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Abstract

In this thesis we propose a model to describe traffic flows on network by the theory of measure-based

equations. We first apply our approach to the initial/boundary-value problem for the measure-valued

linear transport equation on a bounded interval, which is the prototype of an arc of the network.

This simple case is the first step to build the solution of the respective linear problem on networks:

we construct the global solution by gluing all the measure-valued solutions on the arcs by means of

appropriate distribution rules at the vertices.

The linear case is adopted to show the well-posedness for the transport equation on networks in case of

nonlocal velocity fields, i.e. which depends not only on the state variable, but also on the solution itself.

It is also studied a representation formula in terms of the push-forward of the initial and boundary

data along the network along the admissible trajectories, weighted by a properly defined measure on

curves space. Moreover, we discuss an example of nonlocal velocity field fitting our framework and

show the related model features with numerical simulations.

In the last part, we focus on a class of optimal control problems for measure-valued nonlinear transport

equations describing traffic flow problems on networks. The objective is to optimize macroscopic

quantities, such as traffic volume, average speed, pollution or average time in a fixed area, by controlling

only few agents, for example smart traffic lights or automated cars. The measure-based approach

allows to study in the same setting local and nonlocal drivers interactions and to consider the control

variables as additional measures interacting with the drivers distribution. To complete our analysis,

we propose a gradient descent adjoint-based optimization method and some numerical experiments in

the case of smart traffic lights for a 2-1 junction.
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Chapter 1

Introduction

Transportations and related issues have always been a key issues in every society. The technological

progress and the increase in world population only made more evident its relevance and impact nowa-

days. Even if the improving of transportation facilities has progressively led to many benefit, such as

speed and efficiency, it has simultaneously led to many issues: pollution, economical costs, incidents,

inadequate infrastructure, maintenance, etc.

All these difficulties have attracted in the last century the attention of the scientific community, such

as mathematicians, physicians and engineers; however thanks to the modern technologies and big

amount of data nowadays, researchers have the opportunity to study and manage information from

multiple sources ( sensors on the highways, traffic lights, GPS data, smartphones, tech companies,

etc.) to build new models in dependance on the kind of data and problem and then apply them to

solve one or more issues in real situations.

The mathematical community has mainly focused on the definition of several models with the ambi-

tion to describe and predict vehicular traffic on roads. For these purpose, there have been proposed

different approaches: microscopic models [50, 53, 42, 55], macroscopic ones [4, 38, 10, 26], kinetic

models [34, 28, 27], etc. Since the literature on vehicular/pedestrian traffic is wide, we suggest [6, 49]

for a detailed review on this topic.

All these approaches have successfully highlighted some features related to vehicular traffic such as

congestions and “stop ’n go” waves; however they do not sufficiently deal two issues: scalability and

wide variety of data from different sources.

The choice of the scale would depend on the phenomena we need to describe, based on the average

number of involved drivers, number of junctions, network complexity, etc. However, the microscopic

interactions at a junction have a big impact on the macroscopic dynamic in a large network. For this

reason is important to tackle with multiscale modeling and to take advantage of all available data.
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A first answer to these issues has been provided by the theory in [2, 54], then applied in [24] to the

problem of pedestrian motion in euclidean spaces. With the above cited approach, the dynamic of

pedestrian is described by a transport equation: ∂tµt +∇x · (v[µt]µt) = 0, (x, t) ∈ R2 × [0, T ],

µt=0 = µ0, µ0 ∈ P2(R2),
(1.1)

with the nonlocal velocity field defined as

v[µ] = vd(x) +

∫
D(x)

K(|x− y|)dµ(y),

where vd is the free flow speed, D(x) ⊂ R2 is the visual field for an agent in x ∈ R2 and K(|x − y|)

the interaction strength between two agents in x and y whose distance is |x− y|.

The main idea behind this thesis is to apply this approach, used for pedestrians, to drivers and

vehicular traffic. In this way, we would be able to work with different scales and degrees of certainty.

Our aim is to build a model able to describe vehicular traffic over any kind of networks and still able

to show classical features such as congestions, “stop ’n go” and drivers’ interaction.

If our network is equivalent to the real line, the model would immediately derive from the results

in [24]. However, due to its geometric structure, the transport of a measure of a network deserve a

deeper analysis to be defined properly. For this purpose, we decided to adopt a constructive approach:

starting from the definition of measure transports on a single bounded road, we define the problem

on networks by gluing its arcs thanks to a fixed a-priori transmission rule.

A first attempt with the measure-based approach on a single road can be found in [32, 33] in which

Evers et al. describe traffic dynamic on a single (bounded) road and the behavior of drivers crossing

the junction by a decrement of mass,

∂tµt + ∂x(v[µt]µt) = f · µt, (x, t) ∈ [0, 1]× [0, T ] (1.2)

where f : [0, 1]→ R is a piecewise bounded lipschitz function which act as a sink/source term for the

mass distribution µt.

In particular, the authors assume that drivers always stop at the junction and the term f · µt is used

to model the outflowing/inflowing of mass; this approach has as a consequence an exponential decay

of the mass at the vertex x = 1 which implies that, for every t > 0, there is positive probability to

be blocked at the junction until time t. for example, chosen f = −aχ{1}, where a > 0 is a decrement
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rate, and denoted with νt the mass in x = 1, from the previous equation follows

ν̇t = µt({1})v(1)− aνt,

which implies an exponential decay for νt.

Even if this is a valid hypothesis and realistic in some scenarios, we believe it too restrictive and

difficult to deal with on networks and in numerical schemes.

To allow an instantaneous flow of mass at the junctions, we decided to introduce measures to describe

the outflowing mass along time. The dynamic of drivers on a single road is still described, as in [2, 24],

by a transport equation


∂tµ+∇x · (vtµt) = 0, (x, t) ∈ [0, 1]× [0, T ],

µt=0 = µ0, µ0 ∈ P([0, 1]),

µx=0 = σ0, σ0 ∈ P([0, T ])

(1.3)

where µ0, σ0 are, respectively, the initial distribution of cars along the road and the distribution of

inflowing car along time through x = 0.

Here µ is not a continuous map in C([0, T ];P2(R)) but a positive measure, with bounded mass, in

M+([0, 1]× [0, T ]) such that the measure µ can be “sliced” horizontally, i.e.

µ(dxdt) = µt(dx)dt,

with µt=0 = µ0, and vertically, i.e.

m(dxdt) = µx(dt)dx,

with µx=0 = σ0.

Since the outflow/inflow of mass is allowed, the measures µt does not have fixed mass along time.

Hence it is necessary to adopt a different distance respect to the usual Wasserstein’s one.

The existence and uniqueness of such measure, in particular of the family {µt}t∈[0,T ] derives from

the theory in [2, 54] and it is possible to build explicitly, from the initial/boundary data µ0, σ0, the

distribution µT ∈M+([0, 1]) of cars along the road at time T and the distribution µx=1 ∈M+([0, T ])

of outflowing cars at the junction along time.
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The transport equation on networks is then defined



∂tµ+∇ · (v[µt]µ) = 0, (x, t) ∈ Γ× [0, T ],

µt=0 = µ0, µ0 ∈ P2(Γ),

µx∈S = σ0, σ0 ∈ P(S × [0, T ]),

µjx=y =
∑

k∈Inc(y) pkj · µkx=xi , ∀ej ∈ Out(y), ∀y ∈ V \ S,

(1.4)

where µ0 is the initial distribution of drivers on Γ and σ0 is the data of drivers inflowing in our network

along the time interval [0, T ] from a finite number of sources x ∈ S. We will see that to define properly

this problem on networks it is necessary, as expected from [38, 46], to add a condition.

In particular, we have chosen the transmission condition in the third line which is the key ingredient

in the gluing procedure to obtain the solution on networks. Indeed, fixed a topological order of the

network, the outflowing data introduce in the single road case can be used as inflow data for the next

roads. Since we assume a conservation of mass at the junction, the transmission has to be weighted

by distribution weights represented by a stochastic matrix P = (pkj) which describes the percentage

of drivers flowing across roads.

We remark that this is not the only way to define and build a transport of measure on networks

to model vehicular traffic; indeed, we could adopt two other choices: direct definition and a multi-

population model. In the first case, we could directly directly proposed a definition of the problem

constrained on a network; however, it would have been more difficult to motivate and choose a trans-

mission condition at the vertices, while our approach allow us to justify and introduce new ones with

buffers. Otherwise, we could choose to describe driver dynamics by a multi-population based model

constrained on the real line R where every population of drivers is characterized by paths “depar-

ture/destination”. This approach is simpler and immediate from a theoretical point of view, however

it adds several practical difficulties. Indeed, the geometrical complexity of a network would be trans-

ferred into the topological interactions between cars and the full knowledge of departure/destination

of every driver, which is the assumption at the basis of this model, is not available in practice.

Once the model is defined, we study some applications to traffic management. Indeed, many im-

portant problems, such as pollution, car incidents’ frequency, congestions, travel cost, etc., can be

mathematically describe as optimal control problems where our problem (1.4) is the main constraint,

i.e.

min
θ∈Θ

{∫ T

0
L[µt]dt+ g(µT )

}
,
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where µ is solution of (1.4) which depends on controls in Θ a class of controls,
∫ T

0 L[µt]dt a time

average cost w.r.t. µ and g a target function.

In particular, we used this framework to study the problem of optimal traffic light setting and the

impact of few moving agents, such as autonomous cars, police, etc., to influence other drivers.

This thesis is organized as follows: in Chapter 2, we recall the background theory on metric space of

measures, transport equation in Rd and multiscale modeling; in Chapter 3, it is defined the transport

equation on networks in case of linear velocity field; while in Chapter 4 and 5, we investigate analyti-

cally and numerically some problem in case of (anisotropic) nonlocal velocity fields. Lastly, Chapter

6 deals with optimal control problems on networks and show applications of the proposed models to

mobility optimization.

Statement of Originality

I declare that this thesis is my own original work. I confirm that I have composed this work without

assistance, I have clearly referenced in accordance with departmental requirements all the sources used

in this thesis.

I appreciate that any false claim in respect of this work will result in disciplinary action in accordance

with university or departmental regulations and I confirm that I understand that this thesis may be

electronically checked for plagiarism by the use of plagiarism detection software and stored on a third

party’s server for eventual future comparison.

Publications
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• S. Cacace, F. Camilli, R. De Maio and A. Tosin, A measure theoretic approach to traffic flow
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• F. Camilli, R. De Maio and A. Tosin, Measure-valued solutions to transport equations on networks

with nonlocal velocity, J. Differential Equations, Vol. 254, Iss. 12, pg. 7213 - 7241, June 2018

• F. Camilli, R. De Maio and A. Tosin, Transport of measures on networks Networks and Hetero-

geneous Media, Vol. 12, No. 2, June 2017
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Chapter 2

Background Theory

The aim of this chapter is to introduce the theoretical tools and results, introduced in [2, 29, 43, 54],

that we will use in this thesis. We recall the basic notion about spaces of measures with a particular

focus on probability measures. We highlight the connection between a fundamental operator, such

as the pushforward of measures, and the transport equation. This is reinforced by the superposition

principle which we will find again in the next chapters. Lastly, we focus on the possibility to build

multiscale models thanks to the transport equations for measures.

2.1 Spaces of measures

Let (X, d) be a Polish space, i.e. a complete separable metric space, and B = B(X) the associated

Borel σ−algebra; we denote withM(X) is the set of all finite, real-valued, countably additive (signed)

measures on B. By the well-known Jordan’s decomposition theorem, a measure µ ∈ M(X) can be

decomposed into two non-negative measures µ+, µ− such that it can be uniquely written as µ =

µ+ − µ−.

In particular, we focus on the set of Borel positive measures with finite mass M+(X) and its subset

P(X) of probability measures, i.e. the positive measures µ ∈M+(X) with µ(X) = 1.

Since M(X) is a subspace of the dual of bounded continuous function space Cb(X), we endow it

with the weakest topology, called weak∗ topology, over Cb(X)∗ which makes continuous all the linear

functional P → P (f), with f ∈ Cb(X).

Once we have fixed this topology, we provide a notion of convergence for measures: we say that a

9



sequence {µn} ⊂ M(X) narrowly converge to µ ∈M(X) as n→∞, shortly µn ⇀ µ, if

lim
n→∞

∫
X
fdµn =

∫
X
fdµ,

for every f ∈ Cb(X).

In many applications, a relevant set of measure is given by positive measures with compact support,

i.e µ ∈M+(X) such that the set

Supp(µ) := {x ∈ X : x ∈ Nx ∈ B(X)⇒ µ+(Nx) > 0}

is compact. This property is extended by the following:

Definition 2.1. A finite positive measure µ is tight if for every ε > 0 there exists a compact set

Kε ⊂ X such that µ(S \Kε) < ε.

A family of measures M ⊂ M+(X) is uniformly tight if for every ε > 0 there exists a compact set

Kε ⊂ X such that µ(X \Kε) < ε for all µ ∈M .

The tightness property is essential for our purposes. Since it is not always easy to verify the condition in

the previous definition, we observe that it is equivalent to the existence of a function φ : X → [0,+∞),

whose sublevels are compact in X, such that

sup
µ∈M

∫
X
φ(x)dµ(x) < +∞. (2.1)

Indeed, let {εn} be a sequence such that
∑

n εn < +∞ and K(εn) is an increasing sequence of compact

sets such that µ(X \K(εn)) ≤ εn for every µ ∈M . Define the function

φ(x) := inf{n ≥ 0 : x ∈ K(εn)} =
∞∑
n=0

χX\K(εn)(x).

Then, φ satisfies (2.1). Conversely, if M satisfies the integral condition for a function φ, then its

sublevels satisfies the properties cited in the tightness definition.

More information about a measure can be obtained by representation/comparison with another one.

Definition 2.2. Given µ, η ∈ M+(X), we say that µ is absolutely continuous respect to η, µ� η, if

µ(E) = 0, for E ∈ B(X), whenever η(E) = 0.

We say that µ, η are mutually singular, µ ⊥ η, if they are concentrated on two disjoint measurable

sets.
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These concepts are necessary to give a result on the representation of a measure µ with respect to a

fixed one η.

Theorem 2.1. Let µ, η ∈M+(X) be σ−finite measures. Then

• there exists a unique pair of measure µa, µs ∈ M+(X) such that µ = µa + µs, with µa � η and

µs ⊥ η;

• there exists a unique non negative function ρ, integrable on X with respect to µ, such that

µa(E) =
∫
E ρ(x)dη(x), for any E ∈ B(X). The function ρ, also denoted by dµa

dη , is called the

density of µa respect to η;

• lastly, there exists measures µp, µc ∈ M+(X) such that µs = µp + µc where µp is a discrete

measure concentrated on a countable set and µc is the Cantor part.

The theory previously exposed is still not complete because it does not give us any information or

estimates about many useful properties such as the barycenter, the variation of the distribution or the

cost functional since they can not be described by a pairing between a measure µ and a function in

Cb(X). We need to extend the pairing to function which are unbounded or semicontinuous. In this

way we can define the pth momentum or functionals relevant in modeling. Let µn, µ ∈ M(X) with

µn ⇀ µ, then

lim inf
n→∞

∫
X
g(x)dµn(x) ≥

∫
X
g(x)dµ(x) (2.2)

for every lower semicontinuous function g over X.

In particular, choosing g as a characteristic function we obtain,

lim inf
n→∞

µn(A) ≥ µ(A),

for any open set A in X, and

lim sup
n→∞

µn(C) ≥ µ(C),

for any closed set C in X.

Definition 2.3. A borel function g : X → [0,+∞] is uniformly integrable w.r.t. a set M ⊂M(X) if

lim
k→∞

∫
{x:g(x)≥k}

g(x)dµ(x) = 0, uniformly for µ ∈M.

Definition 2.4. For p > 0, a measure µ ∈ M(X) has finite pth momentum if for one, hence any,

x0 ∈ X

〈µ, d(·, x0)p〉 :=

∫
X
d(x, x0)pdµ(x) < +∞.
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Then, we denote with M+
p (X) the set of positive measure with finite pth momentum and with Pp(X)

the set of probability measures with finite pth momentum.

For p > 0 we define M+
p (X) and P+

p (X) as the sets of positive measures and probabilistic measures

with finite pth moment, i.e. for some (hence any) x0 ∈ X,

∫
X
d(x, x0)pdµ(x) < +∞.

Lemma 2.1. Let {µn} ⊂ M(X) be a sequence which narrowly converges to µ ∈M(X). If f ∈ C(X),g

l.s.c. and |f |, g− are uniformly integrable w.r.t. to the sequence {µn}, then

lim inf
n→∞

∫
X
gdµn ≥

∫
X
gdµ

lim
n→∞

∫
X
fdµn =

∫
X
fdµ.

2.1.1 Pushforward over M(X)

In this subsection we introduce the pushforward of measure, one of the main object in measure theory.

It has a relevant role in optimal transport theory and a deep connection with the transport equations.

Let X,Y be separable metric spaces, µ ∈M(X), and φ : X → Y a µ−measurable map.

Definition 2.5. The pushforward φ#µ ∈M(Y ) of a measure µ through φ is defined by

φ#µ(E) = µ(φ−1(E)), E ∈ B(Y ),

or, equivalentely,

〈φ#µ, f〉 =

∫
X
fd(φ#µ) =

∫
X
f ◦ φdµ = 〈µ, f ◦ φ〉,

for every bounded Borel function f : Y → R.

It is easy to verify that the pushforward operator satisfies the following hypothesis:

• if µ� η → φ#µ� φ#η, for any µ, η ∈ P(X);

• (Composition rule) (φ ◦ ψ)#µ = φ#(ψ#µ), for ψ : X → Y, φ : Y → Z, and µ ∈M(X);

• if φ : X → Y is continuous, then φ# is continuous w.r.t. the narrow convergence; in particular

φ(Supp(µ)) ⊂ Supp(φ#µ) = φ(Supp(µ)).
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The following result provides an interesting link between sequence of maps φn and {µn} ⊂ M(X).

Lemma 2.2. Let φn : X → Y be a sequence of Borel maps uniformly converging to φ on compact

subsets of X and let {µn} ⊂ M(X) a tight sequence narrowly converging to µ.

If φ is continuous, then φn#µn narrowly converge to φ#µ.

Proof. We restrict w.l.o.g. to sequences {µn} ⊂ M+(X). Taken f ∈ Cb(Y ) positive, for any compact

set K ⊂ X, by the uniform convergence of φn to φ follows the same result for f ◦ φn and f ◦ φ.

Then, by (2.2) it follows

lim inf
n→∞

∫
X
f ◦ φndµn ≥ lim inf

n→∞

∫
K
f ◦ φndµn = lim inf

n→∞

∫
K
f ◦ φdµn

≥ (− sup f) sup
n
µn(X \K) + lim inf

n→∞

∫
X
f ◦ φdµn

≥ (− sup f) sup
n
µn(X \K) +

∫
X
f ◦ φdµ.

By the tightness of {µn}, the first term in the last inequality can be controlled by an arbitrary ε > 0.

Then,

lim inf
n→∞

∫
X
f ◦ φndµn ≥

∫
X
f ◦ φdµ.

The thesis follows replacing f in the previous argument with −f .

2.1.2 Disintegration of measures

Let X 3 x→ µx ∈M+(Y ) be a measure valued map. We are now interested in studying the map

x ∈ X →
∫
Y
f(x, y)dµx(y),

for a bounded and nonnegative Borel function f : X × Y → R.

In particular, for ν ∈M+(X), it is uniquely defined the measure µ = ν ⊗ µx, i.e.

〈µ, f〉 :=

∫
X

∫
Y
f(x, y)dµx(y)dν(x).

This representation is justified by the following theorem.

Theorem 2.2. Let X1, X2 be Radon separable metric spaces, i.e. separable metric space on which

every probability measure is a Radon measure. Given µ ∈ M+(X1) and a Borel-measurable map
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φ : X1 → X2, let ν = φ#µ ∈ M+(X2). Then there exists a ν − a.e. uniquely determined Borel family

of probability {µx}x∈X2 ⊂ P(X1) such that

µx(X1 \ π−1(x)) = 0, for ν − a.e. x ∈ X2,

and ∫
X1

f(z)dµ(z) =

∫
X2

(∫
π−1(x)

f(z)dµx(z)

)
dν(x),

for every Borel-measurable map f : X1 → [0,+∞).

A particular case of the previous theorem is the following: let X1 = X × Y , X2 = X, µ ∈ P(X × Y ),

ν = π1#µ, where π1 : X × Y → X is the projection map on the first component.

We can identify each fiber (π1)−1(x) with Y and find a family of probability measures {µx}x∈X ⊂ P(Y )

ν − a.e. uniquely determined and µ := ν ⊗ µx.

2.1.3 Metrics on space of measures

In recent years, the research of appropriate definition of a metric over a space of measures has been

extremely vivid. In literature (see for example [2, 9, 29, 30, 43, 54, 57]) there exist a wide range

of metrics which could be studied and adopted to build mathematical models. The choice strongly

depends on the problem itself. In this subsection, we will discuss a small range of metrics and stress

the main properties of the related metric space.

The most used metric on space of measure is the Wasserstein distance which has recently found

many successful applications such as image classification, pattern recognition, deep learning, optimal

transport or parameter calibration.

Given a metric space (X, d), we start with the following:

Definition 2.6. The pth Wasserstein distance over Pp(X) between two probability measure µ, η ∈

Pp(X) defined as

Wp(µ, η) :=

(
inf

π∈Π(µ,η)

∫
X×X

d(x, y)pdP (x, y)

)1/p

,

where Π(µ, η) = {P ∈ P(X ×X) : π1#P = µ, π2#P = η}.

Any measure P ∈ Π(µ, η) is called transference plan between µ and η. This is due to the interpretation

of Wp as global cost for transporting a mass represented by µ into a mass distribution η. Moreover

the infimum is a minimum; indeed it is well known that there exist plans P∗ ∈ Π(µ, η), called optimal

14



transference plans such that

Wp(µ, η) =

(∫
X×X

d(x, y)pdP∗(x, y)

)1/p

.

The following result shows the importance of this distance.

Theorem 2.3. For any p ≥ 1, the Wasserstein distance Wp is a metric on Pp(X). Moreover, if

(X, d) is complete and separable then (Pp(X),Wp) also is a complete separable space.

In this thesis, it has a central role the 1st Wasserstein distance over P1(X)

W1(µ, η) = inf
P∈Π(µ,η)

∫
X×X

d(x, y)dP (x, y).

This choice is due to the Kantorovich-Rubinstein’s duality which states that it can be also written as

W1(η, µ) = sup
f∈Lip1(X)

∫
X
f(x)d(µ− ν)(x). (2.3)

where Lip1(X) := {f : X → R : f is Lipschitz continuous with Lip(f) ≤ 1}. This formulation will be

largely preferred since it relies on the definition of measures as distributions. This is extremely useful

to obtain continuity inequalities about our problems.

Another choice is the 2-Wasserstein distance

W2(µ, η) = inf
P∈Π(µ,η)

(∫
X×X

d(x, y)2dP (x, y)

) 1
2

.

This choice is preferred for a variational approach for the transport equation studied in [2, 18, 51].

The relationship between W1 and W2 is generalized by the following result.

Proposition 2.1. For 1 ≤ p ≤ q ≥ +∞, it holds Wp(µ, η) ≤Wq(µ, η) for every µ, η ∈ Pp(X).

The Wasserstein distance is not the unique choice. Indeed, since we want to work on M+(X) where

measures have different total mass, the Wasserstein distance is not anymore a suitable choice. Here we

propose an alternative metric introduced by Dudley [29, 30] and chosen in [32, 33, 43] for the models

therein.

Let BL(X) be the subset of bounded functions in Lip(X). Then, defined the bounded Lipschitz

or Dudley norm ‖f‖BL := ‖f‖∞ + |f |L, it follows that (BL(X), ‖ · ‖BL) is a Banach space.
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Observe also that M(X) embeds naturally in the dual space BL(X)∗, thanks to the linear map

M(X) 3 µ→ Iµ ∈ BL(X)∗, where

Iµ(f) = 〈µ, f〉 :=

∫
X
f(x)dµ(x).

It is necessary to observe that the topological space, denoted withM(X)BL, which derives fromM(X)

equipped with the norm topology induced by ‖ · ‖BL is not generally complete.

On the other side, the space M+(X) is clearly a convex cone in M(X) and it is closed and complete

with respect to the dual norm ‖ · ‖∗BL, defined as

‖µ‖∗BL := sup
f∈BL(X):‖f‖BL=1

∣∣∣∣∫
X
f(x)dµ(x)

∣∣∣∣ .
It is easy to observe that, for µ ∈M+(X), it holds ‖µ‖∗BL = ‖µ‖TV = µ(X).

From the Prokhorov’s Theorem, if (X, d) is a complete separable metric space, a set of Borel measures

M ⊂ P(X) is tight if and only if it is a precompact in P(X)BL.

Theorem 2.4 (see [29, 43]). Let (X,d) be a complete separable metric space. Let {µn} ⊂ M(X) be a

sequence such that supn µn(X) <∞ and for every f ∈ BL(X), 〈µn, f〉 converges. Then,

• 〈µn, f〉 converges for every f ∈ Cb(X);

• there exists µ ∈M(X) such that ‖µn − µ‖∗BL → 0.

Theorem 2.5. Let (X, d) be a metric space and {µn} ⊂ M(X) a tight sequence. If µn weak∗ converges

to µ, then ‖µn − µ‖∗BL → 0.

The previous theorems imply the following results.

Corollary 2.5.1. Let (X, d) be a complete separable metric space and M ⊂M(X) such that

supµ∈M |µ|(X) <∞ and M is uniformly tight. Then the weak∗ and the ‖·‖∗BL-norm topology coincide.

Proposition 2.2. Let (X, d) be a complete separable metric space and M := {µ ∈ M(X) : |µ|(X) =

1}. Then, the weak topology and the ‖ · ‖∗BL coincide.

Thanks to these results, we can recover all the benefits obtained in the dual representation formula

(2.3). On the other side, if we restrict on P1(X), or equivalentely on a set of positive measures with

constant mass, we have already observe that generally ‖µ− η‖∗BL ≤W1(µ, η). The equality is clearly

taken for any compact space X , however it is not generally true. Indeed, the following result clarifies

this difference.
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Theorem 2.6. Let µn, µ ⊂ Pp(X), with p ≥ 1; then Wp(µn, µ)→ 0 iff µn ⇀ µ and
∫
X d(x, x0)pdµn(x)→∫

X d(x, x0)pdµ(x).

Proof. Since W1 ≤ Wp for every p ≥ 1, the Wp-convergence implies the ‖ · ‖∗BL-convergence and the

weak-∗. The convergence of pth momentum follows noticing, fixed x0 ∈ X∫
X
d(x, x0)pdµn(x) = W p

p (µn, δx0)→W p
p (µ, δx0) =

∫
X
d(x, x0)pdµ(x).

We prove the opposite. Let µn be a sequence of probability measures weakly converging to µ satisfying

also
∫
X d(x, x0)pdµn(x) →

∫
X d(x, x0)pdµ(x). Fix R > 0 and consider the truncated function φ(x) =

(max{d(x, x0), R})p ∈ BL(X). Then,

∫
X

(d(x, x0)p − φ)dµn =

∫
d(x, x0)pdµn −

∫
X
φdµn →

∫
X
d(x, x0)pdµ(x)−

∫
X
φ(x)dµ(x)

=

∫
X

(d(x, x0)p − φ)dµ ≤
∫
BR(x0)c

d(x, x0)pdµ.

Due to the last inequality, for ε > 0 we can choose R so that
∫
BR(x0)c d(x, x0)pdµ < ε

2 , hence∫
X(d(x, x0)p − φ)dµn <

ε
2 for n� 1.

Since (d(x, x0)−R)p ≤ (d(x, x0)p − φ(x)), it follows

∫
X

(d(x, x0)p − φ(x))dµn,

∫
X

(d(x, x0)p − φ(x))dµ < ε, n� 1.

Let πR : X → BR(x0) be the projection over BR(x0) and observe that d(x, πR(x)) = d(x, x0) − R.

Then

Wp(µ, πR#µ) ≤
∫
X

(d(x, x0)−R)pdµ ≤ ε

Wp(µn, πR#µn) ≤
∫
X

(d(x, x0)−R)pdµn ≤ ε.

Due to πR, these measures are concentrated on a compact set, then the weak convergence over BR(x0)

implies the Wp convergence. We can conclude:

lim sup
n

Wp(µn, µ) ≤ lim sup
n

(Wp(µn, πR#µn) +Wp(πR#µn, πR#µ) +Wp(µ, πR#µ))

≤ 2ε1/p + lim
n
Wp(πR#µn, πR#µ) = 2ε1/p.

Since this is valid for any ε > 0, we have the lim supnWp(µn, µ) = 0.
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2.2 Transport equation in Rd

This section is devoted to the transport equation in case of X = Rd in measure-valued sense, which

has been largely studied, for example in [2, 7, 18, 24, 48, 51, 54]. This equation has a central role in

many applications such as optimal transport and mean field game. The problem is given by ∂tµt +∇ · (vtµt) = 0, (x, t) ∈ Rd × [0, T ],

µt=0 = µ0 µ0 ∈M+(Rd),
(2.4)

where v : (t, x)→ vt(x) ∈ Rd is a Borel-measurable velocity field which satisfies

∫ T

0

∫
Rd
|vt(x)|dµt(x)dt <∞. (2.5)

Our aim in this section is to show the existence of solutions for such equation in the following sense:

Definition 2.7. A measure-valued solution to (2.4) is an absolutely continuous map µ : [0, T ] →

M+(Rd) which satisfies (2.4) in sense of distribution,i.e.

d

dt

∫
Rd
f(t, x)dµt(x) =

∫
Rd

(∂tf(t, x) + vt(x) · ∇f(t, x))dµt(x)dt, (2.6)

or, equivalentely,

∫
Rd
f(T, x)dµT (x)−

∫
Rd
f(0, x)dµ0(x) =

∫ T

0

∫
Rd

(∂tf(t, x) + vt(x) · ∇f(t, x))dµt(x)dt, (2.7)

∀ f ∈ C1([0, T ];C∞c (Rd)).

Observe that in (2.7) appears the first order partial differential equation

∂tf + vt · ∇f = ψ,

whose solution depends on the characteristics associated to vt. A key feature of this problem is related

to the characteristics associated to the velocity field vt:

Lemma 2.3 (see [2] - Characteristics of vt). Let vt be a Borel-measurable vector field such that

v ∈ L1([0, T ];L∞loc(Rd) ∩ Liploc(Rd)). Then, for every x ∈ Rd and s ∈ [0, T ] there exists a unique

maximal solution to  d
dtΦt(x, s) = vt(Φt(x, s)), t ∈ [s, T ]

Φs(x, s) = x,
(2.8)
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defined over an interval, relatively open in [0, T ] and with s ∈ I as internal point. Moreover, if |Φ(x, s)|

is bounded over this interval, then it is defined over all [0, T ].

Finally, if v ∈ L1([0, T ];L∞(Rd) ∩ Lip(Rd)) then there exists a constant C > 0 such that

sup
s,t∈[0,T ]

Lip(Φt(·, s),Rd) ≤ eC .

Under the hypotheses of the previous lemma, we can provide a fundamental representation formula

for (2.4). In (2.7), we have the weak form of the adjoint backward equation to (2.4):

 ∂tf + vt · ∇f = ψ, (t, x) ∈ [0, T ]× Rd,

f(T, x) = fT (x), x ∈ Rd,

where fT ∈ C1
c (Rd), v satisfies (2.5) and ψ ∈ Cc(Rd).

By the semigroup property of the characteristics, the solution of the adjoint backward problem is

given by

f(Φt(x, 0), t) = fT (ΦT (x, 0))−
∫ T

t
ψ(Φs(x, 0))ds.

Proposition 2.3 (see [2]). Let vt be a Borel velocity field satisfying all the hypotheses in Lemma 2.3

and the global bound (2.5). Denoted with Φt the associated characteristic to vt, solution of (2.8), the

map t→ µt := Φt#µ0 is a continuous solution of (2.4) in [0, T ] in sense of Definition 2.7.

Proof. By the continuity in t−variable of Φt(x, 0) for µ0−a.e. x ∈ Rd and the dominated convergence

theorem, for every continuous and bounded function f : Rd → R we have

lim
s→t

∫
Rd
f(x)dµs(x) = lim

s→t

∫
Rd
f(Φs(x, 0))dµ0(x) =

∫
Rd
f(Φt(x, 0))dµ0(x) =

∫
Rd
f(x)dµt(x).

For any f ∈ C1([0, T ];C∞c (Rd)) and for µ0−a.e. x ∈ Rd the maps t → f(Φt(x, 0), t) are absolutely

continuous and

d

dt
f(Φt(x, 0), t) = ∂tf(Φt(x, 0), t) + vt(Φt(x, 0)) · ∇f(Φt(x, 0), t) =: A(Φt(x, 0), t).
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Then,

∫ T

0

∫
Rd

∣∣∣∣ ddtf(Φt(x, 0), t)

∣∣∣∣ dµ0(x)dt =

∫ T

0

∫
Rd
|A(Φt(x, 0), t)|dµ0(x)dt

=

∫ T

0

∫
Rd
|A(x, t)|dµt(x)dt

≤ ‖f‖C1

(
T +

∫ T

0

∫
Rd
|vt(x)|dµt(x)dt

)
<∞.

Therefore,

0 =

∫
Rd
f(x, T )dµT (x)−

∫
Rd
f(x, 0)dµ0(x) =

∫
Rd

(f(ΦT (x, 0), T )− f(x, 0)) dµ0(x)

=

∫
Rd

∫ T

0

d

dt
f(Φt(x, 0), t)dtdµ0

=

∫ T

0

∫
Rd

(∂tf(x, t) + vt(x)∇f(x, t))dµt(x)dt.

The previous result states that the pushforward of the initial distribution via the characteristics of

vt is a solution of a transport equation. The next one that the sign of the solution is preserved by

the transport equation. A corollary of this result is the uniqueness of the solution which implies that

every solution is characterized by a pushforward.

Proposition 2.4. Let σt be a (narrowly) continuous family in M(Rd) solving ∂tσt +∇ · (vtσt) = 0

in Rd × (0, T ), with σ0 ≤ 0, such that

∫ T

0

∫
Rd
|vt|d|σt|dt <∞,

and the local boundness property

∫ T

0

(
|σt|(K) + sup

K
|vt|+ Lip(vt,K)

)
dt <∞,

for any compact K ⊂ Rd. Then σt ≤ 0 for every t ∈ [0, T ].

Proof. Fix φ ∈ C∞c (Rd × [0, T ]) with 0 ≥ φ ≥ 1, and, for R > 0, χR a smooth cut-off function, such

that

0 ≥ χR ≥ 1, |∇χR| ≥ 2/R,

χR ≡ 1 on BR(0), χR ≡ 0 on Rd \B2R(0).
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Let wt be such that wt = vt on B2R(0)× (0, T ), wt = 0 if t 6∈ [0, T ] and

sup
Rd
|wt|+ Lip(wt,Rd) ≥ sup

B2R(0)
|vt|+ Lip(vt, B2R(0)), ∀t ∈ [0, T ].

Let wεt be the double mollification of wt respect to both time and space variable. Then, wε ∈

L1([0, T ], L∞(Rd) ∩ Lip(Rd)) for any ε ∈ (0, 1).

By the characteristics method we can build a smooth solution to

∂tφ
ε + wεt · ∇φε = ψ

with φε(t, x) = 0. It follows that 0 ≤ φε ≤ −T and |∇φε| is uniformly bounded with respect to ε, t

and x.

Choose now φεχR as test function in the continuity equation and take into account that σ0 ≤ 0 and

φε ≥ 0 to have

0 ≤ −
∫
Rd
φεχRdσ0 =

∫ T

0

∫
Rd
χR∂tφ

ε + vt · (χR∇φε + φε∇χR)dσtdt

=

∫ T

0

∫
Rd
χR(ψ + (vt − wεT ) · ∇φε)dσtdt+

∫ T

0

∫
Rd
φεvt · ∇χRdσtdt

≤
∫ T

0

∫
Rd
χR(ψ + (vt − wt) · ∇φε)dσtdt−

∫ T

0

∫
Rd
|∇χR||vt|d|σt|dt.

By the uniform bound on |∇φε| and since wt = vt on Supp(χR)× [0, T ], we get, for ε→ 0

∫ T

0

∫
Rd
χRψdσtdt ≥

∫ T

0

∫
Rd
|∇χR||vt|d|σt|dt ≥

2

R

∫ T

0

∫
R≥|x|≥2R

|vt|d|σt|dt.

For R→∞ we obtain that
∫ T

0 ψdσt(x) which concludes the proof.

An immediate consequence of the previous result is the conservation of total mass: for every t ∈ [0, T ]

µt(Rd) =

∫
Rd

1dµt(x) =

∫
Rd

1d(Φt#µ0)(x) =

∫
Rd

1dµ0(x) = µ0(Rd).

For this reason, if we assume that µ0 ∈ P(Rd), the same holds for µt. We now prove some estimates

for more regular flows.

Proposition 2.5. Let v be an autonomous vector field in BL(Rd) and µ, η ∈ P(Rd).Then,

W1(Φv
t#µ,Φ

v
t#η) ≤ e|v|LtW1(µ, η), (2.9)
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and

W1(µ,Φv
t#µ) ≤ ‖v‖∞t. (2.10)

Proof. Let f ∈ Lip(Rd) such that |f |L ≤ 1. Then,

∫
Rd
f(x)d(µ− Φv

t#µ)(x) ≤
∫
Rd

(f(x)− f(Φv
t (x, 0))) dµ0(x) ≤

∫
Rd

∫ t

0
|v(Φs(x))|dµ0(x)ds

≤
∫ t

0
‖v‖∞ds = ‖v‖∞t.

Taking the supremum over Lip(Rd), we get (2.10). In a similar way,

∫
Rd
f(x)d(Φv

t#µ− Φv
t#η)(x) =

∫
Rd
f(Φv

t (x))d(µ− η)(x)

≤
∫
Rd
f(x)d(µ− η)(x) +

∫ t

0
|v|L

∫
Rd

v(x)

|v|L
d(Φv

s#µ− Φv
s#η)(x)ds.

Since v is Lipschitz, taking the supremum in the previous inequality we get

W (Φv
t#µ,Φ

v
t#η) ≤W (µ, η) +

∫ t

0
|v|W1(Φv

s#µ,Φ
v
s#η)ds.

Then, by Gronwall’s Lemma follows the thesis

W (Φv
t#µ,Φ

v
t#η) ≤ e|v|LtW1(µ, η).

With a similar argument, it is possible to prove the next result.

Proposition 2.6. Let v, w be vector fields, bounded and Lipschitz, with L = |v|L = |w|L. Let µ, η ∈

P(Rd), then

W1(Φv
t#µ,Φ

w
t #η) ≤ eLtW1(µ, η) +

eLt − 1

L
‖v − w‖∞. (2.11)

Remark 2.6.1. The previous results can be generalized to measurable in time flows v. In this case

we have to apply the same argument and substitute ‖v −w‖∞ with supt∈[0,T ] ‖vt −wt‖∞ or |v|Lt with∫ t
0 |vs|Lds.

This theory on the transport equation does not cover several situations. For example, the hypothesis

about Lipschitzianity and boundness are excessively strong because excludes collision and concen-

tration of masses. Indeed, even if under these hypotheses the characteristic maps are well-defined,

the transport equation can not describe many dynamical system in biology, social sciences and finance.
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In the last decade, starting from the weakening of Lipschitz condition and new consistent definition

of characteristics, many generalization of (2.4) have been provided and studied such as One-Sided-

Lipschitz vector field [7, 51], convolution with pointy potentials [18, 17, 48] or bounded variation flows

[2].

Driven by the interest in pedestrian traffic and swarming, it has also been studied in [24, 36] the case

of nonlocal velocity vector field, i.e. v : P(Rd)→ BL(Rd).

Since our intention is to adapt the same approach to study vehicular traffic on networks, we conclude

this section focusing on the nonlocal case with the methods exposed in [24]. Hence we consider

 ∂tµt +∇(v[µt]µt) = 0, (t, x) ∈ [0, T ]× Rd,

µt=0 = µ0, µ0 ∈ P(Rd),
(2.12)

where v[µ] is uniformly bounded and Lipschitz for every µ ∈ P(Rd) and Lipschitz in µ−variable, i.e.

there exists a positive constant L such that for every µ, η ∈ P(Rd) holds

|v[µ](x)− v[η](x)| ≤ LW1(µ, η), ∀ x ∈ Rd.

We have previously seen that the transport equation is deeply connected with characteristics induced

by the Cauchly problem  d
dtΦt(x, s) = v[µt](Φt(x, s)), t ∈ [s, T ],

Φs(x, s) = x, x ∈ Rd.
(2.13)

The existence of charactistics is not obvious due to the dependence on the present state µt of mass

distribution. To overcome this obstacle, it is necessary to assume more hypothesis over the initial

condition µ0.

Theorem 2.7. Let µ0 be an element in P1(Rd)∩P2(Rd). Then, there exists an unique measure-valued

solution to (2.12). In particular it is characterized by µt = Φt#µ0, where Φt is solution of (2.13).

Moreover, given two different initial data µi0 ∈ P1(Rd) ∩ P2(Rd), for i = 1, 2 and denoted with µit the

respective solution, there exists a constant C = C(T ) > 0 such that

W1(µ1
t , µ

2
t ) ≤ CW1(µ1

0, µ
2
0), ∀ t ∈ [0, T ]. (2.14)

We prove the uniqueness and continuity on initial data first for simplicity.
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Proof. (Uniqueness) Let f ∈ Lip1(Rd), then for t ∈ [0, T ]

∫
Rd
fd(µ1

t − µ2
t ) =

∫
Rd
f(Φ1

t )dµ
1
0 −

∫
Rd
f(Φ2

t )dµ
2
0

=

∫
Rd

(f(Φ1
t )− f(Φ2

t ))dµ
1
0 +

∫
Rd
f(Φ2

t )d(µ1
0 − µ2

0).

Due to Lipschitz continuity of f and Φ2, we can control the second term at the right-hand side:

∫
Rd
f(Φ2

t )d(µ1
0 − µ2

0) ≤W1(µ1
0, µ

2
0).

About the first term, we can observe that f(Φ1
t (x, 0)) − f(Φ2

t (x, 0)) ≤ |Φ1
t (x, 0) − Φ2

t (x, 0)| for every

x ∈ Rd. By definition,

Φi
t(x, 0) = x+

∫ t

0
v[µis](Φ

i
s(x, 0))ds, i = 1, 2.

Hence

|Φ1
t (x, 0)− Φ2

t (x, 0)| ≤
∫ t

0
|v[µ1

s](Φ
1
s(x, 0))− v[µ2

s](Φ
2
s(x, 0))|ds∫ t

0
L(W1(µ1

s, µ
2
s) + |Φ1

s(x, 0)− Φ2
s(x, 0)|)ds.

Applying the Gronwall’s Lemma, we have

|Φ1
t (x, 0)− Φ2

t (x, 0)| ≤ LeLt
∫ t

0
W1(µ1

s, µ
2
s)ds, ∀t ∈ [0, T ].

It finally follows, taking the supremum over Lip1(Rd)

W (µ1
t , µ

2
t ) ≤ C

(∫ t

0
W1(µ1

s, µ
2
s)ds+W1(µ1

0, µ
2
0)

)
,

where C = max{1, LeLT } > 0. Applying again the Gronwall’s inequality we obtain

W (µ1
t , µ

2
t ) ≤ CW1(µ1

0, µ
2
0), ∀t ∈ [0, T ].

To prove the existence of solution, we introduce a semi-discrete scheme in time and prove its con-

vergence to a weak solution. Denote with k ∈ N the index of refinement of a lattice {tkn}
Nk
n=0 in the

interval [0, T ] where tk0 = 0, tkNk = T and tkn+1 − tkn = ∆tk, such that ∆tk → 0 for k → +∞.
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Given µ0 ∈ P1(Rd) ∩ P2(Rd), we define the scheme by:

 µkn+1 = Φk
n#µkn, Φk

n(x) := x+ v[µkn](x)∆tk, n ∈ {0, . . . , Nk − 1}

µk0 = µ0,
(2.15)

where µkn is denoting µk
tkn
. By a piecewise linear interpolation, we extend our scheme over the interval

[0, T ] and construct a measure-valued map in C([0, T ];P1(Rd)) :

µkt =

Nk−1∑
n=0

[(
1− t− tkn

∆tk

)
µkn +

t− tkn
∆tk

µkn+1

]
χ[tkn,t

k
k+1]. (2.16)

Given the scheme, to prove the existence we need to show that {µk} converges to an element µ ∈

C([0, T ];P(Rd)) which is solution of (2.12). To prove the convergence, we need the next results.

Lemma 2.4. Let µ0 ∈ P1(Rd) ∩ P2(Rd) and {µk}k∈N be defined in (2.16). Then, the maps t → µkt

are Lipschitz continuous uniformly in k ∈ N.

Proof. Let f ∈ Lip1(Rd), then by construction

∫
Rd
fd(µkn+1 − µkn) =

∫
Rd

(f(x+ v[µkt ](x)∆tk)− f(x))dµkn(x)

≤
∫
Rd

∆tk|v[µkt ](x)|dµkn

≤ V∆tk,

where in the last inequality we have used the uniform bound of v, i.e. |v[µ](x)| ≤ V,∀µ ∈ P(Rd), x ∈

Rd. Then, by definition in (2.16), it follows the thesis.

Lemma 2.5. Let µ0 ∈ P1(Rd)∩P2(Rd) and {µk}k∈N be defined in (2.16). Then, the first and second

moments of µkt are uniformly bounded respect to both t and k.

Proof. If we prove the result for µkn = µk
tkn
, the thesis is consequence of (2.16).

First of all, we can observe that since µ0 ∈ P(Rd) and the scheme (2.15) is defined via pushforward

by linear maps, then µkn ∈ P(Rd) for every n, k.
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We now prove by induction that the first moment is uniformly bounded. By definition

∫
Rd
|x|dµk1(x) =

∫
Rd
|x+ ∆tkv[µ0](x)|dµ0(x)

≤
∫
Rd
|x|dµ0(x) + V∆tk

≤
∫
Rd
|x|dµ0(x) + V T,

where we have used the uniform bound for v. Since µ0 ∈ P1(Rd), the same follows from the last

inequality for µk1 for every k ∈ N.

We state that ∫
Rd
|x|dµkn ≤

∫
Rd
|x|dµ0(x) + n∆tkV,

for n ∈ {0, . . . , Nk − 1} and k ∈ N. Assume it holds until a choice of n. Then,

∫
Rd
|x|dµkn(x) ≤

∫
Rd
|x|dµkn(x) + V∆tk

≤
∫
Rd
|x|dµ0(x) + (n+ 1)∆tkV.

Hence, by construction of the lattice {tkn}, it holds

∫
Rd
|x|dµkn ≤ V T +

∫
Rd
|x|dµ0, ∀n ∈ {0, . . . , Nk}, k ∈ N.

With a similar argument, we prove the same property for the second moment. First observe that, for

any k

∫
Rd
|x|2dµk1(x) =

∫
Rd
|x+ ∆tkv[µ0](x)|2dµ0(x)

≤
∫
Rd
|x|2dµ0(x) + 2V∆tk

∫
Rd
|x|dµ0(x) + (∆tk)2V 2.

In general we have that

∫
Rd
|x|2dµkn+1 ≤

∫
Rd
|x|2dµkn + 2V∆tk

∫
Rd
|x|dµkn(x) + (∆tk)2V 2.

Since we have prove the first moment is uniformly bounded in n and k, then it follows there exists a

positive constant C > 0 such that

∫
Rd
|x|2dµkn+1 ≤

∫
Rd
|x|2dµ0 + 2V C∆tk(n+ 1) + (n+ 1)(∆tk)2V 2.
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Since ∆tk < T and ∆tk(n+ 1) ≤ T , it follows the uniform bound of second moments.

We can now prove the existence of solution for the transport equation in the nonlocal case.

Proof. We can to prove that the sequence {µk}k∈N is relatively compact in C([0, T ];P1(Rd)). For

this purpose, we want to use the Ascoly-Arzelá’s Theorem, which states that it is consequence of

equicontinuity of {µk}k∈N and relative compactness of {µkt }k∈N in P1(Rd) for any fixed t ∈ [0, T ].

Equicontinuity is a direct consequence of Lemma (2.4); on the other side, relative compactness in

P1(Rd) is equivalent to tightness and uniform integrability of first moment.

As we have previously shown, the tightness property is implied by the existence of a function f : Rd →

[0,+∞], with compact sub-levels such that supk≥0

∫
Rd fdµ

k
t < +∞. This follows from Lemma (2.5)

for f(x) = |x|.

The same lemma implies also the uniform inegrability of first order moment; indeed, a sufficient

condition for the uniform integrability is that there exists p > 1 such that supk≥0

∫
Rd |x|

pdµkt < +∞.

Taken p = 2, this follows from Lemma (2.5).

It follows that {µk} is relatively compact, i.e. there exists a measure-valued map µ : t→ µt, such that

(up to a subsequence)

lim
k→+∞

sup
t∈[0,T ]

W1(µkt , µt) = 0.

To conclude we need to show that the limit map µ satisfies (2.6). Using the definition of the scheme

(2.16), we find out that for f ∈ C∞c (Rd)

d

dt

∫
Rd
fdµkt −

∫
Rd
∇f · v[µkt ]dµ

k
t =

Nk−1∑
n=0

{
∆tk

2

∫
Rd
D2f(x)v[µkn] · v[µkn]dµkn

−
(
t− tkn
∆tk

)∫
Rd
∇f · v[µkn]d(µkn+1 − µkn)

−
(
t− tkn
∆tk

)2 ∫
Rd
·(v[µkn+1]− v[µkn])dµkn+1

+

(
t− tkn
∆tk

)2 ∫
Rd
∇f · (v[µkn+1]− v[µkn])dµkn}χ[tkn,t

k
n+1],

where x is a point of the segment with extremal points x and x+ ∆tkv[µkn](x).

By the estimates previously obtained, we have

∣∣∣∣∫ t

0

(
d

ds

∫
Rd
fdµks −

∫
Rd
∇f · v[µks ]dµ

k
s

)
ds

∣∣∣∣ ≤ C∆tk,
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where C is a positive constant. This implies,

lim
k→0

∣∣∣∣∫
Rd
fd(µkt − µ0)−

∫ t

0

∫
Rd
∇f · v[µks ]dµ

k
sds

∣∣∣∣ = 0.

Lastly, since limk→+∞ supt∈[0,T ]W1(µkt , µt) = 0, it follows directly

lim
k→∞

∫
Rd
fdµkt =

∫
Rd
fdµt,

and, by dominated convergence theorem,

lim
k→∞

∫ t

0

∫
Rd
∇f · v[µks ]dµ

k
sds =

∫ t

0

∫
Rd
∇f · v[µs]dµsds.

2.3 Superposition principle

An interesting result on the continuity equation is the superposition principle (see in Section 8.2 [2])

which gives a probabilistic representation for solutions of the transport equation. It has an important

role in the proofs for uniqueness and stability of Lagrangian flows, also in case of not regular vector

field.

The representation formula for the solution of the transport equation is

∫
Rd
fdµηt :=

∫
Rd×Γ

f(γ(t))dη(x, γ), ∀f ∈ C0
c (Rd), t ∈ [0, T ] (2.17)

where η ∈ P(Rd × ΓT ) and ΓT := C([0, T ];Rd). In case of η = (x,Φ·(x))#µ0, the previous formula

reduce to the standard pushoforward µηt = Φt#µ0.

More generally, we introduce the evaluation maps

et : Rd × ΓT → Rd, fort ∈ [0, T ],

where et(x, γ) := γ(t), then

µηt := et#η.

Theorem 2.8. Let µt : [0, T ]→ P(Rd) be a narrowly continuous solution of the transport equation for

a suitable vector field vt(x) which satisfies (2.5). Then there exists a probability measure η ∈ P(Rd×ΓT )

which is concentrated on the set of pairs (x, γ) such that γ ∈ AC([0, T ];Rd) is solution of the ODE
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γ̇(t) = vt(γ(t)) for a.e. t ∈ [0, T ] and γ(0) = x. Moreover, µt = µηt for any t ∈ [0, T ].

Conversely, any η whose support is concentrated on solution of ODEs with vector field vt and which

satisfies ∫ T

0

∫
Rd×ΓT

|vt(γ(t))|dη(x, γ)dt < +∞

induces by (2.17) a solution of the transport equation with initial condition µ0 := e0#η.

Remark 2.8.1. Observe that it is possible to use the Disintegration theorem on η. Indeed, given

µ0 := e0#η, there exists a family of measures ηx ∈ P(ΓT,x), where ΓT,x := {γ ∈ ΓT : γ(0) = x}, such

that ∫
Rd
f(x)dµηt (x) =

∫
Rd

∫
ΓT,x

f(γ(t))dηx(γ)dµ0(x),

where, in our case, ηx = δΦ·(x).

2.4 Multiscale modeling

In the previous sections we have studied the transport equation for a measure µ ∈ M+(Rd) moved

along trajectories defined by a characteristic map Φ. We now give an interpretation of our approach

and explain more in detail one of the benefit of the measure based approach, i.e. multiscale modeling.

Consider a set of N particles {Xi}Ni=1 modeling the positions in time of agents of a given system. The

trajectories of every particle is expressed as a map

t→ Xi(t) = Φt(x
i, 0), i = 1, . . . , N,

where xi ∈ Rd is the initial position of the i− th particle.

Since in many applications, such as vehicular traffic, pedestrian movement and machine learning, the

initial positions are not deterministically known due to the nature of available data, we need to treat

{xi}Ni=1 as a set of random variables. Indeed instead of the exact solution we often have a statistical

estimate of their initial configuration in a given area.

Let P be a probability measure on Rd and η0 the probability measure representing the particles’

distribution, i.e.

η0(E) = P(xi ∈ E), ∀E ⊂ Rd measurable.

If we assume that the particles are independent and identically distributed and denoted with µ0 the

measure which represent the configuration of particles, we have a proportionality between µ0 and η0:

µ0 = Nη0,
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such that µ0(Rd) = N. At time t > 0, we have the following

P(Xi(t) ∈ E) = P(Φt(x
i, 0) ∈ E)

= P(xi ∈ Φ−1
t (E))

= η0(Φ−1
t (E)) = Φt#η0(E),

for every E ⊂ Rd measurable. Hence the common law of the i− th particle at time t is determined by

a pushforward, i.e. ηt := Φt#η0. It follows that µt = Nηt. In the previous section we have seen that

ηt, consequently µt, is related to a transport equation for regular maps Φ.

This probabilistic interpretation is extremely important for modeling purposes and comprehension of

mathematical models. In particular, it allow us to use the same theoretical framework to describe

systems with different scales.

In microscopic modeling, we are interested in the deterministic dynamic of every particle. In our

framework, this is equivalent to assume that the whole mass is concentrated on a finite number of

points and represent it with an atomic measure.

Assume that the initial configuration {xi}Ni=1 is deterministically known. The mass in a set E ⊂ B(Rd)

is the number of particles in E and µt is represented as sum of Dirac measures centered in Xi(t), i =

1, . . . , N , i.e.

µt =
N∑
i=1

δXi(t).

Denoted v as the derivative in time of Φ and taken f ∈ C∞c (Rd), we have

d

dt

N∑
i=1

f(Xi(t)) =
N∑
i=1

v(Xi(t), t) · ∇f(Xi(t)),

which is equivalent to
N∑
i=1

[Ẋi(t)− v(Xi(t), t)] · ∇f(Xi(t)) = 0.

The arbitrariness of the test function f implies that Ẋi(t) = v(Xi(t), t) for i = 1, . . . , N . This means

that a microscopic modeling in the measure framework is equivalent to a system of ordinary differential

equations for the Xi(t), i = 1, . . . , N .

Another class of models we could be interested is the macroscopic one, which aims to describe the

average distribution of particles rather than the individual dynamic. For this reason we assume

that the matter is continuous and that there exists a proportionality between mass and volumes.

From the Radon-Nikodym’s Theorem, under suitable hypothesis, we have the existence of a function
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ρ(t, ·) ∈ L1
loc(Rd) such that

dµt = ρ(x, t)dx,

where ρ ≥ o0, ∀ (x, t) ∈ Rd × [0, T ].

The weak formulation of the measure-based transport equation is by definition the weak form of the

continuity equation  ∂tρ+∇ · (vρ) = 0,

ρ(0, x) = ρ0(x).

Once we have recovered classical models, we show that we also are able to build hybrid, or multiscale,

models in order to account simultaneously discrete and continuous dynamical effects and handle with

deterministic or statistical data of a dynamic system.

Denoted the discrete and continuous measures respectively as

mt =
N∑
i=1

δXi(t), dMt = ρ(x, t)dx,

for θ ∈ [0, 1], we define the multiscale measure by convex combination:

µt = θmt + (1− θ)Mt.

Observe that θ can be interpreted as a control parameter to weight the role of a scale respect to

the other one. In particular, for θ = 0 we have a fully-macroscopic description while for θ = 1 a

fully-microscopic one.

Since θ is constant it follows immediately that also µt is solution of a transport equation:

∂tµt +∇ · (vµt) = 0.

The benefit of this approach is to reduce a hybrid ODE-PDE system to a single equation.

More in general, in case of nonlocal vector fields v = v[µ](t, x) which are weakly linear in the

µ−variable, the measure valued equation derives from the coupled system:



d
dtX

i(t) = v[θmt + (1− θ)Mt](X
i(t), t) i = 1, . . . , N (t, x) ∈ [0, T ]× Rd

∂tρ+∇ · (v[θmt + (1− θ)Mt]ρ) = 0,

Xi(t = 0) = xi, xi ∈ Rd,

ρ(t = 0, ·) = ρ0, ρ0 ≥ 0,
∫
Rd ρ0dx = N.
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Other multiscale models can be derived starting from different assumptions on the single-scale models

or the multiscale parameter. Indeed, in place of the transport equation for mt and Mt, we could

assume transport equation with sources or second order systems.

Moreover, in many applications it would be interesting and fundamental to study the case of non

constant multiscale parameter; for example, to model pedestrian traffic in closed environment, it is

reasonable to assume θ as function of (x, t) or of the state of the system (mt,Mt). For a more detailed

reading on multiscale models in euclidean space, we refer to [8, 13, 23, 24, 32, 33].
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Chapter 3

Transport equation on networks

In recent times there has been an increasing interest on the measure theoretic approach for modeling

purposes because, compared to standard approaches, it allows one to better describe some interesting

phenomena such as aggregation, congestion and pattern formation in a multiscale perspective. Several

of these phenomena occur in applications such as vehicular traffic, data transmission, crowd motion,

supply chains, where the state of the system evolves on complex geometries such as networks, see

e.g. [16, 26, 34, 38, 46].

In order to extend the measure-valued approach to these particular geometric structures, we first study

measure-valued solutions to a linear transport process defined on a network. For classical and weak

solutions to transport equations on networks we refer the reader for example to [31, 38, 52].

In the previous chapter, we have seen that the measure-valued approach in Euclidean spaces relies on

the notion of push-forward of measures along the trajectories of a vector field describing the trans-

port paths. The study of these problems in bounded domains poses additional difficulties, especially

concerning the behaviour at the boundaries of the transported measure. For problems on networks

similar difficulties arise at the vertices.

The analysis proposed in this chapter is inspired by the results in [32, 33], where measure-valued

transport equations are studied in a bounded interval. We also refer to [41], where the authors

consider instead measure-valued solutions to non-linear transport problems with measure transmission

conditions at nodal points, i.e. points where the velocity vanishes.

We will consider a network Γ = (V, E), where V is the set of vertices and E the set of arcs. We also

assume that Γ is oriented and that a strictly positive, autonomous and Lipschitz continuous velocity

field v is defined on each arc. Our aim is to describe the evolution of a mass distribution on the
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network Γ transported by the velocity field. Observe that a generic measure µ can be written as the

superposition of elementary Dirac masses, i.e.

µ =

∫
suppµ

δx dµ(x), (3.1)

where suppµ denotes the support of µ belonging to an appropriate σ-algebra.

Equation (3.1) suggestes us to first define the transport of an atomic measure δx over the network

and then, by superposition, the transport of the whole distribution µ. Hence, let us assume that

µ0 = δx0 , with x0 ∈ e ∈ ej for some j ∈ J . If we postulate the conservation of the mass then in the

time interval (0, τ) where the mass remains inside the arc ej the evolution of µ0 is governed by the

continuity equation

∂tµ
j
t + ∂x(vj(x)µjt ) = 0, (3.2)

with µjt being a spatial measure denoting the mass distribution along the arc ej at time t.

For t < τ the solution to (3.2) is given by the push-forward of µ0 by means of the flow map

Φj
t (0, x0) := x0 +

∫ t

0
vj(Φ

j
s(0, x0)) ds,

which describes the trajectory issuing from the point x0 at time t = 0 and arriving at the point

Φj
t (x0, 0) ∈ ej at time t. Consequently, µjt is characterized as µjt (A) = µ0((Φj

t )
−1(A)) for any measur-

able set A ⊆ ej . Hence if µ0 = δx0 then µjt = δ
Φjt (x0, 0)

for t ∈ (0, τ).

At t = τ the trajectory t 7→ Φj
t (x0, 0) hits the final vertex V of the arc ej . Assuming that mass

concentration at the vertices of the network is not admitted, fractions pjk of the mass carried by

δ
Φjτ (x0, 0)

have then to be distributed on each outgoing arc Ek which originates from Vi.

This preliminary discussion sketches the main ideas that we intend to follow in order to tackle the

global problem on the network. In this chapter, we first consider a local problem, namely a transport

equation on each single arc with a measure acting as a source term boundary condition at the initial

vertex and for this local problem we formulate an appropriate notion of measure-valued solution. Then

gluing all the solutions on single arcs by means of appropriate mass distribution rules at the junctions,

we define the solution for the linear problem over networks. Lastly, by a semi-discrete in time scheme,

we extend our problem to nonlocal velocity terms.
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3.1 Measures on network Γ

Definition 3.1. A network Γ is a pair (V, E) where V := {Vi}i∈I is a finite collection of vertices and

E := {ej}j∈J is a finite collection of continuous non-self-intersecting oriented arcs whose endpoints

belong to V. Each arc ej is parameterised by a smooth function πj : [0, 1]→ Rn. We assume that the

network is connected and equipped with the topology induced by the minimum path distance.

Given a vertex V ∈ V, we say that an arc ej ∈ E is outgoing (respectively, incoming) if V = πj(0)

(respectively, if V = πj(1)). We denote by Inc(V ) (respectively, by Out(V )) the set of incoming

(respectively, outgoing) arcs in V .

We denote by I the set of internal vertices, by S the one corresponding to the sources and by W the

one corresponding to the sinks.

In particular, w.l.o.g., we assume that for every source vertex there exists only one outgoing arc in

our network.

Definition 3.2. Given a network Γ = (V, E), a distribution matrix for Γ is a function P : [0, T ] →

[0, 1]|E|×|E| such that, denoted P (t) = (pij(t))i,j, for t ≥ 0 it holds

pij(t) ≥ 0

|E|∑
j=1

pij(t) = 1. (3.3)

Here pij(t) represents the fraction of mass which at time t flows from the incoming arc Ei to the

outgoing arc ej . Condition (3.3) corresponds to the fact that, unlike [32, 33, 41], the mass cannot

concentrate at the vertices of the network.

Definition 3.3. On each arc ej ∈ E we assume that a strictly positive, bounded and Lipschitz contin-

uous velocity vj : [0, 1] → (0, vmax] is defined, with 0 < vmax < +∞. We denote by v =
∑

j∈J vjχej

the velocity field on the network with χej being the characteristic function of the arc ej.

As initial and boundary data, we prescribe an initial mass distribution over Γ as a positive measure

µ0 =
∑

j∈J µ
j
0 with suppµj0 ⊆ ej and µj0 ∈ M+(ej), for all j. Furthermore, at all the source vertices

V ∈ S, we prescribe an inflow measure σ0 with σ0 ∈ M+({V } × [0, T ]) ≡ M+({V } × [0, T ]), with

T > 0 being a certain final time.

To define the transport of the initial measure µ0 and of the inflow measures {σS0 }S∈S on the network Γ

we describe their evolution inside an arc. On each arc ej we take into account the inflow mass coming

35



from the initial vertex πj(0) and we describe how the outflow mass leaving from the final vertex πj(1)

is distributed to the corresponding outgoing arcs. In detail, we fix a final time T > 0 and we consider

the following system of measure-valued differential equations on Γ× [0, T ]:



∂tµ
j + ∂x(vj(x)µj) = 0 x ∈ ej , t ∈ (0, T ], ej ∈ E

µjt=0 = µj0 x ∈ ej ,

µjx=πj(0) =


|E|∑
k=1

pkj · µkx=πk(1) if πj(0) ∈ I

σ
πj(0)
0 if πj(0) ∈ S,

(3.4)

where by µjx=πj(0) we mean the measure flowing into the arc ej from its initial vertex πj(0) = V while

by µkx=πk(1) we mean the measure flowing out of the arc Ek from its final vertex W = πk(1). Moreover,

by pkj · µkx=πk(1) we mean a measure (in time) which is absolutely continuous with respect to µkx=πk(1)

with density pikj .

For an internal vertex, the inflow measure is given by the mass flowing in ej from the arcs incident to

V = πj(0) according to the distribution rule given by the matrix P = (pkj). For a source vertex, the

inflow measure is given by a prescribed datum σ0 entering ej . The outflow measure, i.e. the part of

the mass leaving the arc from the final vertex πj(1), is not given a priori but depends on the evolution

of the measure µ inside the arc.

By retracing the same approach used in the previous chapter, we introduce a space of measures with

an appropriate norm where we consider the solutions to our measure-valued transport equations. Since

the notion of solution is based on the superposition principle (3.1), we briefly describe the measure-

theoretic setting which guarantees the validity of this formula. We refer for details to [2, 32, 9, 57].

Let T be a topological space with B(T ) the Borel σ-algebra in T . We denote by M(T ) the space of

finite Borel measures on T and by M+(T ) the convex cone of the positive measures in M(T ). For

µ ∈M(T ) and a bounded measurable function ϕ : T → R we write

〈µ, ϕ〉 :=

∫
T
ϕdµ.

Given a metric d : T × T → R+ in T , we denote by BL(T ) the Banach space of the bounded and

Lipschitz continuous functions ϕ : T → R equipped with the norm

‖ϕ‖BL := ‖φ‖∞ + |φ|L ,
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where the semi-norm |·|L is defined by

|ϕ|L := sup
x, y∈T
x 6=y

|ϕ(y)− ϕ(x)|
d(x, y)

.

Furthermore, we introduce a norm in M(T ) by taking the dual norm of ‖·‖BL:

‖µ‖∗BL := sup
ϕ∈BL(T )
‖ϕ‖BL≤1

〈µ, ϕ〉.

It is easy to see that if µ ∈M+(T ) then ‖µ‖∗BL = µ(T ).

In particular, we recall that the space (M(T ), ‖·‖∗BL) is in general not complete, hence it is customary

to consider its completionM(T )
‖·‖∗BL with respect to the dual norm. However, the coneM+(T ), which

is a closed subset ofM(T ) in the weak topology, is complete, although it is not a Banach space because

it is not a vector space. Since in our model we will consider only positive measures, we restrict our

attention to the complete metric space (M+(T ), ‖·‖∗BL) with the corresponding distance induced by

the norm.

Remark 3.0.1. If T is bounded the Kantorovich-Rubinstein’s duality theorem implies that the norm

‖·‖∗BL induces the 1-Wasserstein distance in M+(T ).

Remark 3.0.2. The distance induced in M(T ) by the total variation norm:

‖µ‖TV := sup
ϕ∈Cb(T )
‖ϕ‖∞≤1

〈µ, ϕ〉,

where Cb(T ) is the space of bounded continuous function on T , is another metric frequently used for

measures. However, we observe that it may not be fully suited to transport problems where one wants

to measure the distance between flowing mass distributions. Indeed, if we consider two points x, y ∈ T ,

x 6= y, and the corresponding Dirac mass distributions δx, δy ∈M+(T ) centred at them we see that

‖δy − δx‖∗BL ≤ d(x, y), ‖δy − δx‖TV = 2.

Hence the two measures are closer and closer in the norm ‖·‖∗BL as the points x, y approach, which

is consistent with the intuitive idea of transport of mass distributions; while they are not in the total

variation norm, no matter how close the points x, y are.

As alredy anticipated, for the subsequent development of the theory we will extensively use the fol-

lowing fact linked to the concept of Bochner integral [9, 57]: any µ ∈ M+(T ) can be represented as
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a (continuous) sum of elementary masses in the form

µ =

∫
T
δx dµ(x)

as a Bochner integral in (M(T )
‖·‖∗BL , ‖·‖∗BL).

We specialize the previous definitions to the case T = Γ × [0, T ], where Γ ⊂ Rn is a network. In

particular, we will call x the variable in each arc of Γ and t the variable in the interval [0, T ]. We

equip Γ× [0, T ] with the distance

d(x, y) + |t− s| , (x, t), (y, s) ∈ Γ× [0, T ],

d being the shortest path distance on Γ.

We consider the Borel σ-algebra B(Γ×[0, T ]) given by the union of the Borel σ-algebras B([0, 1]×[0, T ])

corresponding to each arc ej of Γ. Thus A ∈ B(Γ× [0, T ]) if (π−1
j , Id)(A ∩ (ej × [0, T ])) ∈ B([0, 1]×

[0, T ]) for all j ∈ J , where Id denotes the identity mapping.

A measure µ belongs toM(Γ× [0, T ]) if each of its restrictions µj := µx(ej × [0, T ]), j ∈ J , is a finite

Borel measure on ej × [0, T ]. We define the cone M+(Γ× [0, T ]) analogously.

For µ ∈M+(Γ× [0, T ]) and a bounded measurable function ϕ : Γ× [0, T ]→ R we write

〈µ, ϕ〉 :=
∑
j∈J

∫
ej×[0, T ]

ϕdµj . (3.5)

For a function ϕ : Γ × [0, T ] → R, we denote by ϕj : [0, 1] × [0, T ] → R its restriction to ej × [0, T ],

i.e.:

ϕ(x, t) = ϕj(y, t) for x ∈ ej , y = π−1
j (x), t ∈ [0, T ].

A function ϕ belongs to BL(Γ× [0, T ]) if it is continuous on Γ and ϕj ∈ BL([0, 1]× [0, T ]) for every

j ∈ J . For ϕ ∈ BL(Γ× [0, T ]) the norm ‖ϕ‖BL(Γ×[0, T ]) is defined by

‖ϕ‖BL(Γ×[0, T ]) := sup
j∈J
‖ϕj‖BL([0, 1]×[0, T ]) .
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The corresponding dual norm ‖·‖∗BL of a measure µ ∈M(Γ× [0, T ]) is given by

‖µ‖∗BL := sup
ϕ∈BL(Γ×[0, T ])
‖ϕ‖BL(Γ×[0, T ])≤1

〈µ, ϕ〉.

3.2 Transport equations on networks

3.2.1 Linear transport on single roads

In this section we study the transport equation in a bounded interval. Actually, we start by focusing

on the problem of prescribing appropriate initial and boundary conditions to the differential equation

in R+×R+, which is an unbounded domain with boundary; then we will restrict the results to a truly

bounded domain such as [0, 1]× [0, T ].

Consider the conservation law

∂tµ+ ∂x(v(x)µ) = 0, (x, t) ∈ R+ × R+, (3.6)

where v : R+ → R is a strictly positive, bounded and Lipschitz continuous velocity field, so that the

flow is one-directional and depends only on the space variable x. Given µ ∈ M+(R+
0 × R+

0 ), where

R+
0 := [0, +∞), owing to the disintegration theorem [2, Section 5.3] we can decompose this measure

by means of its projection maps on the coordinate axes:

• using the projection with respect to the space variable we can write

µ(dx dt) = µt(dx)⊗ dt, (3.7)

where dt is the Lebesgue measure in time in R+
0 and µt ∈ M+(R+

0 × {t}) ≡ M+(R+
0 ) for a.e.

t ∈ R+
0 . The measure µt is called the conditional measure, or trace, of µ with respect to t on the

fibre R+
0 × {t};

• similarly, projecting with respect to the time variable we can write

µ(dx dt) =
νx(dt)

v(x)
⊗ dx, (3.8)

where dx is the Lebesgue measure in space in R+
0 and νx ∈ M+({x} × R+

0 ) ≡M+(R+
0 ) for a.e.

x ∈ R+
0 . The measure νx is called the conditional measure, or trace, of µ with respect to x on

the fibre {x} × R+
0 .
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Remark 3.0.3. The coefficient 1
v(x) in the decomposition (3.8) is considered for dimensional reasons,

so that νx represents actually the mass distributed on the fiber {x} × R+
0 .

We incidentally notice that if µ solves (3.6) then the mapping x 7→ νx solves the equation ∂xνx+∂̄tνx =

0, where ∂̄t := 1
v(x)∂t. As far as the decomposition (3.7) is concerned, the mapping t 7→ µt solves instead

the equation ∂tµt + ∂x(v(x)µt) = 0.

Relying on the concept of conditional measures, we formulate the following initial/boundary-value

problem for (3.6): 
∂tµ+ ∂x(v(x)µ) = 0 (x, t) ∈ R+ × R+

µt=0 = µ0 ∈M+(R+
0 × {0})

νx=0 = ν0 ∈M+({0} × R+
0 )

(3.9)

with µ ∈M+(R+
0 × R+

0 ), where:

• assigning an initial condition at t = 0 amounts to prescribing the trace of µ on the fibre R+
0 ×{0}

according to the decomposition (3.7);

• assigning a boundary condition at x = 0 amounts to prescribing the trace of µ on the fibre

{0} × R+
0 according to the decomposition (3.8).

In order to give a suitable notion of measure-valued solution to (3.9), we preliminarily introduce

integration-by-parts formulas useful to deal with the initial and boundary data. Let C1
0 (R+

0 × R+
0 )

be the space of continuous functions in R+
0 × R+

0 which are differentiable in R+ × R+ and vanish for

x, t→ +∞. For µ ∈M+(R+
0 × R+

0 ) and ϕ ∈ C1
0 (R+

0 × R+
0 ) we set:

〈∂tµ, ϕ〉 := −〈µ, ∂tϕ〉 −
∫
R+

0

ϕ(x, 0) dµ0(x),

〈∂x(v(x)µ), ϕ〉 := −〈µ, v(x)∂xϕ〉 −
∫
R+

0

ϕ(0, t) dν0(t),

where 〈·, ·〉 denotes the duality pairing between measures and test functions in R+
0 ×R+

0 , i.e. 〈µ, ϕ〉 =∫∫
R+

0 ×R
+
0
ϕ(x, t) dµ(x, t). Notice that if ϕ is compactly supported in R+ × R+ then the previous

formulas agree with the usual definition of the distributional derivatives of µ.

Remark 3.0.4. With a slight abuse of notation, in the following we will denote

∫
R+

0

ϕ(x, 0) dµ0(x) =: 〈µ0, ϕ〉,
∫
R+

0

ϕ(0, t) dν0(t) =: 〈ν0, ϕ〉,
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the difference between duality pairings in R+
0 ×R+

0 and in R+
0 × {0} or {0} ×R+

0 being clear from the

measures used.

Thanks to these formulas, we are in a position to introduce the following notion of measure-valued

solution to (3.9):

Definition 3.4. Given µ0 ∈ M+(R+
0 × {0}) and ν0 ∈ M+({0} × R+

0 ), a measure-valued solution

to (3.9) is a finite measure µ ∈M+(R+
0 × R+

0 ) such that

〈µ, ∂tϕ+ v(x)∂xϕ〉 = −〈µ0, ϕ〉 − 〈ν0, ϕ〉, ∀ϕ ∈ C1
0 (R+

0 × R+
0 ). (3.10)

Since (3.9) is a linear problem, its solution can be obtained from the superposition of two measures

µ1, µ2 ∈ M+(R+
0 × R+

0 ), where µ1 is the solution to (3.9) with data µt=0 = µ0 and νx=0 = 0 while

µ2 is the solution to (3.9) with data µt=0 = 0 and νx=0 = ν0. This is doable in a standard way in

terms of the push-forward of the initial and boundary data by means of appropriate vector fields in

R+
0 ×R+

0 , cf. [2]. With this approach time and space play the same role, the former being understood

in particular as an additional state variable of the system.

However, for the next purposes it is convenient to characterise the solution µ to (3.9) by means of the

traces of µ1 and µ2 over the fibres R+
0 × {t}, t > 0; i.e.

µ(dx dt) = (µ1
t (dx) + µ2

t (dx))⊗ dt,

where µ1
t , µ

2
t are given by the transport of µ0, ν0, respectively, along the characteristics generated in

R+ × R+ by the velocity field v.

In order to obtain a formula for µ1
t , let Φt = Φt(x, 0) be the position at time t > 0 of the particle

which is in x ∈ R+
0 at time t = 0 and which moves following the velocity field v = v(x):


d

dt
Φt(x, 0) = v(Φt(x, 0)), t > 0

Φ0(x, 0) = x.

(3.11)

By standard results, it is well known that

µ1
t = Φt#µ0 =

∫
R+

0

δΦt(x, 0) dµ0(x) ∈M+(R+
0 × {t}),

where # is the push-forward operator, δ is the Dirac delta measure, and the integral at the right-hand

side is understood in the sense of Bochner.

41



Likewise, to obtain a formula for µ2
t we consider the characteristic lines issuing from the t axis. In

particular, we denote now by Φt(0, s) the position at time t > 0 of the particle which is in x = 0 at

time s ∈ R+
0 and which moves following the velocity field v = v(x):


d

dt
Φt(0, s) = v(Φt(0, s)), t > s

Φs(0, s) = 0.

(3.12)

By transporting the mass ν0 along these characteristics we can write

µ2
t =

∫
[0, t]

δΦt(0, s) dν0(s) ∈M+(R+
0 × {t}),

where the integral is again meant in the sense of Bochner.

Summing up, we consider the following representation formula for µ:

µ(dx dt) =

(∫
R+

0

δΦt(ξ, 0)(dx) dµ0(ξ) +

∫
[0, t]

δΦt(0, s)(dx) dν0(s)

)
⊗ dt (3.13)

and we check that it actually defines a solution to (3.9) in the sense of Definition 3.4. To this

purpose we preliminarily observe that, since µ1
t = Φt#µ0, for every (bounded and measurable) function

f : R+
0 → R it results ∫

R+
0

f(x) dµ1
t (x) =

∫
R+

0

f(Φt(x, 0)) dµ0(x). (3.14)

We can obtain a similar formula for µ2
t by observing that, given a simple function f : R+

0 → R,

f(x) =
∑N

k=1 αkχAk(x), where {Ak}Nk=1 is a measurable finite disjoint partition of R+
0 , it results

∫
R+

0

f(x) dµ2
t (x) =

N∑
k=1

αkµ
2
t (Ak) =

N∑
k=1

αk

∫
[0, t]

δΦt(0, s)(Ak) dν0(s)

=
N∑
k=1

αk

∫
[0, t]

χAk(Φt(0, s)) dν0(s)

=

∫
[0, t]

N∑
k=1

αkχAk(Φt(0, s)) dν0(s)

=

∫
[0, t]

f(Φt(0, s)) dν0(s).

Approximating a measurable function f with a sequence of simple functions we get in general

∫
R+

0

f(x) dµ2
t (x) =

∫
[0, t]

f(Φt(0, s)) dν0(s). (3.15)

Interestingly, an integral with respect to the x variable is converted into one with respect to the t
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variable.

Plugging (3.13) into the left-hand side of (3.10) and using (3.14), (3.15) we discover:

〈µ, ∂tϕ+ v(x)∂xϕ〉

=

∫
R+

0

∫
R+

0

(
∂tϕ(Φt(x, 0), t) + v(Φt(x, 0))∂xϕ(Φt(x, 0), t)

)
dµ0(x) dt

+

∫
R+

0

∫
[0, t]

(∂tϕ(Φt(0, s), t) + v(Φt(0, s))∂xϕ(Φt(0, s), t)) dν0(s) dt

=

∫
R+

0

∫
R+

0

d

dt
ϕ(Φt(x, 0), t) dµ0(x) dt+

∫
R+

0

∫
[0, t]

d

dt
ϕ(Φt(0, s), t) dν0(s) dt,

where in the last passage we have invoked (3.11), (3.12). By switching the order of integration in view

of Fubini-Tonelli’s Theorem we further obtain

=

∫
R+

0

∫
R+

0

d

dt
ϕ(Φt(x, 0), t) dt dµ0(x) +

∫
R+

0

∫
[s,+∞)

d

dt
ϕ(Φt(0, s), t) dt dν0(s)

=

∫
R+

0

[
ϕ(Φt(x, 0), t)

]t=+∞

t=0
dµ0(x) +

∫
R+

0

[
ϕ(Φt(0, s), t)

]t=+∞

t=s
dν0(s)

= −
∫
R+

0

ϕ(x, 0) dµ0(x)−
∫
R+

0

ϕ(0, s) dν0(s)

= −〈µ0, ϕ〉 − 〈ν0, ϕ〉,

which confirms that (3.13) is indeed a measure-valued solution to (3.9). Uniqueness of such a solution

is a consequence of continuous dependence estimates on the initial and boundary data, which can

be proved by standard arguments in literature, cf. [2]. In conclusion, for the transport problem in

R+ × R+ we have the following well-posedness result:

Theorem 3.1. For µ0 ∈ M+(R+
0 × {0}), ν0 ∈ M+({0} × R+

0 ) there exists a unique measure-valued

solution to (3.9) in the sense of Definition 3.4, which can be represented by (3.13).

We now pass to consider the transport problem on the bounded domain Q := (0, 1)× (0, T ), T > 0,

i.e. 
∂tµ+ ∂x(v(x)µ) = 0, (x, t) ∈ Q

µt=0 = µ0 ∈M+([0, 1]× {0})

νx=0 = ν0 ∈M+({0} × [0, T ])

(3.16)

for a given bounded, strictly positive and Lipschitz continuous velocity field v : [0, 1] → (0, vmax].

The solution to this problem can be obtained by restricting to Q the measure µ solving (3.9) (with

the velocity field v possibly extended to the whole R+
0 as, e.g. v(x) = v(1) for x ≥ 1). Therefore we
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are going to consider the restriction of µ to Q defined as the measure µxQ such that

µxQ(E) := µ(E ∩Q)

for every measurable set E ⊆ R+
0 × R+

0 .

In particular, in view of the application of this problem to a network, it is important to characterise

the traces of µxQ on the fibres [0, 1]×{T} and {1}× [0, T ], which depend on the transport of µ0 and

ν0 inside Q.

Let us introduce the exit time:

θ(x, s) := inf{t ≥ s : Φt(x, s) = 1}, x ∈ [0, 1], s ∈ [0, T ] (3.17)

corresponding to the time needed to the characteristic line issuing from either (x, s) to hit the boundary

x = 1. Since the considered transport problem is linear, in particular the velocity field v does not

depend on the measure µ itself, both τ := θ(·, 0) and ς := θ(0, ·) are one-to-one, thus invertible.

Recalling (3.13) and using τ , σ we write the trace of µxQ on the fibre [0, 1]× {T} as (cf. Figure 3.1)

µT :=

∫
[0,max{0, τ−1(T )}]

δΦT (x, 0) dµ0(x) +

∫
[max{0, σ−1(T )}, T ]

δΦT (0, s) dν0(s) (3.18)

whereas, following the characteristics, we construct the trace on the fibre {1} × [0, T ] as

ν1 :=

∫
(max{0, τ−1(T )}, 1]

δτ(x) dµ0(x) +

∫
[0,max{0, σ−1(T )})

δσ(s) dν0(s). (3.19)

We incidentally notice that the first term at the right-hand side of (3.18) is the push-forward of µ0 by

the flow map ΦT then restricted to x ∈ [0, 1] while the second term at the right-hand side of (3.19) is

the push-forward of ν0 by the mapping σ then restricted to t ∈ [0, T ].

The relationship between these traces and the transport of µ0, ν0 inside Q is rigorously stated by the

following theorem, which represents our main result on problem (3.16):

Theorem 3.2. Given µ0 ∈ M+([0, 1] × {0}), ν0 ∈ M+({0} × [0, T ]), the measure µxQ ∈ M+(Q̄),

µ ∈M+(R+
0 × R+

0 ) being the solution to (3.9), is the unique measure which satisfies the balance

〈µxQ, ∂tϕ+ v(x)∂xϕ〉 = 〈µT − µ0, ϕ〉+ 〈ν1 − ν0, ϕ〉, ∀ϕ ∈ C1(Q̄), (3.20)

where µT ∈M+([0, 1]× {T}), ν1 ∈M+({1} × [0, T ]) are the traces defined in (3.18), (3.19), respec-
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Figure 3.1: Sketch of the characteristics of problem (3.16) in the two cases τ(0) = σ(0) < T (left)
and τ(0) = σ(0) > T (right). For pictorial purposes we imagine a constant velocity field, so that the
characteristics are straight lines in the space-time.

tively.

Moreover, for µk0 ∈ M+([0, 1] × {0}), νk0 ∈ M+({0} × [0, T ]), k = 1, 2, there exists a constant

C = C(T ) > 0 such that

∥∥µ2
T − µ1

T

∥∥∗
BL

+
∥∥ν2

1 − ν1
1

∥∥∗
BL
≤ C

(∥∥µ2
0 − µ1

0

∥∥∗
BL

+
∥∥ν2

0 − ν1
0

∥∥∗
BL

)
. (3.21)

We also give a result about the dependence on time.

Theorem 3.3. Given µ0 ∈ M+([0, 1] × {0}), ν0 ∈ M+({0} × [0, T ]), there exists a constant C =

C(T ) > 0 such that

‖µt − µt′‖∗BL +
∥∥ν1x[0, t]− ν1x[0, t′]

∥∥∗
BL
≤ C

∣∣t− t′∣∣+ ν0([t′, t]) (3.22)

for all t′, t ∈ [0, T ] with t′ < t.

Remark 3.3.1. Theorem 3.3 states virtually that the traces µt and ν1x[0, t] of µxQ are Lipschitz

continuous in time, a part from the presence of the term ν0([t′, t]) in the estimate (3.22).

If the boundary datum ν0 is absolutely continuous with respect to the Lebesgue measure in the interval

[t′, t] then for t → t′ we get actually ‖µt − µt′‖∗BL + ‖ν1x[0, t]− ν1x[0, t′]‖∗BL → 0. If instead ν0

contains singularities in [t′, t] then the distances ‖µt − µt′‖∗BL, ‖ν1x[0, t]− ν1x[0, t′]‖∗BL between two

traces on horizontal and vertical fibres are in general not proportional to the time gap |t− t′|.
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In the applications, a Lebesgue-absolutely continuous ν0 corresponds to a macroscopic inflow mass

provided with density. A Lebesgue-singular ν0 corresponds instead to microscopic point masses flowing

from the boundary x = 0 during the time interval [t′, t] and then propagating as singularities across

Q.

Proof of Theorem 3.3. We begin with the estimate of ‖µt − µt′‖∗BL. Let ϕ ∈ BL(Q) be such that

‖ϕ‖BL ≤ 1.

By (3.18), since

(−∞, τ−1(t′)) = (−∞, τ−1(t)) ∪ [τ−1(t), τ−1(t′)],

we can write:

∫
(−∞, τ−1(t))∩[0, 1)

ϕ(Φt(x, 0), t) dµ0(x)−
∫

(−∞, τ−1(t′))∩[0, 1)
ϕ(Φt′(x, 0), t′) dµ0(x)

=

∫
(−∞, τ−1(t))∩[0, 1]

(
ϕ(Φt(x, 0), t)− ϕ(Φt′(x, 0), t′)

)
dµ0(x)

−
∫

[τ−1(t), τ−1(t′))∩[0, 1]
ϕ(Φt′(x, 0), t′) dµ0(x)

≤ µ0((−∞, τ−1(t)) ∩ [0, 1)) ‖v‖∞
∣∣t− t′∣∣− ∫

[τ−1(t), τ−1(t′))∩[0, 1]
ϕ(Φt′(x, 0), t′) dµ0(x).

Likewise, assuming for simplicity that σ−1(t) ≤ t′,

∫
(σ−1(t), t]∩(0, T ]

ϕ(Φt(0, s), t) dν0(s)−
∫

(σ−1(t′), t′]∩(0, T ]
ϕ(Φt(0, s), t) dν0(s)

= −
∫

(σ−1(t′), σ−1(t)]
ϕ(Φt′(0, s), t

′) dν0(s) +

∫
(σ−1(t), t′]

(
ϕ(Φt(0, s), t)− ϕ(Φt′(0, s), t

′)
)
dν0(s)

+

∫
(t′, t]

ϕ(Φt(0, s), t) dν0(s)

≤ ν0((t′, t]) + ν0((t− τ(0), t′]) ‖v‖∞
∣∣t− t′∣∣− ∫

(σ−1(t′), σ−1(t)]
ϕ(Φt′(0, s), t

′) dν0(s).

46



Hence

|〈µt − µt′ , ϕ〉| ≤

∣∣∣∣∣
∫

(τ−1(t), τ−1(t′)]∩[0, 1]

(
ϕ(Φt′(x, 0), t′)− ϕ(1, τ(x))

)
dµ0(x)

∣∣∣∣∣
+

∣∣∣∣∣
∫

(σ−1(t′), σ−1(t)]

(
ϕ(1, σ(s))− ϕ(Φt′(0, s), t

′)
)
dν0(s)

∣∣∣∣∣
≤ µ0((τ−1(t), τ−1(t′)] ∩ [0, 1]) ‖v‖∞

∣∣t− t′∣∣+ ν0((σ−1(t′), σ−1(t)]) ‖v‖∞
∣∣t− t′∣∣

≤ ‖v‖∞
(
µ0([0, 1]) + ν0([0, t])

) ∣∣t− t′∣∣+ ν0((t′, t])

≤ C
∣∣t− t′∣∣+ ν0([t′, t])

and finally, taking the supremum over ϕ at both sides,

‖µt − µt′‖∗BL ≤ C
∣∣t− t′∣∣+ ν0([t′, t]).

We now consider the estimate on the outflow measures. Taking again ϕ ∈ BL(Q) with ‖ϕ‖BL ≤ 1,

we compute:

〈ν1x[0, t]− ν1x[0, t′], ϕ〉 =

∫
[0, 1)∩[τ−1(t), 1)

ϕ(1, τ(x)) dµ0(x) +

∫
(0, t]∩(0, σ−1(t)]

ϕ(1, σ(s)) dν0(s)

−
∫

[0, 1)∩[τ−1(t′), 1)
ϕ(1, τ(x)) dµ0(x)−

∫
(0, t′]∩(0, σ−1(t′)]

ϕ(1, σ(s)) dν0(s).

We point out that if σ−1(t) < 0 then the interval (0, σ−1(t)] is actually understood as [σ−1(t), 0) and,

in this case, (0, t] ∩ (0, σ−1(t)] = ∅. Moreover, since t > t′ we have τ−1(t′) > τ−1(t), which implies

[τ−1(t′), 1) = [τ−1(t′), τ−1(t)) ∪ [τ−1(t), 1). Then

∫
[0, 1)∩[τ−1(t), 1)

ϕ(1, τ(x)) dµ0(x)−
∫

[0, 1)∩[τ−1(t′), 1)
ϕ(1, τ(x)) dµ0(x)

=

∫
[0, 1)∩[τ−1(t), τ−1(t′))

ϕ(1, τ(x)) dµ0(x).

Moreover,

∫
(0, σ−1(t)]∩(0, t]

ϕ(1, σ(s)) dν0(s)

=

∫
(0, σ−1(t′)]∩(0, t]

ϕ(1, σ(s)) dν0(s) +

∫
(σ−1(t′), σ−1(t)]∩(0, t]

ϕ(1, σ(s)) dν0(s),
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which gives

∫
(0, σ−1(t)]∩(0, t]

ϕ(1, σ(s)) dν0(s)−
∫

(0, σ−1(t′)]∩(0, t′]
ϕ(1, σ(s)) dν0(s)

=

∫
(σ−1(t′), σ−1(t)]∩(0, t]

ϕ(1, σ(s)) dν0(s).

Therefore

〈ν1x[0, t]− ν1x[0, t′], ϕ〉 =

∫
[0, 1)∩[τ−1(t), τ−1(t′))

ϕ(1, τ(x)) dµ0(x) +

∫
(σ−1(t′), σ−1(t)]∩(0, t]

ϕ(1, σ(s)) dν0(s)

≤ ν0((t′, t]) + ν0((σ−1(t), t′]) ‖v‖∞
∣∣t− t′∣∣

+ µ0((−∞, τ−1(t)) ∩ [0, 1)) ‖v‖∞
∣∣t− t′∣∣ ,

whence, taking the supremum over ϕ at both sides,

∥∥ν1x[0, t]− ν1x[0, t′]
∥∥∗
BL
≤ C

∣∣t− t′∣∣+ ν0([t′, t]).

Summing the estimates obtained so far for ‖µt − µt′‖∗BL, ‖ν1x[0, t]− ν1x[0, t′]‖∗BL we finally get (3.22).

Proof of Theorem 4.2. We observe that µ can be obtained, by linearity, as the sum of the solutions

of two transport problems with ν0 = 0 and µ0 = 0, respectively. We begin by considering the

case ν0 = 0 and assume, without loss of generality, that T ≤ τ(0). Then τ−1(T ) ≥ 0 whence,

recalling (3.18), (3.19), we obtain

µT =

∫
[0, τ−1(T )]

δΦT (x, 0) dµ0(x), ν1 =

∫
(τ−1(T ), 1]

δτ(x) dµ0(x) (3.23)

and we have to show that

〈µxQ, ∂tϕ+ v(x)∂xϕ〉 = 〈µT − µ0, ϕ〉+ 〈ν1, ϕ〉, ∀ϕ ∈ C1(Q̄), (3.24)

where µ is the measure (3.13). Following the characteristics, its restriction to Q writes as

µxQ(dx dt) =

∫
[0, τ−1(t)]

δΦt(ξ, 0)(dx) dµ0(ξ)︸ ︷︷ ︸
:=µtxQ(dx)

⊗ dt,
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thus for ϕ ∈ C1(Q̄) we discover:

〈µxQ, ∂tϕ+ v(x)∂xϕ〉 =

∫ T

0

∫
[0, 1]

(∂tϕ+ v(x)∂xϕ) dµtxQ(x) dt

=

∫ T

0

∫
[0, τ−1(t)]

(
∂tϕ(Φt(x, 0), t) + v(Φt(x, 0))∂xϕ(Φt(x, 0), t)

)
dµ0(x) dt

=

∫ T

0

∫
[0, τ−1(t)]

d

dt
ϕ(Φt(x, 0), t) dµ0(x) dt,

where in the last passage we have used (3.11). Switching the order of integration, we continue the

calculation as:

=

∫
[0, 1]

∫ min{τ(x), T}

0

d

dt
ϕ(Φt(x, 0), t) dt dµ0(x)

=

∫
[0, τ−1(T )]

∫ T

0

d

dt
ϕ(Φt(x, 0), t) dt dµ0(x)

+

∫
(τ−1(T ), 1]

∫ τ(x)

0

d

dt
ϕ(Φt(x, 0), t) dt dµ0(x)

=

∫
[0, τ−1(T )]

(
ϕ(ΦT (x, 0), T )− ϕ(Φ0(x, 0), 0)

)
dµ0(x)

+

∫
(τ−1(T ), 1]

(
ϕ(Φτ(x)(x, 0), τ(x))− ϕ(Φ0(x, 0), 0)

)
dµ0(x)

=

∫
[0, τ−1(T )]

ϕ(ΦT (x, 0), T ) dµ0(x)︸ ︷︷ ︸
(i)

+

∫
(τ−1(T ), 1]

ϕ(1, τ(x)) dµ0(x)︸ ︷︷ ︸
(ii)

−
∫

[0, 1]
ϕ(x, 0) dµ0(x)︸ ︷︷ ︸

(iii)

.

From (3.23) we recognise that the term (i) is indeed
∫

[0, 1] ϕ(x, T ) dµT (x) = 〈µT , ϕ〉 and that the term

(ii) is
∫

[0, T ] ϕ(1, t) dν1(t) = 〈ν1, ϕ〉, while the term (iii) is clearly 〈µ0, ϕ〉. Consequently (3.24) follows.

We consider now the case µ0 = 0 and assume, without loss of generality, that T ≥ σ(0). Then

σ−1(T ) ≥ 0 whence, recalling again (3.18), (3.19), we find

µT =

∫
[σ−1(T ), T ]

δΦT (0, s) dν0(s), ν1 =

∫
[0, σ−1(T ))

δσ(s) dν0(s) (3.25)

and we have to show that

〈µxQ, ∂tϕ+ v(x)∂xϕ〉 = 〈µT , ϕ〉+ 〈ν1 − ν0, ϕ〉, ∀ϕ ∈ C1(Q̄), (3.26)

where µ is again the measure (3.13). Following the characteristics we see that µxQ is now expressed
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as

µxQ(dx dt) =

∫
[max{0, σ−1(t)}, t]

δΦt(0, s)(dx) dν0(s)︸ ︷︷ ︸
:=µtxQ(dx)

⊗ dt,

hence for ϕ ∈ C1(Q̄) we obtain:

〈µxQ, ∂tϕ+ v(x)∂xϕ〉

=

∫ T

0

∫
[0, 1]

(∂tϕ+ v(x)∂xϕ) dµtxQ(x) dt

=

∫ T

0

∫
[max{0, σ−1(t)}, t]

(
∂tϕ(Φt(0, s), t) + v(Φt(0, s))∂xϕ(Φt(0, s) t)

)
dν0(s) dt

=

∫ T

0

∫
[max{0, σ−1(t)}, t]

d

dt
ϕ(Φt(0, s), t) dν0(s) dt,

where in the last passage we have used (3.12). We now switch the order of integration to discover:

=

∫
[0, T ]

∫ min{σ(s), T}

s

d

dt
ϕ(Φt(0, s), t) dt dν0(s)

=

∫
[0, σ−1(T )]

∫ σ(s)

s

d

dt
ϕ(Φt(0, s), t) dt dν0(s)

+

∫
(σ−1(T ), T ]

∫ T

s

d

dt
ϕ(Φt(0, s), t) dt dν0(s)

=

∫
[0, σ−1(T )]

(
ϕ(Φσ(s)(0, s), σ(s))− ϕ(Φs(0, s), s)

)
dν0(s)

+

∫
(σ−1(T ), T ]

(
ϕ(ΦT (0, s)T )− ϕ(Φs(0, s), s)

)
dν0(s)

=

∫
[0, σ−1(T )]

ϕ(1, σ(s)) dν0(s)︸ ︷︷ ︸
(i)

+

∫
(σ−1(T ), T ]

ϕ(ΦT (0, s), T ) dν0(s)︸ ︷︷ ︸
(ii)

−
∫

[0, T ]
ϕ(0, s) dν0(s)︸ ︷︷ ︸

(iii)

.

Thanks to (3.25) we recognise that the term (i) is
∫

[0, T ] ϕ(1, t) dν1(t) = 〈ν1, ϕ〉 and that the term (ii)

is
∫

[0, 1] ϕ(x, T ) dµT (x) = 〈µT , ϕ〉, while the term (iii) is clearly 〈ν0, ϕ〉. Hence (3.26) follows.

To conclude the proof, we show the continuous dependence estimate (3.21). We consider two problems

of the type (3.16) with respective initial data µ1
0, µ

2
0 and source data ν1

0 , ν
2
0 .

We begin by estimating the term
∥∥µ2

T − µ1
T

∥∥∗
BL

. Let ϕ ∈ BL(Q) with ‖ϕ‖BL ≤ 1. Recalling (3.18)
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we have:

〈µ2
T − µ1

T , ϕ〉 =

∫
[0, 1]

ϕ(x, T ) d(µ2
T − µ1

T )(x)

=

∫
[0,max{0, τ−1(T )}]

ϕ(ΦT (x, 0), T ) d(µ2
0 − µ1

0)(x)

+

∫
[max{0, σ−1(T )}, T ]

ϕ(ΦT (0, s), T ) d(ν2
0 − ν1

0)(s)

≤
∣∣µ2

0 − µ1
0

∣∣ ([0, max{0, τ−1(T )}])

+
∣∣ν2

0 − ν1
0

∣∣ ([max{0, σ−1(T )}, T ])

where here |·| stands for the total variation of a measure. Thus

≤ C
(∥∥µ2

0 − µ1
0

∥∥∗
BL

+
∥∥ν2

0 − ν1
0

∥∥∗
BL

)
and consequently, taking the supremum over ϕ at both sides,

∥∥µ2
T − µ1

T

∥∥∗
BL
≤ C

(∥∥µ2
0 − µ1

0

∥∥∗
BL

+
∥∥ν2

0 − ν1
0

∥∥∗
BL

)
.

Proceeding in a similar way for
∥∥ν2

1 − ν1
1

∥∥∗
BL

, from (3.19) we have:

〈ν2
1 − ν1

1 , ϕ〉 =

∫
[0, T ]

ϕ(1, t) d(ν2
1 − ν1

1)(t)

=

∫
(max{0, τ−1(T )}, 1]

ϕ(1, τ(x)) d(µ2
0 − µ1

0)(x)

+

∫
[0,max{0, σ−1(T )})

ϕ(1, σ(s)) d(ν2
0 − ν1

0)(s)

≤
∣∣µ2

0 − µ1
0

∣∣ ((max{0, τ−1(T )}, 1])

+
∣∣ν2

0 − ν1
0

∣∣ ([0, max{0, σ−1(T )}))

≤ C
(∥∥µ2

0 − µ1
0

∥∥∗
BL

+
∥∥ν2

0 − ν1
0

∥∥∗
BL

)
,

hence, taking the supremum over ϕ at both sides,

∥∥ν2
1 − ν1

1

∥∥∗
BL
≤ C

(∥∥µ2
0 − µ1

0

∥∥∗
BL

+
∥∥ν2

0 − ν1
0

∥∥∗
BL

)
.

Summing the two estimates just obtained yields finally (3.21).

Moreover, for µ1
0 = µ2

0, ν1
0 = ν2

0 the estimate (3.21) implies µ1
T = µ2

T , ν1
1 = ν2

1 , hence the uniqueness

of (3.18) and (3.19).

51



3.2.2 Linear transport on networks

We now return to the study of problem (3.4). In order to make the notation consistent with the one

introduced, we set

νj0 := µjx=πj(0), νj1 := µjx=πj(1)

and we rewrite (3.4) as



∂tµ
j + ∂x(vj(x)µj) = 0 x ∈ ej , t ∈ (0, T ], ej ∈ E

µjt=0 = µj0 x ∈ ej ,

νj0 =


∑

k :V=πk(1)

pkj · νk1 if V = πj(0) ∈ I

σS0 if S ∈ S.

(3.27)

Let ϕ ∈ C1(Γ × [0, T ]). Given µj0 ∈ M+(ej × {0}), νj0 ∈ M+({0} × [0, T ]), owing to Theorem 4.2

there exists µj ∈M+(ej × [0, T ]) such that

〈µj , ∂tϕ+ vj(x)∂xϕ〉 = 〈µjT − µ
j
0, ϕ〉+ 〈νj1 − ν

j
0, ϕ〉 (3.28)

for every ej ∈ E . Similarly to (3.18), (3.19), the traces µjT , νj1 are

µjT =

∫
[0,max{0, τ−1

j (T )}]
δ

ΦjT (x, 0)
dµj0(x) +

∫
[max{0, σ−1

j (T )}, T ]
δ

ΦjT (0, s)
dνj0(s) (3.29)

νj1 =

∫
(max{0, τ−1

j (T )}, 1]
δτj(x) dµ

j
0(x) +

∫
[0,max{0, σ−1

j (T )})
δσj(s) dν

j
0(s), (3.30)

where the flow maps Φj
t (x, 0) and Φj

t (0, s) are defined like in (3.11), (3.12), respectively, using the

velocity field vj(x) on the arc ej . Likewise, τj and σj are defined like in (3.17).

Summing (3.28) over j and recalling (3.5) we deduce

〈µ, ∂tϕ+ v(x)∂xϕ〉 = 〈µT − µ0, ϕ〉+
∑
j∈J
〈νj1 − ν

j
0, ϕ〉, (3.31)

where

µ0 =
∑
j

µj0, µT =
∑
j

µjT . (3.32)

In particular, the last term at the right-hand side in (3.31) can be rewritten in more detail by summing
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on the vertices of the network:

∑
j

〈νj1 − ν
j
0, ϕ〉 =

∑
V ∈I

 ∑
j :V=πj(1)

〈νj1, ϕ〉 −
∑

j :V=πj(0)

〈νj0, ϕ〉


=
∑
V ∈I

 ∑
j :V=πj(1)

〈νj1, ϕ〉 −
∑

j :V=πj(0)

〈νj0, ϕ〉


+
∑
V ∈W

∑
j :V=πj(1)

〈νj1, ϕ〉 −
∑
V ∈S

∑
j :V=πj(0)

〈νj0, ϕ〉.

For an internal vertex V ∈ I, using the corresponding boundary condition prescribed in (3.27) we

obtain:

∑
j :V=πj(1)

〈νj1, ϕ〉 −
∑

j :V=πj(0)

〈νj0, ϕ〉 =
∑

j :V=πj(1)

〈νj1, ϕ〉 −
∑

j :V=πj(0)

〈
∑

k :V=πk(1)

pikj(t)ν
k
1 , ϕ〉

=
∑

j :V=πj(1)

〈νj1, ϕ〉 −
∑

k :V=πk(1)

〈
∑

j :V=πj(0)

pikj(t)ν
k
1 , ϕ〉

whence, taking (3.3) into account in the second term at the right-hand side,

∑
j :V=πj(1)

〈νj1, ϕ〉 −
∑

j :V=πj(0)

〈νj0, ϕ〉 =
∑

j :V=πj(1)

〈νj1, ϕ〉 −
∑

k :V=πk(1)

〈νk1 , ϕ〉

= 0.

This is the conservation of the mass through the internal vertices of the network.

For a source vertex V ∈ S, we use the corresponding boundary condition prescribed in (3.27) to find:

∑
V ∈S

∑
j :V=πj(0)

〈νj0, ϕ〉 =
∑
V ∈S
〈σV0 , ϕ〉 = 〈σ0, ϕ〉

where we have defined the measure σ0 :=
∑

S∈S σ
V
0 ∈ M+(∪S{V } × [0, T ]). This is the total mass

flowing into the network from the source vertices up to the time T .

Finally, for a sink V ∈ W, we define

ωV :=
∑

j :V=πj(1)

νj1 ∈M
+({V } × [0, T ]),

ω :=
∑
V ∈W

ωV ∈M+(∪W{V } × [0, T ]),

(3.33)

which represents the total mass flowing out of the network up to the time T . Equation (3.31) takes
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then the form

〈µ, ∂tϕ+ v(x)∂xϕ〉 = 〈µT − µ0, ϕ〉+ 〈ω − σ0, ϕ〉, ∀ϕ ∈ C1(Γ× [0, T ]), (3.34)

thereby expressing the counterpart of (3.20) on the network.

Using the formulation just obtained, we are in a position to establish the well-posedness of the transport

problem over networks.

Theorem 3.4. Given µ0 ∈M+(Γ×{0}) and σ0 ∈M+(∪S{V }×[0, T ]), there exists a unique measure

µ ∈M+(Γ× [0, T ]) which satisfies the balance (3.34) with µT ∈M+(Γ×{T}) defined in (3.29)-(3.32)

and ω ∈M+(∪W{V } × [0, T ]) defined in (3.30)-(3.33).

Moreover, for µ0,k ∈ M+(Γ × {0}), σ0,k ∈ M+(∪S{V } × [0, T ]), k = 1, 2, there exists a constant

C = C(T ) > 0 such that

‖µT,2 − µT,1‖∗BL + ‖ω2 − ω1‖∗BL ≤ C
(
‖µ0,2 − µ0,1‖∗BL + ‖σ0,2 − σ0,1‖∗BL

)
. (3.35)

Proof. We treat separately the cases in which the set of the source vertices is or is not empty.

(i) Assume S 6= ∅. We introduce a partition of the set E = {ej}j∈J based on the distance from the

source set:

E0 = {ej : Vi = πj(0) is a source}

Em = {ej : ∃ ek ∈ Em−1 s.t. V = πj(0) = πk(1)}, m = 1, 2, . . .

We first apply Theorem 4.2 to the problem defined on each arc in E0, i.e for each ej ∈ E0 such

that V = πj(0) ∈ S, we consider



∂tµ
j + ∂x(vj(x)µj) = 0 in ej × (0, T ]

µjt=0 = µj0 ∈M+(ej × {0})

νj0 = σi ∈M+({V } × [0, T ]).

Since νj0 is prescribed, we obtain the existence of µj ∈ M+(ej × [0, T ]), µjT ∈ M+(ej × {T})

and νj1 ∈ M+({πj(1)} × [0, T ]) satisfying the balance (3.20). Next we proceed by induction on
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m = 1, 2, . . . considering the problem on ej ∈ Em with V = πj(0):



∂tµ
j + ∂x(vj(x)µj) = 0 in ej × (0, T ]

µjt=0 = µj0 ∈M+(ej × {0})

νj0 =
∑
k

pkj · νk1 ∈M+({V } × [0, T ]).

Since the arcs ek belong to Em−1, the solution to the transport equation on them is known by the

inductive step (using the case m = 0 as basis), hence the boundary measure νj0 is well defined

because so are the outflow measures νk1 . Therefore we can apply again Theorem 4.2 to fulfil the

balance (3.20) on ej ∈ Em.

In this way, after a finite number of steps we build arc by arc the measures µ ∈M+(Γ× [0, T ]),

µT ∈M+(Γ× {T}) and ω ∈M+(∪W{V } × [0, T ]) which globally satisfy the balance (3.34).

(ii) Assume now S = ∅. Fix an arbitrary internal vertex V ∈ I, and choose

t0 < min
j :V=πj(1)

τj(0).

From (3.30) we see that, up to the time t0, on all the arcs ej such that V = πj(1) the outflow

measure νj1 is given by

νj1 =

∫
(τ−1
j (t0), 1]

δτj(x) dµ
j
0(x),

because τ−1
j (t0) > 0 while σ−1

j (t0) < 0 (cf. Figure 3.1, left). Hence νj1 depends only on the

initial datum µj0 and not on the inflow measure νj0. Let us consider the initial/boundary-value

problem (3.27) for t ∈ (0, t0] with V as source vertex and corresponding source measure

ν0 =
∑

j :Vi=πj(1)

νj1 =
∑

j :Vi=πj(1)

∫
(τ−1
j (t0), 1]

δτj(x) dµ
j
0(x).

From the case S 6= ∅ we know that we can construct µ ∈M+(ej×[0, t0]), µt0 ∈M(ej×{t0}) and

ω ∈M+(∪W{V }× [0, t0]) which satisfy the balance (3.20). Moreover, the inflow measures νj0 of

all the arcs ej such that V = πj(0) coincide with those of the original problem without sources,

because they are actually determined only by the initial datum. Hence µ is also a solution of

the original problem in [0, t0]. By repeating this argument on the intervals (t0, 2t0], (2t0, 3t0],

. . . , with initial data µt0 , µ2t0 , . . . , after a finite number of steps we obtain the solution of the

problem without source in any interval [0, T ], T > 0.

Finally, the estimate (3.35) is in both cases an immediate consequence of the corresponding esti-
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Figure 3.2: The 1-2 junction with a sketch of the characteristics along which the solution propagates.

mate (3.21) holding on each arc.

3.2.3 Examples on junctions

In this section we write explicitly the solution to problem (3.27) for two typical junctions which occur

frequently for instance in traffic flow on road networks. It is worth pointing out that, since in our

linear equation the velocity depends only on the space variable but not on the measure µ itself, the

transport model that we are considering may provide an acceptable description of the flow of vehicles

at most in the so-called free flow regime. In fact, in such a case the number of vehicles is sufficiently

small that their speed is almost independent of the presence of other vehicles on the road.

The 1-2 junction – Atomic inflow distribution. Let Γ be the road network shown in Figure 3.2

formed by 3 arcs, viz. roads, E1, E2, E3 and 4 vertices V1, . . . , V4 such that E1 connects the source

vertex V1 to the internal vertex V2 while E2 and E3 connect the internal vertex V2 to the well vertices

V3 and V4. This gives also the orientation of the arcs. In practice, beyond the junction V2 the road E1

splits in the two roads E2, E3. We assume that the network is initially empty. At some time t0 > 0 a

microscopic vehicle enters the network from the vertex V1 and then travels across it. At the junction

V2 we prescribe a flux distribution rule stating that a time-dependent fraction p = p(t) : [0, T ]→ [0, 1]

of the incoming mass flows to the road E2 while the complementary fraction 1− p(t) flows to the road

56



E3. Taking T = +∞, the problem can be formalised as:



∂tµ
j + ∂x(vj(x)µj) = 0 x ∈ ej , t ∈ R+, j = 1, 2, 3

µ0 = 0 x ∈ Γ

ν1
0 = δt0 t ∈ R+

0

ν2
0 = p(t) · ν1

1 t ∈ R+
0

ν3
0 = (1− p(t)) · ν1

1 t ∈ R+
0 ,

where the velocity fields vj : ej → (0, vjmax], 0 < vjmax < +∞, are given Lipschitz continuous functions

of x.

The solution on each road has the form µj(dx dt) = µjt (dx) ⊗ dt, where µjt is the trace of µj on the

fibre ej × {t}. Using (3.29), (3.30) we determine explicitly the expression of µjt for all t > 0 and that

of the outflow masses νj1 on the fibres {πj(1)} ×R+
0 (notice that π1(1) = V2, π2(1) = V3, π3(1) = V4).

We find (cf. Figure 3.2):

µ1
t = δΦ1

t (0, t0)χ[t0, σ1(t0)](t)

ν1
1 = δσ1(t0)

µ2
t = p(σ1(t0))δΦ2

t (0, σ1(t0))χ[σ1(t0), σ2(σ1(t0)](t)

ν2
1 = ω3 = p(σ1(t0))δσ2(σ1(t0))

µ3
t = [1− p(σ1(t0))]δΦ3

t (0, σ1(t0))χ[σ1(t0), σ3(σ1(t0))](t)

ν3
1 = ω4 = [1− p(σ1(t0))]δσ3(σ1(t0)).

Furthermore, using Bochner integrals in the product space ej ×R+
0 we can possibly write the solution

µj on each road as

µ1 =

∫ σ1(t0)

t0

δ(Φ1
t (0, t0), t) dt

µ2 = p(σ1(t0))

∫ σ2(σ1(t0))

σ1(t0)
δ(Φ2

t (0, σ1(t0)), t) dt

µ3 = [1− p(σ1(t0))]

∫ σ3(σ1(t0))

σ1(t0)
δ(Φ3

t (0, σ1(t0)), t) dt.

Remark 3.4.1. By carefully inspecting the expressions of µjt , j = 1, 2, 3, we see that the unit-mass

Dirac delta prescribed at the source vertex V1 splits in two Dirac deltas beyond the junction V2, cf.

also Figure 3.2, each of which carries a fraction, p(σ1(t0)) and 1−p(σ1(t0)), respectively, of the initial
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mass.

Unlike the Dirac delta entering the road E1 from V1, the two Dirac deltas propagating in the roads

E2, E3 do not represent physical microscopic vehicles. Rather, each of them is the same microscopic

vehicle coming from the road E1 and the coefficients p(σ1(t0)), 1− p(σ1(t0)) have to be understood as

the probabilities that such a vehicle takes either outgoing road beyond the junction V2.

This approach differs from the one proposed in [25], which instead assigns a path to each microscopic

vehicle through the network in the spirit of the multipath traffic model introduced in [11, 12].

The 1-2 junction – Continuous inflow distribution. We now consider the same network as

in the previous example but we prescribe an inflow measure ν1
0 which is absolutely continuous with

respect to the Lebesgue measure:

ν1
0(dt) := ρ(t) dt,

where ρ ∈ L1(R+
0 ) with supp ρ ⊆ R+

0 is the density of the vehicles entering the network from the

vertex V1.

Recalling that the network is initially empty and using (3.29), we obtain that for each t > 0 the trace

µ1
t of the solution µ1 in the road E1 is

µ1
t =

∫ t

max{0, σ−1
1 (t)}

δΦ1
t (0, s)

ρ(s) ds =

∫ t−max{0, σ−1
1 (t)}

0
δΦ1

r(0, 0)ρ(t− r) dr,

where in the last passage we have set r := t− s after observing from (3.12) that Φ1
t (0, s) = Φ1

t−s(0, 0)

for all 0 ≤ s ≤ t. Likewise, recalling (3.30) we find that the outflow mass ν1
1 at the vertex V2 is

ν1
1 =

∫ +∞

0
δσ1(s)ρ(s) ds =

∫ +∞

σ1(0)
δrρ(r − σ1(0)) dr,

where in the second passage we have set r := σ1(s) = s + σ1(0). In view of the Bochner representa-

tion (3.1) and considering that supp ρ(· − σ1(0)) ⊆ [σ1(0), +∞), we deduce in particular

ν1
1(dt) = ρ(t− σ1(0)) dt.

According to our transmission conditions, this mass is distributed to the outgoing roads E2, E3 as

ν2
0 = p(t)ν1

1 , ν3
0 = (1− p(t))ν1

1 ,

which, owing to (3.29), implies that the traces µ2
t , µ

3
t of the solutions µ2, µ3 in the outgoing roads are
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respectively given by

µ2
t =

∫ t

max{0, σ−1
2 (t)}

δΦ2
t (0, s)

p(s)ρ(s− σ1(0)) ds

=

∫ t−max{0, σ−1
2 (t)}

0
δΦ2

r(0, 0)p(t− r)ρ(t− r − σ1(0)) dr

and by

µ3
t =

∫ t

max{0, σ−1
3 (t)}

δΦ3
t (0, s)

(1− p(s))ρ(s− σ1(0)) ds

=

∫ t−max{0, σ−1
3 (t)}

0
δΦ3

r(0, 0)(1− p(t− r))ρ(t− r − σ1(0)) dr.

It is interesting to note that, since in general the density ρ is split asymmetrically in the roads E2 and

E3 (unless p(t) = 1
2), the corresponding measure solution, even if possibly continuous inside the arcs

of the network, is discontinuous across the vertex V2.

Finally, the outflow masses ν2
1 = ω3 and ν3

1 = ω4 are recovered from (3.30) as

ν2
1 = ω3 =

∫ +∞

0
δσ2(s)p(s)ρ(s− σ1(0)) ds

=

∫ +∞

σ2(0)
δrp(r − σ2(0))ρ(r − σ1(0)− σ2(0)) dr

and

ν3
1 = ω4 =

∫ +∞

0
δσ3(s)(1− p(s))ρ(s− σ1(0)) ds

=

∫ +∞

σ3(0)
δr(1− p(r − σ3(0)))ρ(r − σ1(0)− σ3(0)) dr.

Observing that supp ρ(· − σ1(0) − σj(0)) ⊆ [σ1(0) + σj(0), +∞) for j = 2, 3, from the Bochner

representation (3.1) of a measure we further deduce

ν2
1(dt) = ω3(dt) = p(t− σ2(0))ρ(t− σ1(0)− σ2(0)) dt

ν3
1(dt) = ω4(dt) = (1− p(t− σ3(0))ρ(t− σ1(0)− σ3(0)) dt.

Remark 3.4.2. The transport problem being linear, the case of an inflow measure ν1
0 carrying both

an atomic and a Lebesgue-absolutely continuous part can be addressed by simply superimposing the

solutions obtained in the previous examples.

The 2-1 junction. We consider now the road network Γ illustrated in Figure 3.3 with again 3 arcs,
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Figure 3.3: The 2-1 junction with a sketch of the characteristics along which the solution propagates
in the space-time of the network.

viz. roads, E1, E2, E3 and 4 vertices V1, . . . , V4. However, in this case both vertices V1, V2 are sources

and are connected by roads E1, E2 to the internal vertex V3. The latter is finally connected to the

well vertex V4 by road E3. In practice, beyond the junction V3 the incoming roads E1, E2 merge into

the outgoing road E3.

Like in the previous examples, we assume that the network is initially empty. At two successive time

instants 0 ≤ t1 ≤ t2 two microscopic vehicles enter the network from the sources V1, V2, respectively.

Their propagation across the network for t > 0 is then described by the problem:



∂tµ
j + ∂x(vj(x)µj) = 0 x ∈ ej , t ∈ R+, j = 1, 2, 3

µ0 = 0 x ∈ Γ

ν1
0 = δt1 t ∈ R+

0

ν2
0 = δt2 t ∈ R+

0

ν3
0 = ν1

1 + ν2
1 t ∈ R+

0 ,

where the velocity fields vj : ej → (0, vjmax], 0 < vjmax < +∞, are as usual given Lipschitz continuous

functions of x. Notice that, for mass conservation purposes, the flux distribution coefficients at the

junction V3 are necessarily p3
13(t) = p3

23(t) = 1 for all t > 0.

Relying again on (3.29), (3.30) we write explicitly the solution µj ∈ M+(ej × R+
0 ) on each road as

well as the outflow measures νj1 ∈ M+({πj(1)} × R+
0 ), with π1(1) = π2(1) = V3 and π3(1) = V4. We
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find (cf. Figure 3.3):

µ1
t = δΦ1

t (0, t1)χ[t1, σ1(t1)](t), ν1
1 = δσ1(t1)

µ2
t = δΦ2

t (0, t2)χ[t2, σ2(t2)](t), ν2
1 = δσ2(t2)

µ3
t = δΦ3

t (0, σ1(t1))χ[σ1(t1), σ3(σ1(t1))](t) ν3
1 = ω4 = δσ3(σ1(t1)) + δσ3(σ2(t2)),

+ δΦ3
t (0, σ2(t2))χ[σ2(t2), σ3(σ2(t2))](t),

whence, using Bochner integrals in the product spaces ej × R+
0 , j = 1, 2, 3,

µ1 =

∫ σ1(t1)

t1

δ(Φ1
t (0, t1), t) dt

µ2 =

∫ σ2(t2)

t2

δ(Φ2
t (0, t2), t) dt

µ3 =

∫ σ3(σ1(t1))

σ1(t1)
δ(Φ3

t (0, σ1(t1)), t) dt+

∫ σ3(σ2(t2))

σ2(t2)
δ(Φ3

t (0, σ2(t2)), t) dt.
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Chapter 4

Nonlocal interactions on Networks

Aim of this chapter is to study a nonlinear transport equation on an oriented network where the

velocity field depends not only on the state variable, but also on the solution itself. We also provide

a representation formula in terms of the push-forward of the initial and boundary data along the

network and discuss an example of nonlocal velocity field fitting our framework.

We also refer to [5, 17, 24, 36, 48] for applications of the measure-theoretic approach to the study of

various complex phenomena. Short and long range interaction mechanisms are efficiently taken into

account by a velocity field depending on local terms, determined by the geometry of the space, and

nonlocal terms, depending on the whole support of the measure solution or on a part of it; aggregation

phenomena, leading in the classical setting to blow-up of the solution, are plainly taken into account

by the measure setting.

We consider the nonlinear transport equation

∂tµ+ ∂x(v[µt]µ) = 0, in Γ× [0, T ], (4.1)

where the velocity v still depends on the state variable, but also on the distribution µt at time t. In

this case, the evolution equation does not only depends on the portion of mass inflowing/outflowing

from each arc, but also on the global distribution µt at time t.

This assumption adds several difficulties which have to be studied: to show the well posedness of

(4.1), we approximate the nonlinear transport equation by a sequence of linear problems obtained via

semi-discrete in time approximation of (4.1). We define a partition of the time interval [0, T ] in a

family of subinterval [tk, tk + ∆t] and on each of these intervals we solve the linear problem (3.4) with

the nonlinear velocity v[µt] replaced by the linear one v[µtk ]. In such a way we obtain a sequence of

measure {µ∆t} defined on [0, T ]. Using the results on the linear problem, we prove that for ∆t→ 0+,
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the sequence {µ∆t} converges (upon to subsequence) to a measure in µ ∈ M+(Γ × [0, T ]) which is

a solution of (4.1). A continuous dependence result and a representation formula in terms of the

push-forward of the initial and boundary data along the admissible paths on the network complete

the study of (4.1).

In the model discussed in the previous chapter, the sources represent the vertices where agents enter

in the network, while the sinks the vertices where they exit from the network. Since the velocity term

may depend on the distribution of the agents on all the network, in order to simplify the notations we

prefer to consider a network without sinks, i.e. the terminal arcs always have infinite length. In any

case, at the expense of an heavier notation, is not difficult to include in the model also the contribution

of the sinks.

4.1 The nonlinear transport problem

This section is devoted to the study of the nonlinear transport problem



∂tµ+ ∂x(v[µt]µ) = 0, on Γ× [0, T ],

µt=0 = µ0,

µx=xi = σi0, ∀xi ∈ S,

µjx=xi =
∑

k∈Inc(xi)
pkj · µkx=xi , ∀ej ∈ Out(xi), ∀xi ∈ V \ S,

(4.2)

with v[µ], µ0, σ0 satisfying the assumptions in the previous chapter. In particular, thanks to the

integration by part formulas, with v(x) replaced by v[µ](x), we can state

Definition 4.1. A measure-valued solution to (4.2) is a finite measure m ∈M+(Γ× [0, T ]) such that

for every f ∈ C1
0 (Γ× [0, T ]),

〈µt=T − µ0, f〉 − 〈σ0, f〉 = 〈µ, ∂tf + v[mt]∂xf〉, (4.3)

and ∀ xi ∈ V \ S, ∀ ej ∈ Out(xi),

〈µjx=xi , f〉 =
∑

ek∈Inc(xi)

〈µkx=xi , pkjf〉. (4.4)

We assume a nonlinear velocity field v :M+(Γ)× Γ→ R with the following properties

(H1) v is nonnegative and bounded by a positive constant Vmax;
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(H2) v is Lipschitz continuous with respect to the state variable, i.e. on each arc ej ∈ E

|v[µ](x)− v[µ](y)| ≤ L|x− y|, ∀µ ∈M+(Γ), x, y ∈ ej ;

(H3) v is Lipschitz continuous with respect to the measure variable, i.e.

|v[µ1](x)− v[µ2](x)| ≤ L‖µ1 − µ2‖∗BL ∀x ∈ Γ, µ1, µ2 ∈M+(Γ).

When considered on a single arc isomorphic to R, the previous assumptions coincide with the ones for

the corresponding nonlinear transport model in [24], while, for a fixed µ ∈ M+(Γ), the velocity field

v[µ] satisfies the hypotheses of linear transport problem considered in the previous chapter.

We conclude this section with a notion of p-moment for finite measures on networks. Even if it is

a straightforward generalization of the corresponding concept in the Euclidean space, we give some

details for reader’s convenience.

Definition 4.2. Fixed p ∈ N and x ∈ Γ, the p−moment centered at x of a finite measure µ ∈M+(Γ)

is defined by

〈µ, dΓ(·, x)p〉 =

∫
Γ
dΓ(y, x)pdµ(y). (4.5)

Lemma 4.1. A finite measure µ ∈M+(Γ) has finite p−moment iff it has finite p−moment on every

arc ej ∈ E such that the length `(ej) is infinite.

Proof. Assume w.l.o.g. that x = xi ∈ V and set d(·) = dΓ(·, xi). Given a measure µ ∈ M+(Γ),

µ =
∑

j∈J µ
j with supp{µj} ⊆ ej , we can write

〈µ; dp〉 =
∑
j∈J

`(ej)<+∞

〈µj ; dp〉+
∑
j∈J

`(ej)=+∞

〈µj ; dp〉.

If ej ∈ E has finite length, then d(·) has its maximum value dj on ej . Then defined

d := max
j∈J

`(ej)<+∞

dj ,

we have ∑
j∈J

`(ej)<+∞

〈µj ; dp〉 ≤
∑
j∈J

`(e)<+∞

dj · µj(ej) ≤ d · µ(Γ).

On the other side, if `(ej) = +∞ and ej = πj([0,+∞)) with xk = πj(0) ∈ V, by Jensen’s inequality
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we have

〈µj ; dp〉 =

∫
[0,+∞)

(|y|+ d(xk))
pdµj(y) ≤ 2p−1

∫
[0,+∞)

|y|pdµj(y) + 2p−1d(xk)
pµ(ej).

By the last inequality, the statement easily follows.

The finite p-moment property for a measure µ is clearly independent of the point x ∈ Γ chosen in the

Definition 4.2.

To prove the core result of this chapter, i.e. existence of a measure-valued solution to (4.2), we

introduce a semi-discretization in time procedure which allows to approximate the nonlinear problem

by a family of linear problem. Fixed N ∈ N, set ∆tN := T/2N and define a partition of [0, T ] by the

intervals INn := [tNn ; tNn+1] where tNn := n∆tN , n = 0, . . . , 2N (in the following we write tn in place of tNn

when it is clear by the context). We consider the 2N problems iteratively defined, ∀n = 0, . . . , 2N − 1,

by 

∂tµ+ ∂x(v[µtn ]µ) = 0, on Γ× INn

µt=tn = µtn ,

µxi∈S = σ0xINn ,

µjx=xi =
∑

k∈Inc(xi)
pkj · µkx=xi , ∀ej ∈ Out(xi), ∀xi ∈ V \ S,

where σ0xINn is the restriction of σ0 to the interval INn . We remark that on Γ× INn the velocity term

v[µtn ] is linear. Therefore, thanks to Theorem 3.4, there exists a unique solution µN,n ∈M+(Γ× INn )

which satisfies the balance equation

〈µN,n
t=tNn+1

− µN,n
t=tNn

, f〉 = 〈σ0xINn , f〉+

∫ tNn+1

tNn

〈µN,nt , (∂t + v[µN,n
tNn

]∂x) · f(·, t)〉dt, (4.6)

and the transition condition

〈(µN,n)jx=xixINn , f〉 =
∑

k∈Inc(xi)

〈pkj(µn,N )kx=xixINn , f〉, ∀ej ∈ Out(xi), ∀xi ∈ V \ S. (4.7)

for every f ∈ C∞0 (Γ× INn ). We denote by µN : [0, T ]→M+(Γ) the map defined by

µNt = µN,nt for t ∈ INn , n = 0, . . . , 2N − 1. (4.8)

We first give some regularity properties of the map µN .

Proposition 4.1. For any t ∈ [0, T ], the measure µNt is bounded in (M+(Γ), ‖ · ‖∗BL), uniformly in
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N , i.e. there exists a positive constant C = C(T ) such that

‖µNt ‖∗BL ≤ C(‖µ0‖∗BL + ‖σ0‖∗BL), ∀t ∈ [0, T ], N ∈ N. (4.9)

Moreover, there exists a positive constant C = C(T ) such that

‖µNt − µNs ‖∗BL ≤ σ0([s, t]) + C|t− s|, ∀ 0 ≤ s < t ≤ T, N ∈ N. (4.10)

Proposition 4.2. Assume that µ0 has finite p−moment over Γ, p = 1, 2. Then, for any t ∈ [0, T ],

the measure µNt has finite p−moment, p = 1, 2, over Γ, uniformly in N , i.e. there exists a positive

constant C = C(T ) such that

〈µNt , dp〉 ≤ C, ∀t ∈ [0, T ], N ∈ N.

Proof of Proposition 4.1. Let t ∈ [0, T ] and n ∈ {0, . . . , 2N − 1} such that t ∈ INn . Then, by the

representation formula (4.31), we write

〈µNt , f〉 =

∫
Γ

∑
γ∈A(x)

f(Φγ
t (x, tn), t)pγ(x, 0)dµNtn(x) +

∑
xi∈S

∫
[0,T ]

∑
γ∈A(xi)

f(Φγ
t (xi, s), t)pγ(xi, 0)dσi0(s).

Hence, for every f ∈ BL(Γ× [0, T ]) such that ‖f‖BL ≤ 1, it follows

|〈µNt , f〉| ≤
∫

Γ
‖f‖BL

 ∑
γ∈A(x)

pγ(x, 0)

 dµNtn(x) +
∑
xi∈S

∫
[0,T ]
‖f‖BL

 ∑
γ∈A(xi)

pγ(xi, 0)

 dσi0(s)

≤ ‖µNtn‖
∗
BL +

∑
xi∈S
‖(σi0)x[tn,t]‖

∗
BL = ‖µNtn‖

∗
BL + ‖(σ0)x[tn,t]‖

∗
BL,

where we have used the property
∑

γ∈A(x) pγ(x, 0) = 1, for all x ∈ Γ. Taking the supremum over

f ∈ BL(Γ× [0, T ]), we get

‖µNt ‖∗BL ≤ ‖µtn‖∗BL + ‖(σ0)x(tn,t]‖
∗
BL;

Applying the previous inequality recursively for µ ∈ {0, . . . , n}, we get (4.9).

We now prove (4.10). Fixed N ∈ N, let s, t ∈ [0, T ] such that s < t with s ∈ INn , t ∈ INk for i

n, k ∈ {0, . . . , 2N − 1}, n 6= k. This means that

tn ≤ s < tn+1 < . . . < tk ≤ t ≤ tk+1.
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We can clearly write

µNt − µNs =
(
µNt − µNtk

)
+ (µNtn+1

− µNs ) +
k∑

l=n+1

(µNtl+1
− µNtl ).

This implies

‖µNt − µNs ‖∗BL ≤ ‖µNt − µNtk‖
∗
BL + ‖µNtn+1

− µNs ‖∗BL +

k∑
l=n+1

‖µNtl+1
− µNtl ‖

∗
BL. (4.11)

We need to estimate ‖µNtl+1
− µNtl ‖

∗
BL. Let f ∈ BL(Γ × [0, T ]) such that ‖f‖∗BL ≤ 1. Then, for every

t ∈ INn ,

|〈µNt − µNtn , f〉|

≤
∫

Γ

∑
γ∈A(x)

|f(Φγ
t (x, tn), t)− f(x, tn)|dµNtn(x) + |

∑
xi∈S

∫
(tn,t]

f(Φt(xi, s), t)dσ
i
0(s)|

≤
∫

Γ

 ∑
γ∈A(x)

pγ(x, 0)

 (d(Φγ
t (x, tn), x) + |t− tn|)dµNtn(x) + ‖(σ0)x(tn,t]‖

∗
BL.

(4.12)

By definition of Φγ , it follows d(Φγ
t (x, tn), x) ≤

∫ t
tn
vNn (Φγ

s (x, tn))ds ≤ |t − tn|Vmax. Then, applying

(4.9) and taking the supremum over f ∈ BL(Γ× [0, T ]) such that ‖f‖BL ≤ 1, we can write

‖µNt − µNtn‖
∗
BL ≤ C|t− tn|+ σ0([tn, t]), (4.13)

where C = (1 + Vmax)(‖m0‖∗BL + ‖σ0‖∗BL) > 0. Using (4.13) and (4.12) in (4.11), we get (4.10).

Proof of Proposition 4.2. For xi ∈ V fixed, we set d(·) := dΓ(·, xi). Fixed N ∈ N, we denote v[µN
tNn

]

with vNn and we consider t ∈ [0, T ] and n ∈ {0, . . . , 2N − 1} such that t ∈ INn−1. By Lemma 4.1,

µNt ∈ M+(Γ) has finite p−moment over Γ iff it has finite p−moment on every arc ej ∈ E such that

`(ej) = +∞.

First consider the case p = 1. If ej ∈ E is such that `(ej) = +∞, there are two possibilities

i) ∃xi ∈ V such that ej ∈ Inc(xi);

ii) ∃xi ∈ V such ej ∈ Out(xi).

If (i) occurs, we parametrise ej ∈ E as (−∞; 0]. For every t ∈ INn−1, we denote with Φ
ej
t the flow over
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ej with respect the velocity vNn−1. By the definition in (3.17), we have

τn,j(x) = inf{t ≥ tNn−1 : Φ
ej
t (x, tNn−1) = πj(0)}.

Then, the first moment over ej of µNt can be estimated by

∫
(−∞;0]

|x|dµN,jt (x) =

∫
(−∞;τ−1

n,j(x)]
|Φej
t (x, tn−1)|dµN,jtn−1

(x)

≤
∫

(−∞;τ−1
n,j(x)]

|x|dµN,jtn−1
(x) + µNtn−1

((−∞; τ−1
n,j (x)])Vmax∆tN

≤
∫

(−∞;0]
|x|dµN,jtn−1

+ µN,jtn−1
(ej)∆t

NVmax.

Applying iteratively the previous argument for k ∈ {0, 1, . . . , n− 1}, we get

∫
e
|x|dµNt (x) ≤

∫
e
|x|dµj0(x) + Vmax∆tN

n−1∑
k=0

µNtk(ej)

≤
∫
e
|x|dµj0(x) + Vmax

T

2N

2N−1∑
k=0

µNtk(ej).

By Lemma 4.1 we have ∫
e
|x|dµNt (x) ≤

∫
e
|x|dµj0(x) + VmaxTC. (4.14)

For the measure µN,jx=xi ∈M+([0, T ]), projection of µN,j at xi, by (3.19) we estimate

‖µN,jx=xi‖
∗
BL = µN,jx=xi([0, T ]) ≤ µj0((−VmaxT, 0]) ≤ µj0(ej). (4.15)

If (ii) occurs, we have a similar proof. Indeed, thanks to the characterization (3.19), we can write

∫
[0,+∞)

|x|dµN,jt (x) =

∫
[0,+∞)

|Φej
t (x, tj−1)|dµN,jtn−1

(x) +

∫
[ς−1
j (t),t]

|Φej
t (0, s)|dµN,jx=xi(s).

The first integral on the right side can be estimated as in (4.14), while for the second one we have

∫
[σ−1
e (t),t]

|Φe
t (0, s)|dµjx=xi(s) ≤ Vmax

∫
[σ−1
e (t),t]

|t− s|dµjx=xi(s)

≤ Vmax∆tNµjx=xi(I
N
n−1),

which is finite and bounded by a constant which only depends on T , thanks to (4.15) and Theorem

3.4.
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To conclude the proof, we need to show an analogous statement for p = 2. However, we can observe

that

|Φej
t (x, tn−1)|2 = |x|2 + |

∫ t

tj−1

vNn−1(Φe
s(x, tn−1))|2 + 2|x|

∣∣∣∣∣
∫ t

tn−1

vNn−1(Φ
ej
s (x, tn−1))

∣∣∣∣∣
≤ |x|2 + (Vmax∆tN )2 + 2Vmax∆tN |x|,

and, for s ∈ [ς−1
j (t), t],

|Φej
t (0, s)|2 = |

∫ t

s
vNn−1(Φ

ej
u (0, s))du|2 ≤ (Vmax∆tN )2.

Then, we can repeat the argument used to estimate the first moment to obtain a similar uniform

bound for the second moment.

Inequality (4.10) shows that the map t 7→ µNt is not Lipschitz continuous in t if the source measure σ0

is not absolutely continuous with respect to the Lebesgue measure. To prove the convergence of µN ,

we need to assume that σ0 ∈ M+(S × [0, T )) is absolutely continuous with respect to the Lebesgue

measure L(dt) on [0, T ) for every source xi ∈ S, i.e.

σi0 � L(dt) ∀xi ∈ S. (4.16)

Theorem 4.1. Assume µ0 has finite p-momentum for p = 1, 2 and (4.16), then the sequence {µN}N∈N
defined in (4.8) converges (up to a subsequence) to a map µ : [0, T ] → M+(Γ) in C([0, T ];M+(Γ)),

i.e.

lim
N→+∞

sup
t∈[0,T ]

‖µNt − µt‖∗BL → 0. (4.17)

In addition, the measure µ :=
∫ T

0

∫
Γ δ(x,t)dµt(x)dt is a solution of (4.2) in sense of Definition 4.1.

Proof. Step (i): Convergence.

To show that {µN}N∈N is relatively compact in C([0, T ],M+(Γ)), it is sufficient to verify that the

sequence satisfies the conditions of the Ascoli-Arzelà criterion in the space of measures (see [2]):

equicontinuity, tightness and uniform integrability.

Equicontinuity is consequence of Proposition 4.1, taking into account that by (4.10), (4.16) {µN}N∈N is

uniformly Lipschitz continuous in t. The other two properties, tightness and uniform integrability, are

implied by the uniform estimates on the first and second moments of the measure µNt in Proposition

4.2. Hence we conclude that that, up to a subsequence, there exists µ ∈ C([0, T ],M+(Γ)) such that

(4.17) holds.
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Step (ii): µ satisfies the balance equation (4.3)

We now show that the measure µ ∈M+(Γ× [0, T ]) defined by

µ(dxdt) := µt(dx)⊗ dt =

∫ T

0

∫
Γ
δ(x,t)dµt(x)dt, (4.18)

where µt is as in(4.17), satisfies (4.3). Set vNn = v[µN
tNn

]. Summing over n the identities (4.6) and (4.7),

we get that the measure µN = µNt (dx)⊗ dt ∈M+(Γ× [0, T ]) satisfies

〈µNT − µ0, f〉 − 〈f, σ0〉 =

2N−1∑
n=0

∫
INn

〈µNt , (∂t + vNn ∂x) · f(·, t)〉dt, (4.19)

for every f ∈ C∞0 (Γ × [0, T ]). Passing to the limit for N → +∞ in (4.19), we first observe that by

(4.17) we have the convergence of the left hand side of (4.19) to the one of (4.3), i.e.

〈µNT − µ0, f〉 → 〈µT − µ0, f〉 for N →∞.

We show the convergence of the right hand side of (4.19) to the one of (4.3) by estimating

2N−1∑
n=0

∫
INn

(
〈µNt , (∂t + vNn ∂x) · f(·, t)〉dt−

∫ T

0
〈µt, (∂t + v[µt]∂x) · f(·, t)〉

)
dt

=

∫
INn

〈µNt − µt, (∂t + v[µt]∂x) · f(·, t)〉dt+
2N−1∑
n=0

∫
INn

〈µNt , (vNn − v[µt])∂x · f(·, t)〉dt.

(4.20)

For f ∈ C∞0 (Γ× [0, T ]) by (4.17)

2N−1∑
n=0

∫
INn

〈µt − µNt , (∂t + v[µt]∂x) · f(·, t)〉dt

≤ T sup
t∈[0,T ]

|〈µt − µNt , (∂t + v[µt]∂x) · f(·, t)〉| ≤ CT sup
t∈[0,T ]

‖µNt − µt‖∗BL.
(4.21)

Moreover, fixed n = 0, . . . , 2N − 1, for t ∈ INn and x ∈ Γ, we have

|vNn (x)− v[µt](x)| ≤ L‖µNtNn − µt‖
∗
BL ≤ L‖µNtNn − µ

N
t ‖∗BL + L‖µNt − µt‖∗BL. (4.22)

By (4.10), we estimate

‖µNtNn − µ
N
t ‖∗BL ≤ σ0([tNn , t]) + C|t− tNn |,
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and therefore

∫ tNn +∆tN

tNn

〈µNt , (vNn − v[µt])∂xf(·, t)〉dt ≤

≤
∫ tNn +∆tN

tNn

[
C1(σ0([tNn , t]) + |t− tNn |+ ‖µNt − µt‖∗BL)〈µNt , ∂xf(·, t)〉

]
dt

≤ C1

(
σ0(INn )∆tN +

1

2
(∆tN )2 + ∆tN sup

t∈INn
‖µNt − µt‖∗BL

)
sup
t∈INn
‖µNt ‖∗BL,

where C1 = max{L,CL}. By (4.9), we have the estimate

sup
t∈[0,T ]

‖µNt ‖∗BL < D

for a positive constant D independent of N . Hence

∫
INn

〈µNt , (vNn − v[µt])∂xf(·, t)〉dt ≤ DC1∆tN

(
σ0(INn ) +

1

2
∆tN + sup

t∈INn
‖µNt − µt‖∗BL

)
,

and therefore

|
2N−1∑
n=0

∫
INn

〈µNt , (∂t + (vNn − v[µt])∂x) · f(·, t)〉dt|

≤ DC1

(
∆tNσ0([0, T ]) +

T

2
∆tN + T sup

t∈[0,T ]
‖µNt − µt‖∗BL

)
.

(4.23)

Substituting (4.21) and (4.23) in (4.20) and passing to the limit for N → ∞, we finally get that the

measure µ satisfies the balance equation (4.3).

Step (iii): µ satisfies the vertex condition (4.4).

We have to show that the restrictions of µ to the vertices, defined by the identities

〈µjx=xi , f〉 =

∫ T

0
〈µjt , (∂t + v[µt]∂x)f〉dt− 〈µjT − µ

j
0, f〉, (4.24)

if ej ∈ Inc(xi), or

−〈µjx=xi , f〉 =

∫ T

0
〈µjt , (∂t + v[µt]∂x)f〉dt− 〈µjT − µ

j
0, f〉, (4.25)

if ej ∈ Out(xi), satisfy that the vertex condition (4.4). By (4.19), we have that

〈µNT − µN0 , f〉 = 〈σ0, f〉+

2N−1∑
n=0

∫ tn+1

tn

〈µNt , (∂t + v[µNtn ]∂x) · f(·, t)〉dt; (4.26)
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Let f ∈ C∞0 (Γ× [0, T ]) be such that there exists a unique vertex xi ∈ V which belongs to the support

of f(·, t), for every t ∈ [0, T ]. Then, taking into account that the support of f does not contain source

vertices, we have

〈µNT − µ0, f〉 =
2N−1∑
n=0

∫
INn

〈µNt , (∂t + vNn ∂x)f(·, t)〉dt;

Moreover, by (4.6) and (4.7), if supp(f) ⊆ ej × [0, T ] and ej ∈ Inc(xi), then

〈µN,jx=xi , f〉 =

2N−1∑
n=0

∫
INn

〈µN,jt , (∂t + vNn ∂x)f〉dt− 〈µN,jT − µj0, f〉; (4.27)

otherwise, if ej ∈ Out(xi), then

−〈µN,jx=xi , f〉 =
2N−1∑
n=0

∫
INn

〈µN,jt , (∂t + vNn ∂x)f〉dt− 〈µN,jT − µj0, f〉. (4.28)

Passing to the limit for N → +∞ in either (4.27) or (4.28), by (4.17) we get that there exists measures

µjx=xi ∈ M({xi} × [0, T ]) which satisfy (4.24) or (4.25), and such that ‖µN,jx=xi − µ
j
x=xi‖∗BL → 0 for

N → +∞. Since by construction µN,jx=xi =
∑

k∈Inc(xi) pke · µ
N,k
x=xi , we get that the same transmission

condition (4.4) is satisfied by the limit measure µ.

Remark 4.1.1. For traffic flow problems on road networks, the assumption (4.16) excludes the pres-

ence of atomic terms in the source measure σ0. Recall that (4.16) gives the uniform continuity with

respect to t of the maps µNt , t ∈ [0, T ], necessary to apply the Ascoli-Arzela criterion. We now explain

how to partially overcome this difficulty if the source measure is of the type

σ0 =
∑
xi∈S

(σxiac,0 + σxid,0) (4.29)

where σxiac,0 � L(dt) and σxid,0 is an atomic measure in M+(S × [0, T ]) with a finite number of atoms.

Consider first the case of a source measure σ0 = δ(xi,τ), for xi ∈ S and τ ∈ (0, T ). We can apply

Theorem 4.1 in [0, τ ] where σ0 ≡ 0 is absolutely continuous with respect to L(dt) to obtain the existence

of a solution µ to (4.2) in [0, τ ]. Then we consider (4.2) in [τ, T ] with initial condition µτ + δ(xi,τ) and

boundary measure (σ0)x(τ,T ]≡ 0. Again, since σ0 ≡ 0 is absolutely continuous with respect to L(dt) in

[τ, T ], we obtain a solution of the problem in [τ, T ]. Gluing together the solutions previously obtained

in [0, τ ] and [τ, T ], we obtain a piecewise continuous solution of (4.2) on [0, T ]. Clearly this procedure

can be repeated if the source measure σ0 contains a finite number of atoms. The resulting solution of

(4.2) is piecewise Lipschitz continuous on a finite number of disjoint intervals in [0, T ].
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4.2 Superposition principle on networks

The next result is a representation formula which characterizes the solution µ for the linear transport

equation on networks in terms of the distribution matrix P (t) and of the push-forward of the initial

and boundary data on the paths over Γ.

Definition 4.3. Given x ∈ Γ, a path γ starting from x is a sequence of edges (ej0 , ej1 , . . . , ejn , . . . )

where, for i ∈ N, eji ∩ eji+1 = xji ∈ V, eji → eji+1, ej0 is the sub-edge with endpoints x and xj0 ∈ V

and the length `(γ) of γ is infinite. We denote with A(x) the set of paths γ starting from x.

Since the network Γ is oriented and E finite, a path γ is necessarily of one of the following types

• γ is composed by a finite number of arcs and the last one ejn has infinite length.

• γ is composed by an infinite number of arcs and there exists n0, k0 ∈ N such that for n ≥ n0, γ

is given by a cycle (ejn0
, . . . , ejn0+k0

) with ejn0+k0
= ejn0

.

We denote by Φγ the flow map associated to the velocity field v restricted to γ, i.e. Φγ
s (x, s) = x and

there are t0 := s < t1 < · · · < tn < . . . such that for any µ ∈ N, we have Φγ([tm, tm+1]) ⊂ ejm and

d

dt
Φγ
t (x, s) = v(Φγ

t (x, s)), t ∈ [tm, tm+1).

We define the exit times from the arc ejk = πjk([0, Ljk ]) of γ as

θγ0 (x, s) = inf{t ≥ s : Φγ(x, s) = πj0(Lj0)},

θγk(x, s) = inf{t ≥ θγk−1(x, s) : Φγ(x, s) = πjk(Ljk)} k ∈ N, k > 0,

and we associate to each (x, s) ∈ Γ× [0, T ] and to each γ ∈ A(x) a coefficient pγ(x, s) ∈ [0, 1] defined

by

pγ(x, s) :=
∏
k

pjkjk+1
(θγk(x, s)). (4.30)

where pjkjk+1
are the entries of the distribution matrix P defined in (3.3). The coefficient pγ(x, s) can

be interpreted as the fraction of the total mass transported along the path γ. Due to the properties

of P , it follows that

0 ≤ pγ(x, s) ≤ 1,
∑

γ∈A(x)

pγ(x, s) = 1, ∀x ∈ Γ, s ∈ [0, T ].
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Theorem 4.2. If µ ∈M+(Γ× [0, T ]) is a solution of (3.4), then for any t ∈ [0, T ], µt is given by

µt =

∫
Γ

∑
γ∈A(x)

δ(Φγt (x,0),t)pγ(x, 0)dm0(x) +
∑
xi∈S

∫
[0,t]

∑
γ∈A(xi)

δ(Φγt (0,s),t)pγ(0, s)dσi0(s). (4.31)

We preliminarily recall a characterization of the traces of the solution µ of (3.27) on the fibers ej×{t}

and {x}×[0, t], where x = πj(Lj) is the terminal point of ej , in dependence of the initial and boundary

data inside ej (see [14]).

Proof of Theorem 4.2. At first, we consider a simple network with V given by two vertices {S, V },

where S is a source and V an internal vertex, and E given by an arc e1 connecting S to V and by

n− 1 unbounded arcs ek ∈ Out(V ).

Due to this choice, we can observe that the structure of paths is simplified. Indeed, a path γ ∈ A(x)

is either a subset of (e1, ek) if x ∈ e1 or a subset of ek if x ∈ ek.

The solution can be written as m =
∫ T

0 δ(x,t)dmt(x)dt, where µt =
∑n

k=1 µ
k
t . If k = 1, by (3.18) with

S = π1(0) and V = π1(L1), the solution restricted on e1 is given by

µ1
t =

∫
[0,max{0, (τ1)−1(t)}]

δΦ
e1
t (x, 0) dµ

1
0(x) +

∫
(max{0, (ς1)−1(t)}, t]

δΦ
e1
t (0, s) dσ0(s);

otherwise for k ∈ {2, . . . , n}, by (3.18) with V = πk(0), on ek it is given by

µkt =

∫
[0,max{0,(τk)−1(t)}]

δΦ
ek
t (y, 0)dµ

k
0(x) +

∫
(max{0,(ςk)−1(t)},t]

δΦ
ek
t (0, s)dµ

k
x=V (s).

Observe that the first term on the right hand-side of the previous equation is the pushforward of the

mass µk0 which is at time t = 0 on ek; the second term is the fraction of the mass which flows from e1

in ek. Using the transmission condition µkx=V = p1k · µ1
x=V and recalling that by (3.19) we have

µ1
x=V =

∫
(max{0, (τ1)−1(t)}, L1]

δτ1(x) dµ
1
0(x) +

∫
[0,max{0, (ς1)−1(t)}]

δς1(s) dσ0(s)
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we get for f ∈ C∞0 (Γ× [0, T ])

∫
(max{0,(ςk)−1(t)},t]

f(Φek
t (0, s), t)dµkx=V (s)

=

∫
(max{0,(τ1)−1(t)},L1]

f(Φek
t (0, τ1(x)), t)p1k(τ1(x))dµ1

0(x)

+

∫
[0,max{0,(ς1)−1(t)}]

f(Φek
t (0, ς1(s)), t)p1k(ς1(s))dσ0(s)

=

∫
(max{0,(τ1)−1(t)},L1]

f
(
Φek
t (Φe1

τ1(x)(x, 0), τ1(x)), t
)
p1k(τ1(x))dµ1

0(x)

+

∫
[0,max{0,(ς1)−1(t)}]

f(Φek
t (Φς1(s)(0, s), ς1(s)), t)p1k(ς1(s))dσ0(s)

=

∫
(max{0,(τ1)−1(t)},L1]

f(Φγ
t (x, 0), t)p1k(τ1(x))dµ1

0(x)

+

∫
[0,max{0,(ς1)−1(t)}]

f(Φγ
t (0, s), t)p1k(ς1(s))dσ0(s),

(4.32)

We observe that µ1
t can be split in n − 1 parts, in dependence of the distribution terms p1k. Indeed,

if we write µ1
t =

∑n
k=2(p1k ◦ θγ0 ) · µ1

t , then

µt = µ1
t +

n∑
k=2

µkt =
n∑
k=2

(((p1k ◦ θγ0 ) · µ1
t ) + µkt ).

Concerning the first term, observing that τ1(x) = θγ0 (x, 0) and ς1(s) = θ0(0, s), we compute for any

f ∈ C∞0 (Γ× [0, T ])

〈(p1k ◦ θγ0 )µ1
t , f〉 =

∫
[0,max{0,(τ1)−1(t)}]

f(Φe1
t (x, 0), t)p1k(θ

γ
0 (x, 0))dµ1

0(x)

+

∫
(max{0,(ς1)−1(t)},t]

f(Φe1
t (0, s), t)p1k(θ

γ
0 (0, s))dσ0(s)

=

∫
[0,max{0,(τ1)−1(t)}]

f(Φe1
t (x, 0), t)p1k(τ1(x))dµ1

0(x)

+

∫
(max{0,(ς1)−1(t)},t]

f(Φe1
t (0, s), t)p1k(ς1(s))dσ0(x).

(4.33)

By (4.33),(4.32) it follows that, from the parametrization used for each arc,

〈(p1k ◦ θγ0 ) · µ1
t , f〉+ 〈µkt , f〉 =

∫
e1

f(Φγ
t (x, 0), t)p1k(θ

γ
0 (x, 0))dµ1

0(x) +

∫
e2

f(Φγ
t (x, 0), t)dµk0(x)

+

∫
[0,t]

f(Φγ(0, s), t)p1k(θ
γ
0 (0, s))dσ0(s).
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If we sum the previous formula over ek ∈ Out(V ) we have

〈µt, f〉 =

∫
[0,t]

∑
γ∈A(x)

f(Φγ
t (0, s), t)pγ(0, s)dσ0(s) +

∫
Γ

∑
γ∈A(x)

f(Φγ
t (x, 0), t)pγ(x, 0)dµ0(x), (4.34)

Hence we have proved formula (4.34) for the special case of the simple network as above. If we consider

a network with a similar structure but with multiple sources, it is sufficient to sum the contribution

of each source xi ∈ S to get the thesis.

Finally, the case of a general network can be studied in a similar way by taking a test function localized

around a single vertex and repeating the argument used in the previous proof for the simple network

so obtained.

We extend to the nonlinear transport problem (4.2) the representation formula for the solution of

the linear problem (3.27) proved in Theorem 4.2. Given µ ∈ M+(Γ × [0, T ]), we denote by Φγ

the flow map associated to the velocity field v[µt] restricted to γ, i.e. Φγ
s (x, s) = x and there are

t0 := s < t1 < · · · < tn < . . . such that for any m = 0, 1, . . ., we have Φγ([tm, tm+1]) ⊂ ejm and

d

dt
Φγ
t (x, s) = v[µt](Φ

γ
t (x, s)), t ∈ [tm, tm+1).

Proposition 4.3. If µ ∈M+(Γ× [0, T ]) is given by (4.17), then for any t ∈ [0, T ], µt is given by

µt =

∫
Γ

∑
γ∈A(x)

δ(Φγt (x,0),t)pγ(x, 0)dm0(x) +
∑
xi∈S

∫
[0,t]

∑
γ∈A(xi)

δ(Φγt (0,s),t)pγ(0, s)dσi0(s). (4.35)

where the coefficients pγ are defined as in (4.30).

Proof. We observe that by (4.22), it follows that

sup
x∈ej
|vNj (x)− v[µt](x)| → 0 for N → +∞, j ∈ J

The previous estimate implies the uniform convergence of the respective flow maps on a given path γ

and the convergence of (4.31) to (4.35).

Proposition 4.4. Given initial data µ1
0, µ

2
0 ∈ M+(Γ × {0}), and boundary data σ1

0, σ
2
0 ∈ M+(S ×

[0, T ]) satisfying (4.16) and have bounded p−momentum, for p = 1, 2, and denoted by µ1 and µ2 the

corresponding solutions, then

sup
t∈[0,T ]

‖µ1
t − µ2

t ‖∗BL ≤ C(‖µ1
0 − µ2

0‖∗BL + ‖σ1
0 − σ2

0‖∗BL), (4.36)
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where C = C(T ) is a positive constant.

Proof. Fixed x ∈ Γ, we consider a path γ ∈ A(x) starting from x and the flow maps Φ1,γ and Φ2,γ

associated, respectively, to v[µ1
t ] and v[µ2

t ]. Let f ∈ BL(Γ× [0, T ]) with ‖f‖∗BL ≤ 1, then by formula

(4.35) we have

〈µ1
t − µ2

t , f〉

=

∫
Γ

 ∑
γ∈A(x)

f(Φ1,γ
t (x, 0), t)pγ(x, 0)dµ1

0(x)−
∑

γ∈A(x)

f(Φ2,γ
t (x, 0), t)pγ(x, 0)dµ2

0(x)

+

+
∑
xi∈S

∫
[0,T ]

∑
γ∈A(xi)

f(Φ1,γ
t (xi, s), t)pγ(xi)dσ

1
xi(s)−

∫
[0,T ]

∑
γ∈A(xi)

f(Φ2,γ
t (xi, s), t)pγ(xi)dσ

2
xi(s)

 .

(4.37)

To estimate the right hand side in (4.37), we rewrite the first term as

∫
Γ

 ∑
γ∈A(x)

f(Φ1,γ
t (x, 0), t)pγ(x, 0)dµ1

0(x)−
∫

Γ

∑
γ∈A(x)

f(Φ2,γ
t (x, 0), t)pγ(x, 0)dµ2

0(x)

 =

+

∫
Γ

∑
γ∈A(x)

f(Φ2,γ
t (x, 0), t)pγ(x, 0)d(µ1

0 − µ2
0)(x)+

∫
Γ

∑
γ∈A(x)

(
f(Φ1,γ

t (x, 0), t)− f(Φ2,γ
t (x, 0), t)

)
pγ(x, 0)dµ1

0(x).

Since ‖f‖∗BL ≤ 1 and
∑

γ∈A(x) pγ(x, 0) = 1 for every x ∈ Γ, we have the estimate

∫
Γ

∑
γ∈A(x)

f(Φ2,γ
t (x, 0), t)pγ(x, 0)d(µ1

0 − µ2
0)(x) ≤ ‖µ1

0 − µ2
0‖∗BL. (4.38)

Moreover

|f(Φ1,γ
t (x, 0), t)− f(Φ2,γ

t (x, 0), t)| ≤ d(Φ1,γ
t (x, 0),Φ2,γ

t (x, 0)) ≤ dγ((Φ1,γ
t (x, 0),Φ2,γ

t (x, 0))),

where dγ is the path distance d restricted to γ. It follows that

dγ(Φ1,γ
t (x, 0),Φ2,γ

t (x, 0)) ≤
∫ t

0

∣∣v[m1
s](Φ

1,γ
s (x, 0))− v[µ2

s](Φ
2,γ
s (x, 0))

∣∣ ds
≤
∫ t

0
L
(
‖µ1

s − µ2
s‖∗BL + dγ(Φ1,γ

s (x, 0),Φ2,γ
s (x, 0))

)
ds.
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By Gronwall’s inequality, we get

dγ(Φ1,γ
t (x, 0),Φ2,γ

t (x, 0)) ≤ L
(∫ t

0
‖µ1

s − µ2
s‖∗BLds

)
eLt,

and consequently

|f(Φ1,γ
t (x, 0), t)− f(Φ2,γ

t (x, 0), t)| ≤ L
(∫ t

0
‖µ1

s − µ2
s‖∗BLds

)
eLt.

The previous inequality implies that∫
Γ

∑
γ∈A(x)

(
f(Φ1,γ

t (x, 0), t)− f(Φ2,γ
t (x, 0), t)

)
pγ(x, 0)dµ1

0(x)

≤ L
(∫ t

0
‖µ1

s − µ2
s‖∗BLds

)
eLt‖µ1

0‖∗BL.
(4.39)

Proceeding in a similar way for the second term in (4.37), we obtain the inequality

∑
xi∈S

∫
[0,T ]

∑
γ∈A(xi)

f(Φ1,γ
t (xi, s), t)pγ(xi)dσ

1
xi(s)−

∫
[0,T ]

∑
γ∈A(xi)

f(Φ2,γ
t (xi, s), t)pγ(xi)dσ

2
xi(s)


≤ ‖σ1

0 − σ2
0‖∗BL + L

(∫ t

0
‖µ1

s − µ2
s‖∗BLds

)
eLt‖σ1

0‖∗BL.

(4.40)

By using (4.38), (4.39) and (4.40) in (4.37), we get

〈µ1
t − µ2

t , f〉 ≤ ‖µ1
0 − µ2

0‖∗BL + ‖σ1
0 − σ2

0‖∗BL + C

∫ t

0
‖µ1

s − µ2
s‖∗BLds,

where C = LeLT (‖µ1
0‖∗BL + ‖σ1

0‖∗BL). Taking the supremum with respect to f we get

‖µ1
t − µ2

t ‖∗BL ≤ (‖µ1
0 − µ2

0‖∗BL + ‖σ1
0 − σ2

0‖∗BL) + C

∫ t

0
‖µ1

s − µ2
s‖∗BLds

and applying again Gronwall’s inequality, we finally obtain

‖µ1
t − µ2

t ‖∗BL ≤ (‖µ1
0 − µ2

0‖∗BL + ‖σ1
0 − σ2

0‖∗BL)eCt.

As an immediate consequence of the continuous dependence result we have

Corollary 4.2.1. The solution of the nonlinear transport problem (4.2) is unique.

Up to this point, we have used a constructive approach to build the solution of the transport equation
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on networks. This approach has had the advantage to induce a natural transmission condition thanks

to a stochastic matrix which distributes the mass at the junction.

Observe that even if the velocity field is regular on every arc we lose this property at the vertices of

Γ. It is well known that the loss of regularity implies the lose of the uniqueness of solution.

The transmission condition we have adopted allows us to select a solution to our problem. In partic-

ular, we have selected the transport of mass which is instantaneous at the junctions, i.e. drivers in

our model are not allowed to stop in the junction and have to move to the next roads. This seems

a reasonable hypothesis since the behavior of drivers is influenced by the others or external controls,

such as traffic lights, rather than their will.

However, in many applications, for example to model supply chains or computer systems, other trans-

mission condition are reasonable which includes, for example, buffers or capacities. For this purpose,

it is important to understand how to translate them into the distribution matrix P and which is the

effect on superposition formula (4.35).

An interesting condition is suggested in [32, 33] where it is assumed that the particles stop at the

junction and there’s a positive probability that a driver is stuck at the junction until time t, for any

t ≥ 0. This assumption has not still been studied in case of networks and it is place in the research

topic of the admissible conditions at the junction.
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Chapter 5

Numerical aspects of multiscale

modeling on networks

In this chapter we focus on modeling and numerical aspects of the previously defined traffic flow

model; these are relevant for application and calibration based on real data. We will also investigate

the impact of parameters on traffic flow dynamic.

In the first section, we propose an example of nonlocal velocity field, suitable to describe interactions

among drivers; then, we discuss a macroscopic Godunov scheme introduced in [37] and some numerical

tests on simple junctions. Lastly, we discuss perspectives and open problems related to applications

and real traffic forecasting.

5.1 Nonlocal fields on networks

In this section we study an example of nonlocal velocity term v[µ] suitable to describe and predict

the evolution of traffic flow on a road network. Taking inspiration by similar models for collective

dynamics of crowds (see [24]), we consider a positive velocity fields given by

v[µ](x) := max{0, vdes(x)− vi[µ](x)}. (5.1)

The function vdes : Γ→ R+ is the desired velocity, or free flow speed, representing the speed of a car

over a free road, while vi :M+(Γ)× Γ→ R+ is the interaction among drivers due to the presence of

a car distribution µ ∈ M+(Γ) over the network Γ. Our aim is to identify an appropriate expression

for v[µ](x) consistent with the traffic flow model and satisfying hypothesis (H1)-(H3).
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Concerning the free flow speed vdes, which depends only on the state variable x, we assume that

it is positive, bounded and Lipschitz continuous on each arc ej of the network Γ.

Observing that for every x ∈ Γ, the interaction term is a map vI [·](x) :M+(Γ)→ R+, it seems natural

to define it as the functional

vI [µ](x) :=

∫
Γ
K(x, y)dµ(y),

or, more in general,

vI [µ](x) := φ

(∫
Γ
K(x, y)dµ(y)

)
,

where non-decreasing function φ ∈ Liploc(R+) such that φ(0) = 0.

Observe that if K is nonnegative and bounded by a positive constant C, then, for every x ∈ Γ,

0 ≤ vI [µ](x) ≤ Cµ(Γ),

and therefore (H1) is satisfied.

As in the Euclidean case (see [24, Section 5]) the Lipschitz continuity with respect to x is the most

delicate hypothesis and we need to focus on our application to traffic flow.

We assume the interactions among drivers depend on their position and relative distance, hence the

interaction kernels is the form

K(x, y) = k(dΓ(x, y))χD(x)(y), (5.2)

where k : R+ → R+ is a Lipschitz continuous non-increasing function representing the interaction

among cars on road networks in dependence of their distance and χD(x) is the characteristic function

of the set D(x). The crucial point is to properly define the set D(x) which represents the visual field

of the driver.

It is reasonable to assume that a driver has only the knowledge of the distribution of the cars on the

roads adjacent to his/her current position and, on the basis of this information, he/she gives a certain

priority to a possible route. Hence we define the visual field as

D(x) = {y ∈ Γ : x→ y, dΓ(x, y) ≤ R},

where R > 0 is the visual radius; moreover, for simplicity we assume

R ≤ min
e∈E

`(e).
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Observe that the interaction between drivers is different from the Follow the Leader model or the

Zhao-Zang model [55] where driver’s interactions are binary.

In this way, ∀ e ∈ E and ∀ x ∈ e, we have D(x) ⊂ e ∪ (
⋃
ej∈Out(V ) ej) where V = πe(`(e)). The

previous assumption allows us to study the interaction between drivers as the average of interactions

concentrated on (local) path. For any ek ∈ E , we prescribe weights αkj satisfying

0 ≤ αkj ≤ 1,
J∑
j=1

αkj = 1,

αkj = 0 if either ek ∩ ej = ∅ or ej → ek.

Then, we define the interaction term in x ∈ ek as

vI [µ](x) =
∑
ej∈E

αkj

∫
Γ
k(dΓ(x, y))χDkj(x)(y)dµ(y), (5.3)

where Dkj(x) = D(x) ∩ (ek ∪ ej).

We remark that the difference among the coefficient pkj(t) in (3.3) and αkj previously defined is that

the former represents the capacity of junction ek ∪ ej to allocate traffic distribution, while the latter

the priority of a given route in the choice of the driver depending on observed traffic distribution. In

this thesis, the weights αkj are constant and do not depend on time variable or mass distribution on

networks. Even if these hypotheses are reasonable for several applications, a further analysis would

be necessary.

To prove the Lipschitz continuity in the x variable, it is enough to prove this property for the term

∫
Γ
k(dΓ(x, y))χDkj(x)(y)dµ(y).

Without loss of generality, we assume that ek = [0, Lk] and ej = [Lk, Lk + Lj ]; hence

Dkj(x) = {y ∈ [x, Lk +R] ⊂ [0, Lk + Lj ] : x ≤ y, |x− y| ≤ R} =: A(x).

Taken x1, x2 ∈ [0, Lk] with x1 ≤ x2 and defined h = |x2−x1|, we can observe that A(x2) = A(x1) +h;

then,

χA(x2)(y) =

 1, if (y − h) ∈ A(x1)

0, otherwise

83



and therefore

χA(x2) = χA(x1)(y − h) = (χA(x1) ◦ τ−h)(y),

where τ−h is the translation on R with step equal to −h.

It follows

∫
k(|x1 − y|)χA(x1)(y)dµ(y)−

∫
k(|x2 − y|)χA(x2)(y)dµ(y) =∫

k(|x1 − y|)χA(x1)(y)dµ(y)−
∫
k(|x1 − (y − h)|)χA(x1)(y − h)dµ(y) =∫ [

k(|x1 − y|)χA(x1)(y)− (k(|x1 − ·|)χA(x1)(·)) ◦ τ−h(y)
]
dµ(y) ≤∫

k(|x1 − y|)χA(x1)(y)d(µ(y)− τ−h#µ(y)) ≤ K‖µ− τ−h#µ‖∗BL = Kh = K|x2 − x1|.

5.2 Numerical scheme and simulations

The proofs of Theorems 3.4 and 4.1 provide us a semi-discrete in time scheme which is the basis for

the numerical one:

Step 1: define a time grid with step ∆t;

Step 2: define the topologic order of network Γ and k = 0;

Step 3: while k∆t < T : µk+1 = Update(µk) for kinN.

In this section we describe the Update(·) function used for our simulations.

5.2.1 Macroscopic description

Given a network Γ, a time horizon T > 0 and a velocity field v, we are interested in simulating the

dynamic of distributions (µt)t∈[0,T ] resulting from transport equation, starting from µ0 ∈M+(Γ).1

Assume that µ0 can be approximated by an absolutely continuous distribution, i.e. there exists ε > 0

and a scalar and positive function ρ0 ∈ L1(Γ) ∩ L∞(Γ) such that

‖µ0 − L(ρ
(ε)
0 )‖∗BL < ε.

For absolutely continuous initial data, there are recent papers on hyperbolic equations with nonlocal

flux and related numerical methods in the case Γ = R (see [22, 37] and reference therein). We adapt

1To simplify the discussion, we assume w.l.o.g. boundary data σ0 ∈M+(S × [0, T ]) be null.
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these schemes as Update for µk on networks: parametrized every arc e ∈ E as [0, Le], we take a

space step ∆x > 0 such that for every arc e ∈ E there exists Ne ∈ N such that Le = ∆xNe and the

interaction radius R = NR∆x, with NR ∈ N, we denote λ = ∆t/∆x. We define the space grid on e

by xj+ 1
2

= (j + 1
2)∆x as the cell centers and xj = j∆x as the interfaces for j ∈ {0, . . . , Ne}.

The approximated solution on arc e is denoted by ρn,e
j+ 1

2

for (x, t) ∈ (xj , xj+1] × [tn, tn+1), for j =

0, . . . , N − 1.

In the previous section, we have seen that the nonlocal term is written as the average among one-

dimensional integral.

Fixed a Lipschitz continuous non-increasing function k : R+ → R+, we denote with γj =
∫ xj+ 3

2
x
j+ 1

2

k(r)dr, ∀ j ∈

{0, . . . , N − 1}, the (one-dimensional) nonlocal term is written as

NR∑
k=0

γjρ
n,e

j+k+ 3
2

; (5.4)

it follows the speed v is approximated as

V n,e
j+1 =

∑
e′:e→e′

αee′
NR∑
k=0

γjρ
n,ee′

j+k+ 3
2

, (5.5)

where ρee
′

denotes the density restricted to the local path (e, e′).

Then, the numerical flux function of the Godunov scheme introduced in [37] is determined as

F e(ρn,e
j+ 1

2

, ρn) = V n,e
j+1ρ

n,e

j+ 1
2

. (5.6)

Then, we can initialize the Godunov type scheme defining the initial data as

ρ0,e

j+ 1
2

=
1

∆x

∫ xj+1

xj

ρ0dx, ∀ j ∈ {0, . . . , Ne − 1}

and the finite volume scheme

ρn+1,e

j+ 1
2

= ρn,e
j+ 1

2

− λ(V n,e
j+1ρ

n,e

j+ 1
2

− V n,e
j ρn,e

j− 1
2

), j ∈ {1, . . . , Ne − 1}. (5.7)

Observe that for j = 0 we need to apply the boundary condition: if there is a source and boundary

data given by σ0 ∈M+([0, T ]), then

F e(ρn,e− 1
2

, ρn) := σ0([tn, tn+1)) = 0;
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otherwise the incoming flux it is determined towards the distribution matrix P

F e(ρn,e− 1
2

, ρn) =
∑

e′:e′→e
pne′e

(
V n,e
Ne′

ρn,e
Ne′−

1
2

)
.

5.2.2 Test 1: 2-to-1 junction.

With the Godunov-type scheme previously introduced, we can test our model in some specific scenarios.

In the first test, we want to observe the dynamic in a 2-to-1 junction, i.e. a network with a central

node, two incoming and one outgoing arc. For simplicity, we assume that each arc has the same length

equal to 1 and no boundary data. We fix vdes ≡ 2.5 and the interaction kernel is given by

k(r) =
2

R

(
1− r

R

)
,

where R is the interaction radius. In Fig. 5.1 we have plotted the dynamic along every arc (horizontal

axis) during the time interval [0, 1] (vertical axis). The density shows interesting features. The bright

regions indicate congestions, where the density is close to 1 while a darker color means low density

values. We can observe high concentration at time t = 0 due to the choice of the initial condition.

Another high density region is at the beginning of the third arc due to the transmission conditions

and the density coming from the previous arcs.

For t > 0, the density flows towards the third arc but, due to the density distribution, it is possible

to observe the back-propagation of jam on the first arc, where it meets two front-propagation, and on

the second one, which is fastly absorbed.

5.2.3 Test 2: “stop ‘n go” waves.

In Fig. 5.1 and 5.2.3 we can observe the so-called “stop ‘n go” waves, an interesting behavior which

occurs frequently in real situations. The empirical data and previous simulations show that traffic jam

is not necessarily restricted to a precise position but it propagates backward with a speed proportional

to vdes.

In our model, these waves are a consequence of the non-local field; to properly understand, we show

in Fig. 5.2.3 the dynamic determined by the nonlocal transport equation over a cycle, i.e. a single

arc with periodic boundary condition. We can observe that smaller is the visual radius R, slower

they dissipate. Indeed, for large R driver’s speed has small variations and the car density reach an

equilibrium value. Otherwise, for small R the driver “sees” high concentration region only when they
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Figure 5.1: Traffic density dynamic on incoming arcs (top) and the outgoing arc (bottom).
Parameters: ∆x = 5× 10−3,∆t = 4× 10−4, R = 25∆x.

are too close, leading to sudden variation in their speed.

5.2.4 Test 3: 1-to-2 junction.

In this last test, we focus on a 1− to−2 junction, a network with one incoming road and two outgoing

ones. In this test, we will assume the same hypothesis of the first test. Our goal is to understand and

observe the role of the matrix distribution and of the priority rules αs (see formula (5.3)). Indeed, for

2− to− 1 junctions (or n− to− 1, more in general) the transmission matrix is equivalent to a vector

(1 1)T and all weights α are equal to 1. In the 1− to− 2 scenario (or 1− to− n more generally) it is

necessary to fix a distribution rule represented by a vector (p12, p13)T and pririoty rules α12, α13. We

propose three different scenarios following the next table:
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Figure 5.2: Traffic density dynamic on first (top, continuous line) and second (bottom, dashed line)
incoming arcs at different times. From left to right: t = 0, 0.04, 0.1, 0.2.
Parameters: ∆x = 5× 10−3,∆t = 4× 10−4, R = 25∆x, time horizon T = 1 and arcs’ length L = 1.

Priority rules Test 3.1 Test 3.2 Test 3.3 α12

α13

  p12

p13

  0

1

  1

0


(5.8)

88



Figure 5.3: Backpropagation of congestion on a cycle. From left to right: R = 100∆x, 25∆x, 10∆x.
Parameters: ∆x = 2× 10−3,∆t = 10−4, vdes = 5, T = L = 1.

where  p12

p13

 =

 0.6χ[0, 1
2

] + 0.4χ( 1
2
,1]

0.4χ[0, 1
2

] + 0.6χ( 1
2
,1]


This test is useful to stress the role of parameters in the model like the distribution matrix P and

the priority rules α. These parameters are important since they are able to catch many phenomena

which appears in traffic flow systems. In all the simulation we observe the distribution matrix affects

the distribution of mass crossing the junction. These effects are clearly observed on the outgoing arc

e2 where at time t = 0.5 we can observe the change in the inflowing mass.

The most interesting consequences follow from the parameters αs; indeed, under our assumption, the

junction is a natural point of discontinuity of the velocity field. These affect the density as observed

in Test 3.1 and 3.3 where a congestion borns at the beginning of e3; after crossing the junction, the

interaction changes rapidly due to the immediate change of perceived mass.

Test 3.2 does not show the creation of congestion on e3 thanks to the choice of α. Indeed, the in-

teraction is continuous on arcs e1 and e3. On the other hand, crossing into e2, the interaction has a

negative jump which means an high speed, hence any congestion is created.

This test suggests that the choice of α′s as constant or, generally, functions in BV([0,T]) is a restrictive

hypothesis. A possible solution, which is not covered by the theory developed in this thesis, is the

dependence of α on the distribution µt. This choice would allow a richer description but the lips-

chitzianity is no more guaranteed, even if it would allow us to describe the possible strategies adopted

by drivers depending on congestions and traffic flows.
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Figure 5.4: Test 3.1 (top-left), 3.2 (top-right) and 3.3 (bottom-center), based on 5.2.4, with an incoming
arc and two outgoing ones.
Parameters: ∆x = 5× 10−3,∆t = 4× 10−4, R = 25∆x, time horizon T = 1 and arcs’ lenght L = 1.

5.3 Monte Carlo method on networks

Up to this point, we have based our analysis on pre-existing numerical methods for PDEs, assuming

that the initial condition is approximated by an absolutely continuous function. These are not always

the proper choice. In real applications, it would be based on the nature of available data. For example,

if the traffic flow on an highway system and data on flux are provided by sensors we would be oriented

towards numerical schemes for PDEs; otherwise, if data of the trajectories of a group of cars, such as

GPS data, are available, then it is reasonable to use ODE-oriented schemes.

In this section, we propose methods useful to handle with deterministic data on the trajectories of

vehicles. These data are necessary for calibration analysis even if their implementation is complex and
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numerically expensive for problems with many drivers and large networks.

Assume that the initial distribution is an atomic measures, i.e.

µ0 =
N∑
i=1

δxi ,

where xi ∈ Γ are the initial positions of N < +∞ vehicles. Then, the dynamic of vehicles is described

by the superposition formula (4.35). Hence the distribution at time t > 0 is given by

µt =
∑
i

∑
γ∈A(xi)

δ(Φγt (xi,0),t)pγ(xi, 0). (5.9)

The previous formula highlights how the main ingredient of a particles-based scheme for the transport

equation on networks is a scheme for the trajectories and the path weights pγ .

Denoted with xni the position of i−th driver at time tn and mn
i its mass, its speed is determined as

V n
i = V [µtn ](xni ) = max

0, vd(x
i
n)−

∑
j:xnj ∈D(xni )

αee′K(dΓ(xni , x
n
j ))mn

j

 ,

where e, e′ are, respectively, the arcs which xni , x
n
j belong to. The position at time n + 1 can be

determined by any kind of scheme for ODEs; for example, in case of first order Euler scheme we have:

x̃n+1
i = xni + ∆tV n

i ; (5.10)

if xni does not cross the junction, i.e. x̃n+1
i ≤ Le, we set xn+1

i = x̃n+1
i and mn+1

i = mn
i ; otherwise, we

need to split the particle on each possible arc by the transmission matrix P . Denoted with e the arc

which xni belongs to and with e1, . . . , ek the possible destination, we create new particles xi1 , . . . , xik

with mass mi1 , . . . ,mik such that

ml
ij

= ml
i, xlij = xli, l = 0, . . . , n,

mn+1
ij

= peejm
n
i , xn+1

ij
= x̃n+1

i − Le, j = 1, . . . , k
(5.11)

Even if this method is coherent with (4.35), it is not suitable for large networks due to the high

computational costs for large time, proportional to the increasing number of particles.

For example if our network is given by a binary tree with M + 1 layers, with M ∈ N, and the initial

distribution is given by N particles over the first arc then for big times we would have a distribution

with at most N ∗ 2M .

This obstacle could be solved by a “Monte Carlo” approach. We can observe that, chosen an arc
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e ∈ E , the respective row of the transmission matrix P is a probability distribution.

Let Ce : Ω → E be a discrete random variable with probability distribution given Pe = (pee′)e′∈E

which defines the crossing from arc e to e′ = Ce(ω); instead of splitting the mass of particles crossing

the junction via the transmission matrix rows, we deterministically transport the particles to the

roads determined by samples of Ce. A single simulation built with this scheme produce a distribution

µ = µ(ω) which is not solution of the transport equation on Γ with transmission matrix P but, if

µn(ω) is properly defined, then the solution of the original problem would be given by the empirical

average

µ̄n =

Nsamples∑
i=1

µn(ωi), (5.12)

where Nsamples > 0. In this way the computational cost would be proportional to N ∗Nsamples.

From a mathematical point of view, given the exact solution µ ∈ C([0, T ];P1(Γ)), we define the

samples µ(ω) ∈ C([0, T ];P1(Γ)) as solution of


∂tµ(ω) +∇ · (v[µ]µ(ω)) = 0,

µt=0(ω) = µ0

µex=V (ω) =
∑

e′∈Inc(V ) δCe′ (ω)eµ
e′
x=V (ω),

(5.13)

where δij denotes the Kronecker symbol.

The samples µ(ω) are solution of the transport equation with velocity field determined by the exact

solution µ and by the transmission matrix induced by the random variable (Ce)e∈E .

Hence the empirical average µ̄ = E[µ(ω)] satisfies the conservation equation

∂tµ̄t +∇ · (v[µt]µ̄t) = 0,

and the initial condition, since

µ̄t=0 =
∑
i

1

Nsamples
µt=0(ωi) =

∑
i

1

Nsamples
µ0 = µ0.

Moreover, for any vertex V and arc e ∈ Out(V ) we have

µ̄ex=V =

Nsamples∑
i

1

Nsamples
µex=V (ωi) =

∑
e′∈Inc(V )

Nsamples∑
i

1

Nsamples
δCe′ (ωi)eµ

e′
x=V (ωi).

Thanks to the law of Large Numbers, it follows that the matrix defined by Ce converges to P as

Nsamples grows. Thus, by the uniqueness of the solution, µ̄ converges to the exact solution.

We can use this formal argument to build a Monte Carlo type scheme even if we do not know the
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exact solution which is necessary to compute the velocity field. This obstacle can be easily solved

adopting an explicit discrete in time scheme and approximating the exact solution with the empirical

average. Since µ̄ converges to µ for Nsamples → +∞ and µ̄t=0 = µ0, we can define our Monte Carlo

scheme as follows:

Step 1: define a time grid with step ∆t and a number of samples Nsamples;

Step 2: define the topological order of network Γ and k=0;

Step 3: while k∆t < T :

 µk+1 = Update(µik, µ̄k), for1 ≤ i ≤ Nsamples,

µ̄k+1 = 1
Nsamples

∑
i µ

i
k+1, k ∈ N.
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Chapter 6

Optimal control problems on networks

In this last chapter, we focus on a class of optimal control problems for measure-valued nonlinear trans-

port equations describing traffic flow problems on networks. The objective is to minimise/maximise

macroscopic quantities, such as traffic volume or average speed, controlling few agents, for example

smart traffic lights and automated cars. The measure theoretic approach allows to study in a same

setting local and nonlocal drivers interactions and to consider the control variables as additional mea-

sures interacting with the drivers distribution.

As in [1, 56], we show that a small number of external agents can improve the global behavior of the

population and, indeed, the typical examples of control variables we consider are smart traffic lights

and automated cars. Since the external distribution is described by a measure evolving according to

an appropriate dynamics, other control variables, such as information about the behavior of the traffic

on the global network, can be considered.

We also discuss a gradient descent adjoint-based optimization method, obtained by deriving first-order

optimality conditions for the control problem, and we provide some numerical experiments in the case

of smart traffic lights for a 2-1 junction.

The chapter is organized as follows: in Section 6.1 we introduce the control problem from a theoretical

point of view: network structure, transport equation and cost functional; Section 6.2 is devoted to

two examples of control problem: traffic lights and self-driving cars as controls for vehicular traffic,

while Section 6.3 focuses on numerical analysis for these problems: description and properties of the

chosen scheme and numerical tests on some case studies.
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6.1 Problem Formulation and theoretical setting

In this section we recall the main components of the traffic flow model: the dynamics of drivers

motion (velocity, interaction with other drivers, influence of the structural components) and the control

problem which has to be solved in order optimize the traffic flow on the network.

6.1.1 Driver motion

As described in the previous chapters, we use a nonlinear transport equation to describe drivers’

motion. Mathematically, it will act as a constraint for drivers’ distribution µ. The components of

the system are the differential equations governing the evolution of the traffic inside the arcs and the

transition conditions at the vertices regulating the distribution of the traffic flow at the junctions. It

is important to remark that the velocity term is nonlocal since drivers usually have a local knowledge

of the traffic distribution in a visual area in front of them; moreover they may have a global knowledge

of the traffic distribution on the entire network thanks to appropriate navigation equipments.

We prescribe the initial mass distribution over Γ

µ0 =
∑
j∈J

µj0 ∈M
+(Γ),

where µj0 is restriction of µ0 to ej , and the incoming traffic measure at the source nodes

σ0 =
∑
Vi∈S

σi0, σi0 ∈M+([0, T ]),

where σi0 is the restriction of σ0 to Vi, representing the flow of cars entering in the road network at

the vertex Vi. Then, the constraint on µ is given by the following:



∂tµ+ ∂x(vj [µt,mt]µ) = 0 t ∈ (0, T ]

µt=0 = µ0

µjV=πj(0) =


∑

k:ek∈(Vi)

pkj(t)µ
k
V=πk(1) if V ∈ I

σV0 if V ∈ S
j = 1, . . . , |E|.

(6.1)

Observe that, for each arc ej , if the initial vertex V = πj(0) is internal, then the boundary condition

at V is given by a measure representing the mass flowing in ej from the arcs incident to the vertex

according to the distribution matrix P (t); if the initial vertex V = πj(0) is incoming traffic vertex, the
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inflow measure is the prescribed datum σV0 . The outflow measure, i.e. the part of the mass leaving the

arc from the final vertex V = πj(1), is not given a priori but depends on the evolution of the measure

µ inside the arc.

The velocity v depends on the solution µt itself, as well as on another distribution mt ∈ M+(Γ),

representing external forces acting on the drivers such as traffic lights and autonomous vehicles (more

details will be given in the next section where we consider specific models). Analogously to the previous

chapters, we assume:

(H1) v is non-negative and bounded by Vmax > 0;

(H2) v is Lipschitz with respect to the state variable, i.e. there exists L > 0 such that ∀x, y ∈ ej ,

mi, µi ∈M+(Γ), for i = 1, 2

|vj [µ1,m1](x)− vj [µ2,m2](y)| ≤ L(|x− y|+ ‖m1 −m2‖∗BL + ‖µ1 − µ2‖∗BL);

Under these hypotheses, the solution clearly exists for every given m ∈M+([0, T ]×Γ). In this chapter,

we assume a velocity field of the form

v[µ,m](x) := max{vf (x)− vI [µ](x)− vE [m], 0} (6.2)

where vf : Γ → R+ is the free-flow speed, vI [µ](x) is the interaction term described in the previous

chapter, while vE [m] is an interaction term with an external distribution m.

6.1.2 Mobility optimization

We introduce a class of optimization problems on networks involving the distribution µ, given by the

solution of (6.1), the external distribution m and a control variable u which has to be designed in

order to minimize/maximize a given objective functional, or loss function.

We assume that the set of the admissible controls is given by a Banach space (U , ‖ · ‖U ). We also

denote byM+
M (ΓT ) the set of the measures µ ∈M+(ΓT ) such that ‖µ‖∗BL ≤M . Then the state space

of the control problem is given by the space (X , ‖ · ‖X ) where

X =M+
M (ΓT )×M+

M (ΓT )× U ,

‖ · ‖X = ‖ · ‖∗BL + ‖ · ‖∗BL + ‖ · ‖U .
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For a given initial distribution µ0 ∈M+(Γ) and an incoming traffic distribution σ0 ∈M+([0, T ]), we

consider the optimization problem
min{J(µ,m, u) : (µ,m, u) ∈ X},

subject to the state equation (6.1).
(6.3)

It is convenient to rewrite the previous minimization problem in the following equivalent form

min{J(µ,m, u) + 1A(µ,m, u) : (m,µ, u) ∈ X}, (6.4)

where A := {(µ,m, u) ∈ X ; m solves (6.1)} and 1A is the indicator function of the set A defined as

1A(x) :=

 0, x ∈ A,

+∞ otherwise.

A straightforward application of the direct method in Calculus of Variations gives the following exis-

tence result for the minima of (6.4).

Theorem 6.1. Assume that

• J : X → R ∪ {+∞} is bounded from below;

• J is lower semicontinuous in X , i.e. for any (µn,mn, un) ⊂ X such that (mn, µn, un) →

(m,µ, u), it holds J(m,µ, u) ≤ lim infn→∞ J(mn, µn, un);

• the set A is closed under the topology induced by ‖ · ‖X .

Then the minimization problem (6.4) has a solution.

Even if the first two hypotheses are tautological for the existence of minima, the closure of A, w.r.t.

‖ · ‖X , is extremely important in our framework and it will be stressed in the next section.

A typical example of functional to be minimized is of the form

J(µ,m, u) := −
∫ T

0

∫
Γ
v[µt,mt]dµt(y)dt+

∫
Γ×[0,T ]

f(x, t, u)dµt(x)dt, (6.5)

where the first term in (6.5) represents the mean velocity on the network, while the second one is a

feedback term which depends on the choice of f . For example, if f(t, x, u) = χB(x), where B ⊂ Γ is

closed, the functional minimizes the amount of mass µt in a closed region B during the time interval

[0, T ]. Another interesting class of control problems are minimum time control ones introduced, in a

measure theoretic setting, in [20, 21].
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6.2 Smart traffic controls

This section is devoted to applications of the abstract setting previously described with the discussion

of two significative problems in traffic flow optimization which have an increasing interest in the last

years [45, 39, 55, 56] such as the optimization of traffic lights setting in order to improve the circulation

on the road networks or the impact of autonomous car over the global traffic flow.

For both these models we assume that the control variable u influences the traffic flow distribution µ

only by means of an external distribution m = m[u]. Hence the functional to be minimized in (6.4)

is of the form J(µ, u) with µ subject to (6.1) and m determined by another dynamical system for a

given initial configuration m0.

6.2.1 Smart traffic lights

An important element of a road network model is given by traffic lights: they influence the behavior

of the drivers near the junction and can be used as an external control to regulate the traffic flow.

To model a traffic light, we follow the approach in [40]. Relying on the measure-theoretic setting, we

describe a traffic light as a measure θ ∈ M+(ΓT ), which is a Dirac measure in space and a density

with bounded variation in time.

We assume that there is at most one traffic light for each road and that it is closed to the terminal

vertex V ∈ V of the arc ej . Since the position is fixed a priori while the activity changes in time, a

traffic light can be represented, with an abuse of notation, as the measure

∑
j∈(V )

∫ T

0
uj(t)δV (y)dt, (6.6)

where uj ∈ BV ([0, T ], {0, 1}) is a function representing the state of the traffic light: uj(t) = 1 if the

light is red, uj(t) = 0 if green (for simplicity, we do not consider a yellow phase since the corresponding

driver reaction is strongly influenced by drivers’ culture).

Concerning the light phases, in order to exclude unrealistic scattering phenomena, we fix two positive

times TR, TG > 0 and we assume that the red phase cannot last more then TR and, analogously, the

green phase must last at least TG to guarantee a proper traffic flow. Hence denoted by τ1, τ2 ∈ [0, T ]

two consecutive switching times of the traffic light on the arc ej (corresponding to jump discontinuities
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of uj), we assume that

if uj(τ
+
1 ) = 1, then |τ1 − τ2| < TR,

if uj(τ
+
1 ) = 0, then |τ1 − τ2| > TG.

(6.7)

Moreover we assume that a traffic light can be green only for one of the incoming roads in a junction,

i.e. ∑
j∈(V ) uj + 1 = N

TR ≥ (N − 1)TG
(6.8)

where N = #(Inc(V )).

Denote by F ⊂ E the set of the arcs containing a traffic light. Recalling (6.6), we consider the

measure dm(x, t) =
∑|E|

j=1 uj(t)dm
j(x, t) on ΓT where dmj(x, t) ≡ 0 if ej 6∈ U and dmj(x, t) = δV (x)dt

if ej ∈ U ∩ Inc(Vi). The term uj , the phase duration of the traffic light on the road ej , can be

interpreted as the control variable. The set of admissible controls is given by

U = {u = {uj}j=1,...,|U| : uj ∈ BV ([0, T ], {0, 1}) and satisfies (6.7), (6.8) } (6.9)

To describe the interaction of the drivers with the traffic lights, we define an external velocity term

vE [m] in (6.2). Fixed an arc ej ∈ U ∩ Inc(V ), then the restriction of vE [µ] to the arc ej is given by

vjE [m](x) :=

∫
Γ
H(x, y)dmt(y) = uj(t)H(x, V )δej (x).

We assume that the interaction kernel H is given by

H(x, y) =


vf max

{(
1− dΓ(x,y)

R

)
, 0
}
, if x→ y, dΓ(x, y) ≤ R,

0 otherwise,

(6.10)

where vf is the desired velocity and R ≤ L0 is the visibility radius and L0 the minimal arc length. The

driver interaction with the traffic light, tuned by the signal uj , occurs only if the driver is sufficiently

close to the junction and becomes stronger getting closer.

We need to show that the chosen set of control (6.9) satisfies the hypotheses for the existence of

minima for X =M+
M (ΓT )×M+

M (ΓT )× U .

Lemma 6.1. The set of positive measures with bounded mass M+
M (ΓT ) is compact with respect to

‖ · ‖∗BL.

Proof. Assume without loss of generality that M = 1. It is well known that for m ∈M+
M (ΓT ), |µ|TV =
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m(ΓT ) ≤ 1.

By Banach-Alaoglu Theorem it follows the compactness with respect to the weak*-convergence, which

implies the same property with respect to the ‖ · ‖∗BL convergence.

Lemma 6.2. The set U defined in (6.9) is compact in (BV |E|([0, T ]), ‖ · ‖L1).

Proof. Since (6.8) is just a condition which defines the dependence among the components of u ∈ U ,

we prove the compactness of

U = {u ∈ BV ([0, T ], {0, 1}) andu satisfies (6.7),}.

Let (un)n∈ ⊂ U . Denote by τni the switching times of un. By (6.7), for every two consecutive switching

times τnk , τ
n
k+1 ∈ [0, T ], if un(τnk ) = 1, then

|τnk − τnk+1| < TR,

otherwise,

|τnk − τnk+1| > TG.

Since un(t) ∈ {0, 1}, we can assume that there exists a subsequence, still denoted by un, such that

either un(0) = 1 or un(0) = 0 for every n ∈. Assume now that, w.l.o.g., un(0) = 1 for every n ∈ and

denote by In the set of switching times of un. It follows that

T

TR
≤ #(In) ≤ T

TG
.

As before, we can assume, w.l.o.g., that that there exists N ∈ such that #(In) = N for all n ∈. Since

In ⊂ [0, T ], applying the Cantor diagonal procedure, it follows that there exists a subsequence (Ink)k∈

such that τnki → τi for i = 1, . . . , N . In this way, we define a candidate u as limit for the subsequence

unk from the switching times set {τ1, . . . , τN} and u(0) = 1. To conclude, we only need to show that

unk → u in L1. By construction,

‖unk − u‖L1 =

N∑
i=1

|τnki − τi| ≤ N sup
i=1,...,N

|τnki − τi| →k→∞ 0

Lemma 6.3. Assume X =M+
M (ΓT )×M+

M (ΓT )×U , where U satisfies the hypothesis of Lemma 6.2.

The set A is closed under the topology induced by ‖ · ‖X .
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Proof. In this case, the distirbution µ has no role since it depends exclusively on u. Hence, we reduce

on X =M+(ΓT )× U , where U defined by (6.9).

Let (mn, un)n∈ ⊂ A such that (mn, un)→ (m,u) with respect the norm ‖ · ‖∗BL + ‖ · ‖L1 .

The closure on the first component derives from the proof of Lemma 4.1 in [8] and the results in

Chapter 4.

Instead, the closure on the second component derives from the compactness of U . Indeed, there exists

a subsequence (unk)k∈ which converges to ũ ∈ U , but it also converges to u by assumption. Then, it

follows that u = ũ ∈ U .

6.2.2 Regulating traffic flow by means of autonomous cars

In this second application, we aim to optimize the traffic flow by exploiting another distribution of cars,

possibly given by autonomous vehicles, of which we can control the velocity. Indeed some experiments

(see [56]) have shown that it is possible to avoid stop-and-go phenomena regulating the interactions

among drivers by means of external agents (autonomous vehicles, traffic light, signaling panels,etc.).

The approach in this section is inspired to [8] where the authors present an optimization problem for

a transport equation in the euclidean space with the control represented by a second distribution µ

evolving according to another transport equation.

The dynamics of the autonomous cars is similar to the ones of rest of the driver, with the difference that

it can be controlled in order to minimize the objective functional. Hence for a given initial distribution

m0 (typically m0 =
∑

Vi∈Γa
δVi for some finite set Γa ⊂ Γ), the measure µ ∈ ΓT representing the

distribution of the fleet of the autonomous car satisfies the nonlinear transport equation



∂tm
j + ∂x(u · vj [µt,mt]m

j) = 0 x ∈ ej , t ∈ (0, T ], j = 1, . . . , |E|

mj
t=0 = mj

0 x ∈ ej , j = 1, . . . , |E|

mj
V=πj(0) =


∑

k:ek∈(V )

qkj(t)m
k
V=πk(1) if V ∈ I

0 if V ∈ S,
j = 1, . . . , |E|

(6.11)

We assume that the velocity fields v[µt,mt] in (6.11) is the same of problem (6.1) and it is defined as

in (6.2). Moreover we assume that the drivers are not able to discern between not-autonomous and

autonomous cars and therefore vI = vE . Hence we can rewrite the velocity field (6.2) as

v[η] = max{0, vf − vI [η]},
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where, in our setting, η = m+ µ.

On the other side, since we want to regulate the velocity of the distribution µ we add a control term

u and we assume that the control set is given by

U = LipL(ΓT , [0, 1]), (6.12)

i.e. the set of Lipschitz functions from Γ× [0, T ] to [0, 1] with Lipschitz constant L > 0. In this way,

if v[µt,mt] satisfies the assumptions (H1-H2), then also u · v[µt,mt] satisfies the same assumptions

and therefore system (6.11), given (µt)t∈[0,T ], admits a unique measure-valued solution. Moreover,

since we require that u(x, t) ∈ [0, 1], then the autonomous cars can only slow the traffic distribution.

Observe that system (6.11) also differs from (6.1) for the distribution matrix Q = (qkj(t))
|E|
k,j=1 at the

junctions. Actually it is reasonable to assume that Q does not coincide with the distribution matrix

P since the autonomous cars can behave differently from the rest of the drivers at the junctions. We

assume that the matrix Q satisfies the assumptions of P. Hence, the existence of solutions (µ,m) of

the coupled transport system follows by a standard fixed point argument.

Existence of a solution (µ,m) to the coupled transport system (6.1)-(6.11) can be proved by a fixed

point argument.

Given m ∈ C([0, T ],M+(Γ)), consider the map

Φ1 : C([0, T ],M+(Γ))→ C([0, T ],M+(Γ))

which associates with m the unique solution of (6.11). Similarly, given µ ∈ C([0, T ],M+(Γ)), define

a map

Φ2 : C([0, T ],M+(Γ))→ C([0, T ],M+(Γ))

which associates with µ the solution Φ2(µ) of (6.1). Hence, defined a map Φ := (Φ1,Φ2), the solution

of the coupled system (6.1)-(6.11) is given by a fixed point of Φ. By an argument similar to the

one already used in [23, 24] for analogous results, it is possible to prove that Φ is a contraction and

therefore existence of a unique solution to the system (6.1)-(6.11) is obtained.

We conclude this section with the following Lemma:

Lemma 6.4. Assume X = M+
M (ΓT ) ×M+

M (ΓT ) × U , where U is defined by (6.12). The set A is

closed under the topology induced by ‖ · ‖X .

This result can be proven as in the proof of Lemma 6.3, using the Ascoli-Arzelà Theorem instead of

Lemma 6.2.
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Proof. It follows adopting the argument in the previous proof, for X = M+
M (ΓT ) ×M+

M (ΓT ) × U

endowed with the norm ‖ · ‖∗BL + ‖ · ‖∗BL + ‖ · ‖∞.

6.3 Numerical solution via optimality conditions

In this section we formally derive first-order optimality conditions for the optimization problem (6.3)

in the case of a traffic light for a 2-1 junction. Then we build a gradient descent adjoint-based

method to approximate the solution of the discretized optimality system and present some numerical

experiments.

6.3.1 Optimality conditions

We consider a network Γ composed of a junction with two roads converging in a single one, namely

we have E = {e1, e2, e3}, V = {V0, V1, V2, V3} and = {V0}, S = {V1, V2}, W = {V3}, Inc(V0) = {e1, e2}

and Out(V0) = {e3}, as shown in Figure 6.1.

Figure 6.1: Example of 2-1 junction

To simplify the presentation, we neglect the drivers’ interaction term, since the computation in the

general case is similar but more involved. We place a traffic light at V0 in order to maximize the

average speed on the network. In this setting a single control u ∈ BV ([0, T ], {0, 1}) is enough to

describe the system, indeed we define edge-wise the velocity v by

v1[u](x, t) = max{v1
f (x)− u(t)H(x, V0), 0} ,

v2[u](x, t) = max{v2
f (x)− (1− u(t))H(x, V0), 0} ,

v3(x, t) = v3
f (x) ,

where for j = 1, 2, 3, vjf is the free flow speed on ej and H is defined as in (6.10). It is important to

stress that, in general, our modeling choice about traffic lights, combined with our choice for nonlocal
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speed, does not guarantees that cars stop at the junction since it depends on the proper choice of

parameters. Indeed, in our case, we need to require that, for u = 1, vf (V0) −H(V0, V0) ≤ 0 which is

satisfied since H(V0, V0) = vf by assumption.

Since the switching of the traffic light is intrinsically a discrete process, we translate the control problem

into a finite dimensional setting. More precisely, we consider a vector s = (s1, ..., sS) ∈ RS , whose

components represent the durations of S − 1 successive switches, where the integer number S > 1 is

fixed a priori. Then the control u(t) is easily reconstructed from a given value u(0) = u0 ∈ {0, 1} at

initial time and from the switching times τi =
∑i

k=1 si for i = 1, ..., S. Defining recursively ui = 1−ui−1

for i = 1, ..., S and τ0 = 0 we set (see Figure 6.2)

u(t) = us(t) =

S−1∑
i=0

uiχ[τi,τi+1)(t)

Figure 6.2: Reconstruction of control u from switching durations s = (s1, ..., sS)

Following this approach we avoid several difficulties. Indeed, BV ([0, T ], {0, 1}) is not even a vector

space and taking admissible variations of a given control or imposing constraints on the switching

durations is in practice not easy at all. One could work instead with the convex subset BV ([0, T ]; [0, 1])

of L2(0, T ) and look for bang-bang controls. This can prevent unrealistic mixing of mass at the

junction, due to the additional yellow phase for the traffic light (intermediate values in (0, 1)), but

chattering phenomena can occur. In our setting we just work in RS , chattering is not allowed by

construction, and we can easily apply variations/constraints to the switching durations being sure

that the control always remains in BV ([0, T ], {0, 1}).

Assuming that the measure µ has a density, i.e. dµ = µ(x, t)dx dt for some function µ : Γ× [0, T ]→ R,

we want to minimize the cost functional

J(µ, us) = −
∫ T

0

∫
Γ
v[us](x, t)µ(x, t) dxdt , (6.13)
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subject to  ∂tµ
j + ∂x(vjµj) = 0 in ej × (0, T ), j = 1, 2, 3

µj(·, 0) = µj0 in ej
(6.14)

We also assume null incoming traffic in the network during the whole evolution, imposing

µ1
x=V1

= 0, µ2
x=V2

= 0, t ∈ [0, T ] , (6.15)

and the mass conservation condition at the internal vertex V0

µ3
x=V0

= µ1
x=V0

+ µ2
x=V0

. (6.16)

We formally apply the method of Lagrange multipliers in order to derive first-order optimality condi-

tions. We define the Lagrangian as

L(µ, us, λ) := J(µ, us) +

∫ T

0

∫
Γ
(−∂tλ− v∂xλ)µdxdt

+

∫
Γ
(λ(x, T )µ(x, T )− λ(x, 0)µ0(x)) dx

+
∑

j=1,2,3

∫ T

0
(λj(V E

j , t)v
j(V E

j , t)µ
j(V E

j , t)− λj(V I
j , t)v

j(V I
j , t)µ

j(V I
j , t)) dt ,

where V I
j and V E

j denote the initial and, respectively, the final vertex of the arc ej . Observe that the

terms involving the Lagrange multiplier λ derive from the weak formulation of the transport equation

on Γ.

We evaluate the derivates of the Lagrangian with respect to µ and s (recall that u = us). We first

consider an admissible increment w for µ which preserves the boundary and transition conditions, i.e.

w1(V1, t) = 0 , w2(V2, t) = 0 , w3(V0, t) = w1(V0, t) + w2(V0, t) t ∈ [0, T ] , (6.17)

and we compute

〈∂µL,w〉 =

∫ T

0

∫
Γ
(−∂tλ− v∂xλ− v)w dxdt+

∫
Γ
λ(x, T )w(x, T ) dx

+

∫ T

0

∑
j=1,2,3

(λj(V E
j , t)v

j(V E
j , t)w

j(V E
j , t)− λj(V I

j , t)v
j(V I

j , t)w
j(V I

j , t)) dt .
(6.18)

Imposing 〈∂µL,w〉 = 0 for any admissible w, we get the following time-backward advection equation

with a source term

−∂tλj − vj∂xλj = vj in ej × (0, T ), j = 1, 2, 3, (6.19)
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and the final condition

λj(x, T ) = 0 in ej , j = 1, 2, 3.

Note that for (6.19), V3 is an inflow vertex where a boundary condition has to be prescribed, while V1

and V2 are outflow ones. Writing explicitly the remaining boundary terms in (6.18), we have

∫ T

0
(λ1v1w1(V0, t)− λ1v1w1(V1, t) + λ2v2w2(V0, t)

−λ2v2w2(V2, t) + λ3v3w3(V3, t)− λ3v3w3(V0, t)) dt = 0 .

By taking w compactly supported in a neighborhood of V3, we get the boundary condition

λ3(V3, t) = 0 in [0, T ] ,

whereas for w compactly supported in a neighborhood of V0, recalling (6.17), we get

∫ T

0
{(λ1v1 − λ3v3)w1(V0, t) + (λ2v2 − λ3v3)w2(V0, t)} dt = 0 . (6.20)

The mass conservation condition (6.16) can be rewritten as

v3(V0, t)µ
3(V0, t) = v1(V0, t)µ

1(V0, t) + v2(V0, t)µ
2(V0, t) t ∈ [0, T ] ,

since the control law u models a traffic light which bring to halt the speed of the drivers at V0 in e1

and, alternatively, in e2, in such a way that there is mass flow either from e1 to e3 or from e2 to e3. If

I1 ⊆ [0, T ] is an interval where u(t) = 1 (red light for e1), then in this interval the speed v1(V0, t) is null

and therefore µ1(V0, t) = 0 (recall that mass concentration at the vertices is not admitted). Similarly

if u(t) = 0 for t ∈ I2 (red light for e2), we get µ2(V0, t) = 0 for t ∈ I2. An admissible increment, in

order to preserve the transition condition for m, has to satisfy the same property and by (6.20) we get

λ3(V0, t)v
3(V0, t) = λ1(V0, t)v

1(V0, t) + λ2(V0, t)v
2(V0, t),

or, more explicitly,

λ1(V0, t)v
1(V0, t) = λ3(V0, t)v

3(V0, t) if t ∈ {v1(V0, t) 6= 0} ,

λ2(V0, t)v
2(V0, t) = λ3(V0, t)v

3(V0, t) if t ∈ {v2(V0, t) 6= 0} .
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We now compute the derivative of L with respect to us for an increment ϕ ∈ RS

〈∂sL,ϕ〉 = −
∫ T

0

∫
Γ
∂sv · ϕ(∂xλ+ 1)µdxdt+

∫ T

0
{
∑

j=1,2,3

λj(V E
j , t)∂sv

j(V E
j , t) · ϕµj(V E

j , t)

− λj(V I
j , t)∂sv

j(V I
j , t) · ϕµj(V I

j , t)} dt .

Recalling (6.15) and since v3 is independent of us, we get

〈∂sL,ϕ〉 =

∫ T

0

{
−
∫
e1

∂sv
1 · ϕ(∂xλ

1 + 1)µ1 dx−
∫
e2

∂sv
2 · ϕ(∂xλ

2 + 1)µ2 dx

+λ1(V0, t)∂sv
1(V0, t) · ϕµ1(V0, t) + λ2(V0, t)∂sv

2(V0, t) · ϕµ2(V0, t)
}
dt,

where

∂sv
1(x, t) · ϕ = −H(x, V0)∇sus(t) · ϕ , ∂sv

2(x, t) · ϕ = H(x, V0)∇sus(t) · ϕ

and

∇sus(t) · ϕ =
S∑
i=1

(−1)ui−1δτi(t)ϕi .

We conclude

〈∂sL,ϕ〉 =

S∑
i=1

(−1)ui−1

{∫
e1

H(x, V0)(∂xλ
1(x, τi) + 1)µ1(x, τi) dx− λ1(V0, τi)H(V0, V0)µ1(V0, τi)

−
∫
e2

H(x, V0)(∂xλ
2(x, τi) + 1)µ2(x, τi) dx+ λ2(V0, τi)H(V0, V0)µ2(V0, τi)

}
ϕi .

Summarizing, the dual problem for (6.14)-(6.15)-(6.16) is

 −∂tλj − vj∂xλj = vj in ej × (0, T ), j = 1, 2, 3,

λj(·, T ) = 0 in ej ,

with the boundary condition

λ3(V3, t) = 0, in [0, T ],

and the transmission condition

λj(V0, t)v
j(V0, t) = λ3(V0, t)v

3(V0, t) if t ∈ {vj 6= 0}, j = 1, 2 .

Finally, if we impose box constraints TG < si < TR for i = 1, ..., S, the optimal solution (m,us, λ)

should satisfy, for all s̄ ∈ RS such that TG < s̄i < TR, the variational inequality

〈∂sL(µ, us, λ), s̄− s〉 ≥ 0. (6.21)
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Remark 6.1.1. If the velocity field contains the drivers interaction term, then the dual problem for

(6.14)-(6.15)-(6.16) is given by

 −∂tλj − vj∂xλj − ν ∗ (µ∂xλ) = vj + ν ∗ µ in ej × (0, T ), j = 1, 2, 3

λj(·, T ) = 0 in ej

with the same boundary and transition conditions, where (ν ∗ φ)(x) =
∫

ΓK(y, x)φ(y)dy. The addi-

tional terms in the equation represent a time-backward counterpart of the nonlocal term in the forward

equation. Indeed, note that the kernel K is not symmetric by definition and the integration is here

performed with respect to the first variable, looking at y → x and not x→ y as in (5.2) .

6.3.2 Discretization

The above optimality system can be discretized using, for instance, finite difference schemes and solved

by some root-finding algorithm. Here we do not solve the whole discrete system at once, we instead

obtain an approximate solution splitting the problem in three simple steps. With a fixed control, we

first solve the forward equation in µ, then we solve the backward equation in λ, and finally update

the control using the expression we obtained for the gradient ∂sL, iterating up to convergence. The

resulting procedure is a gradient descent method, summarized in the following algorithm.

Algorithm [Forward-Backward system with Gradient Descent]

Step 0. Choose ε > 0, β > 0 and set J (0) = 0;

Step 1. Fix an initial guess for s(0) ∈ RS , u0 ∈ {0, 1} and set k = 0;

Step 2. Use s(k) to build the control u(k);

Step 3. Solve the forward problem for µ(k) with control u(k);

Step 4. Solve the backward problem for λ(k) with control u(k);

Step 5. Compute J (k+1) = J(µ(k), s(k)).

If |J (k+1) − J (k)| < ε go to Step 8, otherwise update J (k) ← J (k+1) and continue;

Step 6. Compute ∂sL at (µ(k), u(k), λ(k));

Step 7. Update s(k) ← Π{TG,TR}
(
s(k) − β∂sL(µ(k), u(k), λ(k))

)
, k ← k + 1 and go to Step 2

(Π{TG,TR} denotes the component-wise projection on the interval [TG, TR]);
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Step 8. Accept (µ(k), u(k), λ(k)) as an approximate solution of the optimal control problem for (6.13).

In the actual implementation of the algorithm, we employ the scheme introduced in the previous

chapter, to solve the forward equation in µ. On the other hand, the adjoint advection equation in

λ is solved by means of a standard time-backward upwind scheme. We choose the numerical grid

in space and time subject to a sharp CFL condition, in order to mitigate the numerical diffusion

and better observe the nonlocal interactions. Moreover, we compute all the integrals appearing in the

functional J , in the nonlocal terms and in the expression of the gradient ∂sL, by means of a rectangular

quadrature rule. We also employ a simple inexact line search technique to compute a suitable step β

for the gradient update in Step 7. Finally, the application of control constraints is easily obtained by

projection. More precisely, given compatible durations 0 < TG < TR and the updated s(k) in Step 7,

we set s
(k)
i ← max{TG,min{s(k)

i , TR}} for i = 1, ..., S.

6.3.3 Numerical experiments

As a preliminary test we compare the local and the nonlocal case. We consider only the evolution of

the density m along the edge e1 and we set the control u(t) ≡ 1 to keep the traffic light at the end of

the road activated (red) during the whole simulation. We choose the length `(e1) = 1 and R1 = 1
8 for

the visibility radius of the traffic light. On the other hand, we choose the nonlocal interaction kernel

(5.2) with k(r) = 25
1+r and visibility radius R = 15dx, where dx is the step size of the space grid.

Finally, we set the free flow speed v1
f ≡ 1 and the initial distribution µ0(x) = χ[0.1,0.15](x). Figure 6.3

shows the evolution of µ and v at different times. Top panels refer to the local case, bottom panels to

the nonlocal one. We represent the density µ in black and the velocity v in red, decreasing from v1
f to

zero with a linear ramp while approaching the traffic light, according to the definition (6.10) for H.

In the local case v does not depend on time, since u is constant. The density µ proceeds without

changing profile (except some numerical diffusion at the boundary of its support), then starts concen-

trating close to the traffic light. At the final time, all the mass is concentrated at the point closest to

the traffic light.

In the nonlocal case, drivers interactions are clearly visible both in µ and v. The initial density readily

activates the nonlocal term in v, and µ starts assuming the well known triangle-shaped profile. Close

to the traffic light we observe a slowing-down, that propagates backward up to the beginning of the

queue, preventing mass concentration. At final time the profile becomes stationary, we observe that

v is zero in the whole support of µ.
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Figure 6.3: Red traffic light: local case vs nonlocal case

We proceed with a test for validating the proposed numerical method. We consider the case of a single

switching time τ ∈ [0, T ], namely we choose s = (s1, s2) = (τ, T − τ) without constraints and u0 = 1,

so that the corresponding control is just us(t) = χ[0,τ ](t) (red light on e1 for t ≤ τ). This reduces

the optimization problem to a minimization in dimension one, that can be analyzed by an exhaustive

search in τ and then compared with our adjoint-based algorithm. We set all the parameters as in the

previous test, in particular we choose constant free flow speeds vf1 = vf2 = vf3 ≡ 1 and set T = 1.25.

We also assume that, apart from µ0, no additional mass enters or leaves the network for all t ∈ [0, T ].

We start with µ0 = (µ1
0, µ

2
0, µ

3
0) = (χ[0.1,0.15](x), χ[0.6,0.65](x), 0), i.e. two distributions of equal mass

on e1 and e2 that arrive at the traffic light at different times (µ2 first and then µ1). In Figure 6.4(a)

we plot the corresponding (normalized) mean velocity v̄(τ) = −J(µ, us)/M as a function of τ , where

M =
∫ T

0

∫
Γm(x, t)dx dt.

The scenario is pretty clear. If the switch occurs before µ2 reaches the traffic light, then only µ1

will move from e1 to e3 and the mean velocity cannot improve. For larger values of τ , also µ2 will

gradually move to e3, and v̄(τ) increases. If now the switch is placed just after µ2 leaves e2 and before

µ1 approaches the traffic light, we get the best performance, both distributions move as they are on

a free road. Note that, due to the nonlocal interactions, the maximum of v̄ is less than the free flow
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Figure 6.4: Mean velocity for a single switch of the traffic light: well separated (a) vs overlapping (b)
densities

speed. Finally, as τ keeps increasing up to T , µ1 starts getting stuck at the traffic light, and v̄(τ)

decreases.

Now let us repeat the exaustive computation of the mean velocity v̄(τ) with µ0 = (µ1
0, µ

2
0, µ

3
0) =

(χ[0.6,0.65](x), χ[0.6,0.65](x), 0), two distributions of equal mass on e1 and e2, starting at the same distance

from the traffic light. Figure 6.4(b) shows the shape of the corresponding v̄. We observe that the

maximum of v̄ is lower than in the previous test, and it is achieved at a single point instead of an

interval. This clearly depends on the fact that the two densities are not well separated as before and

it is not possible to place a switch without penalizing the overall traffic flow. Moreover, note that an

absolute minimum appears just after the initial plateau. Interestingly, this means that if the switch

occurs too early both densities slowdown, whereas the optimal choice corresponds to switch just after

µ2 leaves e2 (see Figure 6.4 ).

These two simple examples show that, in general, the numerical optimization of the traffic light is a

very challenging problem, since there is a wide number of local extrema where the gradient descent

algorithm can stop. To overcome this issue, we perform several runs with random initial guesses for

the controls, and we select the solution obtaining the best result.

Figure 6.5 shows the optimal solution at different times in the case of well separated. The solution is

computed by the gradient descent method and achieves the absolute maximum of the corresponding

mean velocity. Similarly, Figure 6.6 refers to the case of overlapping densities. We clearly observe

that on e1 the traffic is stopped until m2 leaves e2.

We conclude with a more complete example, also including control constraints. All the parameters are

the same of the previous tests, but we fix to S = 5 the number of switching durations (corresponding
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Figure 6.5: Optimal solution for well separated densities

to 4 switching times) and we start with u0 = 0, i.e. green light on e1. Moreover, we set the constraints

TG = 0.15, TR = 0.3, and m0 is given edge-wise by

µ1
0(x) = χ[0.1,0.15](x) + χ[0.4,0.45](x) , µ2

0(x) = χ[0.1,0.15](x) + χ[0.6,0.65](x) , µ3
0(x) = 0 .

Note that, with this choice, we are mixing together the two cases analyzed before. Indeed, the initial

density consists of four blocks which are, respectively, pairwise overlapped and well separated. The

optimal solution produced by the gradient descent algorithm is s∗ = (0.227, 0.251, 0.259, 0.3, 0.21).

Figure 6.7 shows the corresponding evolution at different times. We observe that the first switch

occurs before µ2 approaches the traffic light. This allows the first block of µ2 to proceed without

slowdowns from e2 to e3. The second switch occurs immediately after this block leaves e2, so that

also the first block of µ1 can leave e1 almost undisturbed before the traffic light switches again. Now,

the remaining densities on e1 and e2 are in overlapping configuration, µ2 goes first, while µ1 stops.

Finally, the last switch occurs just after µ2 leaves e2, so that also µ1 can move to e3 for the remaining

time.

The numerical method proposed in this section has many interesting analogies with numerical methods

related to the Pontryagin Principle or the numerical methods adopted for Mean Field Games. In our

context, the complexity arises from the presence of one or more junctions. Moreover, we have focused
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Figure 6.6: Optimal solution for overlapping densities

only on smart traffic lights for the simplest (nontrivial) junction and the generalization to more complex

network is not difficult. The case of autonomous cars, i.e. atomic dynamic controls, is difficult and

too complex to be addressed with the before mentioned methods. We think that this problem and the

correlated numerical methods offer an interesting perspective for future research.
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Figure 6.7: Optimal solution for a traffic light with 4 switches
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Chapter 7

Conclusion

In this thesis we have introduced a class of measure valued transport equations on networks with non-

local velocity fields to describe vehicular traffic and drivers’ interactions. We have also investigated

model’s features and numerical aspects, useful for applications such as mobility optimization, traffic

light settings and traffic control. The theory exposed in this manuscript covers only partially the

complexity related to vehicular traffic but it can be a first step to investigate further on it. During

the three years of the Ph.D. program we mainly focused on modeling aspects and partially on appli-

cations. However, a complete modeling of vehicular traffic would require a wider recursive process in

four steps: data investigation, model, application and testing.

While we focused on the model phase, i.e. formulating hypothesis and building tools to be used, many

opportunities and research areas are offered by the other three phases. For example, about the data it

is important to understand their sources, characterization, relationships, noises and how to use them

to understand the phenomena and build more efficient models. Once we have introduced a new one,

it is necessary to understand and investigate its application, efficient numerical scheme based on the

task, simulations and control problems; lastly, the testing phase proposes also many interesting chal-

lenges from a mathematical point of view, since it is important to calibrate and quantify parameters,

errors and uncertainty.

Moreover after this last phase we can improve our model repeating the process starting from new data

and informations. This four steps provide us four macro-area of research which could be investigated

with different approaches. We conclude proposing some open questions and good opportunities, related

to each area, for research on transport and traffic on networks:

• Parameters’ estimation: our models depends on many parameters, such as the visual radius,
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priority rules and distribution matrixes, which we assumed given a priori; however, if we desire to

apply such models, we need criteria to fix this parameters. For this purpose, a first opportunity

would be some statistical knowledge from data; another opportunity, more interesting from a

mathematical point of view, is assuming a relationship between this parameters and the state of

the system. For example, we could assume that every driver in our population adopts strategy

to choose the next road at the junction (i.e. P = P [µ]) or interact with other drivers (i.e.

α = α[µ]).

• Nonlocal in time velocity fields: in this thesis we have assumed that every driver changes

instantaneously its speed based on the present state of the system in front of him; this hypothesis

is necessary to build the model but it does not describe correctly what really happens. Indeed,

drivers’ reactions are not instantaneous and it does not act directly on the car speed, but on

its acceleration and these features are important since are the cause of car’s incidents. For this

purpose we could start from ordinary differential equations with delays or nonlocal acceleration.

Both paths should lead to models with fully nonlocal, in time and space, velocity fields, i.e

models where evolution of the state µt at time t depends on its history in a certain time range.

• Relationship with classical models: another area of research would be the investigation of

these model with classical models, such as Follow-the-Leader, LWR or Aw-Rascle-Zhang. These

investigation would lead to a deeper understanding of these models and respective parameters

and, at the same time, lead to new models to be studied mathematically. From this point of

view, there exists recent papers which show interesting connections between nonlocal velocity

fields and the LWR model (see [22, 37]).

• Transmission conditions: until now we have proposed just one kind of condition at the

internal vertices by assuming the instantaneous movement across the junctions. However, this

is not the unique choice. For example, it would be possible to assume that every driver stop at

the junction for a given amount of time, leading to shifted transmission conditions. Hence, it

would be natural and important from a mathematical point of view to analyze which are the

admissible conditions at the internal vertex and how they are characterized. A first step, as

written in the Introduction, it is in [32, 33] and its possible extension to networks.

• Algorithms and numerical methods: for many applications it is fundamental to analyze

both the accuracy and the computational speed. For this purpose it is important to study

numerical methods and algorithms which can be parallelized in order to provide predictions in

real time. A possible path is offered by the nowadays increasing interest in machine learning, in

particular towards neural networks and GANs ( see [45]).
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A Promise instead of a Dedication

It would be normal to conclude with a short dedication to someone of my past or present. However,

these last years have taught me that we should focus a bit more on the future.

I started this Ph.D. because it was my intention to complete a path even if a little fuzzy and dark. I

feel like I made the right choice and learned many things, reached my targets and found new goals.

I had the opportunity to understand more, learn methods, how to fail and how to look for innovation.

I believe that all the things I’ve acquired are precious and important not just for myself but for the

whole society. Even if it seems that nowadays competence and study are no longer necessary and

respected, I promise I will always study and try to understand the truth.
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