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1. Introduction

1.1. Motivation

Since its inception, Network Flow theory has been recognized as a powerful decision support
toolbox for all those real-world operations and contexts suitable to be represented as flows
traversing a node-arc network. This abstraction can take place for an extremely wide range
of fields, starting from those having by reason of their nature a network structure, such as
transportation and distribution logistics, where flows of people and freights travel throughout
road, rail, sea and air networks, and telecommunication, where data are managed and sent
across server-based networks. In addition to them, other different contexts can be translated
in these terms, leading to an efficient and well-structured modellization of their operations.
This is the case as instance of production planning, where the manufacturing process can be
viewed as items flowing over the supply network, going for the raw stage to the finalization
step.
Scientific contributions in Network Flow theory allow for an effective representation and
resolution of complex network-based operations, where the best solutions, w.r.t. different
measures of quality, must be identified among a combinatorial large number of feasible al-
ternatives, while taking into account network structural limitations, such as finite capacities
on the arcs, and possibly other specific decisional constraints. This theory has been enriched
over years with original and cutting-edge optimization models and algorithms, all of them
contributing to improve the adherence of these optimization tools to reality, securing an
actionable decisional support in a increasingly amount of practical situations.
In particular, considerable results have been achieved in the Sixties with the introduction in
the Network Flow theory of the so-called dynamic flows, often referred to as flows over time,
designed to integrate the time dimension into flow modeling on networks. Indeed, classical
contributions, being them based on the concept of static flows, are well fit to represent aver-
age steady flows behavior, but fail to capture the evolution of dynamic phenomena occurring
over a considered time horizon, hence preventing an efficient modellization and optimization
of time-driven operations. In the last decades, monitoring the transitional regime of the sys-
tem over time has become a crucial and common requirement in many real-life situations, as
it can lead to dramatically better results in terms of performances of the overall implemented
processes, quality of the provided services and customer responsiveness among others. All
of these come at a price of a considerably higher level of complexity in the planning and
management of the operations to be performed. In this context, dynamic flows represent a
refined and advanced optimization tool that allow to rigorously capture the position of flows
at each point in time and to retrieve informations related to the network level utilization
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over time.
A relevant family of dynamic flow optimization problems is the Quickest Flow class, where
the completion time for transshipment operations is to be minimized on a network with
limited inflow capacities and transit times on the arcs. The practical interest in this class
of problems is supported by a vast scientific literature of real-life applications, sharing the
common requirement of accomplishing complicated processes in the shortest possible time.
This covers operational and tactical planning activities in the transportation field, particu-
larly in emergency management when aiming at devising fast and secure evacuation plans,
see as instance [61, 58, 87, 75], and in telecommunication [27], where quick routing of data
packets are often preferred to contain energy consumptions and network management costs.
Limitations of Quickest Flows as a planning tool are sometimes associated with the optimal
solutions requiring the use of a large and unrestricted number of active paths in the network,
which is unrealistic for practical purposes due to the frequent limitations in the availability
of resources and, in some cases, to the additional requirement of a tight supervision on the
operations to be implemented. This poses the need for encompassing realistic restrictions
based on bounding the number of support paths to be activated for flows transshipment.
From a methodological point of view, such additional feature translates into the integration
of the well-known concept of k-splittable flows, securing a transshipment process through at
most a prefixed number k of paths, within the dynamic setting of network flows.
A large amount of real-life situations are expected to benefit from the resulting framework,
as a concurrent control on both the time spent for flow transshipment and on the number
of the activated support paths would be enabled. As instance, this might result significantly
effective in distribution logistics, in particular in tactical planning of time-efficient goods
dispatching, where the medium level of details involved, resembling network flow modeling
rather than a more articulated vehicle routing framework, still requires to account for the
limited number of available vehicles. Other major examples are represented by emergency
transportation management, as enhancing path control in supervised evacuations might avert
fatal congestion episodes hence increasing the safety of the process, and by telecommunica-
tion, where a more efficient quick data-packets routing is achieved by imposing a limited
number of paths, thus preventing the overload of used devices and protocols.
Despite this great potential, the combination of k-splittable and dynamic flows had not been
addressed at all in the scientific literature so far, except for a very preliminary work [85],
whereas a considerable number of contributions addressing k-Splittable Flow Problems in
the static setting can be found. Such research gap leaves thus a large room for original
contributions that could substantially improve the impact of the Quickest Flow class, en-
abling a complete release of its potential as an optimization support tool by accounting for
k-splittable path limitations.
Our research activity in developing this thesis is specifically devoted to fill this gap, intro-
ducing and studying the first dynamic k-splittable flow problem. In particular, we design a
mathematical optimization model based on path-flows that explicitly bounds to k the max-
imum number of paths that can be used in a quickest multicommodity flow transshipment.
The strongly NP-hard time complexity of the proposed problem and the exponential number
of path-related variables in the provided formulation pose a number of questions for the de-
sign of efficient resolution strategies, in particular when aiming at tackling practical real-life
situations often translating into extremely large instances and strict requirements related to
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the quality of the solutions to be obtained. These issues have been addressed in our research
activity by developing two novel ad-hoc resolution approaches, being the first a matheuristic
scheme and the second a Branch and Price exact algorithm. Both strategies turn out to be
based on the resolution of restricted versions of the path-flow formulation of the problem,
where only a limited number of variables are accounted whose quality is heuristically or ex-
actly proved, respectively. This way, through the development of the matheuristic approach,
we secure good quality solutions in reasonable computational time even for very large-sized
and highly congested instances, while with the design of an exact resolution tool we provide
support to all those variety of real-life situations where a precise quality measure is signif-
icant for an actual and more conscious implementation of the identified solutions. Further
details on the novel introduced optimization problem and on the developed algorithms are
provided in the next section.

1.2. Contribution

In this thesis we investigate the concept of path limitations, expressed as the maximum num-
ber of paths that can be activated by each distinct commodity, hence secured by the so-called
k-splittable flows, within the dynamic framework of Network Flow theory. In particular, we
formally introduce the first flows over time problem explicitly encompassing path number
restrictions, namely the Quickest Multicommodity k-Splittable Flow Problem (QMCkSFP).
The problem asks for routing and scheduling each commodity demand through at most k
different paths while minimizing the makespan of the overall process, i.e. the time required to
accomplish the transshipment operations. We model the QMCkSFP in a dynamic digraph
with time-independent structural features, considering flow traveling over a discretized time
horizon, and motivated by practical applications, we force the transshipment operations to be
performed only through elementary/loopless paths and without flow storage at intermediate
nodes. In this setting, we provide a path-flow Mixed-Integer Linear Programming formula-
tion for the problem that requires as an input the complete set of available paths for each
distinct commodity. In detail, fractional variables are employed to track release of flows at
each point in time for each commodity and path; a first set of binary variables allows for the
identification and linear minimization of the makespan by recording arrival times at destina-
tion of each routed commodity demand, while a second set of binaries imposes k-splittable
path limitations to each commodity. The formulation presents a number of columns which
grows exponentially with the instance size, due to the presence of variables associated with
the number of paths for each commodity multiplied by the number of instants in the dis-
cretized time horizon.
The computational time complexity of the introduced problem is formally investigated, prov-
ing its belongs to the class of strongly NP-hard problems by a reduction from the static
Minimum Cost k-Splittable Flow Problem.
When it comes to solution approaches, the first algorithm designed for the ad-hoc resolution
of the QMCkSFP is an improvement matheuristic hybridizing a Very Large-scale Neighbor-
hood Search (VLNS) with a mathematical programming strategy in its exploration routine.
The method employs a state-of-the-art ranking procedure to generate a sufficiently large list
of good and promising candidate paths to be used throughout its implementation. In par-
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ticular, the initial solution is constructed by selecting for each commodity the k top-ranked
paths from the generated list w.r.t. their transmission time, i.e. the time required to trans-
ship the entire commodity demand. The QMCkSFP path-flow formulation is restricted to
these initial paths and solved to optimality via a MIP solver. Then, at each improvement
iteration of the matheuristic, a different neighborhood is constructed by heuristically identi-
fying for each commodity a collection of candidate paths from the list and it is explored to
optimality by solving the related restricted path-flow formulation. The improvement search
proceeds through a Variable Neighborhood Descent scheme by increasing the cardinality of
the path collections to be identified till a time limit is reached.
A thorough computational experience is conducted on the proposed model and matheuristic
approach, starting by the resolution to optimality of a set of very reduced-size instances,
making use of the path-based formulation fed with a complete enumeration of all the avail-
able paths. A tuning process is then carried out on the matheuristic’s parameters for the
identification of the optimal setting to be adopted in the evaluation of its performance. An
exhaustive proof-of-concept for the correctness and effectiveness of the matheuristic resolu-
tion strategy is then conducted: to this aim, a comparison is performed on a set of small to
medium-sized instances against the Quickest Multicommodity Flow Problem, i.e. the free-
flow relaxation of the problem with no upper bounds on the number of usable paths. Finally,
we test performances of our matheuristic against those of a Randomized Rounding-based al-
gorithm on two different benchmark test sets, the first one collecting networks of large size
w.r.t. number of nodes and arcs, and the second networks with an extremely high number
of commodities.
Our second algorithmic contribution is represented by an exact strategy for solving the
QMCkSFP at the optimum. The developed technique falls within the Branch and Price
paradigm and is based on original relaxation, pricing and branching procedures. In partic-
ular, the so-called Restricted Relaxed Master Problem (RRMP) is obtained by linearizing
time-arrival binary variables and by substituting those related to k-splittable path restric-
tions from the path-based formulation of the problem. The same ranking algorithm em-
ployed in the matheuristic initialization phase is here adopted for the construction of the
path-related columns to be considered at the root node of the Branch and Bound decisional
tree. In particular, the best k paths w.r.t. the transmission time are generated for each
commodity and all related fractional variables are included as initial columns. The Column
Generation procedure is then applied to identify, through the resolution of the so-called pric-
ing problem, new entering variables defined as pair (path,departure time), or to certify the
optimality of the nodes’ RRMPs. This is done on a slightly modified time-expansion of the
original dynamic digraph where the time dimension is decoupled from the network structure
to give rise to a novel equivalent static digraph.
Two original branching rules are designed for restoring feasibility. A first one, performed
whenever k-splittable flow constraints are violated, forces the usage of some paths and si-
multaneously forbids the activation of others over the discretized time horizon. Working
on path-based variables, the generated branching cuts are included in RRMPs of the child
nodes. A second rule implements a refined version of the standard 0-1 branching on frac-
tional variables by selecting the candidate time-arrival variable at the highest time instant.
In order to account for k-splittable-related branching cuts, the pricing problem is modeled
as a Shortest Path Problem with Forbidden Paths where additional node-set resources are
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introduced to secure the generation of loopless paths. A tailored labelling algorithm based on
dynamic programming is designed and employed to solve the pricing problem to optimality.
All variables modeling the utilization of the optimal identified path at each point in time are
included as new columns.
The computational experience conducted on the designed Branch and Price algorithm begins
by studying its correctness and computational performances when applied on a collection of
small to medium-sized instances. As the final experiment, we employ the Branch and Price
approach as a tool to assess the quality of the solutions obtained by the developed VLNS-
based matheuristic. To this aim, we consider the same testbed of small to medium-sized
instances used in the matheuristic experiments with our Branch and Price, feeding it with
the matheuristic results as initial incumbent solutions, then measuring and comparing the
residual optimality GAP achieved after the execution of the exact algorithm.
The overall toolbox developed in this research lays the foundations for a number of refined
and additional novel contributions within the dynamic k-splittable flow setting, whose pre-
liminary guidelines are discussed in the closing chapter of this thesis.

1.3. Organization of the thesis

In this section we provide a brief summary of the contents presented in this thesis.
Chapter 2 is thought to introduce the reader to the general scientific context over which
we operate. In particular, we provide preliminary notions and notations of Network Flow
theory, starting from the definition of static flows on digraphs and their traditional mathe-
matical representations. A brief excursus on relevant static flow problems is then followed
by a discussion on the limitations of such modeling approaches w.r.t. their capability in
capturing the potential evolution over time of the process to optimize.
In Chapter 3 we focus on the specific class of network flow problems known as dynamic
flow problems or flows over time. In contrast to static flows, they incorporate the temporal
dimension in flow modeling, hence enabling a precise tracking of flows over a considered time
horizon. A thorough review of the state-of-the-art contributions in the field is provided,
highlighting the impact of the time parameter in the computational tractability of the prob-
lems. The required network flow setting is presented, specifically introducing the so-called
dynamic digraph structure and its time-related features. Significant arc- and path-flow for-
mulations follow, together with a general algorithm based on a time-expansion procedure
and an efficient quickest path ranking strategy, both of which will be employed in the orig-
inal contributions presented in the thesis. Finally, a dedicated section is reserved to the
class of Quickest Flow Problems addressing the minimization of the time horizon required to
accomplish flow transshipments in capacitated dynamic networks. The scientific literature
provides evidence of the relevance of this class, presenting a large variety of quickest flow
optimization problems and showing promising room for further important contributions.
Chapter 4 is devoted to the concept of k-splittable flows, a well-known modeling tool that
allows for the representation of path limitations in flow networks. More precisely, it explicitly
bounds to k the maximum number of paths that can be used for flow transshipment. The
large variety of network flow problems studied in this context are presented and analyzed
in-depth in the literature overview section. General models and a significant approximation
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result are then presented. We conclude this chapter by emphasizing the scientific interest on
k-splittable flows highlighting in particular the lack of related contributions within the field
of flows over time.
The previous discussions serve as a basis for introducing the core of our research activity that
concerns the design of a modeling toolbox integrating k-splittable flows within the dynamic
environment of network flows. Chapters 5, 6, and 7 are thus devoted to the presentation of
the original developed contributions starting from the novel dynamic flow optimization prob-
lem, namely the Quickest Multicommodity k-splittable Flow Problem (QMCkSFP), that
explicitly accounts for path limitations while performing a quickest multicommodity flow
transshipment over a discretized time horizon, for which we provide a path-based Mixed-
Integer Linear Programming mathematical formulation and prove its strongly NP-hardness
complexity. Then, we proceed with the discussion of our research production presenting
the original ad-hoc resolution techniques: a Very Large-scale Neighborhood Search-based
matheuristic and a Branch and Price approach, respectively. For each of the algorithms
we provide a detailed description of all the developed tailored procedures and present a
thorough computational experience conducted to test their correctness and to evaluate their
performances also against those of competing approaches from the state-of-the-art literature.
We refer the reader to the previous section for a richer preliminary introduction to our orig-
inal contributions.
Finally, in Chapter 8 we review and summarize the presented research outcome highlighting
future research lines that could be pursued from it.
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2. Preliminaries of Network Flow theory

2.1. Introduction

Network Flow theory is a branch of Combinatorial Optimization dealing with the mathemat-
ical modellization of flows on networks. Besides being a major topic of the utmost scientific
relevance in the context of mathematical optimization, network flows represent a powerful
toolbox to support decision making as many real-world situations can be easily translated
in terms of flows on network structures. For instance, in the recent book of Nagurney et
al., some relevant novel applications of Network Flows to blood and medical nuclear supply
chains are presented [93].
In this chapter we present some basic notions of this theory by introducing in Section 2.2
the required notation and the concept of static flows on networks and in Section 2.3 their
classical mathematical representations. In the last Section 2.4 we briefly discuss significant
static network flow optimization problems and conclude the chapter by highlighting some
of their relevant limitations. Our aim is to introduce the reader to the general scientific
framework of our research providing preliminary fundamentals of network flows that will be
required for an understanding of the novel developed contributions. For a wider overview on
static network flow problems we refer to the book of Ahuja et al. and the seminal works by
Ford and Fulkerson [1, 39, 38].

2.2. Notation

In this section we provide the notation that will be used throughout the thesis and we sum-
marize it in a box. A flow network is defined as a digraph D = (V,A) composed of a set V of
n nodes and a set A of m directed arcs, each of them associated to a non-negative capacity
cij expressing the maximum number of units of flows which can enter it. Node i of a given
arc (i, j) is called the tail of the arc while node j its head. The tails of arcs entering node
i are collected in the set δ−(i) = {j ∈ V | (j, i) ∈ A} while the heads of outgoing arcs in
δ+(i) = {j ∈ V | (i, j) ∈ A}. A commodity is a tuple (o, d, σ ) representing a specified amount
of demand σ that is generated at a source node o and is required at a sink node d. In the
case of multiple commodities, we indicate and collect them as (oh, dh, σh), h ∈ H. An o-d
path is an ordered set of arcs {(i0, i1), (i1, i2), (i2, i3), . . . , (ik−1, ik )} such that i0 = o, ik = d and(il, il+1) ∈ A, ∀l = 0, . . . , k −1. The arcs of a path p are identified by the binary parameters
δpij , taking value one if arc (i, j) is traversed by the path, zero otherwise; the capacity of p
equals the minimum capacity of its arcs, i.e. up = min(i,j)∈pcij . Finally, a path is said to be
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elementary/loopless if any node of the digraph is traversed at most once by the path, while
it is called a cycle if it starts and ends at the same node. In the case of a single commodity
all available paths are collected in P, while in the multicommodity case in the Ph sets for
h ∈ H.

Static network flow notation:

D = (V,A) a flow network,
V set of n nodes,
A set of m arcs,
δ−(i) = {j : (j, i) ∈ A} incoming arcs at node i,
δ+(i) = {j : (i, j) ∈ A} outgoing arcs from node i,
cij capacity of arc (i, j),
H set of commodities,(oh, dh, σh) origin, destination and demand/population of commodity h,
Ph set of available paths for commodity h,
up = min(i,j)∈p cij capacity of path p,
δpij binary indicator is 1 if arc (i, j) is traversed by path p, zero otherwise.

2.3. Formulations

We now introduce the static flows modeling tools and present their arc-flow and path-flow
linear formulations. Decision variables of both representations are collected in the following
box.

Static network flow variables:

xij amount of flow traversing arc (i, j),
xhij amount of flow of commodity h traversing arc (i, j),
xp amount of flow routed through path p,
xhp amount of flow of commodity h routed through path p.

Arc-flow formulation A static flow on a capacitated flow network D can be represented as
a function that associates to each arc a non-negative amount of flow, formally:

x : A −→ R+(i, j) −→ xij
It is said that arc (i, j) is traversed by xij units of flow. A static flow from a node o to a node
d of value σ , shortly an o-d flow, is feasible if it satisfies the following conditions:
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∑
j∈δ+(i) xij −

∑
j∈δ−(i) xji =


σ, i = o
−σ, i = d0, i 6∈ {o, d}

∀i ∈ V. (2.1)

0 ≤ xij ≤cij ∀(i, j) ∈ A. (2.2)

Flow conservation constraints (2.1) impose a continuous flow in the network: at any node
i different from the source and the sink the same amount of flow is received and released,
i.e. the net flow is zero at all intermediate nodes. Otherwise, an amount of σ units of
flow is generated at node o and has to be entirely collected at node d. The second class
of constraints force the flow to respect arc capacities of the network. This representation is
known as the arc-flow formulation of a feasible static flow.

Path-flow formulation Feasible static flows can be alternatively modeled in terms of paths
used for flow transshipment. More in detail, the following relevant result due to Ford and
Fulkerson [39, 38] suggests how to construct an equivalent path-based representation from a
feasible arc-flow assignment.

Theorem 2.3.1. Flow decomposition (Ford and Fulkerson 1962) Any feasible o-d
static flow x of value σ can be decomposed in at most m (= |A|) cycles and elementary o-d
paths carrying a non-zero amount of flow. Moreover, flow values on the decomposed paths
sum up to σ .

The decomposition procedure identifies an o-d activated path by x, i.e. a path p with a
strictly positive amount of flow assigned to it, xp := min(i,j)∈p xij > 0. Then, it reduces the
feasible flow x on the arcs of path p by the xp value and adds the so obtained pair (path,
assigned flow) (p, xp) to the list L of decomposed paths. The process is repeated until no
more paths of such type can be found in the residual flow of x. Note that at most m of these
iterations can be computed, and thus at most m paths are identified, as each step reduces to
zero the flow on at least one arc. At this point, if all arcs have zero flow, the decomposition
is concluded and the L list is returned. Otherwise, assume that (i, j) is an arc with a non-
zero amount of flow associated to it, i.e. xij > 0. The satisfaction of the flow conservation
Constraints (2.1) ensures the existence of at least one cycle passing through (i, j) with value
xij . For each cycle of this type the correspondent amount of flow value is removed from x, till
no more non-zero flow arcs are left. Note that the decomposed paths are enough to represent
the original feasible flow as their associated flow values sum up exactly to σ . Indeed, none
of the identified cycles contributes to increase flow between the given nodes.
The path-flow representation of a static o-d flow with value σ results thus in the following
function:

x : P −→ R+
p −→ xp
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associating a non-negative amount of flow to each path in P; the path-flow assignment is
feasible if: ∑

p∈P

xp = σ (2.3)∑
p∈P

δpijxp ≤ cij ∀(i, j) ∈ A. (2.4)

xp ≥ 0 ∀p ∈ P. (2.5)

Constraints (2.3) impose the transshipment of σ amount of flow, while Constraints (2.4)
ensure that the activated paths respect all arc capacities (and implicitly path capacities).
Flow conservation constraints at nodes are not required anymore, as once the flow is assigned
to a certain path its amount is automatically preserved till the destination node is reached.
Note that the number of paths between any pair of nodes exponentially increases in the
dimension of the digraph, making thus impracticable a complete path enumeration and con-
sequently the employment of a path-flow formulation when solving large- or real-sized scale
problems. However in practice, the path-based representation is still preferred in many res-
olution algorithms as instance in those based on column generation techniques, including
Branch and Price and matheuristics approaches, that efficiently overcome this issue by fo-
cusing on a sufficiently large subset of highly qualified paths. These concepts will be better
detailed in Chapter 6 and 7. Finally, note that from a path-flow representation the arc-flow
assignment can be reconstructed as follows: xij = ∑

p∈P δ
p
ijxp. Being the two formulations

equivalent, we will make use of them interchangeably in the discussion of theoretical results
from the literature.

Multicommodity flows Suppose to have multiple commodities in a capacitated flow net-
work, i.e. multiple origin-destination node pairs oh-dh each of them with a specified amount
of demand σh. The arc-flow representation of such static multicommodity flow is a function
that associates to each arc a non negative amount of flow separately for each commodity,
formally:

x : (H,A) −→ R+(h, (i, j)) −→ xhij

The multicommodity flow is said feasible if the following linear constraints are satisfied:

∑
j∈δ+(i) x

h
ij −

∑
j∈δ−(i) x

h
ji =


σh, i = oh
−σh, i = dh0, i 6∈ {oh, dh}

∀h ∈ H, i ∈ V. (2.6)

0 ≤∑
h∈H

xhij ≤cij ∀(i, j) ∈ A. (2.7)

Constraints (2.6) ensure that flow conservation is satisfied by each single commodity, while
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Constraints (2.7) impose the compliance of an arc capacity to the overall multicommodity
flow passing through it.
The path-flow formulation of a feasible multicommodity flow can be similarly obtained by
introducing an additional index to distinguish each commodity flow from the others, i.e. xhp
for a given commodity h ∈ H and path p ∈ Ph, and by forcing, this time explicitly, all com-
modity paths passing thorough an arc to respect its capacity, i.e.

∑
h∈H

∑
p∈Ph δ

p
ijxhp ≤ cij .

As it will be detailed in the next paragraph through a practical example, the allocation of
arc capacities to multiple commodities represents one of the main critical aspect of multi-
commodity flow problems, that frequently impacts their computational time complexity and
inspires the design of tailored solutions approaches, such as those based on decomposition,
see [66, 29, 5, 28].

2.4. Discussion on static network flow problems and their

limitation

Static network flow problems represent the classical optimization problems in the Network
Flow theory. They aim at identifying a feasible (single or multicommodity) static flow that,
among all the possible candidates, optimizes a certain measure of quality. Depending on the
definition of the measure, several static flow problems have been developed among years.
As instance, the well-known Maximum o-d Flow Problem (MFP) seeks to maximize the
amount of flow to be transshipped from node o to node d without exceeding network arc
capacities [39, 38]. It can be solved by linear programming making use of the formulation
(2.1)-(2.2) with max σ as objective function, or alternatively, the Ford and Fulkerson method
based on the search for augmenting paths in the network can be employed among others.
Note that in the single commodity case and when all arc capacities are integers, the same
formulation can be employed to identify an optimal integer solution to the MFP, i.e. for
xij ∈ N, ∀(i, j) ∈ A, without the need of additional integrality constraints. This follows
from the total unimodularity of the constraints’ matrix and thus by the satisfaction of the
hypothesis of the fundamental Integrality Theorem of Linear Programming [39, 38]. The
integer version of the MFP has been also proved to be solvable in strongly polynomial time
[78]. The same result doesn’t hold in the multicommodity version of the MFP, where the
total flow between each origin-destination pair must be maximized while respecting shared
arcs’ capacities. Indeed, the request of an optimal integer multicommodity flow shifts the
computational complexity of the problem from strongly polynomial, see [55], to NP-hard,
see [48]. This simple observation reveals a consistent increase in the level of difficulty of
managing networks when limited resources and distinct flows are simultaneously involved.
Another relevant problem is the Minimum Cost o-d Flow Problem (MinCFP) that, associ-
ating a non-negative unit cost fij to each arc, asks to find a feasible o-d flow of a given value
σ that minimizes the total cost, i.e. min

∑(i,j)∈A fijxij in the arc-flow formulation. Many
algorithms ideated for the MFP have been generalized to approach this problem, proved
that the MFP is a special case of it in a slightly modified version of the network. Contribu-
tions related to different versions of the MinCFP and to other algorithms developed for its
resolution can be found in [1, 2]. A specific version of this problem will be used to deduce
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the computational complexity of a novel network flow optimization problem in Section 5.3.
Besides these problems, the network flow theory presents a large number of contributions
requiring the satisfaction of additional specific aspects. Among them, a static flow might be
requested to traverse at most a prefixed number of paths during its transshipment: when
setting this limitation to one the so-called Unsplittable Flow Problem (UFP) is obtained,
while increasing such maximum number of paths to a given integer value k leads to the class
of k-Splittable Flow Problems (kSFP). The first contributions related to unsplittable flows
have been developed by Kleinberg as a generalization of the edge-disjoint path problem:
the single-source UFP presents multiple commodities sharing the same source node each of
them forced to route its entire demand through a unique path to destination [69, 70]. The
problem was proved to be NP-hard as many complex packing, scheduling and partitioning
optimization problems can be reformulated as unsplittable flows. Kleinberg investigated sev-
eral versions of the UFP. Among them, the Minimum Congestion UFP asks for finding the
smallest value α ≥ 1 such that the routed unsplittable flows exceed arc capacities at most
of a factor α. Equivalently, the Maximum Concurrent UFP aims at maximizing the com-
mon fraction of the commodity demands such that a feasible unsplittable multicommodity
transshipment can be performed. Finally, in the minimum rounds version of the UFP, it is
required to partition the set of commodities into the minimum number of subsets (rounds)
such that a feasible unsplittable flow is secured for each of the generated subsets. Most of the
developed contributions for the UFP and its variants are approximation schemes [77, 24],
while only a restricted number of heuristics and exact algorithms based on the Branch and
Price paradigm have been developed [115, 9, 33].
The Network Flow theory presents a large amount of static network flow problems dealing
with the k-splittable limitation. Note that, due to the Flow decomposition Theorem pre-
sented in Section 2.3, having k ≥ m is equivalent to set flows free in their transshipment.
Therefore, when dealing with k-splittable flows we implicitly assume 1 < k < m. Further
details of kSFPs will be extensively provided in Chapter 4, being them a central topic in
this thesis.
Despite the great potential of static network flow problems in providing support to a broad
variety of real-world contexts, they fail to represent, with a high level of detail, those practi-
cal situations where the dynamic of flows across a considered time horizon becomes relevant.
Indeed, static flows are well fit to represent average flows behavior to speed, but their struc-
tural features prevent them from capturing the development of flows on networks under the
lens of microscopic aspects, such as the time required by each unit of flow to proceed along
the network arcs and the variation in the network utilization level over time. Moreover,
flow movements are modeled as if occurring instantaneously or “on the average”, with no
room for realistic concepts as delays or breaks. As a result, static flows don’t allow a correct
and precise modeling of an increasing number of real-life operations whose efficiency nowa-
days heavily depends on time, such as processes of advanced logistics, telecommunication
networks and synchronized transport systems. The scientific literature on Network Flows
presents several contributions overcoming such limitations by efficiently incorporating the
time parameter in network flow modeling: the so-called dynamic flows or flows over time
tools, representing the core of our research activity, will be extensively detailed in the next
chapter.
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3. Dynamic flow problems

3.1. Introduction

In our research we focus on the specific class of dynamic flow problems often referred to as
flows over time. As introduced in the previous chapter, see Section 2.4, dynamic flows have
been conceived to overcome structural limitations of traditional static flows, that emerge
when the evolution of transshipment operations must be represented and monitored over
time, e.g. for application purposes. Indeed in these contexts, static flow-based modeling
tools are not able to capture the amount of time spent by flows in proceeding along the net-
work, nor the utilization and congestion levels of the digraph over time. Conversely, dynamic
flow problems efficiently integrate the time parameter in a novel network structure, namely
dynamic digraph, by means of two arc labels, a capacity and a delay/travel time, and by
specifying a time horizon over which the process to be optimized is observed. This specific
setting allows to identify at each point in time the exact position of flows and thus to closely
manage and control their routing over the considered time period.
Scientific contributions in this field began to appear in the Sixties with the seminal works
by Ford and Fulkerson [39, 38]. Since then, dynamic flow optimization problems have been
attracting an increasing attention and nowadays, they are among the most suitable modeling
tools to support decision making in those situations where time represents a relevant driver
for planning strategies. Flows over time result to be particularly effective as instance in
modeling traffic or goods distribution in transportation networks, data routing in telecom-
munication networks, production scheduling operations, and finally evacuation plans in case
of emergency scenarios, see as instance [4, 98, 74, 67]. A recent application to shared-ride
platforms built upon Intelligent Transportation Systems (ITS) technology can be found in
[17].
A general classification of dynamic flow problems is based on the type of time horizon and
network features considered. Indeed, the time period of interest can be either finite or infi-
nite, continuous or discretized into a finite set of time intervals. The decision concerning the
time parameter represents a relevant aspect in dynamic flow problems, in particular in the
case of a finite discrete parameter, as the more discretized the time horizon, the better the
representation of the flow transshipment over time. In fact, a non accurate discretization
might lead to a lack of precision and to consequent inconsistent solutions. However, a too
refined discretization of time might notably compromise the computational complexity of
the problem to be solved, as it will be detailed later. Concerning network features, arc labels
may vary during the considered time horizon or not. Moreover, the speed of flows may be
influenced by the rate of flow concurrently entering the same arc, by the total load already
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present in the arc at that time or be completely independent.
A further characterization of flows over time is related to flow storage, an additional model-
ing feature used to delay the transshipment process allowing flow to be held at nodes for a
certain time period. In this situation, a node capacity is frequently introduced to bound the
amount of flow that can be stored at each time instant. Note that even though flow storage
is theoretically beneficial especially in congested networks, in some real-life applications it
results completely inadequate. This is particularly true in emergency management where
flow storage translates into forcing part of a population to wait at certain area, stopping a
delicate evacuation procedure.
Dynamic flow problems might also forbid the usage of paths traversing nodes more than once
over time, hence imposing flows to be routed only through elementary/loopless paths. This
requirement is fundamental in many practical situations particularly when the minimization
of the completion time for transshipment operations is required, such as in emergency trans-
portation, where loops over time might translate into crossing unsafe areas several times
with a consequent decrease in the stability and safety of the overall evacuation process.
Finally, flows over time have been investigated and largely explored both in the single and
multicommodity versions. Contributions related to the multiple commodity setting confirm
its relevance for modeling real-world contexts but also its impact on the computational com-
plexity as it frequently leads to strongly NP-hard optimization problems.
Throughout this thesis we focus on flows over time with a finite discretized time parameter,
time-independent arc attributes and a constant flow speed. Moreover, in the design of an
original dynamic flow problem, we allow flow to be delayed at the respective source node
but require, once the routing process has started, an elementary transshipment till desti-
nation with no breaks at intermediate nodes. These features are to increase the impact of
the developed modeling tools in real-life applications where flow storage and loops over time
don’t represent a standard practice and might lead to high inefficiency in the implemented
operations. See as instance the work by Melchiori and Sgalambro [88] applied to emergency
management.
This chapter is organized as follows: Section 3.2 provides a thorough literature review of flows
over time covering the main relevant optimization problems and the related algorithms; Sec-
tion 3.3 collects the notation used throughout this chapter and Section 3.4 presents the
general arc-flow and path-flow formulation for dynamic flow problems, a popular resolution
strategy that, based on the concept of network time-expansion, can be applied in a broad
number of cases, and finally a state-of-the-art ranking algorithm for quickest flows. In the
last section we focus on Quickest Flow Problems (QFPs), a specific class of flows over time
that is subject to the research activity presented in this thesis. We motivate our interest
in such problems, providing evidence of the relevant impact of quickest flows on real-world
contexts and identify potential room for novel contributions. We believe that these contents
can provide a solid basis for addressing the core results of our research activities.

3.2. Literature overview

The first contribution integrating time into the mathematical modellization of networks flows
traces back to the Sixties when Ford and Fulkerson developed the concept of dynamic flows,
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more recently known as flows over time [39, 38]. The dynamic digraph structure was there
introduced to track the movement of flows over a discretized time horizon: to each arc in
the digraph a transit time/delay and a capacity arc attributes were associated, expressing
the units of time required for the flow to travel through the arc from the tail to the head
and the maximum inflow that can enter the arc at every time instant, respectively. Note
that the given definition of capacity doesn’t refer to the total amount of flow on the arc at a
certain time instant. This alternative attribute, which will not be considered in our thesis,
is referred to as aggregated capacity [89, 32].
Ford and Fulkerson have shown that a general dynamic flow problem can be always modeled,
and thus tackled, as an equivalent static one on a specific Time-Expanded Network (TEN),
obtained by replicating for each time step the original underlying dynamic digraph and by
connecting consecutive time layers through holdover arcs to model flow storage. In this novel
network, classical efficient algorithms developed for static flow problems can be employed.
However, the price for such simplification lies in the size of the so-generated TEN that might
convert any polynomial algorithm in a pseudo-polynomial one due to the possible non-linear
dependence of the time horizon in the input size.
Relevant static flow problems have been extended to the dynamic case by allowing the
transshipment to span a fixed time horizon. This is the case as instance of the Maximum
Dynamic Flow Problem, the Minimum Cost Dynamic Flow Problem and some of their vari-
ants [39, 38, 57, 71, 51]. In addition to the above mentioned cases, entirely novel dynamic
flow problems found their specific root and motivations in the dynamic environment: the
Quickest Flow Problem, the Quickest Path Problem, the Quickest Transshipment Problem
and the Earliest Arrival Problem among others, see [19, 26, 61, 40]. We refer to Aronson [4],
Kotnyek [79] and Skutella [109] for a complete survey and works on flows over time.
Multicommodity flows over time A very broad study on the multicommodity version of
dynamic flow problems has been conducted by Hall et al. [57]. They proved the weak
NP-hardness of general flows over time even in the case of two commodities and the strong
NP-hardness when only elementary paths are allowed and intermediate flow storage is for-
bidden. Note that in the first case, a multicommodity solution can be still computed in
pseudo-polynomial time via the time-expansion procedure of Ford and Fulkerson of the orig-
inal dynamic digraph. Polynomial-time strategies have been designed for multicommodity
flows over time when specific assumption on the arc delays or on the network topology were
made. In particular, Hall et al. explored the setting where all available paths for any com-
modity present the same length, namely networks with uniform path lengths, and where
each node presents at most one outgoing arc, resulting this in a single path for each origin-
destination commodity.
The Maximum Dynamic Flow Problem An instance of the Maximum Dynamic o-d Flow
Problem asks for maximizing the amount of flow to be transshipped from o to d within a
given time horizon. A relevant result from Ford and Fulkerson prove that there always exists
a solution to this problem that can be represented as a temporally repeated flow, i.e. a feasible
static flow re-occurring over time as long as there is enough time for the flow to reach the des-
tination. Based on this fact, they designed an efficient algorithm that is strongly polynomial
if all arc delays are non-negative [39]: at a fist stage it computes a minimum cost flow from
o to d in a slightly modified digraph where costs equal arc delays; an optimal solution to
this problem is then decomposed into paths (see the Decomposition flow Theorem in Section
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2.3) and a temporally-repeated flow is sent along them. The multicommodity version of this
problem becomes weakly NP-hard as proved by [57]; Fully Polynomial-Time Approximation
Schemes (FPTASs) designed for its resolution can be found in [37, 54, 52].
The Minimum Cost Dynamic Flow Problem The dynamic version of the Minimum Cost
o-d Flow Problem asks for finding a feasible o-d flow at minimum cost whose transshipment
can be accomplished within a given time horizon. This problem has been studied by Klinz
and Woeginger [71], who proved its NP-hardness even for series parallel graphs. The same
authors provided a greedy algorithm together with a characterization of the graph struc-
tures on which this strategy results to have polynomial-time. Moreover, they proved that
the temporally-repeated scheme cannot be applied in this context and that in general a com-
putation of a temporally-repeated flow of minimum cost is strongly NP-hard. Fleischer and
Skutella [36] developed the first FPTAS for the problem in the case of no flow storage and
a capacity scaling FPTAS for the specific case with costs proportional to travel times. In
particular the first method works on a so-called condensed TEN where a roughly discretiza-
tion of the time horizon is performed. For the multicommodity version of the problem with
no flow storage and loopless paths a Column Generation algorithm has been designed by
Grande et al. [51]. In the work of Hall et al. a polynomial-time algorithm was provided for
uniform path lengths networks [57]. The resolution approach works on a polynomial-sized
TEN with O(n) time-layers and can be applied for both the single and multicommodity case
and with or without flow storage.
The Quickest Flow Problems In the Quickest Flow Problem (QFP) one aims at routing a
given amount of flow between a pair of nodes in a capacitated network as quickly as possible,
i.e. minimizing the makespan of the process. A straightforward approach to solve the QFP
performs a binary search on the time horizon computing a maximum dynamic flow at each
iteration and stops whenever the obtained optimal solution covers at least the amount of
demand requested by the problem. Integrating the Megiddo’s parametric search into this
scheme, a strongly polynomial-time algorithm is obtained [19]. This approach doesn’t require
flow storage nor loopless paths. A recent formulation for the QFP can be found in Lin and
Jaillet [80] together with a cost-scaling algorithm that presents the same time bound as one
of the fastest algorithm for solving the static Minimum Cost Flow Problem.
The generalization of the QFP to multiple sinks and sources is called the Quickest Transship-
ment Problem. The first strongly polynomial-time algorithm for this problem was developed
by Hoppe and Tardos [61] and it is based on several computations of a parametric submod-
ular function minimization. Their algorithm identifies optimal solutions that make use of
only simple paths without the need of flow storage. Recently, Schlöter and Skutella provided
a faster algorithm that requires only one call of the previously mentioned subroutine and
provides structurally easier solutions being them convex combinations of simple lexicography-
maximal flows over time, see [105].
Several approximation algorithms for the multicommodity extension of the QFP problem,
namely the Quickest Multicommodity Flow Problem (QMCFP), have been designed by
Fleischer and Skutella [37]. First, they extended the Ford and Fulkerson algorithm proving
that any feasible multicommodity flow can be computed as a temporally-repeated multi-
commodity flow within a doubled time horizon. From this, an approximation scheme with
performance guaranteed 2 follows by embedding the temporally-repeated flow computation
within a parametric search for the minimum time horizon. As temporally-repeated flows do
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not require flow storage, they showed that forbidding flow storage increases the makespan
of a quickest multicommodity flow of at most two times. Moreover, flow storage is proved
to be unnecessary in the case of single commodity. The same authors presented a FPTAS
with performance guaranteed (1+ ε) with ε > 0 for the QMCFP that works on a condensed
TEN of polynomial size in the input data with only n/ε2 time layers. A simple polynomial-
time greedy algorithm has been designed by Hall et al. [57] for the QMCFP in the case of
networks with at most one outgoing arc for each node and with flow storage allowed: the
strategy schedules commodity flows giving priority on shared arcs to those that are farthest
from reaching their destination.
The Quickest Path Problem A rich variety of contributions focused on the specific case of
quickest flows restricted to a single path, the so-called Quickest Path Problem (QPP). The
problem was firstly posed by Moore in 1976 [91] in the context of convoy-type traffic flow
but formalized only later by Chen and Chin in 1990 [26]. Martins and Santos [86] modeled
the QPP as a minsum-maxmin bicriteria path problem; indeed, any optimal solution to the
QPP is a non-dominated solution to the problem of simultaneously minimizing the total path
delay and maximizing its capacity. Different polynomial-time strategies have been developed
for its resolution, some of them reducing it to the computation of Shortest Path Problems
(SPP) in enlarged networks [26, 20], others performing sequences of SPP in subnetworks
of the original one [86, 91, 103] or being label-setting algorithms [94, 107]. All of these tech-
niques present the same time computational complexity of O(r(m+ nlogn)), where r is the
number of distinct arc capacity values, m the number of arcs and n of nodes. However, the
recent algorithm of Sedeño-Node and Gonzáles-Barrera [107] is proved to outperform all of
the others. We refer to the following surveys and works for models and algorithms of the
QPP and some of its variants such as the reliable QPP and the weak and strongly stable
QPP [26, 96, 107, 87, 49, 104]. This class of problems perfectly suites to model real-life sit-
uations where a quickest transshipment together with a very tight control on the used paths
is key for an efficient and well-organized process. See the work of Melchiori and Sgalambro
[87] for the application to emergency management where a single path is highly preferred
to contain and reduce turbolences and congestion during the operational implementation of
evacuation plans. In this contribution the first arc-flow formulation for the multicommodity
extension of quickest paths, namely the Multicommodity Quickest Path Problem (MCQPP),
in the TEN was provided with forbidden flow storage at intermediate nodes and additional
time-scheduling constraints. Note that requiring a single path for each commodity represents
the transposition in the dynamic environment of the concept of unsplittable flows, developed
and largely studied for classical static network flow problems [69, 77, 76].
The related problems of ranking K -quickest paths and K -quickest loopless paths in a non
decreasing order of the transmission time, i.e. the time required for the transshipment of the
entire commodity demand, have been addressed by Chen [25], Rosen, Sun and Xue [103] and
Pascoal et al. [96, 95, 97] and applied to the routing of data packets in Internet networks
in Cĺımaco et al. [27]. These algorithms either resemble strategies developed for ranking
K -shortest paths, or they generalize resolution methods for QPP. The best behavior is pro-
vided by the Pascoal et al. algorithm [96, 97], a lazy version of the Chen’s approach based
on ranking simple shortest paths in a sequence of subnetworks and on alternating paths
identification and paths output.
The Earliest Arrival Flow Problem Alternatively to the makespan minimization, one can
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request that at each point in time the number of units of flow arrived at destination is
maximized. This is modeled by the so-called Earliest Arrival Problem (EAP), that results
particularly suited for representing evacuation processes [67]. However, the existence of ear-
liest flows has been proved only for the setting with one sink and a unrestricted number of
sources. In this case, pseudo-polynomial algorithms and FPTAS schemes have been designed
[90, 60, 37]. For the setting with multiple sinks, it is not completely clear whether earliest
arrival flows exist or not, except for some specific network structures where an answer to this
question has been provided [12, 11, 106]. Approximation algorithms for arbitrary networks
have been formulated by Gross et al. [53] and [52].

We conclude this section by citing the recent work of Hajjem et al. [56] that consists of
a general evolutionary framework to solve flows over time and presents a specific case study
applied to an evacuation process from a building.

3.3. Notation

We provide here the complete notation required in the dynamic setting of flows on networks
and summarized it in a box.
A dynamic flow network is defined as a structure D = (V,A, T ), with V being a set of n
nodes, A a set of m directed arcs and T = {0, 1, . . . , T} a finite set of time steps into which
a certain time horizon is discretized. Two time-independent labels are associated to each
arc (i, j) ∈ A: a strictly positive capacity cij representing the maximum amount of flow that
can concurrently enter the arc from its tail at each time instant, and a non-negative travel
time/delay λij , specifying the number of time steps needed to traverse the arc from its tail to
the head. Given a certain path p, its capacity up is defined, similarly to the static environ-
ment, as the minimum of its arcs’ inflow capacities and its length lp as the sum of its arcs’
delays,

∑(i,j)∈A δpijλij , where the binary indicator δpij is set to one for all arcs (i, j) part of p.
The number of units of time needed to reach a node i ∈ p when using path p from its origin
node is indicated as tpi . Finally, the transmission time of an o-d path, related to a certain
commodity (o, d, σ ), expresses the amount of time required to complete the transshipment of

the entire commodity demand through it, formally T (p) = lp + ⌈ σup⌉− 1. The path is called

feasible for the commodity if at least a positive amount of demand can arrive at destination
within the considered time horizon traveling through it, i.e. up ≥ 1 and lp ≤ T . For seek
of simplicity, in this subsection we suppose that the commodity origin o and destination
d have no incoming and no outgoing arcs, respectively. This specific setting can be easily
created by adding a dummy source node connected just to node o and a dummy sink node
reached only by node d. Moreover, we suppose that no arcs of the type (i, i), namely loops,
are included in A. Again, this situation can be resolved by considering the head of such arc
as a new node j in the set V and by generating a new outgoing arc from i to j with same
attributes and from j to i with zero travel time and the same capacity.
Figure 3.1 depicts the utilization over time of an arc with delay equal to three time steps
and a capacity set to one unit in the first case on the top and increased to two units on the
bottom case. In the first case the arc is traversed by one unit of blue flow entering its tail
at time zero and exiting from its head at time three. In the second case at time zero two
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units of blue flow enter the arc completely fulfilling its capacity and proceed at a constant
rate over time toward its head. A single unit of green flow is routed through the same arc
at the first available time instant and will clear the arc at time four.

Fig. 3.1: Flow traversing arcs in a dynamic network

Dynamic network flow notation:

D = (V,A, T ) a dynamic flow network,
V set of n nodes,
A set of m arcs,
T set of T time steps,
δ−(i) = {j : (j, i) ∈ A} incoming arcs at node i,
δ+(i) = {j : (i, j) ∈ A} outgoing arcs from node i,
cij inflow capacity of arc (i, j) at each time instant,
λij travel time/delay of arc (i, j) at each time instant,

H set of commodities,(oh, dh, σh) origin, destination and demand/population of commodity h,
Ph set of available paths for commodity h,
up = min(i,j)∈p cij capacity of path p,
δpij binary indicator is 1 if arc (i, j) is traversed by path p,
lp =∑(i,j)∈A δpijλij length of path p,

tpi time required to reach node i through path p,
T (p) = lp + σ

up transmission time of path p.

3.4. Formulations and significant algorithms

In this section we formally introduce dynamic flow problems and their traditional arc-flow
and path-flow representations. The decision variables follow in the box. Two state-of-the-art
resolution strategies conclude the section.
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Dynamic network flow variables:

xijt amount of flow traversing arc (i, j) at time t,
xhijt amount of flow of commodity h traversing arc (i, j) at time t,

xpt amount of flow leaving the source through path p at time t,
xhpt amount of flow of commodity h leaving the source through path p at time t.

Arc-flow formulation A dynamic flow in a dynamic digraph D can be defined by the fol-
lowing function:

x : (A, T ) −→ R+((i, j), t) −→ xijt
that associates to each arc (i, j) and time t an amount of flow entering its tail at the given
time instant and exiting from the arc’s head at time t + λij . A dynamic o-d flow of value σ
is feasible if the following constraints are obeyed:∑

j∈δ+(o)
∑
t∈T

xojt = σ (3.1)∑
i∈δ−(d)

∑
t∈T

xidt = σ (3.2)∑
j∈δ+(i) xijt −

∑
j∈δ−(i) xji(t−λji) = 0 ∀i ∈ V 6= {o, d}, t ∈ T . (3.3)

0 ≤ xijt ≤ cij ∀(i, j) ∈ A, t ∈ T . (3.4)

where for seek of simplicity we suppose that xijt = 0 whenever t < 0 or t+λij > T , modeling
the fact that movements of flows are traced only within the considered time horizon. The
first constraint imposes the origin node to release σ units of flow over the time horizon;
the second constraint ensures that the entire amount of flow is received at the destination
node, while Constraints (3.3) represent the transposition to the dynamic environment of the
classical flow conservation constraints: they require the net flow at each intermediate node
to be zero at each time step. The last family of constraints deal with the satisfaction of arc
capacities at each time instant.

Path-flow formulation As in the static environment, an equivalent path-flow formulation
can be employed to model dynamic flows. It requires as an input the complete set P of all
the feasible paths that can be used for flow transshipment within the time horizon. The
path-based flow function associates to each path p and each time instant t a non-negative
value xpt expressing the amount of flow leaving the origin of the path at that time, formally:

x : (P, T ) −→ R+(p, t) −→ xpt
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After leaving the origin node, the flow proceeds at a constant rate along the path thus
arriving at destination at time t + lp. Again, for any t s.t. t < 0 or t + lp > T the related
xpt value is set to zero. A dynamic o-d flow of value σ is feasible if the following constraints
are obeyed: ∑

p∈P

∑
t∈T

xpt = σ (3.5)∑
p∈P

δpijxp(t−tpi ) ≤ cij ∀(i, j) ∈ A, t ∈ T . (3.6)

xpt ≥ 0 ∀p ∈ P, t ∈ T . (3.7)

The first constraint models the transshipment of σ units of flow along all the available paths
and over time, while Constraints (3.6) ensure that arc capacities (and so path capacities)
are respected at each time point in time. No conservation constraints are required as flow
is preserved along each path at each time instant. Note that with the above definition
flow storage at intermediate nodes is avoided as the set of arcs contains no loops. Delayed
departures are modeled by simply scheduling flows along the time horizon, i.e. by activating
variables xpt for t > 0. Finally, note that the arc-flow formulation can be reconstructed as
follows xijt =∑p∈P δ

p
ijxp(t−tpi ).

Multicommodity dynamic flows The multiple commodities setting presents distinct dy-
namic flows that have to be simultaneously transshipped in the same network during the
same time horizon. Recall that each commodity is expressed as a tuple origin destination and
demand (oh, dh, σh). A multicommodity dynamic flow can be modeled by simply introducing
an index h ∈ H related to the commodity to which the flow refers in the arc- and path-flow
representations, xhijt and xhpt, respectively. A multicommodity dynamic flow is said feasible if
in the arc-flow formulation satisfies the following constraints:

∑
j∈δ+(oh)

∑
t∈T

xhohjt = σh ∀h ∈ H. (3.8)∑
i∈δ−(dh)

∑
t∈T

xhidht = σh ∀h ∈ H. (3.9)∑
j∈δ+(i) x

h
ijt −

∑
j∈δ−(i) x

h
ji(t−λji) = 0 ∀h ∈ H, i ∈ V 6= {oh, dh}, t ∈ T . (3.10)∑

h∈H

xhijt ≤ cij ∀(i, j) ∈ A, t ∈ T . (3.11)

xhijt ≥ 0 ∀h ∈ H, (i, j) ∈ A, t ∈ T . (3.12)

Note that the formulation requires each single commodity to route the given amount of flow
within the time horizon while respecting flow conservation constraints, Constraints (3.8)-
(3.10); moreover, the overall multicommodity flows must respect shared arcs’ capacities,
Constraints (3.11).
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3.4.1. The time-expansion procedure

In this paragraph we describe the first resolution approach developed for general dynamic
flow problems that is based on the so-called time-expansion procedure. The general idea
underlying the strategy is to transform a dynamic flow problem into an equivalent static one
where all the toolbox of classical network flow algorithms can be exploited for its resolution.
For seek of simplicity we suppose integral arc transit times. The time-expansion procedure
generates from the original dynamic network D = (V,A, T ) an equivalent static network,
namely the Time-Expanded Network (TEN), by copying the underlying set of nodes for
each discrete time step in T and by linking those copies through original arcs accordingly
to their travel times. Moreover, consecutive time layers are connected through holdover arcs
to model flow storage. Note that through this procedure the time dimension is completely
removed from the novel network structure as the time horizon and travel times are now
explicitly accounted by the time-replica of nodes and arcs. Formally, the TEN is a directed
digraph DT = (VT ,AT ) where:

VT := {it | i ∈ V, t ∈ T }
AM := {(it, jt′) | (i, j) ∈ A, t ′ = t + λij ≤ T}
AH := {(it, it+1) | i ∈ V, t = 0, . . . , T − 1}
AT = AM ∪ AH

The set VT contains one copy of the original node set for each discrete time step and AM
contains the time replica of the original arcs with the same capacity attributes. For the sake
of clarity in the notation, we will sometimes indicate arc (it, jt′) simply as (i, j)t. The addi-
tional set AH contains the holdover arcs, in general with a non-bounding infinite capacity,
that allow the flow to be held at a node over a one time period. Note that in our setting AH
is restricted to holdover arcs only at the source node as flow storage at intermediate nodes
is forbidden. Any feasible static flow in the TEN can be thus interpreted as an equivalent
feasible dynamic flow in the original digraph. Specifically, any flow on arc (i, j)t corresponds
to a flow of the same amount passing through arc (i, j) at time t in the dynamic digraph;
conversely, given a dynamic flow in D with T as time horizon, the equivalent flow in DT can
be constructed by sending on arc (i, j)t the same amount of flow assigned to arc (i, j) ∈ A at
time t and by repeating this for any arc an any time instant.
Thanks to its simplicity and effectiveness in capturing the process evolution over time, the
time-expansion procedure is a commonly employed approach, as demonstrated by the follow-
ing recent contributions in the context of train timetabling [34], water supply management
[100], and fleet management [18]. Moreover, note that this procedure can be applied to a
broad variety of flows over time regardless of their objective function and that can present as
instance time-dependent or flow-dependent arc attributes and that can account for flow stor-
age at all nodes. However, a major (and in many cases fatal) drawback of the time-expansion
procedure lies in the dimension of the generated TEN that might prevent this procedure to
be employed for very large instances of dynamic flow problems. Indeed, a possible non-
polynomial dependence of the time horizon in the input size would convert efficient static
network flows algorithms into pseudo-polynomial ones in the TEN. As introduced in the
literature overview of Section 3.2, recent contributions have focused on this issue proposing
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Fig. 3.2: Time-expansion procedure over T = 3.

to perform a rougher expansion of the time horizon that replaces the unit time step with
a carefully chosen larger step and that simultaneously ensures a polynomial-time algorithm
and a good level of quality of the solutions that can be achieved. The so-constructed di-
graphs are called condensed or geometrically condensed TEN depending on whether a unique
factor is used to scale travel times or the size of time intervals increases geometrically, see
[37, 53, 52]. The developed procedure results in theoretically efficient FPTASs for many
dynamic flow problems with only elementary paths allowed such as the Minimum Cost Flow
over Time, Quickest Flow Problem, Earliest Arrival Flow Problem, and multicommodity
flows over time in general. Finally, a sequence condensation procedure and a sequence-based
formulation have been recently developed to account for the use also of non-elementary paths,
see [54, 52]. Note that the time-expansion procedure can be extended to rational travel times
by simply scaling them by their least common denominator and by accordingly adapting arc
capacities.
Figure 3.2 depicts the general time-expansion procedure applied to the dynamic digraph on
the left over a time horizon of three time intervals. As arc capacities are preserved through
this procedure, we have omitted them in the descriptive labels and only delays are indicated.
The original five nodes are placed in the first vertical column in the figure on the right and
are reproduced along the time horizontal axis making a separate copy for every discrete time
instant; arcs are drawn according to their delay attribute at each time instant whenever their
head falls within the considered time horizon. Holdover arcs (orange dashed in the figure)
are added to connect each node in the TEN with its replica at the next time layer.
In our thesis we will make use of the time-expansion strategy in the pricing routine of a tai-
lored Branch and Price approach designed for the resolution of a novel dynamic flow problem,
see Section 7.2.3.

3.4.2. Ranking K -quickest loopless paths

We discuss here the so-called lazy version of the Chen’s algorithm for solving the K -quickest
loopless paths problem as presented in the works of Pascoal et al. [96, 97]. The problem
requires the identification of best K elementary quickest paths provided in an increasing
order of their transmission time. The idea underlying the method is to reduce the problem
to several computations of a state-of-the-art K -shortest loopless path algorithm in the static
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environment and to alternate path identification steps to path selection steps till a total of K
paths are identified. A pseudocode of the algorithm is provided in Algorithm 1. It requires
as an input the dynamic digraph and the given commodity to be transshipped. In the initial-
ization phase, Step 1, it lists all the arc capacities in an increasing order excluding potential
repetitions, hence obtaining r different values with r ≤ m. Then, for each of these values it
constructs a subgraph by considering only arcs whose capacities exceed or are equal to the
given value set as a lower bound and in the so-constructed digraph it identifies the shortest
loopless path w.r.t. arc travel times, Step 1b. The generated shortest paths are stored in the
array L. In Step 2, the algorithm iteratively selects the best shortest path in the array w.r.t.
the transmission time and replaces it by the next shortest loopless path found in the related
subgraph. At this stage any algorithm for solving the K shortest loopless path problem can
be employed, such as the Yen’s algorithm [116] or Katoh et al. [68]. The procedure stops
whenever K different paths have been selected or no more shortest paths are available.
This strategy will be used in Subsection 6.2.1 and Subsection 7.2.2 when presenting the al-
gorithms developed for the ad-hoc resolution of a novel dynamic flow problem. In particular,
it will be employed in their initial stages to generate a set of high-quality paths whose re-
lated columns will be considered eligible for inclusion in restricted versions of the path-flow
formulation of the problem.

Algorithm 1 Lazy version of Chen’s algorithm

Input: D = (V,A, T ), (o, d, σ );
Output: the K quickest paths in D ;

1: Initialization
a. Order arc capacities: c1, . . . , cr;
b. A′ ← A;

for l = 1, . . . , r :
A′ ← {(i, j) ∈ A′ | cij ≥ cl} ;
L [l]← the o-d shortest loopless path in D ′ = (V,A′), ∅ otherwise;

2: Find K -Quickest Paths
k ← 0;
while k < K and ∃ l s.t. L [l] 6= ∅ do:
a. p← L [l] s.t. L [l] = argmini=1,...,r T (L [i]);
b. A′ ← {(i, j) ∈ A | cij ≥ cl};
L [l]← the next o-d shortest loopless path in D ′ = (V,A′), ∅ otherwise;

c. if k = 0 or p /∈ {p̄1, . . . , p̄k} then k ← k + 1, p̄k ← p;

3: Return {p̄1, . . . , p̄K};
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3.5. Relevance of Quickest Flows

An increasing amount of real-world contexts are concerned with the minimization of the time
required to complete a set of operations modeled as flows to be transshipped on networks,
the latter representing a critical aspect for an overall optimized process. For example this
can be observed in evacuation management when one aims at devising fast evacuation plans
to efficiently respond to emergency scenario [61, 58, 87], or in the transportation sector [75],
as instance when planning at a tactical level vehicle movements in storage areas subject
to strict timing requirements imposed by an urgent need for the products to be delivered.
Moreover, in telecommunication networks [27], where scheduling of jobs or routing of data
packets are often required to be performed within the shortest possible time to contain en-
ergy consumptions and management costs.
The scientific literature on flows over time provides support in this context through the
Quickest Flow Problem class that allows for the identification of the quickest solution among
the feasible ones. This class has been enhanced over years with several novel contributions
ranging from different dynamic flow problems to ad-hoc resolution algorithms, confirming
a solid potential of such optimization tools in representing real-life situations as well as a
constant interest in improving and refining their modeling capabilities. Hence, the basic
version of the Quickest Flow Problem has been extended to multiple commodities and to
multiple sink and sources to allow for the representation of realistic situations where limited
network resources are shared by different flows while pursuing an overall quickest trans-
shipment [61, 35]. At the same time, more specific requests have been integrated, first and
foremost among them is the limitation to only one path when routing quickest flows over time
that found its way through the design of the Quickest Path Problem [96, 87]. Note that the
restriction to loopless/elementary paths and the prohibition of flow storage at intermediate
nodes are very common in quickest flow modeling, being them in line with many real-world
applications, such as emergency transportation, as previously discussed in the introduction
of this chapter.
The general concept of intensifying control on routing operations by bounding the number
of active paths is a noteworthy topic in the Network Flow theory, and contributions re-
lated to the QPP represent an initial investigation in such direction within the framework
of flows over time. As previously mentioned in Section 2.4, path restrictions have already a
valid representation in the traditional static framework of network flows, with a large variety
of research works known under the name of Unsplittable and k-Splittable Flow Problems.
On the contrary, the dynamic setting of flows on networks still presents a large room for
improvements, as the current state-of-the-art contributions is able to model only widely dif-
ferent situations, where either an unsupervised flow routing can be performed, as for the
standard QFPs, or a very firm limitation to only one path per each distinct flow is imposed,
as for the QPPs. No tools are available, except for a very preliminary work [85], to efficiently
represent intermediate, and actually more realistic, situations where a limited, but greater
than one, number of paths are allowed to be employed for flow transshipment operations
over a certain time horizon of interest.
With this thesis we aim at filling the current gap between free-flow quickest flows and quick-
est paths tools, by developing original contributions that explicitly account for k-splittable
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path limitations in the Quickest Flow class. Such integration could considerably increase
the adherence of quickest flow-based modeling tools to real-life applications, securing a valid
support in a number of fields where feasible fast transshipments can be achieved only by
rationalizing the employment of limited resources.
In the next chapter we provide a rich and exhaustive dissertation on kSFPs highlighting
in the last section the lack of works in the dynamic framework, while from Chapter 5 we
start presenting our research activity that concerns a novel flows over time problem and two
tailored algorithms for its resolution.
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4. Bounding the number of paths in the
static environment

4.1. Introduction

Classical network flow problems, both in the static and in the dynamic environment, tradi-
tionally allow commodity demands to be split into an arbitrary and unrestricted number of
subgroups while being transshipped, and no control is put on the total number of support
paths activated by the routing process. This degree of freedom, also referred to as the split-
table or free-flow feature, secures an efficient usage of the network structure, especially in
the presence of finite arc label capacities and concurrent distinct demands to be satisfied.
However, a splittable flow setting becomes highly inadequate to represent real-life situations
where a tight control on the transshipment operations is key for an efficient planning and an
unbounded flow partition is undesirable or even prohibitive. This can be observed as instance
in the telecommunication field, where data packets are sent across a capacitated network in
the presence of the Multiple Protocol Label Switching Network (MPLS), a technology that
allows data to be routed on multiple paths between node clients [102]. In this context, com-
munication channels consisting of a prefixed maximum number of paths are preferred among
others to support efficient protocol performances and contain costs motivated by routes
supervision, path maintenance and information reconstruction at destinations [63, 13]. In
transportation and distribution logistic, the number of available vehicles to deliver passen-
gers and freights is in general a limited resource. Therefore, any efficient network design
approach for describing transshipment processes must account for route restrictions [73]. In
bioinformatics, a recent example is represented by the protein isoforms identification process
to explain specific spectra. Indeed, a more reliable representation can be achieved when
restricting the search to only a small number of protein isoforms due to the presence of
noise and inaccuracy in the input data [117]. The above mentioned real-world situations,
despite not being exhaustive, provide large evidence of a common practical-driven need for
a dedicated feature in network flow modeling addressing restrictions related to the number
of paths used for flow transshipment.
In this chapter we present a state-of-the-art for network flow problems that copes with path
number limitations, focusing on those contributions employing the so-called k-splittable flow
tools to explicitly limit the maximum number of paths that can be activated to an integer
value k .
The first optimization problem dealing with k-splittable flows was conceived as a general-
ization of the well-known Unsplittable Flow Problem (UFP); since then, a relevant amount
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of models and algorithms have been designed in this context, giving rise to the class of
k-Splittable Flow Problems (kSFPs). Scientific contributions have been mainly developed
for the static network setting, whereas the integration of such modeling tools within flows
over time is nowadays still an uncharted field, presenting only a preliminary work in the
literature.
In the first part of this chapter we present a thorough review of the scientific literature
concerning k-splittable flows. Then, in Section 4.3 we formally introduce the concept of
k-splittable flow and provide general representations that can be employed for different k-
Splittable Flow Problems in the static environment. Moreover, a significant approximation
scheme frequently employed in the field is provided. We will make use of this technique in
Chapter 6 while performing computational experiments on a resolution algorithm tailored
to solve a novel dynamic k-splittable flow problem. Finally, in Section 4.4 we will discuss
the relevance of k-splittable flows and highlight the need for enriching the related scientific
literature, in particular w.r.t. the dynamic environment.

4.2. Literature overview

The first contributions coping with k-splittable flows have been conceived as a generaliza-
tion of the Unsplittable Flow Problem (UFP) and its variants [69, 70]. Indeed, unsplittable
flows can be derived from k-splittable ones when forcing the k parameter to one. A relevant
research work in this specific setting is due to Barnhart et al. [9] who presented a path-based
formulation for the Minimum Cost Multicommodity UFP (also called the Integer Multi-
commodity Flow Problem) together with a Branch and Price and Cut algorithm. In this
problem one aims at routing each commodity flow through a unique path at minimum cost.
The developed branching strategy is based on the notion of divergence node for a fractional,
thus non feasible, solution, i.e. the first vertex in the graph from which the integer commod-
ity flow splits into two or more paths; a binary decisional tree is constructed by partitioning
the arcs leaving the identified vertex into two sets, balanced w.r.t. the amount of flow, and
by forbidding the usage of a subset in each child. Setting to a very high value the costs of
the forbidden arcs, the pricing problem is modeled and efficiently solved as a Shortest Path
Problem (SPP) for each single commodity.
The employment of k-splittable flows within the static environment of network flow modeling
and with a general value k ≥ 2 started in 2002 with the seminal paper by Baier et al. [7, 6].
In general, any optimization version of the UFP introduced by Kleinberg [69, 70] have found
its extension to the k-splittable setting, as detailed in the reminder of this section. We sum-
marize the main contributions related to k-Splittable Flow Problems (kSFP) in Table 4.1
w.r.t. complexity results and developed algorithms. For a thorough overview of k-splittable
modeling tools we refer to [83].
Maximum and Minimum k-Splittable Flow Problem An instance of the Maximum kSFP
requires to maximize the flow between a pair of nodes such that it can be decomposed in
at most k paths. Baier et al. [7, 6] proved the strongly NP-hardness of the problem by
a reduction from the single-source Unsplittable Flow Problem (UFP) and showed that the
results hold on directed graphs even for the single commodity case and for any constant
value of k ≥ 2. A 12 -approximation algorithm for the problem was presented too, derived
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from solving in polynomial time the Maximum Uniform Exactly-kSFP where k paths must
be activated each of them carrying the same amount of flow. Koch et al. [72] modeled the
Maximum kSFP as a two-stage problem where a first packing step generates a set of candi-
date flow values among which at least one is proved to be contained in an optimal solution
to the problem if k is a constant value, in a nearly optimal solution if k is part of the input; a
second routing step tries to identify a collection of paths through which the generated flows
can be routed while respecting arc capacities. In their contribution, a specific focus is put
on graphs of bounded treewidth for which they proved the existence of a polynomial-time
algorithm for solving the Maximum kSFP if k is constant. In the case of k being part of
the input a Polynomial-Time Approximation Scheme (PTAS) was presented. The work of
Koch and Spenke [73] introduces refined and novel approximation and complexity results for
the Maximum kSFP: the authors extended the complexity result to undirected graphs and
proved that for k > m − n + 2, being n ≥ 3 the number of nodes in the graph, and m the
number of arcs, the problem becomes polinomially solvable. Finally, they derived the best
bound on the approximability of the problem that equals 56 , unless P = NP. Complexity in
the case of k being a function of the network parameters is investigated too.
Truffot et al. presented Branch and Price algorithms for the single and multicommodity
version of the Maximum kSFP [112, 111]. The problems, formulated with path-flow and
path-design variables for each of the (at most) k path positions, are firstly linearized and
further simplified by focusing on the solution space where coupling constraints are saturated.
The designed pricing problem aims at identifying a shortest path with highest capacity and
it is solved by means of a tailored polynomial algorithm. A first branching strategy works on
the arc-flow space and resembles the one developed by Barnhart et al. based on the concept
of divergence node; a second alternate branching imposes a subset of path positions to use
or not a certain arc. The work of Gamst and Petersen [46] focused on a 2-index formulation
of the problem where the path position indexes used in [112, 111] have been merged in a
unique solution. In their novel Branch and Price approach two branching strategies have
beed designed: the first one forbids the transshipment on subpaths emanated from the di-
vergence node while the second rule, proved to outperform all others, forbids the usage of
subsets of paths while forbidding the activation of others for a commodity. Further Branch
and Price algorithms have been discussed and compared by Gamst et al. [45] for the Min-
imum Cost Multicommodity kSFP, where the k-splittable transshipment with minimum
total costs must be identified. In particular, a heuristic method was introduced to faster
reach feasible solutions by eliminating some symmetries in the 3-index model and a novel
branching rule forbidding subpaths was developed for the 2-index formulation. Computa-
tional results present better performances of the 2-index formulation. Gamst investigated a
different Dantzig-Wolfe decomposition for the Maximum Multicommodity kSFP [42]. The
strategy is based on the concept of path sets, i.e. a collection of at most k paths for a given
commodity carrying a given amount of flow. In this scheme, the Restricted Master Problem
identifies a combination of path sets (one for each commodity) that is feasible w.r.t. the
arc capacities. The pricing problem, in charge of generating path sets, results in the NP-
hard single-commodity Maximum kSFP. A tailored heuristic method and a mathematical
formulation are presented for its resolution. The branching rule forces and forbids different
subpaths and the so-generated cuts are accounted in both resolution methods with slight
modifications. The method results competitive but presents some scaling issues due to the
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complexity of the pricing problem. A local search heuristic for the same problem can be
found in [43]: it iteratively looks for a shortest path in a reduced capacitated graph and
assigns flow to it according to one among three designed strategies that differently account
for congestion phenomena. The change of strategy occurs after k paths are identified with
their respective flows for each commodity. The solution with the maximum total routed flow
obtained by applying the three strategies is then returned.
Minimum Congestion and Maximum Concurrent k-Splittable Flow Problem Martens
and Skutella [85] focused on minimizing congestion while adopting k-splittable flows, i.e. on
finding the smallest α ≥ 1 such that routing the flow on at most k paths would violate arc
capacities at most of a factor α. In particular, motivated by a real-world application where
containers must be loaded and then shipped, they considered specific constraints limiting
the amount of flow sent along each path. They showed that any ρ-approximation for the
UFP provides a 2ρ-approximation for the considered problem. For the Minimum Conges-
tion kSFP with all commodities sharing the same source node, Caramia and Sgalambro
developed a constant factor approximated algorithm [22], generalizing a result by Dinitz et
al. [31] for the unsplittable counterpart and proposing a heuristic improvement that pro-
vides experimentally better results while preserving the approximation guarantee. Jiao et al.
focused on k-splittable flows applied to multiple protocol label-switched (MPLS) networks
with the aim of minimizing congestion while routing data traffic between clients in a capac-
itated telecommunication networks, see [65] and [63]. For the multicommodity single-source
version of this problem they proposed a 2-index path-flow and a 3-index arc-flow Mixed-
Integer Linear Programming formulations together with two different simple heuristics that
at the first stage, make use of the free-flow relaxation of the problem to quickly identify
transmission paths for each commodity. Then, the first heuristic selects for each commodity
k paths among the active ones and when required solves a minimum congestion flow problem
to reassign demand flow to them. The second heuristic solves for each commodity a restricted
path-flow formulation of the original problem where only the active paths are available. The
same authors proposed three heuristics for the bi-objective Minimizing Congestion and Cost
in the multicommodity kSFP in [64]. The strategies differ themselves on the type of relax-
ation employed to obtain an initial solution satisfying the commodity demands. Some recent
studies on the complexity of the Minimum Congestion kSFP can be found in the work of
Jiao et al. [62], together with results on the relationship in the k-splittable setting between
minimizing congestion and minimizing number of rounds, i.e. the number of commodity
subsets such that for each of them a feasible k-splittable flow is proved to exist.
The multicommodity Maximum Concurrent kSFP, equivalent to the Minimum Congestion
kSFP as for in the unsplittable setting, has been investigated by Caramia and Sgalambro in
[21] and previously in [108]: they presented a 3-index arc-flow formulation and a Branch and
Bound algorithm that performs 0-1 branchings on binary variables which are responsible of
bounding the number of active paths for each commodity. Fathoming rules, based on the
definition of a minimal assignment for binary variables, are designed to speed up the identifi-
cation of infeasible nodes and thus to reduce the size of the decisional tree to be explored. In
another work the authors designed a fast two stage heuristic algorithm for the same problem
[23]. The heuristic routes the flow using an augmenting path algorithm and then performs a
local search routine in order to reroute it. The Randomized Rounding (RR) technique has
been frequently employed in the context of kSFPs, often as a benchmark algorithm, starting
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kSFP Formulations Complexity Exact Heuristics/Approx.
Max kSFP [111, 112, 46, 43] [7, 72, 73] [111, 112, 46, 42] [7, 43, 72, 73]
Min Cost kSFP [45, 9] [45, 9]
Min Congestion and
Max Concurrent kSFP [21, 108, 65, 63] [62] [21, 108, 65, 63] [23, 22, 64]
Dynamic kSFP [85]

Table 4.1: Discussed state-of-the-art kSFP contributions

from the Minimum Congestion UFP variant [101] with Raghavan and Thompson, and later
moving to the Minimum Congestion or Maximal Concurrent kSFP, with Bia loń, Martens
and Skutella and Caramia and Sgalambro [13, 84, 23]. In particular, the RR technique in
presence of the balance condition assumption, i.e. if the maximum demand is bounded from
above by the minimum arc capacity, is the best known approximated approach for the Max-
imum Concurrent kSFP. A more detailed description of the RR scheme will be provided in
Subsection 4.3.1.
Dynamic k-Splittable Flow Problem The concept of path restrictions has been rarely ad-
dressed in dynamic networks. The only result can be found in Martens and Skutella [85],
where a (3 + 2√2)-approximation algorithm for a single commodity Quickest k-Splittable
Flow Problem with a continuous time parameter is provided.

We conclude the review by citing the recent work by Zhu and Xiaowenby where the concept
of k-splittable flows was applied to mass spectra identification in bioinformatics [117]. The
resulted novel NP-hard problem, named the Minimum Error kSP, presents node capacities
that can be exceeded during the transshipment but whose total amount must be minimized.
The proposed resolution algorithm mimics the two-stage strategy of Koch et al. [72] and is
polynomial on layered digraphs and with k = 2.

4.3. Formulations and approximation results

The network flow setting for the representation of static k-splittable flows coincides with
the one presented in Section 2.2. In particular, it is required a capacitated flow network
D = (V,A) and a set of commodities (oh, dh, σh). Moreover, an integer parameter k , namely
the splittable or flow split parameter is provided. A k-splittable flow in this framework is
represented by a static flow in the directed digraph where each commodity population is
routed through at most k paths to its destination. Thus, the number of different activated
paths, i.e. paths carrying a strictly positive amount of commodity flow, can not exceed the
flow split parameter k .
Figure 4.1 and 4.2 provide a graphical representation of the effects of introducing path limi-
tations in static flows for different values of the k-splittable upper bound. The flow network
depicted in the top figure presents a single commodity with eight units of flow that must be
sent from its origin node o to the destination node d at minimum cost; arc labels are indi-
cated as a pair of unitary cost and capacity. In Case (a) no restrictions are imposed during
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Fig. 4.2: Case (a) : the free-flow setting. Case (b) : the 2-splittable setting.

the flow transshipment: an optimal solution is thus represented by the three colored paths
carrying 5, 2 and 1 units of flow each and with a total cost of zero. This solution results
infeasible in Case (b), where the flow split parameter k has been set to two. An optimal
solution is represented by the two colored paths with a total cost increased to three. Note
that no feasible solution would have been identified in the unsplittable case as all available
paths in the digraph can transship at most five units of flow.
In line with our research interest throughout this thesis, we now focus on multicommodity
flows treating the single commodity as a special case. We provide an arc-flow and a path-
flow formulation valid for general static k-Splittable Flow Problems. For the notation we
refer to Section 2.2 while decision variables are collected in the following box. At the end of
the subsection we present the Randomized Rounding (RR) technique, a heuristic resolution
approach frequently used to provide good solutions to kSFPs.

k-Splittable flow variables:

xhlij amount of flow of commodity h traversing arc (i, j) at path position l,
zhlij binary variable is 1 if arc (i, j) is used by commodity h at path position l,

xhp amount of flow of commodity h leaving the source through path p,

zhp binary variable is 1 if path p is used by commodity h.
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Arc-flow formulation We provide a state-of-the-art 3-index arc-flow representation of a
feasible multicommodity k-splittable flow, see [112, 111]. The path number restriction is
here accounted by limiting to k the number of subgroups in which each commodity demand
can be partitioned and by formulating a network flow subproblem for each of the subgroups
where the usage of the same unique path to destination is ensured. Formally, the subgroups
are indexed by l ∈ L = {1, . . . , k} and the following decision variables are defined: a frac-
tional flow variable xhlij expresses for each commodity h, arc (i, j) and subgroup l the amount
of flow of the given commodity associated to the given subgroup traversing the given arc,
and a binary decision variable zhlij takes value one whenever arc (i, j) is used by subgroup l of
commodity h. Hence, a multicommodity k-splittable flow is said to be feasible if it respects
the following constraints.

∑
j∈δ+(i) x

hl
ij −

∑
j∈δ−(i) x

hl
ji =


σ lh, i = oh
−σ lh, i = dh0, i 6= {oh, dh} ∀h ∈ H, l ∈ L, i ∈ V. (4.1)

∑
j∈δ+(i) z

hl
ij −

∑
j∈δ−(i) z

hl
ji =


1, i = oh
−1, i = dh0, i 6= {oh, dh} ∀h ∈ H, l ∈ L, i ∈ V. (4.2)

∑
j∈δ+(i) z

hl
ij ≤ 1 ∀h ∈ H, l ∈ L, i ∈ V. (4.3)

xhlij ≤ cijzhlij ∀h ∈ H, l ∈ L, (i, j) ∈ A. (4.4)∑
h∈H

∑
l∈L

xhlij ≤ cij ∀(i, j) ∈ A. (4.5)∑
l∈L

σ lh = σh ∀h ∈ H. (4.6)

σ lh ≥ 0 ∀h ∈ H, l ∈ L. (4.7)

zhlij ∈ {0, 1} ∀h ∈ H, l ∈ L, (i, j) ∈ A. (4.8)

xhlij ≥ 0 ∀h ∈ H, l ∈ L, (i, j) ∈ A. (4.9)

Constraints 4.1 and 4.2 impose separately for each commodity subgroup flow and path con-
servation on fractional x’s and binary z’s variables, respectively. This way a continuous
transshipment from the origin to the destination is secured. Constraints 4.3, namely the
k-splittable constraints, forbid each commodity subgroup to use more than one path during
the transshipment. Note that thanks to these constraints the so-constructed paths present
no loops as any node can be traversed at most once. Moreover, only cycles that are not
attached to any activated oh-dh path can be identified by this formulation. Coupling con-
straints 4.4 impose the activation of a design variable zhlij whenever part of the commodity
flow h associated to subgroup l is routed through arc (i, j). Finally, constraints 4.5 require
that arc capacities are respected and constraints 4.6 and non-negative variables 4.7 ensure
that the entire commodity demands are partitioned into the indexed subgroups.
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Path-flow formulation In a path-flow representation, a multicommodity k-splittable flow
can be expressed as a collection for each commodity of at most k paths with their associated
flow, i.e. {(ph1 , fh1 ), (ph2 , fh2 ), . . . , (phk , fhk )} where fhi is the amount of demand of commodity h
routed through path phi ∈ Ph. In order to resemble the problem modellization with arc-flow
variables, we require paths to be elementary. A 3-index and a 2-index path-flow formula-
tions have been proposed in the scientific literature for multicommodity k-splittable flows,
depending on whether an explicit discretization of flow in subgroups is considered or not
[111, 46, 45]. In the first case a flow support variable xhlp is employed to express the amount

of flow of subgroup l of commodity h that uses path p, and a binary design variable zhlp to en-
sure that the k-splittable restriction is observed by each distinct commodity. In the 2-index
formulation, the different subgroup indexes are merged into a single unique variable leading
to variables xhp = ∑

l∈L xhlp . Similarly, variable zhp = maxl∈L zhlp is now activated whenever
commodity h uses path p. This simple flow aggregation/disaggregation step ensures the
equivalence of the two formulations, as a solution of one representation can be transformed
in one of the other and viceversa. In this paragraph we focus on the 2-index formulation; for
the 3-index formulation see [111, 46, 45].

∑
p∈Ph

xhp = σh ∀h ∈ H. (4.10)∑
p∈Ph

zhp ≤ k ∀h ∈ H. (4.11)∑
h∈H

∑
p∈Ph

δpijxhp ≤ cij ∀(i, j) ∈ A. (4.12)

xhp ≤ upzhp ∀h ∈ H, p ∈ Ph. (4.13)

zhp ∈ {0, 1} ∀h ∈ H, p ∈ Ph. (4.14)

xhp ≥ 0 ∀h ∈ H, p ∈ Ph. (4.15)

Constraints 4.10 impose the routing of the entire commodity demand through the available
paths; Constraints 4.11 ensure that the bound on the number of active paths is respected
by each commodity while arc capacities are accounted by constraints 4.12. Bottleneck Con-
straints 4.13, also called coupling constraints, relate flow support variable x’s with binary
variables z’s: if path p is not used for flow transshipment by commodity h, then no unit of
flow can be assigned to the related support variable xhp . Oppositely, flow on each path must
respect the capacity of the path itself.
The path-flow formulation presents a very large number of variables as the number of paths
for each origin-destination pair exponentially increases in the dimension of the dynamic di-
graph. On the other side, flow conservation constraints are not needed anymore as the
amount of demand is preserved along each path and the k-splittable constraints can be now
imposed in a compact way by simply counting the number of activated design variables for
each commodity. Note that the path-flow formulation defines a tighter feasible region w.r.t.
the arc-flow formulation as solutions with disconnected cycles are excluded.
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4.3.1. An approximation result

In 1987 Raghavan and Thompson introduced the Randomized Rounding (RR) resolution
approach for general 0-1 integer linear programs and applied it to solve, among others,
the Minimum Congestion UFP with one-unit demand multiple commodities in undirected
graphs [101]. At a first stage, their RR technique solves to optimality the free-flow relaxation
of the problem, obtaining an edge flow assignment that might present for some commodities
an unrestricted number of activated paths; from this, the used paths and their associated
amount of flow are retrieved. Note that at this step, any path-decomposition algorithm such
as the one of Ford and Fulkerson could be employed (see Decomposition flow Theorem in
Section 4.3.1). A randomized procedure is then applied to select at random one of these paths
for each commodity, with a probability that is equal to the path flow over the commodity
demand. Finally, a feasible solution to the problem is obtained through a rounding step
that assigns the entire commodity population to the selected path and a zero flow to the
remainings.
Under the assumption that the balance condition holds, i.e. when the maximum commodity
demand is bounded from above by the minimum arc capacity, the RR provides the best
known approximation result for the problem, both in directed and undirected graphs, with
a performance ratio of Ω(logm/ log logm) [84].
The RR has been later used as a basis for probabilistic approximation schemes for several
kSFPs with k ≥ 2. In this case, a feasible k-splittable flow solution is obtained by routing
each commodity demand through at most k paths randomly chosen from the optimal free-flow
assignment. As instance, the RR was employed for comparison purposes in the resolution
of the Maximum Concurrent kSFP by Caramia and Sgalambro [23]. Their rounding step
solves to optimality an arc-flow linear programming formulation of the splittable relaxation
of the problem, ensuring that only the chosen paths are used for routing flows. A recent
RR-based method for the Minimum Congestion kSFP has been presented in [13]. With the
aim of reducing some episodes of low quality generated solutions, the proposed algorithm
relies on a modified free-flow relaxation where large commodities are penalized on the links
they could saturate. The path selection probability of [101] is here adjusted by a constant
factor and the rounding step mimics the proportion of the splittable relaxation solution.
The method provides an approximation factor of O(√logm) when k = 1. This research
was motivated by an application in telecommunication field to support traffic management
and routing in virtualized networks with restrictions on the minimum path load. Another
real-world application of the RR , is represented by the so-called global routing phase in the
wise placement design of VLSI circuits where the RR showed very good performances [92, 3].
In our research we will make use of a Randomized Rounding-based algorithm to compare
performances of a novel matheuristic strategy developed for a dynamic k-splittable flow
problem. Details will be provided in Section 6.3, where the adaptation of the RR procedure
to the dynamic environment will be discussed.

37



4.4. Discussion and open contributions

It is evident from the rich scientific literature on k-splittable flows that the concept of path
restriction plays a central role in securing precious optimization modeling tools for the sup-
port of strategic, tactical and operational planning of transshipment operations. Indeed, the
incorporation of such path limitations allows for the representation of an increasing multi-
tude of real-world situations, where a limited amount of resources is experienced and efficient
solutions can be achieved only with a firm control on the routing processes.
However, most of the state-of-the-art kSFPs are still settled in the static environment. This
modeling setting, as already observed in Section 2.4, might prevent the release of the com-
plete potential that could be enabled by a mathematical representation and optimization
based on k-splittable flows. Indeed, structural limitations of static network flows related to
the absence of time-dedicated tools, make them fail to capture the time dimension of the
transshipment phenomena and to monitor and manage the network utilization over time.
Hence, in order to increase benefits that can be achieved by adopting k-splittable flows as a
modeling tool, a consistent step towards the dynamic setting should be taken, following the
trace posed by several static contributions that have been already extended with success to
the dynamic environment of Network Flow theory aiming at increasing their adherence to
real-world contexts, see Section 3.2. The implementation of this step for k-splittable flows
would open the door to novel optimization problems on one side and to a wider range of
tractable real-world applications on the other.
Our research line goes in this direction, formally introducing for the first time a novel dynamic
flow problem integrating the concepts of quickest flows with k-splittable flows and providing
two tailored resolution approaches for the identification of optimal and good quality solutions
to the considered problem.
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5. Introducing the Quickest k-Splittable
Flow Problem

5.1. Introduction

In the previous chapters significant optimization problems and results of the Network Flow
theory have been presented, with more emphasis placed on the dynamic setting for flow
modeling and on the concept of k-splittable flows, being the first suitable to capture and
represent time dimension in flow transshipment, and the second fit to guarantee routing
processes through at most k paths.
In this chapter we finally get to the core of our research, where these two aspects are merged
together in a novel optimization problem that results in the first modellization of flow trans-
shipments over time where the number of usable paths is bounded by a prefixed parameter.
In particular, we integrate here the path number limitation secured by k-splittable flows
within the Quickest Flow class, whose scientific relevance and practical potential is widely
recognized and has been largely discussed in Section 3.5. Indeed, modeling approaches based
on quickest flows result particularly appropriate when one aims at minimizing the completion
time for a set of processes, a situation that frequently occurs as instance in telecommunica-
tion, evacuation and transportation management [61, 75, 87, 27]. The aim pursued with this
research line is to increase the impact of the Quickest Flow optimization class in real-world
contexts by encompassing the relevant modeling tool of path restrictions.
As detailed in the Section 1.1 on motivations for this work, the interest in this setting is
supported by a large variety of potential applications sharing as a common requirement a
thorough control on both the time spent for flow transshipment and on the number and
characteristics of the activated support paths. Such contribution might be relevant for in-
stance when modeling tactical planning operations in distribution logistics, particularly for
the case of perishable goods or medical supply chains as in these contexts one seeks for
a quick transshipment process while taking properly into account the fleet size and plan-
ning goods dispatching with a medium level of detail. Similarly, when adopting flows over
time models for planning and managing emergency transportation, a control on the number
of different paths will enable an increasingly supervised evacuation process, which would
likely yield a substantial reduction in the risk of those unforeseen episodes such as interfer-
ences, turbulences, and congestions that often affect the transportation process worsening
the overall clearance time. When it comes to the context of telecommunication, combining
multicommodity quickest flows tools with k-splittable routing would result in quick data-
packets transmissions where the overload in the used devices and protocols, often related to

39



an excessive amount of support paths, is successfully reduced.
All of the above mentioned examples show how imposing a realistic number of usable paths
represents an essential and relevant tool when planning movements of objects over time in
network-based structures. Nevertheless, the scientific literature of flows over time presents
a lack of contributions combining these two modeling aspects, with only one work active in
this framework [85]. Note that quickest flow-related contributions such as the basic variant
of the Quickest Flow Problem or the Quickest Path Problem, are not able to capture this
advanced setting. Indeed, the QFP allows flows to be spread on an unlimited and arbitrarily
high number of different paths, resulting thus unsuitable in many real cases; on the other
side the QPP imposes a limitation to only one single path for each source-destination pair,
turning often to be far too restrictive and equivalently not realistic.
In our research activity we aim at bridging this gap, introducing the Quickest Multicom-
modity k-Splittable Flow Problem (QMCkSFP) that accounts for a limited number (k) of
paths to be allowed in dynamic flow routing over a network, combining the requirement of a
quickest (dynamic) multicommodity flow with path restrictions on each distinct commodity.
In Section 5.2 we formally introduce this problem by providing a Mixed-Integer Linear Pro-
gramming formulation. Then, in Section 5.3 its computational tractability is investigated.
The tailored matheuristic and exact algorithmic contributions designed for its resolution will
be covered in the next chapters of this thesis. Part of the outcome and results of this research
have been recently published and the reader can refer to [88].

5.2. Problem statement and formulation

The Quickest Multicommodity k-Splittable Flow Problem (QMCkSFP) is modeled in a
capacitated dynamic digraph D = (V,A, T ), with a discretized planning horizon, time- and
flow-independent arc attributes. An integer k , i.e. the flow split parameter, is provided,
together with a set H of commodities each with a given origin, destination and amount of
population that has to be transshipped within the considered time horizon.
In this setting, the QMCkSFP asks for routing and scheduling each commodity flow through
at most k different paths (namely, paths differing from each other at least in one arc) while
minimizing the number of time instants needed to accomplish the process (makespan). Whilst
computing the optimal dynamic routing, shared arc capacities have to be obeyed. Finally, in
line with the discussions presented in the previous chapters, see Section 3.1 and 3.5, and in
order to provide feasible and effective support to many real-world operations, the holdover
of each population is allowed only at the respective source node and the usage of elementary
paths is strictly required. The following box integrates the notation presented in Section
3.3 and provides the decisional variables used in the original path-flow formulation of the
QMCkSFP.
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Fig. 5.1: Effects of path restrictions on quickest flows.

Quickest k-Splittable path-flow notation and decision variables:

Cht = min{σh,∑p∈Ph:(lp≤t) up} maximal demand of h allowed to arrive at time t,

xhpt amount of flow of commodity h leaving the source through p at time t,
yht binary variable is 1 if some flow of commodity h arrives at destination at time t,
zhp binary variable is 1 if path p is chosen by commodity h.

Figure 5.1 depicts the effect of path restrictions on dynamic network flows for different
k-splittable values. In particular, a 3-unit commodity from node o to node d has to be
transshipped as quickly as possible in the given dynamic digraph where all arcs present ca-
pacities and delays equal to one. Case (a) represents an optimal solution to the unrestricted
free-flow setting: the entire demand is routed at time zero through all of the available paths,
each of them carrying one unit of flow, and the process is completed by time 2. In the
next two cases the number of usable paths is progressively reduced, forcing the flow to be
scheduled at successive time instants hence leading to a consequent increase in the makespan
value. Indeed, in the 2-splittable setting, Case (b), the colored paths are both activated at
time zero to transship one unit of flow and then, in order to satisfy the shipment of the entire
commodity demand within the quickest possible time horizon, the remaining unit of popu-
lation is scheduled at the first available time step on one of the already activated paths, e.g.
the red one in figure. The optimal makespan associated to this solution equals 3. Finally,
Case (c) forces the commodity to employ only one path, therefore imposing to route the
population at three consecutive time instants starting from time zero on the same orange
path. Such a strict path limitation leads to a further increase in the makespan value, which
now turns to 4.

Path-flow formulation We provide a 3-index path-based formulation for the QMCkSFP
where transshipment of commodity flows are modeled in terms of activated paths. Fractional
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flow support variables xhpt are in charge of tracking the release of flows over time for each
commodity and path, being all paths for commodity h collected into the Ph set. Additional
binary variables are introduced in the problem modellization: time-arrival yht variables allow
for the linearization of the makespan minimization by recording arrival times at destination
of each routed commodity demand, while path design zhp variables implement k-splittable
path restrictions by bounding the number of activated paths for each commodity. A feasible
dynamic flow for the QMCkSFP is therefore completely identified by a set of at most k
paths for each commodity h, namely {ph1 , ph2 , . . . , phk}, with corresponding flow values xhpt at
the specific departure time instants, satisfying the network arc capacities and the commodity
demands.

min ζ (5.1)

tyht ≤ ζ ∀h ∈ H, t ∈ T . (5.2)∑
p∈Ph

xhp(t−lp) ≤ Chtyht ∀h ∈ H, t ∈ T . (5.3)∑
p∈Ph

∑
t∈T

xhpt = σh ∀h ∈ H. (5.4)∑
p∈Ph

zhp ≤ k ∀h ∈ H. (5.5)∑
h∈H

∑
p∈Ph

δpijxhp(t−tpi ) ≤ cij ∀(i, j) ∈ A, t ∈ T . (5.6)

xhpt ≤ upzhp ∀h ∈ H, p ∈ Ph, t ∈ T . (5.7)

yht ∈ {0, 1} ∀h ∈ H, t ∈ T . (5.8)

zhp ∈ {0, 1} ∀h ∈ H, p ∈ Ph. (5.9)

xhpt ≥ 0 ∀h ∈ H, p ∈ Ph, t ∈ T . (5.10)

ζ ≥ 0 (5.11)

For seek of simplicity whenever t + lp > T or t < 0 for a given path p and departure time
instant t, we set the related xhpt variable to zero.
The objective function seeks to minimize the overall makespan, represented by the ζ vari-
able, i.e. the number of time instants required to accomplish the transshipment of all the
commodity demands. Constraints (5.2) identify for each commodity the time arrivals of its
population, imposing a lower bound to the total makespan. Constraints (5.3) are used to
couple flow variables x with time-related activation variables y: if no units of flow of com-
modity h arrive at destination at time t, then the flow routed on any path p of commodity
h at time t − lp must be equal to zero. The maximum amount of flow of commodity h
that can reach its destination at a given time t, i.e. Cht, is here adopted as a parameter to
enhance constraints’ tightness. Constraints (5.5), namely k-splittable constraints, force each
commodity to use at most k different paths. The amount of flow to be transshipped within
the time horizon is stated by Constraints (5.4) while arc capacities at each time step are
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Fig. 5.2: Computational complexity reduction process.

accounted by Constraints (5.6). Bottleneck Constraints (5.7) impose the amount of flow on
a given path to be null at every time instant if the path has not been selected, otherwise it
must respect the capacity of the path.

5.3. Complexity

In this subsection we prove the strongly NP-hard computational time complexity of the
introduced QMCkSFP by reduction from the Minimum Cost kSFP. The complexity of
the latter can be easily deduced from the works by Baier et al. [7] and Koch and Spenke
[73] even for the single commodity version and for any constant k ≥ 2. Figure 5.2 depicts
the construction of the network used in the reduction process, starting from the dynamic
network on the left. Consider a source node o and a sink node d in it, a one-unit planning
horizon T = {0, 1}, non-negative capacities on the arcs and zero travel times except for the
outgoing arcs originating from the source for which we set λoj = 1, ∀j ∈ δ+(o). Intermediate
nodes and arcs in the figure are purely indicative. Expand this digraph over the considered
time horizon applying the time-expansion procedure defined by Ford and Fulkerson [39, 38]
and described in Subsection 3.4.1. Nodes of the TEN have been renamed with an apex
according to the related time layer and holdover arcs have been depicted only at the source
node to model delayed departure. The digraph on the right is obtained by adding to the
standard TEN an extra node v and by connecting it with incoming arcs from the time-replica
of the destination node, i.e. d0 and d1. In this static network, we construct an instance of
the single commodity Minimum Cost kSFP setting a demand of σ units that has to be
transshipped from o0 to node v ; costs are equal to zero except for arc (d1, v ) that presents a
cost equal to one. It is trivial to see that a feasible o0-v k-splittable flow of value σ exists
in the static digraph iff a quickest o-d k-splittable flow with makespan 1 exists within the
considered planning horizon. We can thus conclude that the single commodity Quickest
kSFP is strongly NP-hard, being at least as hard as the single commodity Minimum Cost
kSFP. The validity of such result can be generalized to the multicommodity version as well,
namely the variant considered in the next chapters of this thesis.
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6. A Matheuristic approach for the
Quickest Multicommodity k-Splittable
Flow Problem

6.1. Introduction

In the previous chapter we introduced a novel dynamic flow optimization problem, namely
the Quickest Multicommodity k-Splittable Flow Problem (QMCkSFP), that explicitly in-
tegrates the concept of k-splittable flows, discussed in Chapter 4, within flows over time,
presented in Chapter 3. For this problem a MILP path-based formulation was provided,
and its computational complexity was analyzed in Section 5.3, where the QMCkSFP was
proved to fall in the class of strongly NP-hard problems by reduction from the Minimum
Cost kSFP.
The complexity result poses relevant questions related to the development of efficient strate-
gies to solve the proposed QMCkSFP, in particular when dealing with practical applica-
tions, often modeled by instances of extremely large size. Recall indeed, that for strongly
NP-hard problems it is known how no psuedo-polynomial time resolution algorithms can
be designed for their resolution, unless P = NP, see [48, 47]. Hence in these situations,
heuristic and approximated strategies are frequently employed, focusing the computational
effort on a fast identification of high quality solutions rather than on the generation of prov-
ably optimal solutions. Among them, matheuristics methods, sometimes called model-based
metaheuristics, have been intensively investigated in recent years, resulting nowadays an at-
tractive topic in the field of optimization [8, 14, 15, 110]. Such resolution techniques hybridize
(meta)heuristics and mathematical programming algorithms in several schemes, thus com-
bining time efficiency and methodological rigor. As instance, heuristic methods can require
the resolution to optimality of a sequence of subproblems via mathematical programming
while constructing a complete feasible solution or improving the quality of an identified one.
In the former case, the resulting method can be viewed as a decomposition approach and
applications can arise in fleet and crew planning among others; in the latter, the integration
can be implemented by exactly exploring large-scale neighborhoods, as often occurs in vehicle
routing problems. On the other side, mathematical programming approaches such as Branch
and Bound and Column Generation can be “relaxed” to generate approximated solutions, as
instance by introducing heuristic decisions in MIP solvers, or to identify valid bounds to the
optimal solution of the original problem that can be later exploited by heuristics. We refer
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the reader to the work by Ball [8] for a detailed classification of matheuristics and to the
book by Talbi [110] for real-world applications.
As a first step towards the resolution of the newly introduced QMCkSFP, our research ac-
tivity focused on the design of an ad-hoc matheuristic approach, integrating the path-based
formulation described in Section 5.2 into a metaheuristic framework with the aim of finding
efficiently good quality solutions for large instances of the problem. The developed algorithm
is a hybrid Very Large-scale Neighborhood Search that employs a mathematical program-
ming strategy in its exploration routine. At each iteration a neighborhood is constructed
by identifying a collection of paths for each commodity and then explored to optimality by
solving, via a MIP-solver, the path-based formulation of Section 5.2 restricted to the current
selected paths. The improvement search proceeds through a Variable Neighborhood Descent
scheme generating multiple large neighborhoods by increasing the cardinality of the identi-
fied sets.
In Section 6.2 we provide full details of the original matheuristic algorithm, describing its
tailored construction and improvement phases. Moreover, we present the dynamic version
of the Randomized Rounding heuristic (RR) that we implemented for comparison purposes.
We refer the reader to Section 4.3.1 for the standard RR in the static framework. Finally,
in Section 6.3 the design of experiments and the computational results are discussed. In
particular, in Subsection 6.3.1 a proof-of-concept of our model is provided by solving a
set of reduced-size instances to optimality via a commercial MIP-solver making use of the
introduced path-based formulation. Subsection 6.3.2 is devoted to the evaluation of the
matheuristic’s performance: it starts with a detailed description of the benchmark test sets
utilized in the experiments and presents the tuning process carried out on the matheuris-
tic’s parameters. The next paragraph is dedicated to prove the correctness and effectiveness
of the developed algorithm. To this aim, a comparison is performed on a set of small to
medium-sized instances against the free-flow relaxation of the considered problem with no
upper bounds on the number of paths, namely the Quickest Multicommodity Flow Problem.
In the last part of the subsection we test performances of our matheuristic against those
of the RR-based algorithm on two different benchmark test sets, where the first collects
networks of increasing size in terms of number of nodes and arcs and the second network
structures with an extremely high number of commodities.

6.2. A Matheuristic approach

The matheuristic algorithm developed to solve the QMCkSFP builds on a MIP-based
Very Large-scale Neighborhood Search employing a Variable Neighborhood Descent (VND)
scheme for constructing and visiting multiple large neighborhood structures. Recall that the
standard VND technique introduced by Hansen and Mladenovic [59] performs a local search
on multiple neighborhood structures ordered in list to enhance intensification and avoid
stopping at local optima. Any time an improved solution is found while exploring a certain
neighborhood, the VND restarts the local search with the first neighborhood centered at the
new incumbent; otherwise it moves to the next structure in the list. Our hybridization of the
standard Very Large-scale Neighborhood Search scheme occurs in the local search routine
where a mathematical programming method is embedded to explore the large search space.
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Indeed, each neighborhood structure matches a restricted collection of paths for each com-
modity and its exploration is realized by solving to optimality the related path-flow model
of Section 5.2 via calling a commercial MIP-solver, thus providing the local optimum in the
current large neighborhood. In the following paragraphs we detail information about the
matheuristic and provide its pseudocode description in Algorithm 2.

6.2.1. Generation of candidate paths and initial solution

Each neighborhood structure considered in our matheuristic is meant to identify a finite
collection of paths for each commodity. Thus, we restrict the number of candidates focusing
on a large set of promising paths for each commodity and let the neighborhood structures
extract their choices from it. More in detail, we generate for each commodity a finite array
of feasible paths ordered accordingly to their transmission time, i.e. the time required for
transshipping the demand along it. Recall that a path is considered as feasible if at least a
unit of population can complete the transshipment within the planned time horizon. The
construction of the arrays is performed by adopting the algorithm for ranking quickest loop-
less paths described in Section 3.4.2 and proposed by Pascoal et al. [96, 97]. We apply this
algorithm separately to each commodity h and get in output the array Lh of quickest paths
ranked in increasing order of transmission time, see Instruction 1 of Algorithm 2. Note that
the length L of the arrays must be calibrated in order to balance the tradeoff between quality
and speed.
The construction of the initial solution, see Instruction 2 of Algorithm 2, is performed as
follows: for each commodity the first k paths in the respective candidates’ array Lh are se-
lected, i.e. the k top-ranked quickest paths, then the path-based model presented in Section
5.2 is fed with such paths by populating the Ph sets, and finally the MIP-solver is called and
the optimal solution is returned together with its associate makespan value.

6.2.2. Improvement phase

The aim of this phase is to iteratively improve the current best solution by exactly exploring
multiple large search neighborhoods. It represents a crucial step that strongly influences the
result of the overall approach: as a rule of thumb, the better the generated neighborhoods,
the closer the solution to a global optimum. The process stops when a time limit is reached
and the best solution found is returned. In the following, the finite list of neighborhood
structures is indicated as Ns, s = 1, . . . , smax .
Neighborhood structures The construction of a neighborhood is linked to the identification
for each commodity of a finite collection of feasible paths extracted from the related Lh array.
In this way, elements of a neighborhood are all the feasible solutions to the QMCkSFP
where only the identified paths can be used for the multicommodity flow transshipment. The
collections are generated by including all paths used by the current incumbent (at most k for
each commodity due to the k-splittable constraints (5.5) ), and by selecting additional paths
at random from the candidates’ arrays until the desired cardinality is fulfilled. Formally, we
express a given neighborhood centered at the incumbent solution x̄ with structure type s as
Ns(x̄) = ⋃

h∈HNs
h(x̄), where each Ns

h(x̄) represents the collection of paths for commodity h
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identified by the adopted heuristic rule, i.e. Ns
h(x̄)↔ {phs1(x̄), . . . , phsl(x̄), phsl+1, . . . , phsS}. Note

that each collection presents the same cardinality of paths among all commodities. Moving
forward in the list of neighborhood structures in a VND fashion, the number of paths to
be identified for each commodity increases by a factor of the flow split parameter k , i.e.
|Ns

h(x̄)| = k (s∆+1), being 1 ≤ s ≤ s-max and ∆ a matheuristic’s parameter that permits to
control the growth factor of the neighborhood structures, see Instruction 3a. of Algorithm
2. Note that the value of the ∆ parameter directly affects the number of feasible paths to be
identified when constructing a new neighborhood in the list. Hence, a variation on its value
allows to regulate and balance speed and accuracy in the exploration of the search space.

Exact local search Once the collections of paths have been identified by the current neigh-
borhood, the Ph sets of the path-flow formulation are updated accordingly, i.e. Ph =
Ns
h(x̄), ∀h ∈ H. Then, the generated model is solved to optimality by means of a MIP-

solver, Instruction 3b. in the pseudocode. To speed up the execution times and perform a
higher number of runs, the large search space is restricted imposing an upper bound on the
makespan which must be at most equal to val(x̄)− 1. Note that by considering increasingly
larger collections of paths, the size of the model to be solved increases but the solver gets
wider degrees of freedom to identify an optimal multicommodity combination of routes and
flow schedules over time.

Acceptance decision The upper bound introduced in the path-flow formulation guarantees
that a feasible solution returned by the exact local search represents a new incumbent for
the original QMCkSFP. In this case the new solution is accepted, Instruction 3c., and the
matheuristic algorithm restarts with the first neighborhood structure in the list centered at
the updated incumbent, see Instruction 3d. in Algorithm 2. If no improvement is obtained in
the current neighborhood, meaning that no feasible solution was obtained by the exact local
search, see Instruction 3e., the r-max parameter is checked to choose between re-generating
a new neighborhood with the same size or skipping to the next neighborhood structure.
Moreover, the s-max parameter states the end of the neighborhoods list and once reached
the algorithm is forced to restart from the first structure.

48



Algorithm 2 Matheuristic for the QMCkSFP
Matheuristic’s Parameters:
L; length of the candidate paths’ lists

s-max; length of the neighborhood structures’ list

r-max; maximum number of re-iterations without improvement for each neighborhood∆; growth factor of the neighborhood structures

Other Input Parameters:
k ; flow split parameter

time-lim; matheuristic time limit
Output: (x̄, val(x̄)) a feasible solution and its makespan

Initialization
s := 1;
r := 1;
val(x̄) := MAX-VAL;

1: Generation of the candidate paths’ lists
for h ∈ H:
Lh ← Pascoal(L, h);

2: Construction of the initial solution
for h ∈ H:
Ph ← Lh[0 : k-1];(x̄, val(x̄))← solveMIP(Ph, val(x̄));

3: Improvement phase
do{

for h ∈ H: . 3a. construction of the neighborhood
Nsh(x̄)← generateNeigh(h, x̄, k, s,∆);
Ph ← Nsh;

(x, val(x))← solveMIP(Ph, val(x̄)); . 3b. exact local search

if (val(x) < val(x̄)): . 3c. acceptance decision(x̄, val(x̄))← (x, val(x)); . 3d. re-centering and restart
s← 1;
r ← 1;

else: . 3e. regeneration or change neighborhood
if (r < r-max):

r← r + 1;
else if (s < s-max):

s← s + 1;
else:

s← 1;
r← 1;

}while(time ≤ time-lim);
return (x̄, val(x̄));

49



6.2.3. A competing approach

We adopt a dynamic version of the Randomized Rounding (RR) algorithm as a competing
approach to our matheuristic on very large-sized instances where optimal values are not
available as a benchmark for quality solution. The original RR technique, previously detailed
in Section 4.3, was proposed by Raghavan and Thompson [101] to tackle large instances of
static k-Splittable Flow Problems [13, 23]. We adapt their RR heuristic to our dynamic case
as follows. The free-flow relaxation of the problem, equivalent to the NP-hard QMCFP, is
solved to optimality through a binary search on the given time horizon that iteratively looks
for a feasible multicommodity flow on a reduced TEN where the expansion is performed
over a shortest time horizon. The solution that accomplishes the transshipment in the
minimum time is returned as the optimal solution to the free-flow relaxation QMCFP. The
Decomposition flow Theorem, see Section 2.3, is then recalled to design a procedure aimed
at decomposing the optimal free-flow and obtaining a list of paths in the original dynamic
graph, each with its respective flow over time, i.e. (p,∑t∈T xhpt), p ∈ Ph. The steps described
so far can be viewed as the RR initialization procedure to generate a list of candidate paths
that will be used throughout its implementation. From our tests this resolution approach
results to require longer, but still acceptable, times w.r.t. the Pascoal’s strategy adopted in
the first stage of our matheuristic.
The RR initial solution is constructed by choosing at random k of the decomposed paths
for each commodity, each path with a probability proportional to its associated flow over
time, by storing them into the Ph sets and by solving to optimality the restricted path-flow
formulation of the original QMCkSFP, see Section 5.2. Note that Constraints (5.5) in this
case are redundant.
The improvement step, named here the randomization phase, randomly reprocesses the k
path selection and the related MIP resolution. The heuristic stops when a time limit is
reached, providing the best solution found w.r.t. the objective function.

6.3. Computational Experiments

In this section we present computational experiments conducted to solve the QMCkSFP
with the proposed matheuristic. In all experiments we gave our algorithm one hour of running
time and 72 time instants as time horizon to perform the transshipment. In Subsection 6.3.1
we provide a proof-of-concept of our model, evaluating the performance of the matheuristic
against a Branch and Cut-based MIP-solver solving to optimality the developed path-based
formulation. This is done on a set of grid networks of reduced size. In Subsection 6.3.2
we present the three benchmark testbeds from the literature of static k-Splittable Flow
Problems that have been selected and adapted to our dynamic framework: the Grid test
set, the Dense test set [23] and the Carbin test set [44]. The matheuristic’s parameters
tuning conducted using the irace package [81] is then discussed. In the next paragraphs
we present different experiments performed with the so-calibrated matheuristic: first on the
Grid test set we prove the correctness and effectiveness of our matheuristic using the free-flow
relaxation of the problem as a benchmark value. Second, on the Dense test set we assess the
scalability of the developed algorithm w.r.t. the size of the networks. Finally, we evaluate

50



Table 6.1: Grid test set: b identifies the commodities’ combination and k varies in {1, . . . , 6}.
Instance nodes arcs commodities Instance nodes arcs commodities
g-2-b-k 50 185 1,2,3,4,5 g-7-b-k 175 710 6,12,18,24,30
g-3-b-k 75 290 2,4,6,8,10 g-8-b-k 200 815 7,14,21,28,35
g-4-b-k 100 395 3,6,9,12,15 g-9-b-k 225 920 8,16,24,32,40
g-5-b-k 125 500 4,8,12,16,20 g-10-b-k 250 1025 9,18,27,36,45
g-6-b-k 150 605 5,10,15,20,25

Table 6.2: Dense test set: the number of commodities is fixed to 5 and k varies in {1, . . . , 6}.
Instance nodes arcs Instance nodes arcs
d-10-k 10 45 d-100-k 100 4950
d-20-k 20 190 d-150-k 150 11175
d-30-k 30 435 d-200-k 200 19900
d-40-k 40 780 d-250-k 250 31125
d-50-k 50 1225 d-300-k 300 44850
d-60-k 60 1770 d-350-k 350 61075
d-70-k 70 2415 d-400-k 400 79800
d-80-k 80 3160 d-450-k 450 101025
d-90-k 90 4005 d-500-k 500 124750

the matheuristic’s performance when the number of commodities to be routed is extremely
high if compared to the size of the network structure: to this aim, the Carbin test set is
considered as a final benchmark in our computational framework. In the second and the
third set of experiments the matheuristic is compared against the RR algorithm described
in Subsection 6.2.3. All techniques are implemented in the C++ language and experiments
conducted using the ILOG CPLEX v.12.6.0.0 solver in parallel deterministic mode (up to20 threads) on a 64bit Intel Xeon CPU at 2.80GHz with 64 GB memory, running Ubuntu
14.04.2.

Table 6.3: Carbin test set: a identifies the level of congestion and k varies in {1, . . . , 6}.
Instance nodes arcs commodities
Ba01-k 32 96 48
Ba03-k 32 96 48
Ba05-k 32 320 48
Ba07-k 32 320 48
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6.3.1. Solving the path-based formulation to optimality on reduced size
instances

In this first computational experiment we compare our algorithm against CPLEX solving the
QMCkSFP formulation presented in Section 5.2. The testbed is composed of a collection
of grid instances of reduced size, such that a complete enumeration of all the available paths
for each commodity is possible and the resulting dimension of the MIPs can be handled by
the solver. Each instance has been tested with three different combinations of commodities
and from the unsplittable to the 6-splittable case. CPLEX was given 3600 seconds of time
limit and 72 time instants as time horizon. The matheuristic’s parameters have been set
as follows: the length L of the lists of candidate paths to 100, the re-iteration parameter
r-max to 1000, the ∆ growth factor parameter to 1 and the length of the neighborhood
structures’ list s-max to b(L−k )/(k ∆)c. The complete results of the experiment are provided
in Appendix A where the name s-a-b-k in the first column identifies a grid instance with a
connected layers each with 3× 3 nodes and 24 directed arcs from 1 to 10 time periods long;
arcs within the same layer present a very large capacity while arcs connecting different layers
represent bottlenecks for the demand flows; the number of commodities equals b(a−1) and k
stands for the flow split parameter. The next four columns recall features of the instance in
terms of the number of nodes and arcs, “nodes” and “arcs” columns, number of commodities,
“h” column, and the flow split parameter, “k” column. In the next five columns some key
results obtained by our matheuristic are reported: the makespan of the initial solution, “init
sol” column, the time “t” in seconds needed for its construction, i.e. Instruction 1. and 2.
of Algorithm 2, the makespan of the best solution identified after the improvement phase,
“best sol” column, the time “t” in seconds needed for its identification and the number of
intermediate incumbents found during the one-hour local search procedure, “moves” column.
The last two columns present the optimal solution obtained by CPLEX “opt sol” and the
computational time “t” required for the resolution of the problem.
Results show that the best solution provided by our matheuristic matches the optimal solu-
tion returned by the exact method in all the considered instances. In 50% of the cases the
optimal solution is found by our matheuristic instantly in the initialization phase; in the rest
of the cases it is reached in average after two intermediate moves and in less than one second
while CPLEX requires at least an order of magnitude higher of time. The significant increase
in the computational times in the last instance s-3-3-k is motivated by the large number of
variables CPLEX has to deal with in this specific network: one commodity presents around44000 paths, a value that is almost 75 times larger than the average number of paths oc-
curred in the previous instances. Due to the need of feeding the formulation with an explicit
enumeration of the complete set of feasible paths for each commodity, an extended compar-
ison on further higher-sized instances would result impracticable. Nevertheless, with this
preliminary experiment we proved that our matheuristic is able to obtain the same optimal
solutions of CPLEX in considerably smaller computational times.

6.3.2. Evaluation of the matheuristic’s performance

We proceed to validate the proposed algorithm and test its performances in terms of solution
quality, scalability and computational times. We first present the features of the considered
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benchmark test sets, then we describe the thorough parameter tuning performed and finally
the experiments conducted on each type of test sets with the so-calibrated matheuristic are
analyzed in separate paragraphs.

Benchmark instances Three benchmark testbeds from the literature of static k-Splittable
Flow Problems have been selected and adapted to our dynamic framework as follows. The
Grid test set includes 9 networks, each of them tested with 5 different combinations of
commodities and from the unsplittable setting to the 6-splittable case. Table 6.1 presents
features of the set: a grid instance named g-a-b-k has a connected layers each with 5×5 nodes
and 80 directed arcs from 1 to 10 time periods long; bottleneck arcs are placed only between
different layers. The type of the commodities’ combination and the flow split parameter are
identified by the b and k values, respectively. Instances have been calibrated in order to
get a fixed optimal value of 24 when solving the free-flow relaxation of the problem, i.e. the
QMCFP. Note that its optimal makespan is a valid lower bound for the QMCkSFP for any
value of k , as the multicommodity flow is unrestricted during the transshipment. A valid
certificate of optimality for our matheuristic is therefore a makespan value exactly equal to24 time instants. The quantitative and qualitative analysis carried out on this experiment
is presented in “The Grid test set” paragraph.
Table 6.2 reports the features of the Dense test set, identifying each of the considered 18
instances as d-a-k with a representing the number of nodes and k the value of the flow split
parameter varying in {1, 2, . . . , 6}. As in a dense instance each node i is connected only to
node j s.t. i < j , the number of arcs results to be equal to a(a − 1)/2. Their lengths have
been randomly chosen between 1 and 10 time units. The number of commodities is fixed
to 5 in all the test set. We report our comprehensive analysis on this experiment in the
paragraph “The Dense test set”.
The Carbin test set is composed of 8 networks divided into two subgroups according to
the congestion ratio mean capacity of arcs/mean demand of commodities : the Bs subgroup
presents a small congestion ratio while the Bl a large one. Each instance has 32 nodes,48 commodities and a number of arcs equal to 96 or 320; arcs lengths range in the [1, 10]
interval. The collection is presented in Table 6.3 with each row Bab-k representing the
Carbin instance with level a of congestion ratio and k as flow the split parameter, always
varying from the unsplittable to the 6-splittable case. Results are analyzed and interpreted
in the last paragraph of the current subsection.

Parameter tuning A parameter tuning process has been conducted on our matheuristic,
tailored on the benchmark test sets to be solved. For this purpose the automatic algorithm
configuration method irace [81] has been applied to the following matheuristic’s parame-
ters: the length L of the candidates’ lists, the r-max parameter and the growth factor of
the neighborhood structures ∆. Their domains have been set to L = {50, 100, 150}, r-max
={500, 1000, 1500} and ∆ = {0.5, 1, 1.5}, respectively. Note that the remaining matheuris-
tic’s parameter s-max directly depends in turn on the cardinality L of the lists, being it equal
to b(L − k )/(k ∆)c. Thus, all the parameters affecting the matheuristic are involved in the
tuning process.
For the configuration process we divided the Grid, Dense, and Carbin test sets into 9, 18 and
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4 classes respectively, according to the instances’ number of nodes in the first two cases and
on the number of arcs and congestion ratio in the third case. The basic version of irace has
been called separately for each class with a budget of 500 runs for each tuning process and a
CPU time limit of 500 seconds for each run. The obtained optimal configurations of the pa-
rameters are presented in Table 6.4 for each Dense class, d-class-x, Grid class, g-class-x and
Carbin class, B-class-x. From the tuning results we can evince that the irace applications
span the configuration combinations without exhibiting evident tendencies apart from the
case of the ∆ parameter assuming value 0.5 that appears in only one optimal setting out of
the 31 total classes. Also, the combination of (L,∆, r-max) = (100, 1, 500) in the Dense classes
is preferred among the other combinations in 28% of the cases. Note that the unique class
of instances with optimal setting ∆ = 0.5 is the one that collects the smallest and simplest
networks among all the considered test sets. This slow enlargement of the neighborhoods is
combined with a lower randomization parameter likely to rebalance the exploration routine
implementing faster changes of the neighborhood structures. In the next experiments the
matheuristic has been tuned accordingly to the obtained optimal settings.

Table 6.4: Irace tuning results for the L, ∆, r-max parameters

Instance class L ∆ r-max Instance class L ∆ r-max
d-class-1 100 0.5 500 g-class-1 100 1 500
d-class-2 100 1 1500 g-class-2 50 1.5 500
d-class-3 100 1 500 g-class-3 50 1 500
d-class-4 100 1 500 g-class-4 50 1.5 500
d-class-5 100 1 1500 g-class-5 50 1.5 1000
d-class-6 100 1 500 g-class-6 100 1 1000
d-class-7 100 1 500 g-class-7 100 1.5 1000
d-class-8 150 1 500 g-class-8 50 1 1500
d-class-9 50 1 1500 g-class-9 50 1.5 1000
d-class-10 50 1.5 1500 B-class-1 150 1.5 1500
d-class-11 150 1 500 B-class-2 100 1.5 1500
d-class-12 150 1.5 1500 B-class-3 50 1.5 1500
d-class-13 50 1.5 500 B-class-4 50 1 500
d-class-14 50 1.5 1500
d-class-15 100 1 1500
d-class-16 100 1.5 1000
d-class-17 100 1 500
d-class-18 50 1 1500

The Grid test set Appendix B collects the complete results of this experiment where the
free-flow relaxation is employed to provide a benchmark value to the matheuristic’s solutions.
Each row reports the instance features in terms of number of nodes, arcs, commodities
and flow split parameter in the “nodes”, “arcs”, “h” and “k” columns, respectively. Then
it presents the makespan value and the computational time in seconds for the initial and
the best solutions provided by our matheuristic, see the “init sol”, “t”, “best sol” and “t”
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column respectively. The number of encountered improvement in the makespan value is
reported in the “moves” column. Recall that a makespan of 24 time instants represents
a valid certificate of optimality being equal to the lower bound. Hence, we mark these
provably optimal solutions with the symbol ∗. Table 6.5 collects some results aggregated
by the k-splittable parameter value. Columns report the averages of the above presented
key indicators computed on the whole Grid test set. The last column “GAP (%)” shows the
average distance of our best solutions from the lower bound provided by the QMCFP.
The matheuristic provides, as expected, initial and best solutions with a makespan always
greater than or equal to the free-flow relaxation. The results get closer to this lower bound
when increasing the k parameter: in the unsplittable setting the optimal transshipment is
performed within 24 time instants only in 13.34% of the instances with an average GAP
of 20.65%. In the 2-splittable and 3-splittable cases the percentage of instances closing
at the lower bound grows to 42.23% and 82.23% respectively, with a consequent significant
reduction in the average GAP that reaches 5.10% and 1.67%, respectively. This simply results
from the higher degree of freedom granted by the flow split parameter to route the flows.
In 28.89% of the instances the matheuristic has been able to construct an initial solution
with exactly the free-flow makespan, thus a provably optimal solution, without the need
of any improvement step. This reveals the efficacy in these specific cases of the employed
initialization procedure to perform the best path selection for each single commodity. In
the remaining instances, either the improvement phase identified better solutions during the
one-hour process, 87.50% of the cases, or it stayed sticked to the initial solution found with
a zero value in the “moves” column. Note that in the latter case the algorithm might have
potentially reached the optimal value but no guarantees can be ensured. Some instances,
see for example the g-3-5-k and g-10-4-k , present a considerable total improvement of the
initial solution with several intermediate incumbents. This suggests that there exists some
cases where the best path choice for each independent commodity performs bad for the
overall simultaneous multicommodity transshipment. From a computational time point of
view we can deduce that an increase in the dimension of the networks or in the number
of commodities within the same grid graph reflects in an increase of time to construct the
initial solution. Instead, a change in the flow split value has no influence on it, see the
second column in Table 6.5. This behavior can be motivated by the generation step of the
candidates’ lists performed for each single commodity in subgraphs of the original one and
independently of the flow split parameter value. Except for a few cases, the best solution
has been found by the matheuristic in the very early part of the search process, with an
average time always smaller than 4 minutes in all the k-splittable cases as shown in Table
6.5. The general limited number of intermediate incumbents, in average around 2 moves,
and some statistics on the total number of iterations show that the matheuristic is capable
of performing a quick and efficient neighborhood search despite the growing dimension of
the problems, this also thanks to the introduction of the upper bound to speed up the MIP
problems. This preliminary analysis confirms the validity of the considered lower bound and
the correctness of our algorithm both in its initialization and final outputs.
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Table 6.5: Average results on the Grid test set aggregated by the flow split parameter

k init sol t (s) best sol t (s) moves GAP(%)
1 35.64 3.22 28.96 222.16 2.20 20.65
2 30.44 3.18 25.22 58.22 2.29 5.10
3 27.33 3.31 24.40 156.09 1.76 1.67
4 26.60 3.42 24.20 126.84 1.47 0.83
5 26.11 3.44 24.09 21.60 1.24 0.37
6 25.76 3.56 24.07 61.27 1.07 0.28

Table 6.6: Average results on the Dense test set aggregated by the flow split parameter

Matheuristic RR Comparison
k t (s) t (s) moves t (s) t (s) moves ratio ratio

init sol best sol init sol best sol init sol best sol
1 3.28 61.94 0.33 263.83 1020.50 3.17 0.8208 0.9556
2 3.33 19.06 1.22 96.50 1283.78 4.89 0.7363 0.8746
3 3.72 74.94 2.33 95.00 1651.61 5.83 0.7142 0.8468
4 3.61 232.61 2.72 94.50 1450.00 4.00 0.9038 0.8306
5 3.94 58.94 2.94 94.56 1511.72 4.11 0.9700 0.8285
6 3.94 65.61 3.28 94.28 786.22 2.44 1.0611 0.8017

Table 6.7: Average results on the Carbin test set aggregated by the flow split parameter

Matheuristic RR Comparison
k t (s) t (s) moves t (s) t (s) moves ratio ratio

init sol best sol init sol best sol init sol best sol
1 2.13 588.5 3.38 12.13 784.25 4.63 1.0827 0.9255
2 2.13 75.00 2.00 12.13 171.63 2.88 0.9997 0.9717
3 3.13 515.38 1.38 11.88 167.88 2.38 0.9938 0.9725
4 4.75 368.13 1.13 12.13 419.63 2.00 1.0284 0.9950
5 5.13 346.38 0.75 12.13 74.25 2.13 1.0171 0.9950
6 5.63 101.00 0.75 12.25 158.63 0.88 1.0631 1.0033
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Fig. 6.1: Comparison of the performances of the matheuristic and the RR algorithm depend-
ing on the k parameter and on the number of nodes.

The Dense test set In this experiment we compare our algorithm against the dynamic ver-
sion of the RR heuristic, see Subsection 6.2.3, on the Dense test set. As for our algorithm,
we gave the RR a time limit of one hour for the improvement phase, a time horizon of 72
instants for rerouting the flows through the selected paths and we fed its formulations with
the current best upper bound to the makespan. The complete results obtained with the two
strategies are collected in tables and reported in Appendix C. The first four columns present
features of the instance: nodes, arcs, the number h of commodities and the k parameter.
The next five columns refer to our matheuristic, while the remaining to the RR heuristic.
For each resolution technique and each instance we report the same values as in the Grid
tables: the initial solution makespan and its construction time, the best solution makespan
and its computational time and the number of intermediate incumbents. In Table 6.6 we
report for both strategies some average results aggregated by the flow split parameter: the
average time to construct the initial solution, “t(s) init sol” column, the one to identify the
final best solution, “t(s) best sol” column, and the average number of intermediate solutions,
“moves” column. Further indicators are presented in the last two columns “ratio init sol” and
“ratio best sol”: each entry of the former represents the ratio between the initial solution
makespan provided by our matheuristic and the one provided by the RR averaged among
all the complete Dense test set. Similarly, entries of the latter express the same idea applied
to the best final solutions identified by the algorithms.
From the results we can evince that our matheuristic considerably outperforms the RR w.r.t.
several aspects. In particular, in 76.85% of the cases the initial solution constructed by our
algorithm has a strictly better value than the one provided by the competing approach, it
becomes the 85.18% if we include equality. Moreover, this initial advantage appears more
significant on instances with a smaller value of the k flow split parameter. This prelimi-
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Fig. 6.2: Average ratio between the best solution and the solution found after a given time
for the matheuristic and the RR method.

nary analysis shows the effectiveness of the initialization phase of our matheuristic: feeding
the MIP problem with the top k ranked quickest paths for each commodity is better than
relying on a random selection based on the multicommodity free-flow relaxation’s choices.
This can be further confirmed by looking at those 24.07% of the instances where no improve-
ments were found by our matheuristic during the one-hour search, see for example almost
all the unsplittable cases d-a-1 or instances d-90-2 and d-300-2. Here the constructed ini-
tial solutions might actually be optimal for the problems while the RR hasn’t been able to
provide an initial or even final solution with a strictly better makespan. We now focus on
the computational times required by the strategies to construct their initial solutions. Recall
that in both situations the initial construction time includes the generation of the lists of
candidate paths and the resolution of the first MIP problem with the selected k paths as
input for each commodity. Our matheuristic presents very fast initial times that slightly
increase when solving bigger instances but never exceed 15 seconds among all the testbed.
On the other side, the initial procedure of the RR heuristic requires longer computational
times in 89.81% of the instances and is much more sensible to the increase in the dimension of
the considered network. In particular, the resolution of the free-flow relaxation reaches just
itself a maximum of 6 minutes in the bigger network. This different computational effort is
motivated by the additional need of the RR heuristic of associating to each candidate path
a flow value in order to deduce probabilities for the random selection procedure. From Table
6.6 we observe how a variation in the k-splittable parameter does not substantially affect
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the times for generating an initial solution except for the unsplittable case with the RR
strategy, see in particular instances d-70-1, d-250-1, d-450-1 and d-500-1. In these cases, the
competing approach presents problems in finding a feasible unsplittable flow within 72 time
instants requiring several reiteration of the selection and resolution process. Such repeated
infeasibilities suggest that the random selection of the paths is an inadvisable strategy in
the unsplittable case. Some experiments were further conducted providing the RR a longer
time horizon to reduce/avoid this initial infeasibility. This resulted in a faster initialization
process but no improvements w.r.t. the final best solution were achieved during the one-hour
process.
The improvement phase of our matheuristic reveals its potential, too: despite the few cases
of initial disadvantage, the matheuristic always ends up with an equal or better final solution
(strictly in 80.56% of the cases). Thus, we can deduce how the lists of paths collects a set
of adequate and high-quality candidates that can be efficiently adopted to improve the solu-
tions. Moreover, the sequential enlargement of the neighborhood, controlled by s and ∆, and
its construction rule allow for a better and fast exploration of the large feasible region. In
terms of computational time efficiency, our method needed substantially less time to identify
the final best value in almost all instances, particularly in the 2-splittable case as shown
by the aggregated results in Table 6.6. Within 32 minutes the improvement phase of the
matheuristic has already found all the final best solutions (95.37% even within 10 minutes),
while in 32.41% of the instances the RR is still conducting a fruitful randomization search.
The graphics in Fig. 6.1 represent the behavior of the algorithms depending on the k pa-
rameter and on the size of the digraph in terms of number of nodes, case 6.1a and 6.1b
respectively. We report on the y-axis the ratio between the final best solution provided by
our matheuristic and the one by the RR , averaged among all considered Dense instances.
Note that case 6.1a graphically represents the values of the last column of Table 6.6. We
can observe a decreasing trend as the parameters increase, with more regularity in the left
case, with an average ratio almost always under value 1.0. This means that the overall box
implemented by our matheuristic, both construction technique and improvement rule, is sub-
stantially less affected by the increase in the number k of allowed paths and in the dimension
of the network w.r.t. the competing approach scheme to provide good final solutions to the
problem. This confirms the scalability and robustness of our proposed approach. Figure
6.2 analyses how strategies achieved neighbor improvements over the one-hour time limit.
Here the y-axis shows the ratio between the final best solution and the current best solution
at a given time, averaged among all considered instances (we report values starting from10 minutes; note that only after 1600 seconds the RR heuristic founds an initial solution
to all the Dense instances). We can observe that the matheuristic presents a faster overall
convergence to its best solution, with an initial ratio already higher than 0.99. These results
are strictly related to the neighborhood construction rules employed by the methods: relying
on a ranked list of quickest paths instead of a complete randomization selection results a
more efficient policy that allows to get good solutions in shorter times.

The Carbin test set Instances in this test set present a number of commodities which is
high if compared to the network size. Such a final experiment is therefore carried out to
stress test the algorithms on instances where a relevant number of commodities must be si-
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multaneously routed in the dynamic network. Results of our algorithm and of the competing
RR approach are collected in tables with the same layout as for the Dense case, see Table
6.7 for the aggregated results and Appendix D for the complete results.
In 50% of the cases our algorithm finds a strictly better initial solution with an additional22.92% where both initialization procedures identify a solution with the same makespan
value. The remaining cases of initial advantage of the RR , see values greater than 1.0 in
the “ratio init sol” column of Table 6.7, mainly happen in the most congested networks, see
instances Bs05 and Bs07 in Appendix D. Despite this, our matheuristic ends up with a
better or equal final solution in 91.66% of the instances, revealing thus the capabilities of its
improvement phase. In only four instances the RR prevails, see network Bl01, identifying a
makespan equal to 38 while our matheuristic is stuck at solutions with objective value 39. A
further insight is given by the “ratio best sol” column in Table 6.7: in the 6-splittable group
of instances the RR heuristic outperforms on the average the matheuristic. In all the other
cases our algorithm dominates. In terms of computational times the initialization and ex-
ploration procedures adopted in the matheuristic are faster than those of the RR in 93.75%
and 83.33% of the cases, respectively. Moreover, according to the aggregated results, our
matheuristic is faster on the average in constructing the initial solution for all k-splittable
cases. The best average time to compute the final solution occurs when the k-splittable
parameter equals two.
Overall, the experiment confirms a better performance of the matheuristic, albeit its ad-
vantage on the competing RR approach turns out to be somewhat reduced on this test set
when compared with the results on the Dense instances. Such behavior could be motivated
by a faster growth of the matheuristic MIP problems size when increasing the number of
commodities in combination with s, ∆ and k .
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7. A Branch and Price approach for the
Quickest Multicommodity k-splittable
Flow Problem

7.1. Introduction

In the previous chapters, we introduced the Quickest Multicommodity k-Splittable Flow
Problem and provided a quick and powerful algorithm for solving medium to large-sized
instances of such novel optimization problem. Motivated by the proved strong NP-hard
complexity of the problem, a matheuristic approach was designed with the aim of identifying
good quality solutions in short computational times. The resulted VLNS-based matheuristic
was validated and compared with different suitable strategies in a thorough computational
experience, but the lack of available benchmarks to assess optimality and quality of the
matheuristic results prevented a complete performance analysis on its capabilities. Indeed,
a preliminary batch of optimality check experiments was achieved by solving the path-based
formulation of the problem by linear programming on a restricted set of very reduced-size
instances, where an enumeration of all the available paths was still possible. A further insight
into optimality analysis was provided by the free-flow relaxation employed as a valid lower
bound to the problem. Indeed, the availability of such bound led to a rough estimation of the
optimality GAP and to a proof of optimality if the free-flow makespan was exactly met by
the best matheuristic’s solution. This experiment was conducted on small to medium-sized
instances to ensure time-efficiency in identifying an optimal unrestricted multicommodity
flow (recall the free-flow relaxation of the problem is still NP-hard). Finally, in larger net-
works and with a higher level of congestion, both of the previous benchmark methods could
not be applied and a comparison with a state-of-the-art heuristic adapted to fit the dynamic
environment was conducted, with a consequent loss of information related to optimality of
the solutions in favor of a more general quality assessment.
It is now clear that the design of exact algorithms could fill this gap, permitting a dependable
evaluation of the matheuristic performances and in general of any tailored heuristic method
for solving the QMCkSFP. Limitations of exact approaches in tackling increasing-sized in-
stances are well-known in the scientific literature; however, the potential availability of such
exact tools represents an added value and sometimes a strict requirement in many real-life
situations where a precise quality measure is significant for an actual and more conscious
implementation of the identified solutions. Moreover, in particular contexts such as strategic
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or tactical planning of emergency operations, the need for optimal solutions might provide
a valid motivation for adopting exact solution methods allowing very large computational
times.
To provide a complete answer to such relevant questions, the research activity focused on the
design, development, implementation and test of the first exact algorithm for the QMCkFP.
The proposed resolution approach exploits the path-based formulation of the problem and is
based on the Branch and Price paradigm which, integrating Column Generation and Branch
and Bound in an unique framework, is employed to cope with the exponential number of
path-related mixed integer variables. In particular, the algorithm implicitly and efficiently
explores the feasible region by iteratively solving restricted and relaxed versions of the original
problem and provides as an output either an optimal solution or a certificate of infeasibil-
ity. We refer the reader to the following works for details on the Branch and Price strategy
[10, 113, 82, 41].
In this Chapter we present the developed Branch and Price algorithm detailing all of its pro-
cedures in dedicated sections and presenting the thorough computational analysis conducted
to test its performance. Finally, the strategy has been employed as a tool to validate and
assess the quality of the matheuristic solutions presented in the previous chapter.
The Branch and Price steps are introduced starting from the construction procedure of the
so-called Restricted Relaxed Master Problem (RRMP) in Subsection 7.2.1: the method per-
forms a linearization of the time-arrival variables and excludes by substitution those path
design variables in charge of ensuring k-splittability restrictions. In Subsection 7.2.2, we
present the state-of-the-art method employed by the Branch and Price algorithm for the
initialization of the pool of variables. Based on the ranking procedure described in Sub-
section 3.4.2, it generates for each commodity the top-ranked k quickest paths w.r.t. their
transmission time. The same technique was integrated in the matheuristic approach for the
generation of a set of high quality candidate paths, see Section 6.2.1. The dynamic nature of
the considered optimization problem translates in the need of employing a time-expansion
procedure within the Column Generation phase, when new promising variables are identified
through a pricing routine. This aspect is thoroughly discussed in Subsection 7.2.3. The next
Subsection 7.2.4 is devoted to present the branching rules designed for restoring feasibility.
A first original strategy is introduced whenever an optimal solution to the RRMP violates
k-splittable flow constraints: it forces the usage of some paths while forbidding others over
the discretized time horizon. Since such k-splittable branching rule works on path-based
variables, the generated branching cuts are included in RRMPs of the child nodes. The
second rule implements a refined version of the traditional binary branching on fractional
variables by selecting the candidate time-arrival variable at the highest time instant. The
pricing oracle is modeled as a Shortest Path Problem with Forbidden Paths (SPPFP) to
ensure that no variables related to local forbidden paths are identified as new entering candi-
dates. The pricing problem is solved through a tailored labeling algorithm based on dynamic
programming in an extended TEN of the original digraph, see Subsection 7.2.5. Additional
limited resources are included in the labels of the algorithm to avoid the generation of non-
elementary paths. The last section is dedicated to computational experiments conducted on
the developed Branch and Price algorithm: in Subsection 7.3.1 we focus on small to medium-
sized instances to prove the correctness of the strategy and provide measures of quality of
the solutions identified, whereas in Subsection 7.3.2 we make use of our exact algorithm to

62



assess quality of the matheuristic results providing optimal solutions or better certified lower
bounds on a testbed previously utilized in Section 6.3.2.

7.2. An exact algorithmic approach

The Branch and Price strategy, integrating Column Generation and Branch and Bound in
an unique framework, results particularly recommended for tackling MILP problems that
present a huge number of variables [10, 113, 82, 41]. Indeed, it allows to work on restricted
and relaxed versions of the original problem where only certified good quality variables are
considered and to implicitly explore the space of feasible solutions ending up with provably
optimal solutions or a proof of infeasibility. More in detail, it applies the Branch and Bound
strategy to the original problem restricted to a proper subset of columns. At every node of
the decisional tree, a relaxed version of this problem, namely the Restricted Relaxed Master
Problem (RRMP), is solved to optimality by means of Column Generation. To this aim, the
so-called pricing oracle iteratively checks whether the optimal solution to the current RRMP
could be improved by introducing new columns. If no such column exists, then all original
variables are implicitly treated in the current relaxation. At this point, the feasibility of
the solution for the original problem is checked, eventually leading to the application of the
branching phase whenever at least one of the original constraints is not satisfied.
Note that Branch and Price perfectly suites the QMCkSFP, as fractional x and binary z
variables in the provided formulation are related to the number of paths for each commodity,
which grows exponentially with the size of the digraph, and to the considered discretized set
of time instants, see Section 5.2. Therefore, an explicit enumeration of all these variables,
and thus of all paths available for flow transshipment, would result prohibitive for real-sized
instances of the problem.
The design of an efficient Branch and Price algorithm requires a high level of customization,
based on the specific features of the optimization problem to be solved. The following
subsections are devoted to provide full details for each procedure of the original Branch and
Price approach tailored to solve the QMCkSFP.

7.2.1. The Relaxed Restricted Master Problem

The Branch and Price algorithm works on restricted versions of the path-based formulation
of the QMCkSFP, obtained by considering for each commodity only a proper subset of the
available paths, i.e. P′h ⊂ Ph, ∀h ∈ H, and iteratively solves a relaxation of these restricted
problems at each node of the Branch and Bound tree by a Column Generation procedure.
The employed relaxation method first linearizes all integer variables and then replaces bot-
tleneck constraints (5.7) with the following feasible constraints, implementing an aggregation
over time and a relaxation of the right hand side:

∑
t∈T

xhpt ≤ σhzhp ∀h ∈ H, p ∈ P′h (7.1)
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The resulted problem is known as the Relaxed Restricted Master Problem (RRMP).
We now prove that the following Lemma holds.

Lemma 7.2.1. There exists an optimal solution to the RRMP saturating Constraints (7.1).

Proof. Let (ζ̂ , x̂hpt, ŷht , ẑhp ) ∈ (R+,R|H||P′h|T+ ,B|H|T ,B|H||P
′
h|) be an optimal solution to the RRMP,

and let

0 ≤ ˆ̂zhp :=∑t∈T x̂hpt
σh

∀h ∈ H, p ∈ P′h. (7.2)

We must prove that the solution (ζ̂ , x̂hpt, ŷht , ˆ̂zhp ) is optimal for the RRMP, too. Note that its
feasibility simply follows from constraints (7.1) i.e.:∑

p∈P′h

ˆ̂zhp = ∑
p∈P′h

(∑
t∈T x̂hpt
σh

)
≤
∑
p∈P′h

σhẑhp
σh

= ∑
p∈P′h

ẑhp ≤ k ∀h ∈ H.

Moreover, domain constraints ˆ̂zhp ≤ 1 ∀h ∈ H, p ∈ P′h are implied by population constraints

(5.4) as
∑

t∈T x̂hpt ≤ σh ∀p ∈ P
′

h. Finally, the optimality follows from the observation that
both solutions have the same objective function value.

Lemma (7.2.1) allows for a substantial reduction of the number of variables and thus a con-
sequently simplification of the overall Branch and Price approach. Indeed, the z’s decision
variables can be eliminated from the RRMP by substituting each of their occurrence with
their definition provided in (7.2). Moreover, in this new variable space, the k-splittable con-
straints are always satisfied and can be therefore excluded from the formulation. See Truffot
et al. [111] for a similar approach adopted in a Branch and Price algorithm for the static
Maximum k-splittable Flow Problem.
The final formulation of the RRMP results in:

min ζ (7.3)

tyht ≤ ζ ∀h ∈ H, t ∈ T . (7.4)∑
p∈P′h

xhp(t−lp) ≤ Chtyht ∀h ∈ H, t ∈ T . (π1
ht ≤ 0) (7.5)

∑
p∈P′h

∑
t∈T

xhpt = σh ∀h ∈ H. (π2
h) (7.6)

∑
h∈H

∑
p∈P′h

δpijxhp(t−tpi ) ≤ cij ∀(i, j) ∈ A, t ∈ T . (π3
ijt ≤ 0) (7.7)

yht ∈ [0, 1] ∀h ∈ H, t ∈ T . (7.8)

xhpt ≥ 0 ∀h ∈ H, p ∈ P′h, t ∈ T . (7.9)

ζ ≥ 0 (7.10)
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Note that the RRMP corresponds to the linear relaxation of the free-flow version of the
problem restricted to only the P′h paths.

7.2.2. Initial columns

At the beginning of our algorithm we generate the initial subsets of paths to be included in
the RRMP at the root node. In particular, for each commodity h we identify the collection
of oh-dh paths that occupy the first k positions when listed in an increasing order of their
transmission time. This means that for each commodity the k top-ranked quickest paths
are selected. The construction of such paths is performed by adopting the lazy version of
the Chen’s approach presented in Pascoal et al. for ranking quickest loopless paths [96, 97]
together with the Yen’s algorithm [116], see Subsection 3.4.2. Recall that the method keeps
in memory an ordered list of shortest loopless paths, each of them obtained in a specific
subgraph of the original graph. At every iteration the best shortest path in the array w.r.t.
the transmission time is selected and replaced with the next shortest loopless path found
in the related subgraph. The columns of the initial RRMP are then accordingly populated
by including, in addition to all path-independent variables, those fractional variables xhpt
associated with each identified quickest path p and repeated for each discrete time step
t ∈ T .

7.2.3. The Pricing Problem

The pricing problem is in charge of identifying additional fractional x variables that, when
added to the current RRMP, would lead to an improvement in the objective function value.
This is done separately for each commodity by looking for the pair (path, departure time)
that presents the minimum reduced costs in the optimal solution of the RRMP at the current
node. Formally, the following problem is solved:

ĉhp̂t̂ := π̄2
h + min

p,t

(∆(t+lp≤T )π̄1
h(t+lp) + ∆(t+tpi ≤T ) ∑(i,j)∈A δpij π̄3

ij(t+tpi )) ∀h ∈ H,

where the minimization occurs over all oh-dh paths for the commodity h and departure in-
stants within the considered time horizon, ∆exp is a binary indicator taking value 1 if exp
is true, and π̄i, i = 1, 2, 3 are the opposite values of the current optimal dual variables as-
sociated to constraints (7.5), (7.6) and (7.7), respectively. Therefore, if ĉhp̂t̂ < 0 the current

solution is not optimal for the RRMP and the columns related to all variables xhp̂t ∀t ∈ T
are included to the RRMP. On the contrary, if ĉhp̂t̂ ≥ 0 no new columns need to be added: in
this case, feasibility of the current solution for the initial original problem has to be checked
and, when this is not met, the branching phase has to be performed.
We model the pricing problem on a modified version of the original TEN (see Subsection
3.4.1) where an additional super source node o′ and super sink node d′ are introduced and
then connected through outgoing arcs directed to each time-replica of the origin, for seek
of simplicity indicated as (o′, oh)t, and through incoming arcs originating from each time-
replica of the destination of the commodity, i.e. (dh, d′)t, respectively. Capacities of these
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artificial arcs are unrestricted and their lengths are set to zero. The set of holdover arcs
in the so-generated TEN, already restricted to only those deriving from time-replica of the
source node, is not required anymore, as a postponed departure is now modeled through the
activation of an arc between the super source and the origin of the commodity at the desired
departure time.
The pricing problem in the extended TEN graph, indicated as D ′T = (V ′T ,A′T ), results thus
in a o′-d′ Shortest Path Problem where the length associated to arc (i, j)t ∈ A′T equals:

bijt = (γjdhπ̄1
h(t+λij ) + π̄3

ijt)
where binary indicator γjdh is one if j = dh, zero otherwise and bijt = 0 ∀(i, j)t ∈ A′T \ AT .
Note that arc lengths have positive values and no directed cycles can be detected due to the
specific structure of the TEN graph.
The explicit model of the pricing problem follows, being binary variables ωijt = 1 if the
commodity traverses arc (i, j)t, zero otherwise.

min ∑
(i,j)t∈A′T

bijtωijt (7.11)

∑
t∈T

ωo′oht = 1 (7.12)∑
t∈T

ωdhd′t = 1 (7.13)∑
(j,i)t̄∈A′T : t=t̄+λji

ωjit̄ −
∑

(i,j)t∈A′T
ωijt = 0 ∀ it ∈ VT . (7.14)

ωijt ∈ {0, 1} ∀ (i, j)t ∈ A′T . (7.15)

Constraints (7.12) and (7.13) impose the origin of the path at node o′ and the destination at
node d′, respectively, while Constraints (7.14) ensure the identification of a non-interrupted
path. These are applied to all time-replica of all original nodes, including the origin and
destination nodes for the commodity. The optimal solution to this problem identifies a pair(p̂, t̂) where p̂ is defined by the sequence of selected arcs and the departure time t̂ by the time
instant at which the origin node of the commodity is traversed. In the case of an infeasible
RRMP, Farkas pricing is applied to identify candidate pairs for path and departure time
that can reduce the infeasibility, see [41]. If at least one such pair exists, its related path-
flow variables for each feasible time instant are added to the RRMP. Otherwise, the current
node is discarded. Note that in the case of this happening at the root node, i.e. before
any branching step is performed, the algorithm stops, having proved the infeasibility of the
original dynamic problem.
Figure 7.1 depicts a possible solution to the pricing problem for a given commodity. More in
detail, the red o-d path used at time one in the original dynamic network on the left results
in the red o′-d′ path in the modified TEN on the right.
As it will be explained in detail in the next subsections, the presented linear programming
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Fig. 7.1: Modellization of the pricing problem in an extended version of the TEN.

formulation itself cannot be straightly adopted as a tool for solving the pricing problem, as
additional constraints deriving from the application of an original branching strategy need to
be embedded throughout the resolution process. Instead, a dynamic programming approach
is designed to solve an ad-hoc variant of the SPP that implicitly accounts for the above
mentioned branching decisions.

7.2.4. Branching Strategy

The branching step occurs whenever the optimal solution to the current RRMP violates the
original problem’s constraints. Recall that the RRMP doesn’t ensure y’s integrality and the
satisfaction of the k-splittable flow constraints as binary z’s have been discarded during the
relaxation phase.
In the following we first describe the branching rule developed for restoring feasibility w.r.t.
limitations on the number of paths and then we present the refined strategy related to the
binary branching on time-arrival variables.

The k-splittable branching We discuss here the case of having at least a commodity sending
positive amount of flow on k +α paths with α ≥ 1 in the optimal RRMP solution of a given
node. The branching strategy applied to one of these commodity h identifies k + 1 quickest
paths among the used ones, i.e. the k+1 activated paths with minimum transmission times,
and collects them in the ordered set P′′h. Then, it generates k + 1 child nodes Nj , j =1, . . . , k + 1 in the decisional tree as follows: in a given children Nj it imposes a branching
constraint that forbids the usage over time of the j-th path and a second one that forces to
route flow through paths pi ∈ P

′′

h, ∀i < j over the time horizon. This results in:∑
t∈T

xhpj t = 0 ∑
t∈T

xhpit ≥ ε, ε > 0, ∀i < j.
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The integration of such constraints in the RRMP of the child nodes generates additional
dual variables that must be accounted for computing reduced costs. However, note that
dual variables related to forced paths can be excluded from this computation still ensuring
a correct implementation of the column generation procedure. The same doesn’t apply to
local forbidden paths as the SPP formulation provided in Section 7.2.3 might not be able to
avoid their repeated generation. Subsection 7.2.5 is devoted to present the technique designed
to deal with this issue. In particular, we decided to reformulate the pricing problem as a
Shortest Path Problem with Forbidden Paths and additional node-set resources to implicitly
account for the forbidden path-related branching decisions.

An improved binary branching The current RRMP optimal solution might present binary
time-arrival variables with fractional values, i.e. ∃h ∈ H, t ∈ T s.t. yht ∈]0, 1[. In this case,
we apply a 0-1 branching to the yht variable presenting the highest time instant among all
candidates. However, note that there exist cases where the integrality of y’s can be manually
adjusted without requiring a branching step. As instance, if no commodity flow arrives at
time instant t in the optimal solution (ζ̂ , x̂hpt, ŷht ) of the RRMP, i.e.

∑
p∈P′h

x̂hp(t−lp) = 0, we

simply set ŷht = 0. Moreover, if ŷht t < t ≤ dζ̂e, i.e. rounding up the time-arrival variable
would generate an equivalent optimal solution, we simply set ŷht = 1.

7.2.5. A novel Dynamic Programming algorithm for the Pricing Problem

As detailed in the previous section, the developed k-splittable branching strategy imposes
a reformulation of the pricing oracle. Indeed, the SPP structure presented in Section 7.2.3
is no longer valid due to the need of accounting for local forbidden paths during column
generation. To this aim, we re-model the pricing problem as an o′-d′ Shortest Path Prob-
lem with Forbidden Paths (SPPFP). The latter is a particular variant of the well-known
Resource-Constrained SPP that asks for the identification of a minimum length path that
is not part of a given set of forbidden paths, see [114, 99].
We solve this novel pricing problem via a dedicated label-setting algorithm that utilizes for
each forbidden path a limited resource whose consumption is checked and updated during
the label extension procedure. The finite availability of resources ensures that the optimal
solution, if it exists, doesn’t encompass flows traversing completely a forbidden path at any
time. The optimal (path, departure time) pair can be then retrieved by the label at the
super sink minimizing the total cost of the traversed arcs. We refer the reader to the work
by Di Puglia Pugliese and Guerriero [30] for the resolution technique designed for the static
flows environment.
Note that a computation of the previously described algorithm might generate a path with
loops over time, i.e. a path traversing the same node at multiple instants over the time hori-
zon. To avoid this identification, we introduce for each node in the original dynamic digraph
a limited resource, namely node-set resource to prevent the flow from traversing the same
node multiple times. We now provide formal details of the developed strategy; a pseudocode
of the algorithm is provided in Algorithm 3.
Consider the set F of forbidden oh-dh paths for commodity h that are locally imposed at
a certain node in the decisional tree. To each path pk ∈ F we associate a finite amount of
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path-related resource equal to Pk = n(pk ) − 2, where n(pk ) is the number of nodes in the
path. All path-related resources are collected in the vector P = [

P1, P2, . . . , P |F|]. Given
a subpath q from the super source o′ to a given node it in the TEN graph, we denote

by Uit (q) = [
U1
it (q), . . . , U |F|it (q)] the vector of resources consumed along q, being Ukit (q) the

number of consecutive arcs of the k-th forbidden path pk that are traversed by subpath q
starting from the initial arc at a certain instant in the time horizon. Let the multiplicity
over time of a node j ∈ V in a subpath q be the number of times the node is traversed
along the path within the time horizon, i.e. mj (q) = ∑t∈T δjt (q), where δjt (q) is one if node
jt is part of q, zero otherwise. For each node in the original digraph, say it j with position
index l ∈ {1, . . . , n} in V, we introduce a node-set resource N l with limit equal to one.
Whenever the node is traversed at a given time by subpath q from o′ to it, the resource

consumption vector Vit (q) = [
V 1
it (q), . . . , V |V|it (q)] is activated in the correspondent node-set

resource, i.e. V lit (q) = 1. In this way we ensure a multiplicity over time which is at most
one for each original node. The complete vector of the considered limited resources results
in R = [

P,N
] = [

n(p1) − 2, . . . , n(p|F|) − 2, 1, . . . , 1]. To each subpath q from o′ to node
it we associate a state sit (q) = (bit (q),Wit (q)) where bit (q) is the total cost of the subpath
expressed as the sum of its arcs’ costs and Wit (q) = [Uit (q), Vit (q)] its resources consumption.
As more than one path might exist from o′ to node it we collect all the associated states in
the set Sit , where the element sit (qk ) refers to the k-th path in the list.
We extend the definition of dominance provided in [30] to our case as follows: given two
states associated to the same node it in the TEN, i.e. sit (q1) and sit (q2) ∈ Sit , we say that
the first dominates the second iff bit (q1) ≤ bit (q2), Wit (q1) ≤ Wit (q2) and at least one of the
inequalities is strict.
A state is said to be feasible if Wit (q) ≤ R while it is named efficient or non dominated if no
other state associated to the same node dominates or equals it. Note that the definition of
dominance is correctly preserved by the developed extension rule.
The proposed algorithm collects in the list L the unprocessed states that can be still ex-
tended to at least one new state and initialize it with state so′(q1) = (0, 0̄), correspond-
ing to the initial label at the super source node. Then, it iteratively selects the state
sit (q) = (bit (q),Wit (q)) ∈ L with lower cost and extends it generating efficient and feasi-
ble states for each adjacent node in the TEN of node it. Suppose node jt′ ∈ δ+(it) is
selected, with j being the l-th node in V. If V lit (q) = 1, meaning that node j has been already
visited by subpath q over time, the related extension is not performed and the adjacent
node is skipped. Otherwise, the extension function generates a new state s̄ = (b̄, W̄ ) where
b̄ = bit (q) + bijt and:

Ūk =


1 if (i, j) is the first arc of path pk ,
Ukit (q) + 1 if (i, j) directly follows the last arc of subpath q in path pk ,0 otherwise

V̄ l = {1 if j is the l-th node in V,
V lit (q) otherwise
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for each k = 1, . . . , |F| and l = 1, . . . , |V|. The novel state is added to the list Sjt′ iff it satisfies

the path-related resource limits Ūjt′ (q′) ≤ P, where path q′ = q ∪ (it, jt′). The dominance
rule is then applied to delete non promising states at node jt′ , i.e. any sjt′ (qk ) ∈ Sjt′ such
that s̄ ≤ sjt′ (qk ). Finally, state sit (q) is deleted from list L after checking all of its successors.
The algorithm stops when the list L is empty and returns the least cost state in the set Sd′
of the super sink node and the related reconstructed o′-d′ path.

Algorithm 3 Dynamic programming-based approach

1: Initialization
so′(q1) = (0, 0̄), L = {so′(q1)}, So′ = {so′(q1)};
Sit = ∅ ∀it ∈ V ′T \ o′;

2: Selection of the state
if L = ∅:

select the minimum cost path qk among all sd′(qk ) ∈ Sd′ ;
q∗ ← qk ;
return q∗;

else:
select a state sit (qk ) ∈ L with minimum cost;

3: State extension
for all jt′ ∈ δ+(it), j the l-th node in V:

if V lit = 1:
continue;

s̄← ExtendState(sit (qk ), jt′);
if s̄ is not dominated in Sjt′ ;
Sjt′ ← append(s̄);
L← append(s̄);
update efficient states in L and Sjt′ ;

L← L \ sit (qk );
goto 2;

7.3. Computational Experience

In this section a thorough computational experience performed on the designed Branch and
Price algorithm to solve instances of the QMCkSFP is presented and discussed.
In particular, in Subsection 7.3.1 we begin by studying the correctness of our exact algo-
rithm and measuring its computational performances when applied on a collection of small to
medium-sized instances extracted from the Carbin testbed (see [44] for the original testbed
in the context of static k-splittable flows) and adapted here to fit the dynamic flow setting.
Subsection 7.3.2 is devoted to the use of the Branch and Price approach as a tool to assess
the quality of the solutions obtained by the designed VLNS-based matheuristic, see Chapter
6. In particular, we solve the Grid testbed previously used in Section 6.3.2 with our Branch
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and Price algorithm, feeding it with results of the matheuristic as starting solutions, then
measuring and comparing the residual optimality GAP.
Our Branch and Price approach has been implemented in the C++ language and the exper-
iments conducted using the SCIP Optimization Suite v5.0.0 [50] in its default setting on a64bit Intel Xeon CPU at 2.80GHz with 64GB memory, running Ubuntu 14.04.2. In both
of the experiments the k top-ranked quickest paths for each commodity have been provided
as initial set of columns, implementing the ranking procedure described in Section 3.4. Fol-
lowing the results of a preliminary batch of tuning experiments, the binary branching on
the time-arrival variables has been applied as a first branching strategy before the branching
strategy restoring the k-splittable feasibility.

7.3.1. Performance analysis of the Branch and Price algorithm

In this experiment we test our exact algorithm on a collection of Carbin instances to analyze
its computational performance by allowing three hours of computational time. The test set
is composed of 8 instances with 32 nodes and 96 arcs (from 1 to 10 periods long), each of
them tested with three different levels of flow split parameter k = 1, 3, 5 and three different
levels of commodities 4, 8 and 12 for a total of 72 instances. In this experiment we fed our
exact algorithm with a valid lower bound (LB) on the optimal makespan of the instance
provided by the free-flow relaxation of the problem, i.e. the Quickest Multicommodity Flow
Problem (QMCFP), where no bound is imposed to the number of active paths. We refer to
Subsection 6.2.3 for a description of the procedure used for the resolution of the QMCFP.
For each instance we also consider a tailored time horizon for flow transshipment obtained by
computing a feasible solution through the initialization step of the VLNS-based matheuris-
tic, see Subsection 6.2.1. Recall, the procedure generates a feasible initial solution to the
QMCkSFP by solving a restricted version of the mixed-integer path-flow formulation of the
problem where only the best k quickest paths for each commodity are considered. Note that
the obtained makespan is a valid upper bound (UB) to the instance optimum and it helps
in containing the impact of the time dimension in the Branch and Price, especially in its
pricing routine.
The complete results of this experiment are presented in Appendix E. In the first column the
name of the instance is provided as Bl0x-y-z where y represents the number of commodi-
ties and z the k-splittable parameter. Columns “primal” and “dual” show the primal and
dual solution values provided after three hours of running time of our exact algorithm. The
optimality GAP is presented in column “GAP” while column “nodes” expresses the number
of nodes explored during the computational process and column “t” the required computa-
tional time expressed in seconds. The next two columns show information related to bounds
provided in input to the instances, i.e. the upper bound “UB” and the lower bound “LB” .
The next values present performance indicators w.r.t. the execution of the LP solver, the
pricing procedure and the branching rules, where “br. K” refers to the branching rule on the
k-splittable constraints and “br. Y” to the modified fractional branching on the time-arrival
variables. “Calls” entries show the number of times the procedure has been activated; time
“t” entries the time spent (in seconds) in performing the procedure. Column “pr. paths”
indicates the number of times a path with strictly negative reduced costs was identified by
the pricing routine. Recall that for each of these paths all the time-replica of the related flow
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Table 7.1: Comparison between the Default and the Incumbent settings on the Carbin test set

Default Incumbent
optimal 49 49
suboptimal 19 19
not identified 4 4
optimal (%) 68.06 68.06
suboptimal (%) 26.39 26.39
not identified (%) 5.55 5.55

GAP (%) 8.12 7.88
t (s) 3744.22 3610.10
nodes 273.82 285.67

UB 51.74 51.74
LB 44.25 44.25
UB opt 6 6
LB opt 40 40
UB opt (%) 12.24 12.24
LB opt (%) 81.63 81.63

LP calls 2186.64 1958.65
LP t (s) 1.17 1.10

pr. calls 317.72 307.58
pr. t (s) 3737.74 3605.43
pr. t amean (s) 327.47 415.09
pr. paths 17.94 17.14
pr. added vars 321.56 316.63
max labels 7747.33 7394.72
mean labels 2660.51 2502.08

br. Y calls 164.88 170.32
br. K calls 92.33 70.33
br. K branchings 48.99 45.66

leaves 72.75 69.92
nodes left 147.19 146.11
max depth 13.92 15.34
backtracks 53.18 50.25
backtracks (%) 9.67 10.20
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Table 7.2: Average results on the Carbin test set aggregated by the flow split parameter

k
1 3 5

optimal 6 20 23
suboptimal 14 4 1
not identified 4 0 0
optimal (%) 25.00 83.33 95.83
suboptimal(%) 58.33 16.67 4.17
not identified(%) 16.67 0.00 0.00

GAP (%) 23.86 2.67 0.46
t (s) 8352.23 2352.90 527.55
nodes 511.63 305.96 3.88

UB 60.08 48.67 46.46
LB 44.25 44.25 44.25
UB opt 6 0 0
LB opt 0 17 23
UB opt (%) 25.00 0.00 0.00
LB opt (%) 0.00 70.83 95.83

LP calls 3881.29 2612.92 65.71
LP t (s) 1.98 1.43 0.10

pr. calls 617.13 329.96 6.08
pr. t (s) 8342.47 2349.34 521.41
pr. t amean (s) 888.47 32.60 61.34
pr. paths 33.42 17.83 2.58
pr. added vars 692.46 235.33 36.88
max labels 17365.67 3320.13 2556.21
mean labels 6606.92 708.29 666.33

br. Y calls 334.29 158.29 2.04
br. K calls 170.17 105.71 1.13
br. K branchings 94.33 51.67 0.96
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Table 7.3: Average results on the Carbin test set aggregated by the number of commodities

h
4 8 12

optimal 18 17 14
suboptimal 6 5 8
not identified 0 2 2
optimal (%) 75.00 70.83 58.33
suboptimal (%) 25.00 20.83 33.33
not identified (%) 0.00 8.33 8.33

GAP (%) 9.61 4.31 10.31
t (s) 3054.13 3507.58 4670.96
nodes 353.54 290.46 177.46

UB 49.46 49.79 55.96
LB 42.38 42.88 47.50
UB opt 2 3 1
LB opt 13 14 13
UB opt (%) 8.33 12.50 4.17
LB opt (%) 54.17 58.33 54.17

LP calls 2612.08 2711.21 1236.63
LP t (s) 1.16 1.43 0.93

pr. calls 377.75 374.75 200.67
pr. t (s) 3052.02 3495.89 4665.32
pr. t amean (s) 17.34 187.67 777.39
pr. paths 16.63 15.67 21.54
pr. added vars 321.38 230.54 412.75
max labels 2858.00 6765.54 13618.46
mean labels 1118.21 2005.96 4857.38

br. Y calls 186.67 182.75 125.42
br. K calls 117.71 122.00 37.29
br. K branching 49.58 74.71 22.67
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Table 7.4: Results on the Grid test set after the application of the Branch and Price algorithm

After BP
improved GAP 44
improved GAP (%) 55%
improved LB 44
improved best sol 0
improved LB (%) 100%
improved best sol (%) 0%
optimal 29
suboptimal 15
optimal (%) 65.91%
suboptimal (%) 34.09%
GAP amean 4.59%
GAP improv amean 10.11%

variables were added to the RRMP as new columns. The total number of added variables
is collected in the “pr. added vars” column. The next two columns collect information on
the labels generated during the dynamic programming algorithm: the maximum number of
labels generated by a single pricer call is presented in column “max labels”, and the mean
value among all the calls in column “mean labels”. Due to the specific features of the br.K
rule, we implemented additional steps to early detect potential infeasibility of the node be-
fore processing it. In particular, whenever more than k paths are forced or a certain path
is simultaneously forbidden and forced at the current node we stop the branching proce-
dure and cutoff the node having proved its infeasibility for our original problem. Moreover,
whenever exactly k paths are forced, we perform a fast look ahead by introducing in the
current RRMP an additional constraint that forbids the usage of any other non-forced path.
If the problem results infeasible, we again cut off the node, otherwise we add the constraints
as a valid local cut to the current node. In all these cases the generation of child nodes is
avoided. To reflect this diversification of cases, we collect in the “br. K branching” column
the number of times the call to the branching rule led to the generation of at least two child
nodes. The last bunch of entries are related to branch and bound tree statistics: the number
of leaves in column “leaves”, the number of nodes still to be processed in column “nodes left”,
the maximum depth reached during the searching process in “max depth” and in the last
column the number of the backtracks steps performed, column “backtracks”.
Table 7.1 collects the above described key performance indicators averaged on the entire
Carbin testbed. Additionally, row “optimal” shows the number of instances that have been
solved to optimality within the time limit, row“suboptimal” the number of times our method
stopped with a finite but strictly non-zero GAP, and row “not identified” the number of in-
stances for which at least one among the primal and the dual bound was not identified. Rows
“UB opt” and “LB opt” show the number of times the bounds were proved to be the optimal
makespan. The same values are provided also as a percentage. Row “pr. t amean” represents
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the amount of seconds required by a single pricer call on the average. Note that in each call
a dynamic programming round for each commodity is executed. Finally in the last row we
provide the number of backtracks in percentage over the number of total nodes.
Column Default of Table 7.1 is referred to our Branch and Price in its default setting. Re-
sults show overall good performances of the developed algorithm, with a number of instances
solved to optimality equal to 68.06%, an average GAP among all the testbed that is less than10% and an average computational time of around 3700 seconds. Entries related to the op-
timality of the bounds show that in 81.63% of the cases the optimal makespan equals the
free-flow one, while in only 6 instances the UB was proved to be optimal. This shows on
one side that the path limitation in the original problem was on the average not a severe
restriction and on the other side that the provided set of initial paths was in general not
optimal. However, the limited number of identified candidate paths, 17.94 on the average
out of a total of 273.82 nodes, reveals that few more paths were needed to obtain the optimal
multicommodity transshipment. On four instances our method was not able to identify a
valid dual solution and stopped while executing the pricing routine at the root node after
a contained number of iterations. As observed from the complete tables in Appendix E,
these situations correspond to the longest time horizons. Therefore, the behavior can be at-
tributed to a difficulty of the pricing problem when working on a TEN with large dimension
that requires the generation and extension of a huge number of labels, as confirmed by the
“max labels” values that in these cases turn out to be one order of magnitude higher than
the average number on the total test set. Timing values show that most of the computa-
tional time is spent by our strategy in performing the pricer step with an average time of
around 300 seconds per call, while the resolution of the LPs took few seconds on the average.
Branching-related results show on average a branching on the y variables around every two
nodes while only one every five nodes for the k branching. In this second case, note that half
of the time a cutoff or a valid constraint were identified. Finally, note that during the three
hours of running time around two thirds of the generated decisional tree were processed with
a contained number of backtracks in the exploration.
The second column of the table presents average results obtained when complete informa-
tion on a feasible solution were provided to our algorithm. In particular, the incumbent
was identified through the initialization step of the VLNS-based matheuristic presented in
the previous chapter. Note that its makespan value equals the tailored time horizon of the
instance. Results with the Incumbent setting shows somewhat a limited improvement in
the algorithm performances with the same instances solved to optimality but an average
decrease in the computational time of around 100 seconds and a GAP decreasing from 8.12%
to 7.88%. In general this setting required a lower number of runs of the pricing routine and
k-splittable-related branchings but a higher number of branchings on the binary variables
that led to a slightly larger branch and bound tree. Finally, a similar behavior can be ob-
served in both settings when exploring the decisional tree. As no significant achievements
have been achieved providing a complete feasible solution, the remainder of this analysis
section focuses on the results obtained with the default setting.

Analyzing aggregate results We now analyze key indicators aggregated by the k-splittable
parameter as presented in Table 7.2. Results show evident improvements in the algorithm
performance when increasing the flow split parameter, confirming how a higher number of
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usable paths that can be activated is associated with a higher degree of freedom and thus
with an easier identification of the optimal solutions for the transshipment process. More in
detail, the number of instances closed to optimality raises from only 25.00% in the unsplit-
table case to 83.33% in the 3-splittable till reaching a total of 95.83% in 5-splittable setting
with only one suboptimal instance. Accordingly, the average GAP decreases by one order
of magnitude when more than one path can be used by each commodity, the average com-
putational time decreases from around 8300 seconds when k = 1 to just 530 seconds when
k = 5 and the number of nodes presents the same decreasing trend in favor of the 5-splittable
setting. Finally, a similar behavior can be noticed in the average results on the bounds of the
instances where the UB presents a higher optimality on the average in the unsplittable case
whereas the LB in relaxed path restriction settings. In general the unsplittable case presents
the highest average number of generated nodes, pricer calls and both types of branching
iterations, revealing that a tighter number of usable paths entailed a consistent need for
new paths and a recurrent violation of the integrality and k-splittable constraints. A final
consideration concerns the impact of the k-splittable parameter on the pricing timings: note
indeed that the average time per pricing call in the unsplittable instances is around 27 times
higher than those with a 5-splittable setting. The reasons for this might be twofold: on one
side this is related to a larger TEN size on which the pricer operates being this dimension
directly determined by the considered time horizon; on the other side it is related to a higher
number of performed branchings operations of type k that, introducing forbidden paths at
the nodes, reduce the efficiency of the comparison rule to discard dominated labels. These
result in a more time-consuming procedure, a limitation that is frequently experienced when
dealing with label-based dynamic programming algorithms.
Table 7.3 presents averaged results this time aggregated by the number of commodities. Our
Branch and Price algorithm presents better performances on less congested instances, i.e.
when a lower number of commodities must be transshipped. However, this trend is not
completely clear in the entire experiment as shown by the average GAP on the medium con-
gestion level setting that significantly outperforms the others. Indeed, we can observe that
the 4 commodity setting presents the higher percentage of instances solved to optimality in
the shorter computational time, 75.00% in around 3000 seconds, against 58.33% in more than4600 seconds for the 12 commodity case. Moreover, faster pricing steps are performed in
this case, with an average pricing time per call that is 45 times less in the 4 commodity case
than in the 12 commodity case. This behavior is motivated by the fact that on each call of
the pricer the dynamic programming algorithm must be performed separately for each com-
modity and, as in the previous analysis, on a TEN whose dimension is strongly influenced
by the considered time horizon. Therefore, the case with 12 commodities required an equal
number of executions of the label-correcting algorithm at each node in the time-expansion
of the original digraph over 55 time instants on the average (49 time instants in the 4 com-
modity case). Finally, the longer times spent on the pricing routine and the larger amount
of columns added to the nodes reveal a higher need in the congested instances of additional
paths to allow for a better multicommodity transshipment and arc capacities usage. This
resulted in fewer branching steps and thus smaller branch and bound trees.
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7.3.2. Use of the Branch and Price algorithm to assess the Matheuristic
results quality

Possible limitations of exact Branch and Price approaches in coping with increasing-sized
network instances are well know in general, and in the case of our algorithm such scalabil-
ity issues are related to the specific pricing routine that relies on a iterative resolution of a
Resource-Constrained SPP via a dynamic programming algorithm in a time-expansion of
the original dynamic digraph. Indeed, performances of this procedure strongly depend on the
size of the instances in terms of length of the considered time horizon and number of paths
available for flow transshipment. Note that both of these aspects directly affect the amount
of labels to be generated and extended and thus of resources required during the resolution
process. Therefore, coping with very large-scale instances, such as those considered in Sub-
section 6.3.2, would result prohibitive for this class of exact approaches. Nevertheless, our
Branch and Price algorithm can give rise to a further valuable contribution when adopted as
a tool to enrich the computational analysis of heuristic methods and secure enhanced quality
assessment for the solutions identified on QMCkSFP instances.
In particular in this section we present the experiments realized by making use of the Branch
and Price algorithm to certifying the quality of the solutions obtained by the matheuristic
approach presented in Chapter 6. The testbed for this batch of experiments is composed
of the Grid instances where the solutions of the matheuristic were not certified as being
optimal when compared to the free-flow relaxation makespan, see Subsection 6.3.2. This
corresponds to a testbed presenting a total of 80 instances with a number of layers ranging
in {2, 3, . . . , 10} (being each of them a 5 × 5 grid with 80 arcs from 1 to 10 periods long
and bottleneck arcs connecting different layers) 5 different levels of commodities and a flow
split parameter that varies in {1, . . . , 6}. For each experiment we allow six hours of compu-
tational time, provide the free-flow relaxation makespan as a valid lower bound (LB), recall
by construction it is equal to 24 time instants for all the instances, and tailor the allowed
time-horizon based on the makespan of the best solution obtained by the matheuristic ap-
proach.
Appendix F presents the complete set of results for this Grid experiment. The first six
columns show information related to the instance: its name is reported as g-x-y-z where
x is the number of layers, y the level of the commodity and z the k-splittable parameter;
column “nodes”, “arcs”,“h” and “k” report the number of nodes, directed arcs, commodities
and the flow split parameter, respectively. Column “LB” shows the value of the free-flow
makespan, thus representing a lower bound on the instance, while the next two columns
present the matheuristic best solutions after three hours of running time, column “best sol”,
and the related optimality GAP w.r.t. the known free-flow lower bound, column “GAP”.
The remaining columns are devoted to report the results obtained after applying our exact
method with six hours of running time: the certified dual solution is presented in “dual sol”,
the best final solution in “best sol” and the new optimality GAP calculated by these new
information in column “GAP”.
Averaged results are collected in Table 7.4. Results show that in 55% of the instances the
Branch and Price algorithm was able to identify better optimality GAPs with respect to
the ones previously computed, see rows “improved GAP”. In particular, all improvements
were achieved thanks to better certified lower bounds while none of the matheuristic best

78



solutions were discarded for better incumbents, see rows “improved LB” and “improved best
sol”. Note that in 65.91% of these cases the resulting GAP is equal to zero, proving thus
the previously unknown optimality of the matheuristic best solutions, see rows “optimal”.
In the remaining 15 cases, collected in rows “suboptimal”, the new GAP reached 4.59% on
the average, with an improvement w.r.t. the matheuristic’s ones of 10.11% on the average.
On one hand, these results are relevant as they confirm the very high quality levels of the
matheuristic best solutions on the whole Grid test bed, where a large number of certified
optimalities was already identified, mainly on small to medium-sized Grid instances. On the
other hand, these second batch of experiments was instrumental to validate the suitability of
the Branch and Price algorithm as a precious tool to better assess the quality of the heuristic
solutions on those medium to large-sized instances where a purely exact approach is not an
option due to computational hardness.
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8. Conclusions and outlook

In this thesis the challenge of routing flows on a bounded number of active paths within
dynamic flow networks was investigated. In particular, we focused on the joint requirements
of performing flow transshipment operations as quickly as possible and through a prefixed
maximum number of supporting paths for each distinct commodity flow.
In the first chapters we recalled some major methodological results, relevant for the consid-
ered network flow modeling setting, ranging from basic notions from Network Flow theory
to more sophisticated optimization tools known as Flows over time, dealing with the mod-
ellization of flow routing over a certain time horizon, focusing in particular on the quickest
flow variants. Moreover, we discussed some results from the literature on k-splittable flows,
a class of modeling tools securing the activation of at most k paths for each commodity
demand. Despite the apparent advantages arising from the integration of realistic path num-
ber restrictions in dynamic flow routing, an almost complete lack of scientific contributions
addressing this topic was identified through a wide and detailed literature review process.
Exploring the combination of the above mentioned tools within the same network optimiza-
tion framework represented the core of our research activity in this thesis. The aim was to
match a research question widely motivated by an increased amount of real-world applica-
tions that can provably benefit from such enhanced optimization toolbox. This encompasses
all those contexts where a thorough control on both the time spent for flow transshipment
and on the number and features of the activated support paths is a key enabling factor for
the overall success of the processes to be implemented.
Several original contributions were developed in this thesis, organized as follows. In Chapter
5 we formally introduced a novel dynamic flow problem, namely the Quickest Multicommod-
ity k-Splittable Flow Problem (QMCkSFP), explicitly integrating a number of concepts and
modeling characteristics from the literature on k-splittable flows within the class of Quickest
Flow optimization problems. Moreover, the strongly NP-hard complexity of the problem
was here proved and a path-based Mixed-Integer Linear Programming formulation provided.
In Chapter 6 the first resolution approach, designed ad-hoc to solve efficiently large instances
of the QMCkSFP, was detailed. The proposed method builds on a Very Large-scale Neigh-
borhood Search algorithm, hybridized in its exploration routine with an exact mathematical
programming technique. Following a Variable Neighborhood Descent scheme, the algorithm
iteratively constructs large neighborhoods identifying for each commodity a collection of
paths with a given cardinality. The elements of the collections are selected, according to a
set of heuristic rules, from a large list of promising quickest paths generated during the ini-
tialization phase. The matheuristic explores to optimality each constructed neighborhood by
means of the presented path-based formulation, fed with such restricted collections of paths,
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and the best solution found during the overall computational process is finally returned.
The conducted computational experience provided an exhaustive proof-of-concept for the
correctness and effectiveness of the proposed matheuristic resolution strategy and the asso-
ciated MIP formulation, gaining provably optimal solutions on some small to medium-sized
instances. On very large-sized benchmark instances and even in presence of a large num-
ber of commodities, the matheuristic revealed its high level of efficiency, outperforming the
solution quality and computational times of the considered competing approach, which is
based on the Randomized Rounding heuristic, a state-of-the-art scheme for path-restricted
flow optimization problems.
Chapter 7 was devoted to present a second original algorithm, designed for the resolution to
optimality of the QMCkSFP with the aim of providing an efficient modeling support tool
to real-world contexts where the need for optimal solutions is highly required. The exact
algorithm, based on the Branch and Price scheme, explores the feasible region alternating
Column Generation and Branch and Bound steps by employing a relaxed and linearized
path-based formulation of the QMCkSFP where flow split-related constraints are removed.
A first original branching rule aims at recovering the path number limitation feasibility of
the optimal solutions to the RRMPs. Working on path-flow variables, it forbids the usage of
some paths while forcing the activation of some others over the considered time horizon. A
second strategy implements a refined version of the classical fractional branching to restore
integrality of binary variables. The pricing problem, in charge of selecting new promising
entering columns while taking into account local branching cuts, is modeled for each com-
modity in the TEN of the original dynamic digraph as an extended version of the Shortest
Path Problem with Forbidden Paths (SPPFP) with additional limited node-set resources
required to avoid the generation of loops over time. Such SPPFP is then solved via a
dynamic programming algorithm, where the consumption of limited resources, in terms of
consecutive arcs for forbidden path-related resources and of traversed nodes for the node-set
resources, is stored into labels that are extended throughout the procedure.
A computational experience was conducted to test quality performances of the proposed
Branch and Price algorithm examining in particular the impact of its pricing and branching
routines on the overall resolution process. The experiments performed on small to medium-
sized instances showed overall good performances in terms of reached optimality, achieved
in 68.06% of the cases, with average GAP lower than 10% on the average after three hours
of running time. No relevant further improvements were obtained when providing complete
information on a feasible solution as an input. The pricing problem showed a significant
impact on the algorithm performances, in particular on more congested instances, revealing
a difficulty of the dynamic programming routine in solving resource constrained SPPs on
large networks. These scalability issues are motivated by the specific dynamic setting of the
problem, in particular by the considered time horizon that directly determines the size of
the TENs where the pricing problem is modeled, that in turn strongly affects the number
of labels to be generated and extended. An additional experiment was performed with the
aim of enriching computational analysis of the VLNS-based matheuristic approach on the
same collection of small to medium-sized instances previously employed in the matheuristic
experiments. Better lower bounds have been achieved thanks to the Branch and Price algo-
rithm, often providing a certificate of optimality for the matheuristic’s solutions.
The overall outcome of this thesis results therefore in a complete optimization toolbox dealing
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with the introduction of realistic limitations on the number of paths for routing multicom-
modity flows on capacitated network structures while minimizing the required time horizon.
The development of two efficient algorithmic contributions, based on a matheuristic and on
an exact approach respectively, secure an effective support to different decision making op-
erations in a wide range of real-life applications, both when good quality solutions in short
computational times or optimal solutions must be identified.

8.1. Outlook

Some of the future developments for this research will be related to the refinement of theoret-
ical and algorithmic features of the proposed approaches and to the increase of the adherence
of such complete toolbox to real-world situations. As concerns the former, a strong research
focus will be devoted to improve the performance of the pricing problem solver, which showed
sometimes scalability issues while tackling very large instances of the dynamic problem. Some
preliminary efforts in this direction were already conducted while developing this work, by
adapting state-of-the-art techniques [30, 16] conceived to reduce the burden of labels to be
generated and extended in the context of static flows. In particular, a bounding procedure
on the costs, identifying all-pairs shortest paths w.r.t. reduced costs in the TEN, was em-
ployed to early discard non-dominated labels by provably worst associated costs. Moreover,
an iterative procedure was devised to incrementally include node-set resources in the label
structures only when needed, i.e. in the case of identified optimal non-elementary paths.
Finally, a heuristic rule was implemented to interrupt the dynamic programming algorithm
at the first realization of a label reaching the sink node with an associated negative reduced
cost. However, these first attempts produced no relevant achievements w.r.t. pricing com-
putational times in the conducted experiments. Therefore, ad-hoc improvement strategies,
specifically tailored to the problem features, will be investigated to further increase the ap-
plicability of the developed Branch and Price exact approach securing the identification of
certified optimal solutions in a wider range of practical applications.
A second future research line that may be worth to investigate starting from this thesis is
represented by a concrete application of the arising contributions, namely the adoption and
effective use of the proposed QMCkSFP formulation and the associated resolution algo-
rithms to support relevant and complex situations arising as instance in evacuation manage-
ment and in the transportation field, pursuing thus the practical goal that motivated the
study of this scientific setting. This could require an adaptation of the optimization problem
in order to account for specific further operational features, hence posing new challenges
from the modeling and algorithmic perspective.
To conclude, we believe that the formal scientific structure underlying the novel Network
Flow optimization framework introduced in this thesis, based on flows over time subject to
path limitations, will open the door to a number of original contributions in the field and
thus to an efficient and valid support for a wider range of real-world applications.
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Appendices

Appendix A.

Instance Matheuristic CPLEX
nodes arcs h k init t best t moves opt t

sol (s) sol (s) sol (s)
s-2-1-1 18 57 1 1 31 0 31 0 0 31 24
s-2-1-2 18 57 1 2 22 0 21 0 1 21 9
s-2-1-3 18 57 1 3 19 0 19 0 0 19 10
s-2-1-4 18 57 1 4 19 0 18 0 1 18 9
s-2-1-5 18 57 1 5 19 0 18 0 1 18 8
s-2-1-6 18 57 1 6 19 0 18 0 1 18 8
s-2-2-1 18 57 2 1 37 0 37 0 0 37 35
s-2-2-2 18 57 2 2 24 0 24 0 0 24 25
s-2-2-3 18 57 2 3 24 0 22 0 2 22 24
s-2-2-4 18 57 2 4 24 0 21 0 3 21 23
s-2-2-5 18 57 2 5 22 0 21 0 1 21 22
s-2-2-6 18 57 2 6 21 0 21 0 0 21 24
s-2-3-1 18 57 3 1 35 0 35 0 0 35 92
s-2-3-2 18 57 3 2 24 0 24 0 0 24 43
s-2-3-3 18 57 3 3 23 0 20 0 2 20 41
s-2-3-4 18 57 3 4 23 0 19 2 4 19 40
s-2-3-5 18 57 3 5 23 0 19 3 4 19 39
s-2-3-6 18 57 3 6 20 0 19 1 1 19 41
s-3-1-1 27 90 2 1 23 0 23 0 0 23 32
s-3-1-2 27 90 2 2 23 0 19 0 2 19 24
s-3-1-3 27 90 2 3 19 0 19 0 0 19 22
s-3-1-4 27 90 2 4 19 0 19 0 0 19 23
s-3-1-5 27 90 2 5 19 0 19 0 0 19 22
s-3-1-6 27 90 2 6 19 0 19 0 0 19 23
s-3-2-1 27 90 4 1 38 0 38 0 0 38 56
s-3-2-2 27 90 4 2 38 0 33 0 1 33 56
s-3-2-3 27 90 4 3 38 0 31 2 3 31 54
s-3-2-4 27 90 4 4 33 0 30 0 2 30 54
s-3-2-5 27 90 4 5 33 0 30 0 3 30 54
s-3-2-6 27 90 4 6 31 0 30 0 1 30 53
s-3-3-1 27 90 6 1 42 3 35 7 2 35 66662
s-3-3-2 27 90 6 2 29 0 29 0 0 29 82717
s-3-3-3 27 90 6 3 28 0 28 0 0 28 78536
s-3-3-4 27 90 6 4 28 0 28 0 0 28 75298
s-3-3-5 27 90 6 5 28 0 28 0 0 28 75411
s-3-3-6 27 90 6 6 28 1 28 1 0 28 79853

Table 1: Matheuristic: experiments on reduced size instances



Appendix B.

Instance Matheuristic
nodes arcs h k init t best t moves

sol (s) sol (s)
g-2-1-1 50 185 1 1 32 0 32 0 0
g-2-1-2 50 185 1 2 32 0 24∗ 1 4
g-2-1-3 50 185 1 3 28 0 24∗ 0 3
g-2-1-4 50 185 1 4 24∗ 0 24∗ 0 0
g-2-1-5 50 185 1 5 24∗ 0 24∗ 0 0
g-2-1-6 50 185 1 6 24∗ 0 24∗ 0 0
g-2-2-1 50 185 2 1 36 0 36 0 0
g-2-2-2 50 185 2 2 27 0 26 0 1
g-2-2-3 50 185 2 3 24∗ 0 24∗ 0 0
g-2-2-4 50 185 2 4 24∗ 0 24∗ 0 0
g-2-2-5 50 185 2 5 24∗ 0 24∗ 0 0
g-2-2-6 50 185 2 6 24∗ 0 24∗ 0 0
g-2-3-1 50 185 3 1 35 0 35 0 0
g-2-3-2 50 185 3 2 27 0 26 1 1
g-2-3-3 50 185 3 3 26 1 25 1 1
g-2-3-4 50 185 3 4 25 0 24∗ 21 1
g-2-3-5 50 185 3 5 25 1 24∗ 2 1
g-2-3-6 50 185 3 6 25 0 24∗ 2 1
g-2-4-1 50 185 4 1 31 0 31 0 0
g-2-4-2 50 185 4 2 31 1 26 1 4
g-2-4-3 50 185 4 3 29 0 24∗ 8 5
g-2-4-4 50 185 4 4 27 1 24∗ 8 3
g-2-4-5 50 185 4 5 27 0 24∗ 0 2
g-2-4-6 50 185 4 6 27 1 24∗ 4 3
g-2-5-1 50 185 5 1 44 0 34 1 2
g-2-5-2 50 185 5 2 28 0 28 0 0
g-2-5-3 50 185 5 3 26 0 26 0 0
g-2-5-4 50 185 5 4 26 0 25 1 1
g-2-5-5 50 185 5 5 26 1 24∗ 1 1
g-2-5-6 50 185 5 6 26 1 24∗ 1 1
g-3-1-1 75 290 2 1 37 0 37 0 0
g-3-1-2 75 290 2 2 37 0 26 1 6
g-3-1-3 75 290 2 3 26 0 24∗ 2 2
g-3-1-4 75 290 2 4 26 0 24∗ 0 2
g-3-1-5 75 290 2 5 24∗ 0 24∗ 0 0
g-3-1-6 75 290 2 6 24∗ 0 24∗ 0 0
g-3-2-1 75 290 4 1 40 0 34 1 2
g-3-2-2 75 290 4 2 40 0 27 1 4
g-3-2-3 75 290 4 3 30 0 26 0 2
g-3-2-4 75 290 4 4 30 0 25 1 3
g-3-2-5 75 290 4 5 30 0 24∗ 1 5
g-3-2-6 75 290 4 6 26 0 24∗ 1 2

Instance Matheuristic
nodes arcs h k init t best t moves

sol (s) sol (s)
g-3-3-1 75 290 6 1 28 0 28 0 0
g-3-3-2 75 290 6 2 28 0 24∗ 1 3
g-3-3-3 75 290 6 3 28 0 24∗ 1 2
g-3-3-4 75 290 6 4 28 0 24∗ 1 2
g-3-3-5 75 290 6 5 24∗ 0 24∗ 0 0
g-3-3-6 75 290 6 6 24∗ 0 24∗ 0 0
g-3-4-1 75 290 8 1 48 0 32 7 6
g-3-4-2 75 290 8 2 40 0 26 68 4
g-3-4-3 75 290 8 3 40 1 24∗ 98 5
g-3-4-4 75 290 8 4 34 0 24∗ 17 4
g-3-4-5 75 290 8 5 34 0 24∗ 8 3
g-3-4-6 75 290 8 6 34 0 24∗ 1 3
g-3-5-1 75 290 10 1 67 0 39 10 9
g-3-5-2 75 290 10 2 56 0 29 123 7
g-3-5-3 75 290 10 3 35 1 26 15 5
g-3-5-4 75 290 10 4 33 1 25 2 4
g-3-5-5 75 290 10 5 30 0 24∗ 72 4
g-3-5-6 75 290 10 6 30 1 24∗ 5 4
g-4-1-1 100 395 3 1 30 1 30 1 0
g-4-1-2 100 395 3 2 30 0 25 1 4
g-4-1-3 100 395 3 3 30 0 24∗ 1 3
g-4-1-4 100 395 3 4 30 0 24∗ 1 4
g-4-1-5 100 395 3 5 25 0 24∗ 0 1
g-4-1-6 100 395 3 6 25 0 24∗ 1 1
g-4-2-1 100 395 6 1 42 1 42 1 0
g-4-2-2 100 395 6 2 42 1 33 3 4
g-4-2-3 100 395 6 3 34 1 30 1 1
g-4-2-4 100 395 6 4 34 1 28 7 5
g-4-2-5 100 395 6 5 34 1 27 24 3
g-4-2-6 100 395 6 6 31 2 27 9 3
g-4-3-1 100 395 9 1 40 0 33 2 4
g-4-3-2 100 395 9 2 32 0 27 1 1
g-4-3-3 100 395 9 3 32 1 25 4 4
g-4-3-4 100 395 9 4 30 1 24 3 2
g-4-3-5 100 395 9 5 26 1 24∗ 3 2
g-4-3-6 100 395 9 6 26 0 24∗ 1 1
g-4-4-1 100 395 12 1 55 1 31 55 7
g-4-4-2 100 395 12 2 51 1 24∗ 65 7
g-4-4-3 100 395 12 3 27 1 24∗ 1 1
g-4-4-4 100 395 12 4 26 1 24∗ 1 1
g-4-4-5 100 395 12 5 25 2 24∗ 2 1
g-4-4-6 100 395 12 6 25 1 24∗ 1 1

Table 2: Matheuristic: experiments on the Grid test set



Instance Matheuristic
nodes arcs h k init t best t moves

sol (s) sol (s)
g-4-5-1 100 395 15 1 64 1 43 3 2
g-4-5-2 100 395 15 2 37 1 30 25 2
g-4-5-3 100 395 15 3 31 2 26 68 4
g-4-5-4 100 395 15 4 31 3 25 45 3
g-4-5-5 100 395 15 5 30 1 24∗ 563 4
g-4-5-6 100 395 15 6 28 2 24∗ 138 3
g-5-1-1 125 500 4 1 27 0 27 0 0
g-5-1-2 125 500 4 2 27 0 25 1 2
g-5-1-3 125 500 4 3 25 0 24∗ 1 1
g-5-1-4 125 500 4 4 24∗ 0 24∗ 0 0
g-5-1-5 125 500 4 5 24∗ 0 24∗ 0 0
g-5-1-6 125 500 4 6 24∗ 0 24∗ 0 0
g-5-2-1 125 500 8 1 24∗ 1 24∗ 1 0
g-5-2-2 125 500 8 2 24∗ 1 24∗ 1 0
g-5-2-3 125 500 8 3 24∗ 0 24∗ 0 0
g-5-2-4 125 500 8 4 24∗ 1 24∗ 1 0
g-5-2-5 125 500 8 5 24∗ 1 24∗ 1 0
g-5-2-6 125 500 8 6 24∗ 1 24∗ 1 0
g-5-3-1 125 500 12 1 28 2 28 2 0
g-5-3-2 125 500 12 2 25 1 25 1 0
g-5-3-3 125 500 12 3 25 1 25 1 0
g-5-3-4 125 500 12 4 25 1 25 1 0
g-5-3-5 125 500 12 5 24∗ 1 24∗ 1 0
g-5-3-6 125 500 12 6 24∗ 1 24∗ 1 0
g-5-4-1 125 500 16 1 27 1 27 1 0
g-5-4-2 125 500 16 2 26 2 24∗ 7 2
g-5-4-3 125 500 16 3 26 2 24∗ 3 1
g-5-4-4 125 500 16 4 24∗ 1 24∗ 1 0
g-5-4-5 125 500 16 5 24∗ 1 24∗ 1 0
g-5-4-6 125 500 16 6 24∗ 2 24∗ 2 0
g-5-5-1 125 500 20 1 39 2 27 464 7
g-5-5-2 125 500 20 2 31 2 25 169 5
g-5-5-3 125 500 20 3 26 2 24∗ 9 2
g-5-5-4 125 500 20 4 25 2 24∗ 6 1
g-5-5-5 125 500 20 5 25 2 24∗ 2 1
g-5-5-6 125 500 20 6 24∗ 2 24∗ 2 0
g-6-1-1 150 605 5 1 29 0 29 0 0
g-6-1-2 150 605 5 2 27 0 25 1 2
g-6-1-3 150 605 5 3 25 1 24∗ 1 1
g-6-1-4 150 605 5 4 24∗ 0 24∗ 0 0
g-6-1-5 150 605 5 5 24∗ 1 24∗ 1 0
g-6-1-6 150 605 5 6 24∗ 0 24∗ 0 0
g-6-2-1 150 605 10 1 27 1 27 1 0
g-6-2-2 150 605 10 2 25 2 25 2 0
g-6-2-3 150 605 10 3 25 1 24∗ 7 1
g-6-2-4 150 605 10 4 25 2 24∗ 2 1
g-6-2-5 150 605 10 5 25 2 24∗ 3 1
g-6-2-6 150 605 10 6 24∗ 2 24∗ 2 0
g-6-3-1 150 605 15 1 33 2 28 5 3
g-6-3-2 150 605 15 2 29 2 25 30 3
g-6-3-3 150 605 15 3 27 2 24∗ 192 3
g-6-3-4 150 605 15 4 25 2 24∗ 5 1
g-6-3-5 150 605 15 5 25 2 24∗ 2 0
g-6-3-6 150 605 15 6 24∗ 2 24∗ 2 0
g-6-4-1 150 605 20 1 30 3 26 4 2
g-6-4-2 150 605 20 2 24∗ 3 24∗ 3 0
g-6-4-3 150 605 20 3 24∗ 3 24∗ 3 0
g-6-4-4 150 605 20 4 24∗ 3 24∗ 3 0
g-6-4-5 150 605 20 5 24∗ 3 24∗ 3 0
g-6-4-6 150 605 20 6 24∗ 3 24∗ 3 0

Instance Matheuristic
nodes arcs h k init t best t moves

sol (s) sol (s)
g-6-5-1 150 605 25 1 40 3 28 132 4
g-6-5-2 150 605 25 2 33 3 25 99 3
g-6-5-3 150 605 25 3 29 4 24∗ 833 4
g-6-5-4 150 605 25 4 29 4 24∗ 25 3
g-6-5-5 150 605 25 5 29 3 24∗ 10 2
g-6-5-6 150 605 25 6 29 4 24∗ 10 3
g-7-1-1 175 710 6 1 26 3 26 3 0
g-7-1-2 175 710 6 2 24∗ 2 24∗ 2 0
g-7-1-3 175 710 6 3 24∗ 2 24∗ 2 0
g-7-1-4 175 710 6 4 24∗ 2 24∗ 2 0
g-7-1-5 175 710 6 5 24∗ 2 24∗ 2 0
g-7-1-6 175 710 6 6 24∗ 2 24∗ 2 0
g-7-2-1 175 710 12 1 27 4 27 4 0
g-7-2-2 175 710 12 2 27 3 25 40 2
g-7-2-3 175 710 12 3 27 4 24∗ 15 3
g-7-2-4 175 710 12 4 27 4 24∗ 10 2
g-7-2-5 175 710 12 5 27 4 24∗ 59 3
g-7-2-6 175 710 12 6 27 6 24∗ 9 3
g-7-3-1 175 710 18 1 32 4 24∗ 37 4
g-7-3-2 175 710 18 2 25 4 24∗ 7 1
g-7-3-3 175 710 18 3 24∗ 4 24∗ 4 0
g-7-3-4 175 710 18 4 24∗ 4 24∗ 4 0
g-7-3-5 175 710 18 5 24∗ 5 24∗ 5 0
g-7-3-6 175 710 18 6 24∗ 4 24∗ 4 0
g-7-4-1 175 710 24 1 41 7 27 226 6
g-7-4-2 175 710 24 2 35 7 25 262 4
g-7-4-3 175 710 24 3 29 7 25 16 3
g-7-4-4 175 710 24 4 29 7 24∗ 3321 4
g-7-4-5 175 710 24 5 29 7 25 24 4
g-7-4-6 175 710 24 6 29 7 24∗ 2333 3
g-7-5-1 175 710 30 1 37 9 24∗ 2362 7
g-7-5-2 175 710 30 2 32 10 24∗ 16 3
g-7-5-3 175 710 30 3 24∗ 9 24∗ 9 0
g-7-5-4 175 710 30 4 24∗ 9 24∗ 9 0
g-7-5-5 175 710 30 5 24∗ 9 24∗ 9 0
g-7-5-6 175 710 30 6 24∗ 9 24∗ 9 0
g-8-1-1 200 815 7 1 26 3 26 3 0
g-8-1-2 200 815 7 2 26 3 24∗ 15 2
g-8-1-3 200 815 7 3 26 3 24∗ 4 2
g-8-1-4 200 815 7 4 26 3 24∗ 6 2
g-8-1-5 200 815 7 5 26 3 24∗ 5 2
g-8-1-6 200 815 7 6 26 3 24∗ 5 2
g-8-2-1 200 815 14 1 28 6 27 31 1
g-8-2-2 200 815 14 2 27 5 24∗ 10 2
g-8-2-3 200 815 14 3 27 5 24∗ 6 2
g-8-2-4 200 815 14 4 27 5 24∗ 6 2
g-8-2-5 200 815 14 5 27 6 24∗ 7 2
g-8-2-6 200 815 14 6 27 6 24∗ 7 2
g-8-3-1 200 815 21 1 26 8 25 162 1
g-8-3-2 200 815 21 2 26 8 24∗ 271 2
g-8-3-3 200 815 21 3 26 8 24∗ 113 2
g-8-3-4 200 815 21 4 25 8 24∗ 8 1
g-8-3-5 200 815 21 5 25 8 24∗ 9 1
g-8-3-6 200 815 21 6 25 8 24∗ 9 1
g-8-4-1 200 815 28 1 34 10 27 14 5
g-8-4-2 200 815 28 2 25 10 24∗ 15 1
g-8-4-3 200 815 28 3 25 10 24∗ 12 1
g-8-4-4 200 815 28 4 25 10 24∗ 27 1
g-8-4-5 200 815 28 5 25 11 24∗ 12 1
g-8-4-6 200 815 28 6 25 11 24∗ 16 1



Instance Matheuristic
nodes arcs h k init t best t moves

sol (s) sol (s)
g-8-5-1 200 815 35 1 57 14 27 1148 6
g-8-5-2 200 815 35 2 35 14 25 35 3
g-8-5-3 200 815 35 3 35 14 24∗ 1267 5
g-8-5-4 200 815 35 4 32 13 24∗ 1369 3
g-8-5-5 200 815 35 5 32 14 24∗ 43 4
g-8-6-5 200 815 35 6 32 15 24∗ 71 3
g-9-1-1 225 920 8 1 24∗ 2 24∗ 2 0
g-9-1-2 225 920 8 2 24∗ 1 24∗ 1 0
g-9-1-3 225 920 8 3 24∗ 1 24∗ 1 0
g-9-1-4 225 920 8 4 24∗ 2 24∗ 2 0
g-9-1-5 225 920 8 5 24∗ 2 24∗ 2 0
g-9-1-6 225 920 8 6 24∗ 2 24∗ 2 0
g-9-2-1 225 920 16 1 25 4 25 4 0
g-9-2-2 225 920 16 2 24∗ 3 24∗ 3 0
g-9-2-3 225 920 16 3 24∗ 3 24∗ 3 0
g-9-2-4 225 920 16 4 24∗ 4 24∗ 4 0
g-9-2-5 225 920 16 5 24∗ 4 24∗ 4 0
g-9-2-6 225 920 16 6 24∗ 4 24∗ 4 0
g-9-3-1 225 920 24 1 31 5 27 7 2
g-9-3-2 225 920 24 2 26 5 25 14 1
g-9-3-3 225 920 24 3 26 5 24∗ 1567 2
g-9-3-4 225 920 24 4 26 6 24∗ 102 2
g-9-3-5 225 920 24 5 25 6 24∗ 14 1
g-9-3-6 225 920 24 6 25 5 24∗ 29 1
g-9-4-1 225 920 32 1 36 7 26 38 2
g-9-4-2 225 920 32 2 27 7 24∗ 9 2
g-9-4-3 225 920 32 3 26 7 24∗ 10 2
g-9-4-4 225 920 32 4 25 7 24∗ 7 1
g-9-4-5 225 920 32 5 25 7 24∗ 8 1
g-9-4-6 225 920 32 6 24∗ 8 24∗ 8 0
g-9-5-1 225 920 40 1 26 8 26 8 0
g-9-5-2 225 920 40 2 24∗ 8 24∗ 8 0
g-9-5-3 225 920 40 3 24∗ 8 24∗ 8 0
g-9-5-4 225 920 40 4 24∗ 9 24∗ 9 0
g-9-5-5 225 920 40 5 24∗ 8 24∗ 8 0
g-9-5-6 225 920 40 6 24∗ 8 24∗ 8 0

Instance Matheuristic
nodes arcs h k init t best t moves

sol (s) sol (s)
g-10-1-1 250 1025 9 1 24∗ 2 24∗ 2 0
g-10-1-2 250 1025 9 2 24∗ 2 24∗ 2 0
g-10-1-3 250 1025 9 3 24∗ 2 24∗ 2 0
g-10-1-4 250 1025 9 4 24∗ 2 24∗ 2 0
g-10-1-5 250 1025 9 5 24∗ 3 24∗ 3 0
g-10-1-6 250 1025 9 6 24∗ 3 24∗ 3 0
g-10-2-1 250 1025 18 1 24∗ 4 24∗ 4 0
g-10-2-2 250 1025 18 2 24∗ 4 24∗ 4 0
g-10-2-3 250 1025 18 3 24∗ 4 24∗ 4 0
g-10-2-4 250 1025 18 4 24∗ 5 24∗ 5 0
g-10-2-5 250 1025 18 5 24∗ 4 24∗ 4 0
g-10-2-6 250 1025 18 6 24∗ 4 24∗ 4 0
g-10-3-1 250 1025 27 1 31 7 26 8 3
g-10-3-2 250 1025 27 2 29 7 25 9 2
g-10-3-3 250 1025 27 3 25 7 24∗ 45 1
g-10-3-4 250 1025 27 4 25 7 24∗ 9 1
g-10-3-5 250 1025 27 5 25 7 24∗ 8 1
g-10-3-6 250 1025 27 6 25 7 24∗ 9 1
g-10-4-1 250 1025 36 1 61 8 27 3022 9
g-10-4-2 250 1025 36 2 48 8 25 1276 5
g-10-4-3 250 1025 36 3 37 9 24∗ 2666 4
g-10-4-4 250 1025 36 4 34 10 24∗ 637 4
g-10-4-5 250 1025 36 5 34 9 24∗ 30 4
g-10-4-6 250 1025 36 6 31 10 24∗ 17 3
g-10-5-1 250 1025 45 1 55 11 26 2221 5
g-10-5-2 250 1025 45 2 29 12 25 15 4
g-10-5-3 250 1025 45 3 27 13 24∗ 20 1
g-10-5-4 250 1025 45 4 27 13 24∗ 17 2
g-10-5-5 250 1025 45 5 27 13 24∗ 16 1
g-10-5-6 250 1025 45 6 27 13 24∗ 21 2



Appendix C.

Instance Matheuristic RR
nodes arcs h k init t best t moves init t best t moves

sol (s) sol (s) sol (s) sol (s)
d-10-1 10 45 5 1 31 0 31 0 0 41 0 31 0 3
d-10-2 10 45 5 2 31 0 31 0 0 31 0 31 0 0
d-10-3 10 45 5 3 31 0 31 0 0 31 0 31 0 0
d-10-4 10 45 5 4 31 0 31 0 0 31 0 31 0 0
d-10-5 10 45 5 5 31 0 31 0 0 31 0 31 0 0
d-10-6 10 45 5 6 31 0 31 0 0 31 0 31 0 0
d-20-1 20 190 5 1 51 0 51 0 0 56 1 51 1 1
d-20-2 20 190 5 2 30 0 30 0 0 41 0 31 1 2
d-20-3 20 190 5 3 30 0 24 1 5 38 0 24 882 5
d-20-4 20 190 5 4 30 0 21 1 2 27 0 21 1260 5
d-20-5 20 190 5 5 26 0 19 54 3 29 0 19 502 9
d-20-6 20 190 5 6 22 0 18 145 4 28 0 18 57 6
d-30-1 30 435 5 1 63 0 63 0 0 67 3 63 13 1
d-30-2 30 435 5 2 55 0 34 3 2 63 1 36 695 8
d-30-3 30 435 5 3 30 0 25 2 3 32 1 29 163 3
d-30-4 30 435 5 4 27 0 21 5 5 37 1 25 482 5
d-30-5 30 435 5 5 26 0 20 46 5 37 1 22 2579 8
d-30-6 30 435 5 6 26 0 19 12 5 27 1 21 39 4
d-40-1 40 780 5 1 67 0 67 0 0 72 3 67 55 3
d-40-2 40 780 5 2 51 0 37 5 2 48 2 39 467 5
d-40-3 40 780 5 3 30 0 28 0 1 39 2 28 595 8
d-40-4 40 780 5 4 23 0 23 0 0 35 2 24 993 7
d-40-5 40 780 5 5 23 0 20 2 2 40 2 21 1583 6
d-40-6 40 780 5 6 23 0 18 8 3 28 2 20 2172 4
d-50-1 50 1225 5 1 56 0 56 0 0 68 17 56 57 4
d-50-2 50 1225 5 2 30 0 30 0 0 68 3 30 3056 6
d-50-3 50 1225 5 3 30 0 22 4 4 31 3 23 3494 5
d-50-4 50 1225 5 4 22 0 19 2 2 25 3 20 356 3
d-50-5 50 1225 5 5 19 0 17 0 2 25 4 18 164 5
d-50-6 50 1225 5 6 19 0 15 8 4 21 4 17 55 3
d-60-1 60 1770 5 1 53 0 53 0 0 61 7 56 73 3
d-60-2 60 1770 5 2 51 0 30 4 3 54 6 33 1135 6
d-60-3 60 1770 5 3 30 0 22 129 3 38 5 25 2851 6
d-60-4 60 1770 5 4 23 1 18 5 3 30 5 21 2179 4
d-60-5 60 1770 5 5 21 0 16 3 3 28 5 19 2045 5
d-60-6 60 1770 5 6 19 0 14 146 4 25 5 18 43 3
d-70-1 70 2415 5 1 68 0 68 0 0 68 113 68 113 0
d-70-2 70 2415 5 2 52 0 38 1 2 54 8 42 1414 7
d-70-3 70 2415 5 3 30 1 28 1 1 61 8 31 2050 10
d-70-4 70 2415 5 4 30 1 23 2 4 38 8 26 339 7
d-70-5 70 2415 5 5 29 0 21 12 4 31 7 23 2950 5
d-70-6 70 2415 5 6 28 1 19 12 5 28 7 21 94 3

Table 3: Matheuristic: experiments on the Dense test set



Instance Matheuristic RR
nodes arcs h k init t best t moves init t best t moves

sol (s) sol (s) sol (s) sol (s)
d-80-1 80 3160 5 1 49 0 49 0 0 70 10 49 317 5
d-80-2 80 3160 5 2 30 0 27 1 1 67 11 30 3430 8
d-80-3 80 3160 5 3 30 1 21 2 3 47 9 25 68 8
d-80-4 80 3160 5 4 27 1 18 2 3 29 9 20 1772 6
d-80-5 80 3160 5 5 27 1 16 5 5 22 9 17 3326 5
d-80-6 80 3160 5 6 21 1 15 7 3 19 9 17 36 2
d-90-1 90 4005 5 1 55 0 55 0 0 70 25 55 210 5
d-90-2 90 4005 5 2 30 0 30 0 0 49 13 32 1703 6
d-90-3 90 4005 5 3 30 0 21 106 3 58 14 24 1896 8
d-90-4 90 4005 5 4 29 0 17 3 3 33 12 20 96 5
d-90-5 90 4005 5 5 27 1 15 12 3 27 12 18 162 6
d-90-6 90 4005 5 6 27 1 13 40 5 19 13 16 2100 3
d-100-1 100 4950 5 1 52 1 52 1 0 63 52 52 1943 4
d-100-2 100 4950 5 2 31 0 30 17 1 69 15 32 1360 5
d-100-3 100 4950 5 3 30 0 23 5 2 52 16 26 1670 8
d-100-4 100 4950 5 4 23 1 18 4 3 32 15 21 1314 7
d-100-5 100 4950 5 5 23 1 16 4 4 27 15 19 1157 5
d-100-6 100 4950 5 6 19 1 14 227 4 21 16 18 1019 2
d-150-1 150 11175 5 1 37 2 37 2 0 63 43 37 2200 5
d-150-2 150 11175 5 2 37 2 21 55 3 39 39 25 115 5
d-150-3 150 11175 5 3 37 2 16 133 3 40 39 20 141 3
d-150-4 150 11175 5 4 22 2 13 913 3 20 39 17 651 2
d-150-5 150 11175 5 5 17 2 12 9 2 17 39 15 1361 1
d-150-6 150 11175 5 6 15 2 11 5 2 17 40 14 187 2
d-200-1 200 19900 5 1 70 2 52 4 1 69 114 58 1011 3
d-200-2 200 19900 5 2 38 3 30 6 1 69 76 36 1838 5
d-200-3 200 19900 5 3 30 3 22 26 2 56 77 27 1071 6
d-200-4 200 19900 5 4 23 2 18 625 3 34 79 22 2282 5
d-200-5 200 19900 5 5 23 3 16 18 3 27 78 20 3671 5
d-200-6 200 19900 5 6 23 3 14 62 4 20 76 19 135 1
d-250-1 250 31125 5 1 57 3 57 3 0 62 470 61 1997 1
d-250-2 250 31125 5 2 39 3 31 6 1 50 139 38 1643 6
d-250-3 250 31125 5 3 30 4 22 7 1 55 131 27 1873 8
d-250-4 250 31125 5 4 22 4 17 118 2 32 132 23 905 2
d-250-5 250 31125 5 5 22 4 15 7 1 23 132 19 1382 2
d-250-6 250 31125 5 6 18 5 13 8 1 20 134 18 386 1
d-300-1 300 44850 5 1 57 4 57 4 0 66 691 63 2852 2
d-300-2 300 44850 5 2 31 4 31 4 0 49 226 39 620 2
d-300-3 300 44850 5 3 30 5 22 13 1 63 219 28 2536 7
d-300-4 300 44850 5 4 22 6 17 72 2 33 212 23 3778 2
d-300-5 300 44850 5 5 21 5 15 21 3 25 221 21 686 3
d-300-6 300 44850 5 6 21 5 13 38 3 20 211 19 574 1
d-350-1 350 61075 5 1 31 11 31 11 0 68 319 35 1130 7
d-350-2 350 61075 5 2 31 11 18 121 2 35 330 23 996 4
d-350-3 350 61075 5 3 31 12 14 49 3 33 327 19 2873 3
d-350-4 350 61075 5 4 31 11 11 446 5 21 326 15 3170 4
d-350-5 350 61075 5 5 31 13 10 382 6 17 316 14 2623 3
d-350-6 350 61075 5 6 31 10 10 136 4 15 318 14 510 1
d-400-1 400 79800 5 1 43 14 31 1068 5 64 238 37 1174 6
d-400-2 400 79800 5 2 31 14 18 77 2 47 210 24 872 3
d-400-3 400 79800 5 3 31 14 13 704 4 42 210 19 3089 5
d-400-4 400 79800 5 4 31 11 11 1903 5 22 209 17 667 2
d-400-5 400 79800 5 5 31 15 10 88 3 18 210 16 790 2
d-400-6 400 79800 5 6 31 15 9 146 5 18 211 14 2719 3
d-450-1 450 101025 5 1 57 11 57 11 0 71 1062 65 3642 4
d-450-2 450 101025 5 2 36 11 31 20 1 62 280 41 1363 4
d-450-3 450 101025 5 3 36 12 22 143 2 64 281 32 2960 6
d-450-4 450 101025 5 4 22 13 18 24 1 39 281 25 2307 4
d-450-5 450 101025 5 5 21 13 15 358 2 31 280 24 596 2
d-450-6 450 101025 5 6 18 13 14 24 1 23 282 22 371 1
d-500-1 500 124750 5 1 56 11 56 11 0 61 1581 61 1581 0
d-500-2 500 124750 5 2 38 12 31 23 1 55 378 43 2400 6
d-500-3 500 124750 5 3 38 13 23 24 1 58 368 32 1517 6
d-500-4 500 124750 5 4 38 12 18 62 3 31 368 26 3549 2
d-500-5 500 124750 5 5 24 13 16 40 2 27 371 24 1634 2
d-500-6 500 124750 5 6 22 14 14 157 2 25 368 21 3655 4



Appendix D.

Instance Matheuristic RR
nodes arcs h k init t best t moves init t best t moves

sol (s) sol (s) sol (s) sol (s)
Bl01-1 32 96 48 1 39 1 39 1 0 55 9 41 10 10
Bl01-2 32 96 48 2 39 1 39 1 0 39 9 39 9 0
Bl01-3 32 96 48 3 39 2 39 2 0 39 9 38 9 2
Bl01-4 32 96 48 4 39 2 39 2 0 42 9 38 9 3
Bl01-5 32 96 48 5 39 2 39 2 0 39 9 38 9 3
Bl01-6 32 96 48 6 39 2 39 2 0 38 9 38 9 0
Bl03-1 32 96 48 1 59 2 37 72 7 44 11 40 859 3
Bl03-2 32 96 48 2 52 2 37 4 3 41 11 37 29 3
Bl03-3 32 96 48 3 37 4 37 4 0 38 11 37 11 2
Bl03-4 32 96 48 4 37 5 37 5 0 38 12 37 14 2
Bl03-5 32 96 48 5 37 3 37 3 0 38 11 37 12 2
Bl03-6 32 96 48 6 37 2 37 2 0 37 11 37 11 0
Bl05-1 32 320 48 1 16 4 16 4 0 27 11 20 20 4
Bl05-2 32 320 48 2 15 5 15 5 0 21 11 15 121 5
Bl05-3 32 320 48 3 15 5 14 3314 1 22 11 14 66 3
Bl05-4 32 320 48 4 15 4 14 2656 1 22 11 14 14 4
Bl05-5 32 320 48 5 15 4 14 2696 1 17 11 14 21 2
Bl05-6 32 320 48 6 15 6 14 731 1 15 11 14 17 1
Bl07-1 32 320 48 1 17 4 17 4 0 25 11 19 2143 6
Bl07-2 32 320 48 2 17 4 15 306 2 21 11 16 381 4
Bl07-3 32 320 48 3 16 4 15 5 1 18 11 16 12 2
Bl07-4 32 320 48 4 16 4 15 5 1 16 11 15 899 1
Bl07-5 32 320 48 5 16 4 15 7 1 17 11 15 45 2
Bl07-6 32 320 48 6 16 7 15 10 1 17 11 15 19 2
Bs01-1 32 96 48 1 49 1 45 11 1 57 9 45 10 3
Bs01-2 32 96 48 2 45 0 42 1 1 49 9 42 11 2
Bs01-3 32 96 48 3 42 0 41 3 1 46 8 41 11 3
Bs01-4 32 96 48 4 41 1 41 1 0 41 8 41 8 0
Bs01-5 32 96 48 5 41 1 41 1 0 44 8 41 12 3
Bs01-6 32 96 48 6 41 1 41 1 0 41 9 41 9 0
Bs03-1 32 96 48 1 54 1 54 1 0 57 17 54 17 1
Bs03-2 32 96 48 2 52 0 52 0 0 57 17 52 17 2
Bs03-3 32 96 48 3 52 1 52 1 0 52 16 52 16 0
Bs03-4 32 96 48 4 52 1 52 1 0 52 17 52 17 0
Bs03-5 32 96 48 5 52 1 52 1 0 54 17 52 17 1
Bs03-6 32 96 48 6 52 1 52 1 0 52 17 52 17 0
Bs05-1 32 320 48 1 57 2 22 1656 8 29 17 22 2268 5
Bs05-2 32 320 48 2 28 3 16 272 8 24 17 17 415 4
Bs05-3 32 320 48 3 27 6 14 760 5 20 17 16 27 3
Bs05-4 32 320 48 4 27 17 14 264 4 18 17 15 270 3
Bs05-5 32 320 48 5 27 23 14 54 3 18 18 15 20 2
Bs05-6 32 320 48 6 27 23 14 54 3 16 18 14 1159 2
Bs07-1 32 320 48 1 47 2 20 2959 11 30 12 24 947 5
Bs07-2 32 320 48 2 29 2 17 11 2 24 12 19 390 3
Bs07-3 32 320 48 3 24 3 16 34 3 21 12 17 1191 4
Bs07-4 32 320 48 4 24 4 16 11 3 21 12 16 2126 3
Bs07-5 32 320 48 5 17 3 16 7 1 18 12 16 458 2
Bs07-6 32 320 48 6 17 3 16 7 1 20 12 16 28 2

Table 4: Matheuristic: experiments on the Carbin test set



Appendix E.

primal dual GAP nodes t (s) UB LB LP calls LP t (s) pr. call pr. t (s) pr. paths pr. added vars max labels mean labels
Bl01-4-1 57 47 21.28% 1319 10800.00 57 39 7078 3.59 1340 10793.54 19 409 1727 616
Bl01-4-3 39 39 0.00% 14 4.66 41 39 84 0.00 18 4.62 3 24 349 158
Bl01-4-5 39 39 0.00% 1 0.30 40 39 6 0.00 2 0.28 1 13 310 158
Bl01-8-1 50 41 21.93% 715 10800.00 50 41 4610 1.77 776 10800.00 47 793 1752 90
Bl01-8-3 41 41 0.00% 476 2083.80 45 41 2751 1.22 510 2081.58 18 187 901 46
Bl01-8-5 41 41 0.00% 8 38.78 45 41 49 0.02 11 38.70 5 90 901 395
Bl01-12-1 65 47 38.23% 19 10800.00 65 47 112 0.12 40 10800.00 26 778 15700 4480
Bl01-12-3 54 47 14.87% 243 10800.00 54 47 1206 0.92 248 10799.51 7 106 4410 581
Bl01-12-5 47 47 0.00% 4 128.71 50 47 25 0.06 7 128.54 3 44 2583 803
Bs01-4-1 60 42 42.86% 1065 10800.00 60 39 6642 4.87 1137 10793.14 54 1376 2069 408
Bs01-4-3 40 40 0.00% 112 65.71 47 39 591 0.32 124 65.25 9 165 456 168
Bs01-4-5 39 39 0.00% 1 0.18 40 39 6 0.00 2 0.17 1 9 193 136
Bs01-8-1 54 43 25.33% 2096 10800.00 54 43 26305 13.39 3755 10689.17 86 1165 1686 55
Bs01-8-3 43 43 0.00% 1 0.69 44 43 6 0.01 2 0.66 1 10 497 173
Bs01-8-5 43 43 0.00% 1 0.70 44 43 6 0.00 2 0.67 1 10 497 174
Bs01-12-1 57 43 32.54% 819 10800.00 57 43 8973 6.64 1008 10779.99 166 3196 2362 126
Bs01-12-3 43 43 0.00% 1 5.17 47 43 8 0.00 3 5.13 3 50 735 288
Bs01-12-5 43 43 0.00% 1 1.42 44 43 6 0.01 2 1.37 1 10 497 199
Bl02-4-1 36 36 0.00% 37 20.60 36 35 234 0.03 48 20.51 9 35 172 69
Bl02-4-3 35 35 0.00% 4 2.53 36 35 25 0.00 7 2.51 3 12 172 118
Bl02-4-5 35 35 0.00% 2 1.12 36 35 11 0.00 3 1.09 1 3 172 122
Bl02-8-1 36 36 0.00% 19 27.83 36 34 104 0.01 23 27.77 4 12 1560 296
Bl02-8-3 34 34 0.00% 1 2.22 35 34 6 0.01 2 2.20 1 2 1345 291
Bl02-8-5 34 34 0.00% 1 1.61 35 34 6 0.01 2 1.56 1 2 1345 291
Bl02-12-1 36 36 0.00% 93 70.96 36 35 504 0.12 105 70.70 10 39 278 8
Bl02-12-3 35 35 0.00% 4 3.27 36 35 25 0.01 7 3.21 3 12 278 93
Bl02-12-5 35 35 0.00% 1 0.92 36 35 6 0.00 2 0.90 1 3 278 106
Bs02-4-1 57 39 46.15% 2642 10800.00 57 37 15412 6.15 2743 10780.21 44 1095 3008 432
Bs02-4-3 37 37 0.00% 1 1.41 44 37 8 0.01 3 1.37 2 40 681 284
Bs02-4-5 37 37 0.00% 1 0.24 40 37 6 0.01 2 0.21 1 11 390 176
Bs02-8-1 95 - – 1 10800.00 95 53 6 0.05 4 10800.00 9 488 69119 21767
Bs02-8-3 53 53 0.00% 12 118.27 57 53 85 0.05 16 118.15 5 64 2871 1126
Bs02-8-5 53 53 0.00% 4 49.53 56 53 25 0.02 5 49.43 2 35 2528 1027
Bs02-12-1 57 37 53.84% 1566 10800.00 57 37 8647 4.20 1657 10742.33 42 1098 3008 48
Bs02-12-3 37 37 0.00% 1 1.49 44 37 8 0.00 3 1.45 2 40 659 171
Bs02-12-5 37 37 0.00% 1 0.47 40 37 6 0.00 2 0.43 1 11 390 107

Table 5: Branch and Price: general results and pricing table on the Carbin test set



primal dual GAP nodes t (s) UB LB LP calls LP t (s) pr. call pr. t (s) pr. paths pr. added vars max labels mean labels
Bl03-4-1 60 42 42.84% 253 10800.00 60 42 3200 2.30 385 10800.00 113 2445 4769 2154
Bl03-4-3 43 43 0.00% 218 588.00 48 42 1378 0.56 239 587.04 14 157 1304 396
Bl03-4-5 42 42 0.00% 1 1.33 44 42 6 0.01 2 1.31 1 10 801 409
Bl03-8-1 76 - – 1 10800.00 76 45 22 0.04 13 10800.00 16 519 32938 12743
Bl03-8-3 51 45 13.33% 2445 10800.00 51 45 21387 12.85 2610 10737.78 104 1178 1494 96
Bl03-8-5 50 45 11.11% 7 10800.00 50 45 1048 2.00 14 10700.00 7 200 1292 559
Bl03-12-1 58 41 41.41% 321 10800.00 58 41 1762 1.16 351 10800.00 35 802 5043 896
Bl03-12-3 55 41 34.15% 676 10800.00 55 41 4593 3.88 735 10797.72 40 828 3625 297
Bl03-12-5 41 41 0.00% 8 78.27 44 41 24 0.06 18 32.48 12 150 886 218
Bs03-4-1 68 44 54.55% 34 10800.00 68 44 306 0.21 62 10800.00 32 1069 16697 7606
Bs03-4-3 46 46 0.00% 2625 7286.69 48 44 26730 9.49 2758 7271.47 55 422 1389 105
Bs03-4-5 44 44 0.00% 41 144.99 47 44 279 0.15 50 144.73 11 108 1201 445
Bs03-8-1 48 48 0.00% 949 5860.61 48 44 7337 2.47 990 5856.51 42 449 7920 1571
Bs03-8-3 44 44 0.00% 11 94.47 47 44 58 0.02 12 94.34 2 10 1384 456
Bs03-8-5 44 44 0.00% 1 11.44 47 44 6 0.00 2 11.40 1 7 1384 483
Bs03-12-1 84 - – 1 10800.00 84 48 2 0.01 2 10792.44 3 180 75175 34987
Bs03-12-3 48 48 0.00% 67 814.61 49 48 446 0.35 79 814.04 17 167 1605 370
Bs03-12-5 48 48 0.00% 1 17.81 49 48 6 0.03 2 17.72 2 16 1605 598
Bl04-4-1 53 53 0.00% 23 67.24 53 51 202 0.09 37 67.06 13 74 750 419
Bl04-4-3 51 51 0.00% 2 2.77 52 51 11 0.00 3 2.74 1 3 675 389
Bl04-4-5 51 51 0.00% 1 1.83 52 51 6 0.00 2 1.81 1 3 675 401
Bl04-8-1 34 34 0.00% 79 6.21 34 31 508 0.11 89 6.00 10 68 122 15
Bl04-8-3 31 31 0.00% 1 0.16 33 31 8 0.00 3 0.15 2 10 109 40
Bl04-8-5 31 31 0.00% 1 0.09 32 31 6 0.00 2 0.06 1 4 96 36
Bl04-12-1 97 - – 1 10800.00 97 60 2 0.01 1 10800.00 0 0 96714 54994
Bl04-12-3 61 60 1.67% 422 10800.00 61 60 3253 4.59 523 10800.00 128 1989 2642 352
Bl04-12-5 60 60 0.00% 2 93.23 61 60 11 0.02 3 93.04 2 64 2642 1247
Bs04-4-1 64 52 23.02% 83 10800.00 64 52 436 0.12 89 10800.00 6 131 14157 5390
Bs04-4-3 52 52 0.00% 3 254.40 61 52 20 0.00 6 254.35 3 68 10368 3985
Bs04-4-5 52 52 0.00% 2 55.20 56 52 13 0.01 4 55.15 2 31 6107 2293
Bs04-8-1 64 52 23.02% 138 10800.00 64 52 707 0.13 143 10800.00 6 131 14157 2826
Bs04-8-3 52 52 0.00% 2 230.73 61 52 15 0.03 5 230.64 3 68 10368 2278
Bs04-8-5 52 52 0.00% 1 54.68 56 52 8 0.01 3 54.62 2 31 6107 1309
Bs04-12-1 76 69 10.14% 5 10800.00 76 69 40 0.02 13 10800.00 10 267 45893 6570
Bs04-12-3 69 69 0.00% 1 1708.46 72 69 8 0.03 3 1708.36 2 36 31366 4738
Bs04-12-5 69 69 0.00% 1 1178.33 71 69 6 0.02 2 1178.23 1 20 28469 4300



br. Y calls br. K calls br. K branchings leaves nodes left max depth backtracks
Bl01-4-1 812 454 62 445 431 37 333
Bl01-4-3 5 4 4 6 0 5 4
Bl01-4-5 0 0 0 1 0 0 0
Bl01-8-1 548 123 53 114 489 49 127
Bl01-8-3 326 111 111 57 0 17 43
Bl01-8-5 6 1 1 1 0 5 1
Bl01-12-1 16 6 6 1 18 11 1
Bl01-12-3 206 20 19 17 232 25 34
Bl01-12-5 1 2 2 1 0 2 0
Bs01-4-1 685 263 129 251 565 81 127
Bs01-4-3 54 4 1 57 0 25 31
Bs01-4-5 0 0 0 1 0 0 0
Bs01-8-1 1318 1687 1022 1327 1014 57 867
Bs01-8-3 0 0 0 1 0 0 0
Bs01-8-5 0 0 0 1 0 0 0
Bs01-12-1 662 92 49 108 604 54 102
Bs01-12-3 0 0 0 1 0 0 0
Bs01-12-5 0 0 0 1 0 0 0
Bl02-4-1 10 10 8 19 0 6 18
Bl02-4-3 0 3 3 1 0 3 0
Bl02-4-5 0 1 1 1 0 1 0
Bl02-8-1 7 3 2 10 0 6 11
Bl02-8-3 0 0 0 1 0 0 0
Bl02-8-5 0 0 0 1 0 0 0
Bl02-12-1 40 8 6 47 0 12 37
Bl02-12-3 0 3 3 1 0 3 0
Bl02-12-5 0 0 0 1 0 0 0
Bs02-4-1 1929 431 308 405 1833 83 308
Bs02-4-3 0 0 0 1 0 0 0
Bs02-4-5 0 0 0 1 0 0 0
Bs02-8-1 0 0 0 1 0 0 0
Bs02-8-3 10 1 1 1 0 5 2
Bs02-8-5 2 1 1 1 0 1 0
Bs02-12-1 1154 301 177 235 1097 80 169
Bs02-12-3 0 0 0 1 0 0 0
Bs02-12-5 0 0 0 1 0 0 0

Table 6: Branch and Price: branching table on the Carbin test set



br. Y calls br. K calls br. K branchings leaves nodes left max depth backtracks
Bl03-4-1 207 48 24 22 211 18 23
Bl03-4-3 106 17 5 102 0 19 57
Bl03-4-5 0 0 0 1 0 0 0
Bl03-8-1 0 0 0 1 0 0 0
Bl03-8-3 1895 379 208 256 2256 29 129
Bl03-8-5 5 10 10 1 6 6 0
Bl03-12-1 271 26 18 32 259 72 49
Bl03-12-3 565 65 11 69 575 29 62
Bl03-12-5 4 2 2 0 0 0 0
Bs03-4-1 26 6 6 2 32 7 5
Bs03-4-3 532 1560 623 1025 0 38 815
Bs03-4-5 31 8 4 2 0 7 7
Bs03-8-1 113 588 361 475 0 31 364
Bs03-8-3 9 1 1 1 0 5 2
Bs03-8-5 0 0 0 1 0 0 0
Bs03-12-1 0 0 0 1 0 0 0
Bs03-12-3 39 22 22 9 0 14 8
Bs03-12-5 0 0 0 1 0 0 0
Bl04-4-1 5 10 6 12 0 8 11
Bl04-4-3 0 1 1 1 0 1 0
Bl04-4-5 0 0 0 1 0 0 0
Bl04-8-1 20 20 19 40 0 15 30
Bl04-8-3 0 0 0 1 0 0 0
Bl04-8-5 0 0 0 1 0 0 0
Bl04-12-1 0 0 0 1 0 0 0
Bl04-12-3 52 343 224 40 772 61 9
Bl04-12-5 0 1 1 1 0 1 0
Bs04-4-1 78 2 2 3 79 31 15
Bs04-4-3 0 2 2 1 0 2 0
Bs04-4-5 0 1 1 1 0 1 0
Bs04-8-1 127 2 2 9 121 34 28
Bs04-8-3 0 1 1 1 0 1 0
Bs04-8-5 0 0 0 1 0 0 0
Bs04-12-1 0 4 4 1 4 4 0
Bs04-12-3 0 0 0 1 0 0 0
Bs04-12-5 0 0 0 1 0 0 0



Appendix F.

Instance Matheuristic After BP
nodes arcs h k LB best GAP dual best GAP

sol sol sol
g-2-1-1 50 185 1 1 24 32 25.00% 32 32 0.00%
g-2-2-1 50 185 1 1 24 36 33.33% 34 36 5.56%
g-2-2-2 50 185 2 2 24 26 7.69% 26 26 0.00%
g-2-3-1 50 185 1 1 24 35 31.43% 32 35 8.57%
g-2-3-2 50 185 2 2 24 26 7.69% 26 26 0.00%
g-2-3-3 50 185 3 3 24 25 4.00% 25 25 0.00%
g-2-4-1 50 185 1 1 24 31 22.58% 30 31 3.23%
g-2-4-2 50 185 2 2 24 26 7.69% 26 26 0.00%
g-2-5-1 50 185 1 1 24 34 29.41% 27 34 20.59%
g-2-5-2 50 185 2 2 24 28 14.29% 26 28 7.14%
g-2-5-3 50 185 3 3 24 26 7.69% 26 26 0.00%
g-2-5-4 50 185 4 4 24 25 4.00% 25 25 0.00%
g-3-1-1 75 290 2 1 24 37 35.14% 35 37 5.41%
g-3-1-2 75 290 4 2 24 26 7.69% 26 26 0.00%
g-3-2-1 75 290 2 1 24 34 29.41% 24 34 29.14%
g-3-2-2 75 290 4 2 24 27 11.11% 27 27 0.00%
g-3-2-3 75 290 6 3 24 26 7.69% 26 26 0.00%
g-3-2-4 75 290 8 4 24 25 4.00% 25 25 0.00%
g-3-3-1 75 290 2 1 24 28 14.29% 28 28 0.00%
g-3-4-1 75 290 2 1 24 32 25.00% 24 32 25.00%
g-3-4-2 75 290 4 2 24 26 7.69% 24 26 7.69%
g-3-5-1 75 290 2 1 24 39 38.46% - 39 38.46%
g-3-5-2 75 290 4 2 24 29 17.24% 24 29 17.24%
g-3-5-3 75 290 6 3 24 26 7.69% 24 26 7.69%
g-3-5-4 75 290 8 4 24 25 4.00% 24 25 4.00%
g-4-1-1 100 395 3 1 24 30 20.00% 30 30 0.00%
g-4-1-2 100 395 6 2 24 25 4.00% 25 25 0.00%
g-4-2-1 100 395 3 1 24 42 42.86% 24 42 42.44%
g-4-2-2 100 395 6 2 24 33 27.27% 26 33 21.21%
g-4-2-3 100 395 9 3 24 30 20.00% 26 30 13.33%
g-4-2-4 100 395 12 4 24 28 14.29% 26 28 7.14%
g-4-3-1 100 395 3 1 24 33 27.27% 24 33 27.27%
g-4-3-2 100 395 6 2 24 27 11.11% 24 27 11.11%
g-4-3-3 100 395 9 3 24 25 4.00% 25 25 0.00%
g-4-4-1 100 395 3 1 24 31 22.58% 24 31 22.58%
g-4-5-1 100 395 3 1 24 43 44.19% - 43 44.19%
g-4-5-2 100 395 6 2 24 30 20.00% 24 30 20.00%
g-4-5-3 100 395 9 3 24 26 7.69% 24 26 7.69%
g-4-5-4 100 395 12 4 24 25 4.00% 24 25 4.00%

Table 7: Branch and Price: experiments on the Grid test set



Instance Matheuristic After BP
nodes arcs h k LB best GAP dual best GAP

sol sol sol
g-5-1-1 125 500 4 1 24 27 11.11% 27 27 0.00%
g-5-1-2 125 500 8 2 24 25 4.00% 25 25 0.00%
g-5-3-1 125 500 4 1 24 28 14.29% 28 28 0.00%
g-5-3-2 125 500 8 2 24 25 4.00% 25 25 0.00%
g-5-3-3 125 500 12 3 24 25 4.00% 25 25 0.00%
g-5-3-4 125 500 16 4 24 25 4.00% 25 25 0.00%
g-5-4-1 125 500 4 1 24 27 11.11% 24 27 11.11%
g-5-5-1 125 500 4 1 24 27 11.11% 24 27 11.05%
g-5-5-2 125 500 8 2 24 25 4.00% 24 25 4.00%
g-6-1-1 150 605 5 1 24 29 17.24% 28 29 3.45%
g-6-1-2 150 605 10 2 24 25 4.00% 25 25 0.00%
g-6-2-1 150 605 5 1 24 27 11.11% 24 27 9.58%
g-6-2-2 150 605 10 2 24 25 4.00% 25 25 0.00%
g-6-3-1 150 605 5 1 24 28 14.29% 24 28 14.28%
g-6-3-2 150 605 10 2 24 25 4.00% 25 25 0.00%
g-6-4-1 150 605 5 1 24 26 7.69% 24 26 7.69%
g-6-5-1 150 605 5 1 24 28 14.29% 24 28 14.29%
g-6-5-2 150 605 10 2 24 25 4.00% 24 25 4.00%
g-7-1-1 175 710 6 1 24 26 7.69% 26 26 0.00%
g-7-2-1 175 710 6 1 24 27 11.11% 27 27 0.00%
g-7-2-2 175 710 12 2 24 25 4.00% 25 25 0.00%
g-7-4-1 175 710 6 1 24 27 11.11% - 27 11.11%
g-7-4-2 175 710 12 2 24 25 4.00% 24 25 4.00%
g-7-4-3 175 710 18 3 24 25 4.00% 24 25 4.00%
g-8-1-1 200 815 7 1 24 26 7.69% 26 26 0.00%
g-8-2-1 200 815 7 1 24 27 11.11% - 27 11.11%
g-8-3-1 200 815 7 1 24 25 4.00% 24 25 4.00%
g-8-4-1 200 815 7 1 24 27 11.11% - 27 11.11%
g-8-5-1 200 815 7 1 24 27 11.11% - 27 11.11%
g-8-5-2 200 815 14 2 24 25 4.00% - 25 4.00%
g-9-2-1 225 920 8 1 24 25 4.00% 25 25 0.00%
g-9-3-1 225 920 8 1 24 27 11.11% - 27 11.11%
g-9-3-2 225 920 16 2 24 25 4.00% 24 25 4.00%
g-9-4-1 225 920 8 1 24 26 7.69% - 26 7.69%
g-9-5-1 225 920 8 1 24 26 7.69% - 26 7.69%
g-10-3-1 250 1025 9 1 24 26 7.69% - 26 7.69%
g-10-3-2 250 1025 18 2 24 25 4.00% - 25 4.00%
g-10-4-1 250 1025 9 1 24 27 11.11% - 27 11.11%
g-10-4-2 250 1025 18 2 24 25 4.00% - 25 4.00%
g-10-5-1 250 1025 9 1 24 26 7.69% - 26 7.69%
g-10-5-2 250 1025 18 2 24 25 4.00% - 25 4.00%
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[11] Baumann, N., Köhler, E., 2007. Approximating earliest arrival flows with flow-
dependent transit times. Discrete applied mathematics 155 (2), 161–171.

[12] Baumann, N., Skutella, M., 2006. Solving evacuation problems efficiently–earliest ar-
rival flows with multiple sources. In: Foundations of Computer Science, 2006. FOCS’06.
47th Annual IEEE Symposium on. IEEE, pp. 399–410.
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[27] Cĺımaco, J., Pascoal, M., Craveirinha, J., Captivo, M., 2007. Internet packet routing:
Application of a k-quickest path algorithm. European Journal of Operational Research
181 (3), 1045–1054.



[28] Conejo, A. J., Castillo, E., Minguez, R., Garcia-Bertrand, R., 2006. Decomposi-
tion techniques in mathematical programming: engineering and science applications.
Springer Science & Business Media.

[29] Dantzig, G. B., Wolfe, P., 1960. Decomposition principle for linear programs. Opera-
tions Research 8 (1), 101–111.

[30] Di Puglia Pugliese, L., Guerriero, F., 2013. Dynamic Programming Approaches to
Solve the Shortest Path Problem with Forbidden Paths. Optimization Methods and
Software 28 (2), 221–255.

[31] Dinitz, Y., Garg, N., Goemans, M. X., 1999. On the single-source unsplittable flow
problem. Combinatorica 19 (1), 17–41.

[32] Dressler, D., Skutella, M., 2011. An FPTAS for Flows over Time with Aggregate Arc
Capacities. In: Jansen, K., Solis-Oba, R. (Eds.), Approximation and Online Algo-
rithms. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 106–117.

[33] Filipe Alvelos, J. M. V. V. d. C., 2003. Comparing branch-and-price algorithms for the
unsplittable multicommodity flow problem. Proceedings of the International Network
Optimization Conference, 7–12.

[34] Fischer, F., Helmberg, C., 2014. Dynamic graph generation for the shortest path prob-
lem in time expanded networks. Mathematical Programming 143 (1), 257–297.

[35] Fleischer, L., Skutella, M., 2002. The Quickest Multicommodity Flow Problem. In:
Cook, W. J., Schulz, A. S. (Eds.), Integer Programming and Combinatorial Optimiza-
tion. Springer Berlin Heidelberg, pp. 36–53.

[36] Fleischer, L., Skutella, M., 2003. Minimum Cost Flows over Time Without Intermedi-
ate Storage. Society for Industrial and Applied Mathematics, pp. 66–75.

[37] Fleischer, L., Skutella, M., 2007. Quickest Flows Over Time. SIAM Journal on Com-
puting 36 (6), 1600–1630.

[38] Ford, D., Fulkerson, D., 1962. Flows in Networks. Princeton University Press, Prince-
ton, NJ, USA.

[39] Ford, L., Fulkerson, D., 1958. Constructing Maximal Dynamic Flows from Static Flows.
Operations Research 6 (3), 419–433.

[40] Gale, D., 1959. Transient flows in networks. The Michigan Mathematical Journal 6 (1),
59–63.

[41] Gamrath, G., 2010. Generic Branch-Cut-and-Price. Master’s thesis, Technische Uni-
versität, Berlin.

[42] Gamst, M., 2013. A decomposition based on path sets for the multi-commodity k-
splittable maximum flow problem. Dep. of Management Engineering: Technical Uni-
versity of Denmark, Report No. 6.



[43] Gamst, M., 2014. A local search heuristic for the Multi-Commodity k-splittable Max-
imum Flow Problem. Optimization Letters 8 (3), 919–937.

[44] Gamst, M., Jensen, P., Pisinger, D., Plum, C., 2010. Two- and three-index formulations
of the Minimum Cost Multicommodity k-splittable Flow Problem. European Journal
of Operational Research 202 (1), 82–89.

[45] Gamst, M., Jensen, P. N., Pisinger, D., Plum, C., 2010. Two- and three-index for-
mulations of the minimum cost multicommodity k-splittable flow problem. European
Journal of Operational Research 202 (1), 82–89.

[46] Gamst, M., Petersen, B., 2012. Comparing branch-and-price algorithms for the Multi-
Commodity k-splittable Maximum Flow Problem. European Journal of Operational
Research 217 (2), 278–286.

[47] Garey, M. R., Johnson, D. S., 1978. Strong NP-Completeness results: Motivation,
examples, and implications. J. ACM 25 (3), 499–508.

[48] Garey, M. R., Johnson, D. S., 2002. Computers and intractability. Vol. 29. W.H. Free-
man and Company.

[49] Ghiyasvand, M., Ramezanipour, A., 2018. Solving the MCQP, MLT, and MMLT prob-
lems and computing weakly and strongly stable quickest paths. Telecommunication
Systems 68 (2), 217–230.

[50] Gleixner, A., Eifler, L., Gally, T., Gamrath, G., Gemander, P., Gottwald, R. L., Hendel,
G., Hojny, C., Koch, T., Miltenberger, M., Müller, B., Pfetsch, M. E., Puchert, C.,
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