
on the side of the regularity issue, a good behavior is that of constant maps. Noting
that at the poles of S2 we have H = e0, we may think to do our construction by
spreading, step-by-step, this constant value along the boundary while concentrating
the rest of the hedgehog far from the z-axis, so that the limiting datum, for s→ 0,
will be the constant vector field e0, but, for any s > 0, the hedgehog-like behavior is
preserved. Clearly, the minimizer with respect to the limiting datum e0 is e0 itself.
Provided that we showed that the minimizers are actually near, in the W 1,2-norm,
to e0 for s� 1, they must be smooth and have, by construction, suitable boundary
data for the semidisk argument. In terms of s ∈ [0, 1], we then want

Q0
b ≡ e0 and Q1

b ≡ H,

with Qsb ∈ C∞(S2, S4), 0 < s < 1, S1-equivariant maps interpolating between e0 and
H in the sense above. If we are able to assign the data so that the corresponding
minimizers {Qs}s∈[0,1] will have equibounded LdG energies, then we can assure W 1,2

loc -
convergence in the interior of B1 by means of Theorem 8.1. Adding some uniform
boundary regularity (for s small) to this, we can be sure that the corresponding
minimizers have all (for s sufficiently small) the required properties to conclude. We
shall work details in several steps below.

Step 1. Construction of {Qsb}s∈[0,1] and {Qs}s∈[0,1]. Let s ∈ [0, 1]. Define

Qsb(θ, φ) =

e0, if 0 ≤ θ ≤ π(1−s)
2 or π(1+s)

2 ≤ θ ≤ π,
H
(

1
s

(
θ − π(1−s)

2

)
, φ
)
, if π(1−s)

2 < θ < π(1+s)
2 ,

(8.2.1)
where H denotes, as always, the hedgehog map.
Note that Qsb ∈ H

1
2 (S2, S4) for any s ∈ [0, 1]. In particular, we have

Q0
b ≡ e0 and Q1

b ≡ H.

Further, each Qsb is S1-equivariant. For each s, let Qs a minimizer of the LdG
energy (1.1.3) in the class Aax

Qs
b
.

Step 2. Equiboundedness of {Qs}s∈[0,1]. We claim that the family {Qs}s∈[0,1] has
equibounded energy. To show this, we need to control the Dirichlet energy
ED(Qs;B1) uniformly w.r.t. s. By the equiboundedness of the potential, such
a control is actually all that we need. In order to get it, let us note that, for
any s ∈ [0, 1],

ED(Qs;B1) ≤ C1

∣∣∣∣Qsb −  
Qsb

∣∣∣∣2
Ḣ

1
2 (S2,S4)

, (8.2.2)

where C1 > 0 is a constant. On the other hand, we also have
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∣∣∣∣Qsb −  
Qsb

∣∣∣∣2
Ḣ

1
2 (S2,S4)

≤ C2

∥∥∥∥Qsb −  
Qsb

∥∥∥∥
L2(S2,S4)

‖∇Qsb‖L2(S2,S4), (8.2.3)

where C2 > 0 is another constant.
It is easy realized that

∥∥∥∥Qsb −  
Qsb

∥∥∥∥
L2(S2,S4)

≤ C3s, (8.2.4)

because of |Qsb| = 1 and the fact that Qsb differs from its mean only on that
strip on which Qsb behaves like H, which corresponds to an interval of values of
θ having length s.
We now estimate ‖∇Qsb‖L2(S2,S4). It is a priori clear that this term cannot be
bounded, since we are concentrating a finite change in the datum in a smaller
and smaller region. For convenience, let us set

θ̃s = 1
s

(
θ − π(1− s)

2

)
, 0 < s ≤ 1. (8.2.5)

Note that θ̃1 = θ.
Clearly,

ED(Qsb) =
ˆ
S2
|∇Qsb|

2 dvolS2 = 2π
ˆ π(1−s)

2

π(1−s)
2

∣∣∣∇H (
θ̃s, φ

)∣∣∣2 sin(θ) dθ.

We have

∣∣∣∇H (
θ̃s, φ

)∣∣∣2 = 1
s2

∣∣∣∂θ̃sH (
θ̃s, φ

)∣∣∣2 + 1
sin2(θ)

∣∣∣∂φH (
θ̃s, φ

)∣∣∣2 .
Recalling that

|∂θH(θ, φ)|2 = 1
sin2(θ) |∂φH(θ, φ)|2 = 3,

we see that

∣∣∣∇H (
θ̃s, φ

)∣∣∣2 = 3
s2 + 3sin2(θ̃s)

sin2(θ)

Observe that sin(θ) > sin
(
π(1−s)

2

)
for π(1−s)

2 < θ < π(1+s)
2 . Thus,

ˆ π(1+s)
2

π(1−s)
2

sin2(θ̃s)
sin2(θ) (sin(θ)) dθ ≤ 1

sin
(
π(1−s)

2

) ˆ π(1+s)
2

π(1−s)
2

1 dθ = πs

sin
(
π(1−s)

2

) ,
(8.2.6)

whose last member clearly tends to zero as s → 0. On the other hand, the
integrand at l.h.s. above is a smooth function of s for s ∈ (0, 1]. Defining
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G(s) :=


´ π(1+s)

2
π(1−s)

2

sin2(θ̃s)
sin2(θ) (sin(θ)) dθ, s ∈ (0, 1],

0, s = 0,

we have that G is a continuous function of s ∈ [0, 1], hence G is bounded for
s ∈ [0, 1]. This readily yields

ˆ π(1+s)
2

π(1−s)
2

sin2(θ̃s)
sin2(θ) (sin(θ)) dθ ≤ C4

Then, we have the estimate

ED(Qsb) ≤ C5
sin
(
πs
2
)

s2 + C6. (8.2.7)

By taking the square roots of (8.2.4) and (8.2.7) and inserting them into (8.2.3),
we get

sup
s∈[0,1]

E(Qs, B1) ≤ C, (8.2.8)

where C > 0 is a constant which does not depends on s. We can now also
smoothing a bit the dependence on θ in Qsb while keeping equiboundedness
(possibly, with a larger constant). This returns us a family of smooth boundary
data satisfying the desired properties. With slight abuse of notation, we shall
replace each Qsb above with its smooth counterpart without relabeling. We then
consider the associated minimizers of the LdG energy, again denoted Qs, and
these will satisfy again (8.2.8) (with, possibly, a different constant).

Step 3. Strong compactness and uniform boundary regularity for s small. Thus, we
have a family of S1-equivariant minimizers of the LdG energy with equibounded
energies. In particular, this family is equibounded in W 1,2(B1, S

4), and this
means that there is Q∗ ∈ W 1,2(B1, S

4) and there is a sequence (sj)j , sj → 0
as j →∞, such that Qsj ⇀ Q∗ as j →∞. Theorem 8.1 then shows that this
convergence in actually strong in W 1,2

loc (B1, S
4), so that Q∗ is actually a local

minimizer of the LdG energy with respect to its own boundary trace. But
tr(Q∗) = e0, because the trace operator commutes with weak limits, and hence
Q∗ ≡ e0, because Q∗ is minimizing but e0 is clearly the unique minimizer with
respect to its own boundary trace. Further, locally strong converge implies
small rescaled energy in compact sets, hence we can fix a small δ > 0 and, for j
sufficiently large, Qsj must be smooth at least in any compact set K ⊂ B1 such
that dist(K,N),dist(K,S) > δ, where N and S denote the north and south
pole of S2, respectively.
Moreover, for j sufficiently large we have uniform boundary regularity. Indeed,
S1-equivariance excludes concentration points near the boundary out of the
z-axis and, for sufficiently large j, Qsjb is uniformly constant near the poles.
This means that we can fix η > 0 and then find J ∈ N such that Qsj is smooth
in a η-neighborhood of S2 for all j > J .
Combining this with locally strong convergence, we conclude that Qsj has to
be smooth in B1 for all j sufficiently large (that is, so large that we can take
η > δ), i.e, for sj sufficiently small.
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To conclude, it now suffices to observe that such minimizers fulfill the hypotheses
of Corollary 5.2 and hence they are biaxial torus solutions in B1, in the sense of
Definition 1.2.

8.3 A family of boundary data whose minimizers have
singularities

In this section we prove a complementary result w.r.t. that we proved in Section 8.2,
that is, we can arrange the boundary datum so that the appearance of singularities is
enforced.

Theorem 8.3. There exist nontrivial S1-equivariant boundary data Qb ∈ C∞(S2, S4)
such that the corresponding S1-equivariant minimizers of the LdG energy (1.1.3)
necessarily have singularities.

Proof. As that of Theorem 8.2, the proof will be constructive, the difference being
that this time we shall take a map different from the hedgehog as starting map of our
construction. Indeed, we can force the appearance of a singularity on the z-axis by
selecting a boundary datum whose eigenframes at the poles have opposite orientations.
A map with this property is the equator map (7.1.7). Apart from this and the fact
that we now want to concentrate the data near a pole, the construction goes exactly
as before. We work out details below.

Step 1. Construction of {Qsb}s∈[0,1] and {Qs}s∈[0,1]. Let s ∈ [0, 1]. Define

Qsb(θ, φ) =

ω
(
π − θ

s , φ
)
, if 0 ≤ θ < πs,

e0, if πs ≤ θ ≤ π,
(8.3.1)

where ω denotes the equator map.
Note that Qsb ∈ H

1
2 (S2, S4) for any s ∈ [0, 1]. In particular, we have

Q0
b ≡ e0 and Q1

b ≡ ω.

Further, each Qsb is S1-equivariant. For each s, let Qs a minimizers of the LdG
energy (1.1.3) in the class Aax

Qs
b
..

Step 2. Equiboundedness of {Qs}s∈[0,1]. We claim that the family {Qs}s∈[0,1] has
equibounded energy. As in proof of Theorem 8.2, in order to show this, we
need to control the Dirichlet energy ED(Qs;B1) uniformly w.r.t. s. By the
equiboundedness of the potential, such a control is actually all that we need.
Recall that, for any s ∈ [0, 1], Eqs. (8.2.2) and (8.2.3) hold. Thus, we need to
estimate

∥∥∥∥Qsb −  
Qsb

∥∥∥∥
L2(S2,S4)

and ‖∇Qsb‖L2(S2,S4).

It is clear that the first one behaves like s for the same reason explained below
(8.2.4). Moreover, it is plain that they are both zero for s = 0. We then need
to estimate the norm of the gradient only for s > 0. To this end, let us set
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θ̃s = π − θ

s
, 0 < s ≤ 1.

Recalling that for the equator map it holds

|∂θω(θ, φ)|2 = 1
sin2(θ) |∂φω(θ, φ)|2 = 1,

we see that

∣∣∣∇ω(θ̃s, φ)
∣∣∣2 = 1

s2 + sin2(θ̃s)
sin2(θ) .

Since sin
(
π − θ

s

)
= sin

(
θ
s

)
, let us redefine θ̃s as θ

s . Let J be the greatest
integer contained in 1/s and let 0 ≤ r ≤ 1 so that 1/s = J + r. Notice that

ˆ πs

0

sin2(θ̃s)
sin2(θ) sin(θ) dθ =

ˆ πs

0

sin2
(
θ
s

)
sin(θ) dθ

=
ˆ π

J+r

0

sin2((J + r)θ)
sin(θ) dθ

=
ˆ π

J+r

0

(sin(Jθ) cos(rθ) + cos(Jθ) sin(rθ))2

sin(θ) dθ

≤ 2
ˆ π

J+r

0

{ |sin(Jθ)|
sin(θ) + C1

}
dθ

≤ C2,

where we used the elementary limit limx→0
sin(ax)
sin(x) = a for any a ∈ R. Thus,

ED(Qsb) =
ˆ πs

0

{
1
s2 + sin2(θ̃s)

sin2(θ)

}
sin(θ) dθ

≤ 1− cos(πs)
s2 + C2.

Hence,

sup
s∈[0,1]

ED(Qsb) ≤ C3. (8.3.2)

Further, since 1− cos(πs) ≈ 1
2π

2s2 for s� 1, we also have that

lim
s→0

ED(Qsb) = C4, (8.3.3)

where C3 > 0 is a constant, which in turn yields

lim
s→0

ED(Qs) = 0. (8.3.4)

We can now smoothing a bit the dependence on θ in Qsb, thus we can replace
each Qsb with a smooth counterpart, while keeping equiboundedness and (8.3.4)
for the corresponding minimizers.
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Step 3. Strong compactness. Due to Eq. (8.3.2), we have a family of S1-equivariant
minimizers of the LdG energy with equibounded energies. In particular, this
family is equibounded in W 1,2(B1, S

4), and this means that there is Q∗ ∈
W 1,2(B1, S

4) and there is a sequence (sj)j , sj → 0 as j →∞, such that Qsj ⇀
Q∗ as j → ∞. Differently from the previous case, the stronger information
carried by (8.3.4) gives the strong convergence to Q∗, and hence its minimality,
even without passing through Theorem 8.1. By the weak convergence of the
boundary traces to e0, it then follows Q∗ = e0.

Thus, for s sufficiently small, the minimizer Qs must be smooth in a compact set
Ks ⊂ B1, with Ks invading the whole ball as s tends to zero. However, in the present
situation we cannot have uniform boundary regularity because the boundary datum
clearly forces the arising of at least one singularity on the z-axis (such singularities
escape towards the boundary as s→ 0). Thus, there is s̄ > 0 such that for s < s̄ the
minimizers Qs satisfy the conclusion of the theorem.

Remark 8.3.1. The kind of singularity induced by the boundary data considered in
the theorem is a bit artificial from the physical point of view. In fact, we are not
aware of the appearance of such type of singularities in physical significant situations.
Nevertheless, our construction is certainly mathematically legitimate and leads to a
conclusion that may be considered significant, at least as a matter of principle.
Remark 8.3.2. In connection to the previous remark, it would be more interesting to
consider a boundary datum in Qmin, where Qmin ' RP 2 is defined in (1.1.9), which
do not induced singularities a priori for topological reasons. Such boundary data
look also more physical, being at the bottom of the potential well. In this case, split
solutions are analogous to the large solutions considered in [20].

8.4 A family of boundary data whose minimizers are
biaxial torus solutions with singularities

Matching Theorem 8.2 and Theorem 8.3 it is easy to prove that one can construct
boundary data whose minimizers are biaxial torus solutions in a subregion of B1 and
have singularities outside.

Theorem 8.4. There exists S1-equivariant boundary data Qb ∈ C∞(S2, S4) whose
corresponding S1-equivariant minimizers of the LdG energy (1.1.3) are biaxial torus
solutions in a subregion of B1 and have singularities outside.

Proof. Let s ∈ [0, 1]. Define

Qsb(θ, φ) =


ω
(
π − θ

s , φ
)
, if 0 ≤ θ < πs,

e0, if πs ≤ θ ≤ π(1−s)
2

H
(

1
s

(
θ − π(1−s)

2

)
, φ
)
, if π(1−s)

2 < θ < π(1+s)
2 ,

e0, if π(1+s)
2 ≤ θ ≤ π.

(8.4.1)

Then Qsb ∈ H
1
2 (S2, S4) for any s ∈ [0, 1], Q0

b ≡ e0 and Q1
b ≡ H. Further, Qsb ⇀ e0 as

s→ 0.
For each s ∈ [0, 1], let Qs be a minimizer of the LdG energy (1.1.3) w.r.t. to

the boundary datum Qsb. The estimates in Theorem 8.2 and Theorem 8.3 show
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that {Qs}s∈[0,1] is equibounded1 in W 1,2(B1, S
4) and thus, by Theorem 8.1, there

are Q∗ ∈ W 1,2(B1, S
4) and a sequence sj , sj → 0 as j → ∞, such that Qsj → Q∗

strongly in W 1,2
loc (B1, S

4). By strong convergence, Q∗ is minimizing. On the other
hand, since the trace operator is weakly continuous, tr(Q∗) = e0 on S2. Thus Q∗ = e0,
because e0 is clearly the unique minimizer w.r.t. its own boundary condition. Next,
strong convergence yields small rescaled energy well in the interior of B1, and thus,
for j sufficiently large, the minimizers Qsj have only a finite number (at least one) of
singularities near the poles.

Let D be the disk obtained slicing the ball with the plane {φ = 0}, D+ its portion
on the right, say, of the z-axis. From the above, for sufficiently large j we can select a
finite portion A j of the z-axis which is free from singularities and a finite portion S j

of the semicircle closing D+ on which Qsjb is uniaxial with identical lowest eigenvalues.
By the strong L2-convergence Qsj → e0, enlarging j if necessary, we can assume that
the leading eigenvalue of Qsj is simple everywhere far away from the poles. Thus, we
can connect the end-points A j and S j with two arcs so that, restricted to the curve
C j obtained this way, Qsj is uniaxial with identical lowest eigenvalues. Let Dj the
domain encircled by C j . We can apply the semidisk argument of Section 5.1 to the
restriction of Qsj to Dj thus getting the Qsj is also a biaxial torus solution in Dj , in
the sense of Definition 1.2.

Let us comment on this result. Its interest relies mainly in the fact that it shows
that biaxial torus solutions are compatible with singularities, although in numerical
simulations [47, 84, 85, 137] they look as smooth solutions. In the paper [47], a special
kind of singular solution (which, however, is only metastable) has been detected.
This solution, called the split core solution, is S1-equivariant with a (uniaxial) line of
disclination on the z-axis with isotropic end-points. See also Section 2.5.7 for a quick
description of this kind of solution. Thus, it resembles, at least qualitatively, the
picture that may arise with the hedgehog boundary condition (remember that we have
not been able to exclude L1 ⊕ L0-valued tangent maps, which are also minimizing),
hence giving a hint of the fact the singularities may be unavoidable. Our theorem may
be superficially interpreted as a strengthening of the numerical suggestion. However,
it must be remarked that the type of singularities that are generated in our context
are very different from those of the split core solution or, more generally, from
those that S1-equivariant minimizers w.r.t. the hedgehog boundary condition may
have.

To understand the difference, recall that by Theorem 7.10 the only allowed
singularities for S1-equivariant minimizers subject to the hedgehog boundary condition
are dipoles. Thus, singularities have to come out in even number and have alternating
degrees. On the contrary, in the present setting we can have both a even and an odd
number of singularities and they need not, a priori, to have alternating degrees.

8.5 Generic uniqueness, nonuniqueness and related re-
sults

In this Section we derive some easy consequences of boundary regularity and the facts
that singularities are isolated and their tangent approximations well-known. The

1At this point, we can smoothing a bit the θ-dependence in Qsb, thus getting smooth boundary
data while keeping equiboundedness.
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following results are counterparts of established theorems in the context of harmonic
maps from B1 into S2.

We begin by showing that the set of S1-equivariant boundary data having unique
S1-equivariant minimizer is dense in H 1

2 (S2, S4), a fact proven for (nonsymmetric)
harmonic maps from B1 into S2 in [2, Theorem 4.1].

Theorem 8.5 (Generic uniqueness). Let Qb ∈ C∞(S2, S4) be S1-equivariant and let
Q ∈ Aax

Qb
be a minimizer of E(·;B1) in Aax

Qb
. For any 0 < λ < 1, define Qλ : B1 → S4

and Qλb : S2 → S4 setting

Qλ(x) := Q(λx), x ∈ B1,

Qλb (y) := Q(λy), y ∈ S2.

Define also scaled functionals Eλ(·;B1) setting, for P ∈ Aax
Qλ
b

,

Eλ(P ;B1) :=
ˆ
B1

L |∇P |2 + λ2F (P ) dx. (8.5.1)

Then, for any λ ∈ (0, 1), Qλ is the unique minimizer of Eλ(·;B1) in the class Aax
Qλ
b

.

Moreover, Qλb → Qb strongly in H
1
2 (S2, S4).

Proof. By definition of Eλ(·;B1) and Qλ, we have

Eλ(Qλ;B1) = 1
λ
E(Q;Bλ).

The key point is now that Q is the unique minimizer of E(Q;Bλ) subject to Qλb = Q|S2
λ
.

Indeed, suppose Q̃ is another minimizer in Bλ such that Q̃|S2
λ

= Qλb . Define

Q∗ =
{
Q̃ in Bλ,
Q in B1 \Bλ.

Then Q∗ is a minimizer of E(·;B1) in Aax
Qb

. Indeed,

E(Q∗;B1) = E(Q̃;Bλ) + E(Q;B1 \Bλ) = E(Q;Bλ) + E(Q;B1 \Bλ) = E(Q;B1).

Being Q,Q∗ minimizers of E(·;B1), they must be real-analytic in the interior of B1
out of a finite set of isolated singular points, by results in Chapter 7. On the other
hand, we have Q = Q∗ in B1 \ Bλ and hence everywhere by analytic continuation.
Turning back to Qλ, we then see that it must be the unique minimizer of Eλ(·;B1)
w.r.t. Qλb .

Regard to the second assertion, observe that, being Qb ∈ C∞(S2, S4) (C3 would
be enough actually, as in [2]), we have that there is δ > 0 so that Q ∈ C∞(Oδ, S4),
where Oδ is a δ-neighborhood of S2. Taking λ ∈ (1− δ, 1), we have that the family of
boundary traces {Qλb }λ depends in a C1-way on λ and hence the conclusion follows
immediately.

Thanks to the fact that we know that the only nonconstant minimizing tangent
maps are of the type

(
0L2 ,

x
|x|

)
, we can rephrase almost word-by-word the argument

by Almgren & Lieb [2, Theorem 1.8] to prove
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Theorem 8.6 (Singular points converge to singular points). Suppose that (Qi)i ⊂
W 1,2(B1, S

4) is a sequence of S1-equivariant minimizers of E(·;B1) in their own
class converging strongly in the W 1,2-sense to Q ∈ Aax

Qb
. Then

(a) If yi is a singular point for Qi and we have yi → y in B1, then y is a singular
point for Q.

(b) If y ∈ B1 is a singular point for Q then, for all sufficiently large i, Qi has a
singular point at some yi, with yi → y in B1.

Proof. Let Er,y(Q) := 1
r

´
Br(y) e(∇Q,Q) dx, with e(∇Q,Q) as in (1.1.4), the rescaled

energy of Q in Br(y). If y is not a singular point of Q, then Er,y(Q) < r for r
sufficiently small. On the other hand, by monotonicity, Er,y(Qi) ≥ r. Since the
convergence Qi → Q is strong, we get a contradiction.

To prove the second assertion, observe that we know that all possible nonconstant
tangent maps are of the form

(
0L2 ,

x
|x|

)
, up to an isometry, and hence there is a

smooth retraction Π on S2 so that Π ◦ Q maps small spheres centered at y onto
S2 with topological degree ±1. Since the same property must hold for Qi for all
sufficiently large i (by strong convergence), this implies the existence of discontinuities
for the Qi’s inside the same spheres.

We can also extend the theorem on uniform distance between singularities, [2,
Theorem 2.1], to get

Theorem 8.7 (Uniform distance between singularities). Let Qb ∈ H
1
2 (S2, S4) and

let Q ∈ Aax
Qb

be a minimizer in of the LdG energy (1.1.3) in the class Aax
Qb
. Suppose

y ∈ B1 is a singular point of Q and let d denote the distance from y to S2. Then
there is a universal constant C such that there is no other singularity within distance
Cd of y.

Proof. The argument goes exactly as in [2, Theorem 2.1]. We can assume y = 0.
Suppose, for a contradiction, that we can find a sequence of minimizers Qj with
singularities at 0 and at xj , with xj → 0. Dilate the balls so that

∣∣xj∣∣ = 1. In the new
ball of radius 2, in dilate coordinates, the energy is uniformly bigger than 8π. Indeed,
if uniformity were false, by compactness we would have equality. This means there is
no energy outside the two balls of radius 1 centered at 0 and at xj , and hence Qj
would be constant by monotonicity. Again by monotonicity, the energy is greater than
4πr for all r bigger than 2. We now choose a strongly convergent subsequence of the
Qj ’s in the original ball to a minimizer Q ∈ Aax

Qb
with a singularity at y. Obviously,

y is isolated and its corresponding tangent map is of the form
(
0L2 ,

x−y
|x−y|

)
by results

in Chapter 7. By strong convergence, we can find a sufficiently large j and a suitable
smooth retraction Π so that incoming maps Qj retract on S2 by means of Π and thus
for the maps Π ◦ Qj the origin is a singularity of degree 1. It then follows that in
small balls around the origin the energy is close as we please to 4πr. But, undoing
the above dilation, we see that the energy must be uniformly bigger than 4πr for
small r. This contradiction proves the theorem.

Before going on, let us establish, for the sake of clarity, the following definition,
already mentioned in the Introduction.

Definition 8.1 (Split solution). Let Qb ∈ C∞(S2, S4) be S1-equivariant and let Q
be a minimizer of the LdG energy (1.1.3) in the class Aax

Qb
. We say that Q is a split
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solution if the singular set of Q, singQ, consists of a finite number of dipoles; i.e., it
contains an even number of singularities of the type

(
0L2 ,± x

|x|

)
so that the sum of

their degrees (as maps from S2 into S2 ⊂ L1 ⊕ L0) is zero.

Next, we prove that along smooth curves connecting boundary data whose mini-
mizers are all biaxial torus solutions at one end and all split solutions at the other
end there exists a boundary data having both types as minimizer. We follow the line
of [107], whose authors extend an argument due to Hardt & Lin [65].

Theorem 8.8. Suppose that {Qsb}s∈[0,1] is a smooth curve of S1-equivariant boundary
data Qsb ∈ C∞(S2, S4) so that all S1-equivariant minimizers subject to the boundary
condition Q0

b are biaxial torus solutions in B1 and all S1-equivariant minimizers
subject to Q1

b are split solutions. Then there exists σ ∈ (0, 1) so that Qσb serves as a
boundary condition for at least two S1-equivariant minimizers in Aax

Qσ
b
, one of which

is a smooth biaxial torus solution in B1 and the other a split solution.

Proof. Let {Qsb}s∈[0,1] as in the statement. Let

σ = sup {s ∈ [0, 1] : each LdG energy minimizer
with boundary data Qsb is a biaxial torus solution in B1} .

We may choose a sequence si ↗ σ and a sequence of S1-equivariant minimizers Qsi
that are biaxial torus solutions in B1 such that Qsi |S2 = Qsib . Similarly, we choose a
sequence ti ↘ σ and a sequence V ti ∈W 1,2(B1, S

4) of minimizers having at least two
singularities, with V ti |S2 = Qtib . Passing to subsequences (not relabeled), we have
that there exist Q ∈ W 1,2(B1, S

4) and V ∈ W 1,2(B1, S
4) so that Qsi → Q strongly

in W 1,2 and V ti → V again strongly in W 1,2. Moreover, we have Q|S2 = V |S2 = Qσb .
Note that 0 < σ < 1. Indeed, in view of strong convergence, if σ = 0, then Q0

b

must have a minimizer of split type, a contradiction. In a similar fashion, if σ = 1,
then Q1

b must have a minimizer which is a biaxial torus solution in B1 and this is
again in contrast with the fact that all minimizers associated to Q1

b are split.
By the very definition of σ, Q is a biaxial torus solution. In particular, Q

cannot have singularities. Indeed, assume that Q has singularities. Then, by strong
convergence, in arbitrary small balls around each singularity of Q there would be a
singularity of Qsi for i sufficiently large, a contradiction.

We now prove that the map V has at least two singularities. Indeed, any V ti has
at least two singularities and we know, by Theorem 8.6, that singular points converge
to singular points. We need only to check that singularities cannot merge in the limit
nor escape to the boundary. To see this, we first observe that they cannot merge in
the interior because they must stay at uniform distance by Theorem 8.7. Next, we
note that they cannot escape to the boundary: indeed, since Qtib and Qσb are close
to each other in C∞ for i sufficiently large, we can find a uniform neighborhood of
the boundary which contains no singularities of V and of all V ti sufficiently close to
V .

Remark 8.5.1. We are not assured of the existence of a smooth curve as in the
statement of Theorem 8.8 when the domain is B1. The family of boundary data
crafted in Theorem 8.4 is not suitable to the purpose (though it shows that boundary
data with the properties required to Q0

b actually exist), because it is not smooth
enough. Smoothness w.r.t. to the parameter ensures enough uniform boundary
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regularity in order to prevent the escaping of singularities to the boundary as ti ↘ σ
and hence to conclude that the map V is again a split solution.

With reference to Remark 8.5.1, there are two main difficulties in building a
smooth curve of boundary data with the required properties on the sphere. The
first one is connected with the geometry of the sphere, which makes it difficult to
understand how to manage the few boundary data whose minimizers have a known
character (i.e., biaxial or split) to produce the desired behavior. The second difficulty,
actually intertwined with the first one, is due to the competition between the elastic
and the bulk term in the LdG energy; specifically, it not clear whether one of the two
terms should be dominant looking only at the boundary condition and hence if the
onset of singularities would be a way to save energy.

Anyway, choosing suitably an axially symmetric domain and the material constants,
the picture simplifies considerably. We now explain how to do this so that a smooth
curve as in Theorem 8.8 exists. The construction is analogous to that leading to
well-known gap phenomena in harmonic maps [64, 63]. To better understand how the
material parameters should be related to the purpose, let us return to the LdG energy
(1.1.3) and, for a moment, discard the constraint |Q|2 = 1 as well as the convention of
having subtracted to F (Q) its infimum value (see the Introduction). The norm of the
Q-tensors belonging to Qmin is then |Q|2 = 2s2+

3 , where s+ is given in (1.1.8). Scaling
Q so that Q =

√
2
3s+Q̄ and subtracting inf F (Q) to the energy density (1.1.4), we

have

E(Q; Ω)−Eeq = s2
+

ˆ
Ω

L

2
∣∣∣∇Q̄∣∣∣2+ a

6

(
1−

∣∣∣Q̄∣∣∣2)2
+ bs+

54

(
1 + 3

∣∣∣Q̄∣∣∣4 − 4
√

6 Tr Q̄3
)

dx.

Let D = diam Ω and rescale also the domain so that we have new variables x̄ = x
D on

Ω̄, with diam Ω̄ = 1. Then, we further impose the norm constraint
∣∣∣Q̄∣∣∣ = 1 and hence

we reduce to

I(Q; Ω) := E(Q; Ω)− Eeq
LDs+

=
ˆ

Ω̄

1
2
∣∣∣∇Q̄∣∣∣2 + 2bs+

27L
(
1−
√

6 Tr Q̄3
)
dx. (8.5.2)

Set

κ := 2bs+D
2

27L . (8.5.3)

We will be interested in the regime κ small, as we shall see below.

Theorem 8.9. There exists an axially symmetric domain Ω ⊂ R3 and constants L >
0, b > 0 so that a smooth curve of boundary functions [0, 1] 3 s 7→ Qsb ∈ C∞(Ω, S4),
having the properties listed in the statement of Theorem 8.8 can be found.

Proof. Let us consider a capsule-shaped open domain Ω, coaxial with the z-axis,
whose horizontal section has radius ε and whose height is 2N , where N � ε will be
determined later. Let’s place the barycenter of Ω at the origin.

To construct the required family of boundary functions, let us first write Ω = Ω+∪
Ω−, where Ω+ = {(x, y, z) ∈ Ω : z > 0} and Ω− = {(x, y, z) ∈ Ω : z ≤ 0}. For s = 0,
on ∂Ω+\{(x, y, z) ∈ Ω : z = 0} we put Q0

b = e0. Let P a plane through the z-axis and,
for instance, the point (ε, 0,−N/2) ∈ ∂Ω−. Along (P ∩ ∂Ω−) \ {(x, y, z) ∈ Ω : z = 0},
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in a small region of size λ around the plane {z = −N/2}, we let the leading eigenvalue
of Qsb performing the nontrivial path in RP 2. We then take Qsb ≡ e0 on the remaining
part of (P ∩ ∂Ω−) \ {(x, y, z) ∈ Ω : z = 0} and then we define Qsb everywhere on
∂Ω− \ {(x, y, z) ∈ Ω : z = 0} by imposing S1-equivariance. Taking λ sufficiently close
to zero, we can reason as in Theorem 8.2 and then conclude that any S1-equivariant
minimizers of E(·; Ω) subject to Q0

b must be a biaxial torus solution in Ω.
Now, for s > 0, we let Qsb as in the above in the bottom-half of ∂Ω. Let P the

same plane as before. In the upper-half of P ∩ ∂Ω, choose A,B points away from the
plane {z = 0} and from (0, 0, N), with distP∩∂Ω(A,B) = Λ. We let Qsb start twisting
smoothly at A; at any step in s, Qsb twists a little more along the path from A to B,
in order to become −e0 in the limit s↗ 1. At the point A′(s), Qsb stop twisting and
then we keep the twisted value from A′(s) to a point B′(s), where it begin twisting
back to return e0 in B. We choose N and Λ so large that we can choose A′(s) and
B′(s) so that twisting requires only a controlled energy, less than some fixed constant.
We then define Qsb on the whole of ∂Ω+ by requiring S1-equivariance.

Suppose s is close to 1 and let Qs be a S1-equivariant minimizer of E(·; Ω) subject
to Qsb. If Qs was smooth, then it would be e0 everywhere along the z-axis, due to our
choice of the boundary condition. But the boundary condition also forces Qs to be
−e0 on a large portion of size Λ of the upper boundary ∂Ω+. Because of this, the
I-energy of Qs should roughly pay2 more than CΛε−1/N , with C > 0 a constant,
which can be approximated by Cε−1, up to enlarging and adjusting N and Λ, if
necessary. Since the potential is bounded because of the Lyuksyutov constraint, if
we take κ sufficiently small, then the I-energy of Q is a small perturbation of its
(rescaled) Dirichlet energy. Then, scaling back, one can follow the line of [63] and
construct a map Q̃ which is identically −e0 on the large central region and that, when
N is sufficiently larger than ε, pays less energy than any continuous mapping with
the same boundary trace. Thus, if Qs is a minimizer, it has to be discontinuous, and
hence it must be a split solution, because the boundary condition agrees with e0 at
(0, 0, N) and at (0, 0,−N).

Thus, the curve {Qsb}s∈[0,1] has the required properties.

Remark 8.5.2. We are not claiming anything about the physical significance of
Theorem 8.9, in the sense that we do not know whether materials with suitable values
of the constant exist so that the phenomenon described above actually happens.
Remark 8.5.3. A key point in the construction in Theorem 8.9 is the fact the bulk
potential is bounded and this allows for tuning the parameters in order to reduce to
a situation analogous to that of axially symmetric harmonic maps (cfr. [63, Theorem
3.2]). The rôle played by bD2

L and the fact that the boundary datum goes also outside
RP 2 arise the question whether the same phenomenon continues to happen, at least
under the Lyuksyutov constraint, in the more interesting situation when boundary
datum is all RP 2-valued. Keeping in mind how RP 2 embeds into S4, it is easily
realized that this should be the case for boundary data — on domains such as Ω in
Theorem 8.9 — that are closer to −e0 than to e0 on a large part of ∂Ω. In this case,
smooth solutions, being everywhere e0 on the z-axis, must be large as the onset of
singularities becomes energetically convenient when bD2

L is small enough. Anyway,
details are more delicate and will be developed elsewhere.
Remark 8.5.4. To be rigorous, we need boundary regularity and, to state it in the
case of a capsule-like domain, we should take Remark 4.8.2 into account. The claimed

2The important point here is the linear growth with Λ, cfr. [57].
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issues can be still handled quite easily but details will be worked out in a future
publication.
Remark 8.5.5. In connection to the above remarks, nothing excludes, at the moment
being, that the hedgehog boundary condition on the sphere is critical, in the sense of
having both biaxial torus minimizers and split minimizers.
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Appendix A

The norm of the gradient of a
S1-equivariant linearly full
harmonic sphere S2→ S4

Thanks to our classification theorem, Theorem 6.2, we know how all S1-equivariant
linearly full harmonic spheres ω : S2 → S4 look like in terms of the complex parameters
µ3, µ4. This allows us to calculate |∇Tω|2 in terms of µ3, µ4.

We start noting that, in terms of coordinates (θ, φ) (as usual, θ is the polar angle
and φ the azimuthal angle) on S2, we have from (6.2.17)

(τ ◦ ω̃)(θ, φ) = 1
D

(
2µ3 tan2

(
θ

2

)
e2iφ

(
1 + |µ4|2

3 tan2
(
θ

2

) )
,

2µ4 tan
(
θ

2

)
eiφ
(

1− |µ3|2

3 tan4
(
θ

2

))
,

1 + |µ3|2 |µ4|2

9 tan6
(
θ

2

)
− |µ3|2 tan4

(
θ

2

)
− |µ4|2 tan2

(
θ

2

))
(A.1)

and

D = 1 + |µ3|2 |µ4|2

9 tan6
(
θ

2

)
+ |µ3|2 tan4

(
θ

2

)
+ |µ4|2 tan2

(
θ

2

)

Then, long but elementary calculations show that
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∂θω0 = −
tan

(
θ
2

)
D2 cos2

(
θ
2

) (2 |µ4|2 + 4 |µ3|2 tan2
(
θ

2

)
− 4

9 |µ3|2 |µ4|4 tan6
(
θ

2

)
− 2

9 |µ3|4 |µ4|2 tan8
(
θ

2

))

∂θω1 = µ4e
iφ

D2 cos2
(
θ
2

) (1− |µ4|2 tan2
(
θ

2

)
− 14

3 |µ3|2 tan4
(
θ

2

)
− 14

9 |µ3|2 |µ4|2 tan6
(
θ

6

)

−1
3 |µ3|4 tan8

(
θ

2

)
+ 1

27 |µ3|4 |µ4|2 tan10
(
θ

2

))

∂θω2 =
µ3e

2iφ tan
(
θ
2

)
D2 cos2

(
θ
2

) (
2 + 4

3 |µ4|2 tan2
(
θ

2

)
− 2

(
|µ3|2 −

1
3 |µ4|4

)
tan4

(
θ

2

)
− 4

9 |µ4|2 tan6
(
θ

2

)

− 2
27 |µ3|2 |µ4|4 tan8

(
θ

2

))
.

We also have

|∂φω|2 = 4 |ω2|2 + |ω1|2 (A.2)

so that

|∇Tω|2 = 2
D4 cos4

(
θ
2

) {|µ4|2

+ 2
(
|µ4|4 + 2 |µ3|2

)
tan2

(
θ

2

)
+ |µ4|2

(
12 |µ3|2 + |µ4|4

)
tan4

(
θ

2

)
+ 8 |µ3|2

(
|µ3|2 + 4

3 |µ4|4
)

tan6
(
θ

2

)
+ 14 |µ3|2 |µ4|2

(
|µ3|2 + 2

9 |µ4|4
)

tan8
(
θ

2

)
+ 4 |µ3|2

(5
3 |µ3|2 |µ4|4 + |µ3|4 + 1

9 |µ4|8
)

tan10
(
θ

2

)
+ 14

9 |µ3|4 |µ4|2
(
2 |µ3|2 + |µ4|4

)
tan12

(
θ

2

)
+ 8

81 |µ3|4 |µ4|4
(
12 |µ3|2 + |µ4|4

)
tan14

(
θ

2

)
+ 1

9 |µ3|6 |µ4|2
(
|µ3|2 + 4

3 |µ4|4
)

tan16
(
θ

2

)
+ 2

81 |µ3|6 |µ4|4
(
|µ3|2 + 2

9 |µ4|4
)

tan18
(
θ

2

)
+ 1

272 |µ3|8 |µ4|6 tan20
(
θ

2

)}
.

(A.3)

Note that 1
cos4( θ2) =

(
1 + tan2

(
θ
2

))2
. In particular, taking the hedgehog, i.e., setting

µ3 = µ4 =
√

3, an amazing simplification happens and we are left with |∇TH|2 = 6
(of course, this what we expected and knew from the SO(3)-equivariance of the
hedgehog).
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Remarkably, the following equipartition-property, verified by direct calculation,
holds, due to the S1-equivariance:

|∂θω|2 = 1
sin2(θ) |∂φω|

2 (A.4)
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Appendix B

General properties of
S1-equivariant harmonic spheres

S1-equivariant harmonic spheres, arising in this work in connection to S1-equivariant
tangent maps from R3 into S4, are actually a topic of independent interest, see for
instance [48, 50]. Thus, a detailed knowledge of their structure may be worth also
beyond the scope of the present work. Below we expose some general features we have
found in our study of the stability/instability issue of S1-equivariant tangent maps.
Some of them are reported even if not used, at last, to derive our stability/instability
results because expressions of a somewhat surprisingly peculiar behaviour induced by
S1-equivariance.

Our classification theorem, Theorem 6.2, allow us to retrieve interesting pieces of
information about S1-equivariant harmonic spheres. Of course the most important
one for our purposes is the form of the energy density |∇ω|2. This may be calculated
in terms of the parameters µ3, µ4 of Theorem 6.2; the expression we have found is
given by Eq. (A.3). It is remarkable that a unexpected equipartition property
holds: indeed, we have

|∂θω|2 = 1
sin2 θ

|∂φω|2 . (A.4)

In particular, we can write

|∇ω|2 = 8ω2
2 + 2ω2

1
sin2 θ

. (B.1)

Note also that the equipartition property implies

|∇ω0|2 = |∂θω0|2 ≤
1
2 |∇ω|

2 (B.2)

and, integrating both sides and using (3.6.2),
ˆ
S2
|∇ω0|2 dvolS2 =

ˆ
S2
ω2

0 |∇ω|
2 dvolS2 <

1
2

ˆ
S2
|∇ω|2 dvolS2 . (B.3)

Observe that equality is never achieved in (B.3).
Looking at the explicit expressions in Appendix A, it is easily realized that the

above relations, although unexpected and apparently helpful, are too cumbersome to
be really useful, unless in special cases. Among these, there are maps with values into
L1⊕L0 or into L2⊕L0, respectively, and the linearly full map given by the hedgehog.
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Recall that we are really interested only in stationary harmonic spheres. Thus, the
first two of them are completely characterized by fundamental results in [21] and
hence calculations are really explicit, see Section 7.1.3 and Section 7.1.4. The case of
the hedgehog is instead tractable because of the additional SO(3)-equivariance, which
implies that |∇TH|2 is constant and hence necessarily |∇TH|2 = 6. Alternatively,
an easy check shows that the parameters of the hedgehog are µ3 = µ4 =

√
3 and

from here the constancy of |∇TH|2 follows by comparison to (A.3). Moreover, the
hedeghog is the only linearly full map, up to rotations, having constant energy density.

The above-quoted special cases may be developed in full details, although two of
them are instances of the more general phenomenon in Theorem 7.8, because explicit
computations may reveal details of independent interest.

The linearly full case is instead out of range of explicit calculations. For the
argument of Theorem 7.8, there is no need to explore further features of S1-equivariant
harmonic spheres. Anyway, with an eye towards other possible applications, it may
be interesting to recognize the following properties.

Having the literature in mind, especially [36, 95, 132], we see that the Bochner
identity for harmonic maps between spheres, reported in (B.5), often plays an impor-
tant rôle. Let us recall that, if u ∈ C∞(M,N) is a smooth harmonic map, then we
have the identity (see [34])

∆M (|∇u|2) = |∇(du)|2 + 〈RicM ∇u,∇u〉+ 〈RiemN (u)(∇u,∇u)∇u,∇u〉 , (B.4)

called the Bochner identity (or, sometimes, Bochner formula).
Now, let m, k ≥ 2, (eα)mα=1 be any local orthonormal frame of the sphere Sm and

ω ∈ C∞(Sm, Sk). Then (B.4) specializes to (see [95])

∆
(1

2 |∇ω|
2
)

=
∣∣∣∇2ω

∣∣∣2 +(m−1) |∇ω|2−
m∑

α,β=1

{
|∇eαω|

2
∣∣∣∇eβω∣∣∣2 − 〈∇eα ,∇eβω〉2

}
.

(B.5)
For S1-equivariant harmonic spheres S2 → S4, (B.5) simplifies to (B.6) in the Lemma
below.

Lemma B.1. Let ω ∈ C∞(S2, S4) a smooth S1-equivariant harmonic map. Then ω
satisfies the following Bochner identity

∆
(1

2 |∇ω|
2
)

=
∣∣∣∇2ω

∣∣∣2 + |∇ω|2 − 1
2 |∇ω|

4 . (B.6)

Proof. The couple
{
∂
∂θ ,

1
sin(θ)

∂
∂φ

}
is a local orthonormal frame on S2 and note that

〈
∂θω,

1
sin θ∂φω

〉
= 1

sin θ
(
(∂θω2)e2iφ, (∂θω1)eiφ, ∂ω0

)
· (2ω2ie

2iφ, ω1ie
iφ, 0) ≡ 0.

Thus, using the equipartition property, the last term at the r.h.s. in (B.5) reduces to
−1

2 |∇ω|
4 (which is its minimum value, compare [95, Eq. (2.13)]).

Remark. It may be interesting also to know explicitly the form of the terms involved in
the r.h.s. of Eq. (B.6). We start noting that, since |∇ω|2, |∇ω|4 are only semi-explicit,
we might think to compute

∣∣∇2ω
∣∣2 and then to use it to simplify the r.h.s. of (B.6).
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However, in doing this — in order to make the computation affordable — we used
equipartition and (B.1) and the resulting equation turned out to be an identity, thus
carrying no further information. A more direct approach looks not viable.

Because of the previous Lemma and the above remark, we did not succeed in
improving the Bochner inequality of Lin & Wang [95, Eq. (2.11)], recalled below:

∆
(1

2 |∇ω|
2
)
≥ 2 |∇ |∇ω||2 + |∇ω|2 − 1

2 |∇ω|
4 , (B.7)

for any nonconstant harmonic map ω ∈ C∞(S2, S4).
Next, we observe an elementary but possibly useful fact.

Lemma B.2. Let ω : S2 → S4 be a S1-equivariant harmonic sphere. Then
ˆ
S2
|∇ω|2 dvolS2 <

ˆ
S2
|∇ω|4 sin2 θ dvolS2 . (B.8)

Proof. Since |ω|2 = ω2
2 + ω2

1 + ω2
0 ≡ 1, we have

|∇ω|2 = (ω2
2 + ω2

1 + ω2
0) |∇ω|2

= (4ω2
2 + ω2

1) |∇ω|2 + (−3ω2
2 + ω2

0) |∇ω|2 .

By (A.4),

|∇ω|2 = 1
2 |∇ω|

4 sin2 θ − 3ω2
2 |∇ω|

2 + ω2
0 |∇ω|

2 .

Integrating both sides and using (3.6.3),

ˆ
S2
|∇ω|2 dvolS2 = 1

2

ˆ
S2
|∇ω|4 sin2 θ dvolS2 +

ˆ
S2

{
−3 |∇ω2|2 + |∇ω0|2

}
dvolS2

≤ 1
2

ˆ
S2
|∇ω|4 sin2 θ dvolS2 +

ˆ
S2
|∇ω0|2 dvolS2

and from here the conclusion follows using (B.3).

Remark. In the spirit of being always explicit whenever possible, we made many
attempts to derive instability of linearly full maps appealing to equipartition, (B.3),
(B.8), (B.6) and to relations (3.6.2), (3.6.3) (etc. . . ). Essentially, the line of reasoning
was trying to replicate the proof of [95, Proposition 2.5], taking care of the fact
that equivariance requires the use of appropriately weighted versions of (B.6), in
order to get rid of divergent terms near the poles (whose appearance is forced by the
equivariance itself, see e.g. Eq. (7.1.11)). In this direction, we obtained some hints
but not decisive arguments. This study generated the results reported above.
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