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Abstract 

Next Generation Sequencing technologies have completely changed the way to study 

molecular bases underlying Rare Genetic Diseases (RGDs). Currently, sequencing of the 

exonic portion of the human genome – the exome (1%) – performed through Whole Exome 

Sequencing (WES) experiments represents the most used approach to discover molecular 

mechanisms underlying RGDs. To date, several tools have been developed to analyse and 

interpret data generated from WES. However, due to both technical and experimental 

limitations, its diagnostic rate is ~20-30%. 

In this context, we evaluated whether WES data contain information on non-coding 

sequences, focusing on microRNAs (miRNAs). Comparative analysis of capture design and 

experimental coverage allowed to disclose that in WES data reside information related to 

miRNA sequences that are efficiently captured by most exome enrichment kits. We therefore 

analysed WES of a cohort of 259 individuals, including patients affected by several genetic 

diseases and their unaffected relatives, searching for variants in miRNAs and performing 

functional annotation. Sanger sequence validation confirms the reliable call of variants 

mapping in miRNA sequences. 

To date, no dedicated tool is available to properly retrieve and analyse miRNAs from 

WES and WGS data. We therefore developed a tool, “AnnomiR”, that allows to systematically 

analyse miRNA variants and miRNAs, providing functional annotation retrieved from 

several databases. This tool can be integrated in a standard workflow of analysis for WES and 

WGS data. 

WES data contain a great amount of information that is generally discarded by 

commonly used workflow of analysis and that should be considered, as it could help in the 

comprehension of molecular mechanisms underlying RGDs. In this context, systematic study 

of miRNAs could help elucidating their role as disease-causative and phenotypic modifiers in 

a wide spectrum of human diseases, allowing to achieve a better characterisation of variability 

of the human genome related to these non-coding sequences. 
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1. Introduction 

1.1 Rare Genetic Diseases’ molecular bases identification: the advent 

of Next Generation Sequencing 

Rare diseases are defined as diseases that affect fewer than 200,000 people in US1 or 

less than 1 in 2,000 in Europe2. Therefore, these diseases, though individually rare, are 

collectively common. Rare diseases have been estimated to be 7,000, ~80% of which has genetic 

causes3, prevalently, alterations of single genes4. Molecular bases of these Rare Genetic 

Diseases (RGDs), also called monogenic or Mendelian diseases, have been extensively 

studied, leading to the determination of more than 3,500 disease-gene associations5.  

First successes in the identification of disease-gene associations were obtained through 

a combination of linkage analysis, positional cloning and sequencing of candidate genes6,7.  

Linkage analysis is based on the observation that genes physically close on a chromosome co-

segregate during meiosis8. In this approach, the sequencing of several affected individuals 

and controls from a set of families (or from the same one), using a group of DNA 

polymorphisms, allows to calculate the probability that two loci are genetically linked6,8. The 

comparison of linked regions obtained, with information on status of affected members is then 

useful to discriminate between regions presumably containing disease-causative mutations 

and regions not relevant in the physiopathology of the disease. Linkage analysis often 

represents the first step for positional cloning9. Starting from a previously identified candidate 

region, positional cloning is used to narrow this genomic region, with the intent to identify 

gene (or genes) in which disease-causative mutations could rely. Combined approach of 

linkage analysis followed by positional cloning allowed to identify several disease-gene 

associations, as in the case of CFTR for Cystic Fibrosis10 (MIM: 219700) and HTT for 

Huntington disease11 (MIM: 143100). While linkage analysis and positional cloning do not 

require any functional information on genes associated with RGDs, candidate-genes approach 

is based on Sanger sequencing of genes that seem to be involved in the disease investigated. 

These genes can be selected for several reasons: because they resemble genes associated with 

similar diseases, because their protein products seem to be correlated with the 

pathophysiology of the disease, or because they are located in a relevant region previously 

identified with other strategies (e.g. linkage analysis)7. Through candidate-gene approach 
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many disease-causative mutations were discovered as those in p53 associated with Li-

Fraumeni syndrome12 (MIM: 151623).   

However, several factors limit the power of these traditional methods as the 

availability of a small number of cases, the lack of a priori biological information, the reduced 

penetrance of a mutation, and locus heterogeneity7,13. 

Improvements in DNA sequencing, achieved through the introduction of Next 

Generation Sequencing (NGS) technologies in 2009, have allowed to overcome these 

limitations. Sequencing a genomic region of interest with a single-nucleotide resolution in a 

rapid and cost-effective way, NGS substantially changed the way to study RGDs, accelerating 

the pace of discovery of molecular bases underlying human diseases. From its first application 

in medical genetics - that led to the identification of disease-causative mutations in DHODH 

gene in patients affected by Miller syndrome14 (MIM: 263750) – NGS has allowed to elucidate 

many other disease-gene associations4,15. 

NGS technologies used to sequence human DNA can sequence a specific panel of 

genes (targeted sequencing - TS), the coding portion of the human genome – the exome – 

(Whole Exome Sequencing) or the entire genome (Whole Genome Sequencing). NGS 

experiments produce a large amount of data, demanding several bioinformatics tools to detect 

and interpret variations identified. Therefore, one limiting factor in the application of these 

methods is represented by the analysis and the interpretation of the data, rather than their 

production. As the amount and the kind of variations identified strictly depend on the 

sequencing approach, all NGS strategies present advantages and limitations in terms of costs 

and data analysis. Consequently, the choice of the appropriate method is generally guided by 

a priori knowledge of molecular defects underlying the disease investigated (e.g. known 

disease-gene associations) and by hypothesis on kind of disease-causative mutations (e.g. 

sequence variations rather than chromosomal rearrangements). 

TS is used to sequence either a panel of genes known (or predicted) to be associated 

with the investigated disease, or the entire set of genes known to be mutated in Mendelian 

diseases – the Mendeliome – composed by ~5000 genes16. This approach has the great 

advantage of identifying a small number of variations strictly related to the genes of interest, 

and of facilitating their interpretation. For these reasons, TS has been revealed a powerful tool 

at identifying disease-causative mutations in Mendelian cohorts17. Limitations of TS reside in 
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its partial ability to detect clinically relevant sequence variants, especially Copy Number 

Variants (CNVs); moreover, due to the high increase of disease-gene associations discoveries, 

gene panels require continuous updates. Therefore, TS may be inconclusive in cases in which 

disease-causative mutations are not identified, often requiring additional tests16.  

WES experiments perform sequencing of the coding portion of all known genes (1% 

of the human genome), allowing to overcome some of TS limitations. Conversely from TS, 

WES may be used not only to detect new disease-causative mutations but even to discover 

new disease-gene associations. Due to low costs and to the plenty of bioinformatics tools 

available for data analysis, WES has been widely used in medical genetics, leading to the 

comprehension of molecular bases of several RGDs13. However, several limitations, as the 

inability to assess non-coding variations, narrow WES successful rate, that is attested to be 

~20-30%16,18.  

WGS has the advantage of sequencing the entire genome, allowing to detect all 

sequence and structural variations. Thus, compared to WES, WGS has a greater successful 

rate15,16 even if its use is limited by the high costs and the lack of tools and abilities to deeply 

analyse and interpret data obtained. With the passing of these limitations, WGS will be widely 

used in the study of RGDs, leading to a better elucidation of molecular mechanisms 

underlying human diseases4.  

1.2 Whole Exome Sequencing  

Among NGS technologies, WES is currently the most used approach in the study of 

molecular bases of RGDs4,15. Indeed, due to the observation that 85% of disease-causing 

mutations reside within protein-coding genes19, and due to the accessible costs, WES has been 

largely applied in medical genetics, leading to the conversion of this approach from a research 

tool to a diagnostic one4,15.  

1.2.1 Whole Exome Sequencing experimental procedure 

Exome experiments can be performed following different protocols, all requiring 

fundamental steps of exome capture and sequencing13,20.  
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DNA fragmentation represents the starting point of exome capture and it can be 

performed through chemical, physical or enzymatic methods (Figure 1). Fragments obtained 

are ligated to adaptors, to generate a library. Next, the library obtained is enriched for 

sequences corresponding to exons. Among strategies available to capture protein-coding 

sequences21, the capture by hybridization approach in the aqueous-phase is the most used. In 

this case, the selection of exonic sequences occurs through the hybridization of the library with 

an exome enrichment kit constituted by DNA or RNA biotinylated baits complementary to 

sequences of interest. Recovery of hybridized fragments (corresponding to exonic sequences) 

is then performed through biotin-streptavidin-based pulldown13.  

Fragments recovered are successively amplified following technology used by the 

sequencer chose. Among amplification strategies20, the most diffuse is the one used by 

Illumina platforms, represented by a solid-state amplification, specifically, a bridge-

amplification (Figure 2). In this technique, DNA captured fragments are hybridized to a solid 

Figure 1. Library construction for WES experiment.  Genomic DNA is fragmented through different 

systems to create a library. Fragments obtained are then ligated to adaptors (shown in yellow and light 

purple). After adaptors ligation, fragments are enriched for exonic sequences (dark blue) using an 

exome enrichment capture system constituted by RNA or DNA probes (orange sequences) that are 

biotinylated (red dots on orange sequences). Fragments hybridized, corresponding to exonic sequences, 

are then recovered through a biotin-streptavidin based pulldown, while the ones not ligated are 

washed away. Figure adapted13. 
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surface in which forward and reverse primers, complementary to the adaptors on the 

fragments, are found. Each single-stranded DNA fragment binds to one of the primers and a 

polymerase creates the complementary sequence. Once that double-strand DNA molecule has 

been generated, it is denatured, and the two single-stranded DNA fragments obtained fold 

over, binding the nearby primers and encountering a new process of sequencing. This process 

is repeated many times, generating a cluster containing millions of copies of the starting DNA 

fragment.  

Once that DNA fragments have been amplified, they are sequenced through short-

read sequencing approaches, based on sequencing by ligation (SBL) or sequencing by 

synthesis (SBS)20. In SBL approaches, a probe sequence is labelled with a fluorophore and, 

when the probe hybridizes to a DNA fragment, it releases the fluorophore, allowing to 

identify the probe complementary to the sequence, through the emission spectrum generated. 

In SBS approaches, when a nucleotide is incorporated during extension of a DNA fragment, 

it releases a signal such as a fluorophore or a change in ionic concentration, that allows to 

identify the nucleotide20.  

Figure 2. Solid-phase bridge amplification. In Illumina sequencers, library amplification is performed 

in a solid-phase. The solid surface used shows forward and reverse primers (yellow and light purple 

fragments) complementary to the adaptors ligated to the DNA fragments during library generation 

(Figure 1). DNA single-stranded fragments obtained from previous phase, are hybridized to the solid 

surface. Each DNA fragment binds to one of the primers on the solid surface and a polymerase is used 

to create the complementary sequence (figure on the left). Double-strand DNA molecules synthetized 

are denatured, and the two single-stranded DNA molecules resulting, fold over (figure on the right), 

binding nearby primers and being sequenced again. This process is also called cluster generation since 

it generates a cluster of identical fragments starting from the same DNA molecule. Cluster generated 

are then sequenced through a short-read sequencing process based on sequencing by ligation or 

sequencing by synthesis approach.  Figure adapted20. 
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1.2.1.1 Comparison of sequencing platforms and exome enrichment 

capture systems 

Among short-reads platforms, SBL technique is mostly used by SOLiD (Thermo Fisher 

Scientific) and Complete Genomics (BGI) systems20. These platforms can generate reads very 

different in length, ranging from 75 bp for SOLiD to 28-100 bp for Complete Genomics20. 

Although these systems show high accuracy in base identification (~99,99%) as each base is 

probed multiple times, they present several limitations, as low sensitivity and specificity, since 

true variants are missed while few false variants are called20. The SBS technique is used by 

Illumina sequencers which generate reads of length up to 300 bp20. Although these platforms 

show a lower accuracy compared to SOLiD and Complete Genomics systems (> 99.5%)20, they 

also show a higher sensitivity (even if false-positive rate is around 2.5%)20. Therefore, 

providing a wide range of sequencers20, Illumina NGS platforms are currently the most used 

for short-reads sequencing. 

To perform exome capture, several exome enrichment systems have been developed. 

Most used kits provided by Roche NimbleGen, Agilent Technologies and Illumina, show 

several differences in terms of target size and design. The dimensions of kits commercially 

available span from ~37Mb of Nextera Rapid Capture Exome (Illumina) to ~67Mb of 

SureSelect Clinical Research Exome V2 (Agilent Technologies). Differences observed in target 

size are mostly due to target design. Indeed, exome enrichment capture systems are designed 

considering gene sequences contained in several databases as RefSeq (NCBI Reference 

Sequence Database)22, GENCODE23 and CCDS (Consensus CDS)24. In addition to capture 

exonic regions, exome enrichment kits can also contain probes targeting protein non-coding 

sequences, as microRNAs (miRNAs). In this case, reference database used is represented by 

miRBase (the microRNA database)25 which contains information on all miRNA sequences 

identified in more than 200 species. Moreover, exome enrichment kits may be available in 

expanded versions, with probes for sequences outside coding exons. This is the case of 

SureSelect Human All Exon V6+UTR (89Mb, Agilent Technologies) which target regions 

include 5’ and 3’ UTR regions, and of SeqCap EZ MedExome (Roche NimbleGen) that, 

combined with SeqCap EZ Mitochondrial Genome Design (Roche NimbleGen), allows to 

sequence the entire mitochondrial DNA. 
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1.2.2 Whole Exome Sequencing bioinformatics processing  

WES experiments produce a large amount of data that can vary substantially, 

according to the experimental design (e.g. due to the exome enrichment kit used). 

Fundamental steps in the processing of WES data require the alignment of the reads to the 

reference genome, the identification of variants present in the WES analysed (i.e. variant 

calling) and the functional annotation of variants and genes identified (Figure 3). 

A WES experiment generally produces from tens to hundreds of millions of reads 

stored in FASTQ files. Prior to the alignment step, reads are treated to remove the adaptors 

used during sequencing experiment, to obtain reads containing only sample DNA sequences. 

For adapter trimming, several tools can be used, as TrimGalore!II and Trimmomatic26. File 

produced from this pre-processing step is still a FASTQ file. Trimmed reads are then aligned 

to the reference genome through tools as Burrows-Wheeler Aligner (BWA)27 and NovoAlignIII.  

Currently, the assembly hg38/GRCh38 represents the most recent update of the human 

reference genome, even if analyses can be also performed using previous genome version, 

Figure 3. Genome Analysis Toolkit (GATK) pipeline for germline variants discovery. According to 

GATK pipeline, widely used for germline short variant discovery, raw data produced are aligned to 

reference genome. Raw mapped reads are analysed to identify and mark duplicated reads. Base quality 

scores are recalibrated, and germline variants are identified applying “HaplotypeCaller” algorithm. If 

multiple samples are available (e.g. in case of a trios), only one variant calling step (joining the three 

samples) should be performed. After variant calling step, raw single nucleotide variants and small 

insertions and deletions identified should be filtered, according to quality criteria. At this step, 

genotypes can be refined, and variants can be annotated. Figure reprinted from GATKI 
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hg19/GRCh37. Indeed, for hg19/GRCh37 assembly, a plenty of tools has been developed 

during past years, while tools available for the most recent version of the human genome are, 

in large part, still under development. After the alignment step, the mark of PCR duplicates 

is required, since WES experiments produce a lot of duplicated reads, due to the clonal 

amplification, that are uninformative for variants detection. Therefore, through tools as 

MarkDuplicates by PicardIV or markdup by SAMtools28, PCR duplicates are flagged and easily 

discarded. Next step is represented by base quality recalibration (Base Quality Score 

Recalibration - BQSR) generally performed through Genome Analysis Toolkit (GATK)29. 

BQSR estimates systematic errors made by the sequencer during base calling and, 

consequently, it adjusts overall base quality values. As variant calling algorithms highly rely 

on quality values assigned to each base call, BQSR is a fundamental step to get more accurate 

base qualities, which in turn improves the accuracy of variant calling. The file obtained from 

the steps of alignment to the reference genome, mark of PCR duplicates and BQSR is a BAM 

(Binary Alignment Map) file which dimensions can vary from 6 to 13 Gb16. Parameters as 

coverage, depth and unique mapped reads can be used, at this level, to evaluate the quality 

of data (Figure 4). Considering a genomic region, coverage refers to the extension of the 

effective capture of the region (expressed as a percentage), while depth is related to the 

number of reads that supports each base in the region (and it is expressed as a number). 

Unique mapped reads refer to the reads that, depleted from PCR duplicates, can be used to 

call variants. 

Variant calling is the process in which WES data are analysed to identify variants.  

GATK HaplotypeCaller29 is the most used tool to perform germline variant calling, identifying 

both single-nucleotide variants (SNVs) and small insertions and deletions (indels). Variants 

identified are reported in a VCF (Variant Call Format) file and they can be filtered, according 

to quality criteria, to retain only reliable ones. 

Finally, variants and genes in which variants localise are annotated to evaluate their 

potential biological role. Functional annotations on variants may regard their effect on 

transcripts, their frequencies in population databases and information on already known 
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disease-causative mutations. Functional annotation on genes may involve gene function, gene 

pathways, gene ontology, phenotypes caused by homolog genes, and already known disease-

gene associations. 

To annotate variants effect on transcripts, several tools can be used as ANNOVAR30, 

SnpEff31, and VEP (Variant Effect Predictor)32. Using as a reference database a set of 

transcripts, as RefSeq22, GENCODE23, or Ensembl33, these tools identify variants localisation 

in transcripts, evaluating possible functional consequences (e.g. whether variants alter an 

exonic sequence).  Variants frequencies across several populations can be retrieved from 

databases as dbSNP (Database of Single Nucleotide Polymorphisms)34, 1000 Genome35 or the 

most recent gnomAD (genome Aggregation Database)36 comprehensive of more than 120,000 

WES and 15,000 WGS data. Other information on variants can be added considering their 

conservation across genomes, using software as phyloP37 and GERP++38. Information related 

to already known disease-causative mutations can be added through databases as HGMD 

(The Human Gene Mutation Database)39 and ClinVar40. Databases containing population 

frequencies, conservation scores and known disease-causative mutations (and others 

Figure 4. Coverage, depth and unique mapped reads. After the first step of pre-processing, BAM files 

can be evaluated considering parameters of coverage, depth and unique mapped reads. Coverage 

parameter expresses in percentage the extension of a region of interest covered by reads aligned. Depth 

parameter (also called depth of coverage) is calculated at a nucleotide level and refers to the number of 

reads that support a specific call. Coverage and depth can be combined to obtain summary statistics 

indicating the percentage of a region of interest covered at a defined depth (e.g. a region of interest can 

be covered at 90% with a depth of 20X, meaning that at least 20 reads cover the 90% of the region 

investigated). Finally, unique mapped reads parameter indicates reads, depleted from PCR duplicates 

(shown in orange), that should be considered to perform variant calling. Unique mapped reads 

parameter can be evaluated both as a number and as a percentage. Since duplicated reads introduce a 

bias in the evaluation of coverage of a region of interest (as they increase the number of reads mapping 

in the region), coverage and depth parameters should be calculated on unique mapped reads. 
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information, Table 1) can be separately added or can be comprehensively annotated using 

metadatabases, as dbNSFP48, which contain data for both variants and genes functional 

annotation.  

Information on gene function can be retrieved from databases as UniProt49. To 

annotate gene pathways, single resources as KEGG (Kyoto Encyclopedia of Genes and 

Genomes)50, or systems integrating databases, as ConsensusPathDB51, can be used. Genes may 

also be analysed using information coming from databases that classify them relying on 

biological, molecular and cellular features, as GO (Gene Ontology)52. To analyse possible 

involvement of genes in the disease investigated, information may also come from homolog 

genes functions and phenotypes-homolog genes associations. To this aim, information 

contained in databases regarding mouse and zebrafish, as MGI (Mouse Genome Informatics)53 

and ZFIN (The Zebrafish Information Network)54 respectively, can be used. Finally, 

information on genes already associated with diseases may be obtained from OMIM (Online 

Mendelian Inheritance in Man)55 or HGMD39 databases. 

Table 1. Functional annotation on variants and genes that can be integrated in analysis of WES data. 

Tool Annotation on Purpose Reference

ESP6500

(Exome Sequenincg Project v. 6500)
Variants Reports population-specific variants frequencies Exome Variant Server

41

ExAC

(Exome Aggregation Consortium)
Variants Reports population-specific variants frequencies Lek et al., 2016

36

PhastCons Variants Identifies conserved sites scoring each substitution Siepel et al., 2005
42

InterPro Variants
Provides information on protein domain in which 

the variant locates
Finn et al., 2017

43

BioCarta Genes Provides information on gene pathways Nishimura, 2001
44

RVIS Genes

Gives a score to genes in terms of whether they 

have more or less common functional genetic 

variations

Petrovski et al., 2013
45

Expression Atlas Genes
Provides information on genes and proteins 

expression across species and biological conditions
Petryszak et al., 2016

46

HI Genes Estimates probability of genes haploinsufficiency Huang et al., 2010
47
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1.2.3 Whole Exome Sequencing data analysis 

WES data analysis can be performed considering either the whole gene set or using an 

in silico panel of genes16, which can be firstly analysed to facilitate variants interpretation, and 

that can be subsequently expanded. Furthermore, as 85% of disease-causative mutations in 

Mendelian diseases resides in protein coding-regions19, pipelines used to analyse WES data 

generally analyse only SNVs and indels that fall in these regions. WES data analysis focuses 

on non-synonymous, non-sense, frameshift and on splice donor and acceptor variants. Then, 

to identify possible disease-causative mutations, several filters can be applied, based on 

biological observations and functional annotations. 

Biological information may come from phenotype observed, may regard molecular 

analyses previously assessed on the patient (e.g. linkage analysis, SNP array, CGH array), 

may come from his familiar history (e.g. pedigree information) or from other non-related 

affected patients. 

Functional annotations can be used to filter variants and genes. The most used filter 

relies on variants frequency. Indeed, as disease-causative mutations would be rare and 

therefore likely to be previously unidentified, population databases information is used to 

remove annotated variants with high frequency. 

Furthermore, several strategies may be used to prioritise variants and genes, to 

identify those potentially related to the disease investigated. Among tools that predict 

variants potential deleterious effect, there are PolyPhen-2 (Polymorphism Phenotyping v2)56 

and SIFT (Sorting Intolerant From Tolerant)57, which score only non-synonymous variants, 

and systems as CADD (Combined Annotation Dependent Depletion)58 and DANN59 that 

through a machine-learning system approach, trained on comparative genomics data, allow 

to assess the potentially damaging effect of all SNVs and indels. Furthermore, other tools can 

be used to predict variants interfering with splicing, as dbscSNV60 or SPIDEX61 which are 

respectively based on data coming from several databases and from RNA sequencing (RNA-

seq) experiments. 

For genes prioritisation, several strategies can be used, mostly relying on the 

identification of similarities between genes investigated and already known phenotype-gene 

associations. Among these tools, there are GeneDistiller62 and the most recent Phenolyzer63 

which allows to better define phenotype investigated, considering phenotypic standardised 
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terms (taken from HPO – The Human Phenotype Ontology)64, and therefore to discover more 

accurate associations of genes with similar phenotypes.   

To interpret the clinical relevance of variants prioritised, tools as InterVar65 or Sherloc66 

can be used.  Applying ACMG-AMP (American College of Medical Genetics and Genomics - 

Association for Molecular Pathology) guidelines67, these tools classify variants, allowing to 

reveal those definable as pathogenic according to standardised criteria. Moreover, as one of 

the big issues related to WES data analysis concerns secondary findings, these tools allow to 

assign a clinical significance also to variants that are not necessarily correlated with the disease 

investigated, improving patient management.   

1.3 Limitations and potentialities of Whole Exome Sequencing 

WES successful rate has been estimated to be ~20-30%16,18, despite the number of tools 

available to analyse data and interpret variants. This can be due to a combination of biological, 

technical and analytical reasons that can limit the power of new disease-gene discovery (Table 

2).  

Although WES presents fundamental limitations, it can also provide a meaningful 

amount of information, usually discarded by commonly used workflow analyses68, and that 

should be considered as it can have a relevant biological role in the phenotype investigated.  

Indeed, a recent study published by Bergant and colleagues showed that an extended exome 

analysis improved their diagnostic rate of ~4% in a cohort of more than 1000 cases69.  

Several tools have been developed to analyse from WES data information related to 

genome, as for Copy Number Variants (CNVs) and Regions of Homozygosity (ROHs), and 

for synonymous and non-coding variants. Thus, even if molecular cytogenetic methods (as 
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CGH and SNP array) and WGS experiments can be more accurate in the analysis of these 

genomic elements, they can also be analysed starting from WES data. 

1.4 MicroRNAs: biogenesis, function, and involvement in Rare Genetic 

Diseases 

MicroRNAs (miRNAs), which have been shown to play an important role in RGDs70, 

are small non-coding RNAs of ~22 nucleotides, widely expressed in all human tissues, that 

interfere with gene translation by targeting 3’ untranslated regions (UTRs) of messenger 

RNAs (mRNAs)71,72. MiRNAs are mainly transcribed by RNA polymerase II, from long non-

coding RNAs, intronic regions and, to a lesser extent, from exonic regions72,73 (Figure 5). 

Several miRNA loci can be found near each other, therefore constituting a polycistronic 

transcription unit72,73. Transcription of miRNA genes generate primary miRNA (pri-miRNAs) 

transcripts that are further processed in the nucleus. Drosha and DGCR8 cleave the pri-

miRNA leading to the formation of a precursor miRNA (pre-miRNA), ~70 bp long, which 

shows a 2-nucleotide overhang at 3’ end. Exportin 5 recognises the pre-miRNA and exports it 

to the cytoplasm. Here another protein, Dicer, which acts as a ‘molecular ruler’, cleaves the 

Table 2. Factors contributing to bottlenecks in the identification of new disease-causative mutations 

and new disease-gene associations. Table adapted4. 

Level of analysis Possible issues

Clinical data

•non-specific clinical presentations (e.g., developmental delay and hypotonia) 

•ultra-rare and unrecognized genetic diseases

•lack of ontology encompassing the complete spectrum of human phenotypes

•insufficient utilization of ontologies or 3D facial-gestalt analysis in phenotyping

•inconsistent multidisciplinary approaches to patient evaluation

•inability to account for and compare age-specific disease presentations

Genomic data

•technical limitations of WES (e.g., copy-number variants and structural variation are not 

captured well)

•lack of standardized technical and informatics approaches

•incompleteness of population-specific control datasets

Data discovery and sharing

•lack of a widely adopted data-sharing framework

•lack of common data-sharing standards

•lack of a systematic way to record data-use conditions

•lack of a privacy-preserving linkage system for each research participant

Genetic evidence
•siloed datasets

•lack of and use of data-sharing infrastructure

Functional evidence
•lack of standardized and moderate-throughput analyses of variant impact

•lack of biological insight into the function of most human genes

Novel disease mechanisms
•other mechanisms including tissue-specific mosaicism, methylation, and di- or oligogenic 

inheritance
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pre-miRNA generating a mature-miRNA duplex (composed of two mature miRNAs), with 

another typical 2-nucleotide 3’overhang72. One of the two mature miRNAs, the ‘guide strand’, 

is loaded into one of four AGO proteins (AGO 1-4) to form an effector complex called RNA-

induced silencing complex (RISC)73, while the other mature miRNA, the ‘passenger strand’, is 

discarded. Loading preference is given to the less stably 5’ end72. Along with canonical mature 

miRNAs, there can be produced multiple isoforms, isomirs, that originate from pri-miRNA 

modifications, due to an RNA A-to-I editing process, or from different cleavages performed 

by Drosha and Dicer71,72. 

Figure 5. MicroRNA biogenesis. Figure adapted72 
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The RISC complex can act binding target sites for miRNAs which are generally located 

in 3’ UTRs of mRNAs and are highly complementary to miRNAs seed regions. Seed region of 

a miRNA is generally defined as the region spanning from second to eighth nucleotide at 

mature 5’ end. Moreover, miRNAs can present specific sequences motifs based on AGO 

proteins on which they are loaded. This is the case of miRNAs loaded into an AGO2 protein 

which tend to show an A or a U at 5’-terminal-nucleotide, since AGO2 protein prefers one of 

these two nucleotides as first base. Through seed region, mature miRNAs can bind one or 

more mRNAs and mediate gene silencing through translation repression and mRNA decay72. 

Although these two modes seem to be interconnected, it has been observed that from 66 to 

90% of gene silencing events occur through mRNA decay72. 

Since one miRNA can target more genes and more miRNAs can interact with the same 

gene, deregulation of miRNAs function has been associated with several human diseases, 

particularly cancer74, but even RGDs70. MiRNA variants associated with RGDs have been 

found in genes responsible for miRNA biogenesis, in miRNA target sites and in miRNA 

sequences70. 

Since multiple enzymes and cofactors participate in the biogenesis of miRNAs (e.g. 

Drosha and Dicer), pathogenic variants in these genes generally result in the reduced 

efficiency of miRNA processing, which can lead to human diseases70. Several disease-

causative variants have been found in these genes, as in the case of DICER1 whose 

heterozygous germline variants have been associated with Familial Pleuropulmonary 

Blastoma (PPB, MIM: 601200)75. 

Disease-causative variants in miRNA binding sites may function as regulatory 

elements through modifying miRNA binding affinity and/or specificity, leading to a 

deregulation of expression of target genes. Among variants identified in 3’ UTR binding sites, 

a variant in 3’UTR of gene SLITRK1 was found in patients affected by Tourette syndrome 

(MIM: 137580)76. 

Pathogenic variants in mature miRNAs can alter miRNA processing and miRNA 

targeting, leading to the recognition of many novel and aberrant direct targets. Few disease-

causing variants in miRNA sequences have been associated to Mendelian diseases so far, 

specifically in miR-96, miR-204 and miR-184.  
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In 2009 Mencía and colleagues analysed a Spanish family affected by non-syndromic 

progressive hearing loss (MIM: 613074), revealing the presence of two disease-causative 

variants in seed region of miR-9677. These variants significantly alter both miRNA biogenesis, 

leading to a reduced expression of mature miRNA, and miRNA targeting, bringing to an 

overexpression of several predicted miRNA target genes expressed in the inner ear (as AQP5, 

ODF2, MYRIP and RYK). The variants identified in miR-96 were therefore recognised as 

disease-causative for non-syndromic progressive hearing loss77. Moreover, another variant in 

miR-96 precursor sequence was found associated with the same phenotype, impairing both 

mature miRNAs processing and expression78. 

Another pathogenic variant in the seed region of a mature miRNA was found in miR-

204 by Conte and colleagues in 2015 in patients showing retinal dystrophy associated with 

ocular coloboma79. Studying a five-generation family, a pathogenic variant in the seed region 

of miR-204 was identified. This variant alters miRNA targeting, through the loss of canonical 

gene targets and the creation of new ones. These alterations are responsible for an increase of 

retinal cell apoptosis, that lead to a reduced number of both cones and rods photoreceptor 

cells, causing a phenotype consistent with the one observed in the family79. 

In 2011, Hughes and colleagues, identified a disease-causative variant in miR-184 

responsible for keratoconus and early-onset anterior polar cataracts in a large Irish family80.  

The mutant miR-184 fails to compete with miR-205 for overlapping target sites on the 3’ UTRs 

of INPPL1 and ITGB4 genes, leading to their dysregulation. Although these target genes and 

miR-205 are expressed widely, miR-184 is highly expressed only in cornea and lens. Therefore, 

phenotype observed, due to miR-184 pathogenic variant, is restricted to these tissues. The 

same variant was also found in patients affected by EDICT syndrome (MIM: 614303) showing 

differences in keratoconus phenotype81 compared with the family reported by Hughes and 

colleagues, thus supporting the hypothesis that other genetic modifiers can explain different 

corneal phenotype in these two families. Moreover, two new pathogenic variants in miR-184 

were found in patients affected by isolated keratoconus. These variants reside in precursor 

sequence of miRNA and interfere with efficiency of processing82. 
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1.5 Methods used to study microRNA sequences and expression 

Since miRNA dysregulation may have substantial effects on gene silencing, miRNAs 

have been extensively studied, firstly focusing on their expression profiles. Studying miRNA 

expression variability can be very informative, elucidating biological processes in which 

miRNAs play a crucial role, as organismal development and establishment and maintenance 

of tissue differentiation83.  

Three major approaches are currently used to study miRNAs profiling: hybridization-

based methods (e.g. DNA microarrays), quantitative reverse transcription PCR (qRT-PCR) 

and NGS approaches (RNA-seq)83. 

Hybridization-based methods, as microarrays, were among the first methods used to 

study simultaneously several miRNAs. These experiments are based on the reverse 

transcription of miRNAs, on their labelling (e.g. by fluorescence), and their subsequent 

hybridization on an array in which there are DNA complementary probes. Even if these 

systems have really low-costs, they do not allow to perform absolute quantification of 

miRNAs considered, as well as they cannot identify novel miRNAs83.  

Methods as qRT-PCR are based on the reverse transcription of miRNAs to cDNAs. 

Once obtained cDNAs, there are amplified through a qPCR with real-time monitoring of 

reaction product accumulation. Although these systems allow to obtain an absolute 

quantification of miRNAs amplified, these techniques do not allow to discover new 

miRNAs83. 

NGS experiments have allowed to completely change the way in which miRNA 

profiling is performed. Indeed, RNA-seq based on NGS technologies allows to simultaneously 

study a plenty of miRNAs. The great advantage of this technique, compared with microarrays 

and qRT-PCR, resides in its ability to investigate both miRNA expression profiles and their 

sequences, not only analysing already known miRNA sequences, but even investigating those 

completely new83. 

Due to this great advantage, RNA-seq has quickly become the most diffuse approach 

to analyse both miRNA sequences and their expression profiles in a sample.  
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1.5.1 MicroRNAs and Whole Exome Sequencing 

Even if miRNA expression profiles can be only detected through the aforementioned 

methods, miRNA sequences can also be recovered from WES data. Indeed, exome enrichment 

capture systems may enclose probes to capture also miRNA sequences.  

One of the evidences of the presence of miRNA information in WES data comes from 

the work of Carbonell and colleagues84. To study miRNA variability in the human genome, 

they collected 1,152 healthy individuals. For 60 of them a WES experiment was performed 

using SeqCap EZ Exome (Roche NimbleGen), while for the remaining 1,092, data were 

downloaded from 1000 Genome Project84. Since the exome enrichment kit chose has been 

designed considering 720 miRNAs (taken from miRBase v13), they analysed all the samples 

considering variants localised in these miRNAs84. 

WES also allowed to discover one of the disease-causative variants in miRNAs 

associated with RGDs, specifically in the case of miR-20479. Focusing on a candidate region 

evidenced by linkage analysis, the authors analysed WES data, discovering the variant 

reported79. 

Taken together these evidences suggest that information regarding miRNAs may 

reside in WES. However, currently, there are not dedicated tools to retrieve miRNA related 

information from WES data. 
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2. Aim of the thesis 

The aim of this thesis was to investigate the presence of information related to miRNA 

sequences in WES data. To this purpose, we evaluated the ability of the most used exome 

enrichment capture systems commercially available to effectively capture miRNA sequences. 

Then, we developed a dedicated tool to retrieve, analyse and functionally annotate variants 

in miRNAs. To test our tool, we analysed WES data of a cohort of 259 individuals including 

patients affected by different genetic diseases. 
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3. Material and Methods 

3.1 Whole Exome Sequencing and microRNAs: capture evaluation 

We investigated which amount of miRNA-related information could be found in WES 

data. To this aim, we evaluated both theoretical and experimental coverage relative to miRNA 

sequences using several exome enrichment capture systems commercially available: SeqCap 

EZ Human Exome Library v3.0 (Roche NimbleGen), SeqCap EZ MedExome (Roche 

NimbleGen), Nextera Rapid Capture Exome (Illumina), SureSelect Human All Exon V4 

(Agilent Technologies), SureSelect Clinical Research Exome (Agilent Technologies), 

SureSelect Clinical Research Exome V2 (Agilent Technologies), SureSelect Human All Exon 

V6 (Agilent Technologies).  

Most exome capture systems are designed on hg19/GRCh37 assembly (except for 

SeqCap EZ MedExome, designed on hg38/GRCh38). Therefore, to evaluate miRNAs coverage, 

we considered miRNA “primary transcript” sequences, as reported in miRBase v2025 (version 

designed on assembly hg19/GRCh37). To perform coverage analyses we used bedtools 

package (version 2.26), composed by a series of utilities that allow to perform several 

genomics analyses85. 

3.1.1 Theoretical coverage 

As a first step, we evaluated whether exome enrichment capture systems contain 

probes to specifically capture miRNA sequences. To this aim, we compared genomics 

coordinates of target regions for each kit considered with miRNA “primary transcripts” 

defined in miRBase v2025. For SeqCap EZ MedExome we considered coordinates of capture 

regions based on assembly hg19/GRCh37 as furnished by Roche NimbleGen. We therefore 

evaluated miRNA sequences overlapping at least at 50% with target regions, using bedtools 

“intersect” tool (version 2.26)85. We chose this overlapping threshold since miRNA “primary 

transcript” sequences are ~80bp long while target regions are generally larger and, 

consequently, we expected that overlapping target regions would be able to capture miRNA 

full sequences. Histogram showing theoretical coverage of miRNA sequences was generated 

using “ggplot2”86, a R library. 
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3.1.2 Experimental coverage 

Then we evaluated whether exome baits would be effectively able to capture miRNA 

sequences. To this purpose, we selected 14 WES data captured through different exome 

enrichment capture systems (Table 3).  

To perform coverage analysis, we considered WES BAM files. Briefly, raw exome data 

were aligned to the reference genome, assembly hg19/GRCh37, using BWA-MEM algorithm87. 

PCR duplicates were then removed using MarkDuplicates by PicardIV. In some cases, Base 

Table 3. WES cases considered for evaluation of miRNA sequences coverage in WES data. Table 

reports pre-processing steps performed to generate BAM files analysed, along with algorithms used 

and respective versions. BQSR stands for Base Quality Score Recalibration. 

Case Exome enrichment capture system Alignment to reference genome Removal of PCR duplicates BQSR

1
SeqCap EZ Human Exome Library v3.0

(Roche NimbleGen)

BWA-MEM, 

version 0.7.10

Picard MarkDuplicates,

version 1.119

Not performed before 

generating final BAM

2
SeqCap EZ Human Exome Library v3.0

(Roche NimbleGen)

BWA-MEM, 

version 0.7.10

Picard MarkDuplicates,

version 1.119

Not performed before 

generating final BAM

3
SeqCap EZ MedExome 

(Roche NimbleGen)

BWA-MEM,

version 0.7.12

Picard MarkDuplicates,

version 2.3.0

Not performed before 

generating final BAM

4
SeqCap EZ MedExome 

(Roche NimbleGen)

BWA-MEM, 

version 0.7.10

Picard MarkDuplicates,

version 1.119

Not performed before 

generating final BAM

5
Nextera Rapid Capture Exome

(Illumina)

BWA-MEM,

version 0.7.12

Picard MarkDuplicates,

version 2.3.0

GATK PrintReads, 

version 3.7.0

6
Nextera Rapid Capture Exome

(Illumina)

BWA-MEM, 

version 0.7.10

Picard MarkDuplicates,

version 1.119

Not performed before 

generating final BAM

7
SureSelect Human All Exon V4

(Agilent Technologies)

BWA-MEM, 

version 0.7.10

Picard MarkDuplicates,

version 1.119

Not performed before 

generating final BAM

8
SureSelect Human All Exon V4

(Agilent Technologies)

BWA-MEM, 

version 0.7.10

Picard MarkDuplicates,

version 1.119

Not performed before 

generating final BAM

9
SureSelect Clinical Research Exome

(Agilent Technologies)

BWA-MEM,

version 0.7.12

Picard MarkDuplicates,

version 1.119

Not performed before 

generating final BAM

10
SureSelect Clinical Research Exome

(Agilent Technologies)

BWA-MEM, 

version 0.7.10

Picard MarkDuplicates,

version 1.119

Not performed before 

generating final BAM

11
SureSelect Clinical Research Exome V2

(Agilent Technologies)

BWA-MEM,

version 0.7.12

Picard MarkDuplicates,

version 2.3.0

GATK PrintReads, 

version 3.7.0

12
SureSelect Clinical Research Exome V2

(Agilent Technologies)

BWA-MEM,

version 0.7.12

Picard MarkDuplicates,

version 2.3.0

GATK PrintReads, 

version 3.7.0

13
SureSelect Human All Exon V6

(Agilent Technologies)

BWA-MEM,

version 0.7.12

Picard MarkDuplicates,

version 2.3.0

GATK PrintReads, 

version 3.7.0

14
SureSelect Human All Exon V6

(Agilent Technologies)

BWA-MEM,

version 0.7.12

Picard MarkDuplicates,

version 2.3.0

GATK PrintReads, 

version 3.7.0
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Quality Score Recalibration was performed before generating final BAM file, through Genome 

Analysis Toolkit software (GATK)29. As WES were performed during a period of 4 years (2014-

2018), versions of aforementioned algorithms may slightly differ (Table 3).  

First, to assess the quality and homogeneity of the WES, we evaluated the individual 

“on target” coverage, comparing each WES data with target regions of its own exome 

enrichment capture system. Next, we evaluated the coverage of miRNA “primary transcript” 

sequences, reported in miRBase v2025. The evaluation of “on target” and miRNA sequences 

experimental coverage was performed using bedtools “coverage” tool (version 2.26)85, 

without any overlapping threshold. Graphs showing relation between coverage and depth for 

target regions and miRNA sequences were generated using the R library, “ggplot2”86.  

3.1.3 Comparison with Whole Genome Sequencing data 

Since WGS experiments do not rely on a procedure for selection and capture of target 

regions, we compared data on miRNAs coverage between WES and WGS experiments. To 

this aim, we analysed two cases, specifically case 1 and 2 (Table 3), for which, besides WES 

data, we also had WGS data. We computed experimental coverage of miRNA “primary 

transcript” sequences (reported in miRBase v20)25 in WGS data, using bedtools “coverage” 

tool (version 2.26)85. To evaluate miRNAs coverage, we used WGS BAM files. Raw genome 

data were aligned to the reference genome, assembly hg19/GRCh37, using BWA-MEM 

algorithm (version 0.7.12)87 and, as WGS performed were not PCR-free, PCR duplicates were 

removed using MarkDuplicates by Picard (version 1.119)IV. We therefore compared data on 

miRNAs coverage obtained from WGS analysis with data already generated from WES 

analysis. 

As the number of WES and WGS considered was limited (2 WES and 2 WGS), we 

decided to extend our analyses on data available in the public database gnomAD (genome 

Aggregation Database version 2.0.2)36, containing 123,136 WES and 15,496 WGS.  

We therefore evaluated coverage of miRNA sequences in publicly available coverage 

data for gnomAD WES and WGS. These coverage data report, at a single nucleotide level, 

statistics on coverage, as mean and median, calculated evaluating all individuals sequenced. 

GnomAD WGS data contain coverage data for all the human genome, while gnomAD WES 

data have been processed considering only the exonic portion36. Therefore, to evaluate 
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whether gnomAD WES data have been processed in respect of miRNA sequences, we first 

assessed whether exome calling intervals contain miRNA “primary transcript” sequences, 

using bedtools “intersect” tool (version 2.26)85, with an overlapping threshold of 100%.  

Then, we analysed gnomAD WES and WGS coverage data, focusing on regions of 

miRNA “primary transcript” sequences. To select from coverage data only regions of interest, 

we used tabix (from HTSlib 1.9, SamtoolsV) and bedtools “intersect” tools (version 2.26)85. 

Next, we generated a coverage summary file for gnomAD WES and WGS data; specifically, 

we computed the same statistics provided by bedtools “coverage” tool on single BAM files, 

considering “mean” coverage values reported in gnomAD coverage data, using a R script 

(version 3.4.4)88. 

Graphs showing relation between coverage and depth for miRNA sequences in WES 

and WGS experiments were generated through the R library “ggplot2”86. 

3.2 Evaluation of microRNA variants in a cohort 

Once we assessed that WES data contain information on miRNA sequences, we 

analysed miRNA variants in a cohort composed by 259 individuals sequenced through WES 

experiments. Individuals were sequenced and analysed in a collaboration with Genetics and 

Rare Diseases Research Division at Bambino Gesù Children's Hospital, Rome, Italy. 

Specifically, in the cohort considered, 110 patients affected by several RGDs were sequenced 

to characterise molecular bases of the observed phenotypes. Where possible, relatives, 

including parents, brothers and sisters were sequenced. Therefore, the cohort of WES resulted 

composed by 110 probands (including 11 pairs of siblings) and 149 relatives (unaffected 

parents and siblings).  

WES experiments were performed in a homogeneous way: exomes were captured 

using the SureSelect Human All Exon V4 (Agilent Technologies) and were subsequently 

sequenced through the HiSeq2000 platform (Illumina). 

Raw exome data were aligned to the reference genome hg19/GRCh37 through BWA-

MEM algorithm (version 0.7.10)87. PCR duplicates were removed through MarkDuplicates by 

Picard (version 1.119)IV. Base Quality Score Recalibration was performed through GATK 

(version 3.3)29. To specifically identify germline variants localised in miRNA sequences, 

variant calling was performed through GATK Haplotype Caller (version 3.7)29 using, as calling 

regions, miRNA “primary transcript” sequences with a padding of 50bp. When multiple 
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samples of the same family were available, variant calling was performed through a joint 

calling. Hard filtering on variants was performed applying following criteria:  

1) Qual by Depth (QD) < 2.0, 

2) Fisher Strand (FS) > 60.0, 

3) Strand Odds Ratio (SOR) > 3.0, 

4) Root Mean Square of Mapping Quality (MQ) < 40.0,  

5) Mapping Quality Rank Sum Test (MQRankSum) < -12.5, 

6) Read Pos Rank Sum Test (ReadPosRankSum) < -8.0, 

7) QUAL parameter < 100.0. 

Only variants passing these criteria were identified as good quality variants and 

flagged as “PASS” or “SnpCluster” if more than 3 variants were found in a range of 10 bp.  

To analyse miRNA variants in the WES cohort, we considered only probands. When 

two patients were present in the same family, we randomly selected only one of them to 

eliminate bias due to the high amount of DNA shared between siblings. We therefore analysed 

miRNA variants on 99 probands.  

To retrieve miRNA variants, we developed a script in Python (version 2.7.14)89, that 

allowed to analyse VCF files searching for variants localising in miRNA sequences, as defined 

in miRBase v2025.  Comprehensively, the database contains the genomics coordinates of 1871 

miRNA “primary transcripts” and 2794 mature miRNAs. To better define miRNA variants 

location in miRNA sequences, we defined different miRNA regions, corresponding to the 

following substructures:  

1) Seed regions: bases from two to eight at 5’ of the mature miRNA; 

2) Mature sequences: the rest of mature miRNAs out of seed regions; 

3) Precursor regions: the regions out of mature miRNAs. 

We annotated substructures closer to 5’ end as “5p” and those closer to 3’ end as “3p”. 

When this information was not available, we calculated the distance of a miRNA substructure 

from both 5’ and 3’ end. 

MiRNAs that reside on opposite strands, but in the same genomic trait, were analysed 

separately (e.g. miR3116-1 and miR3116-2, which genomics coordinates are respectively 

chr1:62544458-62544531 and chr1:62544461-62544528). Therefore, in these cases, eventual 

variants identified were annotated in respect of substructures defined for both miRNAs.  
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To analyse only reliable variants, miRNA SNVs flagged as “PASS” with an overall 

Allel Depth (AD) equal or greater than 10 were considered.  MiRNA variants identified were 

therefore analysed considering their segregation: homozygous, heterozygous and, for 66 

probands for which we had parents, “de novo” variants. Then, variants were analysed 

considering localisation in miRNA substructures, i.e. seed, mature and precursor regions and 

their distribution was normalised on length of single substructures. 

3.2.1 Experimental validation 

Next, we selected some miRNA variants, identified in the cohort, to be experimentally 

validated. Selected miRNA variants were amplified by PCR (GoTaq Flexi DNA Polymerase – 

Promega) and analysed using Sanger sequencing (ABI BigDye Terminator Sequencing Kit 

V.3.1, ABI Prism 3500 Genetic Analyzer). Details on experimental validations performed are 

reported in Table 4.  

3.2.2 Functional annotation 

Finally, we added functional annotation regarding miRNA variants and miRNAs to 

better characterise their potential biological role. For variants, we annotated information using 

tools regarding variants frequencies (gnomAD (version 2.0.2)36 and dbSNP 15034) and their 

potential deleterious effect (CADD v 1.458 and DANN59). For miRNAs functional annotation, 

Table 4. Details on miRNA variants experimentally validated. Conditions related to PCR and Sanger 

sequencing parameters are reported along with primers used for both experiments. 

MiRNA Sequences (5'-3') PCR parameters Sequencing Reaction parameters

FW: TCATGAGTGCCAGGACTAGAC

REV: TCTCACAGGAACTCACACTCC

FW: CTGGACCACAGGTAAGACGAG

REV: ACGTCCTCCCCAGACACTTC

FW: TCATTCTGGCAGTGAACACTTC

REV: GTTGGGATCACCACCAGTTCG

FW: ATGAAGGCGAATCGCAGCCTC

REV: TCCACCCAGAACCTCTGGTC

FW: TCCTTGCCAAGCCCTTAGGTG

REV: AGTGACAACCCATTAGAAATACC

MIRLET7C

95°C - 2 min,

95°C - 30 sec/ 62°C - 30 sec / 72°C - 40 sec 30 cycles

72°C - 5 min

4°C - 5 min

96°C - 1 min,

96°C - 15 sec/ 58°C - 5 sec / 60°C - 4 min 25 cycles 

4°C - 5 min

96°C - 1 min,

96°C - 15 sec/ 58°C - 5 sec / 60°C - 4 min 25 cycles 

4°C - 5 min

96°C - 1 min,

96°C - 15 sec/ 58°C - 5 sec / 60°C - 4 min 25 cycles 

4°C - 5 min

96°C - 1 min,

96°C - 15 sec/ 58°C - 5 sec / 60°C - 4 min 25 cycles 

4°C - 5 min

MIR4634

95°C - 2 min,

95°C - 30 sec/ 62°C - 30 sec / 72°C - 40 sec 30 cycles 

72°C - 5 min

4°C - 5 min

95°C - 2 min,

95°C - 30 sec/ 62°C - 30 sec / 72°C - 40 sec 30 cycles 

72°C - 5 min

4°C - 5 min

MIR938

95°C - 2 min,

95°C - 30 sec/ 62°C - 30 sec / 72°C - 40 sec 30 cycles 

72°C - 5 min

4°C - 5 min

96°C - 1 min,

96°C - 15 sec/ 58°C - 5 sec / 60°C - 4 min 25 cycles 

4°C - 5 min

MIR146A

95°C - 2 min,

95°C - 30 sec/ 62°C - 30 sec / 72°C - 40 sec 30 cycles 

72°C - 5 min

4°C - 5 min

MIR202
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we added information relative to miRNAs associated with human diseases using data from 

HMDD v3.0 database (the Human microRNA Disease Database version 3.0)90.  

To understand how functional annotation could help in the elucidation of miRNA 

variants and miRNAs potentially related to RGDs, we first annotated miRNA variants already 

associated with Mendelian diseases and reported in Table 5. Subsequently, we annotated 

miRNA variants identified in our cohort. 

 

3.3 Development of a dedicated microRNAs analysis tool 

 To date, available systems that annotate WES data do not allow to properly analyse 

miRNA variants. We therefore decided to integrate the script used to identify miRNA 

variants, developing a dedicated tool, “AnnomiR” (“Annotation of miR”), to retrieve and 

annotate miRNA-related information from WES data. Starting from a VCF file, “AnnomiR” 

searches for variants localising in miRNAs, specifying their location, based on information 

contained in miRBase25. Furthermore, retrieving information from several databases (i.e. 

gnomAD36, dbSNP34, CADD58, DANN59 and HMDD90) downloaded locally, “AnnomiR” also 

performs functional annotation of miRNA variants and of miRNAs, annotating variants 

frequency and potential deleterious effect, and already known associations of a miRNA with 

human diseases. 

 

Table 5. MiRNA variants associated with Mendelian diseases. 

Genomic coordinate MiRNA OMIM phenotype Reference

chr7:129414596 G/T miR96 613074 Mencía et al., 2009
77

chr7:129414597 C/T miR96 613074 Mencía et al., 2009
77

chr7:129414553 A/G miR96 613074 Soldà et al., 2012
78

chr9:73424964 G/A miR204 616722 Conte et al., 2015
79

chr15:79502186 C/T miR184 614303 Hughes et al., 2011
80

; Iliff et al., 2012
81

chr15:79502137 C/A miR184 614303 Lechner et al., 2013
82

chr15:79502132 A/G miR184 614303 Lechner et al., 2013
82
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4. Results 

4.1 Whole Exome Sequencing and microRNAs: capture evaluation 

WES sequencing experiments generally produce a large amount of data that require 

both technical and biological skills to be analysed. In the study of RGDs, several assumptions 

are made to discriminate potentially pathogenetic variants among all the thousands of 

identified variants. Since 85% of disease-causative mutations in Mendelian diseases resides in 

protein coding-regions19, standard WES analyses generally focus only on protein-coding 

variants that alter coding-sequences (e.g. non-synonymous or splice sites). However, due to 

biological and technical issues, diagnostic rate of this approach is attested to be ~20-30%16,18. 

Nevertheless, WES data could contain other meaningful information that could be useful in 

the identification of the molecular bases underlying RGDs, and that is currently discarded.  

In this context, we investigated whether WES data could contain information related 

to miRNA sequences, as reported from preliminary evidences79,84. To this aim, we evaluated 

both theoretical and experimental coverage of miRNA sequences using several exome 

enrichment capture systems commercially available.  
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4.1.1 Theoretical coverage 

First, we assessed whether exome enrichment capture systems commonly used to 

perform WES experiments, contain target regions specifically designed to capture miRNA 

sequences. Among the exome enrichment capture systems analysed, three declare the 

presence of specific baits for miRNA sequences (Table 6). 

We therefore assessed whether exome kits analysed could contain probes specifically 

targeting miRNA sequences, even if not reported in technical sheets. To this aim, we 

calculated theoretical coverage of miRNAs, evaluating the overlap between target regions of 

exome enrichment capture systems considered and miRNA sequences. Results are reported 

in Figure 6 and Table 7. As it can be observed, even if in a variable quota, all exome kits 

analysed, present target regions specifically designed on miRNA sequences. 

Table 6. Exome enrichment capture systems included in this analysis. Table shows technical details 

on design of target regions.  

*This version of miRBase has been designed on hg38/GRCh38 assembly. 

Exome enrichment capture system Designed on assembly Target size (Mb) Target for miRNAs sequences

SeqCap EZ Human Exome Library v3.0

(Roche NimbleGen)
hg19/GRCh37 64

Declared in technical sheet,

designed on miRBase v16

SeqCap EZ MedExome 

(Roche NimbleGen)
hg38/GRCh38 47

Declared in technical sheet,

designed on miRBase v21*

Nextera Rapid Capture Exome

(Illumina)
hg19/GRCh37 37 Not declared

SureSelect Human All Exon V4

(Agilent Technologies)
hg19/GRCh37 51

Declared in technical sheet,

designed on miRBase v17

SureSelect Clinical Research Exome

(Agilent Technologies)
hg19/GRCh37 54 Not declared

SureSelect Clinical Research Exome V2

(Agilent Technologies)
hg19/GRCh37 67 Not declared

SureSelect Human All Exon V6

(Agilent Technologies)
hg19/GRCh37 60 Not declared
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Table 7. MiRNAs specifically targeted by exome enrichment capture systems considered. 

Exome enrichment capture system Number of miRNA specifically targeted

Nextera Rapid Capture Exome

(Illumina)
764

SeqCap EZ Human Exome Library v3.0

(Roche NimbleGen)
1154

SureSelect Human All Exon V4

(Agilent Technologies)
1383

SureSelect Clinical Research Exome

(Agilent Technologies)
1443

SureSelect Clinical Research Exome V2

(Agilent Technologies)
1634

SureSelect Human All Exon V6

(Agilent Technologies)
1634

SeqCap EZ MedExome 

(Roche NimbleGen)
1743

Figure 6. Theoretical coverage of miRNA regions in exome enrichment capture systems currently 

used. Histogram represents the theoretical coverage of miRNA “primary transcript” sequences as 

reported in miRBase v2025 among several exome kits. Coverage has been evaluated as the ratio between 

the extension of miRNA sequences overlapping with target regions and the total extension of miRNA 

sequences (both evaluated in base pairs). For complete names of exome enrichment capture systems 

considered, see Table 7. 
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4.1.2 Experimental coverage 

Next, we evaluated the effective capture of miRNA sequences from WES data. To this 

aim we analysed a representative cohort composed by 14 WES captured through 7 exome 

enrichment capture systems (2 WES for each exome kit, Table 3). 

First, we assessed the quality and homogeneity of WES data considered, calculating 

the “on target” coverage for each WES performed. Results reported in Figure 7 show the 

Figure 7. On target coverage of WES data considered. Figure reports the experimental “on target” 

coverage of each WES considered, obtained comparing each WES data with target regions of its own 

exome enrichment capture system. Values on y axis are calculated as cumulative relative frequency of 

target regions (measured in bp) effectively captured at a defined depth (reported on x axis). For 

complete names of exome enrichment capture systems considered, see Table 7. 
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uniformity of data analysed. As it can be observed, at a less stringent depth of 10X, all WES 

show a highly similar “on target” coverage, on average ~97% (ranging from 94% of SureSelect 

Clinical Research Exome V2 – Agilent Technologies to 99% of SeqCap EZ MedExome - Roche 

NimbleGen). At a more stringent depth of 20X, compatible with a highly reliable variant 

calling, “on target” coverage changes among WES data, but remains around 90% (from 86% 

obtained through SureSelect Clinical Research Exome V2 – Agilent Technologies to 98% 

reached through SeqCap EZ MedExome – Roche NimbleGen), attesting therefore the high 

quality of WES data. 

Once we assessed the homogeneity of WES data, we evaluated experimental coverage 

of miRNA sequences. Results reported in Figure 8 show the high variability observed in the 

coverage of miRNA sequences. While differences among WES captured with same exome 

enrichment capture systems are almost no detectable (curves relative to same kits are almost 

overlapped), high variability can be encountered considering the different exome enrichment 

capture systems used to perform WES experiment. Indeed, at a depth of 10X, miRNAs 

coverage is 80% on average, spanning from 52% of Nextera Rapid Capture Exome (Illumina) 

to 96% of SeqCap EZ MedExome (Roche NimbleGen). At a depth of 20X, average miRNAs 

coverage is 73%, from 46% obtained through Nextera Rapid Capture Exome (Illumina) to 91% 

reached using SeqCap EZ MedExome (Roche NimbleGen). 

Results obtained suggest that all exome enrichment capture systems considered can 

capture miRNA sequences, even if with a different efficiency. Overall, these results confirm 

that WES data contain information related to these non-coding species. 
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Figure 8. Experimental coverage of miRNA sequences. Figure reports the experimental coverage of 

miRNA sequences in each WES considered, obtained comparing each WES data with miRNA “primary 

transcript” sequences described in miRBase v2025. Values on y axis are calculated as cumulative relative 

frequency of miRNA sequences (measured in bp) effectively captured at a defined depth (reported on 

x axis). For complete names of exome enrichment capture systems considered, see Table 7. 
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4.1.2 Comparison with Whole Genome Sequencing data 

Conversely from WES, WGS experiments do not rely on capture and enrichment of 

specific target regions, allowing to sequence all coding and non-coding sequences with a 

uniform coverage. Therefore, we analysed differences in miRNA sequences coverage between 

WES and WGS, comparing data coming from these two experiments. Specifically, we 

evaluated miRNA sequences coverage in cases 1 and 2 (Table 3), for which we performed both 

WES and WGS.  

As it can be observed from Figure 9, WES and WGS present a different efficiency in 

the coverage of miRNA sequences, spanning from 68% to 98% at a depth of 10X for WES and 

WGS respectively. Differences increase if a depth of 20X is considered: while for WGS 

experiments a coverage of 93% can be observed, corresponding value for WES is 60%. Results 

obtained in the representative cohort suggest that WGS can sequence miRNA regions with a 

more uniform coverage at a greater depth compared to WES. 

Since the number of WES and WGS analysed was very limited (2 WES and 2 WGS), 

we extended the comparison to publicly available database gnomAD36, comprehending 

123,136 WES and 15,496 WGS. Coverage data publicly available for gnomAD WES data are 

available at a single nucleotide level and contain statistics on coverage measured on all 

individuals sequenced. GnomAD WGS data contain data for all genomic coordinates of the 

human genome, while gnomAD WES data contain only data relative to exonic regions as 

defined by exome calling intervals provided by gnomAD database36. 

Therefore, we first assessed whether exome calling intervals used to process gnomAD 

WES, contain miRNA sequences, evaluating the overlap between exome calling intervals and 

miRNA sequences. We found that gnomAD WES have been analysed considering all miRNA 

“primary transcript” sequences contained in miRBase v2025.   

Next, we evaluated miRNA sequences coverage for gnomAD WES and WGS. Results 

reported in Figure 10 show differences between WES and WGS: at a depth of 10X, coverage is 

53% for WES and 97% for WGS, while at a depth of 20X coverage values are respectively 48% 

and 93%. 
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These results indicate that miRNA regions are fully considered to evaluate coverage 

in gnomAD WES, and that WGS show higher and more uniform coverage of miRNA regions.  

Overall, comparison between WES and WGS confirms that WGS allow to obtain better 

results on sequencing of miRNA regions compared to WES. Nevertheless, results also confirm 

that WES contains information of miRNA sequences that is currently discarded by standard 

WES workflow of analysis.  

 

Figure 9. Experimental coverage of miRNA sequences in WES and WGS data in two cases. Figure 

reports the experimental coverage of miRNA “primary transcript” sequences (described in miRBase 

v2025 between WES and WGS experiments performed for cases 1 and 2 (Table 3). Values on y axis are 

calculated as cumulative relative frequency of miRNA sequences (measured in bp) effectively captured 

at a defined depth (reported on x axis). 
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Figure 10. Experimental coverage of miRNA sequences in WES and WGS data in a publicly available 

cohort. Figure reports the experimental coverage of miRNA “primary transcript” sequences (described 

in miRBase v2025) between WES and WGS experiments performed respectively on 123,136 WES and 

15,496 WGS contained in gnomAD36. Values on y axis are calculated as cumulative relative frequency 

of miRNA sequences (measured in bp) effectively captured at a defined depth (reported on x axis). 
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4.2 Evaluation of microRNA variants in a cohort 

Once we assessed that WES data contain miRNA-related information, we analysed 

miRNA variants in a heterogeneous cohort of 259 individuals including 110 probands (11 

pairs of siblings) and 149 unaffected relatives (parents and siblings), sequenced through WES 

experiments.  

Based on information contained in miRBase25, we developed a script to detect variants 

localising in miRNA sequences and retrieve respective information on miRNAs name and ids. 

We also annotated miRNA variants localisation, considering the substructures in 

which variants reside (as reported in Figure 11) and their distance from the 5’ and 3’ 

extremities. Therefore, miRNA variants closer to 5’ end, were annotated as “precursor-“, 

“seed-“, or “mature-“ followed by the suffix “5p”, while, for variants closer to 3’ end, suffix 

was “3p”. 

In cases in which a miRNA variant localised in two miRNAs in the same genomic 

region but on opposite strands, we annotated the single variant reporting information relative 

to both miRNAs. An example of the annotation performed is reported in Figure 12.   

To analyse only reliable variants, we selected only miRNA high quality (i.e. “PASS”) 

SNVs identified with an overall AD greater than 10.  

On 99 probands analysed, we identified 555 miRNA SNVs. Of these variants, ~70% 

(385) were found exclusively in heterozygosis, while 1% (5 variants) in homozygosis or 

hemizygosis. The remaining 165 variants were found both in heterozygosis and homozygosis. 

Figure 11. Schematic representation of miRNA substructures.  We annotated miRNA variants 

considering following substructures: seed (shown in blue), mature (in green) and precursor regions (in 

black). 
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For 66 of the 99 probands analysed we also had unaffected parents. We therefore analysed 

“de novo” variants identified in these cases, finding 49 variants. Of these variants, 7 were 

identified in two patients, therefore, overall, we found 42 “de novo” unique variants. We also 

analysed miRNA variants in respect of their localisation in miRNA substructures. We found 

71 variants in seed regions, 109 in mature regions and 375 in precursor regions; their 

distribution is reported in Figure 13. Results obtained suggest that mature and seed regions 

present a low number of miRNA variants compared to precursor regions, probably reflecting 

a different sequence conservation.  

 

 

 

 

 

Figure 12. Annotation of MiRNA variants localising in two miRNAs on opposite strands. MiRNA 

variants localising in two miRNAs on opposite strands, but in the same genomic trait, were annotated 

using information on both miRNAs. The figure shows an example for variant chr18:56118360. As it can 

be observed, variant fell in both miR-122 and miR-3591 and we therefore annotated it as seed-3p on 

miR-122 and mature-5p on miR-3591.  
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4.2.1 Experimental validation 

Among miRNA SNVs identified we selected some of them to be experimentally 

validated. Due to the high identity of sequence observed in miRNAs, we expected that some 

of them could be false positive variants. We therefore tested some of variants identified. 

Results (Figure 14) show that all selected miRNA variants were confirmed, therefore 

indicating that our detection method could be considered a reliable system to identify variants 

lying in these regions. 

 

 

 

 

 

Figure 13. Distribution of miRNA variants found in our cohort on seed, mature and precursor 

regions. Distribution has been calculated normalising miRNA variants found to length of single 

substructures. 
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4.2.2 Functional annotation 

To better characterise the potential biological role of miRNA variants, we added 

functional annotation retrieved from several databases and tools. First, we annotated data on 

variants frequencies, using gnomAD36 and dbSNP34 databases. To predict potential deleterious 

effect of identified variants, we added information from scoring systems already used for 

analysis of NGS data that can score non-coding variants, i.e. CADD58 and DANN59 systems. 

Finally, to predict potential involvement of miRNAs in human diseases, we used data 

contained in HMDD90. To test how functional annotation could help in the identification of 

miRNA variants and miRNAs potentially related to human diseases, we first annotated 

miRNA variants already associated to Mendelian diseases. Results are shown in Table 8. Five 

out of seven variants considered fell in seed regions while the other two localised in precursor 

regions, indicating that they could differently interfere with miRNA biogenesis and/or 

targeting. All variants analysed were not reported in public databases gnomAD36 and dbSNP34 

or were annotated as rare (frequency ≤ 0.01%). CADD58 and DANN59 scores were respectively 

Figure 14. Sanger validation of miRNA variants selected.  



44 
 

greater than 10 and 0.8 (used as thresholds for non-coding variants), predicting therefore a 

potential deleterious effect of miRNA variants. Finally, information retrieved from HMDD90 

report the association of miRNAs with several diseases, allowing to hypothesize the 

involvement of these miRNAs in several biological pathways, along with those already 

known. 

Overall results indicate that functional annotations allow to better characterise miRNA 

variants and miRNAs, leading to a proper investigation of their potential biological role. 

As a second step, we performed a functional annotation on miRNA variants and 

miRNAs identified in our cohort, aimed at identifying candidate miRNAs potentially 

involved in the phenotypes observed in patients sequenced. Specifically, we are considering 

variants rare or not annotated in public databases and variants predicted to be potentially 

deleterious. Furthermore, variants and miRNAs are being analysed considering their 

potential implication in human diseases, trying to correlate them with available clinical 

information on patients. 
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Table 8. MiRNA variants annotation. Table reports miRNA variants and miRNAs with their respective 

functional annotations. 

*HMDD annotations reported have been limited to human diseases already known to be associated 

with miRNAs analysed. 
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4.3 Development of a dedicated microRNAs analysis tool 

To date, there is not a dedicated tool to properly analyse miRNA-related information 

in WES data. In this context, we integrated the script used to identify miRNA variants and 

functional annotation provided for variants and miRNAs, developing a dedicated tool, 

“AnnomiR” (“Annotation of miR”). “AnnomiR” can analyse a VCF file searching for variants 

localising in miRNAs and specifying their location in miRNA substructures. “AnnomiR” also 

annotates miRNA variants, adding information on their frequencies and their potential 

deleterious effect, retrieved from several databases (gnomAD36 and dbSNP34, and CADD58 and 

DANN59 respectively) downloaded locally. Finally, “AnnomiR” annotates miRNAs 

considering information on miRNAs already known to be associated with human diseases 

using HMDD90 database locally available.   

“AnnomiR” can be easily integrated in a workflow for WES and WGS data processing, 

allowing to analyse miRNA regions, along with coding portion of the human genome, in a 

single step analysis. 
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5. Discussion 

MicroRNAs (miRNAs) are small non-coding RNA that mediate gene silencing mostly 

recognising, by complementarity, 3’UTR of target mRNAs71,72. Expression of miRNAs is under 

tight control during development and it is subjected to a cell-specific regulation. Recently, 

miRNAs have been associated to several human diseases, comprehending both RGDs and 

complex traits70.  

Among known miRNAs dysregulation mechanisms, modifications of miRNAs 

expression profiles and sequence variants occurring in miRNAs or miRNAs-related genes 

have been disclosed. Alterations in miRNAs expression profiles can be due to several factors, 

such as changes in methylation of genes containing miRNA sequences, and responses to 

physiological and pathological stimuli, as steroid hormones or stress91. These modifications 

can significantly alter miRNAs expression, increasing or reducing miRNAs bioavailability, 

and have been so far associated with various diseases, mostly tumours91. Variants affecting 

miRNA biogenesis and function can occur in genes involved in miRNA machinery, in 3’UTR 

of target mRNAs and in miRNA sequences. Through the impairment of miRNA biogenesis 

and/or targeting, these sequence variants have been demonstrated to act both as disease-

causative and phenotypic modifiers92, in RGDs and multifactorial diseases70.  

In this context, comprehension of miRNAs alterations results crucial for the 

elucidation of molecular mechanisms that regulate onset and phenotypic variability 

underlying human diseases. Traditional methods as microarrays and quantitative reverse 

transcription PCR allow to study only expression profiles83. Information on miRNA sequences 

can be detected through Sanger sequencing and NGS approaches, such as Whole Genome 

Sequencing (WGS). 

More recently, RNA sequencing (RNA-seq) experiments allowed to study 

simultaneously both miRNA expression profiles and sequences. 

In this context, we evaluated exome enrichment capture designs and WES data of 

patients with different phenotypes in order to evaluate miRNA-related information. 

As a first step, we evaluated theoretical coverage of miRNA sequences across most 

used exome enrichment capture systems. Then, we considered the experimental coverage of 

miRNA sequences, analysing a representative cohort of 14 WES captured through 7 exome 

enrichment capture systems. Results obtained from exome enrichment kit designs and WES 
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data analyses strongly suggest that all exome kits commercially available are designed to 

target miRNA sequences and that are able to efficiently capture these regions.  

We also compared miRNAs coverage of WES with that of WGS, in 2 our cases and in 

a publicly available cohort (gnomAD database36). As expected, WGS can better sequence 

miRNA regions, showing a more uniform coverage, due to the fact that WGS experiments do 

not require a process of selection and enrichment of target regions. Data obtained from our 2 

cases, are highly concordant with data obtained from sequencing of more than 100,000 

individuals, contained in gnomAD database36. These results suggest that WES data contain 

valuable biological information that is usually non-considered using standard analysis 

workflow. Indeed, to date, no dedicated tool is available to retrieve information on miRNA 

sequences from WES and WGS experiments. 

To retrieve variants localising in miRNAs, we developed a script based on information 

contained in miRBase25. We defined specific substructures of miRNAs: seed, mature and 

precursor regions. Discriminating miRNA variants based on their location could be helpful in 

elucidating their potential biological role as variants in miRNA precursors regions can alter 

miRNA biogenesis while variants in mature and seed regions can be associated with altered 

targeting of mRNAs.  

We annotated a heterogeneous cohort of 259 WES, including patients affected by 

several genetic diseases and their unaffected relatives. The cohort represents an excellent 

system to study miRNA sequence variants as individuals were sequenced through the same 

exome enrichment capture system and sequencing platform. We specifically focused on 

probands available in this cohort, analysing 99 individuals. We identified 555 miRNA SNVs, 

retrieving information on their localisation in miRNA substructures. As already reported from 

previous studies93, results obtained show that miRNA variants are more conserved in mature 

and seed regions compared to precursor regions (Figure 13). This confirms the crucial 

functional role of these regions. However, we cannot exclude that biological and technical 

factors could influence the analysis on miRNA variants distribution. First, according also to 

previous works84,93, we are not considering a complete definition of miRNA substructures, e.g. 

loop regions, due to incomplete information available in miRBase25. Furthermore, results 

obtained are strictly related to exome enrichment capture system used to perform WES (i.e. 

SureSelect Human All Exon V4, Agilent Technologies) that include in its design ~1400 
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miRNAs (Table 7), therefore lacking ~500 miRNAs annotated in the version of miRBase used 

as reference (i.e. miRBase v2025). In addition, we cannot exclude that, besides their localisation, 

there could be other considerations to properly assess miRNA variants biological functions. 

An example could be represented by miRNAs structure conservation, that has been 

demonstrated to play a key role in regulation of miRNA biogenesis and/or function94, and that 

it is not currently considered, due to the lack of tools that allow to systematically analyse it.  

Since miRNAs are characterised by a high level of sequence identity, we evaluated 

whether called miRNA variants identified were, at least in part, false positives. Results 

obtained from experimental validations suggest instead that miRNA variants, identified 

through current calling variant algorithms (e.g. GATK29), are reliably called and, therefore, 

that these tools could be used to properly identify variants lying in these non-coding regions.  

To characterise biological information on miRNA variants and miRNAs we added 

functional annotation. With the intent to understand whether information added could be 

helpful in discriminating miRNA candidates potentially related to RGDs, we first annotated 

miRNA variants already associated with Mendelian diseases. Functional annotation added 

on miRNA variants suggest that systems currently used to analyse and prioritise coding 

variants (variants frequencies and deleteriousness scoring systems) could be powerful for 

discriminating potentially biologically relevant miRNA variants. 

The script we developed to identify miRNA variants and add functional annotation, 

“AnnomiR”, could be integrated in a standard workflow of analysis for both WES and WGS 

data. “AnnomiR” could be used to integrate analysis of data coming from patients affected by 

several human diseases, not only by RGDs, as reported in this work, but even by complex 

traits, allowing to better elucidate miRNAs role in human diseases, and giving a more 

complete overview of variability of human genome. 
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6. Conclusions 

Over the last few years, Next Generation Sequencing (NGS) technologies allowed to 

completely change the way to study Rare Genetic Diseases, accelerating the pace of discovery 

of their molecular bases. 

Currently, sequencing of the exonic portion of the human genome – the exome (1%) – 

performed through Whole Exome Sequencing (WES) experiments represents the most used 

approach to characterise molecular mechanisms underlying RGDs. However, its diagnostic 

rate is attested to be ~20-30%. To date, several tools have been developed to analyse and 

interpret data generated from WES. 

In this context, we evaluated whether WES data contain information on a non-coding 

portion of the human genome, i.e. microRNAs (miRNAs), since they have been demonstrated 

to play a key role in several human genetic diseases, acting both as disease-causative and 

phenotypic modifiers.  

The development of a dedicated tool to identify and functionally annotate miRNA 

variants and miRNAs from WES and WGS will allow to analyse these regions from NGS data. 

We expect that systematic study of miRNAs will allow to elucidate their biological role in a 

wide spectrum of human diseases, leading to a better characterisation of the variability of the 

human genome related to these non-coding sequences. 
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7. Web sites 

I. software.broadinstitute.org/gatk/best-practices/workflow?id=11145 

II. bioinformatics.babraham.ac.uk/projects/trim_galore 

III. novocraft.com/products/novoalign 

IV. broadinstitute.github.io/picard 

V. htslib.org 
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