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Chapter 1

Introduction

1.1 Quadratic Programming problems
We are concerned with the development of efficient first-order methods for the
solution of Quadratic Programming problems (QPs), i.e. problems of the form

min f(x) := 1
2xT H x− cTx,

s.t. Ax = b,
l ≤ x ≤ u,

(1.1)

where H ∈ Rn×n is symmetric, c ∈ Rn, A = (a1, . . . ,am)T ∈ Rm×n, such that m < n
and rank(A) = m, b ∈ Rm, l ∈{R ∪ {−∞}}n, u ∈{R ∪ {+∞}}n, and li < ui for all
i. If, for all i, li = 0 and ui = +∞, the problem is said to be in standard form. It is
worth noting that, by a change of variables and by introducing slack variables, every
QP problem can be reduced to form (1.1).

Since the feasible set of (1.1)

Ω := {x ∈ Rn : Ax = b ∧ l ≤ x ≤ u}

is convex, if H is positive definite the problem is strictly convex and the unique local
minimizer x∗ is also a global minimizer and corresponds to the unique stationary
point. However, we do not assume that the problem is strictly convex. In this case
the problem can admit multiple local minimizers and f can also be unbounded from
below. If H is positive semi-definite the problem is still convex but multiple local
minimizers may exist, all corresponding to the same global minimum. In this case, if
the problem is bounded, a local optimization method is still able to find the global
minimum of (1.1). Finally, if H has at least one negative eigenvalue the problem is
non-convex, different local minimizers may exist, and finding the global minimum
becomes an NP-complete problem; actually, even verifying the local optimality of a
given point is an NP-hard problem [112].

Many problems in science can be formulated as QPs. A well-known application
is, e.g., portfolio optimization, which, according to the kind of model one wants
to solve, can lead to problems with bound constraints and either one [114] or two
[30, 71] linear constraints. Problems with a single linear constraint arise also in
the dual formulation of support vector machine training [122], multicommodity
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network flow and logistics [95], statistics estimates from a target distribution [2] and
image reconstruction [92] (in this case the linear constraint expresses the so-called
flux-conservation property [9]). A variety of applications lead to problems with
bound constraints only, e.g., sparse signal reconstruction [68], contact and friction
problems in rigid body mechanics [103], elastic-plastic torsion problems [26], journal
bearing lubrication, flows through a porous medium [101]. As regards general QPs,
they arise, e.g., in asset and liability management problems [81] and in various
optimization problems on graphs [88], such as the quadratic assignment problem,
the edge separator problem, the maximum clique problem [115], and the maximum
independent set problem. Other applications and references can be found, e.g.,
in [114, 72]. In Chapter 5 we will see how QPs arise from a dual formulation of
frictionless 3D contact mechanics problems and 2D contact mechanics problems
with friction [57, 63]. QPs arise also as computational kernel of methods for general
nonlinear optimization problems, e.g., in Sequential Quadratic Programming (SQP)
[19, 111], in augmented Lagrangian methods [32, 3, 36, 5], or in branch-and-bound
methods for mixed-integer quadratic programming problems, exploiting continuous
relaxation and duality [25].

Due to the wide application range of QPs, designing efficient methods for their
solution is still of great interest. In particular, first-order methods for QPs are
preferable in the solution of large-scale and huge-scale problems thanks to their low
iteration cost, low memory storage, and easiness of implementation. Furthermore,
they can also be extended to the minimization of more general nonlinear functions.

We are interested in gradient projection methods, which are the generalization to
the case of constrained optimization of the gradient descent methods for the solution
of unconstrained optimization problems. As suggested by their name, at each step,
gradient projection methods combine a descent along the gradient with a projection
onto the feasible set to preserve feasibility. In particular, we focus our analysis
on methods exploiting subspace acceleration, i.e. methods whose convergence is
accelerated thanks to the introduction of steps in which the restriction of the problem
onto a linear subspace is (approximately) solved. The methods under analysis belong
to the wider class of active-set methods, i.e. methods which aim at identifying the
constraints which are satisfied with equality (called active) at the solution. Under
standard conditions on the regularity of the solution, gradient projection methods
are indeed able to identify the active constraints in a finite number of iterations,
provided that some sufficient decrease conditions are satisfied. Whereas in classical
active-set methods the active set changes slowly, usually by a single index at each
iteration, gradient projection methods are able to add/remove multiple constraints
to/from the active set at each step, ensuring usually a faster identification.

Gradient projection methods are strictly related to the possibility of projecting
a point onto the feasible set Ω. This makes them unpractical in the case of general
linear constraints, for the computation of the projection is almost as expensive as
the solution of the whole problem. There are, however, some exceptions. First of all,
two particular cases of problem (1.1) for which gradient projection methods have
been extensively studied and applied, thanks to the low cost of the projections onto
the feasible set, are:

• the class of problems subject to bound constraints only, which we associate to
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the case m = 0, and usually indicated as BQPs (or BCQPs);

• the class of problems subject to a single linear constraint and bound constraints,
corresponding to the case m = 1, and usually indicated as SLBQPs (Single
Linearly and Bound constrained Quadratic Programs).

It is clear that in the case of bound constraints the projection can be computed in
O(n) operations; in Chapter 2 we will see that the projection onto the feasible set of
SLBQPs can be computed cheaply, and that there actually exist algorithms with a
theoretical complexity of O(n) operations. Recently, in [91], an efficient projection
algorithm has been proposed for the case of problems of the form (1.1) in which the
matrix A is a sparse matrix. This has opened the possibility to extend to this case
theoretical results and numerical methods developed for BQPs and SLBQPs.

1.2 Contributions of this thesis

In this work we propose an active-set framework, called Proportionality-based Sub-
space Accelerated framework for Quadratic Programming (PSAQP), for the solution
of problems of the form (1.1) based on gradient projection.

In Chapter 3, starting from a componentwise reformulation of the first-order
optimality conditions for problem (1.1), we provide a definition of binding set at a
point x, generalizing the one used for BQPs, and we obtain a way of computing
Lagrange multiplier estimates which, under standard regularity assumptions on the
solution, are proved to converge to the optimal multipliers. This allows us to define
suitable generalizations of the free gradient ϕ and the chopped gradient β at a point
x, introduced in [74, 75, 53] for the case of BQP problems. We prove that the defined
quantities satisfy the following properties:

• vector ϕ(x) provides a measure of optimality within the space defined by the
active constraints at x;

• vector β(x) provides a measure of bindingness of the active set at x;

• the two vectors are orthogonal and their sum is the projected gradient at x,
thus a point x is optimal if and only if both ϕ(x) = β(x) = 0.

This enables us to extend to problem (1.1) the concept of proportional iterate,
henceforth also refereed to as proportionality, introduced in [14, 53] for BQPs. The
PSAQP framework is based on the two-phase framework introduced by Calamai
and Moré [27] and uses the gradient projection to identify the active set at the
solution. Like in the GPCG method developed by Moré and Toraldo (for strictly
convex BQPs)[109], in PSAQP we alternate gradient projection steps (identification
phase) with minimization steps onto the reduced subspace defined by the current
active set (minimization phase). The availability of the concept of proportional
iterates for general QPs translates into the possibility of switching between the
two phases by comparing a measure of optimality within the reduced space with a
measure of the quality of the current active set. Furthermore, we are able to prove
finite convergence of any method fitting into the proposed framework for strictly
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convex quadratic problems even in case of degeneracy at the solution, provided that
a method with finite termination properties is used in the minimization phase.

In Chapter 4 (based on [51]) we introduce a two-phase gradient projection
method, called Proportionality-based 2-phase Gradient Projection (P2GP), for the
solution of both SLBQP and BQP problems, which can be considered a specialization
of the PSAQP framework. Besides targeting problems more general than strictly
convex BQPs, the new method differs from GPCG because it exploits the concept of
proportional iterate to decide when to terminate optimization in the reduced space.
This change makes a significant difference in the effectiveness of the algorithm as
our numerical experiments show. Moreover, according to the properties of PSAQP,
the application of proportionality allows us to state finite convergence for strictly
convex problems also for dual-degenerate solutions, whereas GPCG exhibits finite
termination only in the case of non-degenerate solutions. The implementation
of P2GP can also deal with non-convex problems. In this case, if the objective
function is bounded, the algorithm converges to a stationary point as a result
of a suitable application of the gradient projection method in the identification
phase; otherwise, it is able to detect unboundedness and stop the computation. By
exploiting a Householder transformation, we are able to reformulate the equality
constrained subproblem of the minimization phase into an unconstrained quadratic
problem whose conditioning is not worse that the one of the original problem. This
reformulation allows one to exploit, for the solution of the subproblem, not only
the conjugate gradient method, which guarantees finite termination, but also other
methods for unconstrained QPs. In particular, we propose the use of spectral
gradient methods, such as SDC [45] and SDA [47], which have proved to be efficient
also in the solution of some ill-posed problems [46, 35]. In our opinion, P2GP can
provide a way to exploit these methods and their regularizing properties when solving
linear ill-posed problems with bounds and a single linear constraint. Furthermore,
in Section 4.3.1, we introduce a novel procedure for the creation of SLBQPs with
different sizes, spectral properties and levels of degeneracy, which can be used as a
benchmark to test optimization algorithms for this class of problems.

Motivated by the good numerical performance of P2GP in the solution of BQPs,
in Chapter 5 (based on [66]) we test the algorithm against the MPRGP algorithm
developed by Dostál and Schöberl [54, 65] as a solver for the bound constrained
subproblems arising in the solution of problems of the form (1.1) with an augmented
Lagrangian algorithm called SMALBE [56]. First, we perform some tests on elliptic
model problems representing the equilibrium of a 2D membrane. Then, we show
how the discretization of contact mechanics problems leads to problem of the form
(1.1) and compare the two algorithms in the solution of some 2D contact problems
and 3D frictionless contact problems. The results show that P2GP is competitive
with MPRGP and, thanks to the identification properties of the gradient projection,
it can outperform MPRGP when the number of active constraints at the solution is
high.
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1.3 Notations and first definitions
Scalars are denoted by lightface Roman fonts (both Latin and Greek scripts), e.g.,
a, α ∈ R, vectors by boldface Roman fonts (both Latin and Greek scripts), e.g.,
v,λ ∈ Rn, and matrices by italicized lightface capital fonts, e.g., M ∈ Rm×n. The
vectors of the standard basis of Rn are denoted by e1, . . . , en, and the identity matrix
of size n is denoted by In, where the subscript can be omitted if the size of the
matrix is clear from the context.

For any finite set S, |S| denotes its cardinality.
Given v ∈ Rn and C ⊆ {1, . . . , n}, we set

vC := (vi)i∈C ∈ R|C|,

where vi is the ith entry of v. In a similar manner, given a matrix M ∈ Rm×n and
the subsets of indices S ⊆ {1, . . . ,m} and C ⊆ {1, . . . , n}, we set

MSC := (mij)i∈S,j∈C ∈ R|S|×|C|,

where mij the (i, j)th entry of M . We make use of the symbol “?” when the given
subset coincides with the whole set of indices, e.g., M?C and MS?. We use the
notation MT

SC in place of [MSC]T . For any vector v, {v}⊥ is the space orthogonal to
v, and, for any matrix M , {M}⊥ is the space orthogonal to the rows of M , i.e. the
null space of M , indicated as N(M). For any symmetric matrix M , we use κ(M),
ζmin(M) and ζmax(M) to indicate the condition number, and the minimum and
maximum eigenvalue of M , respectively. Norms ‖ · ‖ are `2, unless otherwise stated;
moreover, we use 〈·, ·〉 to indicate the inner product of Rn.

We use superscripts to denote the elements of a sequence, e.g.
{

xk
}
.

Given a point x ∈ Ω, and supposing to associate a unique index to each of
the m+ 2n constraints, the active set at x is usually defined as the set of indices
corresponding to the constraints which are active at x. This means that the active
set includes the m indices corresponding to the linear equality constraints and the
indices of the bound constraints which are active at x. Since we are interested in
feasible algorithms, the linear equality constraints will always be satisfied, therefore,
our definition of active set will only involve the bound constraints. Furthermore,
since we assumed li < ui for all i, the constraints xi ≥ li and xi ≤ ui cannot be active
at the same time; we can therefore define the active set as a subset of {1, . . . , n}
containing the indices corresponding to the variables which are either on their lower
or on their upper bound.

Definition 1.3.1. We define the following index sets:

Al(x) := {i : xi = li}, Au(x) := {i : xi = ui},
A(x) := Al(x) ∪Au(x), F(x) := {1, . . . , n} \A(x).

A(x) and F(x) are called respectively the active set and the free set at x.

Given x,y ∈ Ω, by writing A(x) ⊆ A(y) we mean that

Al(x) ⊆ Al(y), Au(x) ⊆ Au(y)

both hold.
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Definition 1.3.2. For any x ∈ Ω, we define the following sets:

Ω(x) := {v ∈ Rn : Av = b ∧ vi = xi ∀ i ∈ A(x)} , (1.2)
Ω0(x) := {v ∈ Rn : Av = 0 ∧ vi = 0 ∀ i ∈ A(x)} . (1.3)

We note that Ω(x) corresponds to the affine closure of the face determined by the
active set at x and Ω0(x) is its support.

To ease the notations, given x, xk, x, and x∗, we use

fk ≡ f(xk), f ≡ f(x), f∗ ≡ f(x∗),
g ≡ g(x) ≡ ∇f(x), gk ≡ ∇f(xk), g ≡ ∇f(x), g∗ ≡ ∇f(x∗),

A ≡ A(x), Ak ≡ A(xk), A ≡ A(x), A∗ ≡ A(x∗),
Fk ≡ F(xk), F ≡ F(x), F ≡ F(x), F∗ ≡ F(x∗).

Finally, we recall the definition of orthogonal projection onto a non-empty closed
convex set.

Definition 1.3.3. Given a non-empty closed convex set Θ ⊂ Rn and a point y ∈ Rn,
the orthogonal projection of y onto Θ is defined as

PΘ(y) = argmin
z∈Θ

‖z− y‖ .
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Chapter 2

Background and state of the art

Here we recall definitions, results and methods for the solutions of QPs which will
be useful for the development of the following chapters of this work. We start by
discussing spectral gradient methods for the solution of unconstrained QPs. Then, we
recall optimality conditions for problems of the form (1.1), and present the gradient
projection methods. We describe some two-phase gradient projection methods for
the solution of BQPs and present the concept of free gradient, chopped gradient
and proportional iterate for the case of BQPs. Finally, we describe methods for the
projection of a point onto a polyhedron.

2.1 Gradient methods for unconstrained QPs
Consider the unconstrained quadratic programming problem

min f(x) := 1
2xTHx− cTx, (2.1)

where c ∈ Rn and H ∈ Rn×n is a symmetric positive definite matrix with eigenvalues
ζ1 > ζ2 ≥ . . . , ζn−1 > ζn > 0. The gradient descent method for the solution of (2.1)
builds up a sequence of points {xk} where, at each step,

xk+1 = xk − αkgk,

with αk a suitable step length. The most common choice for αk is the Cauchy
step length [29] which gives rise to the well-known steepest descent (SD) method.
At each step, the step length αkSD is chosen as the unconstrained minimizer of the
1-dimensional problem

αkSD = argmin
α

f(xk − αgk)

which leads to
αkSD = (gk)Tgk

(gk)THgk
.

It can be proved (see [1]) that the sequence {xk} generated by the SD method
converges Q-linearly to the solution x∗ to (2.1), with rate of convergence

ρ = ζ1 − ζn
ζ1 + ζn

= κ(H)− 1
κ(H) + 1 .
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By following [47] and [50], we will now show how it is possible to improve the
behavior of the standard method by step-length selection strategies which exploit
informations on the spectrum of the Hessian. The derived methods are usually
referred to as spectral gradient methods. Let d1,d2, . . . ,dn be an orthonormal basis
of eigenvectors of H, with di associated with the eigenvalue ζi. At the starting point
x0 we have that

g0 =
n∑
i=1

µ0
idi,

where, w.l.o.g., we can assume µ0
1 and µ0

n to be different from zero. We will refer to
the scalars µki as the eigencomponents of the gradient at the step k. Since

gk+1 = gk − αkHgk =
k∏
j=0

(I − αjH)g0, (2.2)

we have

gk+1 =
n∑
i=1

µk+1
i di, where µk+1

i = µ0
i

k∏
j=0

(1− αjζi) = µki (1− αkζi). (2.3)

This relation suggests that, if at the k−th iteration µki = 0 for some i, then for h > k
it will be µhi = 0; moreover, µk+1

i = 0 if αk = 1
ζi
. Furthermore, the SD method has

finite termination if and only if at some iteration the gradient is an eigenvector of
H. Relation (2.3) provides also other useful information on the effect of each step
on the eigencomponents of the gradient. Indeed, if the step length satisfies αk ≈ 1

ζi
,

for some i, then 
|µk+1
i | � |µki |,
|µk+1
j | < |µkj |, if j > i,

|µk+1
j | > |µkj |, if j < i and ζj > 2ζi.

This suggests that small values of αk can reduce the eigencomponents associated
with large eigenvalues while increasing those associated with small eigenvalues. The
vice-versa happens when αk is large.

As shown in [110], the SD method tends to reduce the gradient eigencomponents
corresponding to the largest and smallest eigenvalues more slowly than the other
components. This eventually leads to a scenario in which the eigencomponents
associated with d2, . . . ,dn−1 become negligible and the method turns into a min-
imization in to the 2-dimensional space spanned by d1 and dn. In particular, we
have that

lim
k→∞

g2k

‖g2k‖
= p1, lim

k→∞

g2k+1

‖g2k+1‖
= p2,

with p1,p2 ∈ span{d1,dn}, i.e. the method assumes the well-known zigzagging
behavior which generally yields to slow convergence.

2.1.1 The Barzilai-Borwein methods

The first work to analyze the possibility of introducing second-order information
in the step-length selection was the seminal paper by Barzilai and Borwein [6]. By
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setting sk−1 = xk − xk−1 and yk−1 = gk − gk−1, the authors introduced two step
lengths satisfying a secant condition similar to the one used in the quasi-Newton
methods, namely

αkBB1 = argmin
α

∥∥∥α−1sk−1 − yk−1
∥∥∥

and
αkBB2 = argmin

α

∥∥∥sk−1 − αyk−1
∥∥∥ .

These conditions lead respectively to the step lengths

αkBB1 = ‖sk−1‖2

(sk−1)Tyk−1 = (gk−1)Tgk−1

(gk−1)THgk−1 ≡ α
k−1
SD , (2.4)

αkBB2 = (sk−1)Tyk−1

‖yk−1‖2
= (gk−1)THgk−1

(gk−1)TH2gk−1 , (2.5)

satisfying the relation
1
ζ1
≤ αkBB2 ≤ αkBB1 ≤

1
ζn
.

We will refer to αkBB1 as the BB1 step length, to αkBB2 as the BB2 step length and
to both of them as the BB step lengths. The two gradient methods derived from the
application of αkBB1 and αkBB2 will be referred to respectively as the BB1 method
and the BB2 method, and, together, as the BB methods. Even if it has been proved
[40] that the BB methods have only an R-linear convergence rate, it is known that
they are much faster than the standard SD method. This is possibly due to the
fact that in BB methods the quantity 1

αk swipes the whole spectrum of H [69], thus
avoiding the method to cycle in the “final” two-dimensional space.

2.1.2 Generalizations of BB methods

One powerful feature of BB step lengths is that they depend only on the difference
between successive gradients (yk−1) and the difference between successive iterates
(sk−1), thus they are well defined for a generic nonlinear smooth function. This
led Raydan to analyze in [118] their extension to general nonlinear unconstrained
minimization problems. Since it can be shown that both the BB1 and the BB2
step lengths may generate non-monotone iterates, Raydan included in his methods
the well-known non-monotone line search from Grippo, Lampariello and Lucidi [84],
usually indicated as GLL. Given an integer M , the GLL line search requires, at each
step, that the function value at xk+1 satisfies

f(xk+1) ≤ fr + µ(gk)T (xk+1 − xk),

where µ ∈ (0, 1) and
fr = max

0≤j≤M
f(xk−j).

This strategy, which for M = 0 corresponds to the standard Armijo line search,
allows the objective function to increase at some iterations and still guarantees global
convergence.
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Various methods based on the alternation of the BB1 and the BB2 step lengths,
or their modifications, have been proposed in literature, as in [85, 37, 39]. Among
these, the one based on the ABBmin rule proposed in [73] proved to be very efficient
in practice. The ABBmin step length is defined at each step as

αkABBmin =

min
{
αjBB2 : j = max{1, k − s}, . . . , k

}
, if α

k
BB2
αkBB1

< τ,

αkBB1, otherwise,
(2.6)

where s is a non-negative integer and τ ∈ (0, 1). The switch between the two steps
is based on the value

αkBB2
αkBB1

= cos2(θk−1),

where θk−1 is the angle between gk−1 and H gk−1, and allows the algorithm to select
αkBB1 when gk−1 is a sufficiently good approximation of an eigenvector of H (see
[73, 50] for further details). A modification of (2.6) can be found in [21], where the
authors proposed a strategy in which the fix scalar τ is replaced by an adaptive
scalar τk which, starting from a given τ0, is updated at each step by the rule

τk+1 =

0.9 · τk, if α
k
BB2
αkBB1

< τk,

1.1 · τk, otherwise.

Inspired by the fact that
αkBB1 = αk−1

SD , (2.7)

Raydan and Svaiter proposed in [119] a gradient method which computes, at each step
k, the Cauchy step length and then uses it twice. In detail, the method, called Cauchy-
Barzilai-Borwein (CBB), at each iteration computes the vector yk = xk − αkSDgk
and then sets xk+1 = yk−αkSD∇f(yk). It can be shown that this is equivalent to set

xk+1 = xk − 2αkSDgk +
(
αkSD

)2
H gk.

The authors proved that the sequence {xk} generated by CBB converges to the
solution x∗ of (2.1); moreover, recalling that the norm induced by the symmetric
positive definite matrix H−1 is defined as

‖v‖H−1 =
√

vTH−1v,

the authors proved that the sequence{
‖xk − x∗‖H−1

}
converges Q-linearly to 0.

Relation (2.7), which allows one to refer to the BB1 method as a gradient method
with retard, was also at the basis of the work by Friedlander et al. [76]. The authors
investigated a generalization of the BB1 method in which at each step the steplength
αk is taken as the SD step at a previous iterate νk ∈ {k, k − 1, . . . , max{0, k − s}},
where s is a given positive integer. Observe that the method corresponds to the
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classical SD when s = 0 and to the BB1 method when s = 1. Consider the sequence
generated by the scheme

xk+1 = xk − αkgk,

with αk = ανk
SD, and let sk−1 = xk − xk−1. The authors proved that, if the sequence{

sk−1

‖sk−1‖

}
converges to a normalized vector s ∈ Rn, then

lim
k→+∞

1
αk

= σ ≡ sTH s,

s is an eigenvector of H with eigenvalue σ, and the sequence {xk} converges Q-
superlinearly to the solution x∗ of (2.1).

2.1.3 The RSD, SDC and SDA methods

Inspired by the work from Barzilai and Borwein [6], in 2002 Raydan and Svaiter
[119] analyzed the use of over and under relaxation of the Cauchy step length
to achieve better performances. Observe that, given xk and gk, the function
fk(α) = f(xk − αgk), which is a quadratic convex function in α whose unique
minimum is obtained in αkSD, is such that

fk(α) ≤ f(xk), for α ∈
[
0, 2αkSD

]
.

The authors proposed the Relaxed Steepest Descent (RSD) method which, at each
step, uses αk = ςkα

k
SD, where ςk is randomly chosen in [0, 2]. It has been proved

that RSD converges to the optimal solution of (2.1) if the sequence {ςk} admits an
accumulation point ς ∈ (0, 2). Even if the Cauchy step length is the best possible
choice when the search direction is an eigenvector of the Hessian matrix, numerical
experiments show that in practice the RSD method largely outperforms the SD
method; however, it is still not able to outperform the BB methods. This led the
authors to develop, in the same work, the CBB method presented in Section 2.1.2.

Other very efficient gradient methods for the solution of problem (2.1) are the
SDC and the SDA method proposed respectively in [45] and [47].

The SDC method, whose name comes from Steepest Descent with Constant
(Yuan) step lengths, is based on the following step length selection rule:

αkSDC =
{
αkSD if mod (k,ms +mc) < ms,
αtY otherwise, with t = max{i ≤ k : mod (i,ms +mc) = ms},

(2.8)
where

αtY = 2


√√√√√
(

1
αt−1

SD
− 1
αtSD

)2

+ 4 ‖gt‖2(
αt−1

SD ‖gt−1‖
)2 + 1

αt−1
SD

+ 1
αtSD


−1

(2.9)

is the Yuan step length [125]. In other words, the method performs ms consecutive
exact line searches and then, using the last two Cauchy step lengths αtSD and αt−1

SD ,
computes the Yuan step length (2.9) and uses it for mc consecutive iterations. The
interest for SDC is motivated by its spectral properties, which dramatically speed
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up the convergence [45, 50], while showing certain regularization properties useful
to deal with linear ill-posed problems [46]. It has been proved in [45] that

lim
t→∞

αtY = 1
ζ1
.

Therefore, when the SD starts minimizing in the 2-dimensional space spanned by
d1 and dn, by (2.3), the use of the Yuan step length can lead to the solution of the
unconstrained problem in only two steps. The alternation between the SD steps
and the Yuan step aims at driving the minimization in the 2-dimensional space and,
at the same time, to approximate the inverse of ζ1. Observe that, if at some point
αtY ≈ 1

ζ1
, the Yuan steps drives to zero the first eigencomponent. After that, the

Yuan step lengths tend to approximate 1
ζ2
. This means that, ideally, SDC eliminates,

one after another, the larger eigencomponents of gk (starting from µk1 up to µkn ),
until all the eigencomponents are zero and the stationary point is reached.

Similar regularization properties hold for the Steepest Descent with Alignment
(SDA) method, in which the Yuan step length is replaced by the step length α̃t

defined as

α̃t =
(

1
αt−1

SD
+ 1
αtSD

)−1

,

which satisfies the property
lim
t→∞

α̃t = 1
ζ1 + ζn

.

In this case the alternation of the SD steps and the constant step aims at reaching
the phase of 2-dimensional minimization and, at the same time, to align the gradient
with dn.

2.1.4 The Limited Memory Steepest Descent method

Here, by following [51], we briefly describe the Limited Memory Steepest Descent
(LMSD) introduced by Fletcher in [70]. The idea of the LMSD method is to divide
the iterations into groups of size s, referred to as sweeps; at each step Ritz values
of the Hessian [80], obtained by exploiting the gradients of the previous sweep, are
used as step lengths for the current sweep.

In detail, consider, at the iteration k ≥ s, the matrices G ∈ Rn×s and J ∈
R(s+1)×s defined respectively as

G =
(
gk−s,gk−s+1, . . . ,gk−1

)
,

and

J =


(αk−sLMSD)−1

−(αk−sLMSD)−1 . . .
. . . (αk−1

LMSD)−1

−(αk−1
LMSD)−1

 ,

where αjLMSD is the step length associated with the direction gj . To ease the
description, we will only consider the case in which G is full rank. Since, for each j,
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we have that
gj = gj−1 − αj−1

LMSDH gj−1,

which is equivalent to

H gj−1 = (αj−1
LMSD)−1

(
gj−1 − gj

)
,

we can write
H G =

(
G, gk

)
J.

Observe that, by applying s iterations of the Lanczos process to matrixH, starting
from the vector q1 = gk−s

‖gk−s‖ , we obtain the tridiagonal matrix T = QTH Q ∈ Rs×s,
where Q = (q1, . . . ,qs) has orthonormal columns spanning the vector subspace

S = span
{

gk−s, Hgk−s, H2gk−s, . . . , Hs−1gk−s
}
.

Since the columns of G are vectors in S, we can write G = QR, where R ∈ Rs×s is
upper triangular and non-singular. This leads to

T = QTH GR−1 =
(
R, QTgk

)
J R−1.

The LMSD method uses the s eigenvalues θi of T , which are known as Ritz values
and provide s estimates of the eigenvalues of H, to determine the step length for
the next s steps starting from k. In particular, the step lengths have the form

αk−1+i
LMSD = 1

θi
, i = 1, . . . , s.

Observe that the derived method, which generates a non-monotone sequence con-
verging to the solution of (2.1), for s = 1 corresponds to the BB1 method.

2.2 Stationarity conditions for QPs
We start by introducing the first-order Karush-Kuhn-Tucker (KKT) conditions.

Definition 2.2.1. A point x is a first-order KKT point for problem (1.1) if there
exist Lagrange multipliers vectors θ ∈ Rm and λ ∈ Rn such that the triple (x,θ,λ)
satisfies

Ax = b, l ≤ x ≤ u, (2.10)

g =
n∑
i=1

λiei +
m∑
j=1

θjaj =
n∑
i=1

λiei +ATθ, (2.11)

λi ≥ 0 if i ∈ Al, λi ≤ 0 if i ∈ Au, (2.12)
λi = 0 if i ∈ F, (2.13)

Vector x is usually referred to as the vector of primal variables, whereas θ and λ
are referred to as the vectors of dual variables. Conditions (2.10) and (2.12) represent
respectively the primal feasibility and the dual feasibility; (2.11) is referred to as the
stationarity condition; finally, (2.13) is referred to as the complementarity condition.
Since we are dealing with linearly constrained problems, stationary for problem (1.1)
can be expressed in terms of the KKT conditions.
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Definition 2.2.2. A point x∗ is a stationary point for problem (1.1) if and only if
there exist Lagrange multipliers vectors θ∗ ∈ Rm and λ∗ ∈ Rn such that the triple
(x∗,θ∗,λ∗) satisfies the KKT conditions (2.10)-(2.13).

The algorithms considered here for the solution of QPs all aim at finding a
stationary point x. We recall that in the case of strictly convex problems (H � 0)
problem (1.1) admits a unique stationary point, which coincides with the global
minimizer of f over Ω.

Another way to express stationarity for problem (1.1) is by using the projected
gradient. Given a point x ∈ Ω, the projected gradient of f at x is defined as the
vector

∇Ωf(x) := argmin {‖v +∇f(x)‖ s.t. v ∈ TΩ(x)} , (2.14)

where the tangent cone to Ω at x takes the form

TΩ(x) = {v ∈ Rn : Av = 0 ∧ vi ≥ 0 ∀ i ∈ Al(x) ∧ vi ≤ 0 ∀ i ∈ Au(x)} .

We observe that x∗ ∈ Ω is a stationary point for (1.1) if and only if ∇Ωf(x∗) = 0,
which is equivalent to

−∇f(x∗) ∈ TΩ(x)◦,

where
TΩ(x)◦ =

{
w ∈ Rn : wTv ≤ 0 ∀v ∈ TΩ(x)

}
is the polar of the tangent cone at x, i.e. the normal cone to Ω at x. By Farkas’
Lemma, it can be shown that the normal cone has the form

TΩ(x)◦ =
{

w ∈ Rn : −w =
∑

i∈A(x)
λiei +ATν ∧

λi ≥ 0 ∀ i ∈ Al(x) ∧ λi ≤ 0 ∀ i ∈ Au(x)
}
.

(2.15)

2.3 Gradient Projection methods

Consider the constrained optimization problem

min f(x),
s.t. x ∈ Θ, (2.16)

where f is a continuously differentiable function and Θ ⊂ Rn is a non-empty closed
convex set.

The gradient projection (GP) method, introduced independently in the 60s by
Goldstein [79] and by Levitin and Polyak [100], can be seen as a natural extension
of the gradient descent method for unconstrained minimization. It is based on the
simple iteration

xk+1 = PΘ(xk − αkgk), k = 0, 1, . . . , (2.17)

where αk is a suitably chosen step length.
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Figure 2.1. Illustration of the projection arc [12].

Definition 2.3.1. Let x ∈ Θ, we define the projection arc as the set of points of
the form

x(α) = PΘ(x− αg), α > 0.

The projection arc starts at x and defines a curve continuously parametrized by
α ∈ R+ (see Figure 2.1).

It can be proved that x∗ is a stationary point for (2.16) if and only if

x∗ = PΘ(x∗ − αg∗), for some α > 0.

Observe that this condition guarantees that the gradient projection method will
make no progress if xk is stationary point.

Under the assumption that the gradient of f is Lipschitz continuous, i.e.,

‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ , ∀x,y ∈ Θ,

where L > 0, Goldstein, Levitin and Polyak proved various convergence results in
the case where αk satisfies for all k the condition

0 < ε ≤ αk ≤ 2(1− ε)
L

.

Some years later McCormick [105] proved the convergence of a gradient projection
method which did not require the Lipschitz continuity of the gradient of f . In
particular he proposed, at each step, to take the step length αk as

αk = argmin
α≥0

{
ψk(α) := f

(
PΘ(xk − αgk)

)}
, (2.18)

which, however, is not practical to compute for general constrained problems.
The first practical gradient projection method was proposed in 1976 by Bertsekas

[10] for the case of a general non-negativity constrained problems, i.e. with f twice
continuously differentiable and Θ = {z ∈ Rn : z ≥ 0}. The method proposed by
Bertsekas consists in choosing αk by means of an Armijo rule along the projection
arc. In detail, by setting

xk(α) = PΘ(xk − αgk),
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Figure 2.2. Illustration of the successive point tested by the Armijo rule along the projection
arc [12].

Bertsekas proposed to take αk = βskα0, where 0 < β < 1, α0 > 0, and sk is the
minimum integer such that αk satisfies the condition

f
(
xk(αk)

)
≤ f(xk) + µ(gk)T

(
xk(αk)− xk

)
, (2.19)

with 0 < µ < 1. The author proved that any limit point x∗ of the sequence {xk}
generated by this algorithm is stationary. Moreover, he proved that if a stationary
point x∗ is non-degenerate and the matrix ∇2f(x∗) is strictly positive definite, there
exists δ > 0 such that, if for some k it holds ‖x∗ − xk‖ < δ, then the sequence
converges to x∗ and the active-set at x∗ is identified in a finite number of steps, i.e.
there exists k̂ > k such that Ak = A∗, ∀k > k̂.

One drawback of the selection rule proposed above is that it requires a projection
onto the feasible region for each step reduction. This can lead to numerical inefficiency,
especially in the case of more complicated constraints than the non-negativity
constraints considered in the original proposal. In these cases an alternative to the
Armijo rule along the projection arc is available. Given the positive scalar α0, one
can compute the feasible direction

pk = PΘ(xk − α0gk)− xk

and then perform a line search along pk, choosing xk+1 as

xk+1 = xk + βskpk,

where 0 < β < 1 and sk is the minimum integer such that

f
(
xk + βskpk

)
≤ f(xk)− µβsk(gk)Tpk,

with 0 < µ < 1. Performing this line search along the feasible direction pk is less
expensive, since it requires only one projection (the one performed to compute pk);
the convexity of Θ ensures, indeed, that all the points of the form xk + γpk, with
γ ∈ (0, 1) are feasible. While the line search along the projection arc usually returns
points which lie on the boundary of Θ, the line search along the feasible direction
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pk is likely to return points which lie in its interior, which translates in a slower
identification of the active constraints at the solution [13, 12].

The convergence results obtained by Bertsekas for his line-search based gradient
projection method were extended by Dunn [67] for the general case of a convex set
Θ and a differentiable function f .

In their seminal paper of 1987 [27], Calamai and Moré investigated the results
on the convergence of gradient projection algorithms obtained by Bertsekas [10, 11]
and Dunn [67], focusing on the case of linearly constrained nonlinear problems of
the form

min f(x),
s.t. C x ≥ d, (2.20)

where f is continuously differentiable, C = (c1, . . . , cm)T ∈ Rm×n, and d ∈ Rm.
Observe that, in this case, the active set at a point x is defined as the set

A(x) =
{
i : cTi x = di

}
.

Consider a non-degenerate stationary point x∗ such that the set of the normals
to the active constraints, i.e. the set {ci : i ∈ A∗}, is linearly independent. The
authors showed that, given any sequence {xk} converging to x∗, if

{
‖∇Ωf(xk)‖

}
converges to zero then there exists k such that Ak = A∗ for each k ≥ k.

Given the current iterate xk, they proposed a gradient projection algorithm
generating the successive iterate as

xk+1 = PΩ(xk − αkgk),

where αk satisfies the following sufficient decrease condition: given γ1, γ2, γ3 > 0 and
µ1, µ2 ∈ (0, 1),

fk+1 ≤ fk + µ1 (gk)T (xk+1 − xk), (2.21)

where
αk ≤ γ1,

αk ≥ γ2 or αk ≥ γ3 α
k > 0,

(2.22)

with αk such that

f(xk(αk)) > fk + µ2 (gk)T (xk(αk)− xk), (2.23)

where xk(αk) := PΩ(xk−αkgk). It can be showed that the limit points of a bounded
sequence {xk} generated by such an algorithm are stationary; moreover, the sequence
satisfies the condition

lim
k→∞

‖∇Ωf(xk)‖ = 0. (2.24)

The authors also proved that similar results hold for a more general family of
algorithms (see [27, Algorithm 5.3]) which exploit the gradient projection only for an
infinite subset K ⊂ N of the iterates while just requiring that all the other iterates
satisfy the condition

fk+1 ≤ fk and Ak ⊆ Ak+1.
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2.3.1 Step-length selection

The convergence results proved by Calamai and Moré for the gradient projection
method with Armijo line search is independent from the choice of the initial guess α0.
However, in Section 2.1, we have seen how, starting from the seminal paper of Barzilai
and Borwein [6], efficient step length selection strategies exploiting second-order
informations have been devised for gradient methods for unconstrained optimization.
Some of these strategies have been successfully applied to the constrained case,
giving rise to efficient methods with low computational cost.

Starting from the methods proposed by Raydan in [118], Birgin, Martínez and
Raydan [16, 15, 17] developed for the case of constrained optimization the so-called
Spectral Projected Gradient (SPG) methods. The two proposed methods, named
SPG1 and SPG2, are based on the BB1 step length and exploit respectively the
line search along the projection arc and the one along the feasible direction. These
methods have been efficiently applied in a decomposition framework for the solution
of support vector machine training problems by Serafini, Zanghirati and Zanni
[120, 127] and in the solution of image segmentation problems [4]; moreover, they
have been further analyzed by Dai and Fletcher [37, 38], who managed to build
2-dimensional BQPs in which projected BB methods without line search may cycle.

2.3.2 The Scaled Gradient Projection method

The Scaled Gradient Projection (SGP) method [21] is a variant of the classical
gradient projection method, based on a the scaling of the descent direction by a
positive definite matrix. In detail, at each step k, a search direction is computed as

pk = PΘ,Dk

(
xk − αkD−1

k gk
)
− xk,

where Dk is a symmetric positive definite matrix whose eigenvalue lie in the interval[
µk,

1
µk

]
, with µk ≥ 1, and the projection operator PΘ,D(z) is defined as

PΘ,D(z) = argmin
v∈Θ

‖v− z‖D = argmin
v∈Θ

1
2vTD v− vTD z.

It can be proved that, given a scalar α > 0, a symmetric positive definite matrix D,
and a point x∗ ∈ Θ, then

p∗ = PΘ,D
(
x∗ − αD−1g∗

)
− x∗

is a feasible descent direction and x∗ is stationary if and only if p∗ = 0. Once pk is
computed, a line search along it is performed, and xk+1 is taken as the point

xk+1 = xk + βskpk,

where 0 < β < 1 and sk is the minimum integer such that

f
(
xk + βskpk

)
≤ f(xk)− γβsk(gk)Tpk,

with 0 < γ < 1. Thanks to the availability of cheap projection algorithms (see
Section 2.5.1) these methods have been efficiently applied in the solution of inverse
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problems in imaging science [7, 117, 102] subject either to bound constraints or to
bound constraints and a single linear constraint. It has been proved in [20] that if
the matrix Dk reduces asymptotically to the identity matrix, i.e. {µk} satisfies

µ2
k = 1 + ςk, with ςk ≥ 0 and

∞∑
k=0

ςk <∞,

then the algorithm converges to a solution x∗ to (2.16); moreover, if the gradient of
f is Lipschitz continuous,

f(xk+1)− f(x∗) = O( 1
k

).

As for the standard gradient projection algorithm, the practical performances
of SGP methods are affected by the choice of the step length αk and the scaling
matrix Dk. In regards to the scaling, as suggested in [126], aiming at improving the
convergence rate of the algorithm without increasing its computational cost, one
could take at each step Dk as a diagonal matrix approximating the inverse of the
Hessian matrix ∇2f(xk). By following [99], in [102] the authors propose, in the case
of problems subject to non-negativity constraints, to consider the following splitting
of the gradient

∇f(x) = V (x)− U(x),
with V (x) > 0 and U(x) ≥ 0, and to take D−1

k as the matrix

D−1
k = diag(dk1, . . . , dkn),

with
dki = max

{
min

{
xki

Vi(xk)
, µk

}
,

1
µk

}
.

In regards to the step-length selection, suitable generalization of the BB step
lengths have been defined in [21], for the case of SGP methods, as

αkBB1S = (sk−1)TDkDksk−1

(sk−1)TDkyk−1 , and αkBB2S = (sk−1)TD−1
k yk−1

(yk−1)TD−1
k D−1

k yk−1 .

This allows one to extend in this case the generalizations of the BB step lengths
cited in Section 2.1.1.

2.4 Two-phase gradient projection methods for BQPs
Here we focus on two-phase gradient projection methods for the solution of BQP
problems, i.e. problems of the form

min f(x) := 1
2xT H x− cTx,

s.t. l ≤ x ≤ u. (2.25)

This, apart from their pervasive presence in many application fields, is also due to
the intrinsic ease in dealing with them both from the theoretical and practical point
of view. Indeed, consider the first order KKT conditions for problem (2.25), i.e.

g∗ =
n∑
i=1

λ∗i ei, λ∗i ≥ 0 if i ∈ A∗l , λ∗i ≤ 0 if i ∈ A∗u, λ∗i = 0 if i ∈ F∗,
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they can be equivalently written as

g∗i ≥ 0 if i ∈ A∗l , g∗i ≤ 0 if i ∈ A∗u, g∗i = 0 if i ∈ F∗, (2.26)

Projections onto the feasible set of problem (2.25), i.e. the set

Ω := {x ∈ Rn : l ≤ x ≤ u} ,

are very cheap to compute. Indeed, given a point x, the projection of x onto Ω can
be computed by the operator PΩ defined componentwise as

[PΩ(x)]i :=


xi, if li < xi < ui,
li, if xi ≤ li,
ui, if xi ≥ ui.

In the particular case of problem (2.25) we have that the tangent cone at a point
x ∈ Ω has the form

TΩ(x) = {v ∈ Rn : vi ≥ 0 ∀ i ∈ Al(x) ∧ vi ≤ 0 ∀ i ∈ Au(x)} ,

therefore the projected gradient of f at x, defined in (2.14), can be written compo-
nentwise as

[∇Ωf(x)]i :=


−gi, if i ∈ F,
max {−gi, 0} , if i ∈ Al,
min {−gi, 0} , if i ∈ Au.

(2.27)

Given an active-set estimate A = Al ∪ Au (and the respective estimate of the
free set F), active-set methods for BQP are based on the solution of the subproblem

min f(x),
s.t. xi = li, i ∈ Al,

xi = ui, i ∈ Au,

li ≤ xi ≤ ui, i ∈ F.

(2.28)

Since each feasible point v for (2.28) satisfies v
Al

= l
Al

and v
Au

= u
Au

, the problem
can be solved by a minimization over the subspace of free variables. One can indeed
focus on the unconstrained problem

min
v
F
∈R|F|

1
2vT

F
H

F F
v
F
− cT

F
v
F
, (2.29)

and either stop as soon as one of the bound constraints

l
F
≤ v

F
≤ u

F

is violated or find an approximate solution to the unconstrained subproblem and
then project the resulting point back onto the feasible set of (2.25).
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2.4.1 The GPCG method by Moré and Toraldo

Starting from the results of Calamai and Moré [27], Moré and Toraldo investigated
the possibility of solving problems of the form (2.25) by means of active-set methods
based on the identification properties of the gradient projection methods and their
capability of adding/removing multiple variables to/from the active-set in a single
iteration. In [108] they developed and analyzed an algorithm based on the alternation
of two phases: the identification phase and theminimization phase. The identification
phase consists in successive gradient projection iterations, for which the authors set
an upper bound s, which eventually stopped if A(xj) = A(xj−1) for a certain index
j ∈ {k + 1, . . . , k + s}. Supposing to start from a point xk, consider the function

φk(α) = f
(
PΩ(xk − αgk)

)
.

Recalling the definition of binding set at a point xk (3.13), which in the case of
BQPs is the set

Bk = B(xk) =
{
i : (i ∈ Al ∧ gki ≥ 0) ∨ (i ∈ Au ∧ gki ≤ 0)

}
,

we can introduce the reduced gradient rk = gk
Bk and the reduced Hessian Ak = HBkBk .

It can be shown that the function φk(α) is piecewise quadratic in α and its break-
points, i.e. the points at which the function switches from one quadratic to the
other, are related to the indices i such that i /∈ Bk, gki 6= 0, and either li or ui are
finite. In particular supposing that the function has breakpoints

0 = η0 < η1 < . . . < ηp < ηp+1 = +∞,

each breakpoint ηj (1 ≤ j ≤ p) has the form

ηj =


xi − ui
gi

, if gi < 0 and ui < +∞,
xi − li
gi

, if gi > 0 and li > −∞,

for some i ∈ {1, . . . , n} \Bk.
In the interval [0, η1], φk(α) coincides with the function fk(−αrk), where fk is

the restriction of f to the subspace in which the variables in Bk are fixed. Figure 2.3
illustrates the sufficient decrease condition for a function with 4 breakpoints. Note
that αk satisfies the sufficient decrease condition (2.21) if φk(αk) ≤ ψk(αk) where
φk(αk) is the piecewise linear function

ψk(α) = f(xk) + µ1(gk)T
(
PΩ(xk − αgk)− xk

)
.

The authors relate the choice of αk0 to the behavior of φk in [0, η1]. In particular, if
in that interval φk is strictly convex, the authors suggest to take αk0 as the minimizer
of the quadratic function representing φk in [0, η1]. Since

φ′k(0) = −‖rk‖2, and φ′′k(0) = (rk)TAk rk,
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Figure 2.3. Illustration of the sufficient decrease condition for αk [108].

the starting value for αk is

αk0 = ‖rk‖2

(rk)TAk rk

whenever (rk)TAk rk > 0. Given the current estimate for αk, i.e. αkj , the authors
proposed to replace the original rule αkj+1 = βαkj with a more efficient safeguarded
quadratic interpolation scheme. In detail they proposed to take

αkj+1 = max
{
η1,mid

{ 1
100α

k
j , α

k
j ,

1
2α

k
j

}}
,

where αkj is the minimizer of the quadratic interpolating φk(0), φ′k(0) and φk(αkj ).
In the cases in which (rk)TAk rk ≤ 0, since the quadratic function representing φk
in [0, η1] is strictly decreasing and unbounded below, the author decided to consider
as starting value for αk the largest finite breakpoint for φk, i.e. ηp.

The minimization phase consists in the computation of the solution wk to
problem

min fk(w) = 1
2wT H

F F
w + (gk

F
)Tw, (2.30)

relying on the Cholesky factorization of H
F F

. By defining the vector dk ∈ Rn such
that dk

Bk = 0 and dk
Ck = wk (with Ck = {1, . . . , n} \ Bk), the authors proposed to

compute the point xk+1 as xk+1 = xk + γkdk, where

γk = max
{
γ : l ≤ xk + γdk ≤ u

}
.

It can be proved that, whenever the quadratic function f is bounded below on the
set Ω, this algorithm is able to find a stationary point in a finite number of iterations.

The main weakness of the method proposed in [108] is that the exact solution
of (2.30) can be “uselessly expensive” if the active set at the solution is far from
being identified; on the other hand, due to the slow convergence of the gradient
projection method, it is unpractical to wait until the identification of a suitable
active-set. Inspired by the works by Dembo and Tulowitzki [48] and Wright [123], in
their seminal 1991 paper [109], Moré and Toraldo proposed the well known GPCG
(Gradient Projection Conjugate Gradient) algorithm. The idea of GPCG is to stop
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the gradient projection iteration if it fails in making a reasonable progress and then
proceed with the approximate solution of (2.30) by means of the conjugate gradient.

In detail, starting from y0 = xk, the GP identification phase is stopped if either
of the two conditions

A(yj) = A(yj+1), (2.31)
f(yj)− f(yj+1) ≤ η max

1≤l<j
(f(yl)− f(yl+1)), (2.32)

is satisfied, with η > 0 a given constant. A criterion similar to (2.32) is used to stop
the CG method in the solution of (2.30); the CG is indeed stopped if it generates a
point wj such that

fk(wj)− fk(wj+1) ≤ ξ max
1≤l<j

{
fk(wl)− fk(wl+1)

}
, (2.33)

with ξ > 0 a given constant. The search direction dk derived from the solution of
(2.30) is then used to compute the next iterate xk+1 as

xk+1 = xk + αkdk

where αk is selected by means of the same projected line search with the safeguarded
quadratic interpolation described previously for the GP phase in [108]. If the iterate
xk+1 generated in this way appears to be in the face which contains the solution, the
minimization phase continues. The decision, in particular, is based on the observation
that if xk+1 is on the face that contains the solution, then B(xk+1) = A(xk+1),
i.e. the active set is also binding. However, the condition B(xk+1) = A(xk+1) does
not guarantee that xk+1 is in the face which contains the solution. If the current
iterate does not lie on the face containing the solution, then the finite termination
properties of the conjugate gradient method guarantee that a point x such that
B(x) 6= A(x) will eventually be generated. The authors, which focused on the case
of strictly convex problems, proved that in case of a non-degenarate staionary point,
GPCG is able to find the solution in a finite number of steps thanks to the finite
identification properties of the GP phase and the finite termination properties of
the CG phase.

A critical issue about GPCG stands in the approximate minimization of (2.30).
The required precision should, indeed, depend on how much that space is worth
to be explored. In GPCG, instead, a purely heuristic criterion for the stopping
of the minimization phase is used, based on a maximum number of iterates and
a check on the bindingness of the active constraints. To overcome the numerical
inefficiencies associated with using a heuristic approach for the switch between the
identification phase and the minimization phase we will see in Chapter 4 how, by
exploiting some ad-hoc optimality measures, the performances of the algorithm can
be drastically improved. These measures are inspired to the works presented in the
following sections in which the authors aimed at developing algorithms with finite
termination properties in the case of a degenerate stationary point.

2.4.2 Gradient methods by Friedlander and Martínez

The active-set method for bound constrained problems proposed by Friedlander
and Martínez in [74, 75] includes a procedure for deciding to leave a face of the
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polyhedron which guarantees that return on the same face is not possible. Recalling
the KKT conditions (2.26), the authors introduced two new vectors, which we
indicate as ϕ(x) and β(x), defined componentwise as

ϕi(x) :=


gi if i ∈ F(x),
0 if i ∈ Al(x),
0 if i ∈ Au(x),

βi(x) :=


0 if i ∈ F(x),

min{0, gi} if i ∈ Al(x),
max{0, gi} if i ∈ Au(x).

(2.34)

It is straightforward to check that a feasible point x∗ is stationary for problem (2.25),
i.e. it satisfies the KKT conditions (2.26), if and only if

β(x∗) = ϕ(x∗) = 0;

moreover, recalling the definition of projected gradient (2.27) for problem (2.25), we
have that for every feasible point x

β(x) +ϕ(x) = −∇Ωf(x).

The idea behind the proposed method can be summarized as follows (the authors’
proposal is based on the problem of maximizing a concave function, we will refor-
mulate the content for the minimization of a convex one). Recalling the definition
already given for problem (1.1), given a feasible point xk, we can observe that vector
ϕ(xk) is the projection of the gradient onto Ω0(xk), i.e. it can be used as a measure
of optimality within the current face. Moreover, considering the set

Bk
δ,Ω = Bδk(xk) ∩ Ω(xk),

by the first order Taylor expansion, we can estimate the difference between the value
of f at xk and its optimal value inside Bk

δ,Ω with the quantity

∆k
F = δk‖ϕ(xk)‖.

Focusing on β(xk) (which the author called chopped gradient), it’s easy to see that
it is orthogonal to Ω0(xk) and that the direction dk = −β(xk)/‖β(xk)‖ points
towards the interior of the feasible set, i.e. it is possible to leave the current face
(orthogonally) by a movement along dk. Doing this, the objective function can be
decreased by an amount of at least

∆k
A = α̃

∥∥∥β(xk)
∥∥∥2
− α̃2L

2

∥∥∥β(xk)
∥∥∥2
,

where L ≥ ‖H‖ is a Lipschitz constant for ∇f and

α̃ = min
{

1
L
,

γkA
‖β(xk)‖

}
,

with γkA = min{ui − li : i ∈ Ak}, is the maximum feasible step length along the
normal direction to the current face. The authors proposed to compare at each step
the quantities ∆k

F and ∆k
A:
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• if ∆k
A < ∆k

F then the current face is considered worth to be further explored;
a new point xk+1 ∈ Ω(xk), such that f(xk+1) ≤ f(xk) is then obtained by
means of one conjugate gradient step (eventually shrunk to avoid infeasibility);

• if ∆k
A ≥ ∆k

F then the face is abandoned and the next iterate can be taken as
xk+1 = xk + α̃dk, with the guarantee that the algorithm (being monotone)
will never return inside the ball Bk

δ,Ω(xk).

If δk ≥ δ > 0, ∀k ∈ N, it can be proved that such an algorithm is able to find the
solution to (2.25), in the case H � 0, in a finite number of steps also in the case of a
non-degenerate stationary point. In the follow-up paper [77], Friedlander, Martínez
and Raydan developed an algorithm based on the one in [75] in which the conjugate
gradient steps are replaced with a block of gradient descent steps with BB step
lengths. The work was further extended in the 1997 paper by Bielschowsky et al. [14],
in which the authors considered for the first time the case of non-convex problems
and proposed to use different algorithm for the minimization over the current face,
based on information regarding the size of the subproblem and the spectral properties
of the reduced Hessian matrix. In detail for faces of small dimension, they proposed
the use of Cholesky factorizations and, as the dimension increases, the use of sparse
Cholesky factorization, conjugate gradient method and, finally, gradient methods
with BB step lengths.

2.4.3 The MPRGP algorithm by Dostál

The works by Friedlander and Martínez inspired Dostál [53] to introduce the concept
of proportional iterate. Recalling the definitions of ϕ(x) and β(x) given in (2.34)
(which the author called respectively free gradient and unbalanced contact gradient),
an iterate xk is called proportional if, for a suitable constant Γ > 0,

‖β(xk)‖∞ ≤ Γ‖ϕ(xk)‖. (2.35)

It is interesting to note that a similar check was introduced independently in the same
year in [14]. Inequality (2.35) implies that the violation of the KKT conditions at the
active variables does not excessively exceed the part of the gradient corresponding to
the free variables. The author proved that, given a feasible point x and Γ ≥ κ(H)1/2,
then if (2.35) holds, the minimizer of f over the face containing x, which we will
indicated as x, has to satisfy

β(x) 6= 0,

i.e. it is not the optimal solution of (2.25). The proposed algorithm, in the same
vein as in [75], at each step checks condition (2.35). If it holds then the face is
considered worth to be explored and a CG step is taken to find a new feasible point
on the current face, eventually replaced by a maximum feasible step along the CG
direction in case of infeasibility; otherwise, an optimal step along −β(xk), called
proportioning step, is taken to leave the current face.

An enhancement for this scheme was introduced in [54] and it is known as
Modified Proportioning with Gradient Projection (MPGP). The improvement lies in
the behavior of the algorithm during the minimization on the face. If the CG step
is infeasible, instead of considering a maximum feasible step, a gradient projection
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step with constant step length α ∈
(
0, 2‖H‖−1) is taken. This ensures an R-linear

convergence rate in terms of bounds on the spectrum of the Hessian matrix and
allows the algorithm to mantain finite termination properties in the case of a non-
degenerate stationary point. The scheme was further improved in the work by Dostál
and Schöberl [65] with the introduction of the Modified Proportioning with Reduced
Gradient Projection (MPRGP) for problems with lower bound constraints only. The
modification is based on the observation that, since in this case

x− σβ ∈ Ω, ∀σ > 0,

the GP step with fixed step length α can be rewritten as

PΩ(x− α∇f(x)) = x− α (ϕ̃(x) + β(x)) ,

where the vector ϕ̃(x) is called the reduced free gradient and is defined componentwise
as

ϕ̃i(x) :=
{

min
{
xi−li
α , gi

}
if i ∈ F(x),

0 if i ∈ A(x).

The authors proposed to replace the GP step with the so called expansion step (since
it is aimed at expanding the current active-set), defined as

xk+1 = PΩ
(
xk − αϕ(xk)

)
= xk − α ϕ̃(xk),

and to replace (2.35) by introducing the concept of strictly proportional iterate,
defined as an iterate satisfying∥∥∥β(xk)

∥∥∥2
≤ Γ2 ϕ̃(xk)Tϕ(xk), (2.36)

with Γ > 0 a given constant. The scheme obtained is proved to have the R-linear
rate of convergence of the MPGP and recovers the finite termination property also
in the case of degenerate stationary points. The actual implementation of MPRGP,
which is outlined in Algorithm 5.2, includes a maximum feasible step along the CG
direction before the expansion step.

The work by Dostál and Schöberl was further extended by Mohy-ud-Din and
Robinson [107] to the case of general bound constrained problems with possibly
non-convex objective functions. Starting from the definition of ϕ and β in (2.34),
given a scalar α > 0, the authors defined the reduced free gradient ϕ̃α(x) and the
reduced chopped gradient β̃α(x) componentwise as

[ϕ̃α]i (x) :=
{

min
{
xi−li
α , ϕi(x)

}
if ϕi(x) ≥ 0,

max
{xi−ui

α , ϕi(x)
}

if ϕi(x) < 0,[
β̃α
]
i
(x) :=

{
min

{
xi−li
α , βi(x)

}
if βi(x) ≥ 0,

max
{xi−ui

α , βi(x)
}

if βi(x) < 0.

(2.37)

The two vectors have similar roles to the original free and chopped gradient, indeed
it is straightforward to show that, for each α > 0,

PΩ (x− α∇f(x)) = x− α
(
ϕ̃α(x) + β̃α(x)

)
,
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and the vector

ν(x) = x− PΩ (x−∇f(x)) = ϕ̃1(x) + β̃1(x)

is an appropriate measure of optimality for problem (2.25) [34]. One advantage in
using ϕ̃α(x), β̃α(x) and ν(x) in place of the original quantities is that they are
continuous w.r.t. x whereas the projected gradient ∇Ωf(x) is only lower semicontin-
uous.

The definition of the reduced components of the gradient led to the definition of
a new switching criterion to replace (2.35) and (2.36); the authors proposed to base
the switch on the condition

β̃α(xk)Tβ(xk) ≤ Γ2 ϕ̃α(xk)Tϕ(xk), (2.38)

with α ∈
(
0, 2‖H‖−1). The algorithm proposed in [107] is very similar to MPRGP,

with the addition of suitable checks and steps to deal with the non-convexity of the
objective function. Moreover, the author proposed to introduce further checks to
guarantee that the algorithm stops at a stationary point satisfying some second-order
optimality conditions. Under reasonable assumption, the convergence analysis shows
that the proposed algorithm either terminates in a finite number of iterations to a
second-order stationary point, or it generates a sequence of iterates along which the
objective function converges to negative infinity.

It is worth mentioning that similar ideas, to the ones outlined in these sections,
have been also used in [89] for general nonlinear problems subject to bound constraints.
The authors proposed to alternate a gradient projection method, based on the Cyclic-
Barzilay-Borwein [39] step length and on the GLL [84] non-monotone line search,
and an unconstrained subspace minimization step based on the CG_DESCENT
algorithm proposed in [86]. The switch between the two phases is based on a
comparison between the optimality w.r.t. the full problem and the optimality w.r.t.
the subspace defined by the active constraints. A theoretical extension of this
framework to the case of nonlinear problems subject to polyhedral constraints has
been proposed in [90].

2.5 Projection onto polyhedra
In the previous sections we introduced the gradient projection methods observing
that for the class of BQP problems the projection operator can be computed very
easily in O(n) operations. Nevertheless, the nice convergence properties of the
method, analyzed in [27], hold for general optimization problems subject to linear
constraints. The computational bottleneck in their application is the cost of the
projection onto the polyhedron described by the constraint of the problem, which in
the case of a general linearly constrained problem can be very expensive and cost as
much as solving the whole problem.

2.5.1 The case of a single linear equality and bound constraints

One particular class of polyhedra which received much attention is the class of
polyhedra of the form

Ω =
{

x ∈ Rn : aTx = b ∧ l ≤ x ≤ u
}
, (2.39)
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where a ∈ Rn, l ∈ {R ∪ {−∞}}n, u ∈ {R ∪ {+∞}}n, and l ≤ u. In the case of
a = 1 this set is known in literature as the double-sided simplex; with a little abuse
of notations we will refer to the general case in the same way. A lot of work has been
done on the analysis and development of efficient algorithms for the computation of
the projection onto Ω, especially in the case in which it corresponds to the probability
simplex, i.e.

Ω =
{

x ∈ Rn :
∑
i

xi = b ∧ x ≥ 0
}
.

This is also due to the fact that the projection problem can be seen as an instance
of a more general class of QP problems of the form

min 1
2xT D x− cTx,

s.t. aTx = b,
l ≤ x ≤ u,

(2.40)

where D is a diagonal positive definite matrix with diag(D) = [d1, d2, . . . , dn], which
are usually referred to in literature as quadratic knapsack problems and arise in
many application areas, such as resource allocation, hierarchical production planning,
transportation problems, multicommodity network flows, etc. (see e.g., [96, 97, 98]
and references therein). It is easy to check that the problem of projecting a point z
onto Ω corresponds to the case in which D = In and c = z.

Recall that a stationary point x∗ for problem (2.40) has to satisfy the first-order
KKT conditions

Dx− c = λa,
aTx = b,

l ≤ x ≤ u,

where λ ∈ R is the Lagrange multiplier associated with the single linear equality
constraint.

Here we will briefly describe solution strategies for problem (2.40) showing
how it is possible to develop algorithms with the optimal computational cost O(n)
[24, 28, 113]. The main idea behind the algorithms developed for the solution of this
problem is to exploit a dual reformulation which, as we will see, allows one to turn
the optimization problem into the solution of a piecewise linear equation. We will
see, however, that from a practical point of view, algorithm with a larger theoretical
cost can perform better on large-scale problems, such as the one based on variable
fixing techniques [98], which has a theoretical O(n2) complexity, the secant method
proposed by Dai and Fletcher [38], and the semismooth Newton method proposed
by Cominetti et al. in [31].

2.5.1.1 Dual reformulation

Observe that the quadratic knapsack problem, as any convex quadratic problem,
agrees to strong duality. Thus we can recover the solution to the original problem by
solving a dual problem. Following [27], since the box constraints are easy to handle,
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we can consider the Lagrangian function associated with the linear constraint and
introduce the following dual problem for (2.40)

max
λ∈R

inf
l≤x≤u

{1
2xTDx− cTx + λ(b− aTx)

}
. (2.41)

Given a fixed λ, the solution of the inner infimum problem can be written as

x(λ) = mid
{

l, D−1(λa + c),u
}
, (2.42)

or equivalently componentwise as

xi(λ) = max
{
li, min

{
λ ai + ci

di
, ui

}}
, i = 1, . . . , n.

Thus the KKT conditions for (2.40) can be rewritten as

φ(λ) := aTx(λ)− b = 0, (2.43)

which is equivalent to primal-dual optimality, so that (2.40) reduces to the finding
of the unique solution λ∗ to the equation

φ(λ) :=
n∑
i=1

ai mid
{
li,
λ ai + ci

di
, ui

}
=

n∑
i=1

φi(λ) = b. (2.44)

Each component φi : R → R of the function φ is a piece-wise nondecreasing
linear function with two breakpoints (left side of Figure 2.4), namely ηi` =

{
di li−ci
ai

}
and ηiu =

{
di ui−ci

ai

}
, where we define as breakpoint each point of discontinuity of

the first derivative of a given function. Indeed, for λ in (−∞, ηi`), φi assumes the
constant value ai li; in [ηi`, ηiu] it is a monotone increasing linear function with slope
a2

i
di
; finally, in (ηiu, +∞) it assumes the constant value ai ui.

Figure 2.4. The i-th component of φ(λ) and its two breakpoints (left) and an example of
φ(λ) with six breakpoints (right) [31].

The resulting function φ(λ) is a nondecreasing piece-wise linear function, whose
set of breakpoints

E =
n⋃
i=1

{
ηi`, η

i
u

}
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contains at most 2n distinct elements, and which assumes constant values in
(−∞, ηmin) and in (ηmax, +∞), with ηmin = min{E} and ηmax = max{E}. An
example of such a function with 6 breakpoints is given in the right side of Figure 2.4.

It follows that the problem (2.44) has a solution if and only if

inf{φ(λ) : λ ∈ R} ≡ φmin ≤ b ≤ φmax ≡ sup{φ(λ) : λ ∈ Rn}

where φmin = φ (ηmin) and φmax = φ (ηmax).
The two following theorems, regarding the relation between a solution x∗ to

(2.40) and a solution λ∗ to (2.44), have been proved in [28].

Theorem 2.5.1. If x∗ solves problem (2.40) then x∗i = xi(λ∗) where

xi(λ) = max
{
li, min

{
λ ai + ci

di
, ui

}}
, i = 1, . . . , n, (2.45)

and λ∗ solves problem (2.44).

Theorem 2.5.2. If λ∗ solves the problem

min{|φ(λ)− b| : λ ∈ R},

then x(λ∗) solves (2.40) if φ(λ∗) = b. Otherwise, x(λ∗) solves the problem

min{|aTx− b| : l ≤ x ≤ u}.

2.5.1.2 Optimal O(n) algorithms

The structure of φ(λ) suggest to find the solution by looking at the set of breakpoints.
Indeed, supposing that one has found the breakpoints

η∗` = max {η ∈ E : φ(η) ≤ b} and η∗u = min {η ∈ E : φ(η) ≥ b} ,

since no other breakpoint lies between them, the solution λ∗ to (2.44) can be found
by linear interpolation in the interval [η∗` , η∗u] as the only value such that φ(λ∗) = b.

The first proposed algorithm [93, 94] for the solution of (2.44) are based on a
pre-ordering of the set E and then on bisection in order to find η∗` and η∗u. This
class of algorithms has a computational cost of order O (n logn), i.e. the cost of the
ordering dominates the cost of all the other operations.

The idea behind the optimal algorithms of order O(n) (e.g., [24, 28, 113, 97, 96])
is basically that to skip the expensive pre-ordering and performing the bisection on E

by progressively splitting it computing medians of its subsets; this results in cheaper
algorithm since the cost of the computation of the median of a set S is indeed O(|S|).
The bisection process either terminates if, for some λm, φ(λm) = b or returns two
consecutive breakpoints λp and λm such that λ∗ ∈ [λp, λm]. The solution can be
computed by linear interpolation starting from λp and λm as

λ∗ = λm − (φ(λm)− b) λm − λp
φ(λm)− φ(λp)

.
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2.5.1.3 Variable fixing algorithms

Even if O(n) is the optimal complexity for the solution of quadratic knapsack
problems, from the practical point of view optimal algorithms can be outperformed
by algorithm with an higher computational cost. A first example is given by variable
fixing algorithms derived from the work of Luss and Gupta [104] and further analyzed
by Michelot [106] and Shor [121] (in the case of the simplex) and by Kiwiel [98].
This class of algorithms has a worst-case performance of O(n2), however they have
been showed to be competitive in practice with O(n) algorithms. The main idea
behind this class of algorithms is to solve the quadratic knapsack problem by directly
tackling its primal formulation (2.40). At each step the set {1, . . . , n} is partitioned
in three sets, i.e. Lk, Uk, and F k, representing respectively the variables assumed
to be on the lower bound, the variables assumed to be on the upper bound and the
variables assumed to be free. Starting from a given partition, the algorithm finds
the solution x̃k to the equality constrained subproblem

min 1
2xT D x− cTx,

s.t. aTx = b,

xi = li, i ∈ Lk,
xi = ui, i ∈ Uk,

which can be obtained in closed form, and updates the partition of the indices
according to some measures of feasibility for x̃k. In what follows we will assume
that a > 0 without loss of generality, since all the other cases can be reduced to this
by a change of variables. In [97], Kiwiel proposed to compute the quantities

∇k =
∑
i∈Fk

l

ai
(
li − x̃ki

)
, where F kl =

{
i ∈ F k : x̃ki ≤ li

}
,

∆k =
∑
i∈Fk

u

ai
(
x̃ki − ui

)
, where F ku =

{
i ∈ F k : x̃ki ≥ ui

}
.

If ∇k = ∆k, it can be shown that the point xk obtained by setting xki = li for
i ∈ Lk ∪ F kl , xki = ui for i ∈ Uk ∪ F ku and xki = x̃ki otherwise, is not only feasible,
but also optimal for (2.40). If the previous relation does not hold different update
strategies are used for the sets Lk, Uk, and F k: if ∇k > ∆k then

Lk+1 = Lk ∪ F kl , F k+1 = F k \ F kl , and Uk+1 = Uk,

otherwise, if ∇k < ∆k,

Lk+1 = Lk, F k+1 = F k \ F ku , and Uk+1 = Uk ∪ F ku .

2.5.1.4 The Dai-Fletcher secant-based algorithm

An algorithm which have proved to be very efficient in the solution of problems
of the form (2.40) is the secant-based method introduced by Dai and Fletcher in
[41]. The algorithm proposed for the solution of (2.44) consists into two phases: a
bracketing phase in which an interval [λl, λu] containing the solution to (2.44) is



32 2. Background and state of the art

Algorithm 2.1 Bracketing Phase of the Dai-Fletcher algorithm
1: Let λ ∈ R, ∆λ > 0;
2: Compute x = x(λ) by (2.42); ψ = aTx− b;
3: if ψ < 0 then
4: λl = λ; ψl = ψ; λ = λ+∆λ;
5: Compute x by (2.42); ψ = aTx− b;
6: while ψ < 0 do
7: λl = λ; ψl = ψ; s = max

{
ψl
ψ
− 1, 0.1

}
;

8: ∆λ = ∆λ+ ∆λ

s
; λ = λ+∆λ;

9: Compute x by (2.42); ψ = aTx− b;
10: end while
11: λu = λ; ψu = ψ;
12: else
13: λu = λ; ψu = ψ; λ = λ−∆λ;
14: Compute x by (2.42); ψ = aTx− b;
15: while ψ > 0 do
16: λu = λ; ψu = ψ; s = max

{
ψu
ψ
− 1, 0.1

}
;

17: ∆λ = ∆λ+ ∆λ

s
; λ = λ−∆λ;

18: Compute x by (2.42); ψ = aTx− b;
19: end while
20: λl = λ; ψl = ψ;
21: end if

found, and a secant phase in which this interval is progressively reduced until the
algorithm finds the two consecutive breakpoints between which the optimal value
of λ lies. Since the algorithm will be used in the MATLAB implementation of the
P2GP method introduced in Chapter 4, we provide here (see Algorithm 2.1 and
Algorithm 2.2) the pseudocodes for the two phases of the algorithm.

In the bracketing phase, outlined in Algorithm 2.1, the user is asked to provide
an initial estimate for λ and the length ∆λ of the interval with extreme λ containing
the solution. To ease the description of the algorithm we have defined the function
ψ(λ) = φ(λ) − b; clearly solving (2.44) is equivalent to finding a root for ψ(λ). If
ψ(λ) < 0 (respectively ψ(λ) > 0) the search for the interval takes place in the positive
(respectively the negative) λ direction. Considering w.l.o.g. the case ψ(λ) < 0, the
algorithm at each step starts with λl equal to the current estimate of λ, it checks
the value of ψ = ψ(λ + ∆λ), if it is larger than 0, then it sets λu = λ + ∆λ and
terminates, otherwise it updates the estimate for ∆λ depending on ψl = ψ(λl) and
ψ and then sets λ = λ+∆λ. If the problem is feasible, then the bracketing phase is
guaranteed to terminate with a bracket [λl, λu] containing a solution of the equation
ψ(λ) = 0.

The algorithm terminates with the bracketing phase if for some λ the value
of ψ(λ) is sufficiently close to zero, otherwise it proceeds with the secant phase,
reported in Algorithm 2.2.
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Algorithm 2.2 Secant Phase of the Dai-Fletcher algorithm

1: Let s = 1− ψl
ψu

; ∆λ = ∆λ

s
; λ = λu −∆λ;

2: Compute x by (2.42); ψ = aTx− b;;
3: while not converged do
4: if ψ > 0 then
5: if s ≤ 2 then
6: λu = λ; ψu = ψ; s = 1− ψl

ψu
;

7: ∆λ = λu − λl
s

; λ = λu −∆λ;
8: else
9: s = max

{
ψu
ψ
− 1, 0.1

}
; ∆λ = λu − λ

s
;

10: λnew = max {λ−∆λ, 0.75λl + 0.25λ};
11: λu = λ; ψu = ψ; λ = λnew; s = λu − λl

λu − λ
;

12: end if
13: else
14: if s ≥ 2 then
15: λl = λ; ψl = ψ; s = 1− ψl

ψu
;

16: ∆λ = λu − λl
s

; λ = λu −∆λ;
17: else
18: s = max

{
ψl
ψ
− 1, 0.1

}
; ∆λ = λ− λl

s
;

19: λnew = min {λ+∆λ, 0.75λu + 0.25λ};
20: λl = λ; ψl = ψ; λ = λnew; s = λu − λl

λu − λ
;

21: end if
22: end if
23: Compute x by (2.42); ψ = aTx− b;
24: end while

At each step of the secant phase the algorithm starts with an interval [λl, λu],
with ψ(λl) < 0 and ψ(λu) > 0, and with an estimate of the solution λ. If, w.l.o.g.,
ψ(λ) > 0 then the algorithm checks whether λ lies in the left half of the interval
[λl, λu] or in the right one. In the former case the new estimate for λ is computed by
a secant step based on λl and λ; in the latter the algorithm compares a secant step
based on λ and λu and a step to the point 3

4λl + 1
4λ, choosing whichever is smaller

to generate the new estimate of λ. This choice ensures that the interval length is
reduced at each step at least by a factor of 25%. In both cases the new bracket
is originated by fixing λl and taking λu equal to the previous estimate of λ. The
secant phase terminates if preset tolerances on either ψ(λ) or ∆λ are met.
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2.5.1.5 The Newton’s method by Cominetti et al.

Starting from the secant-based algorithm of Dai and Fletcher, Cominetti et al.
proposed in [31] a new algorithm for the solution of the dual problem (2.44) in
which they replaced the secant method with Newton’s method, which doesn’t need
a bracketing phase.

To ease the comprehension of the functioning of the algorithm we will follow the
example of the authors and consider first the special case of problem (2.40) in which
each variable only bounded from below, i.e. ui = +∞ for all i. In this case (2.42)
reduces to

x(λ) = max(l, D−1(aλ+ c)) (2.46)
and the functions φi have the form

φi(λ) =


max

{
aili,

a2
i λ+aici

di

}
, if ai > 0,

min
{
aili,

a2
i λ+aici

di

}
, if ai < 0.

(2.47)

In the first case (ai > 0) the breakpoint is said to be positive, because it increases
the derivative of φ, while in the other case the breakpoint is said to be a negative.
To compute the derivative φ′(λ) of the objective function in (2.44), it is sufficient
to sum up the slopes a2

i
di

corresponding to positive breakpoints to the left of λ and
the slopes of negative breakpoints to the right of λ. In the case in which λ is itself
a breakpoint, the function is clearly non differentiable, however the right and left
derivatives are still well defined and can be computed by the formulas

φ′+(λ) =
∑
ai > 0
ηi

` ≤ λ

a2
i

di
+

∑
ai < 0
ηi

` > λ

a2
i

di
, (2.48)

φ′−(λ) =
∑
ai < 0
ηi

` > λ

a2
i

di
+

∑
ai > 0
ηi

` ≤ λ

a2
i

di
. (2.49)

The method for the solution of the problem with single bounds (see [31, Al-
gorithm 1]) uses Newton’s steps based either on φ′+(λ) (in the case φ(λ) < b and
φ′+(λ) > 0) or on φ′−(λ) (in the case φ(λ) > b and φ′−(λ) > 0). The authors proved
that it converges globally without the need of a globalization strategy; moreover,
since φ has at most n breakpoints, the Newton’s iterates may generate at most n+ 1
distinct points. The authors proved that Newton’s algorithm for single bounds stops
in at most n+ 1 iterations with an overall complexity of O(n2) arithmetic operations.

Consider now the general case of problem (2.40), and assume again, w.l.o.g., that
a > 0. In this case, as observed in Section 2.5.1.1, each term φi(λ) is constant up
to its first breakpoint ηi`, where it becomes an increasing linear function with slope
a2
i /di up to the next breakpoint ηiu where it becomes constant again. As already

observed, the function φ in this case is a non-decrasing piecewise linear function,
and Newton’s method may cycle as shown in Figure 2.5, corresponding to the case

n = 3, D = I, a =
(√

2, 1, 1
)T

, l =
(
− 1√

2
, 0, −∞

)T
, and u =

( 1√
2
, +∞, 0

)T
.
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Figure 2.5. An example in which Newton’s method cycles [31].

Starting from the point A ≡ (λ2k+1, 0), to which corresponds the point B ≡
(λ2k+1, φ(λ2k+1)) on the function graph, the Newton’s step returns the point C ≡
(λ2k, 0), to which corresponds the point D ≡ (λ2k, φ(λ2k)) on the function graph;
the Newton’s step in C returns A, thus closing the cycle.

To ensure the convergence of the algorithm a globalization strategy is needed.
The authors proposed to keep track at each step of αk, defined as the largest iterate
such that φ(αk) < b computed by the algorithm up to the k-th iteration, and of
βk, defined as the smallest iterate such that φ(βk) > b computed up to the k-th
iteration. If the next Newton’s iterate falls outside the interval (αk, βk), a cycle can
occur and a secant step is performed. The proposed algorithm can be considered
as a variation of the secant method of Dai and Fletcher [38], in which the initial
bracketing phase is replaced by Newton’s iterations and Newton’s method is used
in place of the secant method whenever possible. At the end of each step of the
algorithm a variable fixing strategy, inspired to the one described in Section 2.5.1.3,
is used for helping to reduce the problem size as the method progresses. The authors
proved that the algorithm performs at most 2n+ 1 Newton’s steps and at most 2n
secant steps, resulting in at most 4n + 1 iterations with an overall complexity of
O(n2) arithmetic operations.

In [31] an interesting comparison between the algorithm described in this section
was reported. The results show how in practice, on large-scale problems, the Newton’s
method converges is faster than the algorithms based on median finding, variable
fixing, and secant techniques, even if it has an higher theoretical complexity.

2.5.2 The case of sparse linear constraints

As already mentioned, computing the projection of a point onto the feasible set of
a general problem of the form (1.1) can be very expensive, for this reason the use
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gradient projection methods has been mainly restricted to the cases of problems
subject to bound constraints or bound constraint and a single linear constraint.
However, recently, an efficient algorithm, called PPROJ, has been proposed by
Hager and Zhang in [91] for the projection onto polyhedra defined by sparse linear
constraints.

The authors focused their analysis on problems of the form

min 1
2‖y− x‖2,

s.t. C x = b,
l ≤ b ≤ u,
x ≥ 0,

(2.50)

where y ∈ Rn is the point to project, C = (c1, . . . , cn) ∈ Rm×n has nonzero columns,
and l,u ∈ Rm, with li ≤ ui for all i.

Starting from the Lagrangian function associated with the linear equality con-
straints in (2.50), which has the form

L(x,b,λ) = 1
2‖y− x‖2 − (Ax− b)Tλ,

a solution x∗ to (2.50) can be found by solving the dual problem

max
λ∈Rm

L(λ), (2.51)

where the dual function L(λ) is defined as

L(λ) = min
x∈Rn,b∈Rm

{L(x,b,λ) : l ≤ b ≤ u, x ≥ 0} . (2.52)

By observing that the values of x(λ) and b(λ) for which the minimum in (2.52) is
obtained are given respectively by

xi(λ) = max{yi + cTi λ, 0}, i = 1, . . . , n,

and

bj(λ) =


lj , if λj > 0,

[lj , uj ] , if λj = 0,
uj , if λj < 0,

j = 1, . . . ,m,

it can be shown that the dual function L(λ) is the sum of a differentiable piecewise
quadratic function and a piecewise linear function (hence, it is overall piecewise
quadratic).

The authors proposed to solve (2.51) by a dual active set strategy (DASS) which
combines the SpaRSA algorithm by Wright, Nowak and Figueiredo [124] and the
Dual Active Set Strategy (DASA) [87, 43]. SpaRSA, which has been show to have
a Q-linear convergence rate to a solution λ∗ of (2.51), is used to approximately
identify the set

Z(λ∗) = {i : xi(λ∗) = 0}

of the primal variables xi which are zero at the solution and the sets

E+(λ∗) = {j : bi(λ∗) = li} and E−(λ∗) = {j : bi(λ∗) = ui} ,
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corresponding to the sets of inequalities that are treated as at their lower and upper
bounds, respectively. By means of a suited switching criterion, the computation
passes from SpaRSA to DASA to accelerate the convergence. The switching criterion
is meant to guarantee that asymptotically only DASA is used.

At each step, starting from the current estimate λk and the corresponding sets
Zk = Z(λk) and Ek± = E±(λk), DASA finds a maximizer µ for the local dual function

Lk(λ) = inf
x,b

{
L(x,b,λ) : xi = 0, ∀i ∈ Zk ∧ bj = lj , ∀j ∈ Ek+ ∧ bj = uj , ∀j ∈ Ek−

}
and uses it to compute λk+1 by means of a line search. Observe that, by setting
R = Ek+ ∪ Ek−, C = {1, . . . , n} \ Zk, and µj = 0 for i /∈ R, the maximizer of Lk can
be computed by solving the linear system

ARCA
T
RCµR = bR −ARCyC,

where b is the vector given in the definition of Lk. In the implementation of DASS
provided by the authors this problem is solved by a preconditioned conjugate gradient
method. DASA stops returning the solution to (2.51), from which the solution x∗
to (2.50) can be derived by setting x∗ = x(λ∗).
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Chapter 3

A subspace accelerated gradient
projection framework for QPs

Here we propose an active-set framework for the solution of problem (1.1) based on
gradient projection. The proposed framework is based on the two-phase framework
introduced by Calamai and Moré [27] and, as the GPCG method developed by Moré
and Toraldo [109] (for strictly convex BQPs), uses the gradient projection to identify
the active set at the solution, alternating it with unconstrained minimization steps
onto the reduced subspace defined by the current active set. By a reformulation of
the Karush–Kuhn–Tucker conditions we are able to define suitable generalizations of
the free and the chopped gradient defined for BQPs and to introduce, for problem
(1.1), the idea of proportional iterate introduced in [14, 53]. This translates into
the possibility of switching between the identification and the minimization phase
by comparing a measure of optimality within the reduced space with a measure of
the “quality” of the current active set. We prove finite convergence of any method
fitting into the proposed framework for strictly convex quadratic problems even in
case of degeneracy at the solution, provided that a method with finite termination
properties is used in the solution of the equality constrained subproblems.

3.1 Reformulating stationarity results for QPs

We recall that a stationary point for problem (1.1) can be characterized by the
Karush–Kuhn–Tucker conditions.

Definition 3.1.1. A feasible point x∗ is a stationary point for problem (1.1) if and
only if there exist Lagrange multipliers vectors θ∗ ∈ Rm and λ∗ ∈ Rn such that

g∗ =
n∑
i=1

λ∗i ei +
m∑
j=1

θ∗jaj =
n∑
i=1

λ∗i ei +ATθ∗, (3.1)

λ∗i ≥ 0 if i ∈ A∗l , λ∗i ≤ 0 if i ∈ A∗u, λ∗i = 0 if i ∈ F∗, (3.2)

The stationary point x∗ is said to be non-degenerate w.r.t. the bound constraints
if the inequalities in (3.2) are strict, i.e. λ∗i > 0 if i ∈ A∗l and λ∗i < 0 if i ∈ A∗u.
Otherwise the point is said to be degenerate.
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Since we are interested in building an estimate for the Lagrange multipliers, we
make the following assumption which guarantees their uniqueness.

Assumption 3.1.2 (Linear Independence Constraint Qualification - LICQ). Let
x∗ be a stationary point of (1.1), then the active constraint normals

{aj : j = 1, . . . ,m} ∪ {ei : i ∈ A∗}

are linearly independent.

Since λF∗ = 0, the KKT conditions (3.1) and (3.2) can be equivalently written
as

g∗F∗ −
[
ATθ∗

]
F∗

= 0, (3.3)

λ∗i = g∗i −
[
ATθ∗

]
i
≥ 0, if i ∈ A∗l , (3.4)

λ∗i = g∗i −
[
ATθ∗

]
i
≤ 0, if i ∈ A∗u. (3.5)

Since Assumption 3.1.2 holds, it has to be |A∗| ≤ n−m, or equivalently, |F∗| ≥ m.
Moreover, the matrix A?F∗ has full row-rank, hence

M = A?F∗A
T
?F∗ ∈ Rm×m

has full rank, i.e. is invertible.
Condition (3.3), which can be rewritten as

g∗F∗ =
[
ATθ∗

]
F∗

= AT?F∗ θ
∗,

by premultiplying by A?F∗ , leads to

θ∗ = M−1A?F∗ g∗F∗ . (3.6)

It’s worth noting that, if |F∗| = m, (3.6) becomes

θ∗ = A−T?F∗ g∗F∗ .

From (3.6), (3.4) and (3.5) we can compute λ∗.
Consider now any point x ∈ Ω and suppose, for now, that |F(x)| > 0 and

r = rank(A?F) 6= 0. Although rank(A) = m, removing columns from it to obtain
A?F can lead to r < m, even in the case in which |F| ≥ m. Let J(x) be the subset
of the power set of {1, . . . ,m} containing all the subsets J = {j1, . . . , jr} of indices
corresponding to a maximal set of independent rows of A?F. For any J ∈ J(x), by
setting Ã ≡ Ã(J) = AJF, and following a similar procedure as in (3.6), we define the
vector

ξ(x; J) := (Ã ÃT )−1 ÃgF ∈ Rr. (3.7)

We can therefore define the vector θ(x; J) ∈ Rm as

θJ(x; J) = ξ(x; J), θj(x; J) = 0 ∀j /∈ J. (3.8)
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When r = m we have that J(x) = {{1, . . . ,m}}. Since there is no more dependence
on the choice of J, θ(x) = ξ(x) is uniquely defined.

In the cases in which either F(x) = ∅ or rank(A?F) = 0 (corresponding to the
case in which the linear equality constraints depend on the normal of the active
bound constraints at x), we set

θ(x) = 0. (3.9)
Starting from (3.7)-(3.9) we can introduce the vector

h(x; J) := g(x)−ATθ(x; J); (3.10)

from (3.3)-(3.5), a sufficient and necessary condition for x being a stationary point
is that, for some J ∈ J(x),

hi(x; J) = 0, if i ∈ F, hi(x; J) ≥ 0, if i ∈ Al, hi(x; J) ≤ 0, if i ∈ Au. (3.11)

Remark 3.1.3. We note that, because of the definition of θ(x; J) in (3.7)-(3.8),

hF(x; J) = P{A?F}⊥ (gF) , (3.12)

where F = F(x) and P{AF}⊥ ∈ R|F|×|F| is the orthogonal projection onto the subspace
of R|F| orthogonal to the rows of A?F (i.e. the nullspace of A?F). Even if, when
A?F is rank deficient, the definition of θ(x; J) and h(x; J) depends on the particular
choice of the subset J ∈ J(x), vector hF(x) is uniquely defined.

Based on (3.11) we give the following definition of binding set.
Definition 3.1.4. Let x ∈ Ω. Given J ∈ J(x), the binding set (associated with J)
at x is defined as

B(x; J) = {i : (i ∈ Al ∧ hi(x; J) ≥ 0) ∨ (i ∈ Au ∧ hi(x; J) ≤ 0)} . (3.13)

When rank(A?F) = m, the binding set is unique and will be denoted as B(x).
Observe that in the case of bound constrained problems, h(x) = g(x) and (3.13)

corresponds to the standard definition of binding set.
It is also possible to provide an estimate of the Lagrange multipliers based on

(3.8)-(3.10).

Theorem 3.1.5. Assume that
{

xk
}
is a sequence in Ω which converges to a non-

degenerate stationary point x∗, and such that A(xk) = A(x∗) for all k > k. Consider
for each k > k the vector θk = θ(xk) and the vector hk = h(xk). We have

lim
k>k, k→∞

θki = θ∗i ,

lim
k>k, k→∞

λki = λ∗i , i ∈ A(x∗),

where λk = λ(xk) ∈ Rn is defined as

λki =
{
hki , if i ∈ A(xk),
0, if i ∈ F(xk).

Proof. For all k > k, Fk = F∗, the matrix A?F is full rank and θ(xk) and h(xk) are
uniquely defined. Moreover, the matrix Ã in (3.7) coincides with A?F∗ in (3.6). The
thesis follows then from the continuity of ∇f(x).
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3.1.1 Least-Squares multipliers estimates

The Lagrange multipliers estimate previously introduced is indeed the Least-Squares
(LS) multipliers estimate, defined e.g.,in [34, Section 12.4.1] and [78, Theorem 2.3].
For problem (1.1), given a point x ∈ Ω the LS estimate is defined as

argmin
θ,λ

∥∥∥∥∥g−ATθ −
n∑
i=1

λiei

∥∥∥∥∥
2

s.t. λi ≥ 0 if i ∈ Al,
λi ≤ 0 if i ∈ Au,
λi = 0 if i ∈ F.

(3.14)

By defining

y =
(
θT , λTAl

, λTAu

)T
, and B =

(
AT , I?Al

, I?Au

)
,

the nonzero components of the solution to (3.14) can be found by minimizing w.r.t.
y the function

h(y) = yTBTBy− 2 gTBy,

whose unconstrained minimizer can be found by solving the system

BTBy−BTg = 0. (3.15)

By making explicit the form of the system matrix BTB, (3.15) can be written as AAT A?Al
A?Au

AT?Al
I 0

AT?Au
0 I


 θ
λAl

λAu

−
 Ag

gAl

gAu

 = 0 (3.16)

or equivalently as the linear system
AATθ +A?Al

λAl
+A?AuλAu −Ag = 0

AT?Al
θ + λAl

−gAl
= 0

AT?Au
θ + λAu −gAu = 0

. (3.17)

By premultiplying the second equation A?Al
and the third one by A?Au , and substi-

tuting in the first equation, we obtain

0 = AATθ −A?Al
AT?Al

θ −A?AuA
T
?Au

θ+
−Ag +A?Al

gAl
+A?AugAu =

= A?F
[
ATθ

]
F
−A?FgF,

(3.18)

where we exploited the fact that, for an index set S ⊆ {1, . . . , n},

AT?S θ =
[
ATθ

]
S

and that F = {1, . . . , n} \ (Al ∪Au). The obtained relation coincides with the
relation (3.3), found for the Lagrange multipliers related to the solution of (1.1),
given the nullspace of A?F is trivial, i.e. N (A?F) = {0}.
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3.2 The projected gradient
We recall that in Chapter 2 we introduced the projected gradient as a measure of
stationarity.

It could be argued that the projected gradient is inappropriate to measure close-
ness to a stationary point, since it is only lower semicontinuous (see [27, Lemma 3.3]).
However, Calamai and Moré in [27] showed that the limit points of a sequence {xk}
generated by a gradient projection algorithm, with bounded step lengths satisfying
suitable sufficient decrease conditions, are stationary and

lim
k→∞

‖∇Ωf(xk)‖ = 0. (3.19)

Similar results hold for a more general algorithmic framework (see [27, Algo-
rithm 5.3]), in which gradient projection steps are alternated with general descent
steps. Another important issue is that, for any sequence {xk} converging to a
non-degenerate stationary point x∗, if (3.19) holds then Ak = A∗ for all k sufficiently
large. However, for problem (1.1), condition (3.19) has an important meaning
in terms of active constraints identification even in case of degeneracy, provided
Assumption 3.1.2 holds.

The following proposition summarizes the convergence properties for a sequence
{xk} satisfying (3.19), both in terms of stationarity and active set identification.

Theorem 3.2.1. Assume that
{

xk
}
is a sequence in Ω that converges to a point x∗

and limk→∞ ‖∇Ωf(xk)‖ = 0. Then

(i) x∗ is a stationary point for problem (1.1);

(ii) if Assumption 3.1.2 holds, then A∗N ⊆ Ak for all k sufficiently large, where
A∗N = {i ∈ A∗ : λ∗i 6= 0} and λi is the Lagrange multiplier associated with the
i-th bound constraint.

Proof. Item (i) trivially follows from the lower semicontinuity of ‖∇Ωf(x)‖.
Item (ii) extends [27, Theorem 4.1] and [51, Theorem 2.3] to degenerate stationary

points that satisfy Assumption 3.1.2. We first note that, since
{

xk
}
converges to

x∗, we have F∗ ⊆ Fk and hence Ak ⊆ A∗ for all k sufficiently large. The proof is by
contradiction. Assume that there is an index ı and an infinite set K ⊆ N such that
ı ∈ A∗N \Ak for all k ∈ K. Without loss of generality, we assume x∗ı = uı and thus
λ∗ı < 0. Let PΦ be the orthogonal projection onto

Φ = {v ∈ Rn : Av = 0 ∧ (vi = 0, ∀ i ∈ A∗ \ {ı})} .

Assumption 3.1.2 implies that PΦ(eı) 6= 0. Since ı /∈ A(xk), it is PΦ(eı) ∈ TΩ(xk).
Then, by [27, Lemma 3.1],

(gk)T PΦ(eı) ≥ −
∥∥∥∇Ωf(xk)

∥∥∥ ‖PΦ(eı)‖ ,

and since
{

xk
}
converges to x∗ and

{∥∥∥∇Ωf(xk)
∥∥∥} converges to 0, we have

(g∗)T PΦ(eı) ≥ 0.
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On the other hand, by (3.1) and the definition of PΦ we get

(g∗)TPΦ(eı) =
∑
i∈A∗

λ∗i eTi PΦ(eı) + (θ∗)T APΦ(eı) = λ∗ı eTı PΦ(eı) < 0,

where the last inequality derives from λ∗ı < 0 and (eı)TPΦ(eı) = ‖PΦ(eı)‖2 > 0. The
contradiction proves that the set K is finite, and hence ı ∈ Ak for all k sufficiently
large.

By Theorem 3.2.1, if an algorithm is able to drive the projected gradient toward
zero, then it is able to identify the active variables that are non-degenerate at the
solution in a finite number of iterations. Because of this interesting property of GP
algorithms, in this thesis we will deal with the development of efficient active-set
algorithms for problems of the form (1.1). We will now provide the generalization of
the free gradient and the chopped gradient to the case of problem (1.1) and prove
some useful properties.

3.3 The free and chopped gradients
We start by defining the free gradient ϕ(x) at x ∈ Ω for problem (1.1).

Definition 3.3.1. For any x ∈ Ω, the free gradient ϕ(x) ∈ Rn is defined as

ϕF(x) = hF(x), ϕA(x) = 0. (3.20)

Remark 3.1.3 ensures that ϕ(x) is uniquely defined also in the case in which
rank(A?F) < m.

The following theorems state some properties of ϕ(x), including its relationship
with the projected gradient.

Lemma 3.3.2. Let x ∈ Ω. Then ϕ(x) = 0 if and only if x is a stationary point for

min f(u),
s.t. u ∈ Ω(x).

(3.21)

Proof. Since ϕ(x) is invariant with respect to J ∈ J(x), w.l.o.g. we can choose any
Ĵ ∈ J(x). Because of (3.10), ϕ(x) = 0 if and only if

gi −
[
ATθ(x; Ĵ)

]
i

= 0, ∀ i ∈ F(x). (3.22)

On the other hand, x is a stationary point for problem (3.21) if and only if

g =
∑

i∈A(x)
νiei +ATµ,

with νi ∈ R and µ ∈ Rm, which implies

gi =
[
ATµ

]
i
, ∀ i ∈ F(x). (3.23)

By (3.22) and (3.23), and writing F = F(x), we obtain that

AT?F

(
θ(x; Ĵ)− µ

)
= 0.
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Observe that if matrix A?F is rank deficient, from its definition, the nonzero compo-
nents of θ(x) correspond to the indices in Ĵ. W.l.o.g., since the linear combination
in (3.23) is not unique, the vector µ can be taken such that it has zero components
for the indices in {1, . . . ,m} \ Ĵ. This allows us to prove that θ(x; Ĵ) = µ, therefore
the thesis.

Remark 3.3.3. Theorem 3.3.2 shows that ϕ(x) can be considered as a measure of
optimality within the reduced space determined by the active variables at x.

Lemma 3.3.4. For any x ∈ Ω, ϕ(x) is the orthogonal projection of −∇Ωf(x) onto
Ω0(x), where Ω0(x) is given in (1.3). Furthermore,

‖ϕ(x)‖2 = −(∇Ωf(x))Tϕ(x). (3.24)

Proof. By the definition of projected gradient (see (2.14)),

A (∇Ωf(x)) = 0, (3.25)
∇Ωf(x) = −g +ATν + µ (3.26)

for some ν ∈ Rm and µ ∈ Rn, with

µi = 0 if i ∈ F(x), µi ≥ 0 if i ∈ Al(x), µi ≤ 0 if i ∈ Au(x).

W.l.o.g. consider any J ∈ J(x) and set θ = θ(x; J) and h = h(x; J) as defined in
(3.7)-(3.10). Let

σ = ν − θ, τi = µi − hi if i ∈ A(x), τi = 0 if i ∈ F(x).

Then (3.26) can be written as

hi = −(∇Ωf)i(x) +
[
ATσ

]
i
+ τi if i ∈ F(x),

0 = −(∇Ωf)i(x) +
[
ATσ

]
i
+ τi if i ∈ A(x),

or, equivalently,
ϕ(x) = −∇Ωf(x) +ATσ + τ , (3.27)

with τi = 0 if i ∈ F(x). This, with (3.25) and ϕi = 0 for i ∈ A(x), proves that

ϕ(x) = argmin {‖v +∇Ωf(x)‖ s.t. v ∈ Ω0(x)} ,

which is the first part of the thesis. Equation (3.24) follows from (3.27) and the
definition of ϕ(x).

Lemma 3.3.5. Let x ∈ Ω and let rank(A?F) = m. Then B(x), is uniquely defined
and we have A(x) = B(x), if and only if

ϕ(x) = −∇Ωf(x). (3.28)
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Proof. We recall that in this case the vectors θ(x) and h(x) are unique.

Assume that A(x) = B(x). Condition (3.28) can be written as

−ϕ(x) = argmin {‖v + g‖ s.t. v ∈ TΩ(x)} . (3.29)

Since, by Lemma 3.3.4, −ϕ(x) ∈ Ω0(x) ⊂ TΩ(x), we need only to prove that

−ϕ(x) = −g +ATν + µ,

for some ν ∈ Rm and µ ∈ Rn, with µi = 0 if i ∈ F, µi ≥ 0 if i ∈ Al(x), µi ≤ 0 if
i ∈ Au(x). Since A(x) = B(x), recalling the definition of binding set, the previous
equality holds trivially by setting ν = θ(x), µi = hi(x) for i ∈ A(x), and µi = 0
otherwise.

Suppose, now, that (3.28) holds. From the definition of ϕ and (3.26), it follows
that (3.28) can be written as

ϕi(x) = gi −
[
ATθ(x)

]
i

= gi −
[
ATν

]
i
∀ i ∈ F(x), (3.30)

0 = gi −
[
ATν

]
i
− µi ∀ i ∈ A(x), (3.31)

with µi ≥ 0 if i ∈ Al(x) and µi ≤ 0 if i ∈ Au(x). From (3.30) we get

AT?F (θ(x)− ν) = 0

which, since rank(A?F) = m, implies θ(x) = ν, and then, from (3.31) and the
definition of h(x),

hi(x) ≥ 0 if i ∈ Al(x), hi(x) ≤ 0 if i ∈ Au(x);

thus A(x) = B(x).

We observe that the hypotheses rank(A?F) = m is not too restrictive. Since
Assumption 3.1.2 holds, it always satisfied if, for example, F∗ ⊆ F, which is true in
a neighborhood of the solution.

If rank(A?F) < m, the binding set is no more unique and a weaker result can be
proved.

Lemma 3.3.6. Let x ∈ Ω. If there exists J ∈ J(x) such that A(x) = B(x; J), then

ϕ(x) = −∇Ωf(x). (3.32)

Proof. The proof is the same of the necessary condition in Lemma 3.3.5, with θ(x; J)
and h(x; J) in place of θ(x) and h(x).

Inspired by the two previous lemmas, we give the following definition.

Definition 3.3.7. For any x ∈ Ω, the chopped gradient β(x) is defined as
β(x) := −∇Ωf(x)−ϕ(x). (3.33)
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Remark 3.3.8. Because of Lemma 3.3.6, β(x) 6= 0 implies that for all the choices
of J in J(x), A(x) 6= B(x; J). Moreover, in the hypotheses of Lemma 3.3.5, we have
that β(x) = 0 if and only if A(x) = B(x). Thus, β(x) can be regarded as a “measure
of bindingness” of the active variables at x.

Some properties of β(x) are given next.

Lemma 3.3.9. For any x ∈ Ω, β(x) has the following properties:

β(x) ⊥ ϕ(x), β(x) ∈ {A}⊥, (3.34)
−β(x) ∈ TΩ(x). (3.35)

Proof. Since

β(x)Tϕ(x) = (−∇Ωf(x)−ϕ(x))Tϕ(x) = (−∇Ωf(x))Tϕ(x)−ϕ(x)Tϕ(x),

the first orthogonality condition in (3.34) follows from (3.24). The second one follows
from

Aβ(x) = A (−∇Ωf(x))−Aϕ(x),

by observing that∇Ωf(x) and ϕ(x) are in {A}⊥. Finally, (3.35) trivially follows from
the fact that ϕ(x) ∈ Ω0(x) (see Lemma 3.3.4), and the definition of ∇Ωf(x).

Theorem 3.3.10. For any x ∈ Ω, ‖β(x)‖2 = gTβ(x).

Proof. By [27, Lemma 3.1], we have −gT∇Ωf(x) = ‖∇Ωf(x)‖2, which can be
written as

gT (ϕ(x) + β(x)) = ‖ϕ(x)‖2 + ‖β(x)‖2 (3.36)

by exploiting (3.33) and (3.34). We note that the scalar product gTϕ(x) involves
only the entries corresponding to F(x). W.l.o.g. we can fix a J ∈ J(x). Since

ϕF = gF −AT?Fθ,

where θ ≡ θ(x; J) is given in (3.8)-(3.9), we get

gTϕ = ‖gF‖2 − θTA?FgF,

‖ϕ‖2 = ‖gF‖2 − 2θTA?FgF +
∥∥∥AT?Fθ∥∥∥2

,

where for ease of notation we omitted the dependence from x. By subtracting the
two equations we get

gTϕ− ‖ϕ‖2 = θTA?FgF − θTA?FAT?Fθ.

By recalling the definition of Ã ≡ Ã(J) and ξ ≡ ξ(x; J) in (3.7) and noting that
AT?Fθ = ÃT ξ, the previous equation yields

gTϕ− ‖ϕ‖2 = ξT ÃgF − ξT ÃÃT (Ã ÃT )−1 ÃgF = 0;

then the thesis follows from (3.36).
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3.3.1 Proportional iterates for QPs

So far we managed to decompose the projected gradient ∇Ωf(x) into two parts:
−ϕ(x), which provides a measure of stationarity within the reduced space determined
by the active variables at x, and −β(x), which gives a measures of bindingness of
the active variables at x. With this decomposition we can extend to problem (1.1)
the definition (2.35) of proportional iterates introduced for the BQP case, as those
xk for which it holds

‖β(xk)‖∞ ≤ Γ‖ϕ(xk)‖, (3.37)

with Γ > 0 a given constant. In the strictly convex case, disproportionality of xk
again guarantees that the solution of (1.1) does not belong to the face identified by
the active variables at xk. This result is a consequence of the next theorem, which
generalizes Theorem 3.2 in [53] and Theorem 3.8 in [51], and is the main result of
this chapter.

Theorem 3.3.11. Let H be the Hessian matrix in (1.1) and let H = V TH V be
positive definite, where V ∈ Rn×(n−m) has orthonormal columns spanning {A}⊥. Let
x ∈ Ω be such that ‖β(x)‖∞ > κ(H)1/2 ‖ϕ(x)‖2, and let x be the solution of

min f(u),
s.t. u ∈ Ω(x), (3.38)

where Ω(x) is defined in (1.2). If x ∈ Ω, then β(x) 6= 0.

To prove Theorem 3.3.11, we need the lemma given next.

Lemma 3.3.12. Let us consider the minimization problem

min w(z) := 1
2zT K z− pT z,

s.t. R z = q, (3.39)

where K ∈ Rt×t, p ∈ Rt, R ∈ Rs×t with t ≥ s and rank(R) = s, q ∈ Rs. Let
Θ =

{
z ∈ Rt : R z = q

}
and Θ0 =

{
z ∈ Rt : R z = 0

}
. Let PΘ0 be the orthogonal

projection onto Θ0, and U ∈ Rt×(t−s) a matrix with orthonormal columns spanning
Θ0. Finally, let UTK U be positive definite, and z the solution of (3.39). Then

z− z = B PΘ0∇w(z), ∀z ∈ Θ, (3.40)

where B = U(UTKU)−1UT . Furthermore,

w(z)− w(z) ≤ 1
2 ‖B‖‖PΘ0∇w(z)‖2. (3.41)

Proof. Let z ∈ Θ; since q = R z and range(U) is the space orthogonal to the rows
of R, we have

z = RT
(
RRT

)−1
R z + U y = RT

(
RRT

)−1
q + U y = r + U y,

for some y ∈ Rt−s. Thus, (3.39) can be reduced to

min w̃(y) := 1
2yTUTK Uy− (pT − rTK)Uy.
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By writing z, the minimizer of (3.39), as z = r + U y, we have

z− z = U(y− y) (3.42)

and, by observing that ∇w̃(y) = 0, we obtain

∇w̃(y) = ∇w̃(y)−∇w̃(y) = UTKU(y− y) = UT (∇w(z)−∇w(z)). (3.43)

Since ∇w(z) = Rγ for some γ ∈ Rt, we get UUT∇w(z) = PΘ0∇w(z) = 0 and hence

U∇w̃(y) = UUT (∇w(z)−∇w(z)) = PΘ0∇w(z). (3.44)

From (3.42), (3.43) and (3.44) it follows that

z− z = U(y− y) = U(UTKU)−1UTU∇w̃(y) = B PΘ0∇w(z),

which is (3.40).
Let φ(z) = PΘ0∇w(z). By applying (3.40), we get

w(z)− w(z) = 1
2(z− z)TK(z− z) = 1

2φ(z)TBTKB φ(z).

By observing that BTKB = U(UTKU)−1UTKU(UTKU)−1UT = B, we have

w(z)− w(z) = 1
2φ(z)TB φ(z) ≤ 1

2‖B‖‖φ(z)‖2,

which completes the proof.

Now we are ready to prove Theorem 3.3.11.

Proof of Theorem 3.3.11. Let y = x − ‖H‖−1 β(x). By Lemma 3.3.10 and
observing that ‖ · ‖ ≥ ‖ · ‖∞ and β(x) = V V Tβ(x), because β(x) ∈ {A}⊥, we get

f(y)− f(x) = 1
2 ‖H‖

−2 β(x)THβ(x)− ‖H‖−1 gTβ(x)

= 1
2 ‖H‖

−2 β(x)TV H V Tβ(x)− ‖H‖−1 ‖β(x)‖2

≤ 1
2 ‖H‖

−1 ‖V Tβ(x)‖2 − ‖H‖−1 ‖β(x)‖2 = −1
2 ‖H‖

−1 ‖β(x)‖2

< −1
2 ‖H‖

−1 κ(H) ‖ϕ(x)‖2 = −1
2 ‖H

−1‖ ‖ϕ(x)‖2. (3.45)

The point x satisfies the KKT conditions of problem (3.38),

g =
∑

i∈A(x)
ηiei +ATγ, (3.46)

Ax = b, xi = xi ∀ i ∈ A(x),

where ηi and γ are the Lagrange multipliers, and hence

gT (x− x) =

∑
i∈A

ηiei +ATγ

T (x− x) = 0, (3.47)

gF =
[
ATγ

]
F
, (3.48)
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where A = A(x) and F = F(x). It follows that

f(x)− f(x) = 1
2 (x−x)TH(x−x) + gT (x−x) = 1

2 (x−x)TF HFF (x−x)F. (3.49)

Recall that a feasible point v for problem (3.38) satisfies vA = xA and Av = b. In
particular the second condition can be rewritten as

A?FvF = b−A?AxA. (3.50)

If F∗ ⊆ F, Assumption 3.1.2 ensures that the matrix A?F has full rank. Otherwise it
is always possible to choose, as in (3.7), the matrix Ã = [A]JF with full row-rank
and, by defining the vector b̃ = bJ − [A]JAxA, replace (3.50) with the equivalent
full-rank system ÃvF = b̃.

By applying Lemma 3.3.12 with z = xF, K = HFF, p = cF −HFA xA, R = Ã,
q = b̃, Θ0 = {A?F}⊥ ≡ {Ã}⊥, and w(z) defined as in (3.39), we obtain

w(xF)− w(xF) ≤ 1
2 ‖B‖ ‖PΘ0∇w(xF)‖2, (3.51)

where B = W (W THFFW )−1W T and W ∈ R|F|×(|F|−|J|) has orthonormal columns
spanning {A?F}⊥. By (3.12) and (3.20), we have

PΘ0∇w(xF) = P{A?F}⊥ (gF) = ϕF(x),

therefore, from (3.49) and (3.51), we get

f(x)− f(x) ≤ 1
2 ‖B‖ ‖ϕF(x)‖2. (3.52)

We note that

‖B‖ ≤ ‖(W THFFW )−1‖ = ζmax
(
(W THFFW )−1

)
= 1
ζmin(W THFFW ) ; (3.53)

furthermore,

ζmin(W THFFW ) = min
s ∈ R|F|−|J|

s 6= 0

sTW THFFW s
sT s = min

w ∈ R|F|, w 6= 0
w ∈ {A?F}⊥

wTHFFw
wTw

= min
v ∈ Rn, v 6= 0

vF ∈ {A?F}⊥, vA = 0

vTHv
vTv ≥ min

v ∈ Rn, v 6= 0
v ∈ A⊥

vTHv
vTv (3.54)

= min
u ∈ Rn−m

u 6= 0

uTV THV u
uTV TV u = ζmin(H).

The last inequality, together with (3.52) and (3.53), yields

f(x)− f(x) ≤ 1
2

1
ζmin(H)‖ϕF(x)‖2 = 1

2‖H
−1‖ ‖ϕ(x)‖2. (3.55)
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Then, by (3.45) and (3.55), we get

f(y)− f(x) = f(y)− f(x) + f(x)− f(x) < 0. (3.56)

By using (3.56) we get

0 > f(y)− f(x) = gT (y− x) + 1
2(y− x)T H (y− x) > gT (y− x).

Because of the definition of y and (3.47), we have

gT (y− x) = gT (y− x) + gT (x− x) = gT (y− x) = −‖H−1‖gT β(x),

and thus
gT β(x) > 0. (3.57)

For the remainder of the proof we assume that x ∈ Ω and we set F ≡ F(x).
From (3.48) and F ⊆ F it follows that g

F
= [ATγ]

F
, moreover, by Lemma 3.3.2 we

have that
ϕ(x) = 0. (3.58)

By contradiction, suppose that β(x) = 0. Since x ∈ Ω, from (3.58) it follows that x
is the optimal solution of problem (1.1), and thus −g ∈ TΩ(x)◦. We consider two
cases.

(a) A(x) = A(x). In this case TΩ(x)◦ = TΩ(x)◦, and, since −β(x) ∈ TΩ(x) and
−g ∈ TΩ(x)◦, it is −gT (−β(x)) = gTβ(x) ≤ 0. This contradicts (3.57).

(b) A(x) ( A(x). In this case the optimality of x for problem (1.1) yield

g =
∑

i∈A(x)
λiei +ATν, λi ≥ 0 if i ∈ Al(x), λi ≤ 0 if i ∈ Au(x). (3.59)

Since F(x) ( F(x), by comparing (3.46) and (3.59) we find that

g
F

= [ATγ]
F

= [ATν]
F
,

and hence
AT
?F

(γ − ν) = 0.

Since Assumption 3.1.2 holds, matrix A?F is such that rank(A?F) = m, therefore
N(AT

?F
) = {0} and γ = ν. This implies that ηi = λi for i ∈ A(x), whereas

λi = 0 for i ∈ A(x) \A(x). Hence we can write

g =
∑

i∈A(x)
λiei +ATν, λi ≥ 0 if i ∈ Al(x), λi ≤ 0 if i ∈ Au(x),

i.e. by (2.15), −g ∈ TΩ(x)◦, which leads to a contradiction as in case (a).
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3.4 A subspace accelerated gradient projection frame-
work for QPs

Let’s briefly recall the gradient projection method introduced by Calamai and Moré
in [27]. Given the current iterate xk, the next one is obtained as

xk+1 = PΩ(xk − αkgk),

where PΩ is the orthogonal projection onto Ω, and αk satisfies the following sufficient
decrease condition: given γ1, γ2, γ3 > 0 and µ1, µ2 ∈ (0, 1),

fk+1 ≤ fk + µ1 (gk)T (xk+1 − xk), (3.60)

where
αk ≤ γ1,

αk ≥ γ2 or αk ≥ γ3 α
k > 0,

(3.61)

with αk such that

f(xk(αk)) > fk + µ2 (gk)T (xk(αk)− xk), (3.62)

where xk(αk) = PΩ(xk − αk∇f(xk)).
In [27, Algorithm 5.3] a very general algorithmic framework is presented, where

the previous GP steps are used in selected iterations, alternated with simple decrease
steps aimed to speedup the convergence of the overall algorithm.

Algorithm 5.3 in Calamai-Moré [27]
Let x0 ∈ Ω be given. For k > 0 choose xk+1 by either (a) or (b):

(a) xk+1 = PΩ(xk − αkgk) where αk is such that the (3.60)-(3.62) are satisfied.

(b) Choose xk+1 ∈ Ω such that

f(xk+1) 6 f(xk) and A(xk) ⊆ A(xk+1).

The role of GP steps is to identify promising active sets, i.e. active variables
that are likely to be active at the solution too. Once a suitable active set has been
fixed at a certain iterate xk, a reduced problem is defined on the complementary set
of free variables

min f(x),
s.t. x ∈ Ω(xk).

(3.63)

Starting from this idea we propose a general framework for the solution of
QP problems in the form (1.1) which we will call Proportionality-based Subspace
Accelerated framework for Quadratic Programming (PSAQP). The framework is
outlined in Algorithm 3.1. For the sake of brevity, ϕ(xk) and β(xk) are denoted
by ϕk and βk, respectively. The idea is to alternate identification phases, where
GP steps are performed that satisfy (3.60)-(3.62), and minimization phases, where
an approximate solution to (3.63) is searched, with xk inherited from the last
identification phase. Unless a point satisfying

‖ϕk + βk‖ ≤ tol (3.64)
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is found, the identification phase proceeds either until a promising active set Ak+1

is identified (i.e. an active set that remains fixed in two consecutive iterations) or
no reasonable progress is made in reducing the objective function, i.e.,

fk − fk+1 ≤ η max
m≤l<k

(f l − f l+1), (3.65)

where η is a suitable constant and m is the first iteration of the current identification
phase. This choice follows that in [109]. In the minimization phase, an approximate
solution to the reduced problem obtained by fixing the variables with indices in the
current active set is searched for. The proportionality criterion (3.37) is used to
decide when the minimization phase has to be terminated. Like the identification,
the minimization phase is abandoned if a suitable approximation to a stationary
point is computed.

Algorithm 3.1 PSAQP (Proportionality-based Subspace Accelerated framework
for Quadratic Programming)
1: x0 ∈ Ω; tol ≥ 0; η ∈ (0, 1); Γ > 0; k = 0;
2: conv = (

∥∥∥ϕk + βk
∥∥∥ ≤ tol); phase1 = .true.; phase2 = .true.

3: while (¬ conv) do . Main loop
4: m = k;
5: while (phase1) do . Identification Phase
6: xk+1 = PΩ(xk − αkgk) with αk such that (3.60)-(3.62) hold;
7: conv = (

∥∥∥ϕk+1 + βk+1
∥∥∥ ≤ tol);

8: phase1 = (Ak+1 6= Ak) ∧ (fk − fk+1 > η max
m≤l<k

(f l − f l+1)) ∧ (¬ conv);
9: k = k + 1;

10: end while
11: if (conv) then
12: phase2 = .false.;
13: end if
14: while (phase2) do . Minimization Phase
15: Compute an approx. solution dk to min

{
f(xk+ d) s.t. Ad = 0, di = 0 if i ∈ Ak

}
;

16: xk+1 = PΩk (xk + αkdk) with αk such that fk+1 < fk and Ωk = Ω ∩ Ω(xk)
17: conv = (

∥∥∥ϕk+1 + βk+1
∥∥∥ ≤ tol);

18: phase2 = (‖βk+1‖∞ ≤ Γ ‖ϕk+1‖2) ∧ (¬ conv);
19: k = k + 1;
20: end while
21: phase1 = .true.; phase2 = .true.;
22: end while
23: return xk

We note that, thanks to the projection onto Ωk, the minimization phase can
add variables to the active set, but cannot remove them, and thus PSAQP fits
into the general framework of Algorithm 5.3 in [27]. Thus, we may exploit general
convergence results available for that algorithm. To this end, we introduce the
following definition.

Definition 3.4.1. Let
{

xk
}
be a sequence generated by the PSAQP method applied
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to problem 1.1. The set

KGP =
{
k ∈ N : xk+1 is generated by step 6 of Algorithm 3.1

}
is called set of GP iterations.

The following convergence result holds, which follows from [27, Theorem 5.2].

Theorem 3.4.2. Let
{

xk
}
be a sequence generated by applying PSAQP to prob-

lem (1.1). Assume that the set of GP iterations, KGP , is infinite. If some subsequence{
xk
}
k∈K

, with K ⊆ KGP , is bounded, then

lim
k∈K, k→∞

∥∥∥∇Ωf(xk+1)
∥∥∥ = 0. (3.66)

Moreover, any limit point of
{

xk
}
k∈KGP

is a stationary point for problem (1.1).

The identification property of the GP steps is inherited by the whole sequence
generated by PSAQP, as shown by the following Lemma.

Lemma 3.4.3. Let us assume that problem (1.1) is strictly convex with x∗ optimal
solution. If

{
xk
}
is a sequence in Ω generated by PSAQP applied to (1.1), then for

all k sufficiently large
A∗N ⊆ Ak ⊆ A∗

where A∗N is defined in Theorem 3.2.1.

Proof. Since f(x) is bounded from below and the sequence
{
fk
}
is decreasing, the

sequence
{

xk
}
is bounded, and, because of Theorem 3.4.2, there is a subsequence{

xk
}
k∈K∗

, with K∗ ⊆ KGP , which converges to x∗. Now we show that the whole

sequence
{

xk
}
converges to x∗. For any k ∈ N we have

fk − f∗ ≤ f(xk+)− f∗, (3.67)
where k+ = min {s ∈ K∗ : s ≥ k}. Moreover, for the stationarity of x∗ we have
(g∗)T (xk − x∗) ≥ 0, and then

fk − f∗ = (g∗)T (xk − x∗) + 1
2(xk − x∗)T H (xk − x∗)

≥ 1
2(xk − x∗)TVHV T (xk − x∗) ≥ ζmin(H) ‖xk − x∗‖2,

(3.68)

where H and V are defined in Theorem 3.3.11 and the equality

xk − x∗ = V V T (xk − x∗)

has been exploited. From (3.67) and (3.68) it follows that
{

xk
}
converges to x∗.

Then, for k sufficiently large, F∗ ⊆ Fk and hence Ak ⊆ A∗. Furthermore, by
Theorem 3.2.1, the convergence of

{
xk
}
k∈KGP

to x∗, together with (3.66), yields
A∗N ⊆ A(xk) for all k ∈ KGP sufficiently large. Since minimization steps do not
remove variables from the active set, we have A∗N ⊆ A(xk) for all k sufficiently
large.
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We note that in case of non-degeneracy (A∗N = A∗) the active set eventually
settles down, i.e. the identification property holds. This implies that the the solution
of (1.1) reduces to the solution of an unconstrained problem in a finite number of
iterations, which is the key ingredient to prove finite convergence of methods that
fit into the framework of Algorithm 5.3 in [27], such as the proposed PSAQP. In
case of degeneracy we can just say that the non-degenerate active constraints at the
solution will be identified in a finite number of steps. However, in the strictly convex
case, finite convergence can be achieved in this case too, provided a suitable value of
Γ is taken, as stated by the following theorem which extends Theorem 4.4 in [51].

Theorem 3.4.4. Let us assume that problem (1.1) is strictly convex and x∗ is its
optimal solution. Let

{
xk
}
be a sequence in Ω generated by PSAQP applied to (1.1),

in which the minimization phase is performed by any algorithm that is exact for
strictly convex quadratic programming. If one of the following conditions holds:

(i) x∗ is non-degenerate,

(ii) x∗ is degenerate and Γ ≥ κ(H)1/2, where H is defined in Theorem 3.3.11,

then xk = x∗ for k sufficiently large.

Proof. (i) By Lemma 3.4.3, in case of non-degeneracy Ak = A∗ for k sufficiently
large, and the thesis trivially holds.

(ii) Thanks to Lemma 3.4.3, we have that P2GP is able to identify the active
non-degenerate variables and the free variables at the solution for k sufficiently large.
This means that there exists k such that for k ≥ k the solution x∗ of (1.1) is also
solution of

min f(x),
s.t. x ∈ Ω(xk). (3.69)

Now assume that Γ ≥ κ(H)1/2 and suppose by contradiction that there exists k̂ ≥ k
such that ∥∥∥∥β(xk̂)

∥∥∥∥
∞
> Γ

∥∥∥∥ϕ(xk̂)
∥∥∥∥

2
.

Then, by Theorem 3.3.11 it is β(x̂) 6= 0, where x̂ is the solution of (3.69) with k = k̂.
Since x̂ = x∗, this contradicts the optimality of x∗. Therefore, xk is a proportional
iterate for k ≥ k̂ and PSAQP will use the algorithm of the minimization phase to
determine the next iterate. Two cases are possible:

(a) xk+1 = x∗, therefore the thesis holds;

(b) xk+1 6= x∗ is proportional and such that A(xk) ( A(xk+1), therefore xk+2 will
be computed using again the algorithm of the minimization phase. Since the
active sets are nested, either PSAQP is able to find A∗ in a finite number of
iterations or at a certain iteration it falls in case (a), and hence the thesis is
proved.
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3.4.1 Implementation issues

We have introduced an active-set framework for the solution of QPs of the form
(1.1), and proved its finite convergence in the solution of possibly degenerate strictly
convex problems. In all the other cases, provided the set KGP is not finite and the
objective function is bounded, Theorem 3.4.2 ensures that the algorithm is still able
to converge to a stationary point of problem (1.1).

There are different aspects to care about in the implementation of PSAQP. First
of all we need to compute the projections onto Ω and those onto TΩ(x) needed to
evaluate the projected gradient and its components. The efficiency of this operation
is crucial for the efficiency of the overall algorithm, even if the number of projections
can be lowered, e.g., by using, both in the identification and in the minimization
phase, a line search along the feasible direction instead of along the projection arc
(see Section 2.3). As we already mentioned in Section 2.5.2, in the case of sparse
constraints an efficient algorithm has been recently proposed [91], which may be
exploited in an implementation of PSAQP.

Another issue is the solution of the unconstrained subproblems (3.38), which can
be written as

min 1
2xT H x− cTx,

s.t. Ax = b,
xi = li, i ∈ Al,
xi = ui, i ∈ Au.

(3.70)

Observe that a solution to (3.70) can be found by solving the problem

min
v∈R|F|

1
2vTGv− qTv,

s.t. B v = d,
(3.71)

where

G = HFF, q = cF−HFAl
lAl
−HFAuuAu , B = A?F, and d = b−A?Al

lAl
−A?AuuAu .

A stationary point for problem (3.71) is a solution of the system{
−Gv + q +BTθ = 0,
B v = d,

i.e. a solution of the saddle point system(
−G BT

B 0

)
·
(

v
θ

)
=
(
−q
d

)
, (3.72)

which can be found, e.g., by preconditioned conjugate gradient methods [83, 8, 42].
Finally, since far from the solution the matrix A?F is likely to be row-rank

deficient, especially in the case of a large number of constraints, we will need to
address the problem of choosing the set J of independent rows of A?F for the
computation of ξ, as defined in (3.7).

A specialization of PSAQP, called P2GP, is available for the case of BQPs and
SLBQPs and will be described in the following chapter. The implementation of a
method for general QPs, fitting in the PSAQP framework, is currently under study.
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Chapter 4

The Proportionality-based
2-phase Gradient Projection
method

Here we are concerned with the solution of SLBQPs, i.e. QPs of the form

min f(x) := 1
2xT H x− cTx,

s.t. aTx = b,
l ≤ x ≤ u,

(4.1)

where H ∈ Rn×n is symmetric, c ∈ Rn, a ∈ Rn, b ∈ R, l ∈ {R ∪ {−∞}}n, u ∈
{R ∪ {+∞}}n, l ≤ u. We propose a two-phase GP method, called Proportionality-
based 2-phase Gradient Projection (P2GP). P2GP, which is able to deal both with
SLBQPs and BQPs, can be considered as a specialization of the PSAQP framework
proposed in Chapter 3 and as a generalization of the GPCG method by Moré and
Toraldo [109] to a wider class of problems. Besides targeting problems more general
than strictly convex BQPs, the new method differs from GPCG because it follows
a different approach in deciding when to terminate optimization in the reduced
space. Whereas GPCG uses a heuristic based on the bindingness of the active
variables, P2GP relies on the comparison between a measure of optimality within the
reduced space and a measure of bindingness of the variables that are on the bounds.
This approach exploits the concept of proportional iterate, discussed in the previous
chapters. To this end, we specialize the definition of free gradient, chopped gradient,
and proportional iterates to the case of problem (4.1). As in GPCG, and unlike
other algorithms for BQPs sharing a common ground (e.g.,[53, 64, 65, 107]), the
task of adjusting the active set is left only to the GP steps; thus, for strictly convex
BQPs our algorithm differs from GPCG in the criterion used to stop minimization of
the reduced problem. This change makes a significant difference in the effectiveness
of the algorithm as our numerical experiments show. In addition, the application
of the proportionality concept allows to state finite convergence for strictly convex
problems also for dual-degenerate solutions. In the case of non-convex problems and
convex problems with semidefinite Hessian, if the objective function is bounded, the
algorithm converges to a stationary point as a result of suitable application of the
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GP method in the identification phase. Finally, if the problem is unbounded, the
method is able to detect the unboundedness and interrupt the computation.

4.1 Stationarity results for SLBQPs
A point x∗ ∈ Ω is a stationary point for problem (4.1) if and only if there exist
Lagrange multipliers ρ∗, λ∗i ∈ R, with i ∈ A∗, such that

g∗ =
∑
i∈A∗

λ∗i ei + ρ∗a, λ∗i ≥ 0 if i ∈ A∗l , λ∗i ≤ 0 if i ∈ A∗u, (4.2)

or, equivalently,

g∗F∗ − ρ∗aF∗ = 0, (4.3)
λ∗i = g∗i − ρ∗qi ≥ 0 if i ∈ A∗l , (4.4)
λ∗i = g∗i − ρ∗qi ≤ 0 if i ∈ A∗u. (4.5)

If aF∗ 6= 0, by taking the scalar product of (4.3) with aF∗ , we obtain

ρ∗ = aTF∗ g∗F∗
aTF∗ aF∗

(with a little abuse of notation we include F∗ = ∅ in the case aF∗ = 0). Then, by
defining for all x ∈ Ω

ρ(x) :=


0, if aF = 0,

aTF gF

aTF aF

, otherwise, (4.6)

where F = F(x), and
h(x) := ∇f(x)− ρ(x)a, (4.7)

conditions (4.3)-(4.5) can be expressed as

h∗i = 0 if i ∈ F∗, h∗i ≥ 0 if i ∈ A∗l , h∗i ≤ 0 if i ∈ A∗u. (4.8)

As for the case of general QPs, we can introduce the definition of binding set based
on h(x).

Definition 4.1.1. Let x ∈ Ω. The binding set at x is defined as

B(x) := {i : (i ∈ Al(x) ∧ hi(x) ≥ 0) ∨ (i ∈ Au(x) ∧ hi(x) ≤ 0)} . (4.9)

We can also specialize the estimate of the Lagrange multipliers provided in
Theorem 3.1.5.

Theorem 4.1.2. Assume that
{

xk
}
is a sequence in Ω that converges to a non-

degenerate stationary point x∗, and A(xk) = A(x∗) for all k sufficiently large.
Then

lim
k→∞

ρ(xk) = ρ∗ and lim
k→∞

λi(xk) = λ∗i ∀i ∈ A∗, (4.10)
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where λi(x) is defined as follows:

λi(x) :=


max{0, hi(x)} if i ∈ Al(x),
min{0, hi(x)} if i ∈ Au(x),

0 if i ∈ F(x).

As in the previous chapter, we assume that the constraints satisfy the LICQ.

Assumption 4.1.3 (Linear Independence Constraint Qualification - LICQ). Let x∗
be any stationary point of (4.1). The active constraint normals {a} ∪ {ei : i ∈ A∗}
are linearly independent.

This assumption is always satisfied, for instance, when Ω is the standard simplex;
furthermore, it guarantees aF∗ 6= 0.

4.1.1 Proportional iterates for SLBQPs

To measure the violation of the KKT conditions (4.3)-(4.5) and to balance optimality
between free and active variables, we provide a specialization of the free and chopped
gradient already introduced in Chapter 3 for the general case of problem (1.1).

Definition 4.1.4. For any x ∈ Ω, the free gradient ϕ(x) is defined as

ϕF(x) = hF(x), ϕA(x) = 0,

where h(x) is given in (4.7). The chopped gradient β(x) is defined as

β(x) := −∇Ωf(x)−ϕ(x). (4.11)

We note that
ϕF(x) = P{aF}⊥ (∇fF(x)) , (4.12)

where F = F(x) and P{aF}⊥ ∈ R|F|×|F| is the orthogonal projection onto the subspace
of R|F| orthogonal to aF,

P{aF}⊥ = I − aF aTF
aTF aF

.

The two vectors satisfy all the properties proved in Chapter 3. In summary, we
split the projected gradient ∇Ωf(x) into two parts:

• −ϕ(x), which lies on the affine closure of the face determined by the active
variables at x and gives measure of optimality within the reduced space;

• −β(x), is orthogonal to the same face, points towards the interior of the
feasible set Ω, and gives a measure of optimality over the complementary
space.

An example of the splitting is reported in Figure 4.1 for the case of an SLBQP
problem characterized by n = 3, a = 1, b = 1, l = 0 and u = 0.75 · 1.

It is worth noting that the computation of these quantities is not too expensive,
indeed the projected gradient can be computed with one of the projection algorithms
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Figure 4.1. Visualization of the splitting of the projected gradient ∇Ωf(x) (here indicated
as “projgrad”) in the two orthogonal components −ϕ(x) and −β(x) in the case of a
3-dimensional SLBQP problem.

described in Section 2.5.1, ϕ can be computed by O(n) operations, and β simply as
the difference between the two.

With this decomposition we can apply to problem (4.1) the definition of propor-
tional iterates introduced in the previous chapters as an iterate satisfying

‖β(xk)‖∞ ≤ Γ‖ϕ(xk)‖. (4.13)

In the strictly convex case, disproportionality of xk again guarantees that the solution
of (4.1) does not belong to the face identified by the active variables at xk. This result
is a consequence of the next theorem, which is a specialization of Theorem 3.3.11.

Theorem 4.1.5. Let H be the Hessian matrix in (4.1) and let Hq = V TH V be
positive definite, where V ∈ Rn×(n−1) has orthonormal columns spanning {a}⊥. Let
x ∈ Ω be such that ‖β(x)‖∞ > κ(Hq)1/2 ‖ϕ(x)‖2, and let x be the solution of

min f(u),
s.t. u ∈ Ω(x), (4.14)

where Ω(x) is defined in (1.2). If x ∈ Ω, then β(x) 6= 0.

4.2 The Proportionality-based 2-phase Gradient Pro-
jection method

We now introduce the Proportionality-based 2-phase Gradient Projection (P2GP)
method for problem (4.1). The method does not assume that (4.1) is strictly convex.
However, if (4.1) is not strictly convex, the method only computes an approximation
of a stationary point or finds that the problem is unbounded below. If strict convexity
holds, P2GP provides an approximation to the optimal solution. The method is
outlined in Algorithm 4.1 and explained in detail in the next sections. For the sake
of brevity, ϕ(xk) and β(xk) are denoted by ϕk and βk, respectively. Like PSAQP,
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proposed in Chapter 3, it alternates identification phases, consisting in GP steps
satisfying the sufficient decrease conditions (3.60)-(3.62), and minimization phases,
where an approximate solution to (3.63) is searched, with xk inherited from the last
identification phase. Unless a point satisfying

‖ϕk + βk‖ ≤ tol (4.15)

is found, or the problem is discovered to be unbounded below, the identification
phase proceeds either until a promising active set Ak+1 is identified (i.e. an active
set that remains fixed in two consecutive iterations) or no reasonable progress is
made in reducing the objective function, i.e.,

fk − fk+1 ≤ η max
m≤l<k

(f l − f l+1), (4.16)

where η is a suitable constant and m is the first iteration of the current identification
phase. This choice follows that in [109], described in Chapter 2. In the minimization
phase, an approximate solution to the reduced problem obtained by fixing the
variables with indices in the current active set is searched for. The proportionality
criterion (4.13) is used to decide when the minimization phase has to be terminated;
this is a significant difference from the GPCG method, which exploits a condition
based on the bindingness of the active variables. Note that the accuracy required in
the solution of the reduced problem (3.63) affects the efficiency of the method and a
loose stopping criterion must be used, since the control of the minimization phase is
actually left to the proportionality criterion (more details are given in Section 4.2.2).
Like the identification, the minimization phase is abandoned if a suitable approxima-
tion to a stationary point is computed or unboundedness is discovered. Nonpositive
curvature directions are exploited as explained in Sections 4.2.1 and 4.2.2.

We note that the minimization phase can add variables to the active set, but
cannot remove them, thus P2GP fits into the general framework of two phase
algorithm proposed by Calamai and Moré [27, Algorithm 5.3]. The convergence
results proved in Chapter 3 are still valid for the case of P2GP applied to problem
(4.1). To ease the description of the algorithm we recall the main results: the first
one allows us to state the general convergence of the algorithm, the second one states
the finite convergence property in the case of strictly convex problems, also in the
case of degenerate stationary points.

Theorem 4.2.1. Let
{

xk
}
be a sequence generated by applying the P2GP method

to problem (4.1). Assume that the set of GP iterations, KGP , is infinite. If some
subsequence

{
xk
}
k∈K

, with K ⊆ KGP , is bounded, then

lim
k∈K, k→∞

∥∥∥∇Ωf(xk+1)
∥∥∥ = 0. (4.17)

Moreover, any limit point of
{

xk
}
k∈KGP

is a stationary point for problem (4.1).

Theorem 4.2.2. Let us assume that problem (4.1) is strictly convex and x∗ is its
optimal solution. Let

{
xk
}
be a sequence in Ω generated by the P2GP method applied

to (4.1), in which the minimization phase is performed by any algorithm that is exact
for strictly convex quadratic programming. If one of the following conditions holds:
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Algorithm 4.1 P2GP (Proportionality-based 2-phase Gradient Projection)
1: x0 ∈ Ω; tol ≥ 0; η ∈ (0, 1); Γ > 0; k = 0;
2: conv = (

∥∥∥ϕk + βk
∥∥∥ ≤ tol); unbnd = .false.; phase1 = .true.; phase2 = .true.

3: while (¬ conv ∧ ¬unbnd) do . Main loop
4: m = k;
5: while (phase1) do . Identification Phase
6: if ((∇Ωf

k)TH (∇Ωf
k) ≤ 0 ∧ max

{
α > 0 s.t. xk + α∇Ωf

k ∈ Ω
}

= +∞) then
7: unbnd = .true.;
8: else
9: xk+1 = PΩ(xk − αkgk) with αk such that (3.60)-(3.62) hold;

10: end if
11: if (¬unbnd) then
12: conv = (

∥∥∥ϕk+1 + βk+1
∥∥∥ ≤ tol);

13: phase1 = (Ak+1 6= Ak) ∧ (fk − fk+1 > η max
m≤l<k

(f l − f l+1)) ∧ (¬ conv);
14: k = k + 1;
15: end if
16: end while
17: if (conv ∨ unbnd) then
18: phase2 = .false.;
19: end if
20: while (phase2) do . Minimization Phase
21: Compute an approximate solution dk (see end of Section 4.2.2) to problem

min
{
f(xk+ d) s.t. aTd = 0, di = 0 if i ∈ Ak

}
;

22: if ((dk)TH dk ≤ 0) then
23: Compute αk = max

{
α > 0 s.t. xk + αdk ∈ Ω

}
;

24: if (α = +∞) then
25: unbnd = .true.;
26: else
27: xk+1 = xk + αkdk;
28: conv = (

∥∥∥ϕk+1 + βk+1
∥∥∥ ≤ tol);

29: k = k + 1;
30: end if
31: phase2 = .false.;
32: else
33: xk+1 = PΩk (xk + αkdk) with αk such that fk+1 < fk and Ωk = Ω ∩ Ω(xk)
34: conv = (

∥∥∥ϕk+1 + βk+1
∥∥∥ ≤ tol);

35: phase2 = (‖βk+1‖∞ ≤ Γ ‖ϕk+1‖2) ∧ (¬ conv);
36: k = k + 1;
37: end if
38: end while
39: phase1 = .true.; phase2 = .true.;
40: end while
41: if (conv) then
42: return xk
43: else
44: return “problem (4.1) is unbounded”;
45: end if
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(i) x∗ is non-degenerate,

(ii) x∗ is degenerate and Γ ≥ κ(Hq)1/2, where Hq is defined in Theorem 3.3.11,

then xk = x∗ for k sufficiently large.

We will now provide further details on the algorithm.

4.2.1 Identification phase

In the identification phase (Steps 4-16 of Algorithm 4.1), every projected gradient
step needs the computation of a steplength αk satisfying the sufficient decrease
condition (3.60)-(3.62). As described in Chapter 2 for the GPCG algorithm, this
steplength can be obtained by generating a sequence {αki } of positive trial values
such that

αk0 ∈ [γ2, γ1] (4.18)
αki ∈ [γ4α

k
i−1, γ5α

k
i−1], i > 0, (4.19)

where γ1 and γ2 are given in (3.61) and γ4 < γ5 < 1, and by setting αk to the first
trial value that satisfies (3.60). Note that in practice γ2 is a very small value and γ1
is a very large one; therefore, we assume for simplicity that (4.19) holds for all the
choices of αk0 described next.

Motivated by the results reported in [37] for BQPs, we compute αk0 by using a
BB-like rule. Following recent studies on steplength selection in gradient methods [49,
50], we set αk0 equal to the ABBmin steplength proposed in [73] and described in
Section 2.1.1.

If αk0 > 0, we build the trial step lengths by using the quadratic interpolation
strategy with the safeguard (4.19) described in Section 2.4.1. If αk0 ≤ 0, we check if
(∇Ωf

k)T H (∇Ωf
k) ≤ 0, which implies that the problem

min f(xk + v),
s.t. aTv = 0,

vi = 0, i ∈ Bk

is unbounded below along the direction ∇Ωf
k. In this case we compute the break-

points along ∇Ωf
k as proposed in [108]. For any x ∈ Ω and any direction p ∈ TΩ(x),

the breakpoints ωi, with i ∈ {j : pj 6= 0}, are given by the following formulas:

if pi < 0, then ωi = +∞ if li = −∞, and ωi = li − xi
pi

otherwise;

if pi > 0, then ωi = +∞ if ui = +∞, and ωi = ui − xi
pi

otherwise.

If the minimum breakpoint ωmin, which satisfies

ωmin = max
{
α > 0 s.t. xk − α∇Ωf

k ∈ Ω
}
,

is infinite, then problem (4.1) is unbounded. Otherwise, we set αk0 = ω, where ω
is the maximum finite breakpoint. If αk0 does not satisfy the sufficient decrease



64 4. The Proportionality-based 2-phase Gradient Projection method

condition, we reduce it by backtracking until this condition holds. Finally, if αk0 ≤ 0
and (∇Ωf

k)T H (∇Ωf
k) > 0, we set

αk0 = − (∇Ωf
k)Tgk

(∇Ωfk)TH (∇Ωfk)
,

and proceed by safeguarded quadratic interpolation (see [108] and Section 2.4.1
for further details). In order to simplify the description, in Algorithm 4.1 we have
omitted the selection of αk0 .

Unless an approximation xk+1 to a point satisfying (4.15) is found, or unbound-
edness of the problem is discovered, the identification phase is left when either the
active set does not change in two consecutive iterations or the GP method is not
making sufficient progress in reducing the objective function (as described at the
beginning of Section 4.2), where the progress is measured as in Step 16. This choice
follows that in [109].

4.2.2 Minimization phase

The minimization phase (Steps 20-38 of Algorithm 4.1) requires the approximate
solution of

min f(xk + d),
s.t. aTd = 0, di = 0 if i ∈ A(xk), (4.20)

which is equivalent to

min g(y) := 1
2 yTHFF y + (gkF)Ty,

s.t. aTF y = 0, y ∈ Rs,
(4.21)

where F = Fk and s = |F|.
Problem (4.21) can be formulated as an unconstrained quadratic minimization

problem by using a Householder transformation

P = I −wwT ∈ Rs×s, ‖w‖ =
√

2, PaF = σe1,

where σ = ±‖aF‖ (see, e.g.,[18]). Letting y = P z, M = PHFFP and r = P gkF,
problem (4.21) becomes

min p(z) := 1
2 zTM z + rT z,

s.t. z1 = 0,

which simplifies to
min

z̃∈Rs−1
p̃(z̃) := 1

2 z̃T M̃ z̃ + r̃T z̃, (4.22)

where
M =

(
m11 m̃T

m̃ M̃

)
, r =

(
r1
r̃

)
, z =

(
z1
z̃

)
.

We note that aF = σPe1, i.e. aF is a multiple of the first column of P , hence
the remaining columns of P span {aF}⊥. Furthermore, a simple computation
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shows that M̃ = P̃ THFFP̃ , where P̃ is the matrix obtained by deleting the first
column of P . By reasoning as in the proof of Theorem 3.3.11 (see (3.54)), we
find that ζmin(M̃) ≥ ζmin(Hq) and ζmax(M̃) ≤ ζmax(Hq), where Hq = V THV and
V ∈ Rn×(n−1) is any matrix with orthogonal columns spanning {a}⊥. Therefore, if
Hq is positive definite, then

κ(M̃) ≤ κ(Hq).

For any other Z ∈ Rn×(n−1) with orthogonal columns spanning {a}⊥, we can write
V T = DZT with D ∈ R(n−1)×(n−1) orthogonal; therefore, V THV and ZTHZ are
similar and κ(Hq) does not depend on the choice of the orthonormal basis of {a}⊥.
Furthermore, if H is positive definite, by the Cauchy’s interlace theorem [116,
Theorem 10.1.1] it is κ(Hq) ≤ κ(H).

The finite convergence result for strictly convex problems (Theorem 4.2.2) relies
on the exact solution of (4.22). In infinite precision, this can be achieved by means
of the CG algorithm, as in the GPCG method. Of course, in presence of roundoff
errors, finite convergence is generally neither obtained nor required.

We can solve (4.22) by efficient gradient methods too. In this work, we investigate
the use of the SDC gradient method [45] (see Section 2.1.3) as a solver for the
minimization phase in the strictly convex case. In our opinion the P2GP framework
can provide a way to exploit the regularizing properties exhibited by SDC (and
other spectral gradient methods) in the solution of linear ill-posed problems with
bounds and problems with bounds and a single linear constraint. Of course, the
CG solver is still the reference choice in general, especially because it is able to
deal with non-convexity through directions of negative curvature (as done, e.g.,in
[107]), whereas handling negative curvatures with spectral gradient methods may be
a non-trivial task (see, e.g.,[36] and references therein).

Once a descent direction dk is obtained by approximately solving (4.20), a full
step along this direction is performed starting from xk, and xk+1 is set equal to
the resulting point if this is feasible. Otherwise xk+1 = PΩk(xk + αkdk) where αk
satisfying the sufficient decrease conditions is computed by using the safeguarded
quadratic interpolation described in [108] (see Section 2.4.1). It is worth to underline
that the projected line search involves the projection onto Ωk = Ω ∩ Ω(xk), i.e.
the face o the polyhedron containing xk. This has a twofold importance: from the
theoretical point of view it ensures that A(xk) ⊆ A(xk+1), while, from the practical
point of view, it allows one to avoid “strange behaviors” of the algorithm around
the solution if one chooses to project over Ω instead of Ωk.

To show this issue we considered a strictly convex 3-dimensional toy problem of
the form

min 1
2xT H x− cTx,

s.t.
3∑
i=1

xi = 1,

0 ≤ xi ≤ 0.75, ∀ i ∈ {1, 2, 3},

built up such that the solution lies in x∗ = [0.75, 0.25, 0]T . Supposing to start from
point x = [0.5, 0.5, 0]T and applying only minimization phase steps, the algorithm
using the projection over Ω oscillates around x∗ passing continuously from one of the
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Figure 4.2. Visualization of the oscillating behavior of the algorithm in the case in which
the projection onto Ωk is replaced by the projection onto Ω in the line search following
the minimization phase.

two edges containing x∗ to the other, as can be seen in Figure 4.2. This oscillating
behavior is clearly avoided if the proper projection onto Ωk is considered, as shown
in Figure 4.3. It is interesting to note that the difference in the use of the two
projections is only noticeable in the case of SLBQPs and general QPs; in the case of
BQP, indeed, the orthogonality between the faces meeting in the same vertex makes
the projection operators PΩ(y) and PΩk(y) equivalent for all the points y ∈ Ω(xk).

If the problem is not strictly convex, we choose the CG method for the min-
imization phase. If CG finds a direction dk such that (dk)TH dk ≤ 0 we set
xk+1 = xk + αkdk, where αk is the largest feasible steplength, i.e. the minimum
breakpoint along dk, unless the objective function results to be unbounded along dk.

As already observed, the stopping criterion in the solution of problem (4.22)
must not be too stringent, since the decision of continuing the minimization on the
reduced space is left to the proportionality criterion. In order to stop the solver for
problem (4.22), we check the progress in the reduction of the objective function as
in the identification phase, i.e. we terminate the iterations if

p̃(z̃j)− p̃(z̃j+1) ≤ ξ max
1≤l<j

{
p̃(z̃l)− p̃(z̃l+1)

}
, (4.23)

where ξ ∈ (0, 1) is not too small (the value used in the numerical experiments is
given in Section 4.3). This choice follows [109]. If the active set has not changed and
the current iterate is proportional, the minimization phase does not restart from
scratch, but the minimization method continues its iterations as it had not been
stopped.

4.2.3 Projections

Even if more efficient algorithms are available, since the size of the considered
problems is in the order of tens of thousands, we decided to perform the projections
by using the algorithm proposed by Dai and Fletcher in [38] (see Section 2.5.1.4 for
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Figure 4.3. Behavior of the algorithm in the case in which the projection onto Ωk is
considered in the line search following the minimization phase.

further details) for which a MATLAB implementation is available and which has
successfully used in gradient projection method for image-processing and machine
learning problems [120, 127, 21]. Observe that, apart from the standard projections
onto Ω (Step 9 of Algorithm 4.1), P2GP requires also projections onto Ωk = Ω∩Ω(xk)
(Step 33 of Algorithm 4.1) and onto TΩ(xk) (for the computation of ∇Ωf(x) and
β(xk)). To perform these projections we can still make use of the same algorithm.
For the computation of PΩk(y), it is sufficient to observe that the lower and upper
bound vectors for Ωk, l and u, have components

l
k
i = uki = xki , if i ∈ A(xk),
l
k
i = li, u

k
i = ui, if i ∈ F(xk).

For the computation of the projected gradient, i.e. for the projection onto TΩ(xk), we
can use the same algorithm, imposing the linear constraint aTy = 0 and observing
that the bounds l̃ and ũ, have components

l̃i = −∞, ũi = +∞, if i ∈ F(xk),
l̃i = 0, ũi = +∞, if i ∈ Al(xk),
l̃i = −∞, ũi = 0, if i ∈ Au(xk).

4.3 Numerical experiments

In order to analyze the behavior of P2GP using both CG and SDC in the minimization
phase, we performed numerical experiments on several problems, either generated
with the aim of building test cases with varying characteristics (see Section 4.3.1) or
coming from SVM training (see Section 4.3.2).

On the first set of problems, referred to as random problems because of the way
they are built, we compared both versions of P2GP with the following methods:



68 4. The Proportionality-based 2-phase Gradient Projection method

• GPCG-like, a modification of P2GP where the termination of the minimization
phase (performed by CG) is not driven by the proportionality criterion, but
by the bindingness of the active variables, like in the GPCG method;

• PABBmin, a Projected Alternate BB method executing the line search as in
P2GP and computing the first trial steplength with the ABBmin rule described
in Section 4.2.1;

The first method was selected to evaluate the effect of the proportionality-based
criterion in the minimization phase, the second one because of its effectiveness
among general GP methods. P2GP, GPCG-like, and PABBmin were implemented in
Matlab.

To further assess the behavior of P2GP, we also compared it, on the random and
SVM problems, with the GP method implemented in BLG, a C code available from
http://users.clas.ufl.edu/hager/papers/Software/. BLG solves nonlinear
optimization problems with bounds and a single linear constraint, and can be
considered as a benchmark for software based on gradient methods. Its details are
described in [89, 82].

The following setting of the parameters was considered for P2GP: η = 0.1 in (4.16)
and ξ = 0.5 in (4.23); µ1 = 10−4 in (3.60); γ1 = 1012, γ2 = 10−12, γ3 = 10−2, and
γ4 = 0.5 in (4.18)-4.19; q = 3 and τ = 0.2 in (2.6). Furthermore, when SDC was
used in the minimization phase, k = 6 and l = 4 were chosen in (2.8). A maximum
number of 50 consecutive GP and CG (or SDC) iterations was also considered. The
previous choices were also used for the GPCG-like method, except for the parameter
ξ, which was set to 0.25. The parameters of PABBmin in common with P2GP were
given the same values too, except τ , which was computed by the adaptive procedure
described in [21], with 0.5 as starting value. Details on the stopping conditions used
by the methods are given in Sections 4.3.3 and 4.3.4, where the results obtained on
the test problems are discussed.

About the proportionality condition (4.13), a choice made according to Theo-
rem 4.1.5 requires a knowledge which is usually unknown about the spectrum of H.
A conservative approach would suggest to adopt a large value for Γ. However, such
a choice is likely to be unsatisfactory in practice; in fact, a large Γ would foster high
accuracy in the minimization phase, even at the initial steps of the algorithm, when
the active constraints at the solution are far from being identified. Thus, we used
the following adaptive strategy for updating Γ after line 37 of Algorithm 4.1:

if ‖βk‖∞ > Γ ‖ϕk‖2 then
Γ = max {1.1 · Γ, 1} ;

else if Ak 6= Ak−1 then
Γ = max {0.9 · Γ, 1} ;

end if

Based on our numerical experience, we set the starting value of Γ equal to 1.
BLG was run using the gradient projection search direction (it also provides the

Frank-Wolfe and affine-scaling directions). However, the code could switch to the
Frank-Wolfe direction, according to inner automatic criteria. Note that BLG uses a
cyclic BB step length αk as trial steplength, together with an adaptive non-monotone

http://users.clas.ufl.edu/hager/papers/Software/
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line search along the feasible direction PΩ(xk−αk∇fk)−xk (see [89] for the details).
Of course, the BLG features exploiting the form of a quadratic objective function
were used. The stopping criteria applied with the random problems and the SVM
ones are specified in Sections 4.3.3 and 4.3.4, respectively. Further details on the
use of BLG are given there.

All the experiments were carried out using a 64-bit Intel Core i7-6500, with
maximum clock frequency of 3.10 GHz, 8 GB of RAM, and 4 MB of cache memory.
BLG (v. 1.4) and SVMsubspace (v. 1.0) were compiled by using gcc 5.4.0. P2GP,
GPCG-like, and PABBmin were run under MATLAB 7.14 (R2012a). The elapsed
times reported for the Matlab codes were measured by using the tic and toc
commands.

The MATLAB code implementing P2GP used in the experiments is available
from https://github.com/diserafi/P2GP. It includes the test problem generator
described in Section 4.3.1.

4.3.1 Random test problems

The implementations of all methods were run on random SLBQPs built by modifying
the procedure for generating BQPs proposed in [108]. The new procedure first
computes a point x∗ and then builds a problem of type (4.1) having x∗ as stationary
point. Obviously, if the problem is strictly convex, x∗ is its solution. The following
parameters are used to define the problem:

• n, number of variables (i.e. n);

• ncond, log10 κ(H);

• zeroeig ∈ [0, 1), fraction of zero eigenvalues of H;

• negeig ∈ [0, 1), fraction of negative eigenvalues of H;

• naxsol ∈ [0, 1), fraction of active variables at x∗;

• degvar ∈ [0, 1), fraction of active variables at x∗ that are degenerate;

• ndeg ∈ {0, 1, 2, . . .}, amount of near-degeneracy;

• linear, 1 for SLBQPs, and 0 for BQPs;

• nax0 ∈ [0, 1), fraction of active variables at the starting point.

The components of x∗ are computed as random numbers from the uniform
distribution in (−1, 1). All random numbers considered next are from uniform
distributions too. The Hessian matrix H is defined as

H = GDGT , (4.24)

where D is a diagonal matrix and G = (I − 2 p3pT3 )(I − 2 p2pT2 )(I − 2 p1pT1 ), with
pj unit vectors. For j = 1, 2, 3, the components of pj are obtained by generating

https://github.com/diserafi/P2GP
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pj = (pji)i=1,...,n, where the values pji are random numbers in (−1, 1), and setting
pj = pj/‖pj‖. The diagonal entries of D are defined as follows:

dii =


0 for approximately zeroeig ∗ n values of i,
−10

i−1
n−1 (ncond) for approximately negeig ∗ n values of i,

10
i−1
n−1 (ncond) for the remaing values of i.

We note that zeroeig and negeig are not the actual fraction of zero and negative
eigenvalues. The actual fraction of zero eigenvalues is determined by generating a
random number ξi ∈ (0, 1) for each i, and by setting dii = 0 if ξi ≤ zeroeig; the
same strategy is used to determine the actual number of negative eigenvalues. We
also observe that κ(H) = 10 ncond, if H has no zero eigenvalues.

In order to define the active variables at x∗, n random numbers χi ∈ (0, 1) are
computed, and the index i is put in A∗ if χi ≤ naxsol; then A∗ is partitioned into the
sets A∗N and A∗ \A∗N , with |A∗ \A∗N | approximately equal to bdegvar ∗ naxsol ∗ nc.
More precisely, an index i is put in A∗ \A∗N if ψi ≤ degvar, where ψi is a random
number in (0, 1), and is put in A∗N otherwise. The vector λ∗ of Lagrange multipliers
associated with the box constraints at x∗ is initially set as

λ∗i =
{

10−µi ndeg if i ∈ A∗N ,
0 otherwise,

where µi is a random number in (0, 1). Note that the larger ndeg, the closer to 0 is the
value of λ∗i , for i ∈ A∗N (in this sense ndeg indicates the amount of near-degeneracy).
The set A∗ is split into A∗l and A∗u as follows: for each i ∈ A∗, a random number
νi ∈ (0, 1) is generated; i is put in A∗l if νi < 0.5, and in A∗u otherwise. Then, if
i ∈ A∗u, the corresponding Lagrange multiplier is modified by setting λ∗i = −λ∗i . The
lower and upper bounds l and u are defined as follows:

li = −1 and ui = 1 if i /∈ A∗,
li = x∗i and ui = 1 if i ∈ A∗l ,
li = −1 and ui = x∗i if i ∈ A∗u.

If linear = 0, the linear constraint is neglected. If linear = 1, the vector a
in (4.1) is computed by randomly generating its components in (−1, 1), the scalar b
is set to aTx∗, and the vector c is defined so that the KKT conditions at the solution
are satisfied:

c =
{
H x∗ − λ∗ if linear = 0,
H x∗ − λ∗ − ρ∗ a if linear = 1,

where ρ∗ is a random number in (−1, 1) \ {0} representing the Lagrange multiplier
associated with the linear constraint.

By reasoning as with x∗, approximately nax0 ∗ n components of the starting
point x0 are set as x0

i = li or x0
i = ui. The remaining components are defined as

x0
i = (li + ui)/2. Note that x0 may not be feasible; in any case, it will be projected

onto Ω by the optimization methods considered here.
Finally, we note that although x∗ is a stationary point of the problem generated

by the procedure described so far, there is no guarantee that P2GP converges to x∗
if the problem is not strictly convex.

The following sets of test problems, with size n = 20000, were generated:
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• 27 strictly convex SLBQPs with non-degenerate solutions, obtained by setting
ncond = 4, 5, 6, zeroeig = 0, negeig = 0, naxsol = 0.1, 0.5, 0.9, degvar = 0,
ndeg = 0, 1, 3, and linear = 1;

• 18 strictly convex SLBQPs with degenerate solutions, obtained by setting
ncond = 4, 5, 6, zeroeig = 0, negeig = 0, naxsol = 0.1, 0.5, 0.9, degvar
= 0.2, 0.5, ndeg = 1, and linear = 1;

• 27 convex (but not stricltly convex) SLBQPs, obtained by setting ncond
= 4, 5, 6, zeroeig = 0.1, 0.2, 0.5, negeig = 0, naxsol = 0.1, 0.5, 0.9, degvar
= 0, ndeg = 1, and linear = 1;

• 27 non-convex SLBQPs, obtained by setting ncond = 4, 5, 6, zeroeig = 0,
negeig = 0.1, 0.2, 0.5, naxsol = 0.1, 0.5, 0.9, degvar = 0, ndeg = 1, and
linear = 1;

Since BQPs are special cases of SLBQPs, four sets of BQPs were also generated, by
setting linear = 0 and choosing all remaining parameters as specified above. All
the methods were applied to each problem with four starting points, corresponding
to nax0 = 0, 0.1, 0.5, 0.9.

4.3.2 SVM test problems

SLBQP test problems corresponding to the dual formulation of two-class C-SVM clas-
sification problems were also used (see, e.g., [122]). Ten problems from the LIBSVM
data set, available from https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/, were considered, whose details (size of the problem, features and nonze-
ros in the data) are given in Table 4.1. A linear kernel was used, leading to problems
with positive semidefinite Hessian matrices. The penalty parameter C was set to 10.
For most of the problems, the number of nonzeros is much smaller than the product
between size and features, showing that the data are relatively sparse. It is worth
noting that SVMsubspace has been designed to take advantage of this issue, while
the sparsity of the data has not been fully exploited when running P2GP.

problem size features nonzeros density
a6a 11220 122 155608 11.37%
a7a 16100 122 223304 11.37%
a8a 22696 123 314815 11.28%
a9a 32561 123 451592 11.28%
ijcnn1 49990 22 649870 59.09%
phishing 11055 68 331650 44.12%
real-sim 72309 20958 3709083 0.24%
w6a 17188 300 200470 3.89%
w7a 24692 300 288148 3.89%
w8a 49749 300 579586 3.88%

Table 4.1. Details of the SVM test set.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Figure 4.4. Performance profiles of P2GP (with CG and SDC), PABBmin, and GPCG-like
on strictly-convex SLBQPs with non-degenerate solutions: execution times for all the
problems (top left), for κ(H) = 104 (top right), for κ(H) = 105 (bottom left), and for
κ(H) = 106 (bottom right).

4.3.3 Results on random problems

We first discuss the results obtained by running the implementations of the P2GP,
PABBmin and GPCG-like methods on the problems described in Section 4.3.1. In
the stopping condition (4.15), tol = 10−6‖ϕ0 + β0‖ was used; furthermore, at most
30000 matrix-vector products and 30000 projections were allowed, declaring failures
if these limits were achieved without satisfying condition (4.15). The methods were
compared by using the performance profiles proposed by Dolan and Moré [52]. We
note that the performance profiles in this section may show a number of failures
larger than the actual one, because the range on the horizontal axis has been limited
to enhance readability. However, all the failures will be explicitly reported in the
text.

Figure 4.4 shows the performance profiles, π(χ), of the three methods on the
set of strictly convex SLBQPs with non-degenerate solutions, using the execution
time as performance metric. The profiles corresponding to all the problems and
to those with κ(H) = 104, κ(H) = 105, and κ(H) = 106 are reported. We see
that the version of P2GP using CG in the minimization phase has by far the best
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Figure 4.5. Performance profiles of P2GP (with CG and SDC), PABBmin, and GPCG-like
on strictly convex SLBQPs with non-degenerate solutions: number of matrix-vector
products (left) and projections (right).
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Figure 4.6. Performance profiles (execution times) of P2GP (with CG and SDC), PABBmin,
and GPCG-like on strictly convex SLBQPs with degenerate solutions (top), convex
SLBQPs (bottom left), non-convex SLBQPs (bottom right).

performance. P2GP with SDC is faster than the PABBmin and GPCG-like methods
too. GPCG-like appears very sensitive to the condition number of the Hessian
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matrix: its performance deteriorates as κ(H) increases and the method becomes less
effective than PABBmin when κ(H) = 106. This shows that the criterion used to
terminate the minimization phase is more effective than the criterion based on the
bindingness of the active variables, especially as κ(H) increases. We also report that
the GPCG-like method has 6 failures over 36 runs for the problems with κ(H) = 106.

For the previous problems, the performance profiles concerning the number of
matrix-vector products and the number of projections are also shown, in Figure 4.5.
We see that PABBmin performs the smallest number of matrix-vector products,
followed by P2GP with GC, and then by GPCG-like and P2GP with SDC. On the
other hand, the number of projections computed by P2GP with CG and with SDC
is much smaller than for the other methods; as expected, the maximum number
of projections is computed by PABBmin. This shows that the performance of the
methods cannot be measured only in terms of matrix-vector products; the cost of
the projections must also be considered, especially when the structure of the Hessian
makes the computational cost of the matrix-vector products lower than O(n2). The
good behavior of P2GP results from the balance between matrix-vector products
and projections.

The performance profiles concerning the execution times on the strictly convex
SLBQPs with degenerate solutions, on the convex (but not strictly convex) SLBQPs,
and on the non-convex ones are reported in Figure 4.6. Of course, the version of
P2GP using the SDC solver was not applied to the last two sets of problems. In the
case of non-convex problems, only 85% of the runs were considered, corresponding
to the cases where the values of the objective function at the solutions computed by
the different methods differ by less than 1%. P2GP with CG is generally the best
method, followed by GPCG-like and then by PABBmin. Furthermore, on strictly
convex problems with degenerate solutions, P2GP with SDC performs better than
GPCG-like and PABBmin. GPCG-like is less robust than the other methods, since
it has 4 failures on the degenerate stricltly convex problems and 8 failures on the
convex ones. This confirms the effectiveness of the proportionality-based criterion.

For completeness, we also run the experiments on the strictly convex problems
with non-degenerate solutions by replacing the line-search strategy in PABBmin
with a monotone line search along the feasible direction [13, Section 2.3.1], which
requires only one projection per GP iteration. We note that this line search does not
guarantee in general that the sequence generated by the GP method identifies in a
finite number of steps the variables that are active at the solution (see, e.g.,[44]).
Nevertheless, we made experiments with the line search along the feasible direction,
to see if it may lead to any time gain in practice. The results obtained, not reported
here for the sake of space, show that the two line searches lead to comparable times
when the number of active variables at the solution is small, i.e. naxsol = 0.1. On
the other hand, the execution time with the original line search is slightly smaller
when the number of active variables at the solution is larger.

Finally, the performance profiles concerning the execution times taken by the
P2GP, PABBmin and GPCG-like methods on the strictly convex BQPs with non-
degenerate and degenerate solutions, on the convex (but not strictly convex) BQPs,
and on the non-convex ones are shown in Figure 4.7. Only 97% of the runs on the
non-convex problems are selected, using the same criterion applied to non-convex
SLBQPs. P2GP with CG is again the most efficient method. The behavior of
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Figure 4.7. Performance profiles (execution times) of P2GP (with CG and SDC), PABBmin,
and GPCG-like on strictly convex BQPs with non-degenerate solutions (top left), strictly
convex BQPs with degenerate solutions (top right), convex BQPs (bottom left), non-
convex BQPs (bottom right).

the methods is similar to that shown on SLBQPs. However, P2GP with SDC and
PABBmin have closer behaviors, according to the smaller time required by projections
onto boxes, which leads to a reduction of the execution time of PABBmin. GPCG-like
has again some failures: 6 on the strictly convex problems with non-degenerate
solutions, 5 on the ones with degenerate solutions, and 9 on the convex (but not
strictly convex) problems.

Now we compare P2GP (using CG) with BLG on the random problems. BLG
was run in its full-space mode (default mode), because the form of the Hessian
(4.24) does not allow BLG to take advantage of the subspace mode. The stopping
condition (4.15) was implemented in BLG, and the code was run with the same
tolerance and the same maximum numbers of matrix-vector products and projections
used for P2GP. Default values were used for the remaining parameters of BLG.
Of course, a comparison of the two codes in terms of execution time would be
misleading, since BLG is written in C, while P2GP has been implemented in Matlab.
Therefore, we consider the matrix-vector products. We do not show a comparison
in terms of projections too, because BLG does a projection at each iteration, and
this generally results in many more projections than P2GP. Performance profiles are
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Figure 4.8. Performance profiles of P2GP (with CG) and BLG on convex (left) and
non-convex (right) SLBQPs: number of matrix-vector products.

provided in Figure 4.8. The results concerning all the types of convex problems are
shown together, since their profiles are similar. On these problems P2GP appears
more efficient than BLG; we also verified that the objective function values at the
solutions computed by the two codes agree on at least six significant digits and are
smaller for P2GP for 70% of the test cases. Furthermore, in four cases BLG does
not satisfy condition (4.15) within the maximum number of matrix-vector products
and projections. The situation is different for the non-convex problems, where the
number of matrix-vector products performed by BLG is smaller. In this case, we
verified that BLG also used Frank-Wolfe directions, which were never chosen for the
convex problems. This not only reduced the number of matrix-vector products, but
often led to smaller objective function values. The values of the objective function
at the solutions computed by the two methods differ by less than 1% for only 47%
of the test cases, which are the ones considered in the performance profiles on the
right of Figure 4.8. On the other hand, in three cases BLG performs the maximum
number of matrix-vector products without achieving the required accuracy.

4.3.4 Results on SVM problems

In order to read the SVM problems, available in the LIBSVM format, BLG was
run through the SVMsubspace code, available from http://users.clas.ufl.edu/
hager/papers/Software/. Since we were interested in comparing P2GP with the
GP implementation provided by BLG, SVMsubspace was modified to have the SVM
subspace equal to the entire space, i.e. to apply BLG to the full SVM problem. For
completeness we also run SVMsubspace in its subspace mode (see [82]), to see what
the performance gain is with this feature. In the following, we refer to the former
implementation as BLGfull, and to the latter as SVMsubspace.

Following [82], BLGfull and SVMsubspace were used with their original stopping
condition, with tolerance 10−3. P2GP was terminated when the infinity norm of the
projected gradient was smaller then the same tolerance. With these stopping criteria,
the two codes returned objective function values agreeing on about six significant
digits, with smaller function values generally obtained by P2GP. At most 70000

http://users.clas.ufl.edu/hager/papers/Software/
http://users.clas.ufl.edu/hager/papers/Software/
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Figure 4.9. Performance profiles on SVM test problems: number of matrix-vector of P2GP
(with CG) and BLG (left), and execution times of BLGfull and SVMsubspace (right).

matrix-vector products and 70000 projections were allowed, but they were never
reached.

In Figure 4.9, left, the performance profiles (in logarithmic scale) concerning the
matrix-vector products of P2GP (with CG) and BLGfull are shown. A comparison
in terms of projections and execution times is not carried out for the same reasons
explained for the random problems. BLGfull appears superior than P2GP; on the
other hand, we verified that the number of projections performed by BLG is by
far greater than that of P2GP for eight out of ten problems. However, it must be
noted that SVMsubspace is much faster than BLGfull, as shown by the performance
profiles concerning their execution times (see Figure 4.9, right). This confirms the
great advantage of performing reduced-size matrix-vector products in solving the
subspace problems for this class of test cases.
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Chapter 5

Application to the solution of
contact mechanics problems

In the previous chapter we introduced P2GP, a novel method for the solution of
SLBQPs and BQPs. Even if the original idea was mainly to deal with SLBQPs, the
numerical results shown in Section 4.3 suggest that the new method outperforms
standard gradient projection schemes and the well known GPCG algorithm [109]
in the solution of BQPs as well. To further asses the performance of P2GP in
the solution of BQPs, in this chapter we compare it with MPRGP by Dostál
[65] (described in Section 2.4.3), in solving the bound constrained subproblems
arising in an Augmented Lagrangian method for problems of form (1.1) modeling
contact mechanics applications. We start by introducing the Augmented Lagrangian
framework called SMALBE (Semi-Monotonic Augmented Lagrangian for Bound and
Equality constraints) [55] and by comparing the performance of P2GP and MPRGP
in the solution of elliptic model problems. Then, we show how the discretization
of contact mechanics problems by the TFETI (Total Finite Element Tearing and
Interconnecting) domain decomposition method [60] leads to problems of the form
(1.1). Finally, we compare the performance of P2GP and MPRGP in the solution
of one 2D contact problem with friction and two 3D frictionless contact problems,
showing the competitiveness of the proposed method.

5.1 Augmented Lagrangian methods

In the previous chapters we have explored the possibility of solving problems of
the form (1.1) by gradient projection methods. In the final part of Chapter (3)
we observed how these approaches are of practical interest in the case of sparse
constraints, thanks to the availability of efficient projection methods.

In the case of dense constraints the use of Augmented Lagrangian methods can
typically lead to better performances. The idea behind this class of methods, which
we will briefly describe following [32, 34], is to ease the solution of the problem by
getting rid of the dense linear constraints forcing implicitly their satisfaction by
introducing a so called penalty function.

Starting from the Lagrangian function related to the equality constraints in (1.1),
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i.e. the function
L(x,θ) = 1

2xT H x− cTx− (Ax− b)Tθ,

we define the Augmented Lagrangian function as

LA(x,θ, ρ) = 1
2xT H x− cTx− (Ax− b)Tθ + ρ

2‖Ax− b‖2. (5.1)

Given a fixed vector θ̂ and a fixed scalar ρ̂, consider the problem

min LA(x, θ̂, ρ̂),
s.t. l ≤ x ≤ u. (5.2)

The solution x to this problem satisfies the first order optimality conditions

g−AT θ̂ + ρ̂AT (Ax− b) =
n∑
i=1

λiei,

λi ≥ 0 if i ∈ Al(x), λi ≤ 0 if i ∈ Au(x), λi = 0 if i ∈ F(x),

where λ = (λi)i=1,...,n is the vector of Lagrange multipliers associated with the bound
constraints. By comparing the first condition to (3.1), one can clearly observe that
x concides with the solution x∗ to (1.1) if

θ∗ = θ̂ − ρ̂(Ax− b), (5.3)

or, equivalently, if
Ax− b = 1

ρ̂
(θ̂ − θ∗). (5.4)

An Augmented Lagrangian method for problem (1.1), starting from a triple
(x0,θ0, ρ0), builds up a sequence of triplets

{
(xk,θk, ρk)

}
in the following way. At

each step k at first the estimate xk+1 is computed by solving the problem

min LA(x,θk, ρk),
s.t. l ≤ x ≤ u, (5.5)

then the Lagrange multipliers estimate θk+1 and the penalty parameter ρk+1 are
updated accordingly.

Starting from (5.3), a possible way to update the Lagrange multipliers vector θk
is to set

θk+1 = θk − ρk(Axk+1 − b), (5.6)

which is usually referred to as the first-order Lagrange multiplier estimate. It is
interesting to note that, since

∇θLA(x,θ, ρ) = −(Ax− b),

the update (5.6) can be seen as a gradient ascent step with step length ρk aimed at
driving (xk,θk) towards the saddle point of LA. Even if more sophisticated estimates
could lead to better convergence rate for the method, the first order estimate is a
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very common choice thanks to its low computational cost and its good practical
performance.

As regards the update of ρk, the idea is to increase ρk, if needed, to foster the
feasibility of xk+1. Observe that LA(x,θk, ρk) is a quadratic function, whose Hessian
matrix is

∇2
xLA(x,θk, ρk) = H + ρk ATA,

which tends to be ill-conditioned as ρk increases. However, equation (5.4) suggests
that to make xk approach x∗ there is no need to push ρk towards infinity if one can
improve the quality of the Lagrange multipliers estimate θk.

To ease the description of the Augmented Lagrangian framework introduced
in the next section, here we introduce the projected gradient of the Augmented
Lagrangian function, w.r.t. the bound constraints, as

[∇BLA(x,θ, ρ)]i =


−∇xiLA(x,θ, ρ) if i ∈ F(x),

max{0,−∇xiLA(x,θ, ρ)} if i ∈ Al(x),
min{0,−∇xiLA(x,θ, ρ)} if i ∈ Au(x).

The projected gradient is a natural choice as optimality measure for the bound
constrained subproblem.

5.1.1 The SMALBE and SMALBE-M frameworks

The Semi-Monotonic Augmented Lagrangian for Bound and Equality constraints
(SMALBE) [56] is an Augmented Lagrangian framework based on the original method
proposed by Conn, Gould and Toint [32, 33]. The main difference between the two
is the use of an adaptive precision control for the BQP subproblem [59] based on
the feasibility of the current iterate, i.e.∥∥∥∇BLA(xk+1,θk, ρk)

∥∥∥ ≤ min
{
M‖Axk+1 − b‖, η

}
, (5.7)

with M > 0 and η > 0 given constants, in place of the original requirement of∥∥∥∇BLA(xk+1,θk, ρk)
∥∥∥ ≤ ωk,

where {ωk} is a priori defined and converges to zero. Another difference between
SMALBE and the method in [32] lies in the adaptive strategy for the update of the
penalty parameter ρ introduced in [55]. At each step of SMALBE, starting from
the triple (xk,θk, ρk), an approximate solution xk+1 to the BQP subproblem (5.5)
is computed, using any convergent algorithm, such that it satisfies the optimality
condition (5.7). Given xk+1, the Lagrangian parameters are updated using the first
order estimate

θk+1 = θk − ρk
(
Axk+1 − b

)
,

and a check on the sufficient decrease of the Augmented Lagrangian function is
performed to decide whether increase the penalty parameter or not.

To avoid the ill-conditioning due to the increase of the penalty parameter, a
modification of the SMALBE, called SMALBE-M, was proposed in [58]. In SMALBE-
M the penalty parameter remains fixed and the constant M in (5.7) is updated
instead. The SMALBE-M framework is depicted in Algorithm 5.1.

The following result can be proved [63, Theorem 9.2].
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Algorithm 5.1 SMALBE-M (Semi-Monotonic Augmented Lagrangian for Bound
and Equality constraints with modification of M)
1: tol ≥ 0; η > 0; ϑ ∈ (0, 1); ρ > 0; M0 = M1 ∈ R; θ0 ∈ Rm; x0 ∈ Rn; k = 0;
2: while (‖∇BLA(xk,θk, ρ)‖ ≤ tol ∧ ‖Axk − b‖ ≤ tol) do . Main loop
3: Find an approximate solution xk+1 to (5.5), such that . BQP subproblem∥∥∥∇BLA(xk+1,θk, ρ)

∥∥∥ ≤ min
{
Mk+1‖Axk+1 − b‖, η

}
;

4: θk+1 = θk − ρ
(
Axk+1 − b

)
;

5: if (Mk+1 = Mk) ∧
(
LA(xk+1,θk+1, ρ) < LA(xk,θk, ρ) + ρ

2‖Axk+1 − b‖
)
then

6: Mk+2 = ϑMk+1; . Tighten precision control
7: else
8: Mk+2 = Mk+1;
9: end if

10: k = k + 1;
11: end while

Theorem 5.1.1. Let H be symmetric and positive definite. Let {xk}, {θk} and
{Mk} be generated by the SMALBE-M framework for the solution of problem (1.1),
with η > 0, 0 < ϑ < 1, M0 > 0, ρ > 0, and θ0 ∈ Rm. Then the following statements
hold.

(i) The sequence {xk} converges to the solution x∗ to (1.1).

(ii) If Assumption 3.1.2 holds, then the sequence {θk} converges to a uniquely
determined vector θ∗ of Lagrange multipliers for the equality constraints in
(1.1).

Moreover, it can be proved that the number of outer iterations needed by
SMALBE-M to satisfy a given tolerance has a uniform bound which is independent
on the conditioning of the constraint matrix A. In the case of strictly convex
problems, under Assumption 3.1.2, it can be proved [58] that the framework is able
to identify free and binding variables in a finite number of iterations and that, after
the identification, it possesses an R-linear rate of convergence, provided that the
algorithm used for the solution of (5.5) has R-linear rate of convergence.

5.2 Preliminary tests on elliptic model problems
We consider the problem of finding the solution v : R2 → R to the following elliptic
differential problem in Σ = [0, 2]× [0, 2]

∆v ≡ ∂2v

∂x2 + ∂2v

∂y2 = f(x, y), (x, y) ∈ Σ

v(x, y) = 0, (x, y) ∈ ∂Σ,
l(x, y) ≤ v(x, y) ≤ u(x, y), (x, y) ∈ Σ,

representing the equilibrium of a membrane, fixed at the boundary of the square Σ,
and pushed against the obstacles l (below) and u (above) by the force f : R2 → R.
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By means of a finite differences discretization scheme, we can find a discretized
version v of v by solving the QP problem

min 1
2vTHv− fTv

s.t. Cv = 0,
l ≤ v ≤ u,

where H is the Laplace matrix, f , l and u are the discretized version of respectively
f , l and u, and the constraints Cv = 0 impose the condition vi = 0 for all the i
corresponding to points onto ∂Σ. We selected two different instances of the problem
and tested the SMALBE-M framework equipped with P2GP [51] (Algorithm 4.1),
and MPRGP [65] Algorithm 5.2.

Algorithm 5.2 MPRGP (Modified Proportioning with Reduced Gradient Projec-
tion)
1: x0 ∈ Ω; tol > 0; α ∈ (0, 2‖H‖−1); Γ > 0;
2: k = 0; g = ∇f(x0) = H x0 − c; p = ϕ(x0);
3: while (‖∇Ωf(xk)‖ > tol) do . Main loop
4: if

(
‖β(xk)‖2 ≤ Γ2 ϕ̃(xk)Tϕ(xk)

)
then

5: αcg = gTp
pTH p , y = xk − αcgp;

6: αf = max{α| xk − αp ∈ Ω};
7: if (αcg ≤ αf ) then
8: xk+1 = y; g = g− αcgH g; . CG step

9: γ = ϕ(y)TH p
pTH p ; p = ϕ(y)− γp;

10: else
11: x(k+ 1

2 ) = xk − αfp; g = g− αfH p; . Feasible halfstep
12: xk+1 = x(k+ 1

2 ) − α ϕ̃(x(k+ 1
2 )); . Expansion step

13: g = H xk+1 − b; p = ϕ(xk+1);
14: end if
15: else
16: d = β(xk); αcg = gTd

dTH d ; . Proportioning step
17: αfcg = min{max{α| xk − αd ∈ Ω}, αcg};
18: xk+1 = xk − αfcgd; g = g− αfcgH d; p = ϕ(xk+1);
19: end if
20: k = k + 1;
21: end while

For all the testes the discretization was based on a 640 × 640 2D grid, the
tolerance was set as 1e− 4 ‖f‖, ρ = 1, M0 = 1, and ϑ = 0.5.

Test 1

The first test is characterized by the following definitions

f(x, y) = 5π2 sin(π x) sin
(
π

2 y
)
,

l(x, y) = 0.1 sin
(

16π x− π

6

)
sin
(

16π y − π

6

)
− 0.2,

u(x, y) = 0.1 cos
(

16π x− π

6

)
cos

(
16π y − π

6

)
+ 0.2.
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The 2D solution to the problem is shown in Figure 5.1 together with its section
at y = 1. The performances of the two algorithms in the solution of the problem
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Figure 5.1. First 2-dimensional membrane equilibrium test (left). Section of the solution
and the lower and upper bounds at y = 1 (right).

are reported iteration-wise in Table 5.1 and Table 5.2. Both algorithms were able

Table 5.1. Progress of SMALBE-M/MPRGP in the solution of first membrane test.

k LA(vk,θk, ρ)
∥∥∥∇BLA(vk,θk, ρ)

∥∥∥ #Hv Mk |F(vk)|
/
|A(vk)|

0 0.0 1.93 e-2 52 1.00 410881/0
1 2.688479 e+1 7.44 183 1.00 391164/19717
2 −1.081119 2.82 e-1 200 1.00 387807/23074
3 −1.150512 1.45 e-1 194 5.00 e-1 392628/18253
4 −1.163713 4.18 e-3 159 5.00 e-1 392955/17926
5 −1.163988 4.12 e-2 132 2.50 e-1 393172/17709
6 −1.165628 1.46 e-4 130 2.50 e-1 393363/17518
7 −1.165633 1.13 e-4 127 1.25 e-1 393356/17525
8 −1.165635 3.20 e-5 121 1.25 e-1 393358/17523
9 −1.165635 3.82 e-6 100 6.25 e-2 393359/17522
10 −1.165635 1.91 e-6 44 6.25 e-2 393359/17522

Table 5.2. Progress of SMALBE-M/P2GP in the solution of first membrane test.

k LA(vk,θk, ρ)
∥∥∥∇BLA(vk,θk, ρ)

∥∥∥ #Hv Mk |F(vk)|
/
|A(vk)|

0 0.0 1.93 e-2 52 1.00 410881/0
1 −1.164921 2.57 e-3 203 1.00 392957/17924
2 −1.165634 3.73 e-4 211 1.00 393357/17524
3 −1.165635 1.45 e-6 246 5.00 e-1 393359/17522

to reach the solution, however the SMALBE-M equipped with MPRGP required
11 outer iterations against the 4 required by SMALBE-M/P2GP, with an overall
amount of 1442 Hessian-vector products against the 712 of the combination with
P2GP.
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Test 2

The second test is characterized by the following definitions

f(x, y) = −5π2 sin
(
π

2x
)

sin
(
π

2 y
)
,

l(x, y) = 0.01 sin
(
π

2x
)

sin (π y)− 0.1, x ∈ [0, 1)

l(x, y) = 0.1 sin
(

16π x− π

6

)
sin
(

16π y − π

6

)
− 0.2, x ∈ [1, 2]

u(x, y) = 0.2.

The 2D solution to the problem is shown in Figure 5.1 together with its section at
y = 1. The performances of the two algorithms in the solution of the problem are
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Figure 5.2. Second 2-dimensional membrane equilibrium test (left). Section of the solution
and the lower and upper bounds at y = 1 (right).

reported iteration-wise in Table 5.3 and Table 5.4.
Again, both algorithms were able to reach the solution and the choice of P2GP

led to a lower computational cost. Indeed the SMALBE-M equipped with MPRGP
required 15 outer iterations and 2395 matrix-vector products against the respectively
5 and 811 required by SMALBE-M/P2GP.

In the solution of these two model problems P2GP clearly outperformed MPRGP
as a solver for the BQP subproblems in SMALBE-M, probably thanks to its ability to
grab or release multiple constraints during the identification phase. This conjecture
is enforced by the second problem which was built to have a large number of variables
at their lower bound at the solution (∼ 146000 against the ∼ 17500 of the first test).
In the following sections we will see how the two algorithms perform in the solution
of more complicated contact mechanic problems.

5.3 Discretization of contact mechanics problems
The aim of this section is to give an idea on how the discretization of contact
mechanic problems, in the case of 2D problems (possibly with friction) and in the
case of 3D problems, leads to the solution of problems of the form (1.1). Clearly a
detailed formulation of contact problems is out of the scope of this work, therefore
we refer the reader, e.g., to [63, Chapter 11] on which the content of this section
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Table 5.3. Progress of SMALBE-M/MPRGP in the solution of second membrane test.

k LA(vk,θk, ρ)
∥∥∥∇BLA(vk,θk, ρ)

∥∥∥ #Hv Mk |F(vk)|
/
|A(vk)|

0 0.0 1.93 e-2 52 1.00 410881/0
1 −9.682160 e-1 1.85 e-1 192 1.00 232720/178161
2 −1.057361 5.91 e-3 183 1.00 249705/161176
3 −1.073283 2.57 e-2 170 5.00 e-1 260410/150471
4 −1.068916 1.04 e-1 196 5.00 e-1 262160/148721
5 −1.074556 1.01 e-3 197 5.00 e-1 262690/148191
6 −1.074600 1.46 e-2 198 2.50 e-1 263193/147688
7 −1.074744 9.95 e-3 198 2.50 e-1 263631/147250
8 −1.074804 3.36 e-4 191 1.25 e-1 263873/147008
9 −1.074807 3.55 e-5 180 1.25 e-1 263900/146981
10 −1.074808 4.22 e-5 161 6.25 e-2 263922/146959
11 −1.074809 3.06 e-5 155 6.25 e-2 263970/146911
12 −1.074809 2.46 e-5 149 3.13 e-2 263965/146916
13 −1.074809 1.40 e-5 141 3.13 e-2 263982/146899
14 −1.074809 1.84 e-6 32 1.56 e-2 264000/146881

Table 5.4. Progress of SMALBE-M/P2GP in the solution of second membrane test.

k LA(vk,θk, ρ)
∥∥∥∇BLA(vk,θk, ρ)

∥∥∥ #Hv Mk |F(vk)|
/
|A(vk)|

0 0.0 1.93 e-2 52 1.00 410881/0
1 −1.069534 3.45 e-3 204 1.00 273216/137665
2 −1.074795 3.25 e-4 204 1.00 264030/146851
3 −1.074809 2.02 e-5 204 5.00 e-1 263987/146894
4 −1.074809 1.42 e-6 147 5.00 e-1 263996/146885

is based. To ease the description we will focus on the frictionless Hertz problem,
named after Heinrich Hertz who in 1882 solved the contact problem of two elastic
bodies with curved surfaces.

5.3.1 The frictionless Hertz problem

Consider two bodies Ω1 and Ω2 of different materials, disposed as in Figure 5.3,
whose surface will be indicated respectively as Γ1 and Γ2. Each body has a part of
the boundary, namely Γ1

C and Γ2
C which can enter in contact with the other body

(to ease the description we will here consider that the every point of Γ1
C and Γ2

C can
get into contact with a point of the opposite surface). A pressure P is applied on
the upper surface of the second body, i.e. on the part of its boundary indicated as
Γ2
F . The lower surface of the first body is fixed on the ground, which will translate

into a Dirichlet boundary condition on Γ1
U ⊂ Γ1. After the deformation due to P ,

each point xi ∈ Ωi ∪ Γi is transformed into the point

yi(xi) = xi + ui(xi),

where ui = ui(xi) is the displacement vector defining the deformation of Ωi. A
non-penetration condition is enforced, i.e. given a point xi ∈ ΓiC it has to be
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yi(xi) /∈ Ωj (j 6= i). It can be shown that the non-penetration condition can be
restated in a more computation-friendly version by considering a bijective continuous
map

χ1,2 : Γ1
C → Γ2

C

and imposing that(
u1(x)− u2 ◦ χ1,2(x)

)T
n1(x) ≤

(
χ1,2(x)− x

)T
n1(x), x ∈ Γ1

C , (5.8)

where n1(x) is an approximation of the outer unit normal to Γ1 after the deformation.
Condition (5.8) is known as the (strong) linearized non-penetration condition.

Figure 5.3. The 3D Hertz problem setting [61].

For simplicity, we assume that the bodies are made of an isotropic linear elastic
material so that the constitutive equation for the Cauchy stress tensor σ is given in
terms of the fourth-order Hooke elasticity tensor C, defined as

Cijkl = E

1 + ν

(
ν

1− 2ν δijδkl + δikδjl

)
, i, j, k, l = 1, 2, 3,

where E is the Young’s modulus, ν is the Poisson ratio and δrs indicates the Kronecker
delta and the Cauchy’s small strain tensor ε(v), defined componentwise as

εij(v) = 1
2

(
∂vj
∂xi

+ ∂vi
∂xj

)
, i, j = 1, 2, 3.

The stress tensor σ(v) is thus defined componentwise as

σij(v) = (C ε(v)) =
3∑

k,l=1
Cijklεkl(v), i, j = 1, 2, 3.

Given the volume forces f i : Ωi → R3, the zero boundary displacements u1
Γ : Γ1

U → {0}
and the boundary traction f iΓ : Γ2

F → R3, the linearized elastic equilibrium condition
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and the Dirichlet and Neumann boundary conditions for the displacement u can be
written as

−div σ(u) = f in Ω,
u1 = 0 on Γ1

U ,
σ(u2)n2 = f2

Γ on Γ2
F ,

(5.9)

where ni is the outer unit normal to Γi. Having assumed that the contact is
frictionless, the surface traction τ = −σ(u1)n1 on the contact interface Γ1

C has a null
tangential component, i.e. τ = τN =

(
τTn1

)
n1, and we can write the linearized

conditions of equilibrium as

τTn1 ≥ 0,(
τTn1

) ((
u1(x)− u2 ◦ χ1,2(x)

)T n1(x)− g(x)
)

= 0, x ∈ Γ1
C ,

(5.10)

where g(x) =
(
χ1,2(x)− x

)T n1(x), with the second condition known as the comple-
mentarity condition. Since, according to Newton’s third law, the normal traction
acting on the two contacting surfaces is equal and opposite, we have that

− σ
(
u2 ◦ χ1,2(x)

)
n1 = −λ, x ∈ Γ1

C . (5.11)

The system of equation constituted by (5.9), (5.10) and (5.11) constitutes the
classical formulation of two-body frictionless contact problems.

5.3.2 The TFETI domain decomposition method

Real-life contact mechanics problems usually involve a larger number of domains
with a much more complicated structure, this clearly makes the solution of the
discretized problem very expensive. One way to deal with large problems is to tear
the domains in smaller parts, allowing to separate the problem into the solution of a
set of smaller problems with the cost of introducing additional constraints to “glue”
the solution of the subproblems into the solution of the original one.

Focusing on the case of the Hertz problem represented in Figure 5.3, we can
decompose each body (together with its boundaries) into subdomains of size H,
as shown in Figure 5.4, assign each subdomain a unique number i ∈ {1, . . . , s}.
Similarly to what has been done for the case of contact surfaces, we will denote
with ΓijG the part of the boundary of Ωi which is “glued” to the boundary of Ωj ;
clearly ΓijU = ΓjiU , for all (i,j) and ΓijU = ∅ if the subdomains Ωi and Ωj are not
adjacent components of the same original domain. We therefore introduce the gluing
conditions

ui(x) = uj(x), x ∈ ΓijU ,
σ
(
ui
)

ni = −σ
(
uj
)

nj .
(5.12)

After introducing regular grids with discretization parameter h in the subdomains
Ωi, so that they match across the interfaces between the subdomains, by indexing
contiguously the nodes and entries of corresponding vectors in the subdomains, and
using a Lagrangian finite element discretization, the solution of the Hertz problem
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Figure 5.4. The 3D Hertz problem tearing and interconnecting [61].

turns into the solution of the quadratic programming problem

min 1
2uTKu− uT f

s.t. BIu ≤ cI ,
BEu = cE ,

(5.13)

where
K = diag(K1, . . . ,Ks) ∈ Rn×n

is a symmetric positive semidefinite block-diagonal matrix, where each diagonal
block corresponds to one of the s subdomains. The matrices BI ∈ RmI×n and
BE ∈ RmE×n are both full-rank matrices and describe, together with cI ∈ RmI

and cE ∈ RmE , respectively the linearized non-penetration conditions and the zero
displacements on the part of the boundary with imposed Dirichlet’s condition and
the gluing conditions between the faces of the subdomains. It can be assumed,
w.l.o.g., that the rows of the matrix B =

(
BT
E , B

T
I

)T
are orthonormal; this can be

achieved provided that each node is involved in at most one inequality. Finally
f ∈ Rn represents the force acting on each node of the discretization, arising either
from the volume forces or from some other imposed traction.

5.3.3 Dual formulation

The Lagrangian function associated with (5.13) is

L(u,θI ,θE) = 1
2uTKu− fTu + θTI (BIu− cI) + θTE(BEu− cE),
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where we denoted with θI and θE the Lagrange multipliers associated respectively
with the inequality and the equality constraints.

By introducing the Moore-Penrose inverse of K, i.e. the matrix K+ such that
KK+K = K, by indicating as R the orthonormal matrix which spans the kernel of
K, and by defining

θ = [θTI ,θTE ]T , c = [cTI , cTE ]T ,

we have that, given a fixed θ, the minimizer u of L(u,θ) ≡ L(u,θI ,θE) satisfies

K u− f +BTθ = 0,

which can be verified if and only if

f −BTθ ∈ Im(K), ⇔ RT
(
f −BTθ

)
= 0.

Moreover, it can be shown that there exists a vector θ such that

u = K+
(
f −BTθ

)
+R θ.

Therefore, the solution to (5.13) can be found by solving the problem

min Θ(θ) = 1
2θ

TFθ − rTθ
s.t. θI ≥ 0,

Gθ = h,
(5.14)

where F = BK+BT , r =
(
BK+f − c

)
, G = RTBT and h = RT f .

5.3.4 Formulation in presence of friction

We have seen how the discretization of frictionless problems leads to problems of
the form (1.1), however in the solution of real-life problems there is usually the
need to take friction into account. Since well-known Coulomb law of friction leads
to non-convex formulation, a different friction model due to Henri Tresca is often
considered. This model, which however violates the laws of physics, assumes that the
normal pressure is a priori known on the contact interface. Despite its theoretical
flaws, it is often taken into account, thanks to the fact that it leads to convex
well-posed problems and its solution can be used in the fixed-point iterations for the
solution of problems with Coulomb’s friction [63, Chapter 12].

From the point of view of the classical formulation, taking into account Tresca
friction introduces constraints involving the tangential component of the surface
traction τT = τ − τN , which will no more be null, and the tangential displacement
uT = u− uN . It can be shown (see, e.g., [62]) that this induces the presence in the
dual formulation of constraints of the form

‖[θF ]i‖ ≤ Ψi

where Ψi > 0 and each dual variable [θF ]i is a scalar in the case of 2D problems and
a vector in R2 in the case of 3D problems. In the former case this leads to imposing
lower and upper bounds on the dual variables, thus leading again to a problem of
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the form (1.1). In the 3D case, instead, it leads to separable circular constraints,
making the dual problem a Quadratically Constrained Quadratic Programming
problem (QCQP). The peculiar structure of the quadratic constraints makes it cheap
to compute a projection onto the feasible set; therefore, this class of problems can
be solved by means of specific generalization of the algorithms considered in this
chapter [23, 22]. Since the solution of QCQPs is out of the scope of this work, we
consider only frictionless 3D problems in our numerical experiments.

5.4 Numerical experiments

We considered three test problems, one stationary 2D contact problem with friction
and two 3D frictionless contact problems. As discussed in the previous section, in
all the cases the problem is reformulated as the solution of a problem of form (1.1),
which can be solved by means of the SMALBE-M framework introduced in the
previous sections. We performed the test for this section (derived from [66]), using
MATLAB implementation of SMALBE-M, MPRGP and P2GP.

5.4.1 Results on the 2D beam with material insets problem

Our first benchmark is the 2D beam problem depicted in left part of Figure 5.5,
where inside the “soft” (E = 4.4 e+5, ν = 0.34) rectangular beam there are 8 stiff
(E = 1.6 e+7, ν = 0.32) circular insets. The whole set of bodies is subject to a force
applied to the right side of the soft beam as shown in the figure. The discretization
of the problem leads to a problem with 2222 variables, 1024 of which are subject
either to lower bounds or to both lower and upper bounds, and 60 linear equality
constraints. The difficulty of this problem lies in the need for the iterative solver to
distribute the global information across several nonlinear interfaces.

We solved six different instances of the problem, characterized by different choices
for the boundary forces (Fx, Fy). The results obtained by solving the problem
with the SMALBE-M framework equipped either with P2GP or with MPRGP are
summarized in Table 5.5. In particular, the number of variables which are on a
bound (|A|), number of outer iterations and Hessian multiplications are shown.

Figure 5.5. 2D beam with insets setting (left) and Huber-von Mises-Hencky stress (right).
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MPRGP
Fx Fy |A| ‖∇BLA‖ ‖Gθ − h‖ #out_it #Fv
100 0 890 2.7 e-14 5.0 e-7 19 1667
75 15 879 5.3 e-11 9.9 e-7 16 877
75 -15 878 5.9 e-13 8.0 e-7 19 1494
-100 0 618 4.1 e-13 5.2 e-8 14 1321
-75 15 667 1.1 e-12 1.6 e-7 14 1380
-75 -15 666 2.5 e-12 3.9 e-7 14 1332

P2GP
Fx Fy |A| ‖∇BLA‖ ‖Gθ − h‖ #out_it #Fv
100 0 890 1.5 e-9 7.0 e-7 15 1298
75 15 879 7.7 e-9 1.3 e-6 18 1701
75 -15 878 4.0 e-9 8.3 e-7 16 1427
-100 0 618 3.8 e-9 9.9 e-7 14 1432
-75 15 667 5.8 e-9 1.1 e-7 16 1625
-75 -15 666 1.6 e-9 6.7 e-7 14 1396

Table 5.5. Test results for SMALBE-M equipped with MPGRP and P2GP on the 6
benchmarks of the 2D beam with insets.

5.4.2 Results on the frictionless Hertz 3D problem

The second benchmark is a 3D two-body contact problem depicted in Figure 5.6
(left). The stiff upper body (E = 1.6 e+6, ν = 0.32, ρ = 5.08 e-9) is pressed toward
the softer lower one (E = 4.4 e+5, ν = 0.34, ρ = 1.04 e-9). The upper body has been
divided in 3× 3× 2 subdomains, while the lower one has been divided in 3× 3× 3
subdomains; each subdomain has been discretized with 10 × 10 × 10 nodes. The
straight edges of the two bodies have length L = 10. For our test we fixed the
radius of the lower body at r1 = −50 which translates into a concave surface and we
chose two different radii for the upper body, namely r2 = 30 and r2 = 45. The first
problem is characterized by 34854 variables, 900 of them are subject to lower bounds,
while the second one is characterized by 34914 variables, 960 of them subject to
lower bounds; both problems are subject to 270 linear equality constraints. The
problem is not easy as on the solution comprises many dual degenerate components
on the boundary of the active contact interface. The performance of both algorithms
is summarized in Table 5.6.

5.4.3 Results on the friction 3D ball bearing problem

As last benchmark we chose an example of a real-life application, i.e the 3D multi-
body contact problem describing the interaction between the various components of
a ball bearing; in particular only a segment of the ball bearing is considered (see
the right side of Figure 5.7). The problem has been solved by means of the same
variant of the FETI method used for the previous case. The discretization leads to
a QP problem characterized by 19976 variables and 120 linear equality constraints.
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Figure 5.6. Frictionless Hertz 3D setting (left) and Huber-von Mises-Hencky stress (right).

MPRGP
r2 P |A| ‖∇BLA‖ ‖Gθ − h‖ #out_it #Fv

30

1 856/900 4.6 e-7 3.6 e-6 61 1687
10 822/900 8.2 e-7 3.6 e-6 28 1562
100 729/900 3.5 e-6 3.3 e-6 16 1544
1000 556/900 1.3 e-6 3.6 e-6 12 2447

45

1 887/960 1.5 e-7 5.1 e-7 27 1617
10 821/960 4.6 e-7 6.0 e-7 18 1713
100 659/960 1.6 e-7 5.4 e-7 13 2778
1000 324/960 9.4 e-7 8.5 e-7 11 2496

P2GP
r2 P |A| ‖∇BLA‖ ‖Gθ − h‖ #out_it #Fv

30

1 856/900 4.1 e-7 3.4 e-6 78 1954
10 822/900 9.4 e-7 3.7 e-6 25 2103
100 729/900 3.3 e-6 3.2 e-6 17 2176
1000 556/900 1.4 e-6 2.2 e-6 14 3461

45

1 887/960 1.5 e-7 5.2 e-7 34 1900
10 821/960 5.1 e-7 5.8 e-7 20 2306
100 659/960 3.3 e-7 6.1 e-7 13 3301
1000 324/960 1.1 e-6 9.7 e-7 13 3622

Table 5.6. Test results for SMALBE-M equipped with MPGRP and P2GP on the 8
instances of the frictionless 3D Hertz problem.
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The active set at the optimal solution consists of 1199 variables among the 1212
subject to a lower bound. In this case the framework equipped with P2GP as inner
solver took 51 iterations for the solution of the problem, with a total amount of 849
Hessian multiplications, thus outperforming the framework equipped with MPRGP
which took 60 iterations and a total amount of 1188 Hessian products.

Figure 5.7. Ball bearing setting (left) and displacement stress (right).

The result of the performed tests show that in some cases P2GP appears to be
competitive with MPRGP, which is a standard choice for contact problems, and is
sometimes able to outperform it. These tests confirmed in some sense our conjecture
that the “aggressive” strategy of P2GP for the expansion of the active set performs
better in problems where the percentage of active constraints is higher (see for
example the case of the ball bearing and the case of the 2D beam). On the other
hand, the results in Table 5.6 indicate that MPRGP is more efficient in treating
problems with many dual degenerate components of the solution. It is likely that a
suitable combination of both algorithms can result in still faster solver.
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Conclusions and future work

In this work we dealt with subspace accelerated gradient projection methods for the
solution of quadratic programming problems.

We proposed a reformulation of the stationarity conditions for problems of
the form (1.1), which allowed us to introduce a novel active-set framework, called
Proportionality-based Subspace Accelerated framework for Quadratic Programming
(PSAQP), for the solution of QPs. PSAQP alternates two phases: an identification
phased, based on gradient projection steps, and a minimization phase, based on
an unconstrained minimization onto the reduced subspace defined by the current
active set. We introduced a criterion to switch between the two phases based on a
comparison between a measure of optimality within the reduced space (called free
gradient) and a measure of the quality of the current active set (called chopped
gradient). From the theoretical point of view, a nice consequence of using this
criterion is that finite convergence for strictly convex problems can be proved even
in case of degeneracy at the solution.

A novel method for the solution of BQPs and SLBQPs, called Proportionality-
based 2-phase Gradient Projection (P2GP), is proposed as a specialization of PSAQP.
P2GP may be seen as a generalization of the GPCG method by Moré and Toraldo
[109] to a wider class of problems. The most distinguishing feature of P2GP with
respect to GPCG stands in the criterion used to stop the minimization phase. This is
a critical issue, since requiring high accuracy in this phase can be a useless and time-
consuming task when the face where a solution lies is far from being identified. Other
important novelties are the ability to deal with SLBQPs, the introduction of BB-like
step lengths in the identification phase and the possible use of spectral gradient
methods in the minimization phase. The numerical tests reported in Section 4.3 show
a strong improvement of the computational performance when the proportionality
criterion is used to control the termination of the minimization phase. In particular,
the comparison of P2GP with a modification of GPCG (using the same BB-like step
lengths as P2GP in the identification phase) shows the clear superiority of P2GP
and its smaller sensitivity to the Hessian condition number. Thus, proportionality
allows one to handle the minimization phase in a more clever way than switching
criteria based on heuristics as the one involving the bindingness of the active set
used in GPCG. The numerical results also show that P2GP requires many fewer
projections than efficient GP methods like PABBmin and the one implemented in
BLG [89]. This leads to a significant time saving, especially when the Hessian matrix
is sparse or has a structure that allows the computation of the matrix-vector product
with a computational cost smaller than O(n2), where n is the size of the problem.
We also introduced a novel procedure for the creation of SLBQPs and BQPs with
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different sizes, spectral properties and levels of degeneracy, which can be used as
a benchmark to test optimization algorithms for these classes of problems. The
MATLAB code implementing P2GP and the test problem generator is available
from https://github.com/diserafi/P2GP.

The encouraging numerical results obtained for P2GP in the solution of both
SLBQPs and BQPs led us to test it as a computational kernel in Augmented
Lagrangian methods for the solution of some problems arising in contact mechanics.
The results, reported in Chapter 5 show that P2GP is competitive with MPRGP [65],
which is tailored for the solution of contact mechanics problems, and it is sometimes
able to outperform it. The test performed on randomly generated problems have
proved P2GP to be efficient when a good approximation to the solution is required.
This could suggest that P2GP could not be the ideal choice in the context of
Augmented Lagrangian methods, where a rough approximation to the subproblems’
solutions, especially in the initial steps, can still lead to a fast convergent scheme in
practice. However, the results on the elliptic model problems and the test performed
on the 3D ball bearing problem allow us to conjecture that, thanks to the use of
gradient projection steps, which are able to add/remove multiple constraints at a
time to/from the active set, P2GP could perform better in problems where the
percentage of active constraints at the solution is higher. From the physical point of
view, since active constraints in the dual formulation are related to inactive contact
points in the primal formulation, these scenarios are related to the cases in which
only small regions of the contact surfaces of the bodies are effectively in contact at
the solution.

An interesting feature of PSAQP is that it provides a general framework, allowing
different step length rules in the GP steps, and different methods in the minimization
phase. The encouraging theoretical and computational results suggest that this
framework deserves to be further investigated. An implementation for general QPs
is currently under study. As noted in Section 3.4.1, a crucial aspect for an efficient
implementation are the algorithm for the projection onto the polyhedron and its
tangent cone and the algorithm used to compute the estimate of the Lagrange
multipliers needed in the computation of the free and the chopped gradients. The
latter could also be useful for the introduction of the proposed Lagrange multiplier
estimate in Augmented Lagrangian frameworks for the solution of QPs. This,
together with possible extensions to more general optimization problems, will be the
object of future works.

https://github.com/diserafi/P2GP
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