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Abstract

Over the last decades, many efforts were devoted to develop efficient and accurate

numerical procedures for the assessment of the structural capacity of masonry

constructions. The main difficulties in modeling this type of material are due

to its heterogeneous nature. Indeed, masonry is composed by blocks, stones or

bricks, connected with or without mortar, whose geometry, mechanical proper-

ties and arrangement strongly affect the overall response. Among the available

modeling strategies, finite element models appear to be suitable tools to describe

the evolution of the nonlinear mechanisms developing in the material under typ-

ical loading conditions. Within this framework, macromechanical models, which

consider masonry as an equivalent homogeneous, isotropic or anisotropic medium,

are a fair compromise between accuracy and computational burden.

Stemming on the above considerations, this work focuses on the development

of constitutive laws involving damage and plasticity inner variables, tailored to

the macromechanical analysis of 2D masonry structures. Herein, a new isotropic

damage-plastic model, which is an enhanced version of that presented by Addessi

et al. (2002), is proposed. This model is able to capture the degrading mechanisms

due to propagation of microcracks and accumulation of irreversible strains, as well

as the stiffness recovery related to cracks re-closure. Moreover, to account for the

variation of the mechanical properties in the different material directions, a novel

orthotropic damage model is developed to deal with regular masonry textures.

The proposed models are implemented in finite element procedures, where the

mesh-dependency problem is efficiently overcome by adopting nonlocal integral

formulations. Numerical applications are performed to assess the models capac-

ity of describing the material inelastic behavior and comparisons of numerically



and experimentally evaluated responses are also provided for some masonry pan-

els. Finally, the effects of degrading mechanisms on masonry dynamic behavior

are investigated. For this purpose a systematic approach is adopted, based on

the evaluation of the frequency response curves of masonry walls. The obtained

curves show peculiar characteristics due to the irreversible effect of damage, which

leads to degradation of the structural mechanical properties and the related vari-

ation of the natural frequencies, which in turn significantly influence the dynamic

amplification of the response. The numerical results are also confirmed by shaking

table tests performed on tuff masonry walls loaded out-of-plane.
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Chapter 1

Introduction

1.1 Motivations and objectives

In many countries, masonry structures are a significant part of historical and

architectural heritage. This is to due the several advantages that the material

offers, such as economy, high fire resistance and recyclability. However, as known,

a complex mechanical response emerges due to the heterogeneous nature of the

material, composed of units, stones or bricks, connected with o without mortar,

whose geometry, mechanical properties and arrangement strongly affect the overall

response. A large variety of textures can be found for both stone and brick

masonry walls. Based on the stones arrangement in the construction and degree

of refinement in the surface finish, stone masonry can be broadly classified in

two categories: Rubble or Ashlar masonry. The former is obtained by adding

undressed or roughly dressed stones in the mortar, the last is built from accurately

dressed stones with uniform and fine joints, as shown in Figures 1.1(a-c).

(a) Rubble (b) Ashlar (c) Coursed ashlar

Figure 1.1: Stone masonry textures.
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Several types of brick masonry can also be found, depending on the stretchers

(bricks laid flat with the long face parallel to the wall) and headers (bricks laid

flat with their width at the face of the wall) arrangement. Figures 1.2(a-d) show

some examples of the most widespread textures: running, flemish, english and

header bond texture, respectively.

(a) Running bond (b) Flemish bond

(c) English bond (d) Header bond

Figure 1.2: Brick masonry textures.

Despite different behavior can occur depending on the adopted masonry ty-

pology, some recurrent features can be identified. During the deformation process

under typical loading conditions, complex nonlinear mechanisms start and evolve,

making masonry global response strongly nonlinear, non-symmetric, with the pos-

sible presence of strain-softening branches. Irreversible strains develop mainly due

to the activation of friction mechanisms at interface between mortar and units

and, due to the components brittle nature, microvoids and microcracks appear

and propagate in the mortar joints, in the bricks and at the interfaces, leading to

formation of macro-fractures and, eventually, to masonry collapse. Furthermore,
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in cases of regular texture, as those sketched in Figure 1.2, mortar joints act as

plane of weakness and, consequently, directional mechanical properties emerge

with strongly anisotropic responses.

At structural level, masonry buildings exhibit good resistance to vertical loads,

while they perform badly against horizontal actions. This is testified by their high

seismic vulnerability, mainly due to the low material tensile strength and often

inadequate structural configurations. Figures 1.3(a-c) show the main collapse

mechanisms identified on the basis of earthquake’s effects on masonry structures,

namely crumbling, out-of-plane and in-plane failures. When proper masonry tex-

tures are adopted, thus preventing the crumbling phenomenon, it was widely

assessed that out-of-plane collapse mechanisms are the most frequent. The walls

loaded normally to their plane undergo flexure and, when internal stresses exceed

the material strength, crack patterns develop with directions depending on the

edge restraint positions. In fact, boundary conditions are a relevant point, as the

response can involve one-way bending or two-way bending, as depicted in Figures

1.4(a-b) and (c), respectively.

(a) Masonry crumbling (b) Out-of-plane failure (c) In-plane failure

Figure 1.3: Failure mechanisms of masonry structures.

Experimental tests on uncracked masonry panels loaded out-of-plane (Griffith

et al., 2004, 2007) carried out a typical load-displacement curve. This results

characterized by an initially linear elastic branch until tensile strength is reached,

followed by a nonlinear phase, where cracks start and evolve. With increasing

deformation the wall becomes fully cracked and, under cyclic loadings, behaves as

a rocking block. Figures 1.5(a) and (b) compare the load-displacement curves of
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crackingsupport edge

(a) (b) (c)

Figure 1.4: Typical out-of-plane failure cracking: (a) and (b) vertically spanning
one-way walls and (c) two-way spanning walls.

simply supported ‘uncracked’ and ‘precracked’ one-way vertically spanning walls

experimentally obtained by Griffith et al. (2004). Here, the benefit of the mate-

rial tensile strength can be noted, as the maximum force of the uncracked panel is

much higher than that of the corresponding cracked wall. Traditional force-based

approach relates the seismic resistance of fully cracked walls to the maximum

force at the threshold of overturning, determined from simple equilibrium con-

ditions. In contrast, recent research showed that dynamically loaded walls can

sustain accelerations higher of their ‘quasi-static’ resistance, thus leading to the

development of displacement-based methods, which define the seismic resistance

of the walls on the basis of the maximum sustainable displacement. However, as

underlined by Abrams et al. (2017), response to out-of-plane actions is affected by

many factors: the level of the axial forces, size and position of openings, quality of

connections between the structural elements and, also, by the in-plane damage of

the adjacent walls. In-plane failure can involve sliding of mortar joints, diagonal

cracking bands or damaged zones located at the corners of the panels, depending

on geometry, loading and boundary conditions (Anthoine et al., 1995; Frumento

et al., 2009). Typically, flexural responses (Figure 1.6(a)) lead to cyclic load-

displacement curves resulting in ‘S-shape’ cycles, as the response is controlled by

opening and subsequent re-closure, under load reversal, of the tensile crack at the

ends of the panels. On the contrary, shear failure (Figure 1.6(b)) is associated

with a more brittle behavior usually due to the formation of diagonal damaged

zones in the central part of the walls.
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Figure 1.5: Griffith et al. (2004): pushover curves of (a) uncracked and (b) pre-
cracked walls loaded out-of-plane (adapted by Minga et al., 2018).
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Figure 1.6: Frumento et al. (2009): in-plane response of double-fixed masonry
walls undergoing (a) flexural and (b) shear failure modes.
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On the basis of the activated failure modes, different strength-stiffness decay

and hysteretic dissipation characteristics emerge. These translate in very com-

plex dynamic responses, as the evolution of degrading mechanisms modify the

dynamic structural properties. In fact, as extensively employed to damage identi-

fication and structural health monitoring, onset and propagation of damage leads

to degradation of the structural mechanical properties and the related variation of

the natural frequencies, which in turn significantly affect the resonant conditions

(Toti et al., 2015). Thus, in last decades, many efforts were devoted to understand

and predict the complex behavior of masonry in the dynamic field. In particular,

shaking table tests (Benedetti et al., 1998; AlShawa et al., 2012; Candeias et al.,

2017) on scaled or full-scale prototypes were performed with the aim of assessing

structural performances under both seismic actions and harmonic excitations.

To now, many methods and computational tools were proposed to deal with

the problem of assessing structural capacity of masonry constructions (see Chapter

3). The choice of the adopted methodology depends on several factors: searched

information, computational cost and available input data, just to cite some. Thus,

the identification of a unique model with general validity represents a hard, per-

haps unrealistic, task. Among the others, finite element approaches appear as at-

tractive tools to describe evolution of nonlinear mechanisms evolving in masonry

material. In particular, models based on Damage Mechanics allow to describe

the degrading effects by making use of the consolidate principles of Continuum

Mechanics. These, differently from models based on Fracture Mechanics Theory,

do not represent the cracks as embedded in the material, but take into account

the degradation phenomena by means of nonlinear constitutive laws involving

damage inner variables. Usually, damage models are combined with plasticity

formulations, with the purpose to introduce also the effects of irreversible strains

and, thus, provide a more realistic description of the material mechanical response

in terms of hysteretic dissipation properties.

The aim of this study relies on the above considerations, as it is focused on the

modeling and analysis of the effects of degrading mechanisms on the mechanical

response of statically and dynamically loaded masonry walls. The main objectives

can be summarized as follows:
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� Development of suitable constitutive laws involving damage and plasticity

inner variables to account for strength and stiffness degradation and hys-

teretic dissipation typically characterizing masonry response. Based on a

macromechanical description of the material, an isotropic damage-plastic

model and an orthotropic damage model are proposed to numerically de-

scribe behavior of various masonry typologies;

� Implementation of the proposed models into efficient finite element proce-

dures able to avoid the well-known mesh-dependency drawback emerging in

cases of strain-softening behavior;

� Analysis of the effects of nonlinear mechanisms on the static and dynamic

response of masonry structural elements. Particular attention is devoted

to the dynamic characterization of masonry walls by framing dependency

of their response on the main properties of the loading history, such as

frequency and amplitude.

1.2 Organization of the thesis

The thesis is organized as follows:

� Chapter 2 offers on overview of experimental tests performed on masonry

and its constituent materials with the aim of identifying recurrent features

of the mechanical response.

� Chapter 3 describes the available modeling strategies for masonry structures,

with particular emphasis to the finite element (FE) approach.

� Chapter 4 presents a new isotropic damage-plastic model for the macrome-

chanical analysis of 2D masonry structures. First, the constitutive relation-

ship and the computation aspects related to the finite element implementa-

tion are illustrated. Then, comparison between numerical and experimental

outcomes are provided for some masonry panels with the aim of validating

the proposed model.
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� Chapter 5 proposes a modified version of the damage model presented in

Chapter 4 with the purpose to account for the anisotropic response of the

material. Thus, an orthotropic description of the elastic and inelastic be-

havior is introduced. Validation examples are presented, which are chosen

to evaluate the model capability to describe the substantial discrepancies

among phenomenological properties observed in different material direc-

tions.

� Chapter 6 moves towards exploration of dynamic response of masonry walls.

The effects of nonlinear phenomena, such as damage and plasticity, on the

dynamic amplification of the response are analyzed by using a systematic

approach based on evaluation of frequency response curves (FRCs). Fur-

thermore, shaking table tests performed on tuff masonry walls are described

and the experimental outcomes are compared with the numerical results.

� Chapter 7 summarizes the main contributions and offers overall concluding

remarks.
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Chapter 2

Masonry mechanical response

This chapter is aimed at characterization of masonry mechanical response through

an overview of experimental investigations. Particular attention is devoted to ma-

sonry with regular arrangement of constituent materials, i.e. bricks and mortar,

where bed joints act as weak planes. The described tests testify that detailed in-

formations about the material properties can be obtained and used to rationally

design procedures based on numerical models. First, in section 2.1, the main prop-

erties of the constituent materials are discussed. Then, in section 2.2, response of

small and large masonry assemblages, as well as of more complex structures, is

analyzed with reference to some well-known experimental campaigns.

2.1 Constituent materials mechanical response

Heterogeneous masonry can be decomposed into three components, that is mortar,

units and interfaces (representing the interaction behavior between mortar and

units). Their main mechanical properties are analyzed in the current section.

2.1.1 Mortar and units

Despite masonry mechanical response can not be simply considered as an average

of its constituents, this results strongly affected by strength and deformability

characteristics of mortar and units.

Compressive tests on masonry components are the most widespread, because of
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their more reliability with respect to tensile and shear tests. Compressive strength

of masonry units is usually investigated through standard tests with solid platens.

The resulting maximum strengths have to be corrected with proper factors to

take into account the restraint effect of the platens. Furthermore, it should be

remarked that these tests do not provide information on the post-peak behavior.

As concern mortar compressive response, this is usually explored by using cylin-

drical and prismatic specimens with resulting compressive strength dependent on

water-binder ratio and cement content. Compressive tests allow also to determine

deformability characteristics, in terms of Young’s modulus and Poisson ratio, by

measuring longitudinal and transversal strains to the load direction. The Young’s

modulus (E) is obtained as the slope of the linear part of the stress-strain re-

lationship, whereas Poisson ratio (ν) results from the ratio between transversal

and longitudinal strains. In general, different characteristics in strength and de-

formability are found for units and mortar: the former exhibit a brittle response

with high resistance, the last shows a more ductile behavior characterized by low

strength.

Additionally, indirect tensile and flexural tests are performed to obtain mor-

tar properties in terms of tensile strength. Indirect tensile tests are carried out

on cylindrical specimens loaded diametrically across the circular cross section, by

causing a tensile deformation perpendicular to loading direction. In flexural test

a more localized vertical load is applied at the middle part of the specimen. By

registering the ultimate load and by knowing the specimen dimensions, tensile

strength of the material can be computed, which is usually characterized by lin-

ear correlation with compressive strength (see Figure 2.1).

Some attempts were made to relate tensile strength of masonry unit to its com-

pressive strength, but difficulties arise due to variety of available sizes, shapes and

manufacture processes. In general, very low tensile strength is found with respect

to the compressive one, with ratio approximatively varying between 0.03 and 0.1.

A significant study concerning mortar and bricks properties can be found in

McNary and Abrams (1985). Tri-axial compression tests on four types of mortar,

with different cement-to-water ratio (M, S, N, O), were carried out to determine

Poisson ratio and Young’s modulus, as well as compressive strength for different

values of the lateral confining stresses p. As an example, Figure 2.2 shows variation
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of Young’s modulus with normal and confining stresses for the tested type M

mortar. Furthermore, it emerged that higher maximum axial stress and strain

were associated to larger confining pressure and the nonlinear response occurred

already for small strains (see Figure 2.3(a)).
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Figure 2.2: McNary and Abrams (1985): variation of Young’s modulus with ver-
tical and confining stresses for type M mortar.

11



Chapter 2: Masonry mechanical response

Regarding units behavior, bi-axial tests made of axial compressive and bilateral

tensile stresses were performed on two types of brick with the purpose to determine

the splitting strength. Figure 2.3(b) presents the obtained relationship between

compressive C and tensile T stress in bricks, nondimensionalized with respect

to uni-axial compressive strength C0 and direct tensile strength T0, by showing a

concave nonlinear trend of the failure curve obtained as the best fit of experimental

data.

Described phenomena testify complexity of the mechanical response of bricks

and mortar, whose interaction effects define behavior of masonry composite ma-

terial.
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Figure 2.3: McNary and Abrams (1985): (a) variation of compressive strength
with confining pressure p for type M mortar; (b) measured bi-axial interaction
diagram for brick specimens.
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2.1.2 Unit-mortar interface

Unit-mortar interface is often regarded as the weakest component of masonry

composite material. Thus, joints response was largely investigated under both

tensile and shear loads by pointing out peculiar characteristics in terms of strength,

fracture energy and stress-strain relationship. All these features are discussed in

what follows.

2.1.2.1 Tensile response

Experimental tests showed that tensile failure, usually occurring at the unit-

mortar interface, is one of the main cause of collapse of masonry assemblages.

Different test set-up, including flexural testing, diametral compression (splitting

test) and direct tension testing, were used to characterize tensile behavior. For

instance, Van der Pluijm (1997) performed tensile and flexural tests on small ma-

sonry assemblages of solid clay bricks and calcium-silicate bricks in combination

with different mortar types. Tensile tests were conducted on masonry couplets in

displacement control, as schematically shown in Figure 2.4(a).

σ
 

σ
 

(a)

wallspecimen

(b)

Figure 2.4: Van der Pluijm (1997): (a) test specimen in direct tension, (b) net
bond surface of the wall extrapolated from the specimen.

Experimental outcomes highlighted low tensile bond strength, exponential soft-

ening branches in the stress-strain relationship with mode I fracture energy GI
f

ranging from 0.005 to 0.02 Nmm/mm2, according to the unit-mortar combination.

This fracture energy GI
f was defined as “the amount of energy by unit of area that
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is needed to create a crack in which no tensile stresses can be transferred”. Fur-

thermore, the bond area of the cracked specimens, the so-called net bond surface,

was smaller (on average 35�) than the cross sectional area of the specimens and

usually located at the samples inner part. This was probably due to the mortar

shrinking and the setting of the mortar in its plastic phase. The net bond surface

of a common wall was approximately estimated 1.7 times greater than that of the

specimen, as two of the four edges are not present, as shown in Figure 2.4(b).

Similar considerations were made for the fracture energy and tensile strength of

the wall.

The 4-point bending arrangement, sketched in Figure 2.5, was used to perform

flexural tests on stack bonded prisms 6 brick high. By measuring specimen deflec-

tion, it was possible to push the tests beyond the maximum strength and measure

the fracture energy GI
f .

Cross section A-A

LVDTs

A

A

Figure 2.5: Van der Pluijm (1997): detailed view of a specimen in the 4-point
bending test arrangement.

Fracture energy values determined by the flexural tests were compared to those

obtained by the tensile tests, resulting 2 or 3 times higher. This difference was par-

tially explained with reference to the bonding surface shape. Indeed, as pointed

out above, a ratio of 1.7 was estimated between the net bond surface of the wall

and the couplets, as concerns the tensile test, while the bonding surface of the

flexural specimen was almost the same of the wall, because two slices on the head

sides of specimens were cut off.

The characterization of the tensile behavior of unit-mortar interface plays a
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significant role in the overall response of masonry structures, as in many cases

the tensile strength of composite material can be regarded as the tensile bond

strength between mortar and units.

2.1.2.2 Shear response

Several studies were focused on the shear behavior of bed joints, as shear failure

is a dominant collapse mechanism for masonry structures subjected to horizontal

loads. Usually, shear actions are accompanied by compression or tension loads.

Thus, pure shear modes are alternated to shear-compression and shear-tension

modes in experimental investigations.

The main difficulties in performing shear test are related to ability of the test

set-up to induce an uniform stress state in joints. Van der Pluijm (1993) de-

veloped the test set-up shown in Figure 2.6(a), able to keep a constant normal

confining pressure upon shearing. As the test arrangement could not be used to

perform shear-tension tests, it was modified (Figure 2.6(b)) in Van der Pluijm

et al. (2000) with the purpose to experience masonry assemblages under pro-

grammable combination of tension and compression perpendicular to bed joint

and, thus, to establish a complete failure envelope for joints and bond interface

loaded in shear.

F
s

F
s

Units
Actuator

Mortar

(a)

F
n

F
s

(b)

Figure 2.6: Experimental set-up for shear test from (a) Van der Pluijm (1993)
and (b) Van der Pluijm et al. (2000).
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In Figure 2.7(a) the experimental outcomes are contained in terms of shear stress

τ vs. shear displacement us, obtained by Van der Pluijm (1993) by applying three

confining (compressive) stress levels p: −0.1, −0.5 and −1.0 MPa. The overall

behavior showed a great similarity with the tensile response, as exponential soft-

ening branches appeared. However, the curves did not fall to zero, but became

stable at a certain value of the shear stress, namely residual dry friction shear.

It can be remarked that, depending on the compression level, different strengths

and friction levels were obtained, as well as different slopes of descending branch.

Moreover, fracture energy GII
f associated to shear mode (defined as the area under

the stress-displacement diagram and the residual dry friction shear level) increased

with the compressive stress.

A further significant phenomenon in a shear test is the dilatant behavior,

that is the occurrence of a lifting displacement un directed perpendicularly to the

imposed shear displacement us (Figure 2.7(b)). It is usually described in terms of

dilatancy angle Ψ , defined as:

Ψ = arctan
un
us

. (2.1)
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Figure 2.7: Van der Pluijm (1993): (a) shear stress-shear displacement curves for
different values of confining stress p; (b) dilatant behavior.
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Physically, this is due to a non-smooth cracked surface, so shearing goes together

with an uplift, whose maximum value is related to the roughness of the cracked

surface. The experimental evidences showed decreasing dilatancy with increasing

shear displacement due to the smoothing of the sheared surfaces, as shown in

Figure 2.8(a) by the typical evolution of un for increasing values of us at constant

confining pressure (un positive if lifting). Furthermore, sensibility to the confining

pressure was found, with tan Ψ tending to zero for increasing compression stresses

(Figure 2.8(b)).
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Figure 2.8: Van der Pluijm (1993): (a) typical variation of normal displacement
un with increasing shear displacement us; (b) evolution of dilatancy tan Ψ with
the confining pressure p (adapted by Lourenço, 1996).

Similar trends were observed in Van der Pluijm et al. (2000), where normal stress

levels of −0.6, −0.3, 0, 0.05, 0.1, 0.15, 0.2 MPa and increasing shear deformation

were applied to masonry consisting of clay bricks (wc-JO96) with general purpose

mortar (GPM) and masonry made of calcium silicate blocks (CS-block96) with

prefabricated thin layer mortar (TLM). Bond failure at the interface and bond

failure combined with tensile failure of bricks were the most frequent mechanisms

observed during the tests. However, also other failure modes can take place, as

depicted in Figure 2.9(a-d). Referring to the test series where only one failure

mode occurred, linear relation between fracture energy, GII
f , and normal stress,

17



Chapter 2: Masonry mechanical response

p, was found, as plotted in Figure 2.10(a). Thus, two equations of the regression

lines were proposed to identify the lower and upper bound (GII
f in N/mm and p

in MPa), respectively:

GII
f = −0.02 p+ 0.005 ,

GII
f = −0.14 p+ 0.02 .

(2.2)

(a) (b) (c) (d)

Figure 2.9: Failure mechanisms for combined normal and shear stress: (a) bond
failure, (b) failure in mortar and bond failure, (c) bond failure and tensile failure
of units and (d) diagonal tensile failure of units.

The bed joint shear failure was investigated also applying cyclic loading. Atkin-

son et al. (1989) conduced direct shear experiments on three series of masonry

specimens consisting of old clay units, modern clay units and specimens collected

from brick walls damaged during the 1987 Whittier earthquake. With reference

to old brick specimens, Figure 2.10(b) shows a typical load-relative displacement

(between the upper and lower side of the samples) curve obtained from four cycles

direct shear test at a constant normal compressive load. A steep growth in the

shear load, followed by a decreasing shear resistance and residual strength, can

be noted, similarly to the experimental outcomes in Figure 2.7(a). After the first

cycle, no further peaks were found and the shear resistance settled on a constant

value, which was not affected by the number of cycles. The small peak obtained

during the reversal shear in the first cycle appeared at low level of normal loads

and it vanished to higher stress values. Similar considerations hold for the other

series of tested masonry. On the overall, a much higher peak strength is emerged

for new brick assemblages with respect to the old ones, while residual strength

was essentially the same. In the investigated normal stress range, it was noticed

that both peak and residual strengths could be modeled by a Mohr-Coulomb cri-

terion (τ = c + σntanφ) accounting for cohesive strength c and friction angle φ.
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However, nonlinear relationship of strength with normal stress can be also found,

as obtained by Drysdale et al. (1979) to for high normal stress values.
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Figure 2.10: Shear response of bed joints: (a) correlation between fracture energy
GII
f and normal applied stress p (Van der Pluijm et al., 2000); (b) typical response

curve for four-cycle shear test (Atkinson et al., 1989).

2.2 Masonry composite material

Behavior of the composite material is described next with reference to small and

large masonry assemblages. Strength characteristics are discussed by pointing

out influence of orientation of the applied stresses with respect to bed joints di-

rection. Furthermore, attention is devoted to investigate mechanical response of

shear walls, as these represent the main reaction systems in masonry building.

Monotonic and cyclic loads are considered and effects of geometry, boundary and

loading conditions are underlined.

19



Chapter 2: Masonry mechanical response

2.2.1 Tests on small assemblages

2.2.1.1 Uni-axial tensile stress

Masonry tensile strength is strongly dependent on both mechanical properties of

the constituent materials and orientation of the applied stresses with respect to

bed joint direction. Failure in tension is usually associated to a localized fracture

process, namely cracking of the material, which is reflected into stress-strain rela-

tionships with strength-stiffness decay and marked softening branches, as shown

in Figures 2.11(a).

In general, for tensile stress normal to bed joints, tensile strength can be consid-

ered equal to tensile bond strength between mortar and units. On the contrary,

failure is associated to excessive stresses in the bricks when masonry characterized

by low strength units and high tensile bond strength are considered.

To characterize the response under tensile stress parallel to bed joints, Backes

(1985) tested masonry wallets in direct tension. The test results showed that the

crack paths were strongly affected by quality of components: cracks passed along

the head joints and the center of the bricks (Figure 2.11(b)) for masonry composed

by strong mortar and weak units, while zigzag paths (Figure 2.11(c)) appeared

for weak mortar and strong bricks.

Tensile strength and failure modes were also investigated under tensile loads

having different orientation ϑ from the bed joint direction. Drysdale and Hamid

(1982) performed axial tension tests on masonry samples made of three different

types of mortar (mortar M, S and N characterized by increasing compressive

strength). Figures 2.12(a) and (b) provide exemplary failure modes obtained

for loads parallel and normal to bed joints, characterized by mortar debonding

accompanied by tensile failure of bricks and mortar debonding alone, respectively.

For tension oriented between 15° and 75° always debonding along combination of

bed and head joints appeared, as shown in Figure 2.12(c) with reference to tensile

load rotated of 30° from bed joints. Furthermore, Figure 2.13 summarizes all the

available data of tensile strength, by clearly highlighting sensitivity to orientation

of the applied stress and by showing that bond characteristics of the mortar are

not directly related to its strength properties.

Similar considerations hold for the tensile tests performed by Page (1983) on
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σ
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σ
 

(a)

(b)

(c)

Figure 2.11: Tensile behavior: (a) typical response under uni-axial tension; failure
paths (Backes, 1985) with (b) cracks passing along mortar and bricks and (c)
zigzag type for load parallel to bed joint orientation.

(a) ϑ=0° (b) ϑ=90° (c) ϑ=30°

Figure 2.12: Drysdale and Hamid (1982): failure modes obtained for different
values of the ϑ angle between applied tensile stress and bed joints orientation.
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clay brick masonry (more detailed test description will be provided next), whose

results are reported in Figure 2.14 in terms of failure crack paths obtained for

different values of the ϑ angle between the applied stress and bed joints direction.
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Figure 2.13: Tensile strength obtained by Drysdale and Hamid (1982).
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Figure 2.14: Page (1983): failure modes for uni-axial tensile loads with different
orientation ϑ from the bed joint direction.
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2.2.1.2 Uni-axial compressive stress

Compressive strength normal to bed joints is regarded as one of the most rele-

vant material property. Experimental studies pointed out its strong dependency

on the mechanical properties of the component materials, i.e mortar and units.

As remarked in Section 2.1.1, brick response to compressive load usually shows

brittle behavior characterized by high strengths, while mortar exhibits a more

ductile response with lower resistance. In this case, the response of the composite

material is placed between that of its constituents, as Figure 2.15(a) shows with

reference to uni-axial compressive tests performed Binda et al. (1996). However,

this result can not be considered as general.

Kaushik et al. (2007) experienced masonry prisms made of four brick types and

three mortar grades. Experimental outcomes highlighted that the generally be-

lieved compressive behavior of masonry placed between that of bricks and mortar,

no longer holds when strength and stiffness of bricks and mortar are comparable,

as the stress-strain curves of masonry fall on the lower strength of those corre-

sponding constituent materials (Figure 2.15(b)). Anyhow, the different strength

and deformable characteristics of units and mortar are precursor of failure, as

demonstrated by the pioneer work of Hilsdorf (1969). For instance, considering

mortar softer than bricks, as usually happens, a tri-axial compression state in the

mortar and a combined compression/bi-axial tension in the brick occur under uni-

axial compressive load normal to bed joints (Figure 2.16(a)). Thus, the mortar

lateral expansion is confined by the bond and friction between brick and mortar

and, as a consequence, vertical cracks appear in the units leading to the specimen

collapse (see Figure 2.16(b)).

Less attention was devoted to compressive strength under uni-axial load paral-

lel to bed joints. However, the ratio between parallel and normal compressive

strengths usually ranges from 0.2 to 0.8 (Hoffmann and Schubert, 1994). As an

example, Page (1981, 1983), within his aforementioned experimental campaign,

found a ratio about equal to 0.6.

Further research explored the mechanical response to uni-axial compressive load

with different orientations ϑ with respect to bed joints, by obtaining sundry

strength values and failure modes (see Figure 2.17).
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Figure 2.15: Stress-strain curves for bricks, mortar and masonry prisms: (a) weak
mortar (Binda et al., 1996) and (b) strong mortar (Kaushik et al., 2007).
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Figure 2.16: Compressive behavior for uni-axial load normal to bed joints: (a)
state of stress in masonry prisms and (b) failure mode.
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(a) ϑ=0°

ϑ 

(b) ϑ=22.5°
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(c) ϑ=45°

ϑ 

(d) ϑ=67.5°

ϑ 

(e) ϑ=90°

Figure 2.17: Page (1981, 1983): failure modes for uni-axial compressive loads with
different orientation ϑ from the bed joint direction.

2.2.1.3 Bi-axial stress

To fully characterize masonry mechanical behavior, the response under bi-axial

stresses was investigated. Page (1981, 1983), as already mentioned, provided

a complete set of experimental data by testing 360 mm square panels, made of

half-scale solid clay units arranged in running bond texture. These samples were

subjected to bi-axial loads, whose orientation with respect to bed joints direction

was varied. Indeed, mortar joints act as planes of weakness and their orientation,

with respect to applied stresses, strongly affects overall response. Thus, differently

from isotropic materials, failure cannot be described in terms of principal stresses

only. By defining material axes T and N , as directions parallel and perpendicular

to bed joints (Figure 2.18(a)), failure can be defined either in terms of stress state

related to the material axes (σTN = {σT , σN , τTN}T), or in terms of principal

stresses σx and σy and orientation ϑ of σx with respect to T -axis (Dhanasekar

et al., 1985).

The experimental set-up, schematically shown in Figure 2.18(b), was used to test

a total of 180 panels with the bed joints orientation and principal stress ratio

summarized in Table 2.1.

Basing on the relative proportion of the applied loads, different failure modes

occurred: cracking and sliding in bed and/or head joints for uni-axial compression

and collapse for cracking in the joints alone or combined failure in bricks and joint

for tension-compression loads. In bi-axial compression cases, typical splitting of
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the specimen at mid-thickness, in a plane parallel to its free surface, was found.
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Figure 2.18: (a) principal stress axes (blue) and material axes (red); (b) arrange-
ment for bi-axial tests performed by Page (1981, 1983).

Stress state ϑ [°] σy/σx ratio Number of panels

Bi-axial 0, 22.5, 45,
1, 2, 4, 10 75

compr.-compr. 67.5, 90
Bi-axial 0, 22.5, 45, -0.5, -0.2,

66
tens.-compr. 67.5, 90 -0.1, -0.03

Uni-axial 0, 22.5, 45,
0 21

compression 67.5, 90
Uni-axial 0, 22.5, 45, ∞ 18
tension 67.5, 90

Table 2.1: Summary of bi-axial tests from Dhanasekar et al. (1985).

Figures 2.19 (a-c) show the experimental data in terms of bi-axial strength

for different values of ϑ with the aim of studying the influence of the shear stress

τTN in failure surfaces. Anisotropic behavior is markedly shown, as tensile and

compressive strengths parallel and normal to bed joints differed. Furthermore,

increasing resistance was obtained for bi-axial compressive loads.

26



Chapter 2: Masonry mechanical response

-12 -8 -4
-12

-8

-4

0

2

σ
x 
[MPa]

σ x
=
σ y

σ x
=2σ y

σ x
=4σ y

σ
y 
[M

P
a]

0 2

σ x
=

σ y 
/4

σ x
=

σ y 
/2

(a)

-12 -8 -4 0 2

σ x
=
σ y

-12

-8

-4

0

2

σ x
=2σ y

σx
=4σ y

σ x
=

σ y 
/2

σ x
=

σ y
/4

σ
y 
[M

P
a]

σ
x 
[MPa]

(b)

-12 -8 -4 0 2
-12

-8

-4

0

2

σ
y 
[M

P
a]

σ x
=
σ y

σ x
=2σ y

σ x
=4σ y

σ x
=

σ y
/2

σ x
=

σ y
/4

σ
x 
[MPa]

(c)

-20 -16 -12 -8 -4 0
-20

-16

-12

-8

-4

0

Page (1981)

Naraine and Sinha (1991)

Alshebani and Sinha (2000) 

σ
x 
[MPa]

σ
y 
[M

P
a]

(d)

Figure 2.19: Masonry bi-axial strength: experimental results of Page (1981, 1983)
for (a) ϑ = 0°, (b) ϑ = 22.5°and (c) ϑ = 45°; (d) comparison between strength
envelopes obtained for clay brick (light and dark gray lines) and sand plast (black
line) masonry (ϑ = 0°).

Bi-axial tests were conducted also by other researchers. Among others, Ganz and

Thürlimann (1982) experienced hollow clay brick masonry, Naraine and Sinha

(1991) tested half-scale clay brick specimens, while Alshebani and Sinha (2000)
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dealt with sand plast (a form of calcium silicate) brick masonry. A comparison

between experimental outcomes obtained for clay brick masonry (Page, 1981 and

Naraine and Sinha, 1991) and sand plast masonry (Alshebani and Sinha, 2000)

is shown in Figure 2.19(d). Here, a reasonable accordance emerges between the

enveloped curves extracted for clay brick masonry, except for the ratio between

the parallel and normal compressive strength: it was approximately 0.6 and 1.1 in

Page (1981) and Naraine and Sinha (1991), respectively. More relevant discrep-

ancies emerge for the sand plast envelope, due to the differences in strength and

behavior of sand plast and clay bricks. However, on the overall, the shape of all

curves is similar.

2.2.2 Tests on full-scale masonry elements

2.2.2.1 Influence of vertical compressive load

Raijmakers and Vermeltfoort (1992) performed deformation controlled tests on

masonry shear walls by considering different vertical compression loads. Solid

clay bricks, arranged in running bond texture, with dimensions 210 × 52 × 100

mm3 and 10 mm thick mortar were used to built up specimens. Width of 990 mm

and height of 1000 mm were obtained by assembling 18 courses, only 16 of which

were activated, as the upper and lower courses were clamped in steel beams (see

Figure 2.20(a)).

Two-step tests were performed on each wall: first, a vertical uniformly distributed

load p was applied and, then, a horizontal monotonically increasing displacement

s was imposed through the upper steel beam, keeping bottom and top boundaries

horizontal and preventing any vertical movement, as shown in Figures 2.20(a) and

(b), respectively.

Four specimens without openings, the so-called JD walls, were tested by imposing

three different values of the compression load p, that is 0.3 MPa (≡ 30 kN) for

J4D and J5D, 1.21 MPa (≡ 120 kN) for J6D and 2.12 MPa (≡ 210 kN) for J7D.

The global response curves (horizontal load vs. horizontal imposed displacement),

plotted in Figure 2.21, showed failure loads and brittleness behavior increased with

the increasing vertical load. Also vertical reaction was measured during the test,

which moved from the middle line of the wall in the direction of the compressed
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Figure 2.20: Test phases for Raijmakers-Vermeltfoort panels: (a) vertical precom-
pression load and (b) horizontal loading under displacement control.
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Figure 2.21: Raijmakers-Vermeltfoort panels: global response curves.
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zones. In Figure 2.21 the variation of vertical force with the applied horizontal

displacement is shown with reference to the lower compression load. It can be

noted an increasing trend due to the dilatant phenomenon.

Finally, Figures 2.22 (a-d) show the experimental crack patterns obtained for

all tested panels. Similar collapse mechanisms were found with diagonal cracked

band in the middle part of the wall and crushing of the compressed toes. However,

marked crack also developed at the bottom and top corners undergoing tensile

stresses, as concerns the lower initial vertical load, that is walls J4D and J5D.

Wall J4D

(a) p = 0.3 MPa

Wall J5D

(b) p = 0.3 MPa

Wall J6D

(c) p = 1.21 MPa

Wall J7D

(d) p = 2.12 MPa

Figure 2.22: Raijmakers-Vermeltfoort panels: experimental crack patterns for
different levels of vertical compression p.
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2.2.2.2 Effect of panel geometry

To highlight the effect of geometry on the degrading and collapse mechanisms of

shear walls, reference is made to experimental tests performed at the Joint Re-

search Centre of Ispra (Anthoine et al., 1995). The test conditions were designed

so as to reproduce those of masonry piers under seismic actions. Two panels,

characterized by different height/width ratio, were analyzed, assuming the same

boundary conditions in which the bottom side of the walls was completely re-

strained while the top side was prevented to rotate. These were firstly subjected

to a vertical compressive stress of p = 0.6 MPa (≡ 150 kN), kept constant dur-

ing the test and, then, a cyclic horizontal displacement history was applied on

a steel beam rigidly connected to the top of the walls. The lateral displacement

was imposed quasi-statically and characterized by increasing amplitude. Two or

three cycles were performed for each amplitude, depending on the level of strength

degradation. With reference to Figure 2.23, loading conditions can be summarized

as follows: 
Fv1 + Fv2 = ptW = Fv

sv1 = sv2 = sv

sh imposed, Fh measured

(2.3)
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Figure 2.23: Schematic view of the test set-up for Ispra walls.
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The specimens were built up with brick units of 250 × 120 × 55 mm3 and 10 mm

thick hydraulic lime mortar, arranged in two-wythes thickness English bond pat-

tern. The panels overall sizes were: W1 = W2 = W = 1000 mm, H1 = 2000 mm

(high wall), H2 = 1350 mm (low wall) and thickness t = 250 mm.

Figures 2.24 and 2.25 show the experimental outcomes for the high and low

wall in terms of force-displacement global curve (a) and crack patterns (b). The

different trends of the global response curves were a consequence of the different

onset and evolution of degrading mechanisms: low wall exhibited a brittle fail-

ure with diagonal cracks in the middle of the panel due to the dominant shear

mechanism, while flexural response characterized behavior of the high wall with

the formation of high damaged zones located at the top and bottom sides starting

from the corners. Thus, low wall showed a softening behavior more severe than

high wall, as well as larger hysteretic dissipation.
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Figure 2.24: Ispra high wall: (a) experimental cyclic load-displacement global
curve and (b) experimental failure path from Anthoine et al. (1995).
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Figure 2.25: Ispra low wall: (a) experimental cyclic load-displacement global curve
and (b) experimental failure path from Anthoine et al. (1995).

2.2.2.3 Two-story masonry building

A full-scale two-story masonry building was tested at University of Pavia (Magenes

et al., 1995) under quasi-static loading conditions with the aim of evaluating its

seismic capacity. A schematic representation of the prototype geometry is sketched

in Figure 2.26. Four two-wythes solid brick walls, 250 mm thick, composed the

building, which was characterized by plan dimensions 6 × 4.4 m2 and height of

6.4 m. The longitudinal walls were with openings, that is wall D and wall B, also

known as ‘door’ and ‘window’ wall, respectively. Wall D was disconnected from

transverse walls (A and C), as opposed to wall B, which was properly linked with

interlocking brick pattern at the adjacent walls. This allowed to consider wall

D as plane structure and wall A+B+C as overall independent system. Flexible

diaphragms at the floor levels were simulated with a series of steel beams (with I

section and 140 mm depth), which were also used to impose, by means of concrete

blocks, distributed loads about equal to 10 kN/m2, resulting in vertical additional

loads of 248.4 kN and 236.8 kN at the first and second level, respectively. By using

displacement controlled screw jacks, seismic loads were applied as concentrated
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Figure 2.26: Geometry and loading conditions of the two-story masonry building
tested by Magenes et al. (1995) (dimensions in [cm]).

horizontal forces at the longitudinal walls. The imposed displacements were con-

trolled so that to obtain equal applied forces at first and top floor levels and were

characterized by repeated cyclic with increasing amplitude (see Figure 2.27).

Before starting the test, characterization of the material mechanical properties

was performed, resulting in mean compressive strength of 6.2 MPa and joints

shear strength written as τ = 0.23 + 0.57σ (evaluated from a linear regression on

tested triplets).

Figures 2.28(a-d) show experimental outcomes in terms of global response curves

(base shear vs. second floor displacement) and crack patterns for both longi-
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Figure 2.27: Sequence of the displacement applied at the second floor level.

tudinal walls. It can be noted a similar response with strength-stiffness decay

and hysteretic dissipation. Maximum base shear was approximately 150 kN and

140 kN for the door and window wall, respectively.

Regarding damage progression, this was quite complex. Initially, cracks devel-

oped in the spandrels between the openings by decreasing the coupling between

piers, then, with increasing deformation, shear cracking in central piers appeared

for both walls. Different behavior was found for the external piers: wall D exhib-

ited diagonal cracks due to shear failure, while wall B behaved in a rocking mode

with no diagonal damaged shear bands. This different response was imputed to

the aspect ratio of the piers and to the test arrangement, because wall B was

connected with the transverse walls, as opposed to wall D.

Finally, differences emerged in the measured vertical displacements. Wall D ex-

hibited significant displacements due to flexure mechanisms, while wall B showed

small uplift, as its response resulted characterized by shear mechanisms in the

central piers.

The described test points out the complexity of failure mechanisms character-

izing unreinforced masonry buildings. Indeed, the global responses result strongly

affected by loading conditions and level of anchorage between structural elements.

35



Chapter 2: Masonry mechanical response

-30 -20 -10 10 20 30

-150

-100

-50

0

50

100

150

B
as

e 
sh

ea
r 

[k
N

] 

0

Second floor displacement [mm] 

200

-200

(a) (b)

-30 -20 -10 10 20 30

-150

-100

-50

0

50

100

150

B
as

e 
sh

ea
r 

[k
N

] 

0

Second floor displacement [mm] 

200

-200

(c) (d)

Figure 2.28: Base shear-second floor displacement curves for (a) wall D and (c)
wall B; experimental failure paths for (b) wall D and (d) wall B.

2.3 Summary

This chapter provided an overview of significant experimental tests performed

on masonry and its constituent materials. Starting from the main properties of

units and mortar, behavior of masonry material was analyzed, by highlighting

its nonlinear and non-symmetric mechanical response. Failure in tension is usu-
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ally associated to a localized fracture process, while failure in compression is due

crushing of the material. Furthermore, irreversible strains develop mainly due

to friction mechanisms at interface between mortar and units, leading to dissipa-

tive process. It was also remarked that, in cases of regular texture, anisotropic

response emerges, as the strength characteristics result strongly affected by direc-

tion of the applied loads with respect to bed joints orientation.

Finally, tests on large scale masonry assemblages, representing structural ele-

ments or more complex systems, highlighted the influence of geometry, loading

and boundary conditions on masonry overall response.
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Modeling approaches for masonry

structures

The development of efficient numerical procedures to deeply understand and accu-

rately predict masonry mechanical behavior is still a challenging task. The main

difficulties in modeling are due to the heterogeneous microstructure of the mate-

rial which conduces to complex stress distributions among constituents. Several

modeling strategies were developed, ranging from simplified to very sophisticated

models. This chapter offers a brief review of the available methods, by emphasizing

limits and advantages of each of them in terms of computational cost, applicabil-

ity to large structures and accuracy of results. According to the purpose of this

research, particular attention is paid to the finite element models description.

3.1 FEM based approaches

Finite element models, involving nonlinear constitutive laws with damage and

plasticity inner variables, appear as promising tools for the assessment of the struc-

tural capacity of masonry buildings. Despite several criteria can be adopted, these

models are usually classified with regard to the modeling scale used (Lourenço,

1996; Roca et al., 2010; Addessi et al., 2014), thus distinguishing between mi-

cromechanical, macromechanical and multiscale models.
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3.1.1 Micromechanical models

Micromechanical approaches provide very accurate results, as masonry compo-

nents (units, mortar and interfaces) are separately modeled and all the informa-

tion about the microstructure are accounted for (Gambarotta and Lagomarsino,

1997; Lourenço and Rots, 1997; Oliveira and Lourenço, 2004; Sacco and Toti,

2010; Minga et al., 2018). Within this framework, different constitutive laws were

proposed for each constituent material, according to the assumptions reported

below (Addessi and Sacco, 2012):

� Model for the brick:

(a) rigid;

(b) deformable with linear response;

(c) interface or continuum material with nonlinear response.

� Model for the mortar:

(a) interface or continuum material characterized by linear response;

(b) interface or continuum material characterized by nonlinear response.

Figure 3.1 schematically shows the most common micromodels. In the so-

called detailed micromodeling strategy, blocks and mortar are described through

continuum finite elements, whereas the unit-mortar interfaces are modeled by

discontinuous elements (Figure 3.1(a)). Alternately, simplified micromodels were

developed, which consider joints as mechanical units representing both mortar

and unit-mortar interface and adopt either expanded units with elastic response

and potential crack interfaces or continuum nonlinear model for bricks (Figures

3.1(b) and (c), respectively).

Lourenço and Rots (1997) proposed a largely used interface constitutive model,

based on the plasticity theory. The authors suggested a composite yield surface

(Figure 3.2(a)) to simulate tensile failure of mortar joints, shear response of joints

and crushing of units under monotonic loading. Moreover, similarly to how shown

in Figure 3.1(b), cracks in the units were taken into account by placing poten-

tial crack interface in the middle part of the each unit. A modified version of
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Mortar: continuum 
nonlinear model 

Bricks: continuum 
nonlinear model

Bricks-mortar
interface 

(a)

Bricks: continuum 
elastic model

Bricks: interface
nonlinear model

Mortar: interface
nonlinear model 

(b)

Mortar: interface 
nonlinear model 

Bricks: continuum 
nonlinear model

(c)

Figure 3.1: Micromodeling technique: (a) detailed micromodel, (b) simplified
micromodel with potential crack in the units and (c) simplified micromodel.

the model was later presented by Oliveira and Lourenço (2004) with the aim of

accurately reproducing the main characteristics of the interface cyclic behavior.

The monotonic model was enriched by introducing two auxiliary yield surfaces

with the purpose to simulate the unloading to tension and compression, as Figure

3.2(b) shows with reference to an example case of unloading to tension.

Another interesting interface model, accounting for damage and friction, was

presented by Sacco and Toti (2010). With reference to the interface zone depicted

in Figure 3.3(a), the authors recognized three states in the damaging process: at

point A the connection block-mortar is undamaged, at point B a partial deco-

hesion is occurred and, finally, the decohesion phenomenon is full at point C. A

representative elementary volume (REV) was also introduced, being characterized

by height h, accounting for mortar and brick thicknesses involved in the degrada-
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Figure 3.2: Multisurface interface model: (a) monotonic model proposed by
Lourenço and Rots (1997) and (b) auxiliary yield surfaces for the cyclic model
of Oliveira and Lourenço (2004).

tion phenomenon, length b, representative of the distance between microcracks,

and width w, depending on the size of the mortar-brick. Thus, the total area

A = bw at the interface was decomposed into an undamaged part Au = (b− a)w

and a fully damaged portion Ad = aw. Based on these quantities and the main

concepts of the continuous damage mechanics, a scalar damage parameter was

defined as:

D =
Ad
A

=
a

b
. (3.1)
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Furthermore, by denoting with s = {sT sN}T the relative displacement vector at

the typical point of the mortar-block interface, collecting the displacement com-

ponents in tangential T and normal N direction to the interface, the constitutive

relationship was written as:

τ = (1−D)τu +Dτd = K[s−D(c + p)] , (3.2)

where τ is the interface stress vector, K is the stiffness diagonal matrix and c + p

is an inelastic displacement vector accounting for friction and unilateral contact.

A

B

C

no decohesion

partial decohesion

total decohesion

mortar

brick

A B C

N

T

(a)

Brick 
elementInterface 

element

Mortar 
element

(b)

Figure 3.3: Sacco and Toti (2010): (a) damaging states of brick-mortar interface
and (b) detailed micromodeling of a masonry arch.

The model was used for the micromodeling of masonry elements, mainly for unre-

inforced and reinforced masonry arches, where two different models were adopted

for bricks and mortar. Indeed, in case of unreinforced arch a linear elastic model

was used, whereas elasto-plastic constitutive law was assumed for the strengthed

arch, thus developing a detailed micromodel (Figure 3.3(b)). Satisfactory agree-
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ment was found between experimental and numerical results in terms of peak load,

collapse mechanisms and nonlinear response.

These are just few examples of micromodels proposed for masonry, which realis-

tically took into account the elastic and inelastic properties of units and mortar.

Such high level of refinement translates in high computational cost and several

attempts were developed to speed up numerical simulations. For instance, Minga

et al. (2018) used the domain decomposition and parallel processing technique to

improve the performance of their mesoscale model (Figure 3.4).

To summarize, micromodels are considered as the most accurate available tool

to analyze masonry, but their applicability is limited to the analysis of small

elements or structural details because of the high computational burden required.

Brick masonry wall

Level 0  Parent 0

Level 1
Parent 1.4

Level 1
Parent 1.2

Level 2
Child 2.1

Level 1
Parent 1.1

Two-way 
communication

between L
j

parent
structure and 
L

j+1
 structure

Level 1
Parent 1.3

Partitioning
boundaries

Figure 3.4: Minga et al. (2018): domain decomposition and parallel processor
technique.
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3.1.2 Macromechanical models

To reduce the computational burden, a large number of macromodels (Lourenço

et al., 1997; Addessi et al., 2002; Berto et al., 2002; Karapitta et al., 2011; Pelà

et al., 2013; Addessi, 2014; Toti et al., 2015; Tesei and Ventura, 2016) was de-

veloped, which consider masonry as an equivalent homogeneous, isotropic or

anisotropic medium, where the constituent materials are no longer distinguish-

able (Figure 3.5) and properly formulated relationships are established between

the average masonry strains and stresses.

Basic cell
(RVE)

Homogenized 
continuum

Homogenization

Figure 3.5: Macromodeling technique: masonry as a homogeneous material.

Despite some difficulties arise in identifying the constitutive laws of the equivalent

homogenized material, as well as the mechanical parameters (usually determined

by means of tests on large sized specimens or through homogenization proce-

dures) and the evolution laws of the inelastic variables, macromechanical models

are widely used to analyze complex real structures. Figures 3.6 and 3.7 show some

examples of macromodeling of large scale structures.

Valente and Milani (2016) used the Concrete Damage Plasticity model, orig-

inally proposed by Lubliner et al. (1989) and later modified by Lee and Fenves

(1998), for the seismic safety assessment of historical masonry towers (see Figure

3.6). The mentioned material model was primarily developed to study response of

concrete structures, but its applicability is reasonably extensible to masonry. In-

deed, the model, based on the assumption of scalar isotropic damage (see Section

4.1), is able to capture the degrading processes developing in masonry material,

as well as the stiffness recovery related to the re-closure of the tensile cracks upon

transition from tensile to compressive states. Lee and Fenves (1998) introduced in

the constitutive law distinct damage parameters in tension, Dt, and compression,

Dc, and combined the damaging responses by means of the weighting factor r,

44



Chapter 3: Modeling approaches for masonry structures

(a) (b)

Figure 3.6: Tower located in Luisa: (a) real structure and (b) FE model used by
Valente and Milani (2016).

Figure 3.7: Betti and Vignoli (2011): FE model of the Basilica of Santa Maria
all’Impruneta.
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defined on the basis of the effective principal stresses ˆ̃σ. The total stress results

as:

σ = (1−Dc)(1− sDt)σ̃ , (3.3)

with

s = s0 + (1− s0)r(ˆ̃σ) , (3.4)

being s0 a constant used to set the minimum value of s, thus allowing a proper

representation of the unilateral damage recovering upon load reversal.

Among macromodels developed for masonry, others proposals exist to model the

unilateral phenomenon. Toti et al. (2015) used a regularized form of the Heaviside

function H for the elastic strain first invariant Je1 by introducing the following

isotropic damage model:

σ = σ̃ [(1−Dt)H(Je1) + (1−Dc)(1−H(Je1))] , (3.5)

where σ and σ̃ denote the stress and effective stress tensors, respectively; Dt and

Dc are the damage variables which capture the stiffness degradation in tension

and compression.

Addessi (2014) presented a 2D Cosserat model with damage-plastic isotropic con-

stitutive law, where the volumetric strain energy is split into the positive and

negative part, according to the strategy proposed by Comi and Perego (2001) for

concrete. The resulting stress-strain law is expressed as:

T =K(1−Ds)〈trEsym
e 〉+I +K(1−Dc)〈trEsym

e 〉−I

+ 2G(1−Ds)devEsym
e + 2Gc(1−Ds)E

skw ,

µ = 2Gl2c (1−Ds)κe ,

(3.6)

where K and G are the bulk and shear modulus, respectively, and Gc is the

Cosserat shear modulus. In Eq. 3.6 damage variable Ds is defined as a proper

combination of damage variables in tension, Dt, and compression, Dc, as:

(1−Ds) = (1−Dt) (1−Dc) . (3.7)
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In other words, by subdividing the strain tensor E into volumetric and devia-

toric part, the shear and pure tensile behavior are influenced by both tensile and

compressive damages, while the pure compressive response is only affected by the

compressive damage, thus representing the unilateral effect.

It should be noted that, despite it is well recognized that regular masonry

exhibits anisotropic behavior, constitutive laws involving isotropic damage and

plasticity are largely adopted. Consequently, the orthotropic response is com-

pletely lost, but the overall behavior can be satisfactorily captured if average

strength and stiffness values along the material axes are adopted. However, the

most advanced macromodels represent masonry as an orthotropic material ex-

hibiting marked directional properties. The main assumption of these models is

the acceptance of material axes, which are parallel and normal to the bed joints

orientation. Lourenço et al. (1997) proposed a constitutive law fully based on

the plasticity theory, which employs a Rankine-type and a Hill-type criteria to

simulate tensile and compressive behavior, respectively. Within the damage ap-

proach framework, Berto et al. (2002) interpreted the material axes as principal

axes of damage, as microcracks forming the damage are usually parallel and per-

pendicular to material directions. Four independent internal damage parameters,

one in compression and one in tension for each natural axis, were introduced by

defining a proper damage matrix. Onset and evolution of the damage parameters

was ruled by equivalent stress measures and the resulting damage limit surface

was geometrically represented by a double pyramid with rectangular base.

More recently, Pelà et al. (2013) simulated masonry orthotropic response by ex-

ploiting the concept of mapped tensors from the anisotropic field to an auxiliary

workspace (Figure 3.8). The different behavior along the material axes was sim-

ulated by means of linear transformation between the real anisotropic space and

the auxiliary one, where simple isotropic damage model and criteria were adopted.

The large number of proposed macromodels confirms the timeless interest to-

wards this modeling technique, which represents, despite its intrinsic limits, a fair

compromise between accuracy and computational effort.
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Figure 3.8: Technique of the mapped stress and strain tensors used by Pelà et al.
(2013).

3.1.3 Multiscale models

Between the micro and macro approaches, the multiscale modeling has taken hold

in last decades to study the mechanical response of heterogeneous microstructured

materials and, in particular, of masonry. This approach splits the structural prob-

lem into two scales: an equivalent homogenized medium is studied at macrolevel,

where the constitutive response at each material point is derived by homogenizing

the stress field computed in a properly selected representative volume element

(RVE). This contains the detailed description of masonry components, geometry,

arrangement and constitutive behavior and is analyzed at microscale. Indeed,

the constitutive response at macrolevel, initially unknown, is derived by applying

concepts of localization and homogenization within a scale transition procedure

(Figure 3.9). A strain driven formulation is usually adopted, consisting of the eval-

uation of the macroscopic strain vector E at each material point of the macrolevel
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model, which is used as input data for the linked sub-domain (the aforementioned

RVE). At this stage, a properly defined boundary values problem (BVP) has to

be solved to determine the stress field on the RVE and, then, the corresponding

macroscopic stress Σ by means of the Hill-Mandel equivalence principle. Differ-

ent boundary conditions, that is prescribed displacements, prescribed tractions

and periodic conditions, were considered for the RVE with the aim of obtaining

the best estimation of the homogenized mechanical properties. It has been es-

tablished, as Figure 3.10 shows, that periodic boundary conditions strike a good

balance and provide the best response, as uniform displacements and traction

conditions lead to an overestimation and underestimation of the elastic properties

of the composite material, respectively.

A significant issue related to multiscale models is the choice of the most suit-

able continuum to be applied to the macrolevel. The standard first order ho-

mogenization schemes are based on the use of the classical Cauchy continuum for

both micro and macrolevel, but, as found by Kouznetsova (2002) and remarked

by De Bellis and Addessi (2011), these models suffer from some limitations and

can be adopted only if the following assumptions hold:

� microstructure very small if compared to the characteristic size of the macro-

scale;

� mechanical properties of the homogenized medium not affected by the ab-

solute dimension of the constituents material;

� low deformation gradients of stresses and strains.

Boundary
value problem

MACROSCALE MICROSCALE

Σ

E

Figure 3.9: Multiscale technique: transition between macro and microscale.
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Figure 3.10: Typical convergence of the homogenized properties as function of the
RVE size obtained by imposing different boundary conditions.

To overcome such restrictions, an enriched model can be used at macrolevel. A

Cosserat continuum was adopted by De Bellis (2009) and De Bellis and Addessi

(2011) with the aim of introducing a material length scale which naturally ac-

counts for the absolute size of the constituents and even permits to mitigate the

computational problems related to the strain localization. Furthermore, as shown

in Figure 3.11 with reference to a two-dimensional case, the adoption of such en-

riched continuum allows to consider three additional deformation modes, that is

two micro-curvatures (KX , KY ) and the rotational deformation (Θ), besides the

standard Cauchy extensional (EX , EY ) and shear symmetric (ΓXY ) strains.

The available literature shows that multiscale models were largely adopted to

describe both in-plane and out-of-plane behavior of masonry. Mercatoris and Mas-

sart (2011) used a shear-enhanced element with the Reissner-Mindlin description

to explore the out-of-plane failure of masonry walls. Petracca (2016) developed a

computational multiscale homogenization technique for the quasi-static analysis

of in-plane and out-of-plane loaded masonry structures, by focusing attention to

the localization problem and, thus, offering an extension of the fracture-energy

based regularization. Massart et al. (2007) proposed an enhanced multiscale model

based on nonlocal implicit gradient isotropic damage models for both brick and

mortar.

The briefly described multiscale technique is usually implemented in finite ele-
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Figure 3.11: Cosserat deformation modes for two-dimensional case.

ment procedures, the so-called FE2 approach. This consists of scale transitions at

each step, iteration and integration point of the analysis. As a consequence of this

continuous up-scaling and down-scaling, parallel processors are needed to perform

and speed up the numerical simulations. An alternative multiscale approach is

the Transformation Field Analysis (TFA), firstly proposed by Dvorak (1992) and

then extended to the analysis of periodic masonry panels (Sacco, 2009; Addessi

and Sacco, 2012). This deals with a nonlinear homogenization procedure based on

the superposition of the effects that requires the computation of localization and

transformation tensors. To this purpose, micromechanical analyses are performed

on a properly selected masonry unit cell and the obtained information (in terms

of localization e transformation tensors) is used to solve the structural problem

at macrolevel. To clarify the procedure, the simple example described in Sacco

(2009) is here summarized with reference to Figure 3.12. The overall behavior of

the two spring system, B and M , characterized by linear and nonlinear behavior

is determined by superimposing the responses to an average elastic strain ē and an

inelastic strain π. The extension of such approach to masonry provides for impo-

sition of average elastic strains ē at whole masonry unit cell and inelastic strains

πi on each mortar joints (in the most simplified analyses bricks are characterized

by linear elastic response and, consequently, no inelastic strains are applied). Sat-
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isfactory results were obtained in terms of both accuracy and computational cost.

Indeed, as opposed to FE2 model, the TFA technique performs the scale transition

only at the first stage of the analysis, thus resulting in a significant computational

saving.
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Figure 3.12: Sacco (2009): scheme of the nonlinear homogenization procedure
based on the TFA technique.

3.2 Other approaches

3.2.1 Limit analysis

Limit analysis is a consolidate approach largely used to estimate the safety of

masonry block structures. By using the limit theorems of plasticity, it is aimed at

determining the factor for which the external load has to be increased until struc-

tural collapse. Based on the observation of recurrent failure modes of masonry

constructions, rigid body systems are identified and the collapse mechanisms are

analyzed.
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According to the pioneer work of Heyman (1982), the limit theorems of plas-

ticity can be applied to masonry structures by assuming the following properties

for the material:

� Zero tensile strength, that is no tensile forces can be transmitted between

the masonry blocks. This hypothesis is usually realistic for dry masonry

or masonry made with weak mortar, but it can result too safe for spandrel

masonry with high interlocks;

� Infinite compressive strength of the material. This assumption, which trans-

lates into neglecting the masonry crushing, is obviously unsafe, but the in-

troduced errors can be considered small;

� Sliding can not occur between joints.

These conditions allow for the application of the lower-bound and upper-bound

theorems, which lead to the so-called static and kinematic approaches for the

analysis of masonry structures, respectively. The former states that if a statically

admissible state of equilibrium can be found, the structure will not collapse. The

last looks for the limit load by forcing the work of the external forces to zero for

a properly selected collapse mechanism. For instance, Giuffrè (1994) and Carocci

(2001) applied the kinematic limit analysis to study the vulnerability of masonry

structures through their decomposition into rigid blocks (Figure 3.13).

Recently, computer-based limit methods, mainly based on the kinematic approach,

were developed by adopting the following hypothesis:

� Material is characterized by zero tensile and infinite compressive strength;

� Shear failure at joints is perfectly plastic;

� Limit load occurs with small displacements.

It should be remarked that the mentioned plastic limit theorems can be applied

only if the normality condition stands, that is if a simple frictional Coulomb law

with associated flow rule is considered. In this case, the normality condition leads

to a fixed dilatancy characterized by an angle Ψ equal to the friction angle ϕ, as
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(a) (b)

Figure 3.13: Carocci (2001): failure mechanism of outside walls without (a) cross
connections and with (b) cross connections.

shown in Figure 3.14(a). However, no dilatancy occurs in some real cases and,

consequently, non-associative rules should to be adopted (Figure 3.14(b)) . The

non-compliance with the normality rule means that the fundamental theorems of

plasticity will not in general provide a unique solution, as highlighted by Drucker

(1954) almost half a century ago.
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Figure 3.14: Associative (a) flow rule and non-associative (b) flow rule with null
dilatancy.

Several methods were proposed to solve problems involving non-associated flow

rule, which are nonlinear and non-convex. For instance, Gilbert et al. (2006)

54



Chapter 3: Modeling approaches for masonry structures

proposed a simple iterative procedure based on the successive solution of linear

programming sub-problems. Baggio and Trovalusci (2000) suggested a two-step

procedure: in the first step a linear problem is solved by applying the upper-

bound limit theorem and the obtained solution is used to explore the solution

of the nonlinear and non-convex problem. As an example, Figure 3.15 shows

some of their results with reference to a masonry typology characterized by large

vertical stones, called ‘opus africanum’. The considered external forces were the

self-weight and the horizontal mass actions factorized by the multiplier α0. The

collapse mechanism resulting from a nonlinear limit analysis with casual initial

guess is sketched in Figure 3.15(a), by showing an unsatisfactory result, as it

provides interpenetration of two stones in the left bottom corner of the wall and

a load multiplier (α0 = 0.1056) far from the actual one. Thus, other analyses

were performed by solving the linearized problem and by employing its solution

to evaluate the initial guess for the nonlinear problem. The obtained results,

reported in Figure 3.15(b) and (c), were more accurate, as no interpenetration

was found and the load multiplier was similar. However, some differences in the

final configurations emerged in these two solutions as the dilatant effects are not

negligible in this problem.

(a) α0 = 0.1056 (b) α0 = 0.3766 (c) α0 = 0.3469

Figure 3.15: Baggio and Trovalusci (2000). Collapse load multipliers and fail-
ure mechanisms obtained from: (a) nonlinear limit analysis with arbitrary initial
guess, (b) linear limit analysis and (c) nonlinear analysis starting from the solution
of (b).
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On the overall, the described method is a powerful tool to realistically identify

the safety level of the structures, but it can not describe the structural response for

loads far from the limit conditions, as well as the damage progression. However,

limit analysis should be always used at least like complementary tool, when more

sophisticated analyses are performed. For instance, Betti and Vignoli (2011) eval-

uated the seismic vulnerability of the Basilica of the Santa Maria all’Impruneta

by using both a finite element macromodel (Figure 3.7) and the limit analysis

(Figure 3.16).
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Figure 3.16: Betti and Vignoli (2011): (a) reference case for the limit analysis and
(b) lateral wall overturning of the Basilica of Santa Maria all’Impruneta.

The simple reference scheme shown in Figure 3.16(a) was adopted and the collapse

multiplier α0 was evaluated by applying the Theorem of Virtual Work according

to the following equation:

α0

(
n∑
i=1

Piδx,i +
n+m∑
j=n+1

Pjδx,j

)
−

n∑
i=1

Piδy,i −
l∑

h=1

Fhδh = Wfe (3.8)

where δx,i and δy,i are the virtual displacements of the elementary blocks centroids;

Pi is the own weight of each element composing the kinematic chain; Pj and

Fh are the weights and loads transmitted by the confining elements with δy,j, δh
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indicating the virtual displacements of their application points. Limit analysis and

pushover results were in agreement, as these predicted a critical behavior of the

structure when the seismic load is acting in the transverse direction of the church

(Figure 3.16(b)). Similarly, Sacco and Toti (2010) used the limit analysis result to

compare the ultime load of a masonry arch predicted with their micromechanical

finite element model.

3.2.2 Macroelement method

The so-called macroelement strategy was developed to combine an accurate de-

scription of the nonlinear behavior of masonry elements with the need to perform

analyses with reduced computational cost. The method is based on a prelimi-

nary discretization of masonry walls or structures, mainly according to empirical

criteria inspired by the observation of post-earthquake damage patterns, and the

analysis is performed on an assemblage of macroelements. Each of them consists

of a single finite element with few degrees of freedom, ensuring a considerable

reduction of computational effort.

The ‘equivalent frame’ method (Chen et al., 2008; Addessi et al., 2015; Lib-

eratore et al., 2017) considers the walls as an assemblage of deformable one-

dimensional element connected through rigid nodes, which are indeed undamaged

part of the walls. When crumbling and out-of-plane mechanisms are prevented,

in-plane behavior of the walls can be studied to assess the global response of

the building to horizontal actions. Piers and spandrels can be identified as the

two main load-bearing components, being the first able to carry both vertical

and horizontal loads. Spandrels, usually regarded as ‘secondary’, strongly affect

piers boundary conditions, thus playing a crucial role. As Figure 3.17(a) shows,

walls are discretized through frame elements, representing piers or spandrels, and

rigid offsets. The nonlinear behavior of beam elements can be modeled by means

of either distributed or lumped inelasticity. Lumped approaches consist in plac-

ing flexural and shear hinges at both the ends and mid-span of the elements,

respectively. The Italian code (NTC, 2008) establishes a rigid-perfectly plastic

response for piers, which can translate in rigid-plastic constitutive laws for the

hinges. However, past and recent scientific literature offers even more sophis-
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ticated approaches, as that recently presented in Liberatore et al. (2017). The

authors introduced the Bouc-Wen and Bouc-Wen-Baber-Noori hysteretic models,

accounting for strength and stiffness degradation, in the constitutive laws of flex-

ural and shear hinges (Figure 3.17(b)), with the aim of simulating the complex

nonlinear behavior of masonry panels under cyclic loads. Indeed, these hysteresis

models are able to reproduce a wide range of different shapes by using a limited

set of parameters.

Spandrels Rigid offsets

Piers

(a)
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M
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Figure 3.17: Equivalent frame method: (a) conventional subdivision of masonry
walls in deformable frame elements and rigid zones and (b) 2D frame element
proposed by Liberatore et al. (2017)

Many other macroelement approaches make use of bi-dimensional finite ele-

ments (Braga and Liberatore, 1990; Caliò et al., 2012). Among the others, the two-

node macroelement proposed by Brencich et al. (1998), whose governing kinematic

and static variables are shown in Figures 3.18(a) and (b), should be mentioned.

Classification of this element is not straightforward: kinematic and static quan-

tities used to describe its response are in line with a one-dimensional approach,

but further degrees of freedom are introduced to take into account rocking and

shear-sliding phenomena stand for a more bi-dimensional nature. This element

is able to account for damage, overturning and frictional shear mechanisms. It is
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composed of a top and bottom part (gray zones in Figure 3.18(a) and (b)), where

the extensional and bending effects are concentrated and a central part (orange

zone in Figure 3.18(a) and (b)) undergoing shear effects. Figure 3.18(c) shows an

example of macroelement mesh for a bi-dimensional wall with nodes placed in the

center of the rigid elements, so that the flexible extremities of the macroelements

are eccentric with respect to the nodes themselves.
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Figure 3.18: Brencich et al. (1998): (a) kinematic and (b) static variables of the
proposed macroelement, (c) example of macroelement mesh with piers, spandrels
and rigid zones (gray areas).

Recent developments of computer codes based on macroelement methods, as

that proposed by Lagomarsino et al. (2013), testify a lively interest towards this

modeling technique, which represents also an efficient tool for practice oriented

applications.

3.2.3 Discrete element method

It should be also mentioned the discrete element (DE) approach, as it was largely

employed for seismic assessment of masonry buildings. According to the pioneer

proposal of Cundall (1971), this method enables finite displacements and rotations

of discrete bodies including their complete separation and new contacts among
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bodies as the analysis goes on. Within the framework of masonry structures, the

heterogeneous material is idealized as an assembly of bodies, the masonry units,

interacting at the boundaries through mortar joints regarded as contact surfaces

between bodies. By an overview of the proposed DE methods (Lemos, 2007),

a variety of formulations emerges, whose main differences can be found in the

contact assumptions, block representation and solution methods.

The contact representation can involve the point contact hypothesis with the

resulting contact forces expressed as function of the relative block displacement

at that point. Alternatively, interacting line segments are assumed by allowing a

linear variation of stresses on the contact surface. Two main classes of contact

can be recognized, that are based on the soft and hard contact assumptions, also

known as deformable and rigid contact approaches. The former enforces the no

overlap condition between blocks, the latter involves small overlap for contact in

compression. For instance, Acary and Jean (1998) apply the Contact Dynamic

Method, accounting for Coulomb friction law and unilateral contact conditions

with no block overlap (i.e rigid contact approach), for the numerical simulation

of monuments.

Regarding the mechanical behavior of blocks, most of the DE models take on

the rigid block assumption, as this hypothesis is acceptable in many practical

problems involving the evaluation of collapse loads of stone masonry structures.

In 2D problems, three degrees of freedom (two translations and one rotation)

characterize the motion of each block and explicit time-stepping algorithms are

used as solution method for both static and dynamic problems. However, the block

deformability is sometimes taken into account, especially in cases of structure

made of weak material.

Several examples of DE method application to masonry structures can be

found. These concern, just to cite some, the rocking motion of block, analyses

of basilicas, stone bridges and arches. As an example, Figures 3.19(a) and (b)

show the cracking pattern and collapse mechanism obtained for a stone house by

Alexandris et al. (2004), with reference to Kalamata earthquake (1986, Greece)

scaled to peak ground acceleration (PGA) equal to 0.54g and 0.8g (with g gravity

acceleration), respectively. However, the interested reader can refer to large num-

ber of references reported in Lemos (2007), Roca et al. (2010) and Smoljanović
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et al. (2013).

(a) (b)

Figure 3.19: Alexandris et al. (2004): cracking pattern and collapse mechanism
of the model house under the Kalamarata earthquake with (a) PGA=0.54g and
(b) PGA=0.8g.

3.3 Summary

Traditional and modern methods for modeling of historic masonry structures were

briefly described. These largely differ in accuracy, required input data and com-

putational cost. Consequently, structural capacity predictions can depend on the

assumed modeling technique and personal intuitions should be used to critically

analyze the results. It emerged that FE models, involving properly formulated

nonlinear constitutive laws, are a powerful tool to describe evolution of degrading

mechanisms over time. Sophisticated micro and multiscale models, accounting

for the material microstructure, provide very accurate results but require high

computational effort. To overcome this drawback, the macromodeling technique

is nowadays largely used, mainly to analyze large scale structures. However, the

development of accurate phenomenological models represents still a challenging

task, because of difficulties in identifying proper constitutive laws of the equivalent

homogenized masonry material.
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Isotropic damage-plastic model

Within the FE modeling approaches, macromechanical models appear as a fair

compromise between accuracy and computational cost. In this chapter, a novel

isotropic damage-plastic model is proposed for the macromechanical analysis of

masonry structures. The adopted constitutive relationship is able to capture the

main degrading mechanisms due to propagation of microcracks and accumulation

of irreversible strains. Moreover, the stiffness recovery, due to re-closure of tensile

cracks when the material undergoes compression states, is taken into account to

properly simulate masonry cyclic response.

The assumption of isotropic damage formulation is usually suitable for an-

cient constructions characterized by strong uncertainty in textures and mechanical

properties, but it can result inaccurate for regular arrangements where anisotropic

constitutive laws are required (Lourenço et al., 1997; Berto et al., 2002; Karapitta

et al., 2011; Pelà et al., 2013). However, isotropic damage models were efficiently

adopted (Addessi et al., 2002; Addessi, 2014; Toti et al., 2015; Valente and Mi-

lani, 2016), as these allow to capture the main effects of microcracks propagation

on the masonry overall response by using few material parameters. For a more

detailed discussion concerning the adoption of isotropic and anisotropic damage

models, reader can refer to Fichant et al. (1999).

As the proposed model is implemented into a finite element procedure, details

about the computational aspects are also provided together with information on

the solution algorithm used to solve the nonlinear evolution problem of damage
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and plastic variables. Furthermore, to avoid the well-known numerical problems

typical of finite element models, due to strain localization and subsequent spu-

rious mesh sensitivity, a regularized formulation is adopted basing on a nonlocal

continuum approach.

Finally, numerical applications are performed to explore the model capability of

describing masonry inelastic behavior and comparisons between numerical and

experimental outcomes are also provided for some masonry panels.

4.1 Isotropic damage models: the basis

Main purpose of Continuum Damage Mechanics is to represent and model, within

the continuum-mechanics framework, the onset and propagation of distributed

defects in material. Kachanov (1958) proposed the first continuum damage model

by introducing a scalar internal variable to model the creep failure of metals. This

variable did not have a clear physical meaning, but it was intended to provide a

suitable measure of the state of internal degradation. Further developments have

clearly defined the damage variable as the reduction of the cross-sectional area

due to microcracking.

With reference to Figure 4.1(a), where a representative volume element (RVE)

in the neighborhood of point M of a damaged medium and a plane passing through

M with normal n are shown, the damage variable is expressed as follows:

D(M,n) =
Ad
A

, (4.1)

where A is the sectional area and Ad represents area of defects. On the basis

of its definition, damage variable can varies between 0 and 1, corresponding to

the virgin material and completely damaged material, respectively. If isotropic

damage is considered, dependency from the normal n is neglected and Eq. 4.1 is

further simplified:

D(M) =
Ad
A

. (4.2)

Formulation of continuum damage models requires definition of equivalent

criterion between the damaged material configuration and a fictitious undamaged
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one, so that to use classic laws of continuous mechanics. To this purpose the

net stress concept has to be introduced. This is usually done by considering

a simple uni-axial tensile test, sketched in Figure 4.1(b). As the applied force

F is increased, the transversal section A0 decreases due to both Poisson’s effect

and onset of microcracks. Thus, by denoting with A the reduced cross-sectional

area caused by the transverse strains, the nominal, σ0, and ‘true’, σ, tension, are

expressed as:

σ0 =
F

A0

, σ =
F

A
. (4.3)

n

M

RVE

(a)

F F

A
0 A A=A(1-D)

~

(b)

Figure 4.1: Damage Mechanics concepts: (a) RVE, (b) effective area Ã.

If small strains hypothesis holds A0 = A and, consequently, σ0 = σ. Thus, by

accounting for the microvoids area, the net stress σ̄ results as:

σ̄ =
F

Ã
=

F

A(1−D)
=

σ

1−D
. (4.4)

Extension of previous concepts to the pluri-axial case is trivial when isotropic

damage is considered, with net stress σ̄ defined as:

σ̄ =
σ

1−D
. (4.5)

With the introduced quantities at hand, strain and energy equivalence principles
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are described below, as suggested by Marfia (2000).

4.1.1 Strain equivalence principle

Hypothesis of equivalent strain, based on empirical nature, establishes that “the

strain behavior of a damaged material is represented by constitutive equations of

the virgin material (without any damage) in the potential of which the stress is

simply replaced by the effective stress”(Lemaitre, 1985).

The constitutive laws for a virgin and damaged material result, by neglecting

effect of plastic strain, respectively:

σ = Cε , σ̄ = Cε , (4.6)

where C is the stiffness matrix of the undamaged material. It is useful to introduce

the C̃ matrix, which takes into account the mechanical properties degradation.

Thus, the stress-strain relationship of the damaged material can be rewritten as

a function of σ and C̃:

σ = C̃ε , (4.7)

By deducing ε from the previous equation and replacing it in Eq. 4.62, the

following condition is obtained:

σ̄ = (CC̃−1)σ , (4.8)

where CC̃−1 represents the damage operator, which can be expressed, by assuming

isotropic damage, as follows:

CC̃−1 = (1−D)−1I , (4.9)

with I identity matrix. Consequently, the effective damage matrix C̃ and the net

stress σ̄ are expressed as:

C̃ = (1−D)C , (4.10)

and

σ̄ =
σ

1−D
. (4.11)
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Finally, it should be remarked that, by defining the effective stress σ̃ as the stress

acting on the undamaged material, the described principle establishes equivalence

between effective and net stress:

σ̄ = σ̃ =
σ

1−D
. (4.12)

4.1.2 Energy equivalence principle

Energy equivalence principle postulates that “the elastic energy stored in a dam-

aged material Λd is equal to the elastic energy of an undamaged equivalent ma-

terial Λ0 except that the stresses are replaced by the net stresses”(Cordebois and

Sidoroff, 1982).

The energy stored in the material Λd is:

Λd =
1

2
σT C̃−1σ , (4.13)

while the elastic strain energy of the equivalent undamaged material Λ0 is defined

as:

Λ0 =
1

2
σ̄TC−1σ̄ . (4.14)

Thus, by using energy equivalence and net stress definition (Eq.4.5), the material

damaged stiffness matrix C̃ results:

C̃ = (1−D)2C , (4.15)

and, consequently, the effective stress is:

σ̃ = Cε =
1

(1−D)2
C̃ε . (4.16)

4.2 Damage-plastic model

The heterogeneous masonry wall, schematically depicted in Figure 4.2(a), is mod-

eled as an equivalent homogenized medium (Figure 4.2(b)), adopting a 2D plane

stress formulation under the hypothesis of small displacements and strains. At
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each material point M located at x = (x1, x2) on the wall surface A, the displace-

ment vector u = {u1 u2}T is defined. By applying the compatibility operator B,

the total strain vector is deduced as:

ε = B u , (4.17)

where ε = {ε1 ε2 γ12}T and:

B =

∂/∂x1 0

0 ∂/∂x2
∂/∂x2 ∂/∂x1

 . (4.18)

The stress vector is accordingly introduced as σ = {σ1 σ2 τ12}T . The stress-strain

constitutive relationship is based on a damage-plastic model, coupling an isotropic

two-variable damage model and a Drucker Prager plasticity formulation with

isotropic and kinematic hardening. The following stress-strain law, derived on

the basis of the equivalence energy principle (see Section 4.1.2), is adopted:

σ = (1−D)2 C (ε− εp) , (4.19)

where

D = αtDt + αcDc . (4.20)

Dt and Dc are the damage variables in tension and compression, respectively, εp is

the plastic strain vector, and C the elastic constitutive matrix of the undamaged

material, resulting as:

C =
E

1− ν2

 1 ν 0

ν 1 0

0 0 (1−ν)/2

 , (4.21)

being E and ν Young’s modulus and Poisson ratio, respectively. The two quanti-

ties αt and αc in Eq. 4.20 are weighting coefficients, defined in the following on

the basis of the strain state at point M , and rule the combined effect of the two

damage variables.
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(a) (b)

Figure 4.2: (a) Heterogeneous masonry wall; (b) equivalent homogenized medium.

4.2.1 Damage model

The model here proposed is an enhancement of that presented in Addessi et al.

(2002), where a single scalar damage variable was introduced and the non-symmetric

behavior in tension and compression typical of brittle-like materials was described

by properly defining the damage associated variable. To account for the unilat-

eral effect related to re-closure in compression of the tensile cracks, a modified

version is here developed, where two different damage variables are introduced,

Dt and Dc, measuring the damage for prevailing tensile and compressive states,

respectively, and evolving independently, but satisfying the constraint Dt ≥ Dc.

Both range between 0, corresponding to undamaged state of the material, and

1, attained when the material is completely degraded. Furthermore, the ther-

modynamic irreversibility condition is enforced, such that Ḋt ≥ 0 and Ḋc ≥ 0.

Accordingly, to drive the evolution of Dt and Dc two damage associated variables

are defined as:

Yt =

√√√√ 3∑
i=1

〈ei〉2+ , Yc =

√√√√ 3∑
i=1

〈ei〉2− +
κ

2

3∑
i=1

3∑
j 6=i=1

〈ei〉− 〈ej〉− , (4.22)
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where the brackets 〈•〉+/− compute the positive/negative part of a quantity, κ

is a material parameter influencing the shape of the damage limit function in

compression, and:

ei = (1− 2ν) ε̂i + ν

3∑
j=1

ε̂j , (4.23)

denoting with ε̂i the principal total strains. The principal strain component ε̂3 is

computed by adding to the corresponding principal elastic strain ε̂e3 = −ν/(1 −
ν)(ε̂e1 + ε̂e2) the plastic strain ε̂p3. The evolution processes of the two damage

variables are governed by the tensile and compressive damage limit functions,

defined as:

Ft = (Yt − Yt0)−Dt (atYt + bt) ,

Fc = (Yc − Yc0)−Dc (acYc + bc) ,
(4.24)

and ruled by the classical Kuhn-Tucker and consistency conditions:

Ft ≤ 0 , Ḋt ≥ 0 , FtḊt = 0, ḞtḊt = 0

Fc ≤ 0 , Ḋc ≥ 0 , FcḊc = 0, ḞcḊc = 0
. (4.25)

The material parameters Yt0 and Yc0 are the damage initial thresholds in ten-

sion and compression, bt and bc regulate mainly the uni-axial tension and compres-

sion peak strengths, whereas at and ac affect the slope of the softening branches.

The weighting coefficients combining the two damage variables in Eq. 4.20 are

defined as:

αt =
Y e
t /Yt0

Y e
t /Yt0 + Y e

c /Yc0
, αc = 1− αt , (4.26)

where:

Y e
t =

√√√√ 3∑
i=1

〈eei 〉
2
+ , Y e

c =

√√√√ 3∑
i=1

〈eei 〉
2
− +

κ

2

3∑
i=1

3∑
j 6=i=1

〈eei 〉−
〈
eej
〉
− , (4.27)
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and

eei = (1− 2ν) ε̂ei + ν
3∑
j=1

ε̂ej , (4.28)

being ε̂ei the principal elastic strains.

In Figure 4.3 the damage limit domains are shown in the principal (a) strain

and (b) stress space, adopting the material parameters contained in Table 4.1 and

for different values of the damage variables Dt and Dc and the parameter κ (if

not specified κ is assumed equal to 0). In the stress space, the hardening phase,

where the limit domain enlarges, and the softening phase, during which the domain

shrinks, can be noted. On the contrary, in the strain space, domains are always

widening, as expected. Finally, it should be remarked that, for κ = 0, circular

shape for compressive strain states is found, while negative values of κ (positive

values are unacceptable) lead to limit domains characterized by elliptical shape

in order to capture the increasing strength typical of the pluri-axial compressive

states.

Elastic parameters

E [MPa] ν
1800 0.1

Damage parameters

Yt0 bt at Yc0 bc ac

1×10−4 1.5×10−4 0.9 5×10−4 7×10−3 0.8

Table 4.1: Material parameters adopted in Figures 4.3, 4.4, 4.5 and 4.9;.

In Figure 4.4 influence of the parameters (a) bt and (b) at on the uni-axial

tensile constitutive law is shown, considering for the other parameters values con-

tained in Table 4.1. As bt increases (Figure 4.4(a)), higher values of the tensile

strength are obtained moved up rightward. Differently, the parameter at (Figure

4.4(b)) affects the slope of the descending post-peak branch, i.e. the severity of

the strain-softening behavior. Therefore, bt and at parameters can be identified

on the basis of the material fracture energy Gf and the assigned material ten-

sile strength. Same observations hold in the case of the uni-axial compressive

response.

Finally, a cyclic uni-axial stress-strain law is depicted in Figure 4.5(a) with ref-

erence to the applied strain history of Figure 4.5(b). Model capability to account

for the unilateral effect is highlighted by the variation of the damage variables D,
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Figure 4.3: Damage domains for different values of the damage variables in the
principal (a) strain and (b) stress space.
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Figure 4.4: Uni-axial tensile stress-strain law: effect of the parameters (a) bt and
(b) at.

Dt and Dc with respect to the fictitious time variable, as shown in Figure 4.5(b).

It can be noted that D assumes the same value of Dt for tensile states and, then,

when a reversal strain occurs, returns equal to Dc.

4.2.2 Plasticity model

A classic Drucker-Prager plasticity model is adopted to phenomenologically de-

scribe frictional mechanisms evolving in masonry material, as this is capable to

capture the non-symmetric behavior under tensile and compressive states, as well

as introduce pressure-sensitivity. A plane stress formulation with linear isotropic

and kinematic hardening is considered. First, the formulation is presented with

reference to the general three-dimensional states of stress and strain and, then,

the original three-dimensional constitutive equations are constrained so that the

plane stress counterpart is obtained. Indeed, when a plane stress problem is con-

sidered (Figure 4.6), the out-of-plane stress components, that is σ3, τ13 and τ23,

are constrained to be zero and some modifications of the numerical algorithm are

needed.

72



Chapter 4: Isotropic damage-plastic model

ε
1 

×10-3

-14 -12 -10 -8 -6 -4 -2 0 2-16

-3

-2.5

-2

-1.5

-1

-0.5

0
A

C

B

Dσ
1 
[M

P
a]

 

-4

-3.5

0.5

(a)

0

D
, 
D

t 
, 
D

c 

Time 

0.5

1

A C

B

D

0

10

-20

-10

ε 1
 

×10-3

(b)

Figure 4.5: Damage model: (a) uni-axial cyclic stress-strain law, (b) applied strain
history and variation of damage variables.
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Figure 4.6: Plane stress state.

4.2.2.1 Three-dimensional Drucker Prager model

The Drucker-Prager yield function for the 3D case is expressed as follows:

F p = |Pσ̃3D − ζ| −
√

2

3
(σy +Hiα) + µ1T σ̃

3D
, (4.29)

where vector 1 = {1 1 1 0 0 0}T and operator P are introduced to evaluate the

first invariant and the deviatoric part of the six-component effective stress vector

σ̃
3D

= {σ̃1 σ̃2 σ̃3 τ̃12 τ̃23 τ̃13}T , respectively. 3D and 2D representations of the yield

function are given in Figures 4.7(a) and (b) in the principal effective stress space,

adopting the material parameters contained in Table 4.2.

σ̃
3D

is computed on the basis of the 3D elastic constitutive matrix C3D as below:

σ̃
3D

= C3D(ε3D − ε3Dp) (4.30)

The effective stress vector σ̃
3D

is introduced to govern the evolution of the plastic

strains, thus resulting that the plastic mechanism is not influenced by the damage

progression and evolves independently. In Eq. 4.29, ζ is the back stress vec-

tor describing the kinematic hardening, σy is the yield stress, µ is the frictional

coefficient, while α is the isotropic hardening variable and Hi the isotropic hard-

ening modulus. Material parameters σy and µ are defined as function of uni-axial

tension and compression strengths, σt and σc, as follows:
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Figure 4.7: Drucker-Prager yield function at the first onset of the plastic process
(α = 0, ζ = 0, ε̇3Dp = 0): (a) 3D and (b) 2D representation.

σy =
2σcσt
σc + σt

(4.31)

µ =

√
2

3

(
σc − σt
σc + σt

)
(4.32)

The evolution laws of the plastic variables are introduced as:

ε̇3Dp = λ̇p
∂F p

∂σ̃
3D

, (4.33)

ζ̇ =
2

3
Hkε̇

3Dp , (4.34)

α̇ = λ̇p
√

2

3
, (4.35)

the parameter Hk being the kinematic hardening coefficient and λp the plastic

multiplier. The plasticity evolution is also governed by the Kuhn-Tucker and

consistency conditions:

F p ≤ 0 , λ̇p ≥ 0, F pλ̇p = 0 , Ḟ pλ̇p = 0 . (4.36)
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In Eqs. 4.33-4.36 the dot symbol denotes increment of the quantity with respect

to the pseudo-time variable.

Finally, the incremental form of Eq. 4.30 is expressed as:

˙̃σ
3D

= C3Dtε̇3D , (4.37)

where C3Dt is the elasto-plastic tangent stiffness matrix evaluated as:

C3Dt = C3D − 4G2λ̇p

|η|

(
I− 11T

3
− nnT

)
− 4G2nnT + 6GKµn1T

2G+ 2/3 (Hi +Hk)
, (4.38)

being K and G the bulk and shear moduli, respectively; I the 6×6 identity matrix

and n = η/|η| the normal to yield surface, with η = Pσ̃
3D − ζ.

As an example, Figures 4.8(a) and (b) show plastic uni-axial stress-strain laws,

setting Hi = 0 and for two values of Hk, i.e. Hk = 0.3E and Hk = 0.1E (for the

other material parameters reference is made to Table 4.2).
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Figure 4.8: Plastic uni-axial stress-strain law: (a) monotonic tensile response and
(b) cyclic response.

Note that Hk value effects the slope of the post-yield stress-strain relationship and

that non-symmetric response in tension and compression emerges. Furthermore,

the higher value of Hk, that is Hk = 0.3E, leads to less energy dissipation, as

76



Chapter 4: Isotropic damage-plastic model

shown by areas contained in the stress-strain graphs in Figure 4.8(b).

4.2.2.2 Procedure for plane stress plasticity

It is possible to deal with a plane stress problem by using the original three-

dimensional formulation of the Drucker-Prager plasticity model and by enforcing

the plane stress constraints at the material point level, as already done by others

(Saritas and Filippou, 2009).

In what follows, a suitable matrix notation is introduced to distinguish between

the retained stress components (σ1, σ2, τ12) and those that are constrained to be

zero (σ3, τ23, τ13). Furthermore, the symbol ‘˜’, denoting the effective stresses, is

neglected for sake of simplicity.

The six-component stress and strain vectors, σ3D and ε3D, are obtained by a

proper arrangement of vectors collecting in-plane and out-of-plane components,

which are:

εc = {ε3 γ23 γ13}T , σc = {σ3 τ23 τ13}T , (4.39)

ε = {ε1 ε2 γ12}T , σ = {σ1 σ2 τ12}T . (4.40)

The out-of-plane strain vector εc contains unknown components and is determined

so that to obtained zero corresponding stress vector σc. It should be remarked

that, in the isotropic case, stress and strain transverse shear components vanish

(de Souza Neto et al., 2011). However, the procedure is here illustrated for the

more general case, where all the out-of-plane components are considered.

The fully 3D plasticity problem is solved by setting initial guesses for the

strains εc and, then, an iterative procedure is developed including a corrector

phase of the strains εc. At each iteration, the updated value of εc is computed as:

εc = εc + dεc = εc − (C3Dt
22 )−1σc , (4.41)

where C3Dt
22 denotes the sub-matrix, referred to the out-of-plane components, of

the elasto-plastic tangent stiffness matrix C3Dt . This is obtained by reorganizing
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the incremental stress-strains law in Eq. 4.37 as follows:

σ̇1

σ̇2

τ̇12

σ̇3

τ̇23

τ̇13


=



C3Dt
11 C3Dt

12

C3Dt
21 C3Dt

22





ε̇1

ε̇3

γ̇12

ε̇3

γ̇23

γ̇13


. (4.42)

Once updated strains εc, the plasticity problem is solved again until σc vanishes.

The briefly described procedure, developed within the solution algorithm pre-

sented in the Section 4.3.2, is explained in details in Box 4.1. Here, reference is

made to an incremental plastic process, where the known solution at the previous

step is denoted with the subscript ‘n’.

Once qualified all aspects related to damage and plasticity, the model results

completely defined. As an example, Figure 4.9 shows the uni-axial stress-strain

law, under the cyclic deformation history detailed in figure, with reference to the

material parameters in Table 4.1 and Table 4.2. The constitutive law correctly

reproduces the unilateral effect, thanks to the introduction of the two distinct

damage variables Dt and Dc, as well as the growth of the plastic strains, thus

accounting for the activation of the friction mechanisms in masonry material.

Plastic parameters

σt [MPa] σc [MPa] Hi [MPa] Hk [MPa]

1.0 3.0 0.001 E 0.8 E

Table 4.2: Material parameters adopted in Figures 4.7 and 4.9.

78



Chapter 4: Isotropic damage-plastic model

1. Set initial guess for strains:

ε = {ε1 ε2 γ12}T prescribed

εc = εcn = {ε3 γ23 γ13}Tn

2. Call variables from last convergence step:

εpc = εpcn = {εp3 γ
p
23 γ

p
13}

T
n

εp = εpn = {εp1 ε
p
2 γ

p
12}

T
n

α = αn

ζ = ζn

3. Organize the six-component strain vectors ε3D and ε3Dp:

ε3D = {ε1 ε2 ε3 γ12 γ23 γ13}T

ε3Dp = {εp1 ε
p
2 ε

p
3 γ

p
12 γ

p
23 γ

p
13}

T

4. Compute the six-component effective stress vector σ3D:

σ3D = C3D(ε3D − ε3Dp)

5. Evaluate yield function F p:

F p = |Pσ3D − ζ| −
√

2
3

(σy +Hiα) + µ1Tσ3D

6. Check consistency:

if F p < 0

i. C3Dt = C3D

ii. no variables update

else
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i. solve plasticity and update isotropic hardening variable α, back

stress vector ζ, plastic strains vector ε3Dp and stress vector σ3D

ii. compute the elasto-plastic tangent matrix C3Dt

end if

7. Check plane stress convergence:

if |σc| ≥ tol

i. dεc = −(C3Dt
22 )−1σc

ii. εc = εc+ dεc

iii. return to 2.

else

go to 8.

end if

8. Evaluate the plane stress elasto-plastic tangent matrix Ct:

Ct = C3Dt
11 −C3Dt

12 (C3Dt
22 )−1C3Dt

21

Box 4.1: Procedure for plane stress plasticity.
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Figure 4.9: Damage-plastic model: uni-axial cyclic stress-strain law.

4.2.3 Nonlocal regularization

When materials exhibit strain-softening behavior, the principle of local action

does not hold anymore. Indeed, the onset and evolution of the degrading process

at a material point is influenced by the mechanical state of the points lying in a

properly defined neighborhood. This can be accounted for by adopting nonlocal

constitutive formulations to overcome the analytical problems related to the loss of

ellipticity of the governing equations and the related numerical mesh-dependency

drawbacks. Here, the nonlocal integral definition (Pijaudier-Cabot and Bažant,

1987) of the damage associated variables is introduced as:

Ȳt/c (x) =
1∫

A
ψ (x, s) dA (s)

∫
A

Yt/c (s)ψ (x, s) dA (s) ,

Ȳ e
t/c (x) =

1∫
A
ψ (x, s) dA (s)

∫
A

Y e
t/c (s)ψ (x, s) dA (s) ,

(4.43)
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where Ȳt/c (x) and Ȳ e
t/c (x) are the nonlocal quantities at point x, while Yt/c (s)

and Y e
t/c (s) are the corresponding local variables at the generic point located at

s lying in the neighborhood of x. The classical Gaussian is assumed as weighting

function:

ψ (x, s) = e−( ‖x−s‖
lc

)
2

, (4.44)

with lc denoting the nonlocal radius related to the material internal characteristic

length. Once the nonlocal damage associated variables have been computed, these

are introduced in Eqs. 4.24, 4.25 and 4.26 to solve the evolution problem of the

damage variables Dt and Dc and determine the weighting coefficients αt and αc.

4.3 Computational aspects

4.3.1 Finite element formulation

The model presented was implemented in 4-node and 9-node isoparametric quadri-

lateral FEs, based on a classical displacement formulation. Each node is pro-

vided with two displacement degrees of freedom and bi-linear (4-node FE) and

bi-quadratic (9-node FE) interpolation functions are used for the two displace-

ment fields u1 and u2. The discretized equations of motion governing the FE

nonlinear problem are written as:

Mü + Ru̇ + Pint(u) = Pext , (4.45)

where u, u̇ and ü are the nodal displacement, velocity and acceleration vectors,

respectively. M is the global mass matrix, evaluated by using a lumped approach,

while the global damping matrix R is calculated as a linear combination of mass

and stiffness proportional terms. These matrices are obtained by assembling the

corresponding element submatrices, given by:

Me = te
∫
Ae

ρSe dAe , (4.46)

Re = a0M
e + a1K

e , (4.47)
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where ρ denotes masonry mass density, te the element thickness, Ae the element

area and Se is a diagonal matrix, whose diagonal terms are the two displacement

shape functions associated to the degrees of freedom of each node. In case of

4-node FE, Se is defined as:

Se =



N1
1 0 0 0 0 0 0 0

0 N1
2 0 0 0 0 0 0

0 0 N2
1 0 0 0 0 0

0 0 0 N2
2 0 0 0 0

0 0 0 0 N3
1 0 0 0

0 0 0 0 0 N3
2 0 0

0 0 0 0 0 0 N4
1 0

0 0 0 0 0 0 0 N4
2


, (4.48)

with N j
i (i = 1, 2 and j = 1, 2, 3, 4) representing the shape function associated to

the i− degree of freedom of the j−node. Extension to 9-node FE is trivial.

The definition of the element damping matrix Re in Eq. 4.47 follows the classical

Rayleigh approach, with the coefficients a0 and a1 multiplying the element mass

and initial undamaged stiffness matrix, Me and Ke, respectively, computed as

function of the structural natural frequencies. The element stiffness matrix is

defined as:

K̃e = te
∫
Ae

LeT (1−D)2Ct Le dAe , (4.49)

where Le = BNe is obtained by applying the compatibility operator B introduced

in Eq. 4.18 to the shape function matrix Ne, and Ct is the elasto-plastic tangent

constitutive operator. Pint(u) is the internal force vector, accounting for the

nonlinear structural response, obtained by assembling the element contributions,

defined as:

Pint,e = te
∫
Ae

LeTσ dAe . (4.50)

Finally, vector Pext collects all the external loads applied to the structure, both

distributed and concentrated to the nodes.
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4.3.2 Solution algorithm

The implicit Newmark-β scheme is used to perform the time integration of the

FE differential equations (Eq. 4.45) with values of the coefficients γ and β, which

define the variation of acceleration over a time step and accuracy of the method,

equal to 0.5 and 0.25, respectively. The nonlinear solution within each time step

∆t is determined adopting the Newton-Raphson procedure.

To solve the nonlinear evolution problem of damage and plastic variables at

each Gauss point of the FE discretization within the global Newton-Raphson

iterative scheme, a predictor-corrector procedure based on the splitting method

is developed. This is based on an elastic-plastic predictor phase, followed by a

damage correction. During the first stage, the damage evolution is blocked and

the plasticity problem governed by Eqs. 4.33 - 4.36 with 4.29 is solved, by further

subdividing this phase into an elastic predictor and a plastic corrector step. The

damage corrector stage is then performed, by considering the plastic variables

evolution as blocked.

The adopted solution strategy is schematically illustrated in Table 4.3, where

the symbol ∆ denotes the increment of the variable in the time step ∆t. A detailed

description of the procedure is also provided in Box 4.2, in which the superscript

‘i’ denotes the Newton-Raphson iteration within the current time step ‘n+1’.

The developed finite element and solution algorithm have been implemented in

the FE code FEAP (Taylor, 2017) used to perform the numerical analyses. 2× 2

and 3 × 3 Gauss integration rules are adopted in each 4-node and 9-node FE,

respectively.
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Elastic-plastic predictor Damage corrector

Elastic predictor Plastic corrector

∆ε = Le∆ue ∆ε = 0 ∆ε = 0

∆εp = 0 ∆εp =

{
updated if F p ≥ 0

0 if F p < 0
∆εp = 0

∆ζ = 0 ∆ζ =

{
updated if F p ≥ 0

0 if F p < 0
∆ζ = 0

∆α = 0 ∆α =

{
updated if F p ≥ 0

0 if F p < 0
∆α = 0

∆Dt = 0 ∆Dt = 0 Dt =
Ȳt − Yt0
atȲt + bt

∆Dc = 0 ∆Dc = 0 Dc =
Ȳc − Yc0
acȲc + bc

Table 4.3: Predictor-corrector solution algorithm.

1. Displacements from the global Newton-Raphson procedure:

ue known

2. Compute strains and call variables from last iteration:

ε(i+1) = Lu(i+1)

εp
(i+1)

= εp
(i)

εe
(i+1)

= ε(i+1) − εp(i+1)

εp
(i+1)

3 = εp
(i)

3

εe
(i+1)

3 = f(εe
(i+1)

1 , εe
(i+1)

2 , ν)

ε
(i+1)
3 = εe

(i+1)

3 + εp
(i+1)

3
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3. Compute variables for damage evolution:

3.1. Principal total ε̂ and elastic ε̂e strains

ε̂
(i+1) = prin(ε(i+1))

ε̂
e(i+1)

= prin(εe
(i+1)

)

3.2. Damage associated variable Yt and Yc

Yt/c = f(ε̂(i+1), ε̂
(i+1)
3 , ν)

3.3. Variables to evaluate weighting coefficients αt and αc

Y e
t/c = f(ε̂e

(i+1)

, ε̂e
(i+1)

3 , ν)

3.4. Compute the nonlocal quantities

i. Nonlocal damage associate variables Ȳt and Ȳc

ii. Weighting coefficients αt and αc:

αt = f(Ȳ e
t , Ȳ

e
c , Yt0, Yc0), αc = 1− αt

4. Call history variables to build strain vector εc:

εc
(i+1)

= εcn = {ε3 γ23 γ13}Tn

5. Predictor-corrector algorithm

5.1. Elastic-plastic predictor

i. Elastic predictor

i.i Call history variables from last convergence:

α(i+1) = αn, ζ(i+1) = ζn,

εp
(i+1)

= {εp1 ε
p
2 γ

p
12}

T
n , εcp

(i+1)
= {εp3 γ

p
23 γ

p
13}

T
n

i.ii Build strain vectors ε3Dp and ε3D:
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ε3Dp
(i+1)

= {εp1 ε
p
2 ε

p
3 γ

p
12 γ

p
23 γ

p
13}

T

ε3D
(i+1)

= {ε1 ε2 ε3 γ12 γ23 γ13}T

i.iii Compute trial stress σ̃
3Dtrial

σ̃
3Dtrial(i+1)

= C3D(ε3D
(i+1) − ε3Dp(i+1)

)

i.iiii Compute yield function F p according to Eq. 4.29

ii. Plastic corrector

if F p < 0

ii.i C3Dt = C3D

ii.ii no variables update

else

ii.i update ε3Dp, ζ, α according to Eqs. 4.33, 4.34, 4.35

ii.ii compute the elasto-plastic tangent stiffness C3Dt

end if

iii. Check plane stress convergence

if |σ̃c| ≥ tol

iii.i dεc = −(C3Dt
22 )−1σ̃

c

iii.ii εc
(i+1)

= εc+ dεc

iii.iii return to 5.1

else

iii.i go to 5.2

end if

5.2 Damage corrector

i. Dt =
Ȳt − Yt0
atȲt + bt

, Dc =
Ȳc − Yc0
acȲc + bc
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i.ii D = αtDt + αcDc

i.iii σ(i+1) = (1−D)2σ̃(i+1)

Box 4.2: Predictor-corrector algorithm.

4.4 Model validation

The model presented in previous sections is used to perform nonlinear static and

dynamic analyses on 2D masonry structural elements. Here, to validate the pro-

posed damage-plastic model and the developed FE procedure, the nonlinear static

response of experimental walls loaded in-plane is investigated, analyzing both their

global load-displacement response and the damage distribution. Reference is made

to experimental campaigns performed at Joint Research Centre of Ispra (Anthoine

et al., 1995) and at University of Pavia (Magenes et al., 1995).

4.4.1 Ispra walls simulation

To show the effectiveness of the proposed model in describing nonlinear behavior

of masonry structures, response of the panels experimentally tested at the Joint

Research Centre of Ispra (Anthoine et al., 1995) is numerically investigated. Test

conditions, in detail described in Section 2.2.2.2, were designed so as to reproduce

those of masonry piers under seismic actions. Two walls (see Figure 2.23), char-

acterized by different height/width ratio (equal to 2 and 1.35 for the high and low

wall, respectively), are analyzed with the aim of highlighting effect of the geometry

on the degrading and collapse mechanisms. Both panels are 1000 mm wide and

250 mm thick. The mechanical parameters, deduced from literature, are contained

in Table 4.4, setting κ = 0 and Hi = 0. The selected damage and plastic param-

eters lead to tensile and compressive strengths equal to 0.25 MPa and 5.8 MPa,

respectively. These values are close to joint cohesion and masonry compressive

strength experimentally measured by Magenes and Calvi, 1997. Furthermore, the

same value of the adopted Young’s modulus can be found in Karapitta et al.,

2011 and Liberatore et al., 2017, where a macromechanical and a macroelement
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approach were respectively adopted to numerically describe the Ispra panels re-

sponse. The nonlocal radius lc is assumed equal to 200 mm, setting this on the

basis of the brick and mesh size. A mesh made of (8× 16) 9-node FEs is adopted

for high wall, while (8× 10) 9-node FEs are used for low wall.

Elastic parameters

E [MPa] ν
1700 0.15

Plastic parameters

σt [MPa] σc [MPa] Hk [MPa]

1.0 1.8 0.95E

Damage parameters

Yt0 bt at Yc0 bc ac

6×10−5 3.5×10−4 0.97 6×10−4 1.6×10−2 0.99

Table 4.4: Ispra panels: material parameters.

Figure 4.10 shows the global response curves of the two panels in terms of

total base reaction versus applied horizontal displacement, for the high (a) and

(b) low wall. As shown, the developed numerical model is capable to satisfactorily

reproduce the experimental cyclic response of the two walls.

Looking at the nonlinear behavior of the two walls, the different trends of

the global response curves are a consequence of different onset and evolution of

damage and plasticity mechanisms. The strongly nonlinear load-displacement

curve of the high panel is due to the opening and re-closing, under reversal loads,

of tensile cracks located at the top and bottom corners, while damage localizes

in the middle of the panel for the low wall. Thus, the latter shows a softening

behavior more severe than the high wall, as well as larger cycles. Figures 4.11

and 4.12 contain the distribution of the tensile damage Dt for the high and low

wall, respectively, at points A and B of the load-displacement curves in Figures

4.10(a) and (b), together with experimental damage patterns for comparison.

As known, tensile damage Dt is the most relevant for the onset and evolution

of microcracking processes in brittle-like materials, like masonry. In accordance

with the experimental outcomes, it emerges that flexural degrading mechanisms

definitely characterize the response of the high wall, which shows formation of high

damaged zones located at the top and bottom sides starting from the corners, as
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evidenced in Figure 4.11(c) by the crack lines in the experimentally tested panel.
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Figure 4.10: Ispra walls: comparison between numerical (black lines) and ex-
perimental (gray lines) load-displacement global curves for (a) high and (b) low
wall.

Regarding the low wall, the shear mechanism is predominant with respect to

the flexural ones and diagonal damage bands appear, spread and rotate similar
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to the experimental evidences (Figure 4.12(c)). This causes a steeper post-peak

response, together with a more evident hysteretic behavior due to growth of plastic

irreversible strains.
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Figure 4.11: Ispra high wall: distribution of the tensile damage Dt for the top
displacement value equal to (a) 5 mm and (b) 12.5 mm and (c) experimental failure
paths from Anthoine et al. (1995).
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Figure 4.12: Ispra low wall: distribution of the tensile damage Dt for the top
displacement value equal to (a) 2 mm and (b) 7.5 mm and (c) experimental failure
paths from Anthoine et al. (1995).
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4.4.2 Pavia wall D simulation

A full-scale masonry wall, part of the two-story building experimentally tested at

University of Pavia (Magenes et al., 1995), is also selected from the literature to

evaluate efficiency of the proposed constitutive model. This is the longitudinal

wall D, also referred to as ‘door wall’, which was disconnected from the adjacent

transverse walls and, then, can be analyzed independently. The wall geometry is

shown in Figure 4.13 together with the applied vertical loads p1 and p2 (equivalent

to a uniformly distributed load of 10 kN/m2 on the slabs of the building) at the

first and second floor, respectively. Seismic forces were simulated by imposing

cyclic displacement histories at the two floors so that the applied forces were

equal.
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Figure 4.13: Pavia wall D: geometry and loading conditions (dimension in [cm]).

A mesh made of 590 FEs (9-node) is used to perform the numerical analysis,

considering a nonlocal radius lc = 300 mm. The material parameters, reported in

Table 4.5, are selected in accordance with those deduced by Magenes and Calvi,

1997, so that to obtain tensile and compressive strength equal to 0.2 MPa and

8 MPa, respectively. According to the experimental test, a two-step displacement-

controlled analysis is performed: first, self-weight (for which γ = 18 kN/m3 is

assumed) and additional vertical loads p1 and p2 are applied, then horizontal

displacements are imposed at each floor level. The displacement histories are

calibrated to maintain a constant ratio of 0.65 between first, s1, and second, s2,
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floor displacement (the applied displacement history at the top floor is sketched

in Figure 2.27).

Elastic parameters

E [MPa] ν
1800 0.25

Plastic parameters

σt [MPa] σc [MPa] Hk [MPa]

0.5 1.0 0.9 E

Damage parameters

Yt0 bt at Yc0 bc ac

1×10−5 3×10−4 0.99 9×10−4 1.6×10−2 0.99

Table 4.5: Pavia wall D: material parameters.

Figure 4.14 shows the comparison between numerical (black line) and exper-

imental (gray line) base shear-second floor displacement curves. Despite some

differences arise during the first cycles of response, where overestimated strength

emerges in numerical curve with respect to the experimental one, the proposed

model correctly describes both the hysteretic and degradation mechanisms evolv-

ing in the structural elements. Indeed, satisfactory agreement is found also in

terms of crack pattern (Figure 4.15) with damaged zone located in the spandrels

between openings and shear bands in the central pier.
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Figure 4.14: Pavia wall D: comparison between numerical (black line) and exper-
imental (gray line) base shear-second floor displacement curves.
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Figure 4.15: Pavia wall D: (a) experimental crack pattern and (b) distribution of
the tensile damage Dt at the end of the analysis.

4.5 Summary

In this chapter a phenomenological model for the 2D analysis of masonry struc-

tures was presented. The model, accounting for strength-stiffness decay, unilateral

effect and hysteretic mechanisms, was introduced in a finite element procedure im-

plemented in the FEAP code. Comparison between numerical and experimental

results were provided to prove effectiveness of the proposed constitutive law. A

full-scale masonry wall and two panels with different geometry, were analyzed.

Numerical outcomes highlighted that the main features of the cyclic experimental

load-displacement curves are successfully reproduced. Indeed, peak loads, energy

dissipation, damage distribution, as well as collapse mechanisms, are satisfactorily

matched.

In conclusion, the performed analyses showed that the proposed model is a

suitable and reliable tool to reproduce experimental results, as well as to predict

response of masonry walls.
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Orthotropic damage model

Regular masonry textures exhibit anisotropic macroscopic response with substan-

tial discrepancy among properties observed in different material directions. This

is due to the spatial organization of bricks and mortar which causes microcraks

located at brick-mortar interface. Usually the anisotropic behavior reduces to

an orthotropic one. This also emerges in elastic range, as Figure 5.1 shows with

reference to the experimentally obtained correlation between the ratios Young’s

modulus-to-Poisson’s coefficient defined along the normal N and parallel T di-

rection to bed joints orientation (Cavaleri et al., 2014). In general, in heteroge-

neous materials, damage development can alter the initial orthotropic character-

istic leading to a more general anisotropic response. However, when dealing with

masonry, it is reasonable to assume that damage propagation can result in change

of orthotropy intensity without altering the symmetry of the material (Berto et al.,

2002).

As few macromechanical models were proposed to describe masonry anisotropic

response in the elastic and inelastic range (see Section 3.1.2), this chapter proposes

a new orthotropic damage model, tailored to the 2D analysis of masonry struc-

tures. First, main concepts of anisotropic damage are recalled, then, the adopted

constitutive law, the introduced damage limit surface and damage evolution laws

are presented. Moreover, model performance is evaluated through numerical and

experimental comparisons.

Finally, with the aim of evaluating effect of bricks and mortar relative arrange-

95



Chapter 5: Orthotropic damage model

ment on the level of orthotropy of masonry elastic response, a study is presented

with reference to different masonry textures and blocks sizes.
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Figure 5.1: Cavaleri et al. (2014): experimental (dots) and theoretical (dashed
line) correlation between the ratios Young’s modulus-to-Poisson’s coefficient ob-
tained from uni-axial compressive tests normal and parallel to bed joints.

5.1 Anisotropic damage models: main concepts

Anisotropic damage models were developed to account for the directional strength

properties of materials. These replace the scalar representation of the damage with

a tensorial one by introducing vector variables, fourth order or, more frequently,

second order damage tensors. In such a case, the effective stress in Eq. 4.12,

evaluated on the basis of the strain equivalence hypothesis, is rewritten as:

[σ̃] = [M(D)] : [σ] , (5.1)

where symbol (:) denotes tensorial product, [σ̃] and [σ] indicate the effective and

actual stress tensor, respectively, and [M(D)] is the so-called damage-effect ten-

sor, being a transformation tensor which is function of the damage state.

For sake of simplicity, in what follows attention is focused on plane stress condi-

tions. However, analogous considerations hold for three-dimensional constitutive
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laws. By adopting matrix notation, Eq. 5.1 becomes:σ1σ2
τ12

 = [M(D)]−1

 σ̃1σ̃2
τ̃12

 = (I−D)

 σ̃1σ̃2
τ̃12

 , (5.2)

where I is the third-order identity matrix and D is a 3 × 3 damage matrix.

If the effective area concept is recalled and the area of defects associated to the

i-direction is denoted by Aid, the corresponding damage Di results as:

Di =
Aid
Ai

. (5.3)

Thus, the following relationship holds between the effective, σ̃′, and real, σ,

stresses: 
σ̃′1

σ̃′2

τ̃ ′12

τ̃ ′21

 =


1/(1−D1) 0 0

0 1/(1−D2) 0

0 0 1/(1−D2)

0 0 1/(1−D1)


σ1σ2
τ12

 . (5.4)

It is evident that hypothesis of strain equivalence leads to asymmetric effective

stresses and, consequently, to asymmetry of the stiffness matrix when anisotropic

damage is considered (Chow and Wang, 1987; Ghrib and Tinawi, 1995). To avoid

this drawback, different approaches were proposed. For instance, a symmetrized

form of the effective stress can be adopted:

σ̃ =

 σ̃1σ̃2
τ̃12

 =


σ̃′1

σ̃′2√
τ̃ ′212 + τ̃ ′221

2

 , (5.5)
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thus obtaining the following relationship between the symmetrized effective, σ̃,

and real, σ, stresses:

 σ̃1σ̃2
τ̃12

 =



1

1−D1

0 0

0
1

1−D2

0

0 0

√
1

2

(
1

(1−D1)2
+

1

(1−D2)2

)

σ1σ2
τ12

 . (5.6)

Alternatively, the complementary energy principle can be invoked (see Section

4.1.2). By equating the complementary energy of the damaged material Λd:

Λd =
1

2
σT C̃−1σ , (5.7)

and the complementary energy of the equivalent undamaged material Λ0:

Λ0 =
1

2
σ̄TC−1σ̄ , (5.8)

the damaged stiffness matrix C̃ results as:

C̃ = (I−D)TC(I−D) =


C11d

2
1 C12d1d2 0

C21d1d2 C22d
2
2 0

0 0 C33
2d21d

2
2

d21 + d22

 , (5.9)

where Cij (i = 1, 2, 3 and j = 1, 2, 3) are the components of the undamaged

material stiffness matrix C and di = (1 − Di), with i = 1, 2. Eq. 5.9 shows

that the symmetric form of the constitutive operator C̃ is restored. Furthermore,

as usually proposed (Williams et al., 2003; Lapczyk and Hurtado, 2007), damage

affecting shear components is defined as a function of D1 and D2. However, several

orthotropic damage models (Matzenmiller et al., 1995; Maimı́ et al., 2007; Simon

et al., 2017) take use of independent damage variables for shear. This hypothesis

is justified by the different damaged areas for normal and shear stresses. Thus,

it could be reasonable dealt with damage parameters in shear as independent

unknowns.
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5.2 Damage model

Within the macromechanical approach framework, heterogeneous masonry walls

are modeled as equivalent homogenized orthotropic media, with the material/

natural axes (T ,N) as axes of orthotropy. First, the stress-strain relationship is

defined in the material axes system, then, this is expressed in the global x, y-

coordinate system (see Figure 5.2) by using standard transformation rules.

The following constitutive law is proposed:

σTN = (I−D)TCTN(I−D)εTN , (5.10)

with σTN = {σT σN τTN}T and εTN = {εT εN γTN}T denoting stress and strain

vectors, respectively. CTN is the elastic constitutive matrix of the undamaged

material for plane stress condition:

CTN =
1

S

 ET νTNEN 0

νNTET EN 0

0 0 GTNS

 , (5.11)

where S = (1 − νTNνNT ) is function of Poisson’s coefficients νTN and νNT . ET ,

EN and GTN are elastic moduli along the orthotropy directions. In Eq. 5.10, I is

the 3 × 3 identity matrix, while D represents a 3 × 3 damage matrix defined on

Homogenization

x

y
TN

ϑ 

Figure 5.2: Global (x, y) and material (T,N) axes of the homogenized masonry
material.
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the basis of scalar variables D1, D2 and D3, as:

D =

D1 0 0

0 D2 0

0 0 D3

 . (5.12)

The resulting damaged constitutive matrix C̃TN = (I−D)TCTN(I−D), derived

from the equivalence energy principle, is:

C̃TN =
1

S

 (1−D1)
2ET νTN(1−D1)(1−D2)EN 0

νNT (1−D1)(1−D2)ET (1−D2)
2EN 0

0 0 S(1−D3)
2GTN

 .

(5.13)

The introduced damage variables, D1, D2 and D3 permit to describe the main

failure mechanisms due to shear and both compressive and tensile states, normal

and parallel to bed joints, as sketched in Figure 5.3. D1 and D2 result as a proper

combination of damage parameters in tension Dit and compression Dic (i = 1, 2),

as follows:

D1 = α1D1t + (1− α1)D1c ,

D2 = α2D2t + (1− α2)D2c ,
(5.14)

where weighting coefficients, α1 and α2, are introduced to rule the stiffness re-

covery at the crack re-closure. These are defined in the following on the basis of

strain state at the material point M .

All damage variables, Dit, Dic (i = 1, 2) and D3, can range between 0 and 1,

according to their physical meaning and these have to satisfy the irreversible

thermodynamic condition, such that Ḋit ≥ 0, Ḋic ≥ 0 and Ḋ3 ≥ 0. Furthermore,

constraints D1t ≥ D1c and D2t ≥ D2c are enforced.

To rule onset and evolution of damage parameters, associated variables are
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(a) (b) (c) (d) (e)

Figure 5.3: Failure modes associated to (a) D1t, (b) D2t, (c) D1c, (d) D2c and (e)
D3 .

defined on the basis of equivalent strain concept, as follows:

Y1 = εT + ν̃NT εN ,

Y2 = εN + ν̃TN εT ,

Y3 = γTN ,

(5.15)

where ν̃NT = [(1−D2)/(1−D1)] νNT and ν̃TN = [(1−D1)/(1−D2)] νTN have

the physical meaning of degraded Poisson’s ratios under uni-axial stress states.

Once computed quantities in Eqs. 5.15, the weighting coefficients α1 and α2 in

Eq 5.10 can be defined:

α1 = H(Y1) , α2 = H(Y2) , (5.16)

with H(•) denoting the Heaviside function (i.e. H(•) = 1 if (•) ≥ 0, otherwise

H(•) = 0). It can be noted that the proposed model assumes no re-closure effect

related D3, as shear damage is caused mainly by transverse cracks which do not

close under reversal shear stresses.

To finalize the model description, the adopted damage criterion and evolution

law of the damage variables are defined below.
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5.2.1 Damage limit surface

Definition of a proper damage limit surface represents an arduous task, because of

various failure modes that may occur depending on the stress state. For regular

masonry, the directional properties of the material imply that failure criteria have

to take into account the orientation of principal stresses with respect to the mate-

rial axes. Available experimental results allowed the development of several failure

criteria. Most of them refer to the failure surface idealized by Dhanasekar et al.

(1985), which consists of the intersection of three elliptic cones in the space of

stresses expressed in the natural axes (Figure 5.4). Stemming from this proposal,

Berto et al. (2002) interpreted the material damage field as a double pyramid with

rectangular base, defined in terms of equivalent effective stresses, as Figure 5.5

shows. Further developments conducted to more complex failure criteria. Figure

5.6 shows the failure surface proposed by Lishak et al. (2012), which results into

a very intricate shape composed of five parts corresponding to different failure

modes.

On the basis of the aforementioned studies and those of Lourenço et al. (1997)

and Pelà et al. (2013), here the damage limit surface FD is geometrically defined as

the intersection of an ellipsoid and elliptic cone in the space of damage associated

variables (see Figure 5.7). Only masonry strength properties and some additional

properties are required to build it (Appendix A is reference to detailed descrip-

tion of the surface construction). In particular, the uni-axial damage thresholds

in the parallel, Y1t0 and Y1c0, and normal, Y2t0 and Y2c0, direction to the bed joints

orientation are needed, by distinguishing them to account for the non-symmetric

behavior in tension and compression (as the subscripts ‘t’ and ‘c’ indicate). Fur-

thermore, the pure shear Ys0 threshold and bi-axial compressive Ycc0 threshold are

required (see Figure 5.8).

The damage criterion imposes that points inside the surface represent material

elastic states, otherwise damage evolution occurs and the damage thresholds

Y10, Y20, Y30 have to be identified. The determination of the damage thresholds al-

lows to define the evolution laws of the damage parameters, as carefully described

in next section.
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Figure 5.4: Failure surface proposed by Dhanasekar et al. (1985).
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Figure 5.7: Proposed damage limit surface in the Y3 positive semi-space.
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Figure 5.8: Meaningful sections (A-A and B-B in Figure 5.7) of the limit surface.

5.2.2 Evolution laws for damage variables

As far as damage variables evolution is concerned, rational evolution rules are as-

sumed, which require to distinguish between damage in tension and compression

along each material axis. Thus, attention should be paid to the sign of Yi vari-

ables, as in detail described in Box 5.1, where reference is made to a step-by-step

procedure and the apex ‘n + 1’, denoting the current time, is omitted for sake of

simplicity.

The evolution laws in Box 5.1 result function of material parameters (at, ac, as, bt,

bc, bs), which are selected on the basis of uni-axial tension and compression and

pure shear tests. Peak strengths of stress-strain relationships are mainly govern

by bt, bc and bs parameters, while at, ac and as influence the slope of softening

branches. Graphical representation of material parameters effect can be found in

Figure 4.4, as similar evolution laws are used for the isotropic damage model pre-

sented in Chapter 4. It should be noticed that a linear variation of the bs parameter

with the compressive stress σN is introduced, with the aim of phenomenologically

capturing the increment of the fracture energy GII
f with the normal compressive

stress (see Eq. 2.2 and Figure 2.10(a)).
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if FD ≥ 0 then

1. if Y1 ≥ 0 then (tensile state)

D1c = Dn
1c

D1t = max

(
Y1 − Y10
atY1 + bt

, Dn
1t, D1c

)
else

D1c = max

(
|Y1| − |Y10|
ac|Y1|+ bc

, Dn
1c

)
D1t = max(Dn

1t, D1c)

end if

2. if Y2 ≥ 0 then (tensile state)

D2c = Dn
2c

D2t = max

(
Y2 − Y20
atY2 + bt

, Dn
2t, D2c

)
else

D2c =max

(
|Y2| − |Y20|
ac|Y2|+ bc

, Dn
2c

)
D2t = max(Dn

2t, D2c)

end if

3. D3 = max

(
|Y3| − |Y30|
as|Y3|+ b̄s

, Dn
3

)
, with b̄s = bs − 〈σN〉− bs

else

Dit = Dn
it , Dic = Dn

ic , D3 = Dn
3 (i=1,2)

end if

Box 5.1: Evolution laws of damage variables.
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5.2.3 Transformation rules

Stress σTN = {σT σN τTN}T and strain εTN = {εT εN γTN}T vectors, defined in

the material axes system, are related to those in the global x, y-coordinate system

σxy = {σx σy τxy}T and εxy = {εx εy γxy}T (see Figure 5.2), by using standard

transformation rules:

σxy = PσTN , εxy = ΨεTN , (5.17)

where P and Ψ are rotation matrices expressed as:

P =

m
2 n2 −2mn

n2 m2 2mn

mn −mn m2 − n2

 , Ψ =

 m2 n2 −mn
n2 m2 mn

2mn −2mn m2 − n2

 , (5.18)

being m = cosϑ and n = sinϑ, with ϑ rotation angle between T,N -axes and

x, y-axes.

5.3 FE formulation and nonlocal regularization

The presented model is introduced in a displacement-based FE formulation, in-

volving 4-node quadrilateral finite elements with two displacement degrees of free-

dom at each node, based on bi-linear interpolation functions for the two displace-

ment fields ux and uy.

As a consequence of the softening branch in the stress-strain relationship,

localization problems can arise, inducing the already mentioned mesh dependency

of the numerical results evaluated by means of the FE solution procedure. To

overcome these numerical drawbacks, the same strategy adopted in Section 4.2.3

is applied. In fact, it is assumed that the damage parameters evolution is governed

by the nonlocal damage associated variables, defined as:

Ȳi (x) =
1∫

A
ψ (x, s) dA (s)

∫
A

Yi (s)ψ (x, s) dA (s) i = 1, 2, 3 , (5.19)

being Ȳi the nonlocal quantities at x, evaluated by means of the corresponding

107



Chapter 5: Orthotropic damage model

local variables Yi at points placed in its neighborhood. ψ is the weighting Gaussian

function, which determines the influence on x of the point s, and depends on the

nonlocal radius lc, as:

ψ (x, s) = e−( ‖x−s‖
lc

)
2

. (5.20)

Once determined the nonlocal quantities in Eq. 5.19, these are introduced in

Eq. 5.16 and in the damage evolution laws (Box 5.1), thus allowing to solve

the nonlinear evolution problem of the damage variables in each Gauss point. A

simplified version of the predictor-corrector procedure adopted in Section 4.3.2 is

here developed to determine the updated values of the damage parameters. This

simply consists of an elastic predictor phase, followed by a damage corrector step.

5.4 Validation examples

Model validation is carried out by evaluating its ability in reproducing the differ-

ent strength and stiffness characteristics observed along masonry material axes.

First, the uni-axial stress-strain responses are analyzed, then, the exploration is

moved towards more complex loading conditions. Experimental failure domains

obtained under bi-axial stress states are numerically reproduced and, then, struc-

tural applications on shear walls are presented.

5.4.1 Uni-axial stress-strain response

A unit masonry element properly constrained is subjected to a monotonically

increasing strain εx. With reference to the material parameters listed in Table 5.1,

Figure 5.9 shows the uni-axial stress-strain response obtained for three example

values of the ϑ angle. The numerical results highlight the model ability to take

into account the influence of the applied stresses with respect to the bed joints

orientation. In fact, distinct initial elastic stiffnesses, as well as different maximum

strengths, are obtained for ϑ = 0° (blue line), ϑ = 45° (black line) and ϑ = 90°

(red line). This is a consequence of the stress and strain states acting along the

material axes and the adopted definition of the damage associated variables Y1, Y2

and Y3. It can be noted that damage variable D3 is activated only for ϑ = 45° (see
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Figure 5.10(b)), as this is related to the shear deformation γTN . On the contrary,

when ϑ is equal to 0° or 90° (Figures 5.10(a) and (c), respectively), no shear

strain γTN occurs and, consequently, only D1 and D2 arise. In particular, D1

starts and evolves when ϑ = 0° because of the T -axis coincides with the x-axis,

whereas D2 appears in case of ϑ = 90° as a result of the overlap of x and N axes.

Elastic parameters

ET [MPa] EN [MPa] νTN GTN [MPa]

4000 2000 0.1 1500

Damage parameters

at = ac = as bt=bs bc
0.99 1× 10−5 5× 10−3

Damage thresholds

Y1t0 Y1c0 Y2t0 Y2c0 Ys0 Ycc0

9.95× 10−5 9.95× 10−4 9.95× 10−5 9.95× 10−4 2× 10−4 1.1Y2c0

Table 5.1: Material parameters adopted in Figures 5.9, 5.10 and 5.11.
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Figure 5.9: Uni-axial tensile stress-strain laws for different values of ϑ.

Furthermore, to prove the effectiveness of proposed model in capturing the

unilateral behavior due to the re-closure of tensile cracks under reversal loading,

the cyclic deformation history detailed in Figure 5.11(a) is applied to the masonry

element with horizontal bed joints (ϑ = 0°). The resulting cyclic stress-strain law,
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Figure 5.10: Uni-axial tensile test: variation of damage associated variables Y1,
Y2, Y3 and damage variables D1, D2, D3 for (a) ϑ = 0°, (b) ϑ = 45°, (c) ϑ = 90°.

depicted in Figure 5.11(b), points out that the stiffness recovery occurs when

passing from tension to compression (A-B phase). The subsequent reloading in

tension, which leads to point C, is affected by the accumulated compressive dam-

age, because of the constraint D1t ≥ D1c. The phenomenon is clearly illustrated

in Figure 5.11(a), where the variation of the damage variables D1t, D1c and D1 is

plotted with respect to the fictitious time variable. Here, it can be noted that D1
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assumes the same value of D1t for tensile states and, then, when a reversal strain

occurs, returns equal to D1c, allowing a proper representation of the unilateral

damage recovering upon load reversal.
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Figure 5.11: Cyclic test for ϑ = 0°: (a) applied strain history and variation of the
damage variables, (b) uni-axial cyclic stress-strain law.
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5.4.2 Bi-axial test on masonry brickwork

The experimental bi-axial tests performed by Page (1981, 1983) on half-scale clay

masonry panels are chosen to test the model ability in describing the directional

strength characteristics of masonry subjected to in-plane loading conditions. As

described in detail in Chapter 2 (Section 2.2.1.3), bi-axial stresses oriented at

various angles ϑ to the bed joints were applied and the resulting failure surfaces

were obtained in terms of principal stresses and their orientation to the bed joints.

Table 5.2 contains the material parameters used to perform the numerical analysis

(for which an Arc-length procedure is employed), which are selected according to

data provided by Page (1981, 1983); Page et al. (1985).

On the overall, a good agreement is found between numerical and experimental

results, as Figures 5.12, 5.13 and 5.14 show by comparing the numerical failure

surfaces and experimental data for values of angle ϑ equal to 0°, 22.5° and 45°.

Results of 67.5° and 90° are implicitly contained those of 22.5° and 0°, respec-

tively.

In case of ϑ = 0°, non-symmetric shape of the failure surface, with respect to

the bisecting axis, emerges with noticeable differences in the compressive strength

normal and parallel to bed joints. This testifies that, notwithstanding the quasi-

isotropic elastic response (see the elastic mechanical parameters in Table 5.2), the

model is able to phenomenologically describe the preferential direction of micro-

cracks evolution due to the spatial arrangement of mortar and bricks.

By varying ϑ, the asymmetric characteristic of the failure surface is gradually lost

until the symmetric shape is fully restored at ϑ = 45°(see Figure 5.14).

Elastic parameters Damage parameters

ET [MPa] EN [MPa] νTN GTN [MPa] at/c/s bt bc bs
5700 5600 0.19 2350 0.99 4× 10−5 2×10−3 1×10−4

Damage thresholds

Y1t0 Y1c0 Y2t0 Y2c0 Ys0 Ycc0

6.8× 10−5 6.8× 10−4 4.2× 10−5 1.2× 10−3 1.3× 10−4 1.1 Y2c0

Table 5.2: Material parameters for Page panels.
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5.4.3 Shear walls

To further validate the presented model, the response of the shear walls experimen-

tally tested by Raijmakers and Vermeltfoort (1992) is here numerically analyzed.

The panels, whose scheme is shown in Figure 5.15, are composed of 18 courses of

clay bricks arranged in running bond texture with 10 mm thick mortar, resulting

in overall high H = 1000 mm, width W = 990 mm and thickness t = 100 mm.

According to the experimental investigation, for whose detailed description the

reader can refer to Chapter 2 (Section 2.2.2.1), two-step analyses are performed:

first, a vertical compressive pressure p is applied and, then, a horizontal mono-

tonically increasing displacement s is imposed at the walls top side, keeping the

bottom and top sides horizontal and preventing any vertical movement. Three dif-

ferent values of the vertical load p are considered, i.e. p = 0.3 MPa, p = 1.21 MPa

and p = 2.12 MPa, to assess the model ability in describing effect of increasing

vertical pressure on the global force-displacement response curves and activated

failure mechanisms.

Before showing the comparison between numerical and experimental outcomes,
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the performed homogenization procedure, aimed at determining the elastic prop-

erties of the homogenized masonry material, is described next.

W

H x

y

b2a
2

RVE

2a
1

p

s

h

Figure 5.15: Schematic of the analyzed shear walls and selected RVE.

5.4.3.1 Elastic properties of homogenized material

To rationally identify elastic properties of the homogenized orthotropic medium, a

classic homogenization procedure is adopted (Sacco, 2009; De Bellis, 2009; Addessi

and Sacco, 2014). The unit cell (RVE) shown in Figure 5.15 (where a1 = 110 mm

and a2 = 62 mm) is considered as representative of the periodic masonry, as this

generates the regular arrangement by repeating itself in the continuum domain.

The selected RVE is analyzed at micro level by using 4-node quadrilateral finite

elements and assuming linear elastic constitutive laws for bricks and mortar. Ta-

ble 5.3 contains mechanical parameters and sizes of each constituent, selected

according to Lourenço (1996) and Addessi and Sacco (2012).

Brick

Eb [MPa] νb b [mm] h [mm]
16000 0.15 210 52

Mortar

Em [MPa] νm tm [mm]

800 0.11 10

Table 5.3: Elastic mechanical parameters and sizes of the constituent materials.

In what follows, σ = {σx σy τxy}T and ε = {εx εy γxy}T refer to the stress and

strain vectors at the micro level, while Σ = {Σx Σy Σxy}T and E = {Ex Ey Γxy}T
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denote the corresponding average homogenized quantities.

Response of the RVE is evaluated by applying macroscopic strain vectors E =

{1 0 0}T , E = {0 1 0}T , E = {0 0 1}T and by considering periodic boundary con-

ditions. Thus, the displacement field, solution of the RVE, results as the super-

position of two different fields, as follows:

u(x) = A(x)E + ũ(x) , (5.21)

where x = {x y}T is the position vector on the RVE, A(x) is a matrix accounting

for the kinematic map linking the macro and micro level, and ũ(x) is the periodic

micro level fluctuation field respecting the following periodicity conditions:

ũ(a1, y) = ũ(−a1, y) ∀y ∈ [−a2, a2] ,

ũ(x, a2) = ũ(x ,−a2) ∀x ∈ [−a1, a1] .
(5.22)

In expanded form Eq. 5.21 becomes:

ux(x, y) = Exx+
1

2
Γxyy + ũx(x, y) ,

uy(x, y) =
1

2
Γxyx+ Eyy + ũy(x, y) .

(5.23)

The microscopic strain vector ε(x) is determined as:

ε(x) = L(x)E , (5.24)

where E is the prescribed average strain and L(x) is an localization matrix.

The microscopic stress is evaluated by using the following elastic constitutive laws:

σ = ckε , (5.25)

with ck denoting the plane stress elastic constitutive matrix for brick (k = b)

and mortar (k = m). Figures 5.16(a-c) show the distributions of the microscopic

stresses σx, σy and τxy obtained by imposing the unit macroscopic strain vectors

E = {1 0 0}T , E = {0 1 0}T and E = {0 0 1}T .
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Figure 5.16: Distributions of stresses on the RVE deformed configurations (scaled
0.2).

Finally, by using the Hill-Mandel equivalence principle, the macroscopic stress is

determined as:

ETΣ =
1

V

∫
V

εTσdV =
1

V

∫
V

(LE)T ck (LE) dV = ETCE , (5.26)

where C is the wanted 3×3 homogenized elastic constitutive matrix, which results

as:

C =

8.6853 0.4291 0

0.4291 3.9315 0

0 0 1.6070

× 103 . (5.27)

On the basis of the macroscopic elastic coefficients Cij (i = 1, 2, 3, j = 1, 2, 3)
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of C matrix, the homogenized Young’s moduli and Poisson ratios are determined

(see Table 5.4).

Homogenized elastic properties

Ex = ET [MPa] Ey = EN [MPa] νxy = νTN Gxy = GTN [MPa]

8638.5 3910.3 0.11 1670

Table 5.4: Elastic mechanical parameters of the homogenized masonry material.

5.4.3.2 Global response curves and damage distributions

A mesh made of (15 × 15) 4-node quadrilateral finite elements is used to perform

the numerical analyses, setting the nonlocal radius lc = 200 mm in accordance to

mesh and brick sizes. The mechanical parameters deduced by the experimental

data and also reported in Zucchini and Lourenço (2009) are contained in Table

5.5. These lead to average tensile and compressive strengths along the material

axes equal to 0.18 MPa and 10 MPa, respectively.

In Figure 5.17 experimental (gray lines) and numerical (black lines) global re-

sponse curves, in term of horizontal base reaction versus applied horizontal dis-

placement, are depicted for all the considered values of the precompression load.
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Figure 5.17: Raijmakers-Vermeltfoort panels: comparison between numerical
(black lines) and experimental (gray lines) force-displacement response curves.
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On the overall, good agreement is found, as the model reproduces the increase of

maximum strength with increasing vertical load p. However, differently from the

experimental outcomes, the numerical curves do not capture the increasing brittle

behavior, as these show softening branches with similar slope.

As concerns the activated failure modes, Figure 5.18 shows comparison be-

tween the experimental crack patterns and the damage maps of D2 and D3 at

the end of the analyses. In accordance with the experimental outcomes, signifi-

cant damaged zones located at the bottom and top corners of the wall appears

in the case of lower compression load, i.e p = 0.3 MPa. These are a consequence

of high tensile stresses normal to bed joints and, consequently, are associated to

D2 damage. For the higher values of p, that is 1.21MPa and 2.12 MPa, damaged

zones also appear due to the crushing of the material. Finally, similarly to the

experimental crack paths, diagonal bands, associated to D3 damage, emerge in

the middle of the panels due to the dominant shear mechanism.

Damage parameters

at = ac = as bt bc bs
0.99 4.2×10−5 2.5×10−3 8.5×10−4

Damage thresholds

Y1t0 Y1c0 Y2t0 Y2c0=Ycc0 Ys0

2.3×10−5 9.2×10−4 3.8×10−5 2.5×10−3 1.4×10−4

Table 5.5: Raijmakers-Vermeltfoort panels: material parameters.

5.5 Effect of texture on the level of orthotropy

A brief study is here performed to evaluate the effects of bricks and mortar rela-

tive arrangement on the definition of homogenized elastic properties.

The level of orthotropy of the elastic response depends on the geometry, size,

mechanical properties and arrangement of the constituent materials. Figures

5.19(a-e) show examples of masonry-like composite textures with rectangular (a-

c) and square (d,e) blocks, whose dimensions are selected according to Casolo

(2006). Sizes of rectangular blocks are 250 × 55 × 120 mm3, whereas side of
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Figure 5.18: Raijmakers-Vermeltfoort panels: comparison between experimental
crack paths (first column) and distributions of damage D2 (second column) and
D3 (third column).

square blocks is 120 mm. Mortar joints thickness is assumed equal to 10 mm. To

evaluate the homogenized constitutive matrices, the representative cells depicted

in Figures 5.20-5.24 are selected and the homogenization procedure described in
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Section 5.4.3.1 is applied by considering isotropic behavior for all components

(Eb = 10000 MPa, Em = 1000 MPa, νb = νm = 0.1, according to Casolo (2006)).

The resulting homogenized stiffness matrices are reported in Eqs. 5.28-5.32 by

highlighting the effect of blocks size and arrangement. Focusing the attention

on the same typology of texture but different blocks size (for instance running

and stack bond arrangements in Figure 5.19), it emerges that rectangular blocks

lead to higher level of orthotropy with respect to square ones. This feature can

be better valued by the homogenized moduli Ex, Ey and Gxy summarized in Ta-

ble 5.6 for all RVEs. It should be noted that, despite the stack bond texture

with square blocks leads to the same value of Ex and Ey, the shear modulus

Gxy = 1972.7 MPa does not match to that determined with the isotropic relation-

ship G = E/(2(1 + ν)) = 2632.3 MPa, as usual for masonry material.

(a) Running bond (b) English bond

(c) Stack bond (d) Running bond (e) Stack bond

Figure 5.19: Masonry textures: (a-c) rectangular blocks and (d,e) square blocks.

To summarize the performed analyses confirmed that different level of or-

thotropy of the elastic response can occur depending on geometry and arrange-

ment of the constituent materials. Notwithstanding the initial elastic orthotropic
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Figure 5.20: RVE running bond
(rectangular blocks).

C =

6893.3 381.3 0
381.3 4138.7 0

0 0 1755.5

 (5.28)

Figure 5.21: RVE english bond (rect-
angular blocks).

C =

6177.9 365.8 0
365.8 4090.3 0

0 0 1695.3

 (5.29)

Figure 5.22: RVE stack bond (rect-
angular blocks).

C =

6621.4 354.6 0
354.6 4146.3 0

0 0 1713.8

 (5.30)

Figure 5.23: RVE running bond
(square blocks).

C =

5738.5 437.2 0
437.2 5643.6 0

0 0 2080.4

 (5.31)
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Figure 5.24: RVE stack bond (square
blocks).

C =

5661.3 399.2 0
399.2 5661.3 0

0 0 1972.7

 (5.32)

Rectangular blocks Square blocks

Running English Stack Running Stack
Ex [MPa] 6858.2 6145.2 6591.0 5704.7 5633.2
Ey [MPa] 4117.6 4068.6 4127.3 5610.3 5633.2

νxy 0.092 0.09 0.086 0.077 0.07
Gxy [MPa] 1755.5 1695.3 1713.8 2080.4 1972.7
Ex/Ey 1.66 1.51 1.6 1.02 1

Table 5.6: Elastic parameters of the homogenized masonry material for RVE in
Figures 5.20-5.24.

characteristics can be significantly modified by the onset and evolution of nonlin-

ear mechanisms (such as damage), these results can provide useful informations

to identify cases in which is needed to use a material orthotropic description.

However, when the anisotropy level is not significant the simplified hypothesis of

isotropic behavior could be satisfactory adopted.

5.6 Summary

This chapter presented a novel orthotropic damage model for the analysis of the

in-plane response of masonry structures. The proposed constitutive law and dam-

age criterion appear to be suitable tools to phenomenologically describe mechan-

ical behavior of masonry walls with regular arrangement of bricks and mortar,

where bed joints act as plane of weakness. Indeed, the performed analyses showed

the model ability in capturing different mechanical properties along material di-

rections. Furthermore, comparison of numerical and experimental responses of

some masonry panels showed a good agreement, both in terms of global force-
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displacement response curves and damage distributions. Obviously, further in-

vestigation is needed to test the model performance under different loading and

boundary conditions.

Finally, a study was performed to investigate effects of geometry and arrange-

ment of bricks and mortar on the overall elastic properties of masonry. Thus, in

cases where the level of anisotropy is significant, it is advisable to use a material

orthotropic description instead of an isotropic one.
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Characterization of masonry

walls dynamic behavior

The effects of damage and plasticity phenomena on the nonlinear cyclic static

response of masonry walls were largely explored. But the presence of damage and

irreversible strains substantially modifies the dynamic structural response, too.

Indeed, onset and propagation of damage leads to degradation of the structural

mechanical properties and related variation of the natural frequencies, which in

turn significantly influence the dynamic response.

On the basis of the above considerations, this chapter is aimed at providing a

complete characterization of the masonry dynamic behavior. The attention is

focused on the effects of nonlinear mechanisms on the frequency response curves

(FRCs) of masonry walls, as these represent a relevant tool for the dynamic char-

acterization of systems.

Section 6.1 briefly reports an overview of FRCs by relating their main features to

those of the restoring force shape. Then, in Section 6.2 response of a slender wall

is investigated: the peculiar characteristics of the cyclic global force-displacement

response curve are evaluated and their influence on the FRCs is highlighted. More-

over, the structural response to example natural earthquakes is computed. Finally,

Section 6.3 describes experimental and numerical studies performed on the out-

of-plane response of tuff masonry walls.
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6.1 Main features of frequency response curves

Frequency response curves are relevant tools to dynamic characterization of sys-

tems and permit to highlight and distinguish effects of different nonlinear mech-

anisms. In linear elastic vibration, these curves can be evaluated as frequency re-

sponse function plot. In nonlinear vibration, the scalability and additivity between

input (i.e excitation) and output (i.e response) is no longer valid and, therefore,

FRCs represent the response amplitude as a function of the forcing frequency and

depend on the excitation amplitude. Several studies on nonlinear oscillators, char-

acterized by geometrical and/or material nonlinearities, clarified that the FRCs

features are referable to restoring force shape (that is the force-displacement re-

lationship): hardening or softening behavior, multi-valued curves with jump phe-

nomenon or single-valued curves can occur. The loci of the response peaks give the

nonlinear frequency-amplitude relationship, that is the so-called backbone curve.

Linear systems have straight backbone, while softening and hardening systems are

characterized by backbone curves bent on the left and right, as shown in Figures

6.1(a) and (b) respectively.
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Figure 6.1: FRCs with (a) softening and (b) hardening behavior.

Multi-valued curves with jump phenomenon introduce a frequency band where

two stable and one unstable solution exist. Figure 6.2 shows an example case for

a nonlinear viscoelastic single degree of freedom (SDOF) studied by Lacarbonara

(2013), whose restoring force is provided by a linear dashpot and a nonlinear elas-

tic spring in parallel. Here, for a given excitation frequency Ω∗, belonging to the
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range [Ω1 ÷ Ω2], three oscillations with different amplitude X1, X2 and X3 can

occur: X1 and X3 are stable, while X2 is unstable, that is any small disturbance

causes the system to leave this equilibrium state and move towards the stable so-

lution. Indeed, only the stable solutions are possible depending on how the state

is approached.

X

ΩΩ
1
Ω

2

X
3

X
2

X
1

Ω*

Figure 6.2: Multi-valued FRC with jump phenomenon obtained by Lacarbonara
(2013) for a nonlinear viscoelastic SDOF (solid and dashed lines denote stable
and unstable solutions, respectively).

The described multi-valued characteristic is typical of system with nonlinear in-

variant restoring force and this can occur also for hysteretic systems. In fact,

studies devoted to nonlinear oscillation of hysteretic models highlighted that hys-

teresis itself does not guarantee stable single-valued response curves. Already

many years ago, Iwan (1965) found multi-valued curves for one degree of freedom

double bilinear hysteretic oscillator. Similary, Capecchi and Vestroni (1985, 1990)

showed that single-valued curves can be obtained only in the cases of fully hys-

teretic restoring force. Further developments confirmed these results: Figure 6.3

reports the FRCs and the related restoring force shapes, obtained by Lacarbonara

and Vestroni (2003) for a Masing oscillator for different degrees of hysteresis, iden-

tified through the α parameter. Here, it can be noted that increasing α from 0.25

to 0.75 a reduction of both response amplitude and multi-valued range occurs.

The coexisting solutions disappear and single-valued curve is recovered for α = 1,
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which corresponds to a fully hysteretic restoring force.

Studies performed on the Bouc-Wen model (Wong et al., 1994b,a; Casini and

Vestroni, 2018) conducted to a large variety of FRCs. In fact, as known, this

model is able to reproduce a significant range of hysteretic shapes, depending on

the material parameters chosen. Consequently, single-valued curves are obtained

for fully hysteretic restoring forces, while the multi-valued characteristic emerges

when the reduced hysteresis occurs.

Analytical techniques, such as the method of harmonic balance and the multi-

ple time scale method (Nayfeh and Mook, 2008), are usually employed to study the

FRCs of simple systems characterized by one or few degrees of freedom. However,

when dealing with more complex structure, recourse to full numerical techniques

becomes unavoidable.
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Figure 6.3: Lacarbonara and Vestroni (2003): FRCs and restoring force shapes of
the modified Masing oscillator for various values of α parameter.

6.2 Response of a slender wall

6.2.1 Restoring force shape

The static behavior of the slender wall schematically shown in Figure 6.4(a) is here

numerically explored by using the damage-plastic model presented in Chapter 4.

This is conceived to model the central strip of a wall very long in one direction with
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respect to the other two, loaded out-of-plane. In fact, wall sizes, that is height

H = 6000 mm, width W = 1000 mm and thickness t = 1000 mm, are selected to

reproduce typical geometries of walls of historical buildings and churches, as for

example the external walls of the Basilica S. Maria di Collemaggio. The mechan-

ical parameters used to perform the numerical analyses are shown in Table 6.1,

setting κ = 0 and Hi = 0. Value of Young’s modulus, E, is introduced according

to those estimated for the Basilica S. Maria di Collemaggio (Gattulli et al., 2013).

Tensile and compressive strengths are set equal to 0.29 MPa and 4.2 MPa, respec-

tively, in accordance with experimental outcomes on masonry material and the

Italian guidelines (NTC, 2008). The wall overall response is investigated under

monotonic and cyclic loading histories, considering a simple scheme, where the

wall is restrained only at the base. Figure 6.5(a) contains the load-displacement

global curve obtained by applying the same monotonic horizontal displacement at

all the nodes on the top free side. Furthermore, to show the effectiveness of the

adopted nonlocal integral regularization technique, the results obtained for two

different meshes are compared, considering a nonlocal radius lc equal to 500 mm:

solid line refers to a mesh made of (3Ö19) 9-node FEs (mesh 1 in Figure 6.4(b)),

while dashed line corresponds to (6Ö38) 9-node FEs (mesh 2 in Figure 6.4(c)).

As the two meshes give results in perfect agreement, the coarser discretization is

adopted later.

Elastic parameters

E [MPa] ν
4000 0.2

Plastic parameters

σt = σc [MPa] Hk [MPa]

1.5 0.7 E

Damage parameters

Yt0 bt at = ac Yc0 bc

5.2×10−5 3.6×10−5 0.99 1.3×10−4 6×10−3

Table 6.1: Slender panel: material parameters.

The pushover response curve highlights the presence of strength and stiffness

degradation, due to the onset and growth of damaged zone at the bottom left

corner of the wall, as the structure is pushed towards right. After the initial

linear elastic branch, damage arises in the zone where the highest tensile stresses
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Figure 6.4: (a) schematic view of the analyzed wall and adopted FE meshes: (b)
mesh 1 and (c) mesh 2.

0

10

20

30

10 20 300

mesh 1
mesh 2

A

B

C

Top displacement [mm]

B
as

e 
sh

ea
r 

[k
N

]

(a)

 Point A  Point B  Point C

 2.07E-02

 5.57E-02

 9.07E-02

 1.26E-01

 1.61E-01

 1.96E-01

 2.31E-01

 2.66E-01

 3.01E-01

 3.36E-01

 3.70E-01

 4.05E-01

0.00E+00

 1.66E-02

 9.46E-02

 1.73E-01

 2.51E-01

 3.29E-01

 4.06E-01

 4.84E-01

 5.62E-01

 6.40E-01

 7.18E-01

 7.96E-01

 8.74E-01

0.00E+00

 3.77E-02

 1.22E-01

 2.07E-01

 2.92E-01

 3.77E-01

 4.61E-01

 5.46E-01

 6.31E-01

 7.16E-01

 8.00E-01

 8.85E-01

 9.70E-01

0.00E+00

(b)

Figure 6.5: (a) pushover response curve and (b) tensile damage distributions
for the applied displacement s = 6.6 mm (point A), s = 10 mm (point B) and
s = 30 mm (point C).
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occur and, then, spreads around (Figure 6.5(b)), leading to severe damage of

the bottom side region. This causes a very steep softening branch in the global

response curve. Moreover, in Figure 6.6, the load-displacement global curves

are depicted with reference to a cyclic horizontal displacement applied at the

top side and for two values of the kinematic hardening parameter, that is Hk =

0.3E, 0.7E. Steep reduction of strength, which occurred after the maximum

force value has been reached, is clearly shown also in the cyclic curve, where a

significant drop is observed in the second cycle. Plastic irreversible mechanisms

and the related hysteresis loops are presented, these being larger for the lower

value of Hk. Furthermore, due to the cyclic nature of the loading, damaged zones

appear both at the left and right corner (see the damage maps in Figure 6.6(a)

and (b)) together with the partial stiffness recovery linked to the opening and

subsequent re-closing of the tensile cracks.
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Figure 6.6: Cyclic load-displacement curves and tensile damage distributions for
two different values of the kinematic hardening parameter (a) Hk = 0.3E and (b)
Hk = 0.7E.

A further analysis is performed to deepen the main features of the wall cyclic

response and highlight the history-dependent characteristic of the masonry restor-

ing force. To this purpose, the structure is subjected to the cyclic horizontal

displacement history applied at the top side shown in Figure 6.7(a). This is char-

acterized by an initially increasing, then kept constant and finally decreasing, am-

plitude. Figure 6.7(b) focuses on the response cycles obtained in correspondence

131



Chapter 6: Characterization of masonry walls dynamic behavior

of the same input amplitudes at the initial and final stage of the analysis. These

definitely point out that the structural response is strongly path dependent. For

instance, although the structure experiences the same maximum displacement am-

plitude during the ‘d-e-f-g’ and ‘n-o-p-q’ cycles, the obtained force-displacement

curves fully differ. In fact, the wall attains a higher displacement (with consequent

increased damage) before the ‘n-o-p-q’ cycle, as opposed to the ‘d-e-f-g’ cycle and

this notably modifies the restoring force loop, mainly due to the variation of the

elastic properties of the re-loading branch.
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Figure 6.7: (a) cyclic imposed displacement and (b) response cycles obtained in
correspondence of the same imposed displacement amplitudes.

To summarize, the structural response of the wall under static loading condi-

tions appears definitely affected by the evolution of damage and plasticity mecha-

nisms, putting in evidence the structural modifications which substantially change
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the subsequent response. Investigation on the cyclic nonlinear static response is a

useful starting point to move towards exploration of the more complex dynamic

behavior.

6.2.2 Frequency response curves

To characterize the main aspects of the dynamic response of masonry walls, har-

monic excitations are considered. Assuming a density mass value ρ = 2000 kg/m3,

the first three natural frequencies of the small amplitude flexural vibrations result

f1 = 6.23 Hz, f2 = 35.16 Hz and f3 = 86.98 Hz. The frequency response curves

of the wall are evaluated in terms of relative displacement of the point P in Fig-

ure 6.4(b) with respect to the base. These are compared with the corresponding

curves obtained by considering a linear elastic behavior. For this purpose, hori-

zontal acceleration histories üg = U sin[Ω(t)t], characterized by a slowly variable

excitation frequency over time, are applied at the wall base. The forcing frequency

Ω(t) changes according to linear increasing and decreasing sweep laws, with the

ratio Ω(t)/ω1 in the range [0.2÷ 1.5], being ω1 the first initial frequency of the

wall. In what follows, these excitation histories will be called sweep 1, increasing

frequency, and 2, decreasing frequency, respectively.

Figure 6.8 shows the obtained frequency response curves for three different

amplitudes of the applied acceleration U/g = 0.04, 0.05, 0.06 (green, red and blue

line, respectively), along with the elastic responses (black lines) for comparison,

with g gravity acceleration. The curves are derived by associating the maximum

displacement amplitude of each response cycle to the corresponding excitation fre-

quency and assuming a damping factor equal to 3% (the same of the elastic case).

It can be observed that, for increasing excitation frequency, that is when sweep

1 acceleration history is applied, the onset of damage causes decay of the wall

structural stiffness, leading to decrease of natural frequency ω1, while the forcing

frequency Ω(t) increases. Thus, the wall suddenly comes out from resonance con-

ditions, with a peak response attained at a frequency which decreases with the

increasing acceleration intensity and differs from that of the corresponding elastic

case (Figure 6.8(a)). Conversely, in the case of sweep 2 history, the wall natu-

ral frequency variation follows same trend of Ω(t): due to damage progression, a
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Figure 6.8: Wall frequency response curves for (a) sweep 1 and (b) sweep 2:
elastic response (black lines) and damage-plastic response (green, red and blue
lines corresponding to U/g = 0.04, 0.05, 0.06, respectively).

modification of the frequency curve slope with respect to the elastic curve arises

and the resonance frequency is moved down (Figure 6.8(b)). The curve obtained

for decreasing driving frequency furnishes the resonant branch of the frequency

response curve: the attained maximum value gives the resonant frequency, which

practically coincides with the natural frequency of the system, that clearly de-

pends on the oscillation amplitude, as expected. The loci of the response peaks

gives the nonlinear frequency-amplitude relationship. This curve is bent on the

left, showing a softening behavior. Moreover, the wall response is markedly af-

fected by the structural decay state, and consequently, by combining the results

of sweep 1 and 2, the frequency response curves are multi-valued, as expected.

Finally, the accumulation of irreversible strains is higher for higher values of the

applied force amplitude.

It is worth noting that, in the case of plastic constitutive response in absence

of damage, frequency response curves are single-valued, as in the case of fully

hysteretic restoring force (Iwan, 1965; Capecchi and Vestroni, 1985, 1990), re-

gardless of the applied sweep history. This means that, neglecting damage effects,

134



Chapter 6: Characterization of masonry walls dynamic behavior

a unique frequency response curve would be computed with both sweep 1 and 2.

Instead, due to the kind of nonlinearity, multi-valued and not unique curves are

here obtained. In fact, different from the invariant restoring forces, the FRC for

increasing frequency cannot run on the resonant branch obtained for decreasing

frequency, as a consequence of the structural damage progression.

Figures 6.9(a), (b) and 6.10(a), (b) contain the displacement time histories

of the selected point P, for the input amplitude ratio U/g = 0.04 and for both

sweep histories. Green lines refer to the damage-plastic response, black lines to

the elastic case, shown for comparison. Here to be noted is that the elastic re-

sponses to the two sweeps show same shape and maximum amplitudes, while the

displacement histories for the damage-plastic cases are very different due to the

degrading mechanisms evolving in the structure. Furthermore, to better clarify

the phenomenon, Figure 6.9(d) and Figure 6.10(d) show the time evolution of the

phase angle Φ between the input sinusoidal forcing and the structural response.

Phase difference is measured by finding the time delay tr between the two wave-

forms. With reference to the example case reported in Figure 6.11, where two

sinusoidal waves with same frequency f are shown, the phase angle in degree is

derived as:

Φ =
360 tr
T

(6.1)

where T = 1/f is the period waves.

As expected, in the elastic cases (black lines in Figures 6.9(d) and 6.10(d)),

the phase angle Φ results equal to 90°, when the ratio Ω/ω1 is about 1 (see Figures

6.9(c) and 6.10(c)). Furthermore, a quite regular trend for Φ is found, as typical of

the considered Rayleigh damping value. Conversely, time variation of Φ exhibits

very different patterns in cases of damage-plastic response. A sharp growth in a

narrow time interval is noted for sweep 1 (green line in Figure 6.9(d)), when the

wall experiences resonance conditions, after that this approaches to the constant

value of 180°, by testing that the passage through the resonance is occurred. On

the contrary, in case of sweep 2, the initial value of Φ is 180° and, then, this walks

up to 0° by passing for a longer interval of inversion phase (green line in Figure

6.10(d)), as the driving frequency is approaching to the frequency of the damaged

structure and, then, the resonance condition is gradually shifted. Time evolution
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Figure 6.9: Response to sweep 1 setting U/g = 0.04: time histories of the top
relative displacement in (a) linear elastic case and (b) damage-plastic case, (c)
time variation of the ratio Ω/ω1, (d) time histories of phase angle Φ.

of Φ angle gives indication about the variation of the wall natural frequency ω1

and, therefore, it is a powerful tool to interpret and understand the phenomenon.

The influence of the adopted constitutive relationship on the wall dynamic re-

sponse is also explored. To this end, three cases are considered: a damage model

(D), a damage-plastic model (DP) with Hk = 0.3E and a damage-plastic model

with Hk = 0.7E (this last value is the one already adopted in the previous anal-

yses). The corresponding cyclic responses are shown in Figure 6.6. Only the

more significant sweep 2 is illustrated. Figure 6.12 contains the frequency re-

sponse curves for two excitation amplitudes (a) U/g = 0.04 (green lines) and (b)
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relative displacement in (a) linear elastic case and (b) damage-plastic case, (c)
time variation of the ratio Ω/ω1, (d) time histories of phase angle Φ.

U/g = 0.06 (blue lines). The black lines indicate the elastic responses reported

for comparison. The damage-plastic curves show a lower peak and a resonant

condition attained at higher frequencies with respect to the damage curve, be-

coming this difference greater for the higher excitation intensity. This latter be-

havior can be explained also through energy considerations. For the damage and

damage-plastic models, Figure 6.13 reports the top displacement responses for (a)

U/g = 0.04 and (b) U/g = 0.06, where it emerges that plasticity reduces the dis-

placement dynamic amplification. In the bottom of Figure 6.13 the evolution of

the dissipated energy Ed, measured in each cycle, is shown. When plastic mecha-
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Figure 6.11: Calculation of the phase angle Φ.
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Figure 6.12: FRCs for sweep 2 and for (a) U/g = 0.04 and (b) U/g = 0.06,
considering elastic, damage and damage-plastic models.

nisms occur and irreversible strains are accumulated, an increase of the dissipated

energy appears, which subsequently modifies the resonance condition and the re-

lated amplitude. No significant differences arise, in terms of Ed, for the two values
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set for the hardening parameter Hk in the case of the lower input acceleration am-

plitude, characterized by a deformation level where plasticity is weakly activated.

More evident differences emerge for the higher acceleration input, according to the

cyclic load-displacement global curves in Figures 6.6(a) and (b) where an increase

of the dissipated energy emerges for the lower hardening value (see effect of Hk

also in Figure 4.8).
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Figure 6.13: Top displacement time histories for sweep 2 and (a) U/g = 0.04, (b)
U/g = 0.06; dissipated energy in each cycle for (c) U/g = 0.04 and (d) U/g = 0.06.

Finally, effect of the applied acceleration history is explored. To this pur-

pose, wall response is investigated by imposing sine sweep acceleration histo-

ries where the forcing frequency Ω is kept constant for 40 cycles and increments

dΩ = ±0.2 rad/s are considered for increasing (sweep 1) and decreasing (sweep 2)

driving frequency, respectively. Here, only the more significant range [0.5÷ 1.25]

is considered for the variation of Ω/ω1. Figure 6.14 shows the time histories of

the selected point P for (a) sweep 1 and (b) sweep 2 with reference to the am-

plitude excitation U/g = 0.04 and damage-plastic model with Hk = 0.7E. On

the overall, similar trends to those in Figures 6.9(b) and 6.10(b) occur, but dis-
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Figure 6.15: Comparison between FRCs obtained with different types of sweep
histories and for (a) sweep 1 and (b) sweep 2, setting U/g = 0.04.

tinction between the maximum response amplitude and the steady state response

can be now made. The obtained FRCs are plotted in Figures 6.15(a) and (b):

red dot lines refer to steady state response, while black dashed lines correspond to
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the maximum amplitude response. Furthermore, FRCs above obtained with linear

sweep are reported with green solid lines to comparison. In case of sweep 2 (Figure

6.15(b)), no significant differences emerge between the curves. On the contrary,

discrepancies are found for sweep 1 (Figure 6.15(a)): the curve derived by the

maximum amplitude is close to that obtained by linear sweep and shows a higher

peak with respect to that derived by monitoring the steady state response. How-

ever, the same overall phenomenon emerges, that is the strong path-dependency

characteristic of the response. In fact, in all cases, the FRC for increasing fre-

quency cannot run on the resonant branch obtained for decreasing frequency, as

a consequence of the structural damage progression.

6.2.3 Response to earthquake excitations

The effects of nonlinear mechanisms evolution on the wall seismic response are

here investigated. Two natural earthquakes are selected: the W-E acceleration

component of the 2009 L’Aquila ground motion (Italy) and the N-S component

of the ground acceleration recorded at El Centro (California) during the 1940

Imperial Valley earthquake. These signals, whose acceleration time histories are

plotted in Figures 6.16(a) and 6.17(a), are characterized by similar peak ground

acceleration (PGA) values, that is 0.33 g for L’Aquila and 0.32 g for El Centro,

but different frequency content. In fact, as Figures 6.16(b) and 6.17(b) show,

the elastic acceleration spectrum of L’Aquila earthquake exhibits a clear maxi-

mum value in correspondence of the first elastic period of the panel T1 (indicated

through the dashed red line), whereas widespread peaks appear in the El Centro

spectrum, leading to a sort of plateau around T1.

In what follows, the damage-plastic response of the wall, in terms of top relative

displacement of point P (see Figure 6.4(b)) with respect to the base, is evaluated

and compared with the corresponding elastic one. Moreover, with the purpose

to analyze the influence of the PGA, the natural input signals are scaled to 75%,

100% and 125%.

To monitor the evolution of the damage in the structure, a global damage
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Figure 6.16: L’Aquila earthquake: (a) acceleration history and (b) elastic response
spectrum (damping value 3%).
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Figure 6.17: El Centro earthquake: (a) acceleration history and (b) elastic re-
sponse spectrum (damping value 3%).

variable is also introduced according to Toti et al., 2015, as:

Dg
t =

1

Ad

∫
A

Dt dA (6.2)

142



Chapter 6: Characterization of masonry walls dynamic behavior

where Ad is the damaged area of the structure at the end of the analysis. It

should be remarked the difficulty in defining a standard damage index able to give

information on the safety level in all possible geometries and boundary conditions.

However, despite the introduced measure does not consider the spatial distribution

of the damage, it describes the degrading process evolution during loading histories

and the damage severity. Ranging from 0 to 1, high values of Dg
t indicate severe

tensile damage states. From a computational point of view, the evaluation of Dg
t

is fast and simple: it is a weighted average on the damaged area Ad of the local

tensile damage Dt defined at each Gauss point.

In Figures 6.18(a), (c) and (e) the wall top displacement time histories are

plotted for the adopted values of the scaled L’Aquila earthquake in the significant

time interval of the response. On the overall, the displacement amplitudes are re-

duced with respect to the elastic cases (black lines in Figures 6.18(a), (c) and (e)),

as the first frequency of the damaged structure moves away from the range of fre-

quency where the earthquake is more intense. In fact, due to damage progression

(see Figure 6.18(g)), a decrease of the first natural frequency occurs, as testified by

the Fourier spectra of the elastic and damage-plastic responses shown in Figures

6.18(b), (d) and (f). These point out a dominant peak in correspondence of wall

first elastic frequency, that is f1 = 6.23 Hz, in case of elastic response, while more

spread peaks arise when degrading mechanisms are taken into account, which tes-

tify the dependency of the response frequency on the oscillation amplitude.

A different global behavior emerges when the panel is subjected to El Centro

ground motion. In this case, the wall experiences a degrading process such that

an increase of the amplitude displacement with respect to the elastic response

occurs, as Figures 6.19(a), (c) and (e) show. This is due to the coupling of two

different phenomena: damage in the structure noticeably reduces the structural

stiffness making the panel weaker and, simultaneously, modifies the natural fre-

quencies moving the structure towards a frequency range where the earthquake is

still intense. Moreover, as stiffness decay goes together with strength reduction

(see the pushover curve in Figure 6.5(a)), the increase of response amplitude is

not strictly related to the increase of the PGA, as Figure 6.19(h) emphasizes.

In all the analyzed cases, the panel response is characterized by flexural mecha-

nisms with the formation of damaged zones at the bottom corners of the structure,

143



Chapter 6: Characterization of masonry walls dynamic behavior

thus highlighting the dominance of the first vibration mode on the response. The

evolution of the global damage index Dg
t in Figures 6.18(g) and 6.19(g) shows

that the wall base section becomes strongly damaged, mostly for the higher PGA

values. Notwithstanding this severe damage, the panel is able to attain again the

initial configuration with some residual displacements due to activation of plastic

mechanisms. These latter are clearly visible when the loading history causes non-

symmetric response with prevailing positive or negative values of displacement,

as in the case of the response depicted in Figure 6.18(c) with blue line.

It can be also noted that, in spite of the steep softening branch of the wall

pushover curve (see Figure 6.5(a)), the panel is able to sustain quite high accel-

eration, as the 125% scaled El Centro and L’Aquila earthquakes correspond to a

PGA values of about 0.4 g. It emerges that the seismic resistance is not a direct

consequence of the maximum static force, but it can be better defined in terms

of attained displacements. However, the performed analyses are finalized at eval-

uating the effect of the degrading mechanisms on the dynamic amplification of

the response and are not intended to identify the PGA collapse value. In fact, as

experimental tests showed, in such simple structural scheme where the panel is

restrained only at the base, once the wall base section becomes fully cracked, the

rocking motion occurs, which is not taken into account by the proposed model.
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Figure 6.18: L’Aquila earthquake: (a, c, e) response displacement time histories
and (b, d, f) their Fourier spectra, (g) evolution of the global damage index, (h)
variation of maximum response amplitude versus PGA.
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Figure 6.19: El Centro earthquake: (a, c, e) response displacement time histories
and (b, d, f) their Fourier spectra, (g) evolution of the global damage index, (h)
variation of maximum response amplitude versus PGA.
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6.3 Response of tuff masonry walls:

experimental test and numerical simulation

Experimental and numerical studies on the out-of-plane dynamic response of tuff

masonry walls were performed with the aim of investigating the effects of nonlinear

phenomena, such as onset and propagation of microcracks, on walls dynamic

response. The experimental test was conducted by using an unidirectional shaking

table and considering a simple scheme for walls, rigidly connected to the table at

the base and free at the top. Sinusoidal acceleration motions with increasing

amplitudes were assigned. Such simple inputs were selected, instead of natural

earthquake histories, to better characterize dependency of walls response on the

main features of the loading history, such as frequency and amplitude.

In what follows, detailed test description is provided and, then, comparison

between numerical and experimental results is presented.

6.3.1 Experimental test

Three specimens, consisting in single leaf walls shown in Figure 6.20, were tested

in laboratory of the Department of Structural and Geotechnical Engineering of

Sapienza (Italy). These were made of 19 courses of 370 × 260 × 110 mm3 tuff

bricks arranged in running bond texture with 10 mm thick natural hydraulic lime

mortar joints. With reference to schematic of the specimens in Figure 6.21(a), the

overall sizes were H = 2280 mm, W = 570 mm and t = 260 mm. The brick first

row of each panel was clamped in a steel beam C300 (see Figure 6.21(b)) with the

interposition of a mortar bed joint and, then, the beam was fixed to the shaking

table. Thus, boundary conditions corresponding to fully constrained base were

experimentally reproduced.

Firstly, the natural frequencies of the flexural small amplitude vibrations

were experimentally determined through the well-known modal analysis technique

based on instrumented hammer impact excitation. The hammer impact on the

structure represents an impulsive action characterized by a theoretically infinite

frequency content, while the structural response provides information about the

natural frequencies. Thus, once placed and fixed each wall on the shaking table,
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accelerometers were set (see Figure 6.21(c)), with the aim of monitoring struc-

tural response in terms of accelerations. Figures 6.22(a-c) show Fourier spectra

of each impact with black lines and the average curves with blue, red and green

lines for the three samples, respectively called M1, M2 and M3 wall. It should be

noticed that two resonance peaks occur in the range [0÷ 80] Hz, which represent

the first, f1, and second, f2, natural frequencies of the out-of-plane flexural modes.

Furthermore, the ratio f2/f1 confirms that the fully restrained base condition was

correctly reproduced, as this approaches to the analytical value of 5.9, evaluated

by means of the Timoshenko beam theory (Chui and Smith, 1990). However,

small discrepancy emerges between the analytical and experimental ratio f2/f1

for M2 wall.

Figure 6.20: Picture of the tested specimens.

Concerning the input motions, sinusoidal accelerations with different ampli-

tudes and frequencies were considered. Hereafter, the most relevant results are

presented, corresponding to excitation frequency Ω lower than the wall first nat-

ural frequency ω1, as the resonance frequency decreases, when the degrading pro-

cesses occur. Table 6.2 contains details about the applied accelerations, all char-

acterized by a ratio Ω/ω1 = 0.65. Most of them were characterized by incoming

fading cycles to avoid amplified transient responses, while no outgoing fading cy-

148



Chapter 6: Characterization of masonry walls dynamic behavior

cles were considered with the purpose to monitor free vibration characteristics.

It is worth underlining that discrepancies between the target inputs and those

actually imposed through shaking table were detected, leading to little larger ex-

citation amplitudes. These discrepancies are related to friction force acting in the

actuator, asymmetry of the hydraulic cylinder, and so on. Consequently, iden-

tification processes, consisting in iterative procedures where the input action is

whenever modified on the basis of actually imposed signal, could be needed. This

was not possible, as it could have caused undesirable damage in samples due to

masonry quasi-brittle behavior. However, the emerged differences were charac-

terized by very high frequencies that did not significantly affect the structural

response, making the monitored results suitable at the research aim. As an exam-

ple, Figure 6.23 shows comparison between the recorded and target input signals

for M3 wall.

t

W

H

(a)

(b)

(c)

Figure 6.21: Experimental test: (a) schematic of the specimens; (b) base steel
beam; (c) accelerometers for the dynamic identification tests.

The out-of-plane dynamic response of walls to the base accelerations listed in

Table 6.2, was investigated by measuring acceleration and displacement in the

direction of motion. More in details, linear variable displacement transducers
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Figure 6.22: Fourier spectra of the acceleration responses to the hammer impacts:
(a) M1, (b) M2 and (c) M3 wall.

(LVDTs) were placed: four at the top of both vertical sides of the walls, so as

to observe any torsional motions, and one at the shaking table base. Moreover,

several accelerometers were set, located as shown in the schematic of experimental

set-up in Figure 6.24.
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M1 and M2

Run 1 2 3 4 5
Amplitude [mm/s2] 200 300 500 700 900

Incoming fade in cycle X X X X X
Outgoing fade in cycle

M3

Run 1 2a 2b 3 4 5
Amplitude [mm/s2] 200 300 300 500 700 900

Incoming fade in cycle X X X X
Outgoing fade in cycle X X X X

Table 6.2: List of the input sinusoidal waves.
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Figure 6.23: Comparison between the recorded and target input signals.

For data acquisition a National Instruments control unit was used, while the

elaboration was carried out through the Labview® and Matlab software.

The experimental results, in terms of time histories of wall top relative dis-

placement, are shown in Figure 6.25(a) and Figures 6.26(a) and (b), with reference

to M3, M2 and M1 panel, respectively. These highlight that walls structural re-

sponses, arranged in sequence according to the imposed input motions in Table

6.2, were strongly affected by nonlinear degrading mechanisms in masonry. In-

deed, specimens exhibited degradation of the mechanical properties during the

test, causing a relevant modification of their structural response.

As similar behavior was detected for all walls, M3 wall is chosen as representative
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Accelerometer
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Figure 6.24: Schematic of experimental set-up.

to describe occurred phenomenon and, then, Figure 6.25(a) is reference for what

follows. Here, it can be noticed that, as amplitude of applied acceleration was

increased, the degrading process evolved and the first natural frequency of the

damaged structure approached to the input frequency, moving towards the reso-

nance condition. During Run 3, the wall top displacement showed a progressive

slight amplification, while during Run 4 a steep growth, typical of the resonant

conditions, occurred. After this, a fairly stable response can be noted, showing

that the further variation of the natural frequency during Run 4 distanced the

structure from resonance conditions. This is also confirmed in Figure 6.25(b) by

the Fourier spectra of the responses, where two main peaks emerge. For all runs,

a dominant peak is obtained at the driving frequency along with other peaks rep-

resentative of the variation of the wall first natural frequency. It is interesting to

note how these latter peaks moved from right to left side of the input frequency,

by testifying how the structure approached and, then, moved away from the reso-

nant condition. Indeed, the response displacement was in-phase with the applied
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Figure 6.25: M3 wall: (a) experimental top displacement response and (b) Fourier
spectra of the responses at each run.

sinusoidal force until Run 4, where a phase inversion occurred after the passage

through resonance.

Finally, it should be underlined that, as expected, damaging flexural mecha-

nisms located at the wall base were predominant with all damage concentrated in

a mortar bed joint near the base, which caused MODE I collapse of masonry.

Similar considerations hold for M2 and M1 walls, for which the passage through

resonance seems located in Run 3 and 4, as evident in Figures 6.26(a) and (b),

respectively.

For input acceleration amplitudes higher than those analyzed here, large oscilla-

tion responses occurred with significant rocking motions of walls. These results
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are collected and analyzed in Cappelli et al. (2018).
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Figure 6.26: Experimental response of (a) M2 wall and (b) M1 wall.

6.3.2 Experimental-numerical comparison

The experimental outcomes described in previous section are here numerically

reproduced by using the damage-plastic model presented in Chapter 4. M3 wall

is chosen for numerical and experimental comparison. First, mechanical prop-

erties of the homogenized masonry material are computed. Young’s modulus is

determined through an inverse process on the basis of wall natural frequencies

and material mass density. This latter was measured through a load cell, result-

ing equal to ρ = 1577 kg/m3. Some other relevant material properties, such as

masonry compressive strength, are derived from previous experimental tests per-
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formed on the same masonry material (Marcari et al., 2017). Table 6.3 contains

material parameters used for the numerical simulation.

A mesh made of (3× 26) 9-node quadrilateral FEs is used, setting the nonlocal

radius lc = 130 mm. A damping ratio of 3% is introduced. The recorded input

motions, arranged according to the sequence shown in Figure 6.23 and Table 6.2,

are used for the numerical analysis, with the purpose to reproduce the actual

pattern of the degrading process.

In Figure 6.27(a) the numerically obtained results are depicted with black line.

On the overall, the model is able to describe the main aspects of the wall dynamic

response. Indeed, the actual resonance condition and the maximum displacement

experienced by the wall are satisfactorily matched. However, the main discrepancy

between the experimental and numerical response emerges in Run 3, where the

degrading process in the numerical simulation evolves much more slowly than in

the experimental response. Indeed, the resonant response starts during Run 3 and

ends in Run 4 in the experimental outcomes, whereas this is concentrated in Run

4 as concerns the numerical results.

Elastic parameters

E [MPa] ν
1300 0.18

Plastic parameters

σt [MPa] σc [MPa] Hk [MPa]

1.5 3.5 0.7 E

Damage parameters

Yt0 bt at Yc0 bc ac

1×10−5 3.7×10−5 0.99 1×10−3 4×10−3 0.99

Table 6.3: M3 wall: material parameters.

Furthermore, both numerical and experimental curves show slight differences

in the response amplitude between Run 4 and 5, although amplitude of the input

signal is increased of 30%. This testifies, once again, that the wall departed from

the resonance conditions.

Finally, Figure 6.27(b) shows the tensile damage maps at the end of each run.

These are in agreement with the degrading processes observed during the experi-

mental test. During Run 1, no damage occurs in the numerical simulation, despite

a slight decay of first natural frequency was experimentally estimated through
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Figure 6.27: M3 wall: (a) experimental and numerical top displacement response
and (b) tensile damage distribution at the end of each run.

the Fourier spectrum in Figure 6.25(b). However, the displacement responses are

overlapped, which means that damaging process has not substantially affected the

structural behavior. No increase of damage appears between Run 2a, 2b and 3, as

the maximum displacements exhibited by the wall are the same in the numerical

simulation. During Run 4, where the wall experiences resonance conditions, the

formation of severe damaged zones located at bottom corners of the wall appears,

in accordance to the collapse mechanism experimentally occurred.
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6.4 Summary

This chapter was devoted to the characterization of dynamic behavior of masonry

structural elements. The response of a slender panel, representative of walls of

historical buildings and churches loaded out-of-plane, was numerically analyzed.

Harmonic base accelerations, with different amplitudes and frequencies, were im-

posed. It emerged that onset and evolution of the damage substantially change

the wall mechanical properties and, then, its natural frequencies decrease. The

obtained frequency response curves, exhibiting softening resonance and a pecu-

liar multi-valuedness characteristic, showed the influence of the proposed masonry

constitutive relationship with respect to other widely studied models character-

ized by nonlinear invariant restoring forces. When the structure was subjected

to sweep-type horizontal acceleration histories, a different response emerged, de-

pending on the frequency varies from high to low values or vice-versa. In the first

case, the evolution of degrading process caused a variation of the wall natural fre-

quency in the same direction of the excitation frequency and, then, the response

amplitude increased up to the resonance condition. Conversely, if the excitation

frequency ranged from low to high values, the wall suddenly came out from the

resonance, as soon as the damage occurred.

The response to earthquake records was also investigated, by showing that the dis-

placement amplitude can be reduced or increased with respect to the elastic case,

depending on the evolution of the natural frequencies of the damaged structure,

which can approach or move away from the significant earthquake frequencies.

Finally, numerical and experimental studies were performed to analyze dynamic

behavior of tuff masonry walls and characterize dependency of their responses

on the main properties of the loading history (frequency and amplitude). Both

numerical and experimental evidences confirmed that degradation of the mechan-

ical properties strongly modifies the dynamic response, as the variation of walls

natural frequencies changes the resonance condition. Indeed, the panels, under

sinusoidal acceleration inputs with fixed frequency (lower than the first natural

frequency of the specimens) and increasing amplitudes, initially approached to

resonance conditions, then, came out when further degradation occurred.

It should be noticed that, once main features of the dynamic response of these
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structural elements is deeply understood, it could be possible to pursue the goal

of a reduced order model to handle complex non-stationary excitations. This can

be certainly reached for typologically simple structures, such as the cantilever

scheme here considered, but can result harder for less simple boundary conditions

and geometries. In these cases it should resort to detailed modeling approaches

by accounting for the local nonlinear behavior.

158



Chapter 7

Conclusive remarks

7.1 Summary and main contributions

The principal goal of this research was the development of macromechanical mod-

els to accurately describe the masonry nonlinear behavior. The main difficulties

in the formulation of closed-form phenomenological constitutive laws are due to

the heterogeneous microstructure of the material, which makes masonry global

response strongly affected by shape, sizes and arrangement of blocks and mortar,

cohesion and friction between them and their mechanical properties. However,

as emphasized in Chapter 2, some recurrent features can be identified, such as

non-symmetric response under tensile and compressive loads, strongly nonlinear

stress-strain relationship and, in cases of regular texture, the markedly anisotropic

behavior. To numerically capture such nonlinear phenomena, the scientific liter-

ature proposes several modeling strategies, most of them described in Chapter 3.

The choice to adopt phenomenological finite element models is related to their

applicability to large scale structures, giving a fair compromise between accu-

racy and computational cost. Herein, an enriched version of the macromechanical

model proposed by Addessi et al. (2002) was presented in Chapter 4. The adopted

constitutive relationship involves a new two-parameters isotropic damage model

and a Drucker-Prager plasticity formulation, thus accounting for strength-stiffness

decay, unilateral effect and hysteretic mechanisms. The model is implemented in

a finite element procedure, which adopts a nonlocal integral formulation of the
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damage associated variables, being able to provide objective numerical results also

in cases of strain-softening response. Moreover, a predictor-corrector procedure,

based on the splitting method, is adopted to solve the nonlinear evolution problem

of damage and plasticity variables.

Validation examples pointed out the model ability in reproducing the cyclic quasi-

static response of experimentally tested masonry panels. Influence of geometry

and loading conditions are properly taken into account, as peak loads, energy

dissipation, damage distribution, as well as collapse mechanisms satisfactorily

matched the experimental outcomes.

Although the simple hypothesis of isotropic behavior is largely accepted for

masonry, Chapter 5 moved towards the development of a constitutive model ac-

counting for the variation of the mechanical properties observed for different mate-

rial directions. The main assumption of the model is the introduction of masonry

natural axes, which are parallel and normal to the bed joints direction. An or-

thotropic description of the elastic and inelastic behavior is considered. Indeed,

the scalar representation of damage is replaced by a tensorial description, by defin-

ing a proper damage matrix accounting for failure mechanisms due to shear and

both compressive and tensile states, normal and parallel to bed joints. A suitable

damage criterion is also introduced, which results into a limit surface geometri-

cally defined as the intersection of an ellipsoid and elliptic cone in the space of

the damage associated variables. Mesh-dependency drawback is again efficiently

overcome by adopting the regularization technique based on the nonlocal formu-

lation. The performed analyses highlighted the model ability in capturing the

different strength and stiffness characteristics along the material axes, as well as

the influence of the applied stresses with respect to the bed joints orientation.

The proper representation of the nonlinear static response was an essential

starting point to move the investigation towards the dynamic field. Thus, Chap-

ter 6 dealt with the characterization of the dynamic behavior of masonry walls,

for which a simple structural scheme of constrained base was selected. The choice

is due to the weak level of anchorage commonly characterizing the top side of

masonry walls in historical buildings. The main aim was to investigate the ef-

fects of degrading mechanisms on the dynamic amplification of the response, by

adopting a systematic approach based on the evaluation of the frequency response
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curves. For this purpose sweep-type acceleration histories were selected instead

of more complex dynamic excitations (earthquake records), to better identify de-

pendency of wall response on the main properties of the loading history, such

as frequency and amplitude. The isotropic damage-plastic model presented in

Chapter 4 was chosen to model the wall constitutive behavior, as this accounts

for damaging mechanisms and hysteretic dissipation due to the accumulation of

irreversible plastic strains. As expected, the studies led to multi-valued frequency

response curves characterized by softening behavior, with the backbone curve bent

to the left with respect to the corresponding elastic curve. However, a peculiar

phenomenon emerged due to the type of nonlinearity. Instead, differently from the

invariant restoring force systems, the FRC for increasing driving frequency cannot

run on the resonant branch obtained for decreasing frequency, as a consequence

of the structural damage progression. Furthermore, the results showed that the

coupled effect of damage and plasticity leads to less amplified displacement with

respect to the only damage case. Indeed, onset of hysteretic mechanisms and

growth of irreversible strains lead to larger hysteretic cycles and, then, to an in-

creased dissipated energy, resulting in a further dissipation effect.

Numerical results were also confirmed by experimental outcomes of shaking table

tests performed on tuff masonry walls. The panels, under base sinusoidal accel-

eration inputs with fixed frequency and increasing amplitudes, exhibited a degra-

dation of mechanical properties, which changed the dynamic structural character-

istics. Indeed, when the panels were subjected to an excitation frequency lower

than the first natural frequency corresponding to the undamaged state, they ap-

proached to the resonance conditions, then, came out when further degradation

occurred.

All these nonlinear phenomena led to more complex seismic responses. The per-

formed analyses highlighted that the structural maximum displacement can in-

crease with respect to the elastic case, when the natural frequencies of the damaged

structures approach to significant earthquake frequencies. Conversely, a beneficial

damage effect can occur with reduced maximum responses.
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7.2 Suggests for future work

On the overall, the proposed constitutive models showed to be rather accurate in

predicting masonry nonlinear behavior, both in terms of failure mechanisms and

force-displacement response curves. Obviously, there is still room for improve-

ments. Most of them deal with the proposed orthotropic damage model because

of its higher accuracy paid in terms of formulation complexity. Present and future

developments are listed here:

1. Extension of the presented constitutive models and the related FE formula-

tions to the three-dimensional case. This could allow to extend the studies

to complex masonry buildings, by properly describing the interaction of in-

plane and out-of-plane response of each structural element. This objective

can be easily reachable for the proposed isotropic damage-plastic model,

as it accounts for the effect of the out-of-plane strain components on the

evolution of damaging mechanisms and the adopted plasticity model is al-

ready available in its original three-dimensional version. Conversely, it is a

challenging task for the orthotropic model, for which further developments

would be needed because of its specific in-plane formulation.

2. Research of a simpler analytical formulation of the limit surface for or-

thotropic damage model, with the aim to make easier the evaluation of the

damage variables evolution.

3. Phenomenological introduction of the effects of frictional mechanisms at the

interface between bricks and mortar in the orthotropic damage model. To

this purpose the Hoffman yield criterion (Hoffman, 1967) could be a suitable

option, as it was specifically proposed to model anisotropic behavior as well

as the non-symmetric responses under tensile and compressive stress states.
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damage limit surface

In Chapter 5 a new orthotropic damage model for the macromechanical analysis

of masonry structures was presented. The model requires the introduction of

a damage limit surface to rule onset and evolution of damage variables. This

surface is geometrically defined, in the damage associated variables space, as the

intersection of an ellipsoid with an elliptic cone (see Figure A.1) and only few

material properties are required to construct it. In detail, the input parameters

represent mechanical properties defined along the material axes, T and N , parallel

and normal to the bed joints orientation. These parameters are parallel, Y1t0, and

normal, Y2t0, uni-axial tensile thresholds, parallel, Y1c0, and normal, Y2c0, uni-

axial compressive thresholds, pure shear, Ys0, threshold and bi-axial compressive,

Ycc0, threshold. Some of them can be derived by experimental correlations, if no

detailed experimental data are available, as shown in Table A.1. For instance,

the compressive strength at load acting parallel to bed joints is, on average, equal

to half of the corresponding normal strength (Hoffmann and Schubert, 1994).

Similarly, the bi-axial compressive strength results about 1.1-1.2 times the normal

uni-axial compressive strength.
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Input parameters

Tensile normal threshold Y2t0
Compressive normal threshold Y2c0

Shear threshold Ys0

Derived input parameters

Tensile parallel threshold Y1t0

Compressive parallel threshold Y1c0

Bi-axial compressive threshold Ycc0

Table A.1: Material parameters for damage limit surface construction.

Y
3

Y
1

Y
2

Figure A.1: Damage limit surface in the damage associated variables space.

It should be remarked that some simple manipulations are needed to define the

damage thresholds, Y1t0, Y2t0, Y1c0, Y2c0, starting from the stresses, σ1t0, σ2t0, σ1c0,

σ2c0, at the onset of damaging process. In case of elastic orthotropic response,

uni-axial load parallel to T -axis involves transversal strain εN equal to:

εN = −νTNεT , (A.1)

while the strain εT , caused by uni-axial load parallel to N -axis, is expressed as:

εT = −νNT εN . (A.2)

Basing on the above relationships (Eqs. A.1 and A.2), the strains ε1c0 and ε2c0,
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corresponding to σ1c0 and σ2c0, under uni-axial compressive stress state, are:

ε1c0 =
σ1c0

C11 − νTNC12

, (A.3)

ε2c0 =
σ2c0

C22 − νNTC21

, (A.4)

where Cij (with i=1,2 and j=1,2) are components of the orthotropic elastic consti-

tutive matrix in Eq 5.11. Finally, recalling the definition of the damage associated

variables of Eqs. 5.15, the damage thresholds Y1c0 and Y2c0 are derived as:

Y1c0 = ε1c0 − νTNνNT ε1c0 , (A.5)

Y2c0 = ε2c0 − νTNνNT ε2c0 . (A.6)

It can be noted that Y1c0 and Y2c0 correspond exactly to ε1c0 and ε2c0 when νTN =

νNT = 0. Similar considerations hold for the damage thresholds in tension, i.e.

Y1t0 and Y2t0.

In what follows, a detailed description of the damage limit surface construction

is provided, based on the input parameters in Table A.1. First, the geometrical

parameters of the surface are derived, then, the equations of the elliptic cone and

ellipsoid are determined.

A.1 Geometry of the damage surface

To uniquely define the damage surface, the following quantities have to be deter-

mined (reference is made to Figures A.2(a) and (b)):

� spatial coordinates of the cone vertex VT ;

� a and b semi-axes of the director ellipse, E, as well as the coordinates of its

central point O;

� spatial coordinates of point VC to determine the ellipsoid c semi-axis.

Points TN , TP , CN , CP , CC and CN1 are placed on the Y1-Y2 plane (Figure

A.3(a)), concordantly to the input parameters in Table A.1. Then, the straight
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Figure A.2: Damage limit surface: (a) projection on the Y1-Y2 plane and (b)
director ellipse.

lines r and s are obtained by jointing TN -CP and TP -CN points, respectively. The

intersection of r and s provides vertex VT of the elliptic cone, as shown in Figure

A.3(b). Semi-axis a of the director ellipse is determined as half distance between

point CN and D, with point D given by intersection of r with the line q joining

points CN1 and CN . Simple geometric construction allows also to determine lo-

cation of the central point O of the ellipse (Figure A.3(b)). Regarding VC point

position, it results from intersection of the perpendicular line to q in O and the

parallel line to Y1-axis and passing for CC . Furthermore, distance between VC

and O furnishes the c semi-axis of the ellipsoid (Figure A.3(c)). Finally, the b

semi-axis of the director ellipse can be determined on the basis of the researched

shear threshold Ys0. This is done by considering point H in Figure A.3(d), which

is defined by the intersection of q and t (this latter obtained by joining VT with

origin of the coordinate system) lines. Thus, with reference to the cross section

B-B sketched in Figure A.3(e), the Y3-coordinate (h) of the H̃ point, belonging to

the reached director ellipse E, is found by imposing the following relationship:

h : |HVT | = Ys0 : d , (A.7)
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where d denotes distance between VT and origin of the reference system. Once the

h quantity is known, the b semi-axis can be determined by satisfying the belonging

of H̃ point to the ellipse E (see Figure A.3(f)).

A.2 Derivation of elliptic cone equation

In the following, the (Y1, Y2, Y3) axes are denoted as (x, y, z) for sake of simplicity.

The parametric equation of an ellipse Ẽ (see Figure A.4), lying on a plane parallel

to the y-z plane, is written as:

Ẽ =


x = x0

y(θ) = y0 + a cos(θ) θ = [0, 2π] .

z(θ) = z0 + b sin(θ)

(A.8)

The center of the ellipse O (whose spatial coordinates are known as a consequence

of the previous section):

O = (x0, y0, z0) (A.9)

and the generic point P :

P = (x, y(θ), z(θ)) , (A.10)

identify the vector e:

e(θ) = P −O =

 0

a cos(θ)

b sin(θ)

 . (A.11)
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Figure A.3: Construction phases of the damage surface.
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Furthemore, by defining the rotation matrix Qz(ϕ) around the z axis:

Qz(ϕ) =

cos(ϕ) − sin(ϕ) 0

sin(ϕ) cos(ϕ) 0

0 0 1

 , (A.12)

vector r can be obtained as:

r(ϕ, θ) = Qz(ϕ)e(θ) =

−a sin(ϕ) cos(θ)

a cos(ϕ) cos(θ)

b sin(θ)

 . (A.13)

It should be noticed that the rotation angle ϕ is set equal to 45°, concordantly to

the construction phase in Figure A.3(b). The generic point P , belonging to the

rotated ellipse E of Figures A.2(b) and A.4, can be determined as:

P (ϕ, θ) = O + r(ϕ, θ) =

x0y0
z0

+

−a sin(ϕ) cos(θ)

a cos(ϕ) cos(θ)

b sin(θ)

 . (A.14)

On the basis of coordinates of the vertex VT=(xV , yV , zV ), the vector v is obtained:

v(ϕ, θ) = P (ϕ, θ)− VT =

x0y0
z0

+

−a sin(ϕ) cos(θ)

a cos(ϕ) cos(θ)

b sin(θ)

−
xVyV
zV

 . (A.15)

Vector v can generate each point C of the elliptic cone, which satisfies the following

relationship:

C(κ, ϕ, θ) = VT + κv(ϕ, θ) κ ∈ R+ (A.16)

Finally, the generic generatrix line g of the cone is described by the following

vectorial equation:

g =
{
P = VT + κv, κ ∈ R+

}
. (A.17)
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Therefore, a point S = (x, y, z) belongs to the elliptic cone if:

S = C(κ, ϕ, θ). (A.18)

By explaining previous equations, the following equation system is obtained:
x− xV − κ(x0 − a cos θ sinϕ− xV ) = 0

y − yV − κ(y0 + a cos θ cosϕ− yV ) = 0

z − zV − κ(z0 + b sin θ − zV ) = 0

(A.19)

After some simple manipulations of Eqs. A.19, the cartesian form of the elliptic

cone equation can be derived and used in the finite element code.

E

E
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z

y

x
0

~

V
T

P

O

C
N

φ=45°

g

Figure A.4: Graphical representation of elliptic cone construction.

A.3 Derivation of ellipsoid equation

The cartesian equation of an ellipsoid centered in the cartesian coordinate system

oxyz is written as:
x2

a2
+
y2

c2
+
z2

b2
= 1, (A.20)

where a, b and c represent the ellipsoid semi-axes (see Figure A.5(a)). Translation

and rotation of this surface allows to obtain equation of researched ellipsoid. The
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following transformation is introduced:

x = cosϕ(X − x0)− sinϕ(Y − y0),

y = sinϕ(X − x0) + cosϕ(Y − y0),
(A.21)

where (x0, y0, z0) are the coordinates of central point O of the director ellipse E

and ϕ is set equal to -45°, according to Figure A.3. By replacing Eqs. A.21 in Eq.

A.20 and by considering a, b, c values determined in Section A.1, the researched

ellipsoid equation is derived.

o

z

y

x

a

b

c

(a)

Y
3

Section B-B

M

(b)

Figure A.5: (a) Ellipsoid centered in the cartesian axes system oxyz; (b) material
point M inside the limit surface.

A.4 Conclusive remarks

This appendix showed that the damage surface definition is ruled by simple geo-

metric construction phases, which involve control points with physical meaning.

Indeed, only mechanical properties along masonry material axes are required to

construct the surface. Cartesian equations of the elliptic cone and ellipsoid were

also derived. On the basis of these equations, a MATLAB code (which is not

shown here) was designed to automatically generate the surface equation when
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material parameters change is considered.

Finally, to underline a common drawback, an example case is sketched in Figure

A.5(b). Here, material point M lies inside the surface, despite this is outside

the ellipsoid. Consequently, this point represents a material state where no dam-

age evolution occurs. Thus, attention should be paid in the finite element code

implementation to establish if a material point lies inside the surface.
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(eds). Balkema, Rotterdam.
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