
PhD Thesis in Automatica, Bioingegneria e Ricerca Operativa

XXXI Ciclo

Optimal Redundancy Control for
Robot Manipulators

Khaled Al Khudir

Advisor Prof. Alessandro De Luca

October 2018

Dipartimento di Ingegneria Informatica, Automatica e Gestionale (DIAG)
Sapienza Università di Roma

To my daughter, Yafa.

Abstract

Optimal control for kinematically redundant robots is addressed for two dif-
ferent optimization problems. In the first optimization problem, we consider
the minimization of the transfer time along a given Cartesian path for a re-
dundant robot. This problem can be solved in two steps, by separating the
generation of a joint path associated to the Cartesian path from the exact
minimization of motion time under kinematic/dynamic bounds along the ob-
tained parametrized joint path. In this thesis, multiple sub-optimal solutions
can be found, depending on how redundancy is locally resolved in the joint space
within the first step. A solution method that works at the acceleration level is
proposed, by using weighted pseudoinversion, optimizing an inertia-related cri-
terion, and including null-space damping. The obtained results demonstrate
consistently good behaviors and definitely faster motion times in comparison
with related methods proposed in the literature. The motion time obtained
with the proposed method is close to the global time-optimal solution along the
same Cartesian path. Furthermore, a reasonable tracking control performance
is obtained on the experimental executed motions. In the second optimization
problem, we consider the known phenomenon of torque oscillations and motion
instabilities that occur in redundant robots during the execution of sufficiently
long Cartesian trajectories when the joint torque is instantaneously minimized.
In the framework of on-line local redundancy resolution methods, we propose
basic variations of the minimum torque scheme to address this issue. Either
the joint torque norm is minimized over two successive discrete-time samples
using a short preview window, or we minimize the norm of the difference with
respect to a desired momentum-damping joint torque, or the two schemes are
combined together. The resulting local control methods are all formulated as
well-posed linear-quadratic problems, and their closed-form solutions generate
also low joint velocities while addressing the primary torque optimization objec-
tives. Stable and consistent behaviors are obtained along short or long Cartesian
position trajectories. For the two addressed optimization problems in this the-
sis, the results are obtained using three different robot systems, namely a 3R
planar arm, a 6R Universal Robots UR10, and a 7R KUKA LWR robot.

Keywords: Robotics, Optimization and Optimal Control, Motion Control, Re-
dundant Robots, Dynamics.

v

Acknowledgements

Firstly, I would like to express my sincere gratitude to my teacher and advisor
Prof. Alessandro De Luca for the sustained support of my Ph.D. study and
related research, motivation, and immense knowledge.

In addition, I would like to thank all Robotics Lab members who shared
with me this journey. Special thank to Dr. Claudio Gaz for his continuous help
and all useful discussions.

My sincere thanks also go to Ms. Ester Latini, the international students’
advisor at DIAG, for her substantial help regarding my work and stay in Rome.

Also, I would like to thank all my friends for their motivation and nice refresh
breaks during the day.

A big thanks to my parents for their endless encouragement, support, and
patience for being far from them.

Last but not least, my great gratitude and thanks to Maram Khatib for
being my colleague, friend, and wife. Thanks!

Finally, I am grateful for the financial support of my work, provided by the
International Office of SAPIENZA University, represented by Mrs. Graziella
Gaglione, and by the Robotics Lab of DIAG.

vii

Contents

Abstract v

Acknowledgements vii

Introduction 1

1 Optimal Redundancy Resolution 5
1.1 Introduction . 5
1.2 First-order methods . 5

Local optimization . 6
Global optimization . 7

1.3 Second-order methods . 9

2 Time-Optimal Control 11
2.1 Introduction . 11
2.2 Time-optimal planning on a geometric path 12
2.3 Exploiting robot redundancy . 14

First-order schemes . 14
Second-order scheme . 15
Finding an initial configuration 17
Comparison with a global time-optimal solution 18

2.4 Results . 19
3R planar arm . 19
UR10 manipulator . 30
KUKA LWR IV . 34

3 Torque Optimization Control 41
3.1 Introduction . 41
3.2 Instantaneous minimum torque solution 42
3.3 Model-based preview of evolution 43

Inclusion of dynamic damping in the null space 47
3.4 Trajectory planning . 47

ix

x

3.5 Results . 49
3R planar arm . 49
UR10 manipulator . 53
KUKA LWR IV . 56

Conclusion 67

Appendix A Notes on the Universal Robots UR10 69

Appendix B Notes on the KUKA LWR IV robot 73

Appendix C Positive definiteness of Q in preview-based methods 77

Bibliography 82

Introduction

Recent years have seen a significant increase in production of manipulators that
have more joints than the conventional industrial robots which usually sup-
ported with a maximum six degrees of freedom. More joints give robots the
ability to achieve their tasks taking into account different performance criteria
and make it able to adapt with any change in the workspace while conserving
their main task. However, these potential benefits should be traded off against
a greater structural complexity of construction, such as mechanical (more links
and actuators, sensors, costs) and more complicated algorithms for inverse kine-
matics and motion control.

A manipulator is kinematically redundant if the number n of its degrees of
freedom (viz. joints) is larger than to those strictly needed to execute a given
task of dimension m, or n > m. Redundancy can be exploited either in the
Cartesian space to avoid collision with obstacles and to increase manipulability
in specified directions, or in the joint space to avoid kinematic singularities,
stay within the admissible joint ranges, minimize energy consumption, optimize
execution time and any other quantitatively measurable criteria (Siciliano et al.
[2008], Chiaverini et al. [2008]).

Following a prescribed geometric path with an end-effector tool is one of the
most common tasks that robot manipulators perform in industrial applications.
The path only determines the task geometry in the Cartesian space. If the
velocity motion profile along the path is unspecified, it is often desirable to
traverse the path in the least possible time while not violating actuator limits.
While if a desired Cartesian velocity is also assigned, reducing the torque needed
to execute the robot task is preferred.

In the first case, several algorithms have been proposed for the time-optimal
path following problem under dynamic constraints, starting with the seminal
works (Bobrow et al. [1985], Shin and McKay [1985]), refined later in (Slotine
and Yang [1989], Shiller [1994]). The original idea was to work in the phase plane
defined by the path parameter and its first time derivative. In Verscheure et al.
[2009], the problem has been formulated in terms of convex optimal control, tak-
ing advantage of general numerical algorithms. More recently, an efficient and
stable algorithmic tool called TOPP (Time-Optimal Path Parameterization),
has been implemented in Pham [2014], solving the problem under dynamic as

1

2

well as kinematic constraints. All these results apply both to Cartesian and
joint paths, but in the first case, it is implicitly assumed that the robot has
as many joints as strictly needed for moving along the desired Cartesian path
(non-redundancy).

A general and efficient global solution to the time-optimal control problem
along Cartesian paths in kinematically redundant robots has not been found
yet. In Galicki [2000], the problem was addressed by Pontryagin’s maximum
principle, looking for regular trajectories in an extended state space. An ap-
proach based on decomposition into non-redundant and redundant joints was
introduced in Ma and Watanabe [2004]. These techniques are able to generate
optimal solutions mainly for the case of degree of redundancy n−m = 1. A non-
convex numerical method with higher order inverse kinematics and null-space
augmentation is proposed in Reiter et al. [2018].

A different way to tackle the problem is to separate it into two steps: first,
a specific joint path is generated from the assigned Cartesian path, typically by
local (or semi-global) inverse differential methods; then, motion time is exactly
minimized under the given kinematic/dynamic bounds along the unique joint
path thus found. This approach was pioneered in Chiacchio [1990], and later
in Basile and Chiacchio [2003], providing satisfactory results. In their first
step, robot redundancy was locally exploited using first-order differential inverse
kinematic solutions that, e.g., increase robot manipulability along the tangent
direction to the Cartesian path. Indeed, there are infinite ways to generate a
path in the joint space within the first step of this procedure. The challenge
is to obtain paths along which the optimal selection of the timing law (say, by
the TOPP algorithm) achieves the fastest possible motion transfer. For this, a
number of additional dynamic issues, such as those considered in Khatib [1987]
and De Luca and Ferrajoli [2008], should be conveniently incorporated in the
differential inversion of the Cartesian path.

In this thesis, we propose to generate a sequence of joint configurations by
means of a second-order differential inverse kinematics scheme, using weighted
pseudoinversion, optimizing locally an inertia-related criterion, and including
judiciously a damping action in the null space of the task Al Khudir and De Luca
[2018]. The obtained configurations are then interpolated with a parameterized
path in the joint space, and an exact minimum time solution is computed using
the TOPP algorithm. In case the initial robot configuration is not assigned a
priori, we include also a kinematic optimization scheme to find the best initial
joint configuration corresponding to the starting point of the Cartesian path.
The performance of the new method was tested in a large number of Cartesian
paths using different robot systems which returned definitely faster motion times
in comparison with related methods proposed in the literature. The motion time
obtained with the proposed method is close to the global time-optimal solution
along the same Cartesian path.

For the second optimization problem considered in this thesis, when the
Cartesian path is assigned together with the desired velocity profile, minimizing
the torque needed to execute the given robot task is a common control objective
where dynamics plays a major role. In the presence of redundancy, the authors
in Hollerbach and Suh [1987] presented the first method for torque optimiza-
tion, deriving the closed-form expression of the solution that instantaneously
minimizes the norm of the joint torque, while executing a desired Cartesian tra-
jectory. However, for longer movements, this local optimization method often

3

exhibits an unstable behavior in the form of motion oscillations, growing joint
velocities, and sudden whipping torque effects with a practical loss of control.
The obvious countermeasure to this would be to pursue a global torque optimiza-
tion over the whole motion trajectory (Suh and Hollerbach [1987], Kazerounian
and Wang [1988]), but this implies the off-line numerical solution of a two-point
boundary value problem and the availability in advance of the entire desired
task.

Wishing instead to keep an on-line redundancy resolution method, which
is also suited for conversion into a sensor-based feedback control scheme, local
optimization alternatives have been further explored. The minimization of the
infinity-norm of the joint torque was proposed in Shim and Yoon [1997], but the
torque explosion problem would still appear and extra inequality constraints had
to be added to the algorithm. A joint decomposition formulation was presented
in Ma [1996b] for torque optimization, with the aim of forcing a return to zero
of the joint velocities at the end of the motion task. The relevance of keeping
the joint velocity under control in order to address the instability problem was
pointed out also in Ma and Nenchev [1996]. Special attention was given to
the robot self-motion dynamics, providing also a first explanation for the good
torque performance experienced in simulations when using a purely kinematic
joint velocity minimization scheme Chen et al. [1994]. Based on this, balancing
between the minimum velocity and the minimum torque solutions was proposed
in Ma [1996a]. The instabilities that can occur when redundancy is solved at
the second-order level (in terms of joint accelerations or torques) were analyzed
in O’Neil and Chen [2000], relating them to the smallest singular value of the
task Jacobian and to particular null-space accelerations that cause a quadratic
growth of joint velocities. In O’Neil [2002], a complete characterization of the
instability phenomenon was given, studying the self-motion manifold in the case
of robots with one degree of redundancy. Interestingly, it was shown that simple
damping of joint velocities in the null space of the task may not prevent large
motion oscillations in the long run.

Unfortunately, the above mentioned local methods do not provide conclusive
answers: instability problems are still encountered for longer movements, or
they would fail for certain tasks and initial conditions, or countermeasures were
proven to work only in relatively simple cases (i.e., when n−m = 1). Last but
not least, most papers on model-based optimization of joint torques in redundant
robots have presented only simulation results on simple manipulators. Among
the few exceptions, there are Peters et al. [2008] and lately (Herzog et al. [2016],
Mingo Hoffman et al. [2018]), where, however, the issue of instability in local
torque minimization on long trajectories is not explicitly addressed.

In this thesis, we introduce two basic variations to the minimum torque
norm (MTN) scheme of Hollerbach and Suh [1987] that address the issue of
unstable joint motion in redundant robots Al Khudir et al. [2019]. In the first
scheme, we propose the minimization of the joint torque norm over two succes-
sive discrete-time samples using a short preview window (possibly, in the next
sampling instant). Suitable dynamic approximations are introduced in the es-
timation of the future robot state, so as to keep a linear-quadratic formulation
for the problem, in a way similar to Duchaine et al. [2007]. Such a dynamic op-
timization scheme, that we denote model-based preview (MBP), can be seen as
a compromise between local and global redundancy resolution methods, trying
to inherit the best of both worlds —real-time simplicity and stable behavior.

4

Because of the presence of a predictive window in the future, MBP is similar
to a model predictive control (MPC) approach. However, most linear Poignet
and Gautier [2000] and nonlinear Tassa et al. [2012] MPC methods in robotics
have not considered explicitly robot redundancy or on-line task constraints.
When real-time execution is a must, different local approximations are being per-
formed to reduce the computational effort (e.g., using a linear inverted pendu-
lum predictive model in humanoid gait control Scianca et al. [2016]). The main
difference with respect to MPC is that MBP does not need to compute/predict
multiple system samples in a future window. Rather, in its basic version, our
method uses just a single preview state, which may be placed close in time or
further away from the current one, where the task-based equality constraint
is also imposed. Computational efficiency is achieved even for a large number
of degrees of freedom, thanks to the closed-form solution of a linear-quadratic
(LQ) problem that is always guaranteed to be positive definite. On the other
hand, contrary to the common case in MPC, bounds on the future state are not
considered. While feasible in principle, such an extension is in fact not strictly
needed because of the nature of the problem addressed, i.e., stable optimization
of the motion torques.

In the second proposed control scheme, we choose the command torque that
realizes the Cartesian task and is closest in norm to the desired torque, which is
proportional to the current generalized momentum of the robot. This induces
natural dynamic damping of the joint velocities, preventing their oscillations
or growth, and we label the solution as minimum torque norm with damping
(MTND). The two proposed modifications can also be combined, leading to
a model-based preview scheme with damping (MBPD). Again, these schemes
are formulated as well-posed LQ problems, providing efficiently the solution
in closed form. The performance of the new controllers was tested in a large
number of short and long motions, always yielding a stable behavior under
torque optimization.

The present thesis is structured as follows. In Chapter 1 different techniques
for local and global optimal redundancy resolution are reviewed. Chapter 2
includes different formulations of exploiting robot redundancy at the first- and
second-order differential level for the time-optimal planning problem. Compara-
tive results on different robots are considered including experimental evaluation.
Chapter 3 presents the derivation of the proposed torque optimization methods
with model-based preview, as well as the damping extensions. Simulation and
experimental results are reported. The ideas and methods presented in Chap-
ters 2 and 3 have been published as author’s original work in Al Khudir and De
Luca [2018] and Al Khudir et al. [2019].

1
Optimal Redundancy

Resolution

1.1 Introduction

Different optimization techniques can be used to exploit robot redundancy. In
general, they are separated into local and global methods. Local approaches
can return closed form solutions which make it suitable for on-line applications.
Although global methods can return a unique optimal solution, it still suffer
from complex formulation and numerical process needed to solve boundary con-
ditions.

Optimal redundancy resolution using local and global methods are reviewed
in Sec. 1.2. Solving redundancy at the acceleration level is introduced in Sec. 1.3.

1.2 First-order methods

Suppose that the robot should perform a task in the Cartesian space described
by the variables x ∈ Rm, with m < n, related to the robot joint space q ∈ Rn
by the task kinematics

x(t) = f(q). (1.1)

The differential relation at the first-order level is given by

ẋ(t) =
∂f(q)

∂q
q̇ = J(q)q̇, (1.2)

where J is the m×n analytic task Jacobian. The redundancy of the robot with
respect to the task can be resolved using different optimization approaches.
Usually, these approaches optimize the desired criteria either instantaneously
at the current time step (locally), or along the whole desired Cartesian path
(globally) Chiaverini et al. [2008].

5

6 Optimal Redundancy Resolution

Local optimization

Different classes of methods for local optimal redundancy resolution are pro-
posed Siciliano et al. [2008]. Some of them are Jacobian-based methods where
a solution among infinite ones is chosen to optimize a suitable norm (usually
weighted) using a standard linear-quadratic optimization problem. For exam-
ple, the instantaneous minimization of the weighted system kinetic energy can
be defined according to the Whitney [1969] as

min
q̇

Gl(q, q̇) =
1

2
q̇TW (q)q̇

s.t. ẋ = J(q)q̇,

(1.3)

where W (q) is a positive definite weighting matrix. The solution to (1.3) is
obtained with the method of Lagrange multipliers Luenberger and Ye [2010].
Define the Lagrangian L as

L = Gl + λT (Jq̇ − ẋ) , (1.4)

and impose the necessary (here also sufficient) conditions for a constrained min-
imum of Gl:

∇q̇L =

(
∂L

∂q̇

)T
= Wq̇ + JTλ = 0, (1.5)

∇λL =

(
∂L

∂λ

)T
= Jq̇ − ẋ = 0, (1.6)

∇2
q̇L = W > 0. (1.7)

Solving for q̇ from (1.5)

q̇ = −W−1JTλ, (1.8)

and replacing in (1.6) yields the multiplier

λ = −
(
JW−1JT

)−1
ẋ. (1.9)

Replacing (1.9) in (1.8)

q̇ = W−1JT
(
JW−1JT

)−1
ẋ, (1.10)

which can be rewritten as

q̇ = J#
W ẋ, (1.11)

with the weighted pseudoinverse

J#
W = W−1JT

(
JW−1JT

)−1
. (1.12)

If the weighting matrix W in (1.3) is identity (i.e. W = I), then the solu-
tion (1.11) is the generalized inverse method which minimizes locally the joint
velocity norm.

1.2 First-order methods 7

Another way to optimize the robot kinematic redundancy locally is by adding
a term to the (1.11) solution so as not to affect execution of the task trajectory,
i.e., belonging to the null-space of the task Jacobian as

q̇ = J#
W ẋ+ (I − J#

WJ)q̇0, (1.13)

where (I − J#
WJ) is the orthogonal projection matrix in the null space of J

Chiaverini et al. [2008]. Note that the solution (1.13) is exactly the same one
resulted from solving the problem

min
q̇

Gl(q, q̇) =
1

2
(q̇ − q̇0)TW (q)(q̇ − q̇0)

s.t. ẋ = J(q)q̇.

(1.14)

By specifying the vector q̇0, the robot redundancy can be exploited to optimize
a less priority desired criteria without any influence for the higher robot pri-
ority task specified by (1.11). This is usually done by using the gradient of a
configuration-dependent objective function

q̇0 = ∇qk(q). (1.15)

The typical objective functions k(q) are the manipulability, for maximizing the
distance from singularities, and the joint range to minimize the distance from
the middle points of joint limits Siciliano et al. [2008].

For redundant robots with several degrees of freedom, the previous solutions
are computationally intensive since the pseudoinverse is needed. Instead, when
a Jacobian has full rank, a more efficient approach based on joint space decom-
position can be used (De Luca and Oriolo [1990], Ma and Watanabe [2004]). The
robot joints are divided into two sets. The non-redundant of the same dimen-
sion as the task space and the remaining redundant joints. The non-redundant
joint positions are found using analytic inverse kinematics for the end-effector,
while the n−m redundant joints can be selected independently for optimizing
the desired objective function. In this case, the projection of gradient (1.15)
will be reduced to be w.r.t the non-redundant joints only as

q̇ =

(
q̇nr
q̇r

)
=

(
J−1nr
0

)
ẋ+

(
−J−1nr Jr

I

)(
−(J−1nr Jr)

T I
)
∇qk(q). (1.16)

The so called reduced gradient method in (1.16) is analytically simpler and
numerically faster than the full projected gradient (1.13), but still requires a
strategy to specify which joints to be considered redundant.

Global optimization

The performance index of the instantaneous minimization in (1.3) and (1.13)
can be redefined for global optimization as∫ tf

t0

Gg(q, q̇, t) dt =
1

2

∫ tf

t0

q̇TW (q)q̇ + k(q) dt

s.t. x(t)− f(q(t)) = 0,

(1.17)

and solved by the calculus of variation (Martin et al. [1989], Kim et al. [1994]).
In order to specify a unique optimal solution, both the necessary and boundary

8 Optimal Redundancy Resolution

conditions should be considered. In this case the Lagrangian function is defined
as

L(q, q̇,λ, t) = Gg(q, q̇, t) + λT (x(t)− f(q(t))), (1.18)

and the necessary conditions for optimality are given by the Euler-Lagrange
equations

∂L

∂q
− d

dt

∂L

∂q̇
= 0. (1.19)

At the end, the inverse kinematic resolution is given at the acceleration level as

q̈ = J#
W (ẍ− J̇ q̇) + (I − J#

WJ)q̈0, (1.20)

where

q̈0 = W−1
(
− Ẇ +

1

2

∂(q̇TW)

∂q
q̇ +

∂k

∂q

)
. (1.21)

For the simple case W = I and k(q) = 0 in the problem (1.17), the solution
(1.20) is given by

q̈ = J#(ẍ− J̇ q̇), (1.22)

which is the generalized inverse method at the acceleration level that minimizes
globally the joint velocity norm. In this case, if the initial and final configura-
tions are not prespecified, there are only kinematic constraints and the natural
boundary conditions to be satisfied are split and expressed as

q̇|t0,tf = J#ẋ|t0,tf , (1.23)

which requires a numerical solution of a two-point boundary value problem
(TPBVP). If the joint configuration and/or joint velocity are constrained at the
beginning and/or at the terminal points, the robot motion is controlled by (1.22)
at that points and the optimal solution is considered weak Kazerounian and
Wang [1988].

Another way to optimize the robot redundancy globally is to resort to the
Pontryagin’s maximum principle Nakamura and Hanafusa [1987]. Considering
W = I, the first differential inverse kinematic (1.13) can be regarded as the
following dynamic system

q̇ = J#ẋ+ (I − J#J)q̇0 ≡ g(q,u, t), (1.24)

considering q as a state vector and q̇0 as an input vector u. According to the
Pontryagin’s principle, to minimize the cost function (1.17), the Hamiltonian
can be defined as

H(q, q̇,λ, t) = Gg(q, q̇, t) + λT g(q,u, t)

= 1
2 (g + λ)T (g + λ)− 1

2λ
Tλ+ k(q),

(1.25)

where λ ∈ Rn is a costate vector Kim et al. [1994]. The input u which minimizes
the Hamiltonian (1.25) can be written as

u = −(I − J#J)λ. (1.26)

1.3 Second-order methods 9

The optimal trajectory q(t) is yielded by solving the following 2n differential
equations

q̇ =
∂H

∂λ
= g(q,u, t), (1.27)

λ̇ = −∂H
∂q

= −
(∂g
∂q

)T
(g + λ)− ∂k

∂q
. (1.28)

For the terminal points, also the TPBVP appears which can be solved using the
initial value adjusting method Nakamura and Hanafusa [1987].

Local vs. global optimizationn

The main advantage of the local redundancy resolution is the simple formula-
tion which requires a relatively small amount of computation. This makes it a
suitable option for real-time control applications. On the other hand, since the
local optimization methods instantaneously minimize a desired criterion, they
do not guarantee a global minimum and can lead to unsatisfactory performance
over long tasks Hollerbach and Suh [1987]. Furthermore, the solution (1.11)
leads to non-repeatable motion in the joint space and cannot guarantee global
singularity avoidance Chiaverini et al. [2008].

The complex formulation, and the computationally intensive numerical pro-
cedure required for the actual minimization of (1.17) make it impractical for
real-time kinematic control. However, for off-line industrial applications, this
may be acceptable.

1.3 Second-order methods

Working at the acceleration level admits considering the dynamic performance
during the manipulator motion. Moreover, the computed joint accelerations to-
gether with the corresponding positions and velocities can be used as reference
signals of a task space dynamic controller. On the other hand, a second-order
redundancy resolution scheme in general demands more computational load Chi-
averini et al. [2008].

The previously introduced optimization techniques can be used also at the
acceleration level. By differentiating (1.2), the second-order relation can be
obtained as

ẍ = J(q)q̈ + J̇(q)q̇ = J(q)q̈ + h(q, q̇), (1.29)

where the vector h has a quadratic dependence on q̇. As in (1.13), the least-
squares solution for the weighted joint accelerations norm is given by

q̈ = J#
W (ẍ− J̇ q̇) + (I − J#

WJ)q̈0. (1.30)

Note that, the equation (1.30) coming from the local optimization at the second-
order is identical to the (1.20) coming from the global optimization approach. In
this case, the arbitrary vector q̈0 can be specified for stabilizing and smoothing
joint trajectories as

q̈0 = −Dq̇, (1.31)

where D is a n× n diagonal, positive semi-definite matrix Flacco and De Luca
[2015].

10 Optimal Redundancy Resolution

Let the dynamic model of a rigid robot with n degrees of freedom described
as Siciliano et al. [2008],

M(q)q̈ + c(q, q̇) + g(q) = τ , (1.32)

with symmetric, positive definite inertia matrix M , Coriolis and centrifugal
terms c, gravity term g, and commanded joint torque τ . Vector c has a
quadratic dependence on q̇. In particular, its components ci(q, q̇), for i =
1, . . . , n, take the following expression

ci = q̇TCi(q)q̇, Ci =
1

2

((
∂mi

∂q

)
+

(
∂mi

∂q

)T
− ∂M

∂qi

)
, (1.33)

where mi(q) is the ith column of M and the elements Cijk of matrix Ci are
the so-called Christoffel symbols. Another convenient factorization of c is given
by

c(q, q̇) = S(q, q̇)q̇, (1.34)

where matrix S can be chosen in different ways, but we will prefer one that
induces the skew-symmetric property to Ṁ − 2S. It can be shown that this is
equivalent to the property

Ṁ(q) = S(q, q̇) + ST (q, q̇). (1.35)

From (1.33), one such matrix is given by

S(q, q̇) = col
{
q̇TCi(q)

}
.

In the following, we will also use the compact notation

n(q, q̇) = c(q, q̇) + g(q) (1.36)

to denote all terms in (1.32) not depending on joint acceleration. The re-
dundancy of the robot can be resolved by minimizing locally some (possibly,
weighted) norm of the joint torques. A standard linear-quadratic optimization
problem can be defined as

min
q̈
Gl(q, q̇, q̈) =

1

2
‖τ‖2

s.t. τ = Mq̈ + n

ẍ = Jq̈ + h.

(1.37)

Similar to (1.3), the solution to the (1.37) problem is obtained with the method
of Lagrange multipliers and can be expressed in the (1.30) form using the weight-
ing matrix W = M−2 and the joint acceleration q̈0 = M−1n in the null
space Hollerbach and Suh [1987]. For longer movements, the previous local
optimization solution exhibits an unstable behavior in the form of motion os-
cillations, growing joint velocities, and sudden whipping torque effects with a
practical loss of control. Global optimization techniques can be used to pur-
sue a global torque optimization over the whole motion trajectory (Suh and
Hollerbach [1987], Nakamura and Hanafusa [1987]), but again this will imply
the off-line numerical solution of a TPBVP and the availability in advance of
the entire desired task. Another way to solve the problem, using the so-called
model based preview approach by Al Khudir et al. [2019], will be introduced in
Chapter 3.

2
Time-Optimal Control

2.1 Introduction

In this chapter, we address the time-optimal trajectory planning along a Carte-
sian path for a kinematically redundant robot with a two-step procedure. We
propose to generate a sequence of joint configurations by means of a second-
order differential inverse kinematics scheme, using weighted pseudoinversion,
optimizing locally an inertia-related criterion, and including judiciously a damp-
ing action in the null space of the task. The obtained configurations are then
interpolated with a parameterized path in the joint space, and an exact mini-
mum time solution is computed using the TOPP algorithm. In case the initial
robot configuration is not assigned a priori, we include also a kinematic opti-
mization scheme to find the best initial joint configuration corresponding to the
starting point of the Cartesian path.

The chapter is organized as follows. The formulation of the time-optimal
planning problem on a parametrized joint path and its basic solution algorithm
are reviewed in Sec. 2.2. Section 2.3 presents the core of the method, moving
ideas that exploit robot redundancy from the first- to the second-order differen-
tial level. We provide also a procedure in order to evaluate the distance between
solutions obtained with a two-step approach and the global time-optimal motion
computed along the same Cartesian path, using an alternative nonlinear pro-
gramming method. Section 2.4 reports comparative results on different robot
systems. Numerical simulations are done using a 3R planar arm and the Uni-
versal Robots UR10. Experimental results are reported for a KUKA LWR IV
robot executing positional tasks.

The problem described in this Chapter has been addressed in the work
by Al Khudir and De Luca [2018].

11

12 Time-Optimal Control

2.2 Time-optimal planning on a geometric path

We briefly review the basic formulation of the time-optimal planning on a
parametrized joint path as in (Bobrow et al. [1985], Pham [2014]).

Consider the robot dynamic model described by (1.32) and (1.34). Assume
that robot motion in the joint space is constrained to a given path that is
continuously parametrized by a scalar s as a (non-decreasing) function of time
t, or

q = q(s), s ∈ [0, sf] , s = s(t), t ∈ [0, tf] . (2.1)

Differentiating (2.1) once and twice with respect to time yields

q̇ = q′ṡ, q̈ = q′s̈+ q′′ṡ2, (2.2)

where a dot ˙() and a prime ()′ denote differentiation with respect to time t and
to parameter s. The robot is subject to bounds on the joint torques

τmin ≤ τ (t) ≤ τmax, ∀t ∈ [0, tf], (2.3)

where τmax and τmin (usually, equal to −τmax) are constant vectors, and in-
equalities are to be intended component-wise. Substituting (2.1) and (2.2)
into (1.32) and (2.3), and rearranging the terms, leads to

τmin ≤ a(s)s̈+ b(s)ṡ2 + g(s) ≤ τmax (2.4)

where a = M(q)q′, b = M(q)q′′ + S(q, q′)q′, and g is the gravity torque
vector (all arguments are evaluated using (2.1) and (2.2)). As a result, a trajec-
tory q(s(t)) will be feasible if and only if the following bounds on the pseudo-
acceleration s̈ are satisfied along the whole path

α(s(t), ṡ(t)) ≤ s̈(t) ≤ β(s(t), ṡ(t)), ∀s ∈ [0, sf] . (2.5)

For each (s, ṡ), the upper and lower acceleration bounds in (2.5) are defined as

α(s, ṡ) = max
i
αi(s, ṡ) and β(s, ṡ) = min

i
βi(s, ṡ). (2.6)

The expressions of αi and βi depend on the sign of ai(s). In particular, for
i = 1, . . . , n:

r if ai(s) > 0, then


αi =

τmin
i − gi(s)− bi(s)ṡ2

ai(s)
,

βi =
τmax
i − gi(s)− bi(s)ṡ2

ai(s)
;

r if ai(s) < 0, then


αi =

−τmax
i + gi(s)+ bi(s)ṡ

2

|ai(s)| ,

βi =
−τmin

i + gi(s)+ bi(s)ṡ
2

|ai(s)| ;r if ai(s) = 0, then s is a zero-inertia point.

The last case is a dynamic singularity that should be handled separately (Slotine
and Yang [1989], Shiller [1994]).

2.2 Time-optimal planning on a geometric path 13

0.0 0.2 0.4 0.6 0.8 1.0

s

0

2

4

6

8

10

ṡ

Figure 2.1: Time-optimal trajectory in the phase plane. The cyan lines are the max-
imum velocity curves MVCt (solid) and MVCv (dotted), while the black line is the
time-optimal profile.

From (2.5), a maximum velocity curve MVCt(s) is imposed in the (s, ṡ)
plane, defined by

MVCt(s) =

 min{ṡ ≥ 0 : α(s, ṡ) = β(s, ṡ)}, if α(s, 0) ≤ β(s, 0),

0, if α(s, 0) > β(s, 0).

Kinematic constraints (e.g., joint velocity limits) can also be considered Zlajpah
[1996]. Assuming symmetric velocity bounds, we have for the velocity of joint
i, i = 1, . . . , n:

− q̇max
i ≤ q̇i ≤ q̇max

i ⇒ ṡmax
i (s) =

q̇max
i

|q′i(s)|
. (2.7)

The overall bound on ṡ will be

ṡmax(s) = min
i
ṡmax
i (s), ∀s ∈ [0, sf] . (2.8)

Equation (2.8) induces another maximum velocity curve, denoted MVCv(s). As
a result, every feasible timing law s = s(t) must remain below the curve in the
phase plane (s, ṡ) defined by MVC = min{MVCt,MVCv} as shown in Fig. 2.1.

Based on Pontryagin Maximum Principle, the optimal trajectory in the (s, ṡ)
plane that minimizes the rest-to-rest motion time is given by a control law of the
bang-bang type. The pseudo-acceleration s̈ follows alternatively α or β, while
the profile of ṡ should always stay below the maximum velocity curve MVC.
From (2.5) and (2.8), it can be shown that at least one joint is saturated at any
time either to its torque bound or to its velocity bound. The optimal timing
law s∗(t) and the associated minimum time t∗f can be found using TOPP, a
complete and robust algorithm presented in Pham [2014]. From this, having
also (ṡ∗(t), s̈∗(t)), the time profiles q̇(t) and q̈(t) are evaluated using (2.2) and
the needed joint torque is computed algebraically using (1.32).

14 Time-Optimal Control

2.3 Exploiting robot redundancy

First-order schemes

Let a parametrized path in the m-dimensional Cartesian (or task) space be
assigned as

x = x(s), s ∈ [0, sf], (2.9)

If a q0 ∈ Rn is assigned as initial configuration (q(0) = q0), it should satisfy
f(q0) = x(0) = x0. Dropping dependencies, the first-order differential kine-
matics in the parameter space s is

x′ = Jq′. (2.10)

The different inverse kinematic schemes introduced in Chapter 1 can be used
also in the s space. The simplest first-order differential inverse kinematics is
given by

q′ = J#x′. (2.11)

A parameterized joint path q = q(s) can be generated by numerical integration
of (2.11), starting from q0 and evaluated over discrete samples of the parameter
s, followed by interpolation of the obtained data points in the joint space with
a class of smooth functions (e.g., cubic splines). In the first order schemes, the
pseudo joint acceleration q′′ (needed to evaluate the robot dynamics in (2.4)
and the final joint acceleration in (2.2)) is obtained by a numerical derivation
of (2.11). At this stage, the second step can be processed by applying TOPP
along the generated parametrized joint path under the robot kinematic and
dynamic constraints.

Projected gradient at the velocity level (PGV)

The scheme (1.13) can be defined in the s space as

q′ = J#x′ − δ(I − J#J)∇qk, (2.12)

where δ ≥ 0 is a suitable scalar gain. Assume that q̇ = 0, so that velocity-
dependent terms vanish in (1.29), and that gravitational terms are neglected
in (1.32). In Chiacchio [1990], the author has considered the dynamic manipu-
lability ellipsoid in the Cartesian space introduced by Yoshikawa [1985]

ẍT (MJ#)TMJ#ẍ ≤ 1, (2.13)

where ẍ is the set of all Cartesian accelerations that realizable by a joint torque
||τ || ≤ 1. In order to improve the acceleration/deceleration capabilities of the
robot end-effector along the specified Cartesian path, the following objective
function can be used in (2.12)

k(q) = tT (MJ#)TMJ#t, (2.14)

with t ∈ Rm being a unit vector along the tangent direction to the path. This
will help in locally generating a constrained joint path along which the robot
will expose a reduced inertial load in the task space (minimum distance to the
surface of the dynamic manipulability ellipsoid).

2.3 Exploiting robot redundancy 15

Weighted pseudoinverse at the velocity level (WPV)

As an alternative to adopting a null-space projection scheme, the weighted pseu-
doinverses at the velocity level similar to (1.11) scheme can be used as

q′ = J#
Qx
′. (2.15)

Considering symmetric bounds on the joint torques, the use of a symmetric
weight matrix

Q = (L−1M)TL−1M > 0, (2.16)

with a diagonal scaling matrixL = diag{τmax
1 , . . . , τmax

n }, was proposed in Basile
and Chiacchio [2003]. Following the pseudo-velocity (2.15) will limit the mo-
tion of those joints that have larger inertia-to-maximum torque ratios. A scalar
parameter γ ≥ 0 can be added to the weighting matrix Q as

Qγ = exp(γ lnQ), (2.17)

where exp(.) and ln(.) compute the matrix exponential and the principal matrix
logarithm, respectively. For γ = 0, the simple psoudinverse solution (2.11) is
used, while for γ = 1 the weighted pseudoinverse (2.15) is obtained.

Second-order schemes

Instead of using first-order differential inverse kinematics solutions as in (2.12)
and (2.15), in the first step of our minimum-time planning problem we propose
to exploit redundancy at the second-order (pseudo-acceleration) level in the
similar way introduced in (1.30) in the time domain. Differentiating (2.10)
w.r.t. the parameter s gives

x′′ = Jq′′ + J ′q′, J ′ =
dJ

ds
. (2.18)

Using the weighting matrix in (2.17), the second-order differential inverse kine-
matics can be written as a weighted pseudoinversion

q′′ = J#
Qγ

(x′′ − J ′q′), (2.19)

where J#
Qγ

= Q−1γ J
T (JQ−1γ J

T)−1. In addition, we can use also a null-space

term in (2.19) and obtain the general expression

q′′ = J#
Qγ

(
x′′ − J ′q′

)
+
(
I − J#

Qγ
J
)
q′′0 , (2.20)

where q′′0 ∈ Rn is a preferred pseudo-acceleration vector in the joint space. We
will label this solution as ACC.

To determine the preferred pseudo-acceleration q′′0 , similar techniques as
those introduced in Chiacchio [1990] and Chiacchio and Concilio [1998] will be
used. For the general case of different bounds on the joint torque components,
it is useful to use a normalization with respect to the nominal joint torque
limits. Assume that q̇ = 0, so that velocity-dependent terms vanish, and that
gravitational terms are neglected in (1.32). Using Qγ as weighting matrix in the

16 Time-Optimal Control

pseudoinverse, the normalized joint torques τ̃ , w.r.t nominal torque bounds, in
the time domain can be written as

τ̃ = L−1Mq̈ = L−1MJ#
Qγ
ẍ. (2.21)

Consequently, the associated dynamic manipulability ellipsoid in the Cartesian
space will be

ẍTJ#T

Qγ
QJ#

Qγ
ẍ ≤ 1. (2.22)

To improve the acceleration/deceleration capabilities of the robot end effector
along the Cartesian path, it is useful to minimize the quantity

k1(q) = tTJ#T

Qγ
QJ#

Qγ
t, (2.23)

with t ∈ Rm defined as in (2.14). The preferred vector q′′0 in (2.20) is then
chosen as

q′′0 = −δ1∇qk1 −Dq′, (2.24)

where δ1 ≥ 0 is a scalar gain and D is a n × n diagonal, positive semi-definite
matrix. The second term in (2.24) is a damping term on the pseudo-velocity,
which guarantees that bounded displacements are generated in the joint space.
This property is similar to the null-space damping (1.31) in the time domain.

In the present framework, the choice of both δ1 and D turns out to be
critical in determining the total length of the generated joint path, and thus
indirectly also the achievable minimum time associated to the path. Intuitively,
a too small damping matrix D (or no damping at all) will lead to a potential
drift or wandering of the joint path associated to the original Cartesian path.
Conversely, if the damping action is too strong, joint reconfigurations intended
to optimize the objective function (2.23) will be penalized. Similarly, the choice
of δ1 should balance the length of the path generated in the joint space vs. the
efficacy in the auxiliary optimization of k1(q). For handling this trade off, the
following bounds are imposed to δ1:

0 ≤ δ1 ≤ min

{
δ2
‖J#

Qγ
(x′′ − J ′q′)‖

‖(I − J#
Qγ
J)∇qk1‖

, δ1,max

}
, (2.25)

with δ2 ∈ [0, 1].
In order to avoid numerical drifts during calculations, a stabilizing PD term

on the (spacial) task error can be added to (2.20). Using the definition of the
path-tracking error e and its derivatives e′ and e′′ w.r.t. the parameter s, we
have

e(s) = x(s)− f(q(s)),

e′(s) = x′(s)− J(q(s))q′(s),

e′′(s) = x′′(s)− J ′(q(s))q′(s)− J(q(s))q′′(s),

(2.26)

where J ′ =
∑n

1 (∂J/∂qi) q
′
i. From Siciliano et al. [2008], an asymptotically

stable behavior of the dynamics of e is ensured if

e′′ +Kde
′ +Kpe = 0,

or (x′′(s)− J ′(q(s))q′(s)− J(q(s))q′′(s)) +Kde
′ +Kpe = 0, (2.27)

2.3 Exploiting robot redundancy 17

Initial Cartesian
point x0 = x(0)

Initial Cartesian
pseudo-velocity x’0 = x’(0)

Initial configuration
q0 = q(0) via eq. (2.29)

Initial pseudo-velocity
q’0 = q’(0) via eq. (2.30)

Cartesian path
x = x(s)

Pseudo-acceleration
q’’(s) via eq. (2.28)

Tracing the sampled
path with s = [0, sf]

∬

q = q(s)

Robot kinematic &
dynamic constraints

TOPP
Time-optimal

joint trajectory

Joint interpolation
by cubic splines

Sampled joint data

Figure 2.2: The overall scheme for the proposed ACC solution.

where Kp > 0 and Kd > 0 are diagonal gain matrices. The error dynam-
ics (2.27) can be rearranged and a null-space term can be added to obtain the
vector of joint accelerations as

q′′ = J#
Qγ

(
x′′ − J ′q′ +Kde

′ +Kpe
)

+ (I − J#
Qγ
J) q′′0 , (2.28)

whereas the null-space term will not affect the Cartesian error dynamics since

J
(
I − J#

Qγ
J
)

= 0. Therefore, perfect tracking of the trajectories defined in

the workspace is assured.
With the second-order ACC method, a parameterized path q = q(s) in

the joint space will be generated by double numerical integration of (2.28),
used together with (2.24) and (2.23). In the second-order schemes, since the
pseudo joint acceleration is computed directly, there is no need for a numerical
derivation as in the first-order schemes. The second step of the minimum-time
planning procedure is identical to that of first-order schemes, e.g., PGV or WPV.

Finding an initial configuration

To start a first- or a second-order redundancy resolution scheme, either a con-
sistent initial configuration q(0) = q0 is assigned, or it should be determined
so as to match the end-effector path at the start, i.e., f(q(0)) = x(0) = x0.
Indeed, being the robot redundant, there is an infinite number of such initial
robot configurations. To find the most efficient q0 for our motion task, a pre-
liminary kinematic control scheme is used in the time domain, similar to (2.28)
in the space domain,

q̈ = J#
Qγ

(−J̇ q̇ −Kdẋ+Kpe0) + (I − J#
Qγ
J)q̈0, (2.29)

18 Time-Optimal Control

with q̈0 =−δ1∇qk1 −Dq̇, k1(q) computed as in (2.23), e0 = x0 − f(q), and
ẋ = Jq̇. In this preliminary phase, the robot may start from any configuration,
but typically one still corresponding to the initial point of the Cartesian path
(i.e., with ‖e0‖ = 0). Equation (2.29) is then integrated forward until ‖q̇‖ < ε, a
specific threshold set, e.g., to 10−3. The robot joints will move mainly according
to the null-space projection term in (2.29), while the first term is used to keep
the robot end-effector in the initial Cartesian position.

For the second-order scheme (2.28), we need in addition a suitable initial
pseudo-velocity q′(0) = q′0. Using the available q0, this can be computed as

q′(0) = J#
Qγ

(q0)x′(0)− δ
(
I − J#

Qγ
(q0)J(q0)

)
∇qk1(q0). (2.30)

The overall computational scheme for our proposed method is shown in Fig. 2.2.

Comparison with a global time-optimal solution

In order to compare the two-step optimization methods with a global time-
optimal solution on a Cartesian path, we proposed the procedure in Fig. 2.3.
Defining the state and control vectors as χ(t) = (q q̇)T and u(t) = τ re-
spectively, a point-to-point (PTP) minimum time problem can be formulated
as

min
u
L(χ(t),u(t)) =

∫ tf

0

1 dt = tf

s.t. τ = Mq̈ + n,

qmin ≤ q ≤ qmax,
q̇min ≤ q̇ ≤ q̇max,
τmin ≤ τ ≤ τmax,

 (state and control input constraints)

q0 = q(t0), q̇0 = q̇(t0),

C(tf ,χf) = 0, q̇f = q̇(tf),

}
(boundary constraints)

(2.31)

where
C(tf ,χf) = f(qf)− xf = f(q(tf))− x(tf) = 0. (2.32)

The resulting nonlinear programming (NLP) problem can be solved by numer-
ical methods, e.g. based on direct collocation Diehl et al. [2006], yielding a
joint trajectory q∗(t) and global minimum time t∗f . Next, we associate to this
motion the resulting Cartesian path, suitably expressed in a parametrized form
x(s). Finally, this will be the input to two-step methods that handle robot
redundancy. They will generate solution trajectories q∗method(t) and associated
motion times t∗fmethod

, with method = {ACC, WPV, PGV}, and the results can
be compared to each other and to the global minimum time solution on the
same Cartesian path.

As a matter of fact, this fair procedure is needed since it is still prohibitive
in general to address by numerical methods the global minimum time problem
for redundant robots along predefined Cartesian paths (i.e., providing directly
x(s) as input to the PTP problem). Indeed, two-step methods can only return
longer motion times than the global optimal time. On the other hand, two-step
approaches are computationally more efficient and accept any Cartesian path
to start with.

2.4 Results 19

Figure 2.3: Comparison procedure between the global time-optimal solution and the
solutions obtained on the same Cartesian path with two-step methods for redundant
robots.

2.4 Results

We report here various simulations and experiments performed to illustrate the
comparison between the proposed solution ACC in (2.20) and the methods WPV
in (2.15) and PGV in (2.12). All methods have been implemented in MATLAB.
Three study cases are considered: a 3R planar arm and the UR10 manipulator
in simulations, and a 7R KUKA LWR 4 lightweight robot in simulations and
experiments.

3R planar arm

The first robot considered is a 3R planar arm (n = 3) with links of equal length
l = 0.5 [m], uniformly distributed mass ml = 1 [kg], and moment of inertia
Il = mll

2/12. The end-effector position (m = 2) should follow a path on the
horizontal plane, so that the degree of redundancy is n −m = 1. Torque and
velocity limits have been set respectively to ±20 [Nm] and ±10 [rad/s], for all
three joints.

Three different collections of comparisons will be introduced. In the first
one, the arm should follow in the Cartesian plane a predefined straight linear
path of 1.25 [m] length where

x(s) =

(
as
b− s

)
, s ∈ [0, 1], (2.33)

with a = 0.75 [m] and b = 1.2 [m]. The initial configuration was predefined to

be q(0) =
(
π/4 π/4 π/4

)T
, which corresponds to x(0), without using the

preliminary optimization (2.29). To verify only the effect of dynamic bounds
along the whole path, kinematic constraints were not considered.

20 Time-Optimal Control

Table 2.1: Minimum motion times for the first comparison collection with the 3R
planar arm along a predefined linear task using three different inverse differential
solution methods with the best parameters used for each method.

Method t∗f [s]

PGV (δ = 0.0) 0.6082

PGV (δ = 0.005) 0.5535

WPV (γ = 1.3) 0.4346

ACC (γ = 0.8,
δ2 = 0.1, δ1,max = 100, D = 0.5 · I) 0.3840

For each method, in the first step, the parametrized path (2.33) is input
to the ACC, PGV, and WPV methods, which generate different joint paths,
sampled every ∆s = 0.001. For better accuracy, all the available joint configu-
rations samples are used within the cubic splines interpolation. In the second
(and common) step, the time-optimal motion is obtained on each joint path
using TOPP Pham [2014]. Since the motion task was planned to be rest-to-rest
(zero joint velocity at the start and at the end), the constraints ṡ(0) = ṡ(1) = 0
were also imposed in TOPP.

Figure 2.4 shows a stroboscopic view of the best solution found for each
method, while the associated minimum times are reported in Tab. 2.1. For this
robot and motion task, the proposed second-order solution ACC achieves the
smallest minimum time compared to the other two methods, with an improve-
ment of 30% over PGV and 12% over WPV. As shown by Fig. 2.4, each solution
produces in fact a different path in the joint space, which leads to a different
MVCt curve and a different optimal trajectory in the phase plane. Although
the MVCt related to WPV is higher than the one obtained with PGV, allowing
in principle larger pseudo-velocities and thus faster motion, this feature is not
exploited efficiently and the optimal trajectory remains far from this curve in
the intermediate range of s values. Instead, with the ACC solution the obtained
MVCt is the highest one, and the time-optimal trajectory is able to cover most
of the area lying under it. Figure 2.5 shows the joint velocities and torques
obtained using the ACC method: for every value of the parameter s there is at
least one joint saturating its torque limit. There is indeed no velocity saturation
since kinematic constraints have not been considered. The joints start and end
with zero velocities.

2.4 Results 21

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x [m]

y
 [
m

]

(a) (d)

−0.2 0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

1.2

x [m]

y
 [

m
]

(b) (e)

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x [m]

y
 [

m
]

(c) (f)

Figure 2.4: First comparison collection: Stroboscopic motions of the 3R planar arm
and optimal trajectories in the phase plane using differential inverse kinematics solu-
tions: (a,d) with the proposed ACC; (b,e) with WPV; (c,f) with PGV. In (d,e,f), the
cyan curves represent the MVCt and the black lines are the obtained time-optimal
profiles. Only the dynamic constraints are considered.

22 Time-Optimal Control

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−20

−15

−10

−5

0

5

10

15

s parameter

J
o
in

t
v
e
lo

c
it
ie

s
 [
ra

d
/s

]

q̇1

q̇2
q̇3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−20

−15

−10

−5

0

5

10

15

20

s parameter

J
o
in

t
to

rq
u

e
s
 [
N

m
]

τ
1

τ
2

τ
3

Figure 2.5: Joint velocities and torques in the s space for the 3R planar arm with
the ACC solution along a predefined linear task. Only the dynamic constraints are
considered.

In the second collection, different comparisons with global minimum time op-
timization along the same Cartesian paths are achieved considering the dynamic
and kinematic constraints. For a given initial configuration q0, a desired final
end-effector position xf and zero initial/final joint velocities (q̇0 = q̇f = 0), the
global PTP minimum time optimization problem (2.31) is solved using the direct
collocation method in the trajectory optimization library OptimTraj Matthew
[2016]. In this case the equality constraint (2.32) can be written via the direct
kinematics as

C(tf ,χf) =(
l1 cos q1(tf) + l2 cos(q1(tf) + q2(tf)) + l3 cos(q1(tf) + q2(tf) + q3(tf))
l1 sin q1(tf) + l2 sin(q1(tf) + q2(tf)) + l3 sin(q1(tf) + q2(tf) + q3(tf))

)
− xf = 0.

(2.34)

2.4 Results 23

Table 2.2: Motion tasks for the second comparison collection with the 3R planar arm.

Initial configuration q0 [rad] Final Cartesian position xf [m]

Task 1 (3π/8, π/4,−π/4)T (-0.4,0.8)

Task 2 (π/4, π/4, π/4)T (-0.4,0.4)

Task 3 (π/4, π/4, π/4)T (0,-1)

Table 2.3: Minimum motion times [s] for the second comparison collection with the
3R planar arm, using global optimization and two-step solution methods (the best
parameters used for each method are indicated).

Direct
collocation

ACC
{γ, δ2, δ1,max,D}

WPV
{γ}

PGV
{δ}

Task 1 0.2499 0.2689
{0.655, 1, 210, 2I}

0.3357
{0.5}

0.4394
{0}

Task 2 0.2699 0.3021
{1, 0.8, 3500, 160I}

0.3100
{1}

0.3867
{0.1}

Task 3 0.4415 0.5332
{0, 0.6, 300, 16I}

0.5513
{0.1}

0.5550
{1}

We considered three different motion tasks with the boundary conditions
specified in Tab. 2.2. In order to apply a two-step solution method in the
presence of redundancy, we follow the procedure in Fig. 2.3: from the sequence
of robot configurations in the time-optimal trajectory q∗(t), a corresponding
sequence of end-effector positions is computed via the direct kinematics of the
3R robot arm, and then interpolated in the Cartesian space using cubic splines.
This parametrized path is used as a reference for the ACC, PGV, and WPV
methods and the following procedures to get the optimal time motion are the
same as previous. For illustration, the resulting Cartesian paths corresponding
to the globally PTP time optimal motion specified in Tab. 2.2 are shown in
figures (2.8-2.10) together with the stroboscopic views of the best solutions
found for each method.

Table 2.3 reports the comparative results obtained on the three motion tasks
of Tab. 2.2, together with the parameters used for each method/task. The
resulting globally optimal joint velocity and torque profiles for the first motion
task are shown in Fig. 2.6. The proposed second-order solution ACC returns
the fastest motion time among the three methods, i.e., also the closest to the
global optimal solution. The resulting minimum time for the first motion task
is only 7.6% longer than the global optimal solution. On the three tasks, the
average increase of the motion time for the ACC, WPV, and PGV methods
is, respectively, 13.4%, 24.7%, and 48.2% with respect to the global optimal
solution. Figure 2.7 shows the joint velocities and torques obtained using the
ACC method for the first motion task: at every instant, at least one joint is
saturated either to its torque or velocity limit.

24 Time-Optimal Control

0.05 0.1 0.15 0.2

−2

0

2

4

6

8

10

V
e

lo
c
it
ie

s
 [

ra
d

/s
]

0.05 0.1 0.15 0.2
−20

−10

0

10

20

time [s]

T
o

rq
u

e
s
 [

N
m

]

J
1

J
2

J
3

Figure 2.6: Global time-optimal joint velocities and torques for the 3R planar arm on
the Task 1 of Tab. 2.2 using direct collocation method.

0 0.05 0.1 0.15 0.2 0.25
−4

−2

0

2

4

6

8

10

V
e

lo
c
it
ie

s
 [

ra
d

/s
]

0 0.05 0.1 0.15 0.2 0.25
−20

−10

0

10

20

time [s]

T
o

rq
u

e
s
 [

N
m

]

J
1

J
2

J
3

Figure 2.7: Joint velocities and torques for the 3R planar arm with the ACC solution
on the Task 1 of Tab. 2.2.

2.4 Results 25

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

0.5

1

1.5

x [m]

y
 [

m
]

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

0.5

1

1.5

x [m]
y
 [

m
]

(a) (b)

0.0 0.2 0.4 0.6 0.8 1.0

s

0

2

4

6

8

10

ṡ

0.0 0.2 0.4 0.6 0.8 1.0

s

0

2

4

6

8

10

ṡ

(e) (f)

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

0.5

1

1.5

x [m]

y
 [
m

]

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

0.5

1

1.5

x [m]

y
 [
m

]

(c) (d)

0.0 0.2 0.4 0.6 0.8 1.0

s

0

2

4

6

8

10

ṡ

0.0 0.2 0.4 0.6 0.8 1.0

s

0

2

4

6

8

10

ṡ

(g) (h)

Figure 2.8: Stroboscopic motion of the 3R planar arm and optimal trajectories in
the phase plane using different solutions for the first motion task in Tab. 2.2: (a-e)
with direct collocation method; (b-f) with the proposed ACC; (c-g) with WPV; (d-
h) with PGV. The initial configuration q0 (in blue) is always the same. The purple
point in (a) is the final position xf used to generate the Cartesian path from the PTP
optimization. The resulting Cartesian path x(s) (in black) is used then by all two-step
methods, while the obtained final configurations are shown in green. In (e,f,g,h), the
cyan lines are the maximum velocity curves MVCt (solid) and MVCv (dotted), while
the black lines are the obtained time-optimal profiles.

26 Time-Optimal Control

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

1.2

x [m]

y
 [

m
]

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

1.2

x [m]

y
 [

m
]

(a) (b)

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

1.2

x [m]

y
 [

m
]

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

1.2

x [m]

y
 [

m
]

(c) (d)

Figure 2.9: Stroboscopic motion of the 3R planar arm using different solutions for the
Task 2 in Tab. 2.2: (a) with direct collocation method; (b) with the proposed ACC;
(c) with WPV; (d) with PGV. Same legends as in Fig. 2.8.

Figure 2.8 shows stroboscopic views of the best solutions found for each
method on the first motion task, and the associated evolutions in the phase
plane (s, ṡ). Each solution produces in fact a different path in the joint space,
which leads also to different maximum velocity curves and associated optimal
trajectories. In this case, the MVC curves of the PGV method are higher than
those of WPV, but this feature is not exploited efficiently. Instead, the ACC
solution leads to the highest MVC curves, and the optimal trajectory is able to
cover most of the underlying area.

For further comparison, the joint path corresponding to the global time-
optimal solution (obtained with the direct collocation method) were also fed
into the TOPP algorithm. As expected, the resulting minimum time using
TOPP is exactly equal to the optimal time obtained from the direct collocation
method. The phase-plane plot in Fig. 2.8(e) clearly shows how the optimal
trajectory fully exploits the area below the MVCv curve.

2.4 Results 27

−1 −0.5 0 0.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x [m]

y
 [

m
]

−1 −0.5 0 0.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x [m]

y
 [

m
]

(e) (f)

−1 −0.5 0 0.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x [m]

y
 [

m
]

−1 −0.5 0 0.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x [m]

y
 [

m
]

(g) (h)

Figure 2.10: Stroboscopic motion of the 3R planar arm using different solutions for the
Task 3 in Tab. 2.2: (a) with direct collocation method; (b) with the proposed ACC;
(c) with WPV; (d) with PGV. Same legends as in Fig. 2.8.

28 Time-Optimal Control

0 0.02 0.04 0.06 0.08 0.1

0.625

0.63

0.635

0.64

0.645

0.65

δ

p
a
th

 e
x
c
u
ti
o
n
 t
im

e
 [
s
]

0 0.2 0.4 0.6 0.8 1

0.57

0.58

0.59

0.6

0.61

0.62

0.63

0.64

γ

p
a
th

 e
x
c
u
ti
o
n
 t
im

e
 [
s
]

Figure 2.11: Using the PGV (left) and WPV (right) methods with different values
of δ and γ parameters, respectively. For each method, the trajectory cannot be re-
parameterized in time for values of the parameter lying outside the range shown in
the associated figure.

The last comparisons collection will done by replacing the terminal con-
straint in the Cartesian space (2.34) by the specification of a final configuration
qf as

C(tf ,χf) = q(tf)− qf = 0. (2.35)

With this new formulation, once the global time-optimal solution has been
found, e.g., using again the algorithms in the OptimTraj library, the associ-
ated Cartesian path and only the initial robot configuration q0 are used by the
differential inversion methods for the redundant robot.

Figure 2.12 shows the robot motion corresponding to the different solution
methods. The optimal execution time found with the direct collocation method
is t∗f = 0.4544 s, while the best execution times in the ACC, WPV, and PGV
solutions are 0.4502, 0.5673 and 0.6220 s, respectively. In this example, the
motion time t∗fACC = 0.4502 s obtained using our proposed ACC method is even
smaller than the ’optimal’ value obtained with the direct collocation method.
Indeed, this can happen because the final configuration in the ACC solution is
left unconstrained, as it was instead in the formulation (2.35) of the collocation
method; this provides more flexibility in exploiting the robot redundancy. The
previous examples show that the proposed ACC method has the capability to
return solutions that are close to the global optimal one and outperforms the
previous two-step methods.

For fair comparisons, the different solutions in the previous examples start
always from the same initial configuration which has been chosen randomly.
Also, for each method and for each motion task, the tuning of parameters is
done separately so as to achieve the best possible performance for each task.
Specific ranges are chosen for each parameter and the best values are searched on
a discretized grid by evaluating a large number of simulations. For illustration,
we show an example of how this is done for the motion task in Fig. 2.12. The
best performance with the WPV and PGV methods is obtained according to the
path execution times in Fig. 2.11. In the ACC solution, the γ and D parameters
are more influential than δ2 and δ1,max. For efficiency, the first two parameters
are tuned together, and then kept fixed to tune the latter ones.

2.4 Results 29

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

0.5

1

1.5

x [m]

y
 [
m

]

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

0.5

1

1.5

x [m]

y
 [
m

]

(a) (b)

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

0.5

1

1.5

x [m]

y
 [
m

]

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

0.5

1

1.5

x [m]

y
 [
m

]

(e) (f)

Figure 2.12: Stroboscopic motions of the 3R planar arm using different solution meth-
ods. (a) Direct collocation method: the blue and green arms are the constrained
initial and final configurations, respectively, and the black curve is the Cartesian path
resulting from the time-optimal solution. (b) ACC, (c) WPV, and (d) PGV methods:
here, the blue arm is the given initial configuration q0, the black Cartesian curve is a
problem constraint in common, while the green arms are the different resulting final
configurations obtained with the three methods.

30 Time-Optimal Control

Table 2.4: Minimum motion times along a linear path for the UR10 manipulator using
ACC method from three different initial configurations (with V-REP views).

Initial configuration q0 [rad] t∗fACC [s]

q
(a)
0 =

(
0.87 −0.28 −1.29 −2.05 −2.49

)T 0.5924

q
(b)
0 =

(
0.67 −1.26 0.41 −4.69 −5.18

)T 0.6437

q
(c)
0 =

(
0.62 −0.28 −1.34 −2.17 −0.76

)T 0.6511

(a) (b) (c)

UR10 manipulator

The second case study considered is the 6R UR10 manipulator from Universal
Robots, see Appendix A. In all computations, the robot dynamic model pre-
sented in Gaz et al. [2018] has been used, together with the nominal symmetric
joint torque and velocity limits provided by the manufacturer in Tab. A.1. Dif-
ferent motion tasks were assigned to the end-effector position in the 3D Carte-
sian space (m = 3) as a function of the parameter s. Since joint 6 of the robot
does not affect these positional tasks, it was kept at rest. Therefore, we work
with only n = 5 joints and the degree of redundancy is n−m = 2.

The first task is a linear path of 0.75 [m] length. To study the influence of
the initial configuration of the manipulator, the ACC method with the same
parameters was applied starting from the three different configurations shown
in Tab. 2.4, all associated to the desired initial position x(0). Starting with the
configuration (a) found with (2.29), reductions of 8 − 9% were obtained w.r.t.
the two other random initializations. When executing the linear task from the
initial configuration (a) in Tab. 2.4, the ACC solution shown in Figs. 2.13 and
2.14 leads to the best minimum time, with 23.9% and 35.8% reductions w.r.t.
the WPV and PGV methods, respectively (see Tab. 2.5).

The second assigned task is a circular path of R = 0.25 [m] radius in the xz-
plane, with the initial configuration computed using (2.29). Also in this case,
the ACC solution illustrated in Fig. 2.15 outperforms in terms of minimum
motion time the WPV and PGV methods, respectively by 40% and 33.7%. The

2.4 Results 31

two time-optimal trajectories obtained using the ACC solution match the curve
MVCv almost along the entire path, following the bounds specified by α and
β in (2.5) only right at the beginning and towards the end of the motion. In
both cases, the MVCv curve is much lower than MVCt, and the robot reaches
its velocity limits quickly because of its large torque/acceleration capabilities.
Also, the joint torque and velocity profiles in Figs. (2.14–2.15) confirm that
there is at least one joint saturated to its torque or velocity limit at every point
of the path.

Table 2.5: Minimum motion times for the UR10 manipulator using three different
inverse differential solution methods.

Method Task t∗f [s]

PGV (δ = 0.3) linear 0.9231

WPV (γ = 0.3) linear 0.7786

ACC (γ = 1, δ2 = 0.1,
δ1,max = 1000, D = I) linear 0.5924

PGV (delta = 0.2) circular 1.7034

WPV (γ = 0.4) circular 1.883

ACC (γ = 1, δ2 = 0.2,
δ1,max = 1000, D = I) circular 1.1293

Figure 2.13: Linear task with the UR10 manipulator using the ACC solution. The
time-optimal profile (black lines) in the (s, ṡ) plane is almost superposed with the
maximum velocity curve MVCv (the MVCt curve is too high to be shown).

32 Time-Optimal Control

0 0.1 0.2 0.3 0.4 0.5
−1

0

1

τ
1

0 0.1 0.2 0.3 0.4 0.5
−1

−0.5

0
τ
2

0 0.1 0.2 0.3 0.4 0.5
−1

−0.5

0

0.5

τ
3

0 0.1 0.2 0.3 0.4 0.5
−0.2

0

0.2

τ
4

0 0.1 0.2 0.3 0.4 0.5
−0.06
−0.04
−0.02

0
0.02

time [s]

τ
5

0 0.1 0.2 0.3 0.4 0.5
−1

0

1

q̇
1

0 0.1 0.2 0.3 0.4 0.5
−0.1

0

0.1

q̇
2

0 0.1 0.2 0.3 0.4 0.5
−1

0

1

q̇
3

0 0.1 0.2 0.3 0.4 0.5
−0.5

0

0.5

q̇
4

0 0.1 0.2 0.3 0.4 0.5
−1

0

1

time [s]

q̇
5

Figure 2.14: Normalized joint torques and joint velocities for the linear task with the
UR10 manipulator using the ACC solution.

2.4 Results 33

0 0.2 0.4 0.6 0.8 1
−1

0

1

τ
1

0 0.2 0.4 0.6 0.8 1

−1

0

1

τ
2

0 0.2 0.4 0.6 0.8 1
−1

0

1

τ
3

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

τ
4

0 0.2 0.4 0.6 0.8 1
−0.05

0

0.05

time [s]

τ
5

0 0.2 0.4 0.6 0.8 1

−1

0

1

q̇
1

0 0.2 0.4 0.6 0.8 1

−1

0

1

q̇
2

0 0.2 0.4 0.6 0.8 1

−1

0

1

q̇
3

0 0.2 0.4 0.6 0.8 1
−1

0

1

q̇
4

0 0.2 0.4 0.6 0.8 1

−1

0

1

time [s]

q̇
5

Figure 2.15: Circular task with the UR10 manipulator using the ACC solution. In the
(s, ṡ) plane [top], the cyan lines are the maximum velocity curves MVCt (solid) and
MVCv (dotted).

34 Time-Optimal Control

Table 2.6: Minimum motion times along a linear path for the KUKA LWR robot using
the ACC method from three different initial configurations (with V-REP views).

Initial configuration q0 [rad] t∗fACC [s]

q
(a)
0 =

(
−1.12 1.80 −0.55 1.71 2.43 0.29

)T 0.4743

q
(b)
0 =

(
−0.34 1.94 0.16 1.71 1.20 −0.43

)T 0.5144

q
(c)
0 =

(
−0.72 1.94 −0.08 1.73 1.60 0.51

)T 0.5242

(a) (b) (c)

KUKA LWR IV

As a third case study, we have considered a 7R KUKA LWR lightweight robot
(see Appendix B) and compared the different inverse differential methods using
two Cartesian tasks defined for the position of the end-effector flange center
(m = 3). Since the rotation of joint 7 has no effect on it, the final flange was
frozen resulting in only n = 6 active joints, with a redundancy degree n−m = 3.
All computations were done using the dynamic model identified in Gaz et al.
[2014] together with the nominal symmetric joint torque and velocity limits
provided by the manufacturer in Tab. B.1.

The first motion task was a linear path of length 0.66 [m]. The ACC
method with the same parameters was applied starting from the three dif-
ferent configurations given in Tab. 2.6, the first one obtained using (2.29)
and the other two chosen randomly, all associated to the same initial position
x0 = (−0.4, 0.25, 0.3) [m]. The solution obtained when starting with the con-
figuration (a) provided a reduction of the minimum time by 8.5-10.5%. When
executing the linear motion task from the initial configuration (a) in Tab. 2.6 us-
ing the other two-step methods, the proposed ACC solution leads to the fastest
motion time, with an improvement of 22.6% and 31.7% over the WPV and PGV
solutions.

We considered a second motion task along an ellipse in the 3D space, with
major and minor axes rM = 0.2 and rm = 0.1 [m], starting the robot at rest

from the configuration q0 =
(

1.15 −0.54 0.10 1.47 −0.30 0.76
)T

[rad], which
corresponds to x0 = (0.2, 0.6, 0.2) [m]. Again, the ACC solution provided the
best result, with a reduction of the motion time by 14.6% over the other two
methods. These results are summarized in Tab. 2.7, which reports also the
(best) set of parameters used for each method/task.

2.4 Results 35

Table 2.7: Minimum motion times for the KUKA LWR robot using different two-step
solution methods.

Method Task t∗f [s]

PGV (δ = 0.3) linear 0.6901

WPV (γ = 1) linear 0.6127

ACC (γ = 0.5, δ2 = 0.4,
δ1,max = 100, D = 5I)

linear 0.4743

PGV (δ = 0.6) ellipse 1.2

WPV (γ = 0.35) ellipse 1.2

ACC (γ = 0.5, δ2 = 0.4,
δ1,max = 100, D = 5I)

ellipse 1.0245

In view of the good results obtained with the ACC method, the two motion
tasks on the linear and the elliptic paths were implemented in experiments
on the KUKA LWR IV robot using the FRI library KUK [2011] in position
control mode. Due to residual uncertainty in the robot dynamic model, the ACC
solution was re-generated in a conservative way, using only 95% of the maximum
available nominal torques and joint velocities. The new motion times were
0.496 s for the linear task and 1.081 s for the ellipse task (compare with Tab. 2.7).
Figure 2.17 shows the experimental results along the ellipse task where the joint
velocities and torques normalized with respect their nominal values in Tab. B.1.
The minimum time planned torque (in red) of the second joint saturates at the
start, near the middle, and toward the end of the trajectory. In the rest of the
trajectory, the second and fourth joint velocities saturate in turn, consistently
with the optimal trajectory in the phase plane.

During task execution with the KUKA LWR, the torques are measured by
the available joint torque sensors. The differences between planned and exe-
cuted/measured torques in Figs. 2.17 and 2.16 are due to unmodeled dynamics
(motor friction, joint elasticity) neglected in the optimization, measurement
noise (encoders and torque sensors), as well as non-idealities of the low-level
robot controller. Because of the latter, the joint torques cannot follow perfectly
the planned discontinuities of the optimal torques at the switching points. De-
spite of this, the Cartesian path tracking performance in Figs. 2.19 and 2.18
is still reasonable for such a fast robot motion. High errors occur near the
switching points.

For comparison, the linear task is performed experimentally using PGV and
WPV methods with 95% of robot limits. The corresponding Cartesian errors
are shown in Fig. 2.20, and the error norm for different two-step solutions is
shown in Fig. 2.21. The largest peak error is obtained with the ACC method,
which is also the one with the fastest motion time. On the other hand, the
tracking error vanishes as the motion comes to an end, whereas some residual
error is left with the other two methods.

36 Time-Optimal Control

0.0 0.2 0.4 0.6 0.8 1.0

s

0

1

2

3

4

5

6

7

ṡ

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
1

0.8

q 1

Planned Executed

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
1

1.5q 2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0.5
0.4
0.3

q 3

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
1.6
1.7
1.8

q 4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
2.45

2.5

q 5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.1
0.2

time [s]

q 6

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.2
0.4
0.6

q̇ 1

Planned Executed

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
1

0.5

0

q̇ 2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.2
0.4
0.6

q̇ 3

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0.5

0
0.5

q̇ 4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.05
0.1

0.15

q̇ 5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0.3
0.2
0.1

0

time [s]

q̇ 6

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0.4
0.2

0
0.2

τ 1

Planned Executed

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
1

0

1

τ 2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.2
0.4

τ 3

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0.2

0
0.2
0.4

τ 4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
5
0
5

10
x 10 3

τ 5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0.03
0.02
0.01

0

time [s]

τ 6

Figure 2.16: [from top] Optimal phase-plane trajectory in the minimum time experi-
ment with the KUKA LWR robot on a linear path using the ACC method. Planned
and executed joint positions. Normalized joint velocities and torques.

2.4 Results 37

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.2
1.4q 1

Planned Executed

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

0.5

q 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2
0.3
0.4

q 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.4
1.6
1.8

q 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5
0.4
0.3

q 5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4
0.6
0.8

time [s]

q 6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0
0.5

q̇ 1

Planned Executed

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

0.5
0

0.5

q̇ 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0
0.5

q̇ 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0
0.5

1

q̇ 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0
0.2

q̇ 5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0
0.2
0.4

time [s]

q̇ 6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.6
0.4
0.2

0
0.2

τ 1

Planned Executed

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

0

1

τ 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0
0.2

τ 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4
0.2

0
0.2
0.4

τ 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.01

0
0.01

τ 5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.04
0.02

0
0.02
0.04

time [s]

τ 6

Figure 2.17: [from top] Optimal phase-plane trajectory in the minimum time experi-
ment with the KUKA LWR robot on an ellipse path using the ACC method. Planned
and executed joint positions. Normalized joint velocities and torques.

38 Time-Optimal Control

−0.5
−0.4

−0.3
−0.2

−0.1
0

−0.1

0

0.1

0.2

0.3
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

x [m]y [m]

z
 [
m

]

Planned Executed

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

time [s]

C
a

rt
e

s
ia

n
 e

rr
o

r
[m

]

e

x

e
y

e
z

Figure 2.18: Planned and executed linear path [top]. The Cartesian error components
in the minimum time experiment with a KUKA LWR IV robot using ACC method.

−0.4 −0.2 0 0.2 0.40.550.60.65

−0.2

−0.1

0

0.1

0.2

x [m]y [m]

z
[m

]

Planned Executed

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.015

−0.01

−0.005

0

0.005

0.01

time [s]

C
a
rt

e
s
ia

n
 e

rr
o
r

[m
]

e

x

e
y

e
z

Figure 2.19: Planned and executed ellipse path [top] and Cartesian error components
in the minimum time experiment with a KUKA LWR IV robot using ACC method.

2.4 Results 39

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.015

0.01

0.005

0

0.005

0.01

0.015

time [s]

C
ar

te
si

an
 e

rro
r [

m
]

ex
ey
ez

0 0.1 0.2 0.3 0.4 0.5 0.6

0.01

0.005

0

0.005

0.01

time [s]

C
ar

te
si

an
 e

rro
r [

m
]

ex
ey
ez

Figure 2.20: Using PGV method [top] and WPV method [bottom]. Cartesian error
components in the minimum time experiments with a KUKA LWR IV robot and 95%
of the maximum available nominal torques and joint velocities.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.005

0.01

0.015

0.02

0.025

0.03

0.035

time [s]

C
a

rt
e

s
ia

n
 e

rr
o

r
n

o
rm

 [
m

]

PGV

WPV

ACC

Figure 2.21: Cartesian error norm for the KUKA LWR robot tracing a linear path
using different two-step solutions with 95% of the maximum available nominal torques
and joint velocities.

40 Time-Optimal Control

Table 2.8: Mean Cartesian error norm for the KUKA LWR robot tracing a linear path
using the ACC method with 95% q̇max and different τmax percentages.

% τmax t∗f [s] Mean Cartesian error norm [m]

35 0.556 0.0068

45 0.530 0.0072

55 0.518 0.0075

65 0.510 0.0080

75 0.505 0.0087

85 0.501 0.0094

95 0.496 0.0095

A trade-off between faster motion times and better tracking performance
can be achieved by downrating the maximum available nominal joint torque in
Tab. B.1. From Fig. 2.21 and Tab. 2.8, using ACC solution with only 35% τmax

returns better optimal time and less mean Cartesian error norm than using
other two solutions with 95% τmax. The latter trade-off can also be achieved
by including additional constraints, such as torque rate bounds that eliminate
critical discontinuities in the solution Constantinescu and Croft [2000].

Our two-step second-order method leads to faster motion times, but is still
intended currently for off-line planning situations only. Real-time limitations
are distributed between both steps, and depend on the length of the original
Cartesian path, the path parameter sampling, the number of joints, and the
complexity of the used robot dynamics, leading to running times in the order
of seconds. On the other hand, finding the accurate global minimum time with
a constrained solution trajectory by means of general numerical optimization
techniques requires at present minutes to hours of computation.

3
Torque Optimization Control

3.1 Introduction

In this chapter, we introduce two basic variations to the minimum torque norm
(MTN) scheme of Hollerbach and Suh [1987] that address the issue of unstable
joint motion in redundant robots. In the first scheme, we propose the minimiza-
tion of the joint torque norm over successive discrete-time samples within a short
preview window (possibly, in the next sampling instant). Suitable dynamic ap-
proximations are introduced in the estimation of the future (but proximal) robot
state, so as to keep a linear-quadratic (LQ) formulation for the problem. Such
a dynamic optimization scheme, that we denote model-based preview (MBP),
can be seen as a compromise between local and global redundancy resolution
methods, trying to inherit the best of both worlds— real-time simplicity and
proven stability.

In the second scheme, we choose to command torque by minimizing the norm
of the difference with respect to a (opposing) torque proportional to the current
generalized momentum of the robot. This induces a natural dynamic damping
of the joint velocities, preventing their oscillations or growth. We label this
a minimum torque norm solution with damping (MTND). The two proposed
modifications can also be combined, leading to a model-based preview scheme
with damping (MBPD). Again, these schemes are in the form of well-posed LQ
problems, providing efficiently a closed-form solution.

The rest of the chapter is organized as follows. The general formulation of
the instantaneous torque optimization as a LQ problem is reviewed in Sec. 3.2.
Section 3.3 presents the derivation of the proposed optimization methods with
model-based preview, as well as the damping extensions. Section 3.4 reviews
the required trajectory planning for the desired Cartesian time law. Section 3.5
reports comparative simulation and experimental results using different robot
systems.

The problem described in this Chapter has been addressed in the work
by Al Khudir et al. [2019].

41

42 Torque Optimization Control

3.2 Instantaneous minimum torque solution

The standard linear-quadratic optimization problem for local torque minimiza-
tion in (1.37) can be written as

min
q̈∗

H =
1

2
‖τ ∗‖2 =

1

2
q̈∗TQq̈∗ + rT q̈∗ + s (3.1a)

s.t. τ ∗ = Q
1
2 q̈∗ +Q−

1
2 r (3.1b)

b = Aq̈∗, (3.1c)

assuming that Q is a positive definite (weighting) matrix, matrix A has full
(row) rank, b ∈ Rn, r ∈ Rn, and s is a scalar. All torque optimization problems
in this chapter can be formulated as (3.1) for specific choices of Q, A, b and
r (while s is irrelevant). Equation (3.1c) represents the task (kinematic) con-
straint, while (3.1b) simply provides the command torque τ ∗ from the dynamic
model equation (1.32) when the joint acceleration solution q̈∗ is being used.

The unique solution to (3.1) is obtained with the method of Lagrange mul-
tipliers starting from the Lagrangian L definition

L = H + λT (Aq̈ − b) , (3.2)

and impose the necessary (here also sufficient) conditions for a constrained min-
imum of H:

∇q̈∗L =

(
∂L

∂q̈∗

)T
= Qq̈∗ + r +ATλ = 0, (3.3)

∇λL =

(
∂L

∂λ

)T
= Aq̈∗ − b = 0. (3.4)

Solving for q̈∗ from (3.3)

q̈∗ = −Q−1(r +ATλ), (3.5)

and replacing in (3.4) yields the multiplier

λ = −
(
AQ−1AT

)−1 (
b+AQ−1r

)
. (3.6)

Replacing (3.6) in (3.5)

q̈∗ = Q−1AT
(
AQ−1AT

)−1 (
b+AQ−1r

)
−Q−1r, (3.7)

which can be rewritten as

q̈∗ = A#
Q

(
b+AQ−1r

)
−Q−1r, (3.8)

with the weighted pseudoinverse

A#
Q = Q−1AT

(
AQ−1AT

)−1
.

3.3 Model-based preview of evolution 43

Note that the solution (3.8) can be written also as

q̈∗ = A#
Q b−

(
I −A#

QA
)
Q−1r (3.9)

to emphasize the presence of a control action in the null-space of the task matrix
A, represented by the term Q−1r.

Let a sequence of control instants tk = kTs, k = 0, 1, . . . , be given for a
fixed sampling time Ts > 0. Denote by qk = q(tk) and q̇k = q̇(tk) the position
and velocity (i.e., the state) of the robot at time t = tk. We can select the
acceleration q̈k, or equivalently the torque τ k, at tk by solving the problem

min
q̈k

H1 = 1
2‖τ k‖

2

s.t. τ k = Mkq̈k + nk
ẍk = Jkq̈k + hk,

(3.10)

where we used the shorthand notations

Mk = M(qk), nk = n(qk, q̇k),

Jk = J(qk), hk = h(qk, q̇k).

Problem (3.10) is in the form (3.1) with the substitutions

q̈∗ = q̈k, Q = M2
k, A = Jk,

τ ∗ = τ k, r = Mknk, b = ẍk − hk, s = 1
2n

T
knk.

(3.11)

Thus, the optimal acceleration q̈∗ = q̈k is given by (3.8) and the associated
optimal torque τ ∗ = τ k is then obtained from (3.1b). Using (3.9), we see that
the null-space action that minimizes the joint torque norm is given by M−1

k nk.
This is indeed the solution found in Hollerbach and Suh [1987] and denoted here
as MTN.

For a given Cartesian task x = xd(t), the direct use of ẍk = ẍd,k = ẍd(tk) in
the expression of b in (3.11) provides an open-loop solution. In order to reduce
the Cartesian tracking error during motion, a stabilizing PD feedback control
term is inserted at the task level in b, obtaining

b = ẍd,k +Kd(ẋd,k − ẋk) +Kp(xd,k − xk)− hk, (3.12)

with m×m (diagonal) gain matrices Kd > 0 and Kp > 0.

3.3 Model-based preview of evolution

To prevent a long term unstable behavior of the solution that instantaneously
minimizes torque we will include an estimate of the future robot state in the
optimization process. At time t = tk, consider a preview window T = pTs,
for some integer p ≥ 1. At the sampling instant tk+p = tk + T , we shall
associate a suitable approximation of the robot state. In the following, we shall
consider that T = Ts (or p = 1), but the same formulas will be used also as an
approximated model for a larger T > 0.

44 Torque Optimization Control

Suppose that a constant acceleration q̈k is applied during a preview window
T = Ts in the time interval [tk, tk+1). The following discrete-time evolution
holds then exactly for the robot state

q̇k+1 = q̇(tk+1) = q̇k + q̈k T,
qk+1 = q(tk+1) = qk + q̇kT + 1

2 q̈k T
2.

(3.13)

We can indeed associate from (1.32) a unique τ k to any q̈k. Imposing a constant
acceleration to the robot during the sampling interval may be difficult, and
one may apply instead a constant value τ k. In this case, joint acceleration
would no longer remain constant over sampling intervals, and the resulting
expressions (3.13) would become only approximate.

Similarly to (3.10), which is in fact the no preview solution for T = 0, we
formulate the following optimization problem,

min
q̈k,q̈k+1

H2 = 1
2

(
ωk‖τ k‖2 + ωk+1‖τ k+1‖2

)
s.t. τ k = Mkq̈k + nk

ẍk = Jkq̈k + hk
τ k+1 = Mk+1q̈k+1 + nk+1

ẍk+1 = Jk+1q̈k+1 + hk+1,

(3.14)

where we used the notations

Mk+1 = M(qk+1), nk+1 = n(qk+1, q̇k+1),
Jk+1 = J(qk+1), hk+1 = h(qk+1, q̇k+1).

For generality, we introduced in (3.14) also the two constants ωk ≥ 0 and
ωk+1 ≥ 0 (with ω2

k + ω2
k+1 6= 0) that relatively weigh the torque norms at the

current and the next instants.
When plugging the expressions coming from eq. (3.13) into the various dy-

namic terms that need to be evaluated at time t = tk+1, the above formulation
loses the original structure of a LQ problem in the unknown joint acceleration.
This is in fact due to the nonlinear dependence of the inertia matrix, of the
Christoffel symbols, and of the gravity vector on q, as well as to the quadratic
dependence of the Coriolis and centrifugal terms on q̇ (see (1.33)), whereas
position and velocity at tk+1 depend in turn linearly on q̈k. Therefore, the
constraints of the exact formulation (3.14) are still linear in the unknown q̈k+1,
but no longer linear in the unknown q̈k; moreover, the objective function is no
longer quadratic in the q̈k. This makes the problem (3.14) impossible to solve
in a closed form, as opposed to (3.10).

On the other hand, by ‘freezing’ the dependencies of Mk+1, Jk+1, nk+1,
and hk+1 to their value at time t = tk, or even by just removing the dependence
of these terms from q̈k, would make the formulation (3.14) separable in two
independent sub-problems, one depending only on q̈k and the other only on
q̈k+1. Thus, the benefit of linking the decision on which is the optimal choice
for the current acceleration to the resulting effect and similar decision at the
preview instant would be completely lost (i.e., the whole sense of resorting to a
preview).

3.3 Model-based preview of evolution 45

As a result, for a more practical formulation that would lead to an effective
solution of a joint LQ problem, we shall:

1. keep the same constraints at the current instant, to guarantee that q̈k
realizes the task at t = tk;

2. preserve a forward coupling between the current acceleration and the
data/command at the preview instant, allowing a linear dependence of
the constraints and a quadratic dependence of the objective function on
q̈k.

Consider then again the task constraint (1.29). We approximate it at time
t = tk+1 as follows:

ẍk+1 = J(qk+1)q̈k+1 + J̇(qk+1)q̇k+1

≈ J(qk+1)q̈k+1 +
J(qk+1)− J(qk)

T
q̇k+1

≈ J(qk + q̇kT)q̈k+1 +
J(qk + q̇kT)− J(qk)

T
q̇k+1

= J(qk + q̇kT)q̈k+1 +
J(qk + q̇kT)− J(qk)

T
(q̇k + T q̈k)

= Jk+ q̈k+1 + (Jk+ − Jk) q̈k + hk+ ,

(3.15)

with the notation

Jk+ = J(qk + q̇kT),

hk+ =
J(qk + q̇kT)− J(qk)

T
q̇k =

Jk+ − Jk
T

q̇k.

Next, consider the squared norm of the torque at time t = tk+1 and its expression
through the dynamic model (1.32). Taking into account the factorization (1.34)
of quadratic velocity terms, we proceed with the following approximation:

‖τ k+1‖2 = ‖M(qk+1)q̈k+1 + c(qk+1, q̇k+1) + g(qk+1)‖2

= q̈Tk+1M
2
k+1q̈k+1+ 2

(
ck+1 + gk+1

)T
Mk+1q̈k+1

+
(
ck+1 + gk+1

)T (
ck+1 + gk+1

)
≈ q̈Tk+1M

2
k+ q̈k+1 + 2

(
Sk+ q̇k+1 + gk+

)T
Mk+ q̈k+1

+ q̇Tk+1S
T
k+Sk+ q̇k+1 + 2 gTk+Sk+ q̇k+1 + gTk+gk+

= q̈Tk+1M
2
k+ q̈k+1 + 2 (Sk+ (q̇k + T q̈k) + gk+)

T
Mk+ q̈k+1

+ (q̇k + T q̈k)
T
STk+Sk+ (q̇k + T q̈k) + 2 gTk+Sk+ (q̇k + T q̈k)

+ gTk+gk+ ,

(3.16)

46 Torque Optimization Control

with the notation

Mk+ = M(qk + q̇kT), gk+ = g(qk + q̇kT),

Sk+ = S(qk + q̇kT, q̇k) = col{q̇TkCi(qk + q̇kT)}.

With these expressions at hand which satisfy our desired guidelines, we finally
replace the original nonlinear optimization problem (3.14) with the following
LQ approximation:

min
q̈k,q̈k+1

H2 = 1
2

(
ωk‖τ k‖2 + ωk+1‖τ k+1‖2

)
s.t. τ k = Mkq̈k + nk

ẍk = Jkq̈k + hk
τ k+1 = Mk+ q̈k+1 + Sk+ (q̇k + T q̈k) + gk+
ẍk+1 = Jk+ q̈k+1 + (Jk+ − Jk) q̈k + hk+ .

(3.17)

In particular, replacing the given expressions of the two torques in the objective
function, the latter takes the form

H2 = 1
2

(
q̈k q̈k+1

)T
Q

(
q̈k
q̈k+1

)
+ rT

(
q̈k
q̈k+1

)
+ s, (3.18)

with

Q =

(
ωkM

2
k + ωk+1T

2STk+Sk+ ωk+1TS
T
k+Mk+

symm ωk+1M
2
k+

)
,

r =

(
ωkMk(Skq̇k + gk) + ωk+1TS

T
k+ (Sk+ q̇k + gk+)

ωk+1Mk+ (Sk+ q̇k + gk+)

)
,

(3.19)

and the scalar (irrelevant for the optimization)

s =
ωk
2
nTknk +

ωk+1

2
(Sk+ q̇k + gk+)

T
(Sk+ q̇k + gk+) .

Similarly, the task constraint in (3.17) can be rewritten in matrix format as

A

(
q̈k
q̈k+1

)
= b, (3.20)

where

A =

(
Jk 0

Jk+ − Jk Jk+

)
, b =

(
ẍk − hk

ẍk+1 − hk+

)
. (3.21)

Provided that matrix Q in (3.19) is positive definite (see Appendix C) and
matrix A has full (row) rank equal to 2m, the solution to (3.17) has the closed-
form expression (3.8) when using in (3.1) the substitutions (3.19), (3.21), and

q̈∗ = (q̈k q̈k+1)T ,

‖τ ∗‖2 = ωk‖τ k‖2 + ωk+1‖τ k+1‖2.
(3.22)

This model-based preview solution will be denoted as MBP. In the implemen-
tation, q̈k+1 is discarded and only q̈k from (3.22) will be used at the instant
t = tk. In this case, a feedback control action in the form (3.12) will be added
only inside the term ẍk in (3.21), whereas we shall keep ẍk+1 = ẍd,k+1 for the
preview instant.

3.4 Trajectory planning 47

Inclusion of dynamic damping in the null space

In problems (3.10) and (3.14), the joint torque is optimized to be in norm as
close as possible to zero. Instead, one could minimize the norm of the difference
with respect to a suitable desired target torque. Define

τDk = −DkMkq̇k, (3.23)

where Dk is a non-negative diagonal (damping) gain matrix and Mkq̇k is the
generalized momentum of the robot at t = tk. When τ k = τDk and the damping
matrix is in the form Dk = dI > 0, from (1.32) and (1.34) the joint acceleration
q̈k becomes

q̈k = −M−1
k (Skq̇k + gk)− dq̇k. (3.24)

Observing eq. (3.24), the effect of the target torque (3.23) is always to work
against the current joint velocity, acting as a damper on the joint motion of the
robot manipulator. This will reduce, or even eliminate, whipping effects that
could happen when the joint velocity becomes too large.

In this case, the problem (3.10) is modified so as to minimize the objective
function

H3 = 1
2‖τ k − τDk‖

2

= 1
2‖Mkq̈k + (Sk +DkMk)q̇k + gk‖2.

(3.25)

The solution is obtained by substituting in (3.8)

q̈∗ = q̈k, Q = M2
k, r = Mk((Sk +DkMk)q̇k + gk),

A = Jk, b = ẍk − hk.
(3.26)

This solution will be denoted as MTND (i.e., MTN with damping). The only
difference between the expressions (3.11) and (3.26), respectively in the MTN
and MTND solutions, is in the r term, namely in an additional damping effect
appearing in the null space of the task Jacobian.

In the case of a torque optimization with model-based preview (3.17), in
place of (3.25) we consider the objective function

H4 = 1
2

(
ωk‖τ k − τDk‖2 + ωk+1‖τ k+1 − τDk+‖

2
)
, (3.27)

where τDk+ = −Dk+1Mk+ (q̇k + T q̈k). The resulting optimal solution q̈∗ =

(q̈k q̈k+1)T is again described by (3.8), using the substitutions (3.21) for A and
b. For Q and r, the same expressions (3.19) can be used, after replacing the Sk
term in r with (Sk+DkMk) and each Sk+ in r andQ with (Sk+ +Dk+1Mk+).
This solution is denoted as MBPD. A feedback control action on the task error
is included as in the undamped cases.

3.4 Trajectory planning

In Chapter 2, the trajectory planning done using TOPP in the s parameter
space to control the joints motion in minimum time. While here we would like
to control the end effector motion according to desired Cartesian velocity and

48 Torque Optimization Control

acceleration to achieve the task in a specific time. This is also can be done in
the s space Siciliano et al. [2008]. Suppose that the desired positional Cartesian
task is defined as

x = x(s), s ∈ [0, sf] , s = s(t), t ∈ [0, tf] . (3.28)

Differentiating (3.28) once and twice with respect to time yields

ẋ = x′ṡ,

ẍ = x′s̈+ x′′ṡ2.
(3.29)

where a dot ˙() and a prime ()′ denote same as in (2.2). Let the s parameter
defined as

s(t) =
σ(t)

l
, σ ∈ [0, l], (3.30)

where l is the arc length of the desired Cartesian path. This leads to send = 1
where σ(t) gives the current length of the path. To plan a rest-to-rest motion
while following the path with trapezoidal speed profile, the σ(t) can be defined
as

σ(t) =


1
2amaxt

2, t ∈ [0, ts],

vmaxt− v2max

2amax
, t ∈ [ts, tf − ts],

− 1
2amax(t− tf)2 + vmaxtf − v2max

amax
, t ∈ [tf − ts, tf],

(3.31)

where the desired maximum Cartesian velocity and acceleration are vmax and
amax respectively. ts is the time needed to reach the maximum/zero velocity
applying the maximum acceleration/deceleration. In this case, ts and tend are
computed as

ts =
vmax

amax
,

tf =
lamax + v2max

amaxvmax
.

(3.32)

Note that the coast phase in the acceleration (s̈ = σ̈ = 0) exists only if l >
v2max

amax
.

From (3.31) and (3.30), the first and second s derivatives in (3.29) are computed
as

ṡ = σ̇ =


amaxt, t ∈ [0, ts],

vmax, t ∈ [ts, tf − ts],
amax(tf − t), t ∈ [tf − ts, tf],

s̈ = σ̈ =


amax, t ∈ [0, ts],

0, t ∈ [ts, tf − ts],
−amax, t ∈ [tf − ts, tf].

(3.33)

To perform a rest-to-rest motion using the different introduced torque optimiza-
tion methods, the desired Cartesian profiles in (3.12) are computed using the
equations (3.28) and (3.29).

3.5 Results 49

3.5 Results

We report here various simulations and experiments performed to illustrate the
comparison between the different introduced inverse differential solutions for
torque optimization. Three study cases are considered: a 3R planar arm and
the UR10 manipulator in simulations, and a 7R KUKA LWR 4 lightweight robot
in simulations and experiments.

3R planar arm

To illustrate the comparison between the different solutions for local torque
optimization, we have considered the same case study presented in Hollerbach
and Suh [1987]. The 3R planar arm (n = 3) has links of equal length l =
1 [m], uniformly distributed mass ml = 10 [kg] and moment of inertia Il =
mll

2/12. The end-effector position (m = 2) should follow a linear path of short
length (L1 = 0.2828 [m]), or one four times longer (L2 = 1.1738 [m]). The
path is traced with a rest-to-rest timing law having bang-bang acceleration of
magnitude amax =

√
2 = 1.4142 [m/s2]. The robot starts with q̇(0) = 0. The

degree of robot redundancy is n−m = 1 in this case.

The methods have been implemented in MATLAB with a fixed integration
step Ts = 0.001 [s]. The MBP and MBPD methods use equal weights ωk =
ωk+1 = 1 in the objective function. The joint damping matrix is chosen as
Dk = 10 I, constant at all discrete times for both MTND and MBPD methods.
In all methods, the feedback gains on the Cartesian task error were Kp = 10 I
and Kd = I. The short preview window can be chosen directly as the next
sampling instant, i.e., T = Ts. More in general, the optimization process can be
used to minimize instead the norm of the torques at the current instant and at
any other instant in the short future, i.e., T > Ts. For longer T , it is expected
that the accuracy of the robot state estimation decreases. When T = 0, the
MBP method collapses into the original MTN one.

Figure 3.1 shows stroboscopic views for the four addressed methods along
the short and the long path, respectively. In this case, the preview window
was T = 100Ts = 0.1 [s] for the MBP and MBPD methods. All optimization
methods performed in the same way on the short path, with a rather symmetric
behavior with respect to the half-motion time as shown in Fig. 3.2. All methods
completed the task with zero final joint velocities in practice, although this was
not an explicit constraint in the optimization problem.

Figure 3.3 shows the norms of the joint velocity and torque on the longer path
for the different methods. While a common behavior is found in the first half
of the motion, i.e., until ts =

√
L2/amax ≈ 0.91 [s], each method completes the

task in a different way during the deceleration phase. With the MTN method,
it is clear how the contentious increase of the joint velocities leads to the sudden
and high peak in the joint torques near the end of the task. Using instead our
proposed methods this undesired behavior is eliminated, with the MBP method
having the minimum values for the joint torques norm. The MTND and MBPD
methods produced almost the same behavior, with the joint velocities vanishing
at the end of the task. The Cartesian task error was in all cases negligible, in
the order of 10−4 [m].

50 Torque Optimization Control

0 0.5 1 1.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

x [m]

y
 [
m

]

0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

x [m]

y
 [
m

]

(a) (e)

0 0.5 1 1.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

x [m]

y
 [
m

]

0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

x [m]

y
 [
m

]

(b) (f)

0 0.5 1 1.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

x [m]

y
 [
m

]

0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

x [m]

y
 [
m

]

(c) (g)

0 0.5 1 1.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

x [m]

y
 [
m

]

0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

x [m]

y
 [
m

]

(d) (h)

Figure 3.1: Stroboscopic motion of the 3R planar arm on a short [left] and a long
[right] Cartesian path using different torque optimization methods: (a-e) MTN; (b-f)
MTND; (c-g) MBP; (d-h) MBPD. The desired linear paths are in black. Initial and
final arm configurations are shown in blue and green, respectively.

3.5 Results 51

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

jo
in

t
v
e
lo

c
it
ie

s
 n

o
rm

 [
ra

d
/s

]

MTN MTND MBP MBPD

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
4

4.5

5

5.5

6

6.5

7

time [s]

jo
in

t
to

rq
u
e
s
 n

o
rm

 [
N

m
]

MTN MTND MBP MBPD

Figure 3.2: Joint velocity norms [top] and torque norms [bottom] for the 3R planar
arm using different solutions on the short trajectory.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

time [s]

jo
in

t
v
e
lo

c
it
ie

s
 n

o
rm

 [
ra

d
/s

]

MTN MTND MBP MBPD

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

5

10

15

20

25

30

35

40

45

50

55

time [s]

jo
in

t
to

rq
u
e
s
 n

o
rm

 [
N

m
]

MTN MTND MBP MBPD

Figure 3.3: Joint velocity norms [top] and torque norms [bottom] for the 3R planar
arm using different solutions on the long trajectory.

52 Torque Optimization Control

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

time [s]

jo
in

t
v
e

lo
c
it
y
 n

o
rm

 [
ra

d
/s

]

T = Ts

T = 100Ts

T = 500Ts

T = 700Ts

T = 900Ts

T = 1000Ts

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

5

10

15

20

25

30

35

40

45

50

time [s]

jo
in

t
to

rq
u

e
 n

o
rm

 [
ra

d
/s

]

T = Ts

T = 100Ts

T = 500Ts

T = 700Ts

T = 900Ts

Figure 3.4: Joint velocity norms [top] and torque norms [bottom] for the 3R planar
arm on the long trajectory with the MBP method using different preview windows T .
Simulations run at Ts = 1 [ms]. The torque norm for T = 1000Ts = 1 [s] is not shown
being too large.

Figure 3.4 shows the joint velocity and torque norms obtained in multiple
simulations on the long linear task, when using the MBP solution with different
preview values T . Too short values, e.g., T = Ts = 1 [ms], had no practical effect
and returned the same bad behavior of the MTN method. For an intermediate
set of preview values, i.e., T ∈ [0.1, 0.9] s, the robot loses the undesired torque
peak and the behaviors will be similarly good. For the MBP method, a preview
of T = 100Ts = 0.1 [s] gives the best result in terms of torque norm, while
T = 900Ts = 0.9 s gives the best result for the joint velocity norm. In general,
joint velocities become lower and torques higher when increasing T , until a limit
is reached where the peaks appear back (here, for T = 1000Ts = 1 [s]) and robot
motion is unacceptable again. Indeed, the best choice for T will depend on the
desired trajectory and on the dynamics of the specific robot. Nonetheless, for
a given robot/trajectory pair, the existence of an interval of good performance
for the preview method appears to be robust.

3.5 Results 53

Table 3.1: Performance indices of the UR10 simulation along circular task using dif-
ferent torque optimization schemes.

Performance index [Nm] MTN MTND MBP MBPD

Mean torque norm 63.5 63.0 63.2 63.1
Peak torque norm 63.9 63.7 63.7 63.7

UR10 manipulator

The second case study considers simulations with the UR10 manipulator, see
Appendix A. The robot system has to follow a Cartesian task defined only for
the position of the end-effector (m = 3). The final joint was frozen, since it has
no effect on the task, resulting in only n = 5 active joints, with a redundancy
degree n − m = 2. In all computations, the robot dynamic model presented
in Gaz et al. [2018] has been used. The simulations are performed using C++
and V-REP with a sampling time Ts = 10 [ms].

The positional task is consist of a half circular path of radius R = 0.6 [m]
for an arc-length of lc = 1.885 [m] to be traced in tf = 10.4 [s]. The desired
maximum Cartesian velocity and acceleration are vmax = 0.2 [m/s] and amax =
0.2 [m/s2] respectively. For illustration, the timing law for the desired task is
shown in Fig. 3.5. The damping matrix wasDk = 10I for MTND method, while
for the MBPD method Dk = Dk+1 = I. For both MBP and MBPD methods,
the weighting parameters in the objective function were ωk = ωk+1 = 1.

Figure 3.6 shows the joint velocity norm corresponding to multiple simula-
tions of the task using the MBP solution with different preview values T . The
joint velocity norm becomes smoother for increasing values T , until a specific
limit is reached ,(in this case T = 60Ts), where instability appears along the
whole path in shape of high frequency oscillations of velocity.

Using T = 50Ts for MBP and MBPD methods, the evolutions of the torque
norms in Fig. 3.8 are almost constant along the path for all methods, i.e., the
difference between the torque norms is less than 1 [Nm]. However, the MTN
method suffers from frequent torque oscillations. The peaks in torque norms
close to the beginning and ending of the task are because of the acceleration dis-
continuity in the time law, see Fig. 3.5. From Tab. 3.1, the MTN method returns
the maximum mean torque norms over the entire motion, i.e., 1

tf

∫ tf
0
‖τ‖2 dt.

Figure 3.7 shows quite clearly the rapid oscillatory behavior of the joint veloci-
ties generated by the original MTN method during the most part of the motion.
Using MTND method, the velocity oscillations are eliminated but a high peak
still appear at the beginning and ending of the task. While the MBP and MBPD
methods eliminate any undesired behavior.

54 Torque Optimization Control

0 2 4 6 8 10
0

0.5

1

s

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

ṡ

0 2 4 6 8 10
−0.2

−0.1

0

0.1

0.2

time [s]

s̈

Figure 3.5: Timing law for the circular task with UR10 robot. It prescribes a rest-to-
rest motion while following the path with trapezoidal speed profile.

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

time [s]

jo
in

t
v
e
lo

c
it
y
 n

o
rm

 [
ra

d
/s

]

T = 0

T = Ts

T = 20Ts

T = 50Ts

T = 60Ts

Figure 3.6: Joint velocity norms for the UR10 robot using the MBP solution with
different time previews (simulation along circular path with Ts = 0.01 [s]).

3.5 Results 55

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

time [s]

jo
in

t
v
e

lo
c
it
y
 n

o
rm

 [
ra

d
/s

]

MTN MTND MBP MBPD

Figure 3.7: Joint velocity norms for the UR10 robot using different optimization so-
lutions along circular path in simulations.

0 2 4 6 8 10

62.4

62.6

62.8

63

63.2

63.4

63.6

63.8

time [s]

jo
in

t
to

rq
u
e
s
 n

o
rm

 [
N

m
]

MTN MTND MBP MBPD

Figure 3.8: Joint torque norms for the UR10 robot using different optimization solu-
tions along circular path in simulations.

56 Torque Optimization Control

0 1 2 3 4 5 6 7 8 9 10

0

1

2

q
1

MTN MBP

0 1 2 3 4 5 6 7 8 9 10

−0.272

−0.271
q
2

0 1 2 3 4 5 6 7 8 9 10
−1.236
−1.234
−1.232

−1.23
−1.228

q
3

0 1 2 3 4 5 6 7 8 9 10

−1.345

−1.34

−1.335

q
4

0 1 2 3 4 5 6 7 8 9 10

1.45
1.5

1.55
1.6

1.65

time [s]

q
5

Figure 3.9: Joint positions for the UR10 robot using MTN and MBP solutions along
circular path in simulations.

KUKA LWR IV

As a third case study, we considered a 7R KUKA LWR robot, in Appendix B,
and performed simulations using V-REP and our C++ code. Next, for the
7R KUKA LWR 4 robot in our lab, we considered as task the execution of
the same positional Cartesian tasks defined in simulations. This is mainly to
compare the performance and results between simulations and real experiments.
For this, all model-based computations were done using the accurate dynamic
model identified in Gaz et al. [2014].

Simulations

The robot task is to follow two Cartesian trajectories defined for the position
of the end-effector flange center (m = 3). Since the rotation of joint 7 has no
effect on the task, the final flange was frozen resulting in only n = 6 active joints
for the robot, and thus with a degree of task redundancy equal to n −m = 3.
The timing law prescribes a rest-to-rest motion on the path with a trapezoidal
speed profile. The robot starts with q̇(0) = 0. In the integration routine, we
used Ts = 10 [ms] as the fixed step. This value is also the lowest refresh rate
for V-REP.

The first motion task is on a relatively short linear path of length l = 0.5 [m]
to be traced in tf = 3.5 [s]. The second task is longer and consists in following
a circular path of radius R = 0.2 [m] for an arc length lc = 1.256 [m] and
a motion time tf = 7.28 [s]. For both tasks, the desired maximum Cartesian
velocity and acceleration were chosen as vmax = 0.2 [m/s] and amax = 0.2 [m/s2],
respectively. The weights in the objective function of both MBP and MBPD

3.5 Results 57

Table 3.2: Mean joint torques norm in [Nm] for the KUKA LWR task along linear
path using different torque optimization schemes.

Platform MTN MTND MBP MBPD

V-REP simulation 35.9 35.8 35.9 35.8
Lab. experiment 36.3 36.6 36.4 36.6

Table 3.3: Mean joint torques norm in [Nm] for the KUKA LWR task along circular
path using different torque optimization schemes.

Platform MTN MTND MBP MBPD

V-REP simulation 34.1 34.1 34.1 34.1
Lab. experiment 35.0 35.0 35.0 35.0

methods were ωk = ωk+1 = 1. The damping matrix was constantly Dk = 5 I
for the MTND and MBPD methods, while Dk+1 = I was used in the MBPD
method. In all methods, the feedback gains on the Cartesian task error were
Kp = 300 I and Kd = 50 I.

The simulation environment allowed us to test again the performance of the
MBP method for different preview windows T . Figure. 3.10 shows in particular
the behavior of the joint velocity norm along the linear path. As expected, large
oscillations are found for T = 0 (the MTN method). Between T = Ts = 10 [ms]
and T = 10Ts = 100 [ms], the MBP method works fine. For T = 15Ts =
150 [ms] or larger, the joint velocity norm becomes unacceptable again, i.e.,
much larger and oscillatory in nature.

Using a preview window T = Ts = 10 [ms]. Figures (3.11–3.13)(a) show the
results obtained in the simulations along the linear path. The fast oscillatory
behavior of the joint velocity norm generated by the MTN method during most
part of the motion is quite evident in Fig. 3.12(a). More specifically, this insta-
bility appears mostly in the fifth joint position, but also in the third and sixth
joint profiles (see Fig. 3.13(a)). It should be noted that the evolutions of the
torque norms in Fig. 3.11(a) differ only slightly between the four methods, and
the mean torque norms over the entire motion are all very similar, see Tab. 3.2.

In contrast, the proposed MBP and MBPD methods eliminate any undesired
behavior, both in the joint velocities and in the torques. Both damped methods
achieve better results in forcing the joint velocities toward zero at the end. On
the other hand, the MTND method has still some residual oscillations in the
joint velocity.

Figures (3.14–3.16)(a) reports the results for the simulations along the cir-
cular path. The third joint position in Fig. 3.16(a) experiences the main oscil-
lations in this case, while Fig. 3.15(a) shows a clear increasing trend of these in
the joint velocity norm when using the MTN method. The MBP, MBPD and
MTND methods eliminate any undesired behavior. Similarly to the linear task,
the evolutions of the torque norms differ again very slightly between the four
methods in Fig. 3.14(a), and the mean torque norms over the entire motion are
equal, see Tab. 3.3.

58 Torque Optimization Control

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

time [s]

jo
in

t
v
e

lo
c
it
y
 n

o
rm

 [
ra

d
/s

]

T = 0

T = Ts

T = 5Ts

T = 10Ts

T = 15Ts

Figure 3.10: Joint velocity norms for the KUKA LWR using the MBP solution with
different time previews (simulation along a linear path with Ts = 10 [ms]).

Experiments

The same two tasks considered in simulations were achieved also experimentally.
The different torque optimization methods were implemented using C++. Ex-
periments were performed using the position control mode of the LWR through
the KUKA FRI library, feeding as reference the instantaneous motion obtained
from the torque optimization schemes, with a sampling time Ts = 5 [ms]. The
torques measured by the joint torque sensors during task execution are used to
assess the obtained performance. Torque data have been processed through a
low-pass filter to eliminate measurement noise.

The control parameters for different methods were equal to ones used for
simulations. Joint torques measured (by joint-torque sensors) during the tasks
are used to evaluate the mean torque norms and assess the quality of perfor-
mance. Because of measurements noise, torque data are processed through a
low-pass filter before doing computations.

Although the experiments and simulations were done using different sam-
pling time Ts, the obtained results for them were quite similar, see Figs. 3.11–
3.16. The residual small differences between simulations and experiments are
due to model uncertainty, unmodeled dynamics (motor friction, joint elasticity),
measurement noise (encoders and torque sensors), and the filtering post-process.
Also, because of this filtering, the joint torque norms during the whole experi-
ments are smother whereas the curves starts slightly misplaced in Figs. 3.11(b)
and 3.14(b).

In both tasks, joint oscillations during the MTN method do not affect the
execution of the desired Cartesian trajectory, also thanks to the presence of the
feedback control action on the task error. The maximum of the Cartesian error
norm in Fig. 3.17 is about 7× 10−4 [m] for the circular path (and was even less
for the linear path).

3.5 Results 59

0 0.5 1 1.5 2 2.5 3

time [s]

35

35.5

36

36.5

37

jo
in

t
to

rq
u
e

s
 n

o
rm

 [
N

m
]

MTN MTND MBP MBPD

(a) V-REP simulations.

0 0.5 1 1.5 2 2.5 3

time [s]

35

35.5

36

36.5

37

37.5

38

jo
in

t
to

rq
u
e
s
 n

o
rm

 [
N

m
]

MTN MTND MBP MBPD

(b) Lab. experiments.

Figure 3.11: Joint torque norms for the KUKA LWR using different optimization
solutions along a linear path in simulations and experiments.

60 Torque Optimization Control

0 0.5 1 1.5 2 2.5 3

time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

jo
in

t
v
e
lo

c
it
ie

s
 n

o
rm

 [
ra

d
/s

]

MTN MTND MBP MBPD

(a) V-REP simulations.

0 0.5 1 1.5 2 2.5 3

time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

jo
in

t
v
e
lo

c
it
ie

s
 n

o
rm

 [
ra

d
/s

]

MTN MTND MBP MBPD

(b) Lab. experiments.

Figure 3.12: Joint velocity norms for the KUKA LWR using different optimization
solutions along a linear path in simulations and experiments.

3.5 Results 61

0 0.5 1 1.5 2 2.5 3

-0.5

0

0.5 MTN MBP

0 0.5 1 1.5 2 2.5 3

1.545
1.55

1.555
1.56

0 0.5 1 1.5 2 2.5 3

-0.05
0

0.05

0 0.5 1 1.5 2 2.5 3

1.4

1.5

0 0.5 1 1.5 2 2.5 3
0.34
0.36
0.38

0.4
0.42
0.44

0 0.5 1 1.5 2 2.5 3

time [s]

-0.35

-0.3

(a) V-REP simulations.

0 0.5 1 1.5 2 2.5 3

-0.5

0

0.5 MTN MBP

0 0.5 1 1.5 2 2.5 3

1.545
1.55

1.555
1.56

0 0.5 1 1.5 2 2.5 3

-0.05
0

0.05

0 0.5 1 1.5 2 2.5 3

1.4

1.5

0 0.5 1 1.5 2 2.5 3
0.34
0.36
0.38

0.4
0.42
0.44

0 0.5 1 1.5 2 2.5 3

time [s]

-0.35

-0.3

(b) Lab. experiments.

Figure 3.13: Joint positions for the KUKA LWR using MTN and MBP solutions along
a linear path in simulations and experiments.

62 Torque Optimization Control

0 1 2 3 4 5 6 7

time [s]

30

31

32

33

34

35

36
jo

in
t
to

rq
u
e

s
 n

o
rm

 [
N

m
]

MTN MTND MBP MBPD

(a) V-REP simulations.

0 1 2 3 4 5 6 7

time [s]

31

32

33

34

35

36

37

38

jo
in

t
to

rq
u
e
s
 n

o
rm

 [
N

m
]

MTN MTND MBP MBPD

(b) Lab. experiments.

Figure 3.14: Joint torque norms for the KUKA LWR using different optimization
solutions along a circular path in simulations and experiments.

3.5 Results 63

0 1 2 3 4 5 6 7

time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

jo
in

t
v
e
lo

c
it
ie

s
 n

o
rm

 [
ra

d
/s

]

MTN MTND MBP MBPD

(a) V-REP simulations.

0 1 2 3 4 5 6 7

time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

jo
in

t
v
e
lo

c
it
ie

s
 n

o
rm

 [
ra

d
/s

]

MTN MTND MBP MBPD

(b) Lab. experiments.

Figure 3.15: Joint velocity norms for the KUKA LWR using different optimization
solutions along a circular path in simulations and experiments.

64 Torque Optimization Control

0 1 2 3 4 5 6 7

-0.4
-0.2

0
0.2
0.4 MTN MBP

0 1 2 3 4 5 6 7

1
1.2
1.4
1.6
1.8

0 1 2 3 4 5 6 7
-0.08
-0.06
-0.04
-0.02

0
0.02

0 1 2 3 4 5 6 7

0.8
1

1.2
1.4
1.6
1.8

0 1 2 3 4 5 6 7

0.4

0.6

0.8

0 1 2 3 4 5 6 7

time [s]

-0.4
-0.3
-0.2

(a) V-REP simulations.

0 1 2 3 4 5 6 7

-0.4
-0.2

0
0.2
0.4 MTN MBP

0 1 2 3 4 5 6 7

1
1.2
1.4
1.6
1.8

0 1 2 3 4 5 6 7
-0.08
-0.06
-0.04
-0.02

0
0.02

0 1 2 3 4 5 6 7

0.8
1

1.2
1.4
1.6
1.8

0 1 2 3 4 5 6 7

0.4

0.6

0.8

0 1 2 3 4 5 6 7

time [s]

-0.4
-0.3
-0.2

(b) Lab. experiments.

Figure 3.16: Joint positions for the KUKA LWR using MTN and MBP solutions along
a circular path in simulations and experiments.

3.5 Results 65

0 0.5 1 1.5 2 2.5 3 3.5
0

1

2

3

4

5

6

x 10
−4

time [s]

C
a
rt

e
s
ia

n
 e

rr
o
r

n
o
rm

 [
m

]

MTN MTND MBP MBPD

(a) Linear task.

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

x 10
−4

time [s]

C
a
rt

e
s
ia

n
 e

rr
o
r

n
o
rm

 [
m

]

MTN MTND MBP MBPD

(b) Circular task.

Figure 3.17: Cartesian error norm along the linear and circular paths in the KUKA
LWR experiments using different torque optimization methods.

Conclusion

Different optimization techniques can be used to exploit robot redundancy w.r.t
one or more desired objectives (Chapter 1). Local optimization methods can
lead to closed form solutions suitable for on-line applications, while global meth-
ods have complex formulations and include numerical procedures.

In this thesis the robot redundancy resolution is optimized for two different
separated objectives. First, we presented a two-step method that addresses in an
approximate but effective way the minimum time control problem for redundant
robots moving along a given Cartesian path (Chapter 2). In a first step, a
local second-order inverse kinematic method was used to map Cartesian paths
into joint paths, while in a second step an established minimum time planning
algorithm provides the optimal solution under joint velocity and torque bounds.
As ingredients in our method, we used weighted pseudoinversion, optimized an
inertia-related criterion, and included a damping term in the null-space of the
task Jacobian. Working at the second-order level allows obtaining smoother
paths while including dynamic issues.

Based on the extensive tests on various paths and for different robots, which
are reported only in part here, we have found consistent improvements in the
obtained motion times over similar approaches that use first-order inverse so-
lutions at the velocity level. As shown experimentally, the combination of our
second-order solution method with the TOPP algorithm leads to reasonable
performance in tracking minimum time trajectories.

Our two-step second-order method leads to faster motion times, but is still
intended currently for off-line planning situations only. Real-time limitations
are distributed between both steps, and depend on several aspects, leading to
running times in the order of seconds. On the other hand, finding the accurate
global minimum time with a constrained solution trajectory by means of general
numerical optimization techniques requires at present minutes to hours of com-
putation. We plan to pursue computationally more efficient implementations
of the present method, as well as other semi-global methods that can run in
real time, such as model predictive control along Cartesian paths for redundant
robots that minimizes the motion time to go. Also, we would like to apply the
proposed techniques on the point-to-point time optimal control for redundant
robot. The joints friction and joint elasticity will be also considered.

67

68 Torque Optimization Control

As a second optimization objective, we proposed different torque optimiza-
tion methods to address the instability issue in redundant robots when the
norm of the joint torque is instantaneously minimized (Chapter 3). The model-
based short preview scheme MBP optimizes the norm of the joint torque at
the current and at a single future but close instant, anticipating the possible
dramatic growth of joint torques. Alternatively, the introduction of a desired
momentum-damping joint torque in the null space of the task can reduce the
associated drift in joint velocities. These two local control schemes can be used
separately (MTND) or in combination (MBPD), leading to robot behaviors that
are consistently stable in performing short and long task trajectories, without
peaks or oscillations in torques or velocities. In general, MBPD seems the best
optimization method since it generates smooth motion with lower residual joint
velocity at the end and with a similar torque demand of the other methods.
Despite the selection of a best preview instant is likely to depend on the robot
own dynamics, we found in all cases a favourable insensitivity of the achieved
robot performance when the preview instant was chosen in a non-vanishing
intermediate range.

Future work will address an adaptive choice of the preview window, as well
as the use of different weights for the torques at the two instants considered
in the optimization scheme with short preview. The preview concept and the
momentum-damping technique could be used also for other types of dynamic
optimization problems (e.g., minimum energy).

A
Notes on the Universal Robots

UR10

The UR10 robot by the Universal Robots considered in this work in Fig. A.1
is a lightweight rigid industrial manipulator that consist of six revolute joints.
Its total weight is 28.9 kg, with a payload of 10 kg. The robot is equipped
with joints position and motor current sensors. Table A.1 contains the position,
velocity, and torque limits for each joint. The robot kinematics are computed
according to the link frames in Fig. A.1, which are chosen according to the
Denavit-Hartenberg convention (Denavit and Hartenberg [1955], Siciliano et al.
[2008]). The associated parameters are given in Tab. A.2. Although the manu-
facturer distributes the numerical values of all dynamic parameters of the UR10
manipulator, it is found experimentally in Gaz et al. [2018] that using these
parameters lead to un sufficiently reliable dynamic model. According to that,
all UR10 computations in this work were done using the alternative dynamic
model presented in Gaz et al. [2018].

In this work we considered UR10 robot in simulations only. We used the
V-REP software, provided by Coppelia Robotics [2015], where the robot model
is supplied. Using this program, static and dynamic simulations can be achieved
using different sampling rates. In the static simulations both the robot and the
environment react only according to the desired commands. While during the
dynamic mode and by using the different supported dynamic engines, the robot
is expected to behave realistically and similarly to the real system. However the
un modeled dynamics make the robot behavior different from the real system.
In this work all simulations done with UR10 robot were in the static mode with
the minimum possible sampling rate 10[ms].

69

70 Appendices

Table A.1: Position, torque and velocity limits for the UR10 robot.

Joint
number

Range of motion
[rad]

Maximum torque
[Nm]

Maximum velocity
[rad/s]

1 ±2π 330 2.10

2 ±2π 330 2.10

3 ±2π 150 3.14

4 ±2π 56 3.14

5 ±2π 56 3.14

6 ±2π 56 3.14

Table A.2: Denavit-Hartenberg parameters of the UR10 robot.

Link
number

ai
[m]

αi

[rad]
di
[m]

θi
[rad]

1 0 −π/2 d1 = 0.128 q1

2 a2 = 0.6127 0 0 q2

3 a3 = 0.5716 0 0 q3

4 0 −π/2 d4 = 0.1639 q4

5 0 π/2 d5 = 0.1157 q5

6 0 0 d6 = 0.922 q6

Appendices 71

!"

#$

#%

!&

!'!(

Figure A.1: Denavit-Hartenberg frames of the UR10 robot.

72 Appendices

B
Notes on the KUKA LWR IV

robot

The KUKA LWR IV robot (Light Weight Robot) considered in this work Fig. B.1,
is usually used for research development and consists of seven revolute elastic
joints. However, in all study cases of this work, it is considered as a rigid robot.
Its total weight is approximately 16 kg, with a rated payload of 7 kg. All joints
are equipped with position sensors on the motor and link sides, and with a joint
torque sensor. Table B.1 contains the position, velocity, and torque limits for
each joint. The robot kinematics are computed according to the link frames in
Fig. B.1. The associated parameters are given in Tab. B.2. The constructor,
KUKA, has still not released a public version of its dynamic model. In this
work we computed all the robot dynamic features depending on the reverse
engineering approach by Gaz et al. [2014].

For simulations, we used the robot model provided by the V-REP. For the
supplied KUKA LWR robot model, several aspects make its behavior different
from the real system Cefalo [2015]. First, the motor dynamics and the low level
electronic controllers are not modeled. Also, the friction is neglected and the
mass distribution is considered uniform. In this work all simulations done with
KUKA LWR were in the static mode with the minimum possible sampling rate
10[ms].

For the experiments, the KUKA LWR IV system in Fig. B.2 is used. The
robot controller is connected to a remote PC node via an Ethernet connection
and the Fast Research Interface library (FRI) by KUK [2011] is used through
Microsoft Visual studio with C++ programming language to set up the desired
control architecture. The robot system can work with the sampling rates 1, 2
and 5 [ms].

73

74 Appendices

Table B.1: Joint position, torque and velocity limits of the KUKA LWR IV.

Joint
number

Range of motion
[rad]

Maximum torque
[Nm]

Maximum velocity
[rad/s]

1 ± 2.97 176 1.92

2 ± 2.09 176 1.92

3 ± 2.97 100 2.23

4 ± 2.09 100 2.23

5 ± 2.97 100 3.56

6 ± 2.09 38 3.21

7 ± 2.97 38 3.21

Table B.2: Denavit-Hartenberg parameters of the KUKA LWR IV.

Link
number

ai
[m]

αi

[rad]
di
[m]

θi
[rad]

1 0 π/2 0 q1

2 0 −π/2 0 q2

3 0 −π/2 d3 = 0.4 q3

4 0 π/2 0 q4

5 0 π/2 d5 = 0.39 q5

6 0 −π/2 0 q6

7 0 π/2 d7 = 0.078 q7

Appendices 75

!"

!#

!$

%"

%&

%$

%#

%'

%(

%)

!&

!)

%*

!(!'

!*

+#

+(

+*

Figure B.1: Denavit-Hartenberg frames of the KUKA LWR IV: All x-axes point toward
the viewer (frames are displaced sideways for better clarity).

76 Appendices

Figure B.2: The KUKA LWR system at DIAG Robotics Lab. (A) The LWR body.
(B) The KR C2 lr robot controller unit. (C) PC node. (D) Kuka control panel.

C
Positive definiteness of Q in

preview-based methods

We provide a simple proof that the Q matrix in (3.19) for the MBP method
will always be symmetric and positive definite, as claimed. A n × n matrix Q
is symmetric when QT = Q, and positive definite iff

vTQv > 0, for all v 6= 0.

The symmetry of Q follows immediately from the construction of this matrix
and from the fact that the robot inertia matrix M(q) is itself symmetric for all
configurations Siciliano et al. [2008]. Splitting now v 6= 0 in two parts v1 and
v2 according to the block matrix structure in (3.19), vTQv can be written as

(
vT1 v

T
2

)
Q

(
v1
v2

)
= wk||Mkv1||2 + wk+ ||Mk+v2 + TSk+v1||2.

Being ||vi|| > 0 for all vi 6= 0, and since Mk and Mk+ are positive definite,
then Mkv1 6= 0 and Mk+v2 6= 0 for all vi 6= 0. Now consider the two cases:

• v1 = 0,v2 6= 0. In this case vTQv = wk+ ||Mk+v2||, and since wk+ 6= 0
then vTQv > 0.

• v1 6= 0. Since wk > 0, then the term wk||Mkv1||2 > 0. Since wk+ > 0 and
the norm of a vector is strictly non-negative, then the term wk+ ||Mk+v2+
TSk+v1||2 is non-negative. Thus, also in this case it follows that vTQv >
0.

For the Q matrix of the MBPD method, the same previous procedure can be
used to prove its symmetry and positive definiteness.

77

78 Bibliography

Bibliography

K. Al Khudir and A. De Luca. Faster motion on cartesian paths exploiting
robot redundancy at the acceleration level. IEEE Robotics and Automation
Letters, 3(4):3553–3560, 2018.

K. Al Khudir, G. Halvorsen, L. Lanari, and A. De Luca. Stable torque op-
timization for redundant robots using a short preview. IEEE Robotics and
Automation Letters, Accepted on January, 2019.

F. Basile and P. Chiacchio. A contribution to minimum-time task-space path-
following problem for redundant manipulators. Robotica, 21(2):137–142, 2003.

J. Bobrow, S. Dubowsky, and J. Gibson. Time-optimal control of robotic ma-
nipulators along specified paths. Int. J. of Robotics Research, 4(3):3–17, 1985.

M. Cefalo. Notes on the KUKA LWR4 dynamic model, 2015. URL http://

www.coppeliarobotics.com/contributions/LBR4p_dynamic_model.pdf.

T.H. Chen, F.T. Cheng, Y.Y. Sun, and M.H. Hung. Torque optimization
schemes for kinematically redundant manipulators. J. of Robotic Systems,
11(4):257–269, 1994.

P. Chiacchio. Exploiting redundancy in minimum-time path following robot
control. In Proc. American Control Conf., pages 2313–2318, 1990.

P. Chiacchio and M. Concilio. The dynamic manipulability ellipsoid for redun-
dant manipulators. In Proc. IEEE Int. Conf. on Robotics and Automation,
pages 95–100, 1998.

S. Chiaverini, G. Oriolo, and I. Walker. Kinematically redundant manipulators.
In Springer handbook of robotics, pages 245–268. 2008.

D. Constantinescu and E.A. Croft. Smooth and time-optimal trajectory plan-
ning for industrial manipulators along specified paths. J. of Robotic Systems,
17(5):233–249, 2000.

79

http://www.coppeliarobotics.com/contributions/LBR4p_dynamic_model.pdf
http://www.coppeliarobotics.com/contributions/LBR4p_dynamic_model.pdf

80 Bibliography

Coppelia Robotics. V-rep virtual robot experimentation platform, 2015. URL
http://www.coppeliarobotics.com.

A. De Luca and L. Ferrajoli. Exploiting robot redundancy in collision detec-
tion and reaction. In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, pages 3299–3305, 2008.

A. De Luca and G. Oriolo. The reduced gradient method for solving redundancy
in robot arms. IFAC Proceedings Volumes, 23(8):133–138, 1990.

J. Denavit and R.S. Hartenberg. A kinematic notation for low pair mechanisms
based on matrices. Trans. of ASME, J. of Applied Mechanics, 22:215–221,
1955.

M. Diehl, H.G. Bock, H. Diedam, and P-B Wieber. Fast direct multiple shooting
algorithms for optimal robot control. In Fast motions in biomechanics and
robotics, pages 65–93. Springer, 2006.

V. Duchaine, S. Bouchard, and C.M. Gosselin. Computationally efficient pre-
dictive robot control. IEEE/ASME Trans. on Mechatronics, 12(5):570–578,
2007.

F. Flacco and A. De Luca. Discrete-time redundancy resolution at the ve-
locity level with acceleration/torque optimization properties. Robotics and
Autonomous Systems, 70:191–201, 2015.

M. Galicki. Time-optimal controls of kinematically redundant manipulators
with geometric constraints. IEEE Trans. on Robotics and Automation, 16(1):
89–93, 2000.

C. Gaz, F. Flacco, and A. De Luca. Identifying the dynamic model used by the
KUKA LWR: A reverse engineering approach. In Proc. IEEE Int. Conf. on
Robotics and Automation, pages 1386–1392, 2014.

C. Gaz, E. Magrini, and A. De Luca. A model-based residual approach for
human-robot collaboration during manual polishing operations. Mechatron-
ics, 2018.

A. Herzog, N. Rotella, S. Mason, F. Grimminger, S. Schaal, and L. Righetti.
Momentum control with hierarchical inverse dynamics on a torque-controlled
humanoid. Autonomous Robots, 40(3):473–491, 2016.

J. Hollerbach and K. Suh. Redundancy resolution of manipulators through
torque optimization. IEEE J. of Robotics and Automation, 3(4):308–316,
1987.

K. Kazerounian and Z. Wang. Global versus local optimization in redundancy
resolution of robotic manipulators. Int. J. of Robotics Research, 7(5):3–12,
1988.

O. Khatib. A unified approach for motion and force control of robot manipula-
tors: The operational space formulation. IEEE J. on Robotics and Automa-
tion, 3(1):43–53, 1987.

http://www.coppeliarobotics.com

Bibliography 81

S. Kim, K. Park, and J. Lee. Redundancy resolution of robot manipulators
using optimal kinematic control. In Proc. IEEE Int. Conf. on Robotics and
Automation, pages 683–688, 1994.

KUKA.FastResearchInterface 1.0. KUKA System Technology (KST), D-86165
Augsburg, Germany, 2011. Version 2.

D. Luenberger and Y. Ye. Linear and Nonlinear Programming. Springer, 3rd
edition, 2010.

S. Ma. A balancing technique to stabilize local torque optimization solution of
redundant manipulators. J. of Robotic Systems, 13(3):177–185, 1996a.

S. Ma. Local torque minimization of redundant manipulators with considering
end-motion joint velocities. In Proc. IEEE Int. Conf. on Systems, Man, and
Cybernetics, pages 1477–1482, 1996b.

S. Ma and D.N. Nenchev. Local torque minimization for redundant manipula-
tors: A correct formulation. Robotica, 14(2):235–239, 1996.

S. Ma and M. Watanabe. Time optimal path-tracking control of kinematically
redundant manipulators. JSME Int. J. Ser. C Mechanical Systems, Machine
Elements and Manufacturing, 47(2):582–590, 2004.

D. Martin, J. Baillieul, and J. Hollerbach. Resolution of kinematic redundancy
using optimization techniques. IEEE Trans. on Robotics and Automation, 5
(4):529–533, 1989.

K. Matthew. OptimTraj: Trajectory optimization library for matlab, 2016.
URL https://github.com/MatthewPeterKelly/OptimTraj.

E. Mingo Hoffman, A. Laurenzi, L. Muratore, N. G. Tsagarakis, and D. G. Cald-
well. Multi-priority Cartesian impedance control based on quadratic program-
ming optimization. In Proc. IEEE Int. Conf. on Robotics and Automation,
pages 309–315, 2018.

Y. Nakamura and H. Hanafusa. Optimal redundancy control of robot manipu-
lators. Int. J. of Robotics Research, 6(1):32–42, 1987.

K. O’Neil. Divergence of linear acceleration-based redundancy resolution
schemes. IEEE Trans. on Robotics and Automation, 18(4):625–631, 2002.

K. O’Neil and Y. C. Chen. Instability of pseudoinverse acceleration control of re-
dundant mechanisms. In Proc. IEEE Int. Conf. on Robotics and Automation,
pages 2575–2582, 2000.

J. Peters, M. Mistry, F. Udwadia, J. Nakanishi, and S. Schaal. A unifying
framework for robot control with redundant DOFs. Autonomous Robots, 24
(1):1–12, 2008.

Q. Pham. A general, fast, and robust implementation of the time-optimal path
parameterization algorithm. IEEE Trans. on Robotics, 30(6):1533–1540, 2014.

Ph. Poignet and M. Gautier. Nonlinear model predictive control of a robot
manipulator. In Proc. 6th Int. Work. on Advanced Motion Control, pages
401–406, 2000.

https://github.com/MatthewPeterKelly/OptimTraj

82 Bibliography

A. Reiter, A. Müller, and H. Gattringer. On higher order inverse kinemat-
ics methods in time-optimal trajectory planning for kinematically redundant
manipulators. IEEE Trans. on Industrial Informatics, 14(4):1681–1690, 2018.

N. Scianca, M. Cognetti, D. De Simone, L. Lanari, and G. Oriolo. Intrinsically
stable MPC for humanoid gait generation. In Proc. 16th IEEE-RAS Int.
Conf. on Humanoid Robots, pages 601–606, 2016.

Z. Shiller. On singular time-optimal control along specified paths. IEEE Trans.
on Robotics and Automation, 10(4):561–566, 1994.

I. Shim and Y. Yoon. Stabilization constraint method for torque optimization
of a redundant manipulator. In Proc. IEEE Int. Conf. on Robotics and Au-
tomation, pages 2403–2408, 1997.

K. Shin and N. McKay. Minimum-time control of robotic manipulators with
geometric path constraints. IEEE Trans. on Automatic Control, 30(6):531–
541, 1985.

B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo. Robotics: Modeling, Plan-
ning and Control. Springer, 3rd edition, 2008.

J.E Slotine and H.S. Yang. Improving the efficiency of time-optimal path-
following algorithms. IEEE Trans. on Robotics and Automation, 5(1):118–
124, 1989.

K. Suh and J. Hollerbach. Local versus global torque optimization of redundant
manipulators. In Proc. IEEE Int. Conf. on Robotics and Automation, pages
619–624, 1987.

Y. Tassa, T. Erez, and E. Todorov. Synthesis and stabilization of complex
behaviors through online trajectory optimization. In Proc. IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems, pages 4906–4913, 2012.

D. Verscheure, B. Demeulenaere, J. Swevers, J. De Schutter, and M. Diehl.
Time-optimal path tracking for robots: A convex optimization approach.
IEEE Trans. on Automatic Control, 54(10):2318–2327, 2009.

D. Whitney. Resolved motion rate control of manipulators and human prosthe-
ses. IEEE Trans. on man-machine systems, 10(2):47–53, 1969.

T. Yoshikawa. Dynamic manipulability of robot manipulators. In Proc. IEEE
Int. Conf. on Robotics and Automation, pages 1033–1038, 1985.

L. Zlajpah. On time optimal path control of manipulators with bounded joint
velocities and torques. In Proc. IEEE Int. on Robotics and Automation, pages
1572–1577, 1996.

	Abstract
	Acknowledgements
	Introduction
	Optimal Redundancy Resolution
	Introduction
	First-order methods
	Local optimization
	Global optimization

	Second-order methods

	Time-Optimal Control
	Introduction
	Time-optimal planning on a geometric path
	Exploiting robot redundancy
	First-order schemes
	Second-order scheme
	Finding an initial configuration
	Comparison with a global time-optimal solution

	Results
	3R planar arm
	UR10 manipulator
	KUKA LWR IV

	Torque Optimization Control
	Introduction
	Instantaneous minimum torque solution
	Model-based preview of evolution
	Inclusion of dynamic damping in the null space

	Trajectory planning
	Results
	3R planar arm
	UR10 manipulator
	KUKA LWR IV

	Conclusion
	Appendix Notes on the Universal Robots UR10
	Appendix Notes on the KUKA LWR IV robot
	Appendix Positive definiteness of bold0mu mumu QQQQQQ in preview-based methods
	Bibliography

