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”I’ve seen things you people wouldn’t believe. Attack ships on fire off the shoulder of
Orion. I watched C-beams glitter in the dark near the Tannhäuser Gate. All those

moments will be lost in time, like tears in rain. Time to die.”
Roy Batty - Blade Runner
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Abstract

In recent years, the improvements of small-scale Unmanned Aerial Vehicles (UAVs)
in terms of flight time, automatic control, and remote transmission are promoting the
development of a wide range of practical applications. In aerial video surveillance, the
monitoring of broad areas still has many challenges due to the achievement of different
tasks in real-time, including mosaicking, change detection, and object detection.
In this thesis work, a small-scale UAV based vision system to maintain regular
surveillance over target areas is proposed. The system works in two modes. The first
mode allows to monitor an area of interest by performing several flights. During the
first flight, it creates an incremental geo-referenced mosaic of an area of interest and
classifies all the known elements (e.g., persons) found on the ground by an improved
Faster R-CNN architecture previously trained. In subsequent reconnaissance flights,
the system searches for any changes (e.g., disappearance of persons) that may occur
in the mosaic by a histogram equalization and RGB-Local Binary Pattern (RGB-
LBP) based algorithm. If present, the mosaic is updated. The second mode, allows
to perform a real-time classification by using, again, our improved Faster R-CNN
model, useful for time-critical operations. Thanks to different design features, the
system works in real-time and performs mosaicking and change detection tasks at
low-altitude, thus allowing the classification even of small objects. The proposed
system was tested by using the whole set of challenging video sequences contained
in the UAV Mosaicking and Change Detection (UMCD) dataset and other public
datasets. The evaluation of the system by well-known performance metrics has
shown remarkable results in terms of mosaic creation and updating, as well as in
terms of change detection and object detection.
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List of Symbols

Cm Camera matrix
fx, fy Focal length parameters
cx, cy Camera optical center
k1, k2, k3 Radial distortion coefficients
p1, p2 Tangential distortion coefficients
xd, yd Actual coordinates
r Distance from optical center
UAVpath Set of the area of interest GPS coordinates
FT RS Set of transmitted frames
H Homography matrix
ST Similarity transformation matrix
AoV Angle of View
WCCD, HCCD Width and height of the CCD sensor
h UAV Flight height
f Sensor focal length
Wp, Lp Camera spatial resolution
hmax Maximum flight height for a specific task
SRJ Minimum spatial resolution needed for a specific task
fr Framerate
frmin Minimum framerate
s Overlap parameter
φ(xk, yk) Interpolated GPS coordinate
T,Q Images extracted from the mosaic, and the frame received from the UAV
O Change detection output image
L Change detection output bounding boxes list
Tdiff Difference threshold
Di,j Pixel resulting from the grayscale difference
SR, SG, SB Binary strings computed on each image channel with LBP method
TH Hamming distance threshold
Mdiff Binary mask obtained in the change detection image difference step
Ni,j Binary mask with isolations removed
Tiso Isolations threshold
Tarea Blob removal threshold
B Bhattacharyya distance
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Chapter 1

Introduction

In the last decade, the use of small-scale UAV based vision systems is gaining more
and more importance to successfully deal with a wide range of application contexts.
This is due to the fact that these systems make possible to achieve certain aims more
advantageously than similar systems based on other types of aircraft. Additionally,
in some contexts, the small-scale UAV based vision systems have led to accomplish
tasks otherwise unattainable. A recent example is reported in [5], where this kind of
UAVs is used to implement a change detection vision system for constant monitoring
of wide areas at low-altitude. The authors highlight that such a type of tasks can
only be achieved by using small-scale UAVs since they can be used several times over
a day. Moreover, these UAVs allow to reach target areas otherwise unreachable by
larger aircrafts. Another interesting example is presented in [61], where a small-scale
UAV is used to address trail detection and tracking, as well as autonomous scene
understanding problems to support a wide range of missions in unstructured outdoor
environments, such as isolated disaster sites. Also in this case, the authors point out
how the real-time processing and the limited size of the adopted UAV play a key
role. A final example is discussed in [59], where an automatic small-scale UAV based
inspection vision system for asset assessment and defect detection of large-scale
photovoltaic power plants is detailed. The authors underline how their system is
more efficient in comparison with conventional methods.

In aerial video surveillance, small-scale UAVs have a set of features that, jointly
to those previously exposed, make them particularly suitable for reaching different
missions. First of all, thanks to their small size and being they always more silent,
these UAVs can pass unnoticed and can hide out easily. Furthermore, for take-off
and landing, they do not require any structure or platform. Finally, these UAVs
can fly at very low-altitude and very reduced speed, thus facilitating complex tasks
that require high spatial resolution, such as person re-identification and small object
detection.

This thesis work presents a small-scale UAV based vision system to monitor
broad target areas by detecting and classifying changes on the ground. The system
works in two modes. The first mode allows the monitoring of an area of interest, and
it is composed by two steps. In the first step, the UAV performs one or more flights
and creates an incremental geo-referenced mosaic of the area. Each flight is driven
by a set of GPS coordinates that specifies the area to be mosaicked. During the
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mosaicking, all the known elements found on the ground are classified by a previously
trained Faster R-CNN [79]. In this thesis, an improvement for the Region Proposal
Network (RPN) of the Faster R-CNN has been proposed. After being classified, the
object is localized within the mosaic through the GPS coordinates. In detail, three
classes of elements were defined: person, car, and small object. In particular, with
the label car a class composed of some types of economy cars is defined, while with
the label small object a class composed of selected small objects is defined. In aerial
video surveillance, the last class is of great importance since dangerous gadgets,
e.g., Improvised Explosive Devices (IEDs), can be hosted inside seemingly harmless
items like boxes or little suitcases. In the second step, regular reconnaissance
flights to update the mosaic are performed. If the new video sequences have GPS
coordinates outside to those of the created mosaic, then new areas are added to
it and any known element is once again classified and localized. On the contrary,
if the GPS coordinates are inside, then a comparison between the current frames
and the associated portions of the mosaic is performed. To make the comparison
robust to the illumination changes that afflict the outdoor environments, a histogram
equalization preprocessing stage is carried out. Subsequently, an RGB-LBP based
algorithm is used to detect the possible changes [5], e.g., a person appears or a car
disappears, which if present drive the mosaic updating.

The second mode, uses again the proposed modified Faster R-CNN to classify,
in real-time, the elements defined above. In this mode, no mosaic is created nor
is needed, since this mode is designed for time-critical operations such Search and
Rescue (SAR).

1.1 State of the Art
In this section, the state-of-the-art regarding mosaicking, change detection and
object classification is discussed. In each section, firstly are discussed the general
works in the field, then works focused on UAV application are exposed.

1.1.1 Mosaicking

Image stitching, or mosaicking, has been widely investigated in literature. Usually,
the main reason for merging together two or more images is to create a panorama
image. The basic problem of the image stitching process is well known, and consist
in estimating a transformation matrix. This matrix, namely the homography, is
computed for each pair of image, and it is used to match the images. The first step
in estimating the homography consists in the initialization, or an input provided by
the user to facilitate the image alignment. A typical initialization provided is, for
example, the order in which the images are acquired. In the state-of-the-art, there
are mainly two categories of image alignment and stitching. The first is the direct
method [93, 44, 83, 94], which have the advantage of using all the available image
data. This leads to a very accurate image registration, but a very close initialization
is required. The second method, in which is the majority of the works at the
state-of-the-art fall, is the feature based method [15, 110, 119, 21, 65]. This method
does not require initialization, allowing real-time performances. The mosaicking
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Figure 1.1. Example of the OpenCV stitching pipeline. As it is possible to see, the Image
Registration and the Image Composing modules are composed of several sub-modules
exploited to optimize the stitching process. [73]

process performed with the feature based method has a well-known pipeline, which
consists of the following main steps:

• Frame Correction: This step consists in removing any type of distortions,
e.g., radial, barrel, and tangent, introduced by the sensor lens.

• Image Registration : This is the most important step of the pipeline. It
consists in extracting salient points from the overlapping parts of all the images
that will be stitched together. Then, these points are matched to find the
transformation matrix that allows to align the images.

• Image Composing: In this step, the aligned images are blended together to
create the final mosaic.

Despite the entire process may seems trivial, there are many sub-processes that are
exploited to generate the best mosaic possible. Depending on the framework or on
the used software, these sub-processes may vary. An example of pipeline comprising
all the modules is shown in Figure 1.1, which is the one contained in the OpenCV
framework.

This pipeline follows the steps presented by Brown and Lowe in [15], that is one
of the first works that described the entire pipeline. In this work, an invariant feature
based approach to create panoramic images automatically is presented, bringing
several advantages with respect to the other approaches. A first advantage was
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Figure 1.2. Example of mosaic created with the steps described in [15].

given by using Scale Invariant Features Transform (SIFT)[63] feature extractor and
Random Sample Consensus (RANSAC)[32], which allow to match images despite
rotation, zoom and illumination change in the input images. The second advantage
is that, by using a multi-band blender technique [19], it is possible to generate
seamless high quality panoramic images. In Figure 1.2, an example of mosaic that
obtained with the Brown and Lowe pipeline.

The subsequent works addressed the several problems that may arise in generating
a mosaic with UAV, or aimed to improve one or more of the steps proposed in [15].
For example, authors in [110] proposed a method based on SIFT and histogram
matching to perform the image stitching. Since image stitching among images
that have significant illumination changes will lead to unnatural mosaic image, the
authors first use the histogram match to perform image registration so that the
images to be stitched are at the same level of illumination. Then, SIFT algorithm is
used to extract the keypoints for a rough matching process, followed by RANSAC
for the matching process. Finally, a simple weighted average algorithm is used for
the image blending step. Authors in [27], proposed a stitching method that reduces
the artifacts caused by different parallaxes. This is achieved by selecting an optimal
seam pair by comparing the cross correlations from multiple seams detected by
variable cost weights. Then, the homography matrix is refined by using matching
among Histogram of Oriented Gradients (HOG) [28] features, and the remaining
misalignment is eliminated using the propagation of deformation vectors calculated
from matching points. In the blending step, the regions that are overlapped are
determined by using a distance between the matching points to remove overlapping
artifacts. In [105], instead, the authors used multiple UAVs to perform mosaic
of disaster scenario. Together with the mosaicking algorithm, a prioritized image
transfer protocol is provided in order to transmit efficiently the images to the ground
station by using the limited UAVs hardware and network resources.

Due to the high number of steps in the mosaicking process, it may require a large
amount of time to produce the final image. Some works at the state-of-the-art aim
to optimize some steps to speed up the process. Example of works in this direction
is the method proposed in [20]. In the first work, an improved method based on
Speed up Robust Features (SURF)[8] is proposed. In detail, Support Vector Machine
(SVM) [25] are used to predict primary threshold of determinant of Hessian matrix
to reduce detected feature points and simplify the process of features matching.
Then, an optimized method of image preprocessing-cylindrical projection and image
interpolation is used to weigh the final quality of stitching image and stitching time.
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Figure 1.3. Comparison between GA-SIFT and other feature extraction methods.

Figure 1.4. Example mosaic obtained with GA-SIFT and O-RANSAC.

The fields that have benefited most from the mosaicking are the ones in which
UAVs are used. This is due to the fact that once the mosaic of an area of interest
has been generated, it can be analyzed with several approaches, i.e. by using
change detection or object detection/classification algorithms. There are several
recent works in image mosaicking from UAV. In [113], the authors proposed an
improved Geometric Algebra SIFT (GA-SIFT) to perform fast features extraction
and matching. The GA-SIFT can detect more feature points with greater accuracy
than the traditional SIFT method. Moreover, to perform the image alignment they
presented the optimal modified random sample consensus (O-RANSAC), that has
full affine-invariance while maintaining the rapidity advantage. In Figure 1.3, the
comparison between GA-SIFT and other feature extractor is shown, while in Figure
1.4 the resultant mosaic is depicted.

Authors in [57] presented a mosaicking algorithm for UAV based on dynamic
programming and stereo images. The algorithm aims to solve the dislocation problem
that is caused by the seam line in building-intensive areas. The idea is to analyze the
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Figure 1.5. Mosaic generated with the dynamc programming algorithm presented in [57].

mapping relationships between the left and right images in order to determine the
geometric errors introduced by perspective errors, camera distortions, and radiation
errors. Since it is an optimization problem, there is no unique solution for this image
seam line searching problem. The authors consider the close optimum solution the
one that meets the requirements of image stitching. In Figure 1.5 the resultant
mosaic is shown.

By considering Structure From Motion (SfM)[120] technique, authors in [102]
presented the standard mosaicking procedure based on SfM. It differs from the
standard mosaicking approach on two points. The first is that the features are
computed on a 3D space, while the second is that an ortho-rectification step is
performed. As it is possible to see in Figure 1.6, with the SfM approach it is possible
to obtain both 3D data and 2D mosaic. Another method based on SfM is the one
presented in [117]. The authors proposed a novel and robust method to register
multiple images captured by UAV with modified camera matrices. In detail, images
are registered using camera matrix modified by vertical vector of fitted plane, and
the reference plane (i.e., the plane parallel to the generated mosaic) is determined by
performing view selection. Finally, like the other methods the blending is performed
by using the multi-band blending.

The problem with SfM approach is that it has a very high computational cost,
which makes impossible to use it for real-time computation. A solution has been
proposed in [17]. Instead of using SfM, the authors used a Simultaneous Localization
and Mapping (SLAM)[95] approach, which allowed to build a mosaic incrementally
and in real-time. Despite the good performances, the method may introduce some
artifacts in the final mosaic.

Finally, there are works that exploit the classical mosaicking pipeline with the
aim to optimize it for embedded hardware platforms such as DSP and FPGA. An
example is the work presented in [101], in which the authors proposed an ORB based
stitching method for aerial images optimized for embedded platforms. In detail, the
authors designed a parallel approach in order to perform the stitching on all the
cores of the DSP platform TMS320C6678, showing near real time performances and
good final mosaic, as shown in Figure 1.7.
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(a)

(b)

Figure 1.6. Example of a) 3D model computed with SfM and b) the corresponding 2D
mosaic.[102]
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Figure 1.7. Mosaic generated by using the DSP platform TMS320C6678.

1.1.2 Change Detection

With the term Change detection (CD) is considered that set of algorithms that aim
to identify, precisely, the changes that occur within the observed image. Important
applications of change detection include video surveillance [24, 89, 106], remote
sensing [16, 23, 43], medical diagnosis and treatment [14, 80], civil infrastructure
[53, 69], and underwater sensing [31, 54]. Usually, the approach to perform CD is
the background subtraction technique [46]. It consists in considering one image as
ground truth, and to subtract it from the subsequently images. As result, all the
pixels changed between the images involved in the subtraction are obtained. As
it is possible to notice, the simple subtraction is not a robust method since some
noise sources such as shadows, trees and water moved by the wind, illumination
changes, and other can negatively affect the result of the subtraction. There are
several recent state-of-the-art works that aim to enhance the CD process. Authors
in [96] proposed a colour consistency and a local contrast enhancement for mobile
image-based CD. The method aim to compensate lightness and colour inconsistencies
depending on different illumination conditions, due to shadows or to the different
time instants at which the area is acquired (i.e., morning and afternoon). The
proposed approach combines the centre/surround Retinex model [49] and the Gray
World hypothesis [18] using a non-linear colour processing function previously used
for colour restoration [48]. In [84], a light field camera has been introduced to avoid
false detections, as the one shown in Figure 1.8. The light field camera is used to
configure an active surveillance field, within which the focusness, based on spatial
consistency of the light rays, and foregroundness, based on background modelling to
detect temporal changes in the light rays, are measured.

Another field in which performing change detection is a difficult task is underwater
image analysis. Authors in [81] proposed a local change detection method for
detecting the position of the moving objects. To achieve this, the Mixture of
Gaussian (MoG) process has been integrated in a Wronskian framework. The latter
takes care of the spatio-contextual modes whereas MoG models the temporal modes
arising due to inter-dependency of a pixel in a video. In [77], instead, used a Flux
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Figure 1.8. Example of false positive in change detection algorithms. The fountain is part
of the background, but since it is moving is detected as a change.

Tensor-based approach as pre-segmentations to exclude moving parts of the image
from the background updating process. Then, the Gaussian Switch Model [78]
has been enhanced with the Mixture of Gaussian idea, a foreground model and an
intelligent updating scheme to make the method robust to difficult scenarios.

Other recent approaches tried to use Artificial Intelligence and Deep Learning
to perform CD. In [12], the authors proposed a genetic programming method to
combine automatically change detection algorithms. In detail, the method can: a)
automatically select the algorithms that give the best overall results relative to a
set of predefined algorithms; b) automatically deduce which kind of post-processing
of the original or intermediate masks to be applied in order to improve the results,
is automatically built from the unary, binary and n-ary functions fed as input to
the algorithm. In [37] authors proposed a generative adversarial networks (GANs)
method able to recover the training data distribution from noise input. In detail, the
prior knowledge for sampling the training data is given by the joint distribution of the
two images to be detected is taken as input. Then, through the adversarial learning
the shared mapping function between the training data and their corresponding
image patches is built. The last step consists in using an unsupervised clustering
algorithm is used to analyze the difference image to obtain the desired binary change
map.

Taking in consideration the works concerning aerial images, authors in [107]
proposed a novel binarization model based on the Weibull mixture model. The
method models the changed and unchanged region classes using non-normal Weibull
distributions and further estimates parameters using a genetic algorithm. In Figure
1.9, the result of the CD by applying the improved binarization is shown. In [39], a
variant of a local binary similarity pattern (LBSP) descriptor is proposed. The LBSP
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Figure 1.9. Result of the improved binarization proposed in [107].

Figure 1.10. Change Detection performed through multiscale uncertainty analysis [112].

has been chosen due to its good resistance to illumination variation. The presented
algorithm consists in two steps: binary feature vector creation and generation of
binary change map. The first is obtained through LBSP, while the latter in obtained
by using the Hamming distance as a similarity metric. Authors in [22] proposed an
unsupervised 2-D and 3-D urban change detection scheme based on Quad-PolSAR
data. The changes are extracted by segmenting the images into superpixels, and
the positive and negative changes in both direction (i.e., horizontal and vertical) are
computed by using a multivariate Gaussian mixed model. The latter is applied to
a subset of polarimetric parameters at the superpixel level. Considering the scale
information, authors in [112] proposed an object-based change detection (OBCD)
algorithm for very high resolution images that uses multiscale uncertainty analysis.
The images taken at different time instants are stacked and segmented by using
”from coarse to fine, refine layer by layer” strategy. Then, a first CD is performed
by fusing the pixel-based CD result and OBCD result based on Dempter–Shafer
(DS) evidence theory. Subsequently, the multiscale uncertainty is implemented
by SVM classification. Finally, the resultant CD map is obtained by fusing the
information available in all the scales, as shown in Figure 1.10. By considering the
deep learning approach, authors in [74] presented and algorithm to perform CD
for damage assessment caused by fires. The novelty introduced by the work is the
feature extraction within tunable Q discrete wavelet transform (TQWT) using higher
order log cumulants of fractional Fourier transform (FrFT). The, these features are
given as input to a stacked autoencoder to distinguish changed and unchanged areas.
After the stacked autoencoder training, the decoding layer is replaced by a logistic
regression layer which performs fine-tuning and classification.

1.1.3 Object Detection

The object classification task is one of the hardest tasks to perform in Computer
Vision. It consists, as it suggests, to give a class to an object present in the observed
scene. Usually, the detection is performed by using a model trained on the features
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Figure 1.11. Pedestrian detected through a CNN.

extracted from the samples of the classes. In the last years, the research moved
from the recognition and classification of the objects through features [62] to deep
learning [56] approaches. This is due to the fact that, despite the high amount of
time needed to train a deep model, it can achieve better results than humans [42].
There are several deep neural network model for object detection and classification:
Convolutional Neural Network (CNN) [55], Single Shot Multibox Detector (SSD)
[60], Faster Region Convolutional Neural Network (Faster R-CNN) [79], Inception
[92], and others. These models find usage in different field and tasks. For example,
in [115] a Faster R-CNN is used to perform pedestrian detection, as shown in Figure
1.11. Instead of using a K-object classifier, a pedestrian specific softmax is used,
and the ConvNet parameters are tuned with features from the Caltech Pedestrian
Dataset. Considering 3-D data, in [13], a deep learning model for classifying objects
in point cloud is proposed. In detail, the authors designed a novel 4-D convolutional
layer that takes as input a 4-D descriptor. To feed proper data to the layer, a
point pair descriptor that is robust to noise and occlusion optimized for point
cloud data is also provided. Authors in [71] proposed an improvement of the SSD
network for object detection. Despite the SSD is one of the fastest algorithm, it
has a big gap in Mean Average Precision (mAP) with respect to other approaches.
The improvement consists in replacing the extra layers of the SSD network with
the Inception block, allowing to catch more information without increasing the
complexity. Concerning classification works on UAV field that use deep learning
technique, in [109] the problem of multilabelling in UAV imagery has been addressed.
In detail, a pretrained GoogLeNet CNN is used to extract the features from the
images after they have been subdivided in equally spaced grid. Since GoogLeNet is
not directly adapted to multilabel classification tasks, the authors substituted the
softmax classifier with a radial basis function neural network (RBFNN), which is a
classifier that can fit the multilabeling requirement. The methodology of dividing
images into regions has been used also in [2] for detecting cars in UAV imagery. In
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Figure 1.12. Detection of cars in UAV imagery by using CNN and SVM.

Figure 1.13. Example of avalanche victims detected through CNN.

this case, a window is extracted around each region, and also in this case a CNN is
used for feature extraction. Finally, the classification is performed by using a SVM
to simply dividing regions in ”car” and ”no-car”, and in Figure 1.12 the classification
result is shown. Other works that use CNN in UAV imagery are [3] and [9]. In the
first work, they are used to discriminate between different levels of damage during
damage assessment and monitoring operations. In the second work, which consists
in detecting victims after avalanches, are used in the same way of [2]. In Figure 1.13,
the result of victim detection is shown.

In [7], instead of CNN the SSD has been used to detect concurrent human action
detection. In detail, the SSD is used for the pedestrian detection task, and once the
pedestrian has been detected they used the spatio-temporal model presented in [87]
to classify the action performed. In Figure 1.14, the result of the action recognition
is shown.

1.1.4 Datasets

The role of the datasets is a key factor in computer vision. This section reports
some popular aerial-based datasets to highlight their importance in some application
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Figure 1.14. Pedestrian action detected by a UAV through a SSD network.

fields. Moreover, the section also shows the need to have available a public dataset
focused on testing mosaicking and change detection algorithms with aerial video
sequences acquired at low-altitude. In [72] one of the most popular and appreciated
large-scale dataset, named VIRAT, is presented. It consists of both ground and
aerial video sequences whose aim is to assess the performance of diverse visual event
recognition algorithms in outdoor areas with wide coverage. Focused only on aerial
images is, instead, the dataset reported in [108] by which the authors present a
benchmarking study for aerial image segmentation. The aerial videos contained
in these datasets have not been acquired to support the purposes described in the
present paper. In fact, on one side, they do not have the suitable altitude and length
to stress the mosaicking algorithms. On the other hand, they do not contain same
paths, with and without objects, to test the change detection algorithms. Finally,
these sequences are not aligned with GPS coordinates to check the working of the
on-line algorithms. Regarding the video acquisitions by using small-scale UAVs,
in [85] a dataset to support aerial video analysis is provided. In particular, the
authors propose a repository for detecting 12 events (e.g., exchanging box, sit on
table), 18 human roles (e.g., deliverer, receiver) and 12 object categories (e.g., box,
car). Also in this case, the videos cannot be used to support the purposes of the
present paper for the same reasons observed above. Concerning the change detection,
in [104] a benchmark dataset, named CDnet, is reported. It contains challenging
videos for testing several tasks, including dynamic background, camera jitter, and
shadows. Finally, in [17] the NPU dataset is presented. This dataset contains videos
for performing mosaicking at high-altitudes (i.e., from 65 to 376 meters) and it is
used to test the algorithm proposed by the authors. To the best of our knowledge,
currently, there are no datasets containing video sequences acquired at low-altitude
for mosaicking and change detection purposes. However, the public availability of
this kind of datasets would provide a support to different open issues, including the
management of the parallax error, the testing of the on-line algorithms, and the
detection of small objects on the ground. Moreover, also other types of application
domains could take advantages from this kind of datasets, some examples include
UAV camera automation [51], search and rescue [99, 29], routing and delivery [30],
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target searching and localization [47, 67], target following [58, 97], and monitoring
of malicious UAVs [68].

1.2 Contribution
This section reports in brief the contribution of this thesis work with respect to
the state-of-the-art. Concerning the mosaicking process, the first improvement is
that it is performed at very low altitudes. As mentioned previously, this has been
possible thanks to the usage of affine transformation instead of homography, which
limits the transformations applicable to the image. Another contribution is the
implementation of a ROI technique, allowing to perform the mosaicking on-line and
in near real-time, limiting the time needed to extract the features and the hardware
utilization. The last contribution is the usage of A-KAZE feature extraction, allowing
a fast extraction of robust features.

As for mosaicking, also in CD state-of-the-art works the used images are acquired
from satellites or from very high altitudes, thus making impossible to detect small
objects, persons or vehicles. In this thesis work, the proposed CD algorithm is
designed to work with images acquired at very low altitude, by implementing a novel
robust pipeline .

Regarding object classification, the majority of the works at the state-of-the-art
uses well-known deep architecture to perform classification task. The modification
most performed in a deep network is at classification level, by replacing the fully
connected layer with softmax or a SVM. In this thesis work, a new architecture
based on Faster R-CNN is proposed. The proposed network aim to maximize the
precision in object detection, by replacing the RPN of the classical Faster R-CNN
with a new network specially designed.

Finally, to test exhaustively the methods and the algorithms proposed in this
work, the UAV Mosaicking and Change Detection (UMCD) dataset is proposed.
The latter consists in 50 challenging videos, specially acquired for mosaicking and
change detection tasks at very low altitude.

This thesis is structured as follows. In Chapter 2, the UMCD dataset is presented.
In Chapter 3, the Mosaicking, Change Detection, and Object Detection modules
are described in detail. In Chapter 4, the performed experiments and the results
obtained are discussed. Finally, Chapter 5 concludes this work.
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Chapter 2

The Dataset

In this chapter, the UAV mosaicking and change detection dataset (UMCD) is
described. The dataset has been built to test the proposed mosaicking, change detec-
tion, and object detection algorithms, due to the lack of aerial datasets containing
images acquired at very low flight altitude.

In Figure 2.1, the main structure of the UMCD dataset1 is shown. It consists of 50
challenging video sequences acquired by small-scale UAVs at low-altitude flights. In
order to stress both mosaicking and change detection algorithms, each acquisition has
been performed by introducing a certain level of variation of parameters, including
spatial resolution, frames per second (fps), altitude, and average speed. Moreover,
the acquisitions have been taken on three different environments: urban, dirt, and
countryside (Figure 2.2). Each video sequence has been acquired by using a path
established by a set of GPS coordinates. This last aspect is useful to perform both
geo-referenced mosaicking and real-time change detection operations. In fact, the
larger the area to be explored in search of a change, the greater the usefulness of
adopting GPS coordinates is, to check the current position of the UAV with respect
to the geo-referenced mosaic previously acquired. A brief summary of the main
characteristics of the video sequences is provided below:

• Two different small-scale UAVs have been used. The first is a DJI Phantom 3
Advanced used with its built-in camera, while the second is a custom home-
made exacopter. The latter has allowed us to change cameras to acquire
video sequences with different spatial resolutions ranging from 720x540 (4:3,
Standard Definition) up to 1920x1080 (16:9, High Definition) pixels per frame;

• The different cameras have also allowed us to acquire video sequences with
different frame rates ranging from 24 up to 50 fps. Moreover, the length of the
videos is quite variable ranging from 250 up to 3600 frames;

• The different video sequences have been acquired with various altitudes and
speeds. In particular, the altitudes ranging from 6 up to 15 meters, while the
speeds ranging from 2 up to 12 meters per second.

The use of two different small-scale UAVs allowed to build a dataset containing
heterogeneous video sequences. In fact, the two drones differ in some technical

1http://www.umcd-dataset.net/
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Figure 2.1. Main structure of the UMCD dataset.

features, including camera quality, resolution, and gimbal hardware, thus avoiding
an excessive bias of the dataset over a specific system. Anyway, not all the cameras
mounted on the home-made exacopter allowed the acquisition of geo-referenced data
aligned to the video streams, as a consequence not all the video sequences have
been stored with the GPS information. In addition, the cameras have different
hue bias due to the specific features of the embedded white balancing algorithm.
For this reason, in some videos, the global changing of the brightness can be more
or less noticeable. In any case, the purpose of the UMCD dataset is to provide
video sequences to test the mosaicking and change detection algorithms in real
environments regardless of common illumination changes. All the videos are stored
in MP4 format.

The dataset is organized in four main folders (see Figure 2.1): Videos Without
Telemetry, Videos With Telemetry, Camera Calibration and Benchmark Mosaics.
The first one contains the videos acquired to test on-line or off-line mosaicking
algorithms without using telemetry parameters but only relying on visual features
of the frames. Conversely, the second one contains, for each video, a synchronized
text file (e.g., CSV, LOG) whose information can be used to develop on-line (and
real-time) or off-line mosaicking and change detection algorithms. The third folder
contains the camera calibration parameters file, which allows to unwarp acquired
images affected by radial distortion. The last folder contains mosaics obtained with
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Table 2.1. Main characteristics of the videos contained in the folder: Videos Without
Telemetry → Mosaicking.

Filename Environment Length
[s]

Frequency
[fps]

Total
Frames
[#]

Altitude
[m]

Speed
[m/s]

Light
Condi-
tions

path01.mp4 Dirt 18 25 450 8 3 morning
path02.mp4 Dirt 15 25 375 9 3 morning
path03.mp4 Dirt 16 25 400 9 5 morning
path04.mp4 Dirt 11 25 275 9 3 morning
path05.mp4 Dirt 19 25 475 8 3 morning
path06.mp4 Dirt 8 25 200 8 4 morning
path07.mp4 Dirt 9 25 225 8 4 morning
path08.mp4 Dirt 12 25 300 10 2 morning
path09.mp4 Dirt 9 25 225 9 3 morning
path10.mp4 Dirt 13 25 325 10 3 morning
path11.mp4 Dirt 12 25 300 9 2 morning
path12.mp4 Dirt 8 25 200 8 3 morning
path13.mp4 Dirt 13 50 650 15 3 afternoon
path14.mp4 Dirt 16 50 800 14 3 afternoon
path15.mp4 Dirt 15 50 750 15 2 afternoon
path16.mp4 Dirt 22 50 1100 13 2 afternoon
path17.mp4 Dirt 16 50 800 10 2 afternoon
path18.mp4 Dirt 8 50 400 6 4 afternoon
path19.mp4 Dirt 10 50 500 6 3 afternoon
path20.mp4 Dirt 20 50 1000 6 2 afternoon
path01.mp4 Countryside 11 30 330 12 5 morning
path02.mp4 Countryside 7 50 350 12 4 morning
path03.mp4 Countryside 6 50 300 11 4 morning
path04.mp4 Countryside 9 50 450 10 2 morning
path05.mp4 Countryside 8 50 400 10 6 afternoon
path06.mp4 Countryside 14 50 700 10 6 afternoon
path07.mp4 Countryside 8 50 400 8 7 afternoon
path08.mp4 Countryside 12 50 600 8 5 afternoon
path09.mp4 Countryside 8 50 400 9 4 afternoon
path10.mp4 Countryside 13 25 325 8 2 afternoon

the approaches presented in this thesis. In the next subsections, details about the
above introduced folders are reported.

2.1 Videos Without Telemetry
This folder contains several videos divided mainly in two sub-folders depending on
the type of the environment. In particular, 20 and 10 video sequences have been
acquired overflying dirt and countryside environments, respectively. Each sequence
in this folder presents many challenging features, including small variations of pitch,
roll, and the altitude of the small-scale UAV. These features make the mosaicking
process a hard task. In addition, the videos have been acquired in different hours of
the day (i.e., morning and afternoon) to obtain sequences with different illumination
changes and shadows. As mentioned above, these videos are not associated with
any telemetry and can be used only for mosaicking purposes. In Table 2.1, some
relevant characteristics of the acquired video sequences are reported.
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(a) (b) (c)

Figure 2.2. Examples of different environments in the dataset sequences: (a) urban, (b)
dirt, and (c) countryside.

Table 2.2. Telemetry data available in the GPS files.

ID Telemetry Data ID Telemetry Data ID Telemetry Data ID Telemetry Data ID Telemetry Data ID Telemetry Data
1 Tick# 12 accelY(M/S2) 23 velD(M/S) 34 errorZ 45 batteryCycleCount 56 MotorSpeed:RBack
2 offsetTime 13 accelZ(M/S2) 24 vel(M/S) 35 error 46 batteryLifePercentage 57 MotorLoad:RFront
3 flightTime(msec) 14 gyroX(degrees/s) 25 quatW 36 accel(M/S2) 47 Gimbal:roll 58 MotorLoad:LFront
4 Longitude 15 gyroY(degrees/s) 26 quatX 37 gyro(degrees/s) 48 Gimbal:pitch 59 MotorLoad:LBack
5 Latitude 16 gyroZ(degrees/s) 27 quatY 38 distancHP(M) 49 Gimbal:yaw 60 MotorLoad:RBack
6 numSats 17 magX 28 quatZ 39 distanceTravelled(M) 50 Gimbal:Xroll 61 NMEA GGA/RMC Strings
7 gpsAltitude(meters) 18 magY 29 Roll 40 directionOfTravel 51 Gimbal:Xpitch
8 baroAlt(meters) 19 magZ 30 Pitch 41 IMUTemp(C) 52 Gimbal:Xyaw
9 vpsHeight(M) 20 magMod 31 Yaw 42 batteryTemp(C) 53 MotorSpeed:RFront
10 relativeHeight 21 velN(M/S) 32 errorX 43 ratedCapacity 54 MotorSpeed:LFront
11 accelX(M/S2) 22 velE(M/S) 33 errorY 44 remaingCapacity 55 MotorSpeed:LBack

2.2 Videos With Telemetry
This folder contains videos divided mainly in two sub-folders: mosaicking and change
detection. Each of these folders is in turn divided in three sub-folders depending
on the type of the environment. In particular, the mosaicking sub-folder contains
4, 4, and 2 video sequences acquired on urban, dirt, and countryside environments,
respectively. Each of these videos has been acquired without the presence of any
vehicle, person or object. The change detection sub-folder contains videos that
have been acquired on the same paths of the previous ones, where some elements
above mentioned have been introduced. Usually, dirt and countryside environments
represent typical areas surrounding tactical bases or given paths, while urban
environments represent common areas in cities or highways. These environments
are often more challenging if compared to the first ones due to the presence of some
structures (e.g., buildings, trees) that can introduce different issues including parallax
errors and shadows. Each video of this folder is linked to a text file containing the
telemetry of the UAV flight. In Table 2.2, the available telemetry data is reported.

The different kinds of UAV-based systems currently available provide telemetry
information in standard or proprietary format. In any case, these formats are text
files that require a very simple parsing process to be used. For this reason, we
have chosen one of the most popular standard format, i.e., the NMEA2. In addition,
we have also extracted information from the small-scale UAV to build a simple
proprietary format. In order to give the opportunity for developers to test the GPS
coordinate interpolation algorithms during mosaicking or change detection processes,
the proprietary format is provided with 10 GPS coordinates linked to each second of
the video sequence (i.e., 10 coordinates per second). Differently, the NMEA format
is provided with only a GPS coordinate linked to each second of the video sequence

2http://www.gpsinformation.org/dale/nmea.htm
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Table 2.3. Main characteristics of the videos contained in the folder: Videos With Telemetry
→ Mosaicking.

Filename EnvironmentLength [s] Frequency
[fps]

Total
Frames
[#]

Telemetry Data
(Table 2.2)

path1.mp4 Urban 47 25 1175 From 1 to 60
path2.mp4 Urban 22 30 660 61
path3.mp4 Urban 16 30 480 61
path4.mp4 Urban 100 30 3000 61
path1.mp4 Dirt 144 25 3600 From 1 to 60
path2.mp4 Dirt 138 25 3450 From 1 to 60
path3.mp4 Dirt 75 30 2250 61
path4.mp4 Dirt 67 30 2010 61
path1.mp4 Countryside 39 25 975 From 1 to 60
path2.mp4 Countryside 61 25 1525 From 1 to 60

(i.e., 1 coordinate per second). Concerning the GPS accuracy, the home-made UAV
has the standard accuracy, which is typically in the range of ±4.9 meters, while
the DJI Phantom 3 Advanced reports a vertical accuracy of ±0.5 meters and a
horizontal accuracy of ±1.5 meters.

One of the main novelties of the proposed dataset regards the detection of small
objects, on the ground, in videos acquired at low-altitude. In order to make this task
comparable with real situations, during the flights performed to acquire the sequences
useful to test the change detection algorithms, we have used both static/dynamic
vehicles and persons as well as static objects. In particular, we have used objects
with different properties, including size, shape, and color.

To test the change detection algorithms, it is possible to use, as ground truth,
the part of geo-referenced mosaic (built previously) whose GPS coordinates are
linked to those of the current frame within the change detection video sequence. In
addition to the telemetry text file, each video is also linked to a metadata text file in
which a set of information about the properties of the objects is reported, in detail
the following data are available for each object:

• Type, e.g., car, person, box;

• Shape, e.g., rectangular, square;

• Dimension, measured in centimeters (cm);

• Color (with respect to the background), e.g., same range of color, complemen-
tary range;

• Movement, e.g., static person or moving car.

Table 2.3 and Table 2.4 report some relevant characteristics of the videos con-
tained in the mosaicking and change detection sub-folders, respectively. Note that,
the path4 (urban environment) within the mosaicking folder has two paths, i.e.,
path4_1 and path4_2, within the change detection folder. This indicates that, on
the same path, two different sets of objects have been placed in two different time
instants.



2.2 Videos With Telemetry 21

Table 2.4. Main characteristics of the videos contained in the folder: Videos With Telemetry
→ Change Detection.

Filename Environment Length
[s]

Frequency
[fps]

Total
Frames [#]

N• of
Objects [#]

Type of
Object

Object
Appearance
[s] to [s]

path1.mp4 Urban 48 25 1200 3
• Object 1:

Tire;

• Object 2:
Gas
Bottle;

• Object 3:
Person.

• Object 1:
09 to 18;

• Object 2:
12 to 20;

• Object 3:
16 to 24.

path2.mp4 Urban 25 30 750 2
• Object 1:

Person;

• Object 2:
Person.

• Object 1:
13 to 16;

• Object 2:
14 to 16.

path3.mp4 Urban 25 30 750 2
• Object 1:

Person;

• Object 2:
Person.

• Object 1:
08 to 18;

• Object 2:
09 to 19.

path4_1.mp4 Urban 12 30 360 1
• Object 1:

Car.
• Object 1:

06 to 09.

path4_2.mp4 Urban 14 30 420 1
• Object 1:

Car.
• Object 1:

10 to 11.

path1.mp4 Dirt 125 25 3125 4
• Object

1: Small
Box;

• Object
2: Small
Box;

• Object 3:
Big Box;

• Object 4:
Person.

• Object 1:
32 to 42;

• Object 2:
69 to 81;

• Object 3:
80 to 91;

• Object
4: 101 to
111.

path2.mp4 Dirt 123 25 3075 4
• Object

1: Small
Box;

• Object 2:
Big Box;

• Object
3: Small
Box;

• Object 4:
Person.

• Object 1:
30 to 40;

• Object 2:
83 to 93;

• Object
3: 103 to
113;

• Object
4: 113 to
122.

path3.mp4 Dirt 66 30 1980 1
• Object

1: Metal
Suitcase.

• Object 1:
28 to 32.

path4.mp4 Dirt 60 30 1800 1
• Object

1: Metal
Suitcase.

• Object 1:
27 to 37.

path1.mp4 Countryside 40 25 1000 2
• Object 1:

Suitcase;

• Object 2:
Person.

• Object 1:
00 to 09;

• Object 2:
11 to 21.

path2.mp4 Countryside 47 25 1175 2
• Object 1:

Suitcase;

• Object 2:
Person;

• Object 3:
Bag.

• Object 1:
03 to 13;

• Object 2:
19 to 26;

• Object 3:
36 to 46.
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2.3 Camera Calibration
In this folder, the file containing the calibration parameters is provided. The file
is stored in eXtensible Markup Language (XML) format, and it contains both the
intrinsic camera matrix and the distortion coefficients. The camera matrix Cm is
defined as follows:

Cm =

fx 0 cx

0 fy cy

0 0 1

 (2.1)

where fx and fy are the focal length parameters, and (cx, cy) is the optical center.
All these parameters are computed by using the method presented in [114]. The
distortion coefficients are defined as {k1, k2, k3, p1, p2}, where k1, k2, and k3 are the
radial distortion coefficients, and p1, p2 are the tangential distortion coefficients. The
adopted distortion model, mapping ideal points with coordinates (x, y) to actual
coordinates (xd, yd), is defined as follows:

xd =x(1 + k1r
2 + k2r

4 + k3r
6)+

2p1xy + p2(r2 + 2x2)
(2.2)

yd =y(1 + k1r
2 + k2r

4 + k3r
6)+

p1(r2 + 2y2) + 2p2xy
(2.3)

where r is the distance of (x, y) from the optical center:

r =
√

(x− cx)2 + (y − cy)2. (2.4)

2.4 Benchmark Mosaics
In this folder, the mosaics of all the dataset videos are provided. The motivation
is to give a set of reference mosaics created with the baseline testing algorithm, in
order to provide a comparative basis for more advanced algorithms. Notice that,
since we used a baseline algorithm, some generated mosaics have visual artifacts
and, in the worst case, the mosaic contains only a part of the path. This is due to
some challenging factors, such as pitch and roll, which are not properly handled by
the adopted algorithm.
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Chapter 3

The Proposed System

In this section, the architecture of the system is described. In detail, we first provide
a description of the system and its logical architecture. Then, the Mosaicking,
Change Detection, and Object Detection modules are described in depth.

The proposed system is designed to work in two different modes, namely Mode
1 and Mode 2. When it is used in Mode 1, the UAV performs two flights. During
the first flight, the UAV acquires the area of interest and generates a mosaic of it.
Moreover, during the acquisition it classifies the objects present in the scene, and
associate them with the GPS coordinate flown at the moment of the acquisition.
During the second flight, which can occur after minutes, hours, days, or even weeks
and years, the UAV acquires again the area of interest, and by comparing the image
just acquired with the mosaic previously generated (i.e., the reference mosaic), it
can find the changes occurred within the scene. Since during the mosaic generation
the UAV performed a classification of the objects, in the change detection step it is
possible to know precisely

When used in Mode 2, the UAV performs a flight above the area of interest, and
searches for the targets for which the neural network has been trained. In Figure 3.1,
the logical architecture of the proposed system is shown. In the depicted architecture,
the object surrounded by a red square is the result of the change detection module,
while the objects surrounded by a blue square is the result of the object detection
module.

3.1 Mosaicking
This section presents the module used for real-time creation of incremental and
geo-referenced mosaics of areas of interest acquired at low-altitude. The only input
required by the system is a set of GPS coordinates that specifies one or more
areas that have to be mosaicked. The proposed mosaicking algorithm presents
several innovative contributions compared to the current state-of-the-art. First, to
speed-up the feature extraction and matching processes, it adopts the A-KAZE
extractor [1]. The recent literature [1, 6, 4] has shown that A-KAZE features are
faster to compute than SIFT [63] and SURF [8]. Moreover, these works exhibit
much better performance in detection and description than ORB [82]. Second, the
mosaicking algorithm implements an automatic method to optimize the acquisition
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Mosaicking
Module

Input frames

t t+1 t+n... ...

Object Detection
Module

Change Detection
Module

Input frames

t t+1 t+n... ...

φt+1(xi+1,yi+1) ... φt+n(xi+n,yi+n)
GPS

Coordinates φt+1(xi+1,yi+1) ... φt+n(xi+n,yi+n)
GPS

Coordinates

Geo-Referenced Mosaic M

Car Car
Disappeared

Figure 3.1. Architecture of the proposed system. When used in mode 1, the UAV performs
a first flight needed to generate the mosaic of the area of interest (blue square). Then, a
second flight is performed by the UAV, and it checks in real-time the changes occurred
within the scene (green square). When used in mode 2, instead, the UAV performs a
flight and detects the objects of interest within the acquired scene without the need of a
mosaic (red squares). The module implemented in mode 2, is also used in mode 1 to
classify and geo-referencing the objects in the mosaic or the changes occurred.

rate of the RGB camera based on the telemetry (i.e., speed and height). Third,
to speed-up all steps involved in the stitching process, the mosaicking algorithm
implements a ROI through which the computation required for the stitching of each
new frame on the mosaic is reduced. Fourth, unlike the majority of the mosaicking
algorithms known in literature that use RANSAC [32] to perform the geometric
transformation stage, the proposed algorithm adopts the rigid transformation [70]
that allows the building of mosaics at low-altitude mitigating in part the artifacts
due to the parallax error [40]. For low altitudes, the UMCD dataset has been used.
Instead, to test the algorithm at high-altitudes we have used the NPU Drone-Map
dataset1.

3.1.1 The Mosaicking Algorithm

The logical architecture of the small-scale UAV based system and the pipeline of the
proposed mosaicking algorithm are shown in Figure3.2. The algorithm consists of
four main stages each of which is discussed below. Despite the system is designed to
work with standalone and client-server architectures, the latter is used to explain
properly how the system works.

Background

In the following, let:

UAVpath = {φt+i(xt+i, yt+i) | t ∈ N ∧ i ∈ [1, . . . , n] ⊂ N} (3.1)

be the set of GPS coordinates that defines the area of interest that needs to be
mosaicked, where, t is the amount of seconds required by the UAV to reach the
area, and n is the second of flight duration within the area. Besides, for each
i ∈ [1, . . . , n], φt+i(xt+i, yt+i) is the t+ ith coordinate and (xt+i, yt+i) is the pair

1http://zhaoyong.adv-ci.com/downloads/npu-dronemap-dataset/
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Figure 3.2. The proposed mosaicking algorithm. f t and φt are the frames and the linked
GPS coordinates provided to the algorithm at each second t, respectively.

(latitude, longitude). Without loss of generality, we can define φstart and φend when
i = t+ 1 and i = t+ n, respectively. In addition, let:

FT RS = {f t+i | t ∈ N ∧ i ∈ [1, . . . , n] ⊂ N} (3.2)

be the set of frames transmitted from the UAV to the processing unit (local or remote)
within the UAVpath, where t and n are defined as above. For each i ∈ [1, . . . , n],
f t+i = {f t+i

1 , f t+i
2 , . . . , f t+i

F P S} is the set of frames transmitted by the UAV at the
second i. The set depends on frame per second (FPS) of the RGB camera. The UAV
starts the transmission to the processing unit from the take-off up to the landing.
In general, each second k ∈ N of transmission is composed of a GPS coordinate,
φk(xk, yk), and a set of frames, fk = {fk

1 , f
k
2 , . . . , f

k
F P S}.

Frame Selection and Correction

Since the aim of the algorithm is to build the mosaic of the area of interest defined
by the UAVpath, all the frames transmitted outside of this path (i.e., fk /∈ FT RS for
each k ∈ N) are discarded by the processing unit. The rest of the frames transmitted
by the UAV (i.e., fk ∈ FT RS for each k ∈ [t+ 1, . . . , t+ n] ⊂ N) are used in part to
create the mosaic, while the remaining are discarded again. This is due to the fact
that at each second the UAV tends to transmit more frames than ones necessary to
create a proper mosaic.

In the proposed algorithm, both flight height and framerate are automatically
estimated by exploiting both the UAV telemetry and the characteristics of the
CCD of the used acquisition sensor. The automatic estimation of the parameters,
especially the flight height, is useful when there is the need of a specific spatial
resolution to accomplish a task.

Flight Height Estimation The application of the homography to an image is
performed by multiplying the coordinates of the pixels composing the image by the
matrix H estimated with the RANSAC method and defined as follows:

H =

Ra Rb Tx

Rc Rd Ty

Wa Wb 1

 (3.3)
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Figure 3.3. Different views of an object placed on the ground with α ≈ 0 (left) and α > 0
(right).

where, HR =
[
Ra Rb

Rc Rd

]
is the Rotation Matrix, MT =

[
Tx Ty

]T
is the Translation

Vector, and MW =
[
Wa Wb

]
is the Warping Vector. This type of transformation

allows 8 DoFs and usually it is applied in case of rotation on one or more space axes
(i.e., X,Y or Z), such as in panorama applications [15]. Since the UAV movements
can be approximated mainly to translations on X and Y axis, it is possible to limit
the DoFs of the image transformation by using a similarity transformation, ST ,
defined as:

ST =

Ra Rb Tx

Rc Rd Ty

0 0 1

 (3.4)

With respect to the homography, the similarity transformation allows only
combinations of translation, rotation, and uniform scaling (4 DoFs), preserving the
angles between lines. In this way, the number of transformations applied to an image
can be limited, mitigating the errors introduced in case of wrong estimation of the
matrix values.

Regarding the perspective, the Angle of View (AoV) of the sensor, at the
acquisition instant, has to be considered. Assuming that the lens of the sensor projects
rectilinearly the image (i.e., sensor that does not introduce a radial distortion),
AoV = [αW , αH ] can be computed as follows:

αW = 2 arctan WCCD

2f (3.5)

αH = 2 arctan HCCD

2f (3.6)

where,WCCD andHCCD are the width and the height of the CCD sensor, respectively.
While, f is the focal length of the sensor.

When the images are orthorectified, α angles between the UAV sensor and
an object on the ground are approximately equal to 0. This occurs, as shown in
Figure 3.3 (left), because all the projection lines are orthogonal to the projection
plane. In our context, where images are not orthorectified, Figure 3.3 (right), we
have that the perspective strongly influences the view of the objects in the scene. In
particular, we have that the more is the height of the object (or the less is the flying
height of the UAV), the more the perspective influences the mosaic construction.
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(a)

(b)

Figure 3.4. An example of how a UAV sees an object at a low flight altitude: (a) while it
is approaching to the object the faces A and B are acquired; (b) while it flies away from
it the faces B and C are acquired.

An example of how these factors influence the construction of the mosaic is
represented in Figure 3.4. While approaching to the box (Figure 3.4(a)), the UAV
acquires the faces A and B and when leaving the box it acquires the faces B and
C (Figure 3.4(b)). As reported highlights two critical aspects: a) the features
extracted from faces A and C, despite they are extracted from parts of the same
object, cannot be matched; b) three different views of the same object appear, which
make impossible to stitch correctly two consecutive frames. Notice that, these issues
happen only at low altitude flights since at a high altitude the AoVs described in
eq. (3.5) and (3.6) are approximated to 0.

The features extracted from the different faces of an object can be mismatched,
and applying subsequently a projective transformation (i.e., homography), some
features could be projected to infinity. This introduces a high level of distortion in
the image, making impossible to stitch together two consecutive frames. Using the
similarity transformation, instead, it is possible to exclude the features mapping to
infinity and then to better accomplish the mosaicking task.

The quantity of information captured by the camera mounted on a UAV depends
mainly on two factors: the spatial resolution of the sensor and the flight altitude.
By using the Johnson’s criteria [50], we can determine the minimum flight altitude
to accomplish detection, recognition, and identification (DRI) tasks. These criteria
state that by acquiring the object with a camera front-facing to it, the minimum
number of pixels needed for DRI tasks are 1.5, 6, and 12, respectively. In order to
perform one of the DRI tasks, the quantity of pixels per meter must be determined.
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An example is introduced to better clarify this concept. Assuming that the critical
dimensions for people acquired with a frontal-facing camera is 0.75 meters, the
minimum number of pixels per meter required by the DRI tasks can be obtained by
computing the ratio between 1.5, 6, 12 pixels and 0.75 meters, respectively. In the
second column of Table 3.1, the results of this operation are shown.

Table 3.1. Summary on Johnson’s Criteria applied to the DRI tasks for a human being

Discrimination Level Front-Facing Bottom-Facing
(Description) Camera [px/m] Camera [px/m]

Detection: 2 3.02
An object is present

Recognition: 8 12.11
The object type is discerned (person vs car)

Identification: 16 24.23
A specific object is discerned (man vs woman)

(a) (b) (c)

Figure 3.5. Visual representation of (a) detection, (b) recognition, and (c) identification
on the basis of Johnson’s criteria.

In case that the images are acquired from a UAV and the camera is bottom-
facing (i.e., pointing to the ground), the critical dimensions of a subject are smaller.
Assuming an average bust depth of 25 cm and an average forearm-forearm breadth of
55.1 cm2, it is possible to consider as a subject bounding box the rectangle generated
by using these two measures. As critical dimension for a person, we can consider
the diagonal of the aforementioned bounding box, that in this case is 60.5 cm. As
for the frontal-facing camera, it is possible to obtain the minimum number of pixels
per meter by performing the ratio between 1.5, 6, 12 pixels, and 0.605 meters,
respectively. In the third column of Table 3.1, the results of these operations are
shown. In Figure 3.5, a visual representation of the DRI tasks is depicted, while in
Figure 3.6 the critical dimensions of a subject acquired by a UAV are shown.

By assuming the pinhole camera model, it is possible to find a relation between
the width W and the length L of the observed scene, and the width WCCD and the

2https://msis.jsc.nasa.gov/sections/section03.htm
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Figure 3.6. Representation of critical dimensions of a subject acquired by a UAV.

Figure 3.7. Representation of the parameters needed to correlate the Johnson’s criteria
with the flight height.

height HCCD of the CCD sensor, as follows:

W = hWCCD

f
[mm], L = hLCCD

f
[mm] (3.7)

where, h is the flying height and f is the focal length of the camera. By considering
the spatial resolution of the camera, i.e., Wp/W [pixel/mm] and Lp/L[pixel/mm],
where Wp and Lp are the number of pixels on the image plane corresponding to W
and L millimetres in the observed scene, and knowing the CCD pixel dimensions
kw, kh [µm], the following equation can be expressed:

Wp

W
= fWp

hWCCD
= fWp

hkwWp
= f

hkw
(3.8)

The same relation holds for Lp. In Figure 3.7, the parameters used for correlating
the Johnson’s criteria with the flight height are depicted. Assuming further a squared
CCD sensor, i.e., kw = kh = k, it is possible to use the Johnson’s criteria to determine
the maximum flight height hmax to perform a specific task:

hmax(task) = f

k SRJ(task) (3.9)

where, SRJ(task) is the minimum spatial resolution required for a task, and task ∈
{Detection,Recognition, Identification}.

To explain in detail the eq. 3.9, an example for each of the DRI tasks is provided.
Suppose that we want to determine the maximum height needed to detect, recognize,
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Figure 3.8. Parameters used for computing frmin. The parameter h is the flight height, α
is the FoV and b is the length of the observed scene.

and identify a person lying on the ground, such as in rescue operations. This case
is amenable to a front facing acquisition, so we can use the DRI values provided
by the second column of Table 3.1. Assuming a video sensor with a focal length
f = 1.7mm, and a CCD pixel size of k = 5.97µm, the DRI heights computed by
means of the eq. 3.9 can be defined as:

hmax(D) = 1.7 [mm]
5.97 [µm] · 2 [pixel/m] = 121.95 meters (3.10)

hmax(R) = 1.7 [mm]
5.97 [µm] · 8 [pixel/m] = 30.48 meters (3.11)

hmax(I) = 1.7 [mm]
5.97 [µm] · 16 [pixel/m] = 15.24 meters (3.12)

Instead, to perform DRI tasks with UAV of a standing person (i.e., walking,
running) the values provided in the third column of the Table 3.1 must be used:

hmax(D) = 1.7 [mm]
5.97 [µm] · 3.02 [pixel/m] = 80.76 meters (3.13)

hmax(R) = 1.7 [mm]
5.97 [µm] · 12.11 [pixel/m] = 20.14 meters (3.14)

hmax(I) = 1.7 [mm]
5.97 [µm] · 24.23 [pixel/m] = 10.06 meters (3.15)

Frame Rate Estimation As it is necessary to always ensure an overlapping area
between pairs of consecutive frames, an appropriate frame rate fr, depending on
the UAV speed v and flight height h must be computed and guaranteed. Some
considerations regarding the flight speed can be done:

(a) The higher is the UAV speed v, the higher must be the minimum frame rate
frmin;
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Figure 3.9. Example in which there is no overlap between two consecutive frames.

(b) If the flight height h increases, the minimum frame rate frmin must decrease
as a larger area is acquired;

(c) If the Field of View (FoV) of the sensor increases, the minimum frame rate
frmin must increase (for the same reason of point b).

Let us assume a UAV having the camera pointed orthogonally towards the ground,
as shown in Figure 3.8. Since the steps we are going to illustrate are the same for
both sensor dimension, the calculation are performed only on one dimension.

As it is possible to see, we have that

b = 2
(
h · tanh

(
α

2

))
(3.16)

Let us define bt and bt+1 as the area acquired at time instants t and t+1, respectively.
If the UAV performs a movement of at least b meters between t and tt+1, as shown
in Figure 3.9, there is no overlap between the two acquired frames.

Since the time needed to move by b meters is b/v, we have that fr = v/b.
Consider the overlap parameter s ∈ [0, 1], where 0 means that the frames are totally
disjointed and 1 means that the frames are totally overlapped. In order to assure
a minimum overlap between two consecutive frames, the UAV must flight at most
b(1− s) meters, as shown in Figure 3.10.
So, the minimum frame rate can be defined as:

frmin = v

b(1− s) (3.17)

Let us consider as running example a camera with fr = 60fps and FoV = 60◦.
By varying the s value, the minimum frame rate frmin can assume the values
reported in Figure 3.11.
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Figure 3.10. Example of frames usable for mosaic generation. As it is possible to see, the
minimum overlapping part is assured.

Feature Extraction and Matching

LetMj be the mosaic built up to the second j and let f̂ j+1
s , with j+1 ∈ [t+1, . . . , t+

n] ⊂ N and s ∈ [1, . . . , FPS] ⊂ N, the current selected frame, at the second j + 1,
to be added to the mosaic. The main steps to built the new mosaic, Mj ∪ f̂ j+1

s , are
the feature extraction and matching processes. In general, the features extracted
from each current frame should be compared with those extracted from the whole
mosaic to establish where the current frame has to be placed. Since the size of
the mosaic grows over time, the comparison stage tends to become unmanageable
after a certain period of time. With the aim to avoid such a issue, the proposed
system uses a ROI to extract the features from the mosaic. The ROI tracks the
last frame added to the mosaic and delimits, to a region surrounding it, the feature
extraction process. A ROI centred on the last frame and sized three times than
the size of a frame is sufficient to ensure the proper execution of the mosaicking
algorithm. By the ROI the adding of a new frame takes a constant-time, no more
dependent on the increasing size of the mosaic. Notice that the ROI concept is not
new, but it is worth describing it due to the its effectiveness in increasing the system
performance. The proposed algorithm uses A-KAZE, instead of the most popular
extractors, such as SIFT, SURF or ORB. This is due to the fact that A-KAZE
adopts both the Fast Explicit Diffusion (FED) embedded in a pyramidal framework
and the Modified-Local Difference Binary (M-LDB) descriptor in order to speed-up
feature detection in non-linear scale space and to exploit gradient information from
the non-linear scale space, respectively. These aspects make A-KAZE an optimal
compromise between speed and performance with respect to the current literature [1].

The keypoints extracted from Mj and f̂ j+1
s are used to detect the overlapping

region between them. Let XMj = {α1, . . . , αh} and Xf̂j+1
s

= {β1, . . . , βt} be the set
of keypoints extracted by A-KAZE from Mj and f̂ j+1

s , respectively. With the aim of
finding the correspondence between the keypoints in XMj with those in X

f̂j+1
s

a simple
Brute Force Matcher (BFM) algorithm is used [88]. This algorithm performs an
exhaustive search between the two sets of keypoints and matches only those keypoints
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Figure 3.11. Frame rate obtained with an s value of a) 0.01, b) 0.2, c) 0.5 and d) 0.8.

that have an identical pattern (i.e., local structure of the pixels). Formally, at the end
of the process, the algorithm generates two sub-sets X̂Mj = {αh1 , . . . , αhm} ⊆ XMj

and X̂
f̂j+1

s
= {βt1 , . . . , βtm} ⊆ Xf̂j+1

s
where for each k ∈ {h1, . . . , hm} exists a single

j ∈ {t1, . . . , tm} such that αk ≡ βj . As well-known, the two sub-sets have the same
cardinality.

Transformation and Perspective Computation

Once obtained the corresponding keypoints (i.e., X̂Mj and X̂
f̂j+1

s
) between the two

frames, the system must compute the geometrical transformation by which the
keypoints of the current frame, f̂ j+1

s , are collimated with ones of the mosaic, XMj ,
within the reference system of the latter. This transformation is subsequently used
on each pixel of the frame to stitch it over the mosaic. In literature, the RANSAC
algorithm to calculate the homography transformation is considered the reference
approach. It consists in using the corresponding keypoints to iteratively estimate the
parameters of a mathematical model by which to perform the geometric projection
of each pixel between the two images. Despite this, as shown in Figure 3.12a, the
homography transformation can produce a high level of distortions especially when it
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(a)

(b)

Figure 3.12. Geometric transformation: (a) homography transformation by RANSAC
algorithm, (b) rigid transformation.

is applied on images acquired a low-altitude. In particular, the mosaic can present an
unreal curvature. This is due to the fact that the homography transformation matrix
has 8 degrees of freedom, hence at least 4 corrected correspondences are required
to build a proper mosaic. In the proposed mosaicking algorithm, the acquired
images can be considered as a linear scanning of the ground surface, therefore a
transformation with less degrees of freedom can be adopted. For this reason, the
rigid transformation matrix that has only 4 degrees of freedom is implemented [70].
The reference example reported in Figure 3.12b shows the goodness of the obtained
results. The majority of the UAV based systems treat video sequences acquired at
high altitude, or propose a orthorectification pre-processing step at the expense of
the real-time processing [116] thus avoiding this type of issue. The last step of the
module is to merge the pixels of the mosaic, XMj , with the transformed pixels of
the frame, Γ(f̂ j+s

1 ), to obtain a new pixel matrix, XMj ∪ Γ(f̂ j+1
s ).

Stitching and GPS Association

The acquisition of the GPS coordinates is performed following the NMEA3 format,
one of the most widespread standards for the transmission of position data. Current
commercial GPS transmitters provide one or more position data per second, however
in the latter case a good practice is to derive a single information per second to

3http://www.nmea.org/
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reduce the intrinsic error due to the acquisition process. Since the construction
of a mosaic can require more frames per second, this means that only the first
of the n frames for second acquired by the RGB camera is associated to a GPS
coordinate, the rest of the n− 1 frames, if added to the mosaic, has to be associated
to coordinates inferred by ones previously acquired. Actually, once obtained two
coordinates of the first frame of two consecutive seconds, then the coordinates of
the remaining frames of the first second can be derived by adopting a simple linear
interpolation. Let φj(xj , yj) and φj+1(xj+1, yj+1) be the GPS coordinates acquired
and associated with the frames f̂ j

1 and f̂ j+1
1 , respectively (s = 1 in both cases since

they are the first frames of each second). In addition, considering f̂ j
1 belonging to

the mosaic Mj and f̂ j+1
1 the current frame. Then, the coordinate of any frame added

to the mosaic between them can be derived as follows:

xk = xj + k

FPS
(xj+1 − xj) , yk = yj + k

FPS
(yj+1 − yj) (3.18)

where, xk and yk are the interpolated latitude and longitude, respectively, of the
new GPS coordinate φk(xk, yk) associated to the frame f̂ j

k . Moreover, k specifies
the coordinate of which frame needs to be computed, finally, FPS is the frames per
second of the sensor. The current version of the system performs the mosaicking
algorithm in on-line mode. This means that when the system acquires a new GPS
coordinate, it also considers the previous acquired one, computes the interpolation
process and associates the interpolated coordinates to the linked frames within
the mosaic. Each GPS coordinate (acquired or interpolated) is anchored to the
barycentre of the linked frame. This last is a main aspect to enable the system with
a wide range of tasks. Once that the GPS coordinate has been linked to the new
frame, the gain compensation between this latter and the mosaic is performed by
using the multi-band blending [15]. This assures that there will be no seams when
the new frame is added to the current mosaic.

3.2 Change Detection
In this section, a novel robust and real-time change detection system for low-altitude
flights is proposed. The pipeline, takes as input a geo-referenced mosaic and a
video stream with its associate GPS stream sent by a small-scale UAVs during the
second reconnaissance flight of the area of interest. Then, the change detection
is performed between the frames of the video stream and the corresponding part
of the geo-referenced mosaic, extracted by comparing the GPS coordinates. The
proposed system uses a novel pipeline comprising sliding window techniques, RGB-
LBP operator and histograms similarity. Differently from other change detection
algorithms, whose aim is to extract the exact silhouette of the found novelties, in
this thesis work the scope is to identify the change (e.g., people, vehicles) among
the highest number of frames. This choice is due to the fact that once the change
has been found, advanced algorithms can be used for its classification (e.g., [64]). In
addition, the proposed system has to deal with some well-known problems. Firstly,
it does not use orthorectified images. This means that high objects (e.g., trees,
buildings) may introduce a perspective error that influences the detection of changes.
Secondly, high-altitudes mitigate several factors, such as noise and alignment errors.
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At low-altitudes, a misalignment between two images can irreversibly compromise the
detection due to the generated image artifacts. Moreover, at high-altitudes tasks like
surveillance [66, 75], search and rescue [10, 90, 76], and tracking [111, 33, 34] cannot
be performed, while the proposed system is designed to handle such situations.

Figure 3.13. Logical architecture of the proposed system.

In this section, the pipeline of the system shown in Figure 3.13 is described
through a running example. As input, a geo-referenced mosaic of the interest area
is required. For clarity, we will call T and Q, respectively, the train image, or the
reference image extracted from the mosaic and the query image, or the image in
which we want to detect changes. The pipeline will output an image O, in which
there are present the changes and a list L = R1, . . . , Rn of bounding boxes. For each
Ri, in the sub-image Q(Ri) will be present at least one change with respect to the
same sub-image T (Ri).

Image Alignment The first step of the proposed pipeline is the alignment between
T and Q. A first gross alignment is performed by using the GPS coordinates sent
by the UAV in order to extract the corresponding part of the georeferenced mosaic.
This allows to avoid the comparison between the frame received in real-time from
the UAV and the whole mosaic. The second step of the alignment consists in using
features robust to rotations, scale changes and translations to further align T and Q.
In the pipeline, we chose A-KAZE [1] features since they are computed faster than
SURF [8] and SIFT [63] and they are also detected and described with much better
performance than these methods, including ORB [82].

Pre-Processing The pre-processing is performed in order to reduce the number
of false positives/negatives during the difference between images.

The first preprocessing operation is the Histogram Equalization, which is per-
formed to reduce the illumination differences between T and Q. Figures 3.14(a)(b)
show the result of this operation.

The second pre-processing step is the micro-differences removal. This process
removes all the small differences between T and Q such as rippling water and grass
moved by the wind. In order to remove these false changes, a local operator has
been implemented. This operator corrects the color of a pixel relying on the average
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color of the neighborhood pixels. This is performed by using a sliding window Wa

and for each pixel p of T and Q, Wa is translated so that its center corresponds to
p coordinates. Hence, each time Wa is moved, the averages of the RGB channels
within the window are computed and stored in the RGB channels of p. Figures
3.14(c)(d) depict the results obtained.

Difference between Images At this point, the difference between T and Q is
performed. In detail, the difference is performed by using a threshold difference and
the RGB-LBP operator. Before applying the threshold difference, both T and Q
are converted to grayscale, and we call these images Tgray and Qgray. Then, the
threshold difference is performed by respecting the following condition:

Di,j =
{

0 if |Tgrayi,j
−Qgrayi,j

| < Tdiff

1 otherwise
(3.19)

where Tdiff is the threshold value used to consider the pixels Tgray and Qgray

different, and Di,j is the pixel resulting from this difference. The value Tdiff is
chosen according to the difference of illumination between T and Q. The more the
illumination is different, the more Tdiff will be a high value. This is due to the fact
that a difference between two values having a high distance will produce a high
value as result, easily overcoming a low threshold.

If Di,j is 0, no further actions are performed. Otherwise, the RGB-LBP is used
to check if the pixel (i,j) is a real change. Given an image I three binary strings,
one for each colour channel, are computed. Let SR, SG, and SB be these strings,
they are computed in the following way. For each pixel pc in I :

SChannelpc =
{

0 if I(Wl)j,k[Channel] < pc[Channel]
1 otherwise

(3.20)

where k = ((i− 1) mod WidthWl
) + 1, j = b(i− 1)/WidthWl

c+ 1 and Wl are the
neighborhood pixels of pc. The three binary string are computed for both T and Q,
and then they are compared by using the Hamming Distance. First, we assure that
the strings of T and Q are of the same length. In the case they are not, the strings
are considered different. On the contrary, we proceed with the Hamming Distance
computation. Also in this case a threshold is used, since it is nearly impossible to
have two identical binary strings for two different images. The value of this threshold
has been chosen with the same criteria of Tdiff .

Let c be the number of changes between two compared strings. If c > TH ∗ |s|,
where TH is the Hamming Distance threshold and |s| is the length of a binary string,
then the strings are considered different. If the pixels are considered changed with
both threshold difference and RGB-LBP methods, it is supposed that a real change
has occurred between T and Q. As a result of these steps, we obtain a binary mask
Mdiff , as shown in Figure 3.14(e).

Post Processing The last part of the pipeline regards post processing operations,
which are used to remove any false positive (if present). The first post processing
step consists in removing the noise from Mdiff . In Mdiff there could be white pixels
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surrounded by a big amount of black pixels and vice-versa. We call these pixels
isolations. Usually, isolations are false positive due to small differences not removed
during the pre-processing step. To remove isolations, a sliding window technique is
used. In detail, a new binary mask N is used, and each pixel Ni,j is modified in the
following way:

Ni,j =
{

0 if nblack > Tiso · (WidthWi ·HeightWi)
255 otherwise

(3.21)

where nblack is the number of black pixels surrounding Ni,j and Tiso ∈ [0, 1] is a
threshold value. In Figure 3.14(f), the result of this operation is shown.

The second post processing step consists in removing small areas. Once isolations
are removed, the minimal bounding boxes are computed. A minimal bounding box
contains a set of contiguous white pixels in N , and they form the set L = R0, . . . , Rn.
Let Tarea be a threshold in the interval [0, 1]. The value Tarea is chosen with respect
to the size of the acquired frame. The more is the spatial resolution of the image, the
more this value should be. All the bounding boxes Ri ∈ L having a ratio between
the area of Ri and the area of N less than Tarea are removed from L. Moreover, all
the pixels of N(Ri) are set to black. This parametrization is due to the fact that
small areas in big images have a different weight than small areas in small images.

The last post processing step consists in calculating the histogram similarity.
This last step is performed to remove further false positives. First, the part of image
contained in the bounding boxes Ri is extracted from both T and Q, respectively
T [Ri] and Q[Ri]. Then, T [Ri] and Q[Ri] are converted to grayscale and their
histograms, HTi and HQi is computed. Finally, the two histograms are compared by
using the Bhattacharyya distance [11] B, defined as follows:

B(h1, h2) =
√

1− 1
h1 · h2 · β2

∑
i

√
h1(i) · h2(i) (3.22)

where β is the number of bins and hk =
∑

i
(hk(i))
N . The Bhattacharyya distance

provide as result a similarity value B ∈ [0, 1], and the most the similarity value is
closer to 0, the most the histograms are similar. If B is less than a threshold TB,
all the pixel in N [Ri] are set to 0. The best threshold value TB for B has been
empirically found during the experiments.

In Figure 3.14(g) the result of this last post processing operation is shown.
The last step of the pipeline consists in the application of the mask N to the

image Q, highlighting the detected changes. In Figure 3.14(h), the final result is
depicted.

3.3 Object Detection
In the last decade, several Deep Learning models have been proposed for object
detection. The majority of these models are extension of CNNs, and since the object
detection consists in classification and localization of the object within the image,
the deep object detection models consist in two parts. The first part is, precisely, a
CNN used for classifying the object present in the image. The second part, instead,
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.14. Running example on T and Q of the proposed system. Figures (a) and
(b) show the histogram equalization. Figures (c) and (d) show the micro-differences
removal. Figure (e) and (f) show, respectively, the binary mask obtained from the image
difference and isolation removal. Finally, images (g) and (h) show the final mask and its
application on Q.
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is the algorithm that proposes the bounding boxes containing the objects. Now, the
concepts behind the CNN such as convolution and pooling are briefly described to
provide background knowledge for better understanding the deep object detection
models.

Convolutional Neural Network

The CNNs [26] are a specialized kind of neural network designed for processing data
that has a grid-like topology. Typical grid-like data are the time series, which can
be seen as a 1D grid taking samples at regular time intervals, and images, which can
be though as a 2D grid of pixels. The name of this kind of network indicates that it
uses the mathematical operation named convolution. So, convolutional networks are
neural networks that use the convolution operation in at least one of their layers
[38]. A typical layer of a CNN consists of three steps: convolution, activation, and
pooling. Now we are going to briefly describe these components.

Convolution In general, the convolution operation is a mathematical operation
on two functions of a variable, i.e. x and w, and consists in integrating the product
between x and w translated by some value over time. Formally:

s(t) =
∫
x(a)w(t− a)da (3.23)

where t is the time instant. Typically, the convolution is denoted in the following
way:

s(t))(x ∗ w)(t) (3.24)

In CNNs terminology, the first argument of the convolution (i.e., x) is referred as
the input of the layer, while the second argument (i.e., w) is the kernel. The output
of the convolution, or the output of the layer, is referred as feature map. Since the
data processed by a computer, it will be discretized so it is possible to define the
discrete convolution operation:

s(t) = (x ∗ w)(t) =
∞∑

a=−∞
x(a)w(t− a) (3.25)

Trivially, it is possible to use the discrete convolution on more than one axis at time.
For example, if we use a two-dimensional image I as input for the layer, we probably
also want to use a two-dimensional kernel K. Formally:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) (3.26)

In Figure 3.15, an example of application of 2D convolution is shown.
By setting the kernel size smaller than the input, two main advantages are

obtained. The first advantage is that, with respect to traditional neural network,
less computation is performed. Suppose that we have 5×5 input features and a 3×3
output features. In a standard fully connected network, we will have a matrix of
weights of 25×9 = 225 parameters. With the convolution operation, and considering
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Figure 3.15. An Example of 2D convolution. The output is restricted to only positions
where the kernel is completely within the image.

only ’valid’ kernels (i.e, the kernel lie entirely within the image), only 9 parameters
are computed. In Figure 3.16 and Figure 3.17, respectively, examples of weights
computation in a standard fully connected network and with convolution are shown.
The second advantage is that since fewer parameters are stored, we have a reduction
in memory requirements of the model and an improvement in its statistical efficiency.
Moreover, by setting the kernel size smaller than the input, when an image is
processed it is possible to detect small but meaningful features, such as edges, lines,
circles, etc.

Pooling As result of the first stage, we obtain a set of linear activations. In the
second step, these linear activation are used as input for a non-linear activation

...

...

I1

I2

I3

Im

O1

On

Figure 3.16. Example of input/output connection in a standard fully connected network.
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Figure 3.17. Example of matrix weight obtained with the convolution operation.

Figure 3.18. Example of max pooling.

function such as Rectified Linear Units (ReLU). In the last step, the output of the
layer if further modified through a pooling function. A pooling function replaces the
output at a certain location by considering the value of the neighbourhood outputs.
For example, the max pooling operation [118] provide the maximum output within a
rectangular neighbourhood. Other used functions include the average, the L2 norm,
or a weighted average based on the distance from the central pixel. In Figure 3.18,
an example of max pooling is shown.

Independently from the chosen function, the pooling is used to make the feature
representation invariant to small translations of the input. This is a useful property,
since if the input is translated by a small amount, most of the values obtained from
the pooling do not change. If pooling over spatial region produces invariance to
translation, pooling over the outputs of separately parametrized convolutions makes
the features to learn which transformation to become invariant. In Figure 3.19, an
example of pooling allowing learning the rotation transformation is shown.

Since pooling summarizes the output of a neighbourhood, in a CNN it is possible
to use fewer pooling units than activation functions. Moreover, pooling is essential
in for handling input varying in size.

3.3.1 Deep Models for Object Detection

In this section, the models of deep object detection on which we based our improved
network are reported. One of the first deep neural network model for object detection
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Figure 3.19. Example of pooling allowing learning rotation.
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Figure 3.20. Architecture of R-CNN.

is the Regional Convolutional Neural Network (R-CNN) [36]. The network takes as
input an image, and provide as output a set of bounding boxes together with the
corresponding labels of the objects contained within them. The bounding boxes,
or region proposal, is performed by using a method called Selective Search [98],
allowing to generate about 2000 regions within the input image. At a high level,
Selective Search looks at the image through windows of different sizes, and for each
size tries to group together adjacent pixels by texture, colour, or intensity to identify
objects. Once the proposals are generated, R-CNN warps the region to a square of
standard size, and passes it to a modified version of AlexNet [52] to compute CNN
features. On the final layer, a SVM is used to perform classification, and a simple
linear regression is used to generate tighter bounding boxes. In Figure 3.20, the
steps performed by R-CNN are shown.

Since the R-CNN requires a forward pass of the CNN for every region proposed,
it is very slow in detection (about 50 seconds). Moreover, it is hard to train since the
CNN, the classifier, and the regression model have to be trained separately. Both
these problems have been solved with the improvement of R-CNN, namely Fast
R-CNN [35]. The first improvement consists in using a ROI pooling algorithm. The
latter allows to share the forward pass of a CNN across the subregions of the input
image. In this way, the CNN features are obtained for each region by selecting a
corresponding region from the CNN feature map. This takes only one forward pass
instead one for each region proposal. The second improvement consists in combining
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Figure 3.21. Fast R-CNN architecture. With respect to R-CNN, in this model the CNN,
the classifier, and the linear regression are merged into one single model.
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Figure 3.22. Faster R-CNN model architecture. As it is possible to see, the extracted
CNN features are used both for region proposal and for classification.

all models into one single network. In Figure 3.21, the Fast R-CNN architecture is
shown. In detail, the SVM classifier has been replaced with a softmax layer on top
of the CNN, and a linear regression layer has been added in parallel to the softmax
layer to output bounding box coordinates.

With the Fast R-CNN, the detection time drastically reduced from about 50
seconds to about 2 seconds. Despite this, the region proposal still remains a
bottleneck. This is due to Selective Search algorithm, which is a fairly slow process.
A solution is proposed in [79] with a network called Faster R-CNN, in which a
cost-free region proposal algorithm is defined. In this model, the CNN features are
used both for classification and region proposal, allowing to train only one CNN.
In detail, a Region Proposal Network (RPN) is used, as shown in Figure 3.22. The
RPN is implemented as a fully convolutional network within a convolutional layer,
and it works by passing a sliding window over the CNN feature map and at each
window, outputting k potential bounding boxes and scores for how good each of
those boxes is expected to be. The k bounding boxes are generated by considering
common aspect ratios. For instance, a vertical rectangular box may contain a person,
while a horizontal rectangular box may contain a car. These are called the anchor
boxes, and for each such anchor box one bounding box and score per position in the



3.3 Object Detection 45

car : 1.000

dog : 0.997

person : 0.992

person : 0.979

horse : 0.993

conv feature map

intermediate layer

256-d

2k scores 4k coordinates

sliding window

reg layercls layer

k anchor boxes

bus : 0.996

person : 0.736

boat : 0.970

person : 0.989

person : 0.983
person : 0.983

person : 0.925

cat : 0.982

dog : 0.994

Figure 3.23. Representation of the usage of RPN. The RPN generates the anchor boxes,
which are used to detect objects within the image.
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Figure 3.24. SSD model architecture. As it is possible to see, it does not have a network
specifically designed for region proposal, but additional convolutional filters are used.

image are given as output. In Figure 3.23, the generation of anchor boxes through
RPN is shown.

The last model is the Single Shot Multibox Detector (SSD) [60]. The SSD
composes of two parts. The first is responsible of extracting the feature map, while
the second applies convolution filters to detect the objects. For the feature map
extraction, the VGG16 [86] deep neural network is used. From this network, the fully
connected layer is removed and extra convolutional layer are added to perform the
detection. In detail, after extracting the feature maps, SSD applies 3 × 3 convolution
filters for each cell to make predictions. To detect objects independently, several
convolutional layers are used (multi-scale feature maps). In Figure 3.24, the model
architecture is shown.

Despite the SSD achieves better results in detection, it may be not easy to further
improve it. Hence, by following the example given by Fast and Faster R-CNN, we
improved the RPN of the latter, as explained in the next section.

3.3.2 Proposed Faster R-CNN Improvement

As seen, the Faster R-CNN is composed by two networks: a CNN, used for the
classification task, and a RPN, used to generate the regions. By studying in depth
the Faster R-CNN, we found that it is possible to drastically improve its performance.
In detail, we have chosen as a CNN a 50-layers ResNet [41], due to its results in
the ImageNet 2015 competition. Concerning the RPN, the proposed optimization



3.3 Object Detection 46

1x1 convolutions

3x3 convolutions 5x5 convolutions

Filter 
concatenation

Previous layer

3x3 max pooling1x1 convolutions 1x1 convolutions

1x1 convolutions

Figure 3.25. Inception module used in the RPN.

consists in creating and extended RPN, replacing the network of the classic RPN
with an Inception deep network [91]. This allows achieving better results in detection,
in reduction of the number of regions generated during the region extraction step,
and in a speed up during the test stage. In Figure 3.25, the Inception module used
in the extended RPN is shown. In Figure 3.26, instead, the proposed RPN is shown.
The structure of this network consists of 9 stacked inception modules, which takes
as input the features extracted with the CNN and its output is connected to the
classification and regression layers. As it is possible to see, the resampling layers
are missing. This is due to the fact that the original Inception model takes as input
images at full size, while our Inception network works with the features provided by
the CNN.

Concerning the number of parameters, since the classic RPN is implemented as a
single convolutional layer, we have that the number of parameters is ker2× |filters|,
where ker2 is the size of the kernel and |filters| is the number of applied filters. For
simplicity, in this computation the bias values and the parameters computing in the
backward steps are removed. In the extended RPN, the number of parameters is
obviously higher due to the several stacked inception modules. In Table 3.2, the
number of filters and the kernel size of each layer is reported.
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Table 3.2. Parameters used in the proposed extended RPN newtork.

Layer No. of Filters Kernel Size No. of Parameters
Layer 1
Branch1x1 64 1 64
Branch3x3 96 3 864
Branch5x5 64 5 1600
Layer 2
Branch1x1 64 1 64
Branch3x3 96 3 864
Branch5x5 64 5 1600
Layer 3
Branch1x1 64 1 64
Branch3x3 96 3 864
Branch5x5 64 5 1600

Branch_pool
Layer 4
Branch1x1 192 1 192

Branch7x7_1 192 7 9408
Branch7x7_2 192 7 9408
Layer 5
Branch1x1 192 1 192

Branch7x7_1 192 7 9408
Branch7x7_2 192 7 9408
Layer 6
Branch1x1 1 192

Branch7x7_1 192 7 9408
Branch7x7_2 192 7 9408
Layer 7
Branch1x1 192 1 192

Branch7x7_1 192 7 9408
Branch7x7_2 192 7 9408
Layer 8
Branch1x1 320 1 320

Branch3x3_1 384 3 3456
Branch3x3_2 384 3 3456
Branch3x3_3 384 3 3456
Branch3x3_4 384 3 3456
Layer 9
Branch1x1 320 1 320

Branch3x3_1 384 3 3456
Branch3x3_2 384 3 3456
Branch3x3_3 384 3 3456
Branch3x3_4 384 3 3456



49

Chapter 4

Experimental Results

In this chapter, the experiments performed with the proposed system are presented
and discussed. The experiments are performed both on the proposed dataset (i.e., the
UMCD) and public datasets: the NPU Drone-Map Dataset [17], and the Okutama
Action [7]. The NPU Drone-Map Dataset is used for testing the mosaicking algorithm
at very hight altitudes (i.e., up to 300 metres), while the Okutama Action has been
used to test further the capability of the proposed deep learning model to detect
pedestrians within the scene.

4.1 Mosaicking Experiments
For testing the mosaicking algorithm, two recent public datasets were used. The first
is the UMCD dataset, presented in Section 2. The second is the NPU Drone-Map
dataset, that contains a collection of aerial video sequences acquired at high-altitude.
In both cases, the sequences are acquired by small-scale UAVs. Regarding the first
dataset, we tested the algorithm on 40 challenging video sequences and measured
the quality of the obtained mosaics by a simple metric based on the difference
between image regions. Regarding the second dataset, we compared the proposed
mosaicking algorithm with that presented in [17]. The latter is one of the few works
in the literature that makes available source code, video sequences (i.e., the NPU
Drone-Map dataset), and obtained mosaics to support a concrete comparison with
other approaches. In particular, 4 challenging video sequences were selected from
the second dataset and a correlation measure was adopted to quantify the similarity
between mosaics pairs.

4.1.1 Low-Altitude and High-Altitude Mosaicking

In this sub-section, key considerations about the quality of the obtained mosaics are
reported and discussed. Regarding the low-altitude, the adopted 40 video sequences
had an average acquisition height of about 15 meters. In 4.1a an example is shown.
In order to measure the quality of the mosaics derived by these video sequences the
image difference process presented in [6] is adopted. The main idea is that each part
of the mosaic must have the same spatial and colour resolution with respect to the
original frames that have generated it. For this reason, the difference between each
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(a) (b)

Figure 4.1. Mosaicking experimental results: (a) example of mosaic at low-altitude. The
three miniatures are the frame extracted from the mosaic (up), one of the original
frames used to build the mosaic (middle), the difference between the overlapped regions
(bottom), (b) examples of mosaics at high-altitude by the proposed method (up), the
method proposed in [17] (bottom).

portion of the mosaic and the linked original frames is computed. Subsequently, a
simple histogram is calculated on each image difference to evaluate the degree of
deviation. Anyway, this simple but effective process has shown that each part of
the mosaic generated by the proposed method is quite similar to the linked frames.
On average, the difference images shown a deviation of about 15%. This can be
considered a real good result taking into account all the geometrical distortion and
error propagations that occur during the complex mosaicking process. Moreover,
it should be considered that the incremental real-time mosaicking process at low-
altitude is a topic that needs to be further investigated. By the implemented UMCD
dataset and the provided results, the aim is to provide a concrete first contribute
for the comparison of these algorithms. In 4.1b, examples of high-altitude mosaics
are shown. In particular, the mosaic on the top of the 4.1b is generated with the
proposed approach, while the mosaic on the bottom is generated with the method
proposed in [17]. Both mosaics were created by using the same video sequence
contained in the NPU Drone-Map dataset (named: phantom3-centralPark). How it
is possible to observe, some visual differences are present. This is due to the fact
that the proposed method applies only basic transformations, such as translation,
rotation, and scale change, while the method with which we compare performs the
orthorectification of the frames. Despite this, the degree of correlation between
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Table 4.1. Time needed for generating the mosaics. The unit is in minutes.

Sequence Frames KFs Proposed Bu et al. [17] Pix4D Photoscan
phantom3-npu 19,983 457 7.2 9.32 140.08 538.38

phantom3-centralPark 12,744 471 6.01 8.49 127.73 563.57
phantom3-village 16,969 406 10.4 11.31 132.07 360.70
phantom3-huangqi 14,776 393 8 10.36 102.83 462.32

the two types of mosaic is impressive. To verify the similarity between them the
following metric was adopted:

corr =
∑

m

∑
n(Amn − Ā)(Bmn − B̄)√

(
∑

m

∑
n(Amn − Ā)2)

∑
m

∑
n(Bmn − B̄2)

(4.1)

where A, B are the two mosaics, and Ā, B̄ are the means of the mosaics pixels.
On average, considering all the 4 video sequences reported in 4.1, we obtained a
correlation value of about 80% among the mosaics. It should be considered that due
to the different image processing, such as geometric transformation, orthorectification,
stitching, and so on, it is not possible to obtain a perfect overlap between the mosaics.
In particular, the different perspectives of the obtained mosaics are seen as significant
differences by the metric. In any case, the degree of correlation can be considered a
very high value.

Since the low altitude mosaics are the most challenging to be performed, we are
going to focus on them. As shown in Figure 4.2, countryside and dirt environments
are the less challenging in low altitude flights. This is due to the fact that within
the acquired environment there are no elements having a relevant height. This
means that the parallax error is strongly reduced or even absent. Moreover, in these
environments it is possible to obtain good results also with the camera having an
angle of 45 degree with respect to the ground. In Figure 4.2(c), an example of mosaic
generated with this kind of acquisition is shown. Regarding the urban mosaics, some
examples are shown in Figure 4.3. As it is possible to observe, some artifacts in the
final mosaics are present. This is mainly due to two factors. The first factor, that
concerns the mosaics shown in Figure 4.3(a) and Figure 4.3(b), is the presence of
elements with relevant height, which influences the mosaic generation through the
parallax effect. Concerning the mosaic in Figure 4.3(c), the artifacts are present due
to the very low flight altitude.

4.1.2 Mosaicking Performance

In this sub-section, the performance of the proposed method is presented. All the
experiments were performed on a laptop equipped with an Intel i7 6700HQ CPU, 16
GB DDR3 RAM and a nVidia GTX960 GPU. In 4.1, the time needed for generating
the mosaics is reported. More specifically, we compared the proposed method
with the algorithm reported in [17] and with two commercial software, Pix4D1 and
Photoscan2, also reported in the same work. The proposed method stitches 1 frame

1https://pix4d.com/
2http://www.agisoft.com/
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(a) (b)

(c) (d)

Figure 4.2. Examples mosaics of dirt and countryside environments acquired at very low
altitudes.

per second, while the method proposed in [17] requires the stitching of 10 frames per
second. Both Pix4D and Photoscan, instead, use only the keyframes to produce the
final mosaic (i.e., similar to the proposed algorithm). Since all methods, with the
exception of that proposed, use the GPU, a resize to the half of HD resolution (i.e.,
the original size of the frames) to be stitched is performed. In 4.1, the comparison is
shown. As it is possible to observe, both the proposed and [17] algorithms take much
less time than the commercial software. The proposed method show low processing
times even with respect to the work proposed [17] and the generated mosaics by
the two approaches result quite similar. Anyway, we are currently developing an
approach to perform the orthorectification frame by frame.

4.2 Change Detection Experiments
In this section, experiments performed on the change detection module are shown.
Concerning the used algorithms parameters, in Table 4.2 our settings are reported.

If the parameters values are chosen too small, there could be a high number
of false positive. Instead, big values could remove some important details, such as
parts of the change that we want to detect. In the experiments, are set in order to
always detect a change at the expenses of the precision.

4.2.1 Detection Results

As metrics for measuring the detected changes, we used the Precision (P), Recall
(R), Accuracy (A), and F1-Score (F1). In our tests, we assume that the Query and
the Test images are already aligned with both GPS and features methods. The tests
have been performed on 13871 images (i.e., the frames of the UMCD dataset videos),
and in Table 4.3 the number of true/false positives and negatives are shown.
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(a)

(b)

(c)

Figure 4.3. Examples mosaics of urban environment acquired at very low altitudes.

Table 4.2. Parameters settings used in the experiments.

Parameter Value
Wa 10x10
Wl 15x15
Tgray 40
TH 0.3
Wi 37x37
Tiso 0.25
Tarea 0.000648
TB 0.3
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As it is possible to see, the system has a good detection rate and a low number
of false detection, due to the several operator used in the pipeline. In Figure 4.4, an
example of false positive is shown. The false detection has occurred since the object
has been acquired with different perspectives, and this is due to the object dimensions.
In detail, when an object is particularly small, the UAV acquires only one face of
the object (i.e., the top). This is not true in our case, where the low-altitude makes
the object not small enough, so more than one face are acquired.

(a) (b)

Figure 4.4. Example of false positive due to the different perspectives of the object within
the red square in image (a) and (b).

In order to provide a general comparison result, in Table 4.5 per-pixel comparison
with the state-of-the-art works are reported. In Table 4.4, the Precision, Recall,

Table 4.3. Number of true/false positives and negatives obtained during the experiments.

Parameter Value
FP 884
FN 41
TP 3167
TN 9779

Accuracy and F1-Score values obtained are shown. As expected, the precision value

Table 4.4. Precision, Recall, Accuracy and F1-Score values obtained with the proposed
system.

Metrics Value
Precision 78.18%
Recall 98.72%

Accuracy 93.33%
F1 87.26%
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Table 4.5. Per-pixel comparison with the state-of-the-art.

Change Detection System Precision Recall Accuracy F1
B. Wang et al. [100] 48% 76% 91.27% -
Q. Wang et al. [103] 83.66% - - -

Proposed 67.15% 95.88% 99.54% 78.98%

per-pixel is not high (i.e., 67.15%). This is due to the fact that,as mentioned before,
the system aims to detect the whole change to provide a reliable input to more
complex algorithms such as classification ones, so a higher accuracy value is preferable.
In Figure 4.5, some examples of changes detected in different environments are shown.

4.2.2 Performance Evaluation

The change detection module has been implemented for supporting both single
and multi thread execution. This twofold implementation allowed to simulate the
behaviour of the pipeline on an embedded system, since most of the small-scale UAV
have a CPU computational power amenable to a single thread desktop CPU. In detail,
the multithreaded steps are the micro-differences removal, the image difference and
the noise removal from the binary mask. In average, for a single change detection we
obtained an execution time of 0.47 seconds in multithread implementation and 2.883
seconds in single thread implementation. With these performances, this system can
be used for real-time applications in both embedded and desktop-based systems.

4.3 Object Detection Experiments
This section presents the experiments performed with the object detection module.
For these tests, both the UMCD and the Okutama Action dataset are used. In detail,
the UMCD has been used for the tests performed in Mode 1, while the Okutama
Action has been used for the tests performed in mode 2. The training of the extended
Faster R-CNN is performed in 4 steps:

1. In the first step, the RPN is trained as a normal CNN. For the error backprop-
agation, the Stochastic Gradient Descend (SGD) is used, while the learning
rate and momentum values are, respectively, 0, 0001 and 0.9;

2. In the second step, the CNN is trained. In order to speed up the training, the
transfer learning technique is used. The weights are initiated with the ones of
a model pre-trained on the ImageNet dataset;

3. In the third step, the RPN weights are refined by using the CNN ones. This is
achieved through the RPN and CNN shared layers;

4. In the final step, the CNN weights are further refined through the shared layers.
This step has been performed for 2000 epochs.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.5. Comparison between a, b c, d) parts of mosaic without elements, and e), f),
g), h) with elements detected.
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Concerning the model evaluation, two metrics are used: the loss function and
the Mean Average Precision (mAP). Regarding the loss function, it is computed
on both CNN and RPN network. For the CNN, the loss refers to the classification
level, while for the RPN it refers to the bounding box regression. For the CNN, the
used loss function is the multi-task loss [79], defined as the sum of the classification
loss Lcls and the regression loss Lreg. The first is given by the logarithmic loss
between two classes, while the latter is given by the L1 smooth function [45]. After
a normalization step, the two functions are sum together as follows:

L ({pi} , {ti}) = 1
Ncls

∑
i

Lcls(pi, p
∗
i ) + λ

Nreg

∑
i

p∗iLreg(ti, t∗i ) (4.2)

In the previous equation, pi indicates the anchor box probability of containing
an object, pi∗ it ground truth and it can assume the value 0, i.e. if it contains no
objects, or 1, i.e. if it contains an object. Instead, ti is a vector containing the
anchor box coordinates, while ti∗ is its ground truth. Notice that, the loss function
for the regression layer will activate only for positive anchor boxes.

For the RPN, to know if an anchor box contains an object a binary class to
each of them is assigned. To do this, it is possible to proceed in two ways: the first
is to evaluate the Intersection-over-Union (IoU) between the anchor box and the
ground-truth-box, and choose the one with the highest value; the second is to take
all the anchor boxes with IoU greater than 0.7 compared to each ground-truth-box.
In our tests, we have chosen the second way.

Regarding the mAP, it is defined as the Average Precision (AP) function over
the number of classes. The AP is defined as:

AP = TP

(TP + FP ) (4.3)

where TP and FP are the same defined in the change detection module. So, the
mAP is the sum of the AP for each class divided by the total number of classes C.
Formally:

mAP =
∑C

i=1AP (i)
C

(4.4)

For the UMCD dataset, the number of classes is 3, namely person, car, and box,
while for the Okutama Action we have the single class person. The comparisons
have been performed between the standard Faster R-CNN and our extended model.
For each dataset, both the networks have been trained with the same number of
epochs and the same input.

Regarding the Okutama Action dataset, it is composed by 54065 labelled frames.
For the training, 45092 frames have been used (i.e., around 90% of the total number
of frames), while for the test 8973 frames (i.e., around the 10% of the total number
of frames) have been used. Concerning the UMCD, 4088 frames are extracted, and
3270 used for training the models (i.e., around the 80%), while 818 (i.e., around
20%) are used for testing. As it is possible to observe, for the Okutama Action a
greater number of frames has been used for the training. This is due to the fact that
the people within it are acquired from different angles, making more challenging the
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Table 4.6. mAP values obtained with the two models on both testing datasets.

Model Okutama Action mAP UMCD mAP
Standard Faster R-CNN 69.3004% 95.5187%
Extended Faster R-CNN 76.8859% 99.8762%

(a) (b)

(c) (d)

Figure 4.6. Examples of detections performed in a) dirt, b) countryside and c,d) urban
environments with the proposed extended Faster R-CNN.

pedestrian detection. In Table 4.6, the mAPs obtained with both the models on both
datasets are reported. As it is possible to see, our model clearly outperforms the
standard Faster R-CNN model, achieving better mAP in the performed experiments.

In Figure 4.6, some detection examples of different elements in different environ-
ments are reported.
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Chapter 5

Conclusion

The following section concludes this thesis work by first resuming the contribution to
the state-of-the-art, and then by showing the limitations of the proposed algorithms.

5.1 Contribution
Nowadays, small scale UAVs are widely used in several areas, such as border control,
pipeline inspection, precision agriculture, and more. This thesis work presents a
twofold UAV system that works in two modes. In the first mode, the UAV first
performs a flight over an area of interest and sends video and GPS coordinate to the
ground station, which builds a geo-referenced mosaic. Then, with a second flight over
the same area, the UAV perform a change detection between the images acquired
in real-time and the previous generated mosaic. In both mosaicking and change
detection processes, the object found within the area are classified, allowing the
system to know whether and where an object is appeared or disappeared within the
environment. In the Mode 2, the UAV flights over an area of interest and classifies
the objects present in it. While the Mode 1 is useful for long term monitoring, Mode
2 can be exploited for real-time critical tasks.

In this work, several contributions are introduced. Since the aim of the proposed
system is to perform mosaicking, change detection, and object detection at very
low altitudes (i.e., below 100 meters), the first contribution concerns the creation of
aerial images acquired at these altitudes. The dataset is created by acquiring several
types of terrain, i.e. dirt, countryside, and urban, at different altitudes by using
different UAVs. This provides heterogeneity among the several videos, making the
mosaicking process challenging. Moreover, the acquired areas are acquired twice. In
the second acquisitions, elements such as persons, objects, and cars, are placed on
the ground, allowing to perform change detection and object detection.

The second contribution regards the mosaicking module. In detail, different
improvements have been made on the standard pipeline. The first improvement
concerns the altitude estimation and the selection of the frames needed for the
mosaic construction. These are performed automatically by considering parameters
such as camera specifications, flight height, and flight speed of the UAV. The
second improvement regards the feature extraction. This is performed by using
A-KAZE feature extractor, which at low altitudes performs better than the classical
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SIFT, SURF, and ORB algorithms. The last improvement concerns the frame
transformation. Usually, in mosaicking literature the homography transformation
is used. In the proposed mosaicking module, the similarity transformation is used.
Since the latter has less degree of freedom with respect to the homography, it limits
the transformations that can be applied to an image thus reducing errors in image
stitching.

Concerning change detection module, an ad-hoc pipeline for detecting changes
at low altitudes is provided. The pipeline exploits algorithms such as histogram
equalization, RGB-LBP, and histogram comparison for robustly detecting changes.
Several pre and post-processing operation are designed to reduce at minimum the
number of false changes within the analysed images.

The last contribution involves the object detection module. In this work, an
improved Faster R-CNN architecture is provided. In detail, the RPN of the standard
Faster R-CNN has been substituted with an Inception network. This allows to
drastically improve the performance on both bounding box generation and mAP.

Finally, the reproducibility of the results is discussed. The presented system has
been implemented with open source frameworks, such as OpenCV 1. By following
step-by-step the algorithms proposed in this thesis, and together with the reported
parameters, the obtained results can be easily reproduced.

5.2 Limitations
Although the proposed algorithms act well on most situations, they have some
limitations.

Concerning the mosaicking module, there are mainly two limitations. The first
is the problem concerning homogeneous texture of the area of interest. During the
feature matching, if the acquired parts of the area have very similar appearance, the
algorithm will mismatch the features. A classic example is the mosaic of the sea, in
which the water has a very similar pattern in different frames. The second limitation
is that the module does not perform orthorectification. This means that, if within
the scene high elements such as trees, building, street lamps, are present, the mosaic
will present some visual artifacts. This is due to the fact that, if an object is seen
from different views, e.g., the facades of a building, the extracted features will be
different for each facade, leading to a feature mismatch and to a bad frame stitching.

Regarding the change detection, the main limitation is the choice of the parame-
ters. The tuning of the latter is very important, since a wrong parameter tuning will
lead to false negatives of false positives changes. In detail, the several thresholds
and kernel sizes must be chosen with respect to the light, terrain, environment,
flight height, wind, and so on. This means that, for a real application, a small
configuration step of the algorithms should be performed.

Considering the object detection module, the limitation is the quantity of data
used for training the model. Usually, deep learning models are trained on thousand
of images and object instances, and hundreds of classes. Unfortunately, the dataset
introduced in this thesis work does not have these characteristics yet. This is due to
the fact that presented dataset is a first step in providing reliable UAV imagery for

1https://opencv.org/
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testing the set of algorithms presented in this work. Moreover, in our knowledge,
from the time of its creation until now it is the only dataset providing images for
mosaicking, change detection, and object detection from UAV at low altitudes.
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