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Introduction

This Thesis has been carried out under the supervision of Prof. Lucio Boccardo and Doct. Tommaso Leonori.
The resulting work follows two different directions, although it always refers to elliptic boundary value problems.
The first one concerns existence and regularity results for a wide class of operators in divergence form with
discontinuous coefficients. The second one focuses on the qualitative behaviour of large solutions, namely
solutions that blows up to infinity at the boundary of the domain, to semilinear elliptic problems.

Existence and regularity results

In this part of the Thesis we consider three different classes of elliptic boundary value problems in divergence
form with measurable coefficients. The initial question that guided our study is the same, even if it has brought
to different type of results. The question is

which are the less restrictive assumptions on the coefficients that preserve some good properties of a given
problem?

With good properties we mean existence and regularity of a reasonable solution; we stress that we do not deal
with uniqueness issues. Let us now give a description of our results. In this section 2 is a bounded open set of
RY, with N > 2.

1. We start considering a problem with a first order term in divergence form, called convection term. In order
to avoid technicalities we present its linear form.

—div(A(z)Vu) = —div (uE(z)) + f(z) inQ, )
u=20 on 012,
where the measurable function A(z) satisfies for 0 < o < 8
a < A(x) <8, 2

the vector field E(z) belongs to (LY (Q))N and the function f(x) belongs to a suitable Lebesgue o Lorentz
space to be precised. If f € LY () we can consider the weak formulation of (1), namely

we Wy (Q) : /QA(LU)VquS:/QuE(x)V¢+/Qf(x)¢ Vo e WyAQ). (3)

Note that the assumption
N
E(z) € (LN () 4

is natural for the lower order term of (3) to be well defined, indeed

vE(x)Ve¢ € L'(Q) Yu,¢e W, 2Q). (5)

5
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Since we are also interested in solutions of (1) outside the energy space, let us set f € L!(Q) and introduce the
distributional formulation of (1).

uwe Wyt (Q) : QA(a?)VuV¢ =/ uE(m)V¢+/ﬂf(x)¢ Vo e CHQ). (6)

Notice again that, assuming (4), vE(z) € LY(Q) for all v € W, " (Q). Let us stress anyway that (4) is not
the sharp condition to consider weak or distributional solutions to problem (1), as we remark later on (see (14)
below).

The difficulty of (1) lies in the non coercivity of the convection term, as it can be seen with the following heuristic
argument. If u € W01’2(Q) solves (3), we obtain that

1Bl L~ (@)
olullfya2q) < s, a2y + 1 lLe @llull e )

where S, is the Sobolev constant relative to W, >, Thus, if the value of || E| LN (q) is large, it seems that the
presence of the convection term obstructs the achievement of the standard a priori estimates. Problems like (1)
are widely studied in the classical literature. We refer to [85], [65] and [88], where (1) is solved with some
additional hypothesis on E(x) than (4), as smallness conditions on the LY (£2)-norm,

1Bl L~ ) < S20a, @)

or sign conditions on the distributional divergence of E(x),

/ E(z)V¢ >0 V¢ e CyQ). (8)
Q

Alternatively, to restore the lack of coercivity, one can add an absorption term in the left hand side of (1) (see
for instance [85] or the more recent [54].

One naturally wonders if such assumptions are necessary. The negative answer is given in [52] and [26] where
it is proved the following result.

Theorem 0.1 ([52], [26]). Let us assume (2), E € (LN (Q))N andthat f € L™(Q) with1 <m < % Then
(i) if (2°) < m < & there existsw € L™ (Q) N Wy () solution of (3);
(i) if 1 < m < (2*)' there exists u € Wol’m* (Q) solution of (6).

Thus, not only problem (1) is solvable in WO1 2(Q) for any vector field E satisfying (4) (no matter the value

of its norm), but also the same regularity result of the case ' = 0 (see [34]) is recovered, even for distributional
solutions with data outside the dual space. Let us also mention [5] and [51] for similar results but with more
restrictive assumptions on the summability of E(x).
We stress that, even if Theorem 0.1 is stated for a linear problem, in [52], [51] and [27] a more general non linear
versions of (1) is treated (see below for more details). Moreover [52] and [51] consider an equation with both
convection and drift (see (15) below) first order terms, assuming a smallness condition on at least one of them.
We do not treat these two lower order terms together and the reason is explained shortly.

Let us briefly describe the methods used in [26] and [52] to deal with problem (1). The strategy of the first
paper hings on the following log-estimate

/|v10g Lt ul)f? < /\E|2 /Qlfl- ©)

Despite it gives poor information on the summability of Vu, it requires just |E| € L2(2) and f € L'(2). Such
an estimate bypasses the non coercivity of the problem, since provides a preliminary information on the measure
of the super level sets of u. This, together with the strategy of power test functions developed in [34], allows us
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to prove Theorem 0.1 (see Subsection 2.1.1 below).

On the other hand, in [52] (see also [51]) the authors take advantage of the symmetrization technique introduced
in [86]: the main idea is to deduce a differential inequality for the decreasing rearrangement of u (see Chapter
1 for a brief introduction on this subject), that produces a comparison with the rearrangement of the solution of
a suitable symmetrized problem. Since the solution of the symmetrized problem is explicit one recovers the a
priori estimate for u and,, in turn the energy estimate for the gradient.

Our main contribution about problem (1) (and its nonlinear counterpart) is to complete the relation between
the regularity of f and u in the framework of Marcinkiewicz (and more generically Lorentz) spaces. In the case
E = 0 this is done in [25] for f in Marcinkiewicz spaces (see also [63]) and in [4] for data in Lorentz spaces.
The presence of the convection term totally prevents us to adapt the technique of [25], as detailed explained at the
beginning of Section 2.1. On the other hand, using the symmetrization technique of [86] and [52] and inspired
by [4], we obtain pointwise estimates for both @ and Vu, respectively the rearrangement of u and Vu. In turn
such estimates allow us to prove the following result (see Theorem 2.7).

Theorem 0.2. Assume (2),
(6). Moreover

E| € LN(Q) and f € M™(Q) with 1 < m < & Hence there exists u solution of

o ifl <m< (2%), thenu € M™ (Q) and |Vu| € M™ (Q);
o if(2*) <m <&, thenu € Wy () N M™ ().

We stress that the more interesting (and difficult) part of Theorem 0.2 is the first one, where the regularity of
the gradient increases with the regularity of the datum. We have also to notice that unfortunately our approach
is not sharp enough to cover m = (2*)’. This borderline case has been recently solved by [76] if E = 0, using
non standard (nonlinear) potential arguments.

The estimate obtained for u is

€2 5
a(t) < % / sN M f(s)ds, for t € (0,), (10)
t
for any v < 51, with C; = C1(at, N, E,m, ) a positive constant and

flo=1 / “Ft)r.

As said, estimates of this type are already known in the literature (see [20] and [52]) and they are particularly
well designed to prove the membership of u to Marcinkiewicz (or Lorentz) spaces. In order to better understand
(10) let us set

Cy /9' 2 _14nz .
v(x) = ———= sN Yf(s)ds with wy = |Bi]
(wN|x|N)’Y wn |z N
and notice that it solves
—Av = Cadiv (v;Q + Caf(wn|z|N)  in Bq, (1
v=20 on 0Bq,

where B, is the ball centered at the origin sucht that | Bg| = |€2| and Ca, C5 positive constants. Thus (10) reads
as u(t) < v(t), namely the already mentioned comparison between the rearrangements of the solutions of the
original problem and the symmetrized one.

Let us focus now on the estimate for |Vu/, the rearrangement of the gradient. This part is more involved and
represents the main novelty of the Theorem. Indeed in the literature there are no results on the Marcinkiewicz
(or Lorentz) regularity for the gradient of the solution of problem (1).
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Notice that we cannot hope to derive any information on the regularity of |Vu,,| (10). This is because the sym-
metrization processes transforms an elliptic operator with measurable coefficients into a more regular one: the
problem solved by v(z) involves exactly the Laplacian as principal operator and hence |Vv| is much more regu-
lar than |Vu|. We already said that it seems not possible to follows [25] and hence we developed an alternative
approach similar to the one proposed in [4]. We provide the following pointwise estimate for s € (0, |€2|)

1

2

1 s s L _ 12| ) 2
g/0 |V, | < C4 %/O (W(t)D2 (t) + ft¥)dt + C/S (@(t)*D(t) + f tw)dt) (12)

where D(t) € L= (0,]€|) is the so called pseudo-rearrangement of | E|? with respect to u (see [57] and Lemma
1.5 in Chapter 1 for the definition of pseudo-rearrangement). The key observation in the achievement of (10) is
that (see the proof of Lemma 2.6) for s € (0, |©])

1
/ |Vu|dr §/ |Vu|dx + <s/ |Vu2dx> . (13)
0 {lu[>u(s)} {lul<m(s)}

This information, coupled with (10) and with the differential inequality satisfied by || (ul>T(s)} |Vul?dz (see
[4]), allows us to obtain (12). The achievement of the estimates (10) and (12) is the core of the proof of Theorem

0.2.

As a matter of fact, in dealing with problem (1), one can consider a slightly more general assumption than (4).
Indeed in [20] and [28] problem (1) is treated assuming |E| € M™ (), with smallness condition on || E|| /().
Following the previously outlined strategy, we prove (see Theorem 2.10) that the same results of Theorem 0.2
continues to hold if £ is such that

N —2m

E=F+¢& with Fe (L)Y and E(s) < = with B<aw§T. (14)

»
2%‘ Sy

Notice that the lower order term in (3) and (6) is well defined under assumption (14) thanks to the sharp Sobolev
Embedding in Lorentz spaces (see [87] and reference therein)

WhU(Q) € LT9(Q) with 1< g < co.

Of course if E satisfies (4), it also satisfies (14). The previous assumption, up to the addition of a whichever
bounded vector filed, prescribes a threshold on the M (£2)-norm of E. It seems that this smallness condition is
sharp and cannot be weakened. It is also interesting to note that (14) is less and less restrictive as m tends to 1.

The structure of (10) and (12) suggests to consider not only Marcikiewcz but also more general Lorentz data
(see Section 1.1 for the formal definition). Moreover the techniques used to prove Theorem 0.2 do not require
essentially the linearity of the operator. Inspired by the existing literature (see as an example [20], [52] and [27]),
it is thus natural to extend our results to more general nonlinear problems like

—div (A(2)|Vu[P=2Vu)) = —div(u|ulP2E(z)) + f(z) in, (15)
u=20 on 0f,

N
where 1 < p < N, A(xz) satisfies (2), E belong to (ij—vl (Q)) and f belongs to a suitable Lorentz space to

be defined in the sequel. One can indeed assume the p-version of (14) for E(z) and consider a more general
Leray-Lions principal operator (see Section 4.1 for more details). It is well known (see [17]) that, if p is small,
some additional difficulties may arise in dealing with (15) even for £ = 0. Roughly speaking this is because
the gradient of the expected solution might not be an integrable function. Here we avoid the treatment of this
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situation, considering always distributional solutions whose gradient is at least in L' (). The interested reader
is referred to [28] for entropy formulations of problems with convection first order term.

For the complete results concerning problem (15) see Theorems 4.1 and 4.2. Wishing to give a schematic
overview of them, we have the following result

N
Theorem 0.3. Let1 < p < N, assume E € (L%(Q)) and f € LY (). Then

e if f € L"™9(Q) with max{1, W} <m < (p*) and 0 < q < o0, then there exists u distribu-

tional solution of (15) with |Vu| € L»P=Dm"(p=Da(();

o ifp>2— % and f € LY9(Q) with 0 < q < +oc, then there exist u distributional solution of (15) with

(r-1HN

Vu| e L-~3=1P=Da(Q);

e ifp>2——+and f € L'(Q), then there exist u distributional solution of (15) with |Vu| € LFP~Dm"2(Q);

o ifp=2— % and f € LY9(Q) with 0 < q < ﬁ = % then there exists u distributional solution of
(15) with |Vu| € LY@P=19(Q);

e ifp<2— % and f € L™9(Q) withm = W and 0 < g < p%l, then there exists u distributional
solution of (15) with |Vu| € LY(~Da(Q).

For the definition of the Lorentz Spaces L™4(Q2) and IL.*9(£2) see Chapter 1 below.
Also in this nonlinear framework, we recover exactly the same relationship between the regularity of f and Vu
proved in [4], [34] and [76] without the convection term, namely £ = 0. Let us notice that we cover also
the more difficult case p = 2 — % and f € L(Q) with 0 < ¢ < p—il = % (see [35] in the case E = 0).
On the other hand we stress again that the borderline value m = (p*)’ remains open (see [76] for the case E = 0).

2. Let us focus now on

{—div(A(x)Vw) = VwE(z) + f(z) inQ, 16

w =0 on 012,

with the measurable function A(z) satisfying (2), E € (LV (Q))N and f that belongs to a Lorentz space to be
define later. The first order term in the equation above is also called drift term. In this linear setting (16) is (at
least formally) the dual problem of (1) and one can use a duality approach to recover existence and regularity
results (see [3], [54], [29], [31]). Anyway here we treat problem (16) independently from (1), following the
same spirit and aims of the previous convection case. For f(z) belonging to L)' (€) or L™ () with 1 < m,
we consider weak and distributional formulations of (16) respectively, namely

we Wy 2(Q) : /QA(JC)VwV¢:/QVwE(x)(b+/Qf(x)¢ Y e W, % (Q) 17)

and

we W (Q) : /QA(x)ww:/QVwE(x)qs+/Qf(x)¢ Vo e, (18)

with r > % Notice that we have to impose that w € VVO1 ""(£2) in order to have the lower order term of (18)

well defined. Similarly to the convection term, also the drift term makes the operator of (16) not coercive, unless
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an additional smallness assumption on the L™ () norm of E(x) is assumed. Once again it is proved that such
assumption is unnecessary for the existence of a weak solution. For the next result we refer mainly to [20] and
the already cited [52] (see also [5], [50] and [51]).

Theorem 0.4 ([20],[52]). Let us assume (2), E € (LN(Q))N and that f € L(z*)/(ﬂ). Hence there exists w
solution of (17).

In [20] the authors obtain energy estimates for (17) by means of a slice method that is based on continuity
properties of some modified distribution function of w (see Proposition 3.1 and Lemma 3.2). We also cite [21]
where the slice method is used to treat (16) with measure data. As in the case of a convection lower order term,
Theorem 0.4 (ad its nonlinear counterpart) is proved in [52] by means of symmetrization techniques.

The first original result that we present for problem (16) uses the slice method of [20] and the power test
functions of [25] to generalize Theorem 0.4 as follows (see also [50] for the same result with more restrictive
assumptions on (16)).

Theorem 0.5. Let us assume (2), E € (LY (Q))N and that f € L™(Q) with1 <m < &.
(i) If (2*) < m < & there exists w € L™ (Q) N W 2(2) solution of (17).
(ii) If 1 < m < (2*) there exists w € Wg’m*(ﬂ) solution of (18).

For the proof of this result see Section 3.1.1.
The next step is to adapt the technique developed for problem (1) to recover Marcinkiewicz and Lorentz

regularity results also for (16). We are able to obtain the following pointwise estimates for w and |Vw|, the
decreasing rearrangements of w and Vw. We have

1| ¢
w(r) < C5/ t%72+7/ f(s)s Vdsdt (19)
T 0

nd
1 T 1 T e s -
f/ [Vw| < Cs [/ sv Y (/ t 7f(t)dt> ds
T Jo T Jo 0
1 |Q| i S _ 2 %
+<T/ s2(F=1+7) (/ t—Vf(t)dt) ds) , (20)
T 0
1

where v = 5. All the considerations on the comparison with the rearrangement of the symmetrized problem
hold true also for (19) and the starting point in obtaining estimate (20) is always (13), the literature to which we
refer it is the same too.

The relative existence and regularity result is the following one (see Theorem 3.10).

a

Theorem 0.6. Let us assume (2), E € (LN(Q))N and f € M™(Q) with1 < m < & Then there exists w
solution of (18). Moreover

o ifl <m < (2%), thenw € M™ (Q) and |Vw| € M™ (%),
().

Of course one can also treat the nonlinear version of problem (16) with f in a Lorentz space and E in the
Macinkiewicz space of order NV (see [19] and [69]). We refer to Section 4.2 for the precise statements of the
results and the relative proofs. Here we just report the assumption equivalent to (14) for E(x).

ok

o if (2°) <m < &, thenw € Wy *(Q)n M™

E=F+¢& with Fe (L=(Q)" and E(s)gE with B<aw1§NL_1.
m

1
SN
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It is immediate to note that this assumption becomes more and more restrictive as m approaches 1. This is not
just a technical inconvenient and prevent us to treat the case f in a Lorentz space with first coefficient 1. Indeed
for such type of data the expected regularity of the gradient is too low to have the drift term of (16) well defined
(see [50] and [21]).

After studying problem (1) and (16) separately, one natural question is why to not consider the convection
and the drift term at once. This is what is actually done in [85], [88] and [52] but always imposing some
additional constraints, as smallness assumption on the L" norm of at least one of the coefficients or divergence
free assumption like (8). One may wonder if, also in this case, these are just technical assumptions, or rather the
presence of the two first order term represents a genuine obstruction to the solvability of problems like

{—div(A(a:)Vu) = —div (uE(z)) + VuB(z) + f(z) inQ, 2n

u=20 on 0f).
Let us observe that, assuming F(x) and B(z) equal and regular, say C'*(2), problem (21) becomes

{—div(A(x)Vu) =g(x)u+ f(z) inQ,
u=0 on 05

with g(x) = —div(E(x)), that of course is not solvable for a general g(x). Thus the presence of the two lower
order term involves some spectral issues and we decided to not treat it.

3. Let us finally consider the following general elliptic nonlinear problem in divergence form

{—div(a(ac7 u, Vu)) + b(z,u, Vu) = f(x) inQ, (22)

u=20 on 0f2.
The datum f belongs to some suitable Lebesgue space to be defined later and the Carathéodory functions a :

OxRxRY - RVandb: Q x R x RY — R satisfy the standard structural assumptions of a Leray-Lions
operator, namely for 1 < p < 00,0 < a < S and 0 < [y,

la(z, 5,€)| < B (IsPP~ +[¢P7)
bz, 5, )| < fo (|sI”~* +1¢["")
a5, )¢ > algf?
b(z,s,£)s >0
(a(z,8,8) —a(z,s,£7)) (£ —&%) >0, &+# & monotonicity condition.

growth conditions,

coercive conditions,

In the seminal paper [66], it is proved that the operator
A WiP(Q) —» Wb (Q)
u — —div(a(z, u, Vu)) + ag(x, u, Vu)

is well defined, coercive and monotone; hence (22) admits a (unique) weak solution for any f € w—Lp (Q). To
keep in mind a concrete example one can set, for instance,

a(x,u, Vu) = A(z)|VulP"'Vu and b(z,u, Vu) = B(z) <u|up2 + T fl ||Vup1> ,
u

with A(x) satisfying (2) and |B(z)| < (o in 2. Such a result can be generalized in two directions. The first
generalization concerns data outside the the dual space. The main difficulty is to find proper notions of solutions
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that assure uniqueness, that fails for distributional solutions (see [84] for Serrin Counterexample), and give sense
to problem (22) for small values of p. Indeed for p close to 1 the gradient of the expected solution is not in
general an integrable function. These two issues are treated at once in [17] and [36], where the notion of entropy
solution is introduced and problems like (22) are uniquely solved for L' (2) data or even for a more general class
of measures (see also [48] for the equivalent notion of renormalized solution).

The second direction focuses on more general growth conditions on a(z, u, Vu) and b(x, u, Vu), that make the
resulting differential operator not anymore well defined between VVO1 "P(Q) and its dual. Consider the following
p-growth with respect to the gradient for the lower order term

b(z,u, Vu) = D(z)u|Vul?, (23)

with D(z) € L°°(2). The literature concerning this type of first order terms, with natural growth and sign
condition, is broad and it is well know that the presence of (23) gives rise to regularizing effects (see for example
[34], [37], [40], the monograph [33] and reference therein). We also quote [43], [38], [46] (see also [78]) for
purely semilinear lower order term with sing condition.

As far as the principal part of the operator is concerned, the authors of [68] and [80] propose a polynomial growth
with respect to the u-variable of the type

a(z,u, Vu) = A(z)(1 + |u|")|VuP~2Vu, with >0

and the measurable function A(z) satisfying (2). The difficulty here is that a priori there is no reason for the

function a(z, u, Vu) to belong to (L' () N, namely the term —div(a(z,w, Vu)) might not even have a distri-
butional sense.

Note at this point that all the previous structural assumptions imply that both a(x, u, Vu) and b(z, u, Vu) are
bounded with respect to the  variable. Our aim is to pass from this L>°-setting to a general L!-setting, namely
we want to consider problem like (22) with a z-dependence expressed through L*(£2) coefficients.

For the sake of simplicity let us focus at first on the following linear model

{—div(A(m)Vu) = f(z) inQ,

24
u=20 on 0S2. 24

Assuming the ellipticity condition (2) and that f € L(2)'(Q) ¢ W~12(Q), it is straightforward (Lax-Milgram
Theorem) to prove that there exists a weak solution of (24), namely

ue Wy (Q) : / A(z)VuVe = / fo VYo e W, Q). (25)
Q
Our first aim is to generalize this result assuming, instead of (2), that for o > 0

a< Alz), AceLY(9Q). (26)

The first step is to give an appropriate notion of solution to our problem, since the first term of (25) is not well
defined for the unbounded coefficients A(x). Hence we define

X2(Q) := {w e W, ?(Q) such that / A(x)|Ve|* < oo}
Q
Notice that C} () C X2(€). We say that u is a solution of (24) if
ueX3(Q) : [ A(@)VuVe = /f¢ Vo € X (). (27)
)

Through an approximation procedure it is not difficult, in this linear setting, to prove the following result (see
Theorem 5.1).
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Theorem 0.7. If f belongs to L")’ (Q) and A(z) satisfies (26) there exists a solution of (27).

Indeed this result is already known in the literature and it was proven by Trudinger in [88] for a complete
linear elliptic operator (see also [0] for related results obtained via simmetrization techniques and the more
recent [32]). Let us point out that the method used in [88] is essentially linear and relies on a weighted functional
framework. On the contrary our approach is more direct and it is based on an intrinsic approximation procedure
that does not require the use of weighed Sobolev spaces. Indeed in the proof we do not assume a priory that the
solution satisfies A(z)|Vu|?> € L'(2). Rather this information follows from the equation as a sort of regularizing
effect. The advantage of such a strategy is that it can be adapted to deal with more general non linear problems
like

{—div(A(x)(l + |u")|VuP=2Vu) = f(z) inQ,
(28)
u=20 on 052,

withr > 0,1 < p < N, A(x) now satisfying (26) and f belonging to some Lebesgue space to be defined later
(see assumptions 5.17 for a more general non linear operator in the spirit of [68]). In order to state the following
existence result, let us define

XP(Q) := {gp € W, P(Q) such that 5 A(x)| VP < oo} .

Theorem 0.8. Assume that 1 < p < oo, r > 0 and (26). Then, if f € L(”*)/(Q), there exists a solution u of
(28) in the following weak sense

we XP(Q), A(x)|ul™|Vul? € L'(Q) and
/QA(:C)(l + [u|") | VulP~2VuVe = /f¢> Vo € X5(Q).
If f € LY(Q) there exists a solution u of (28) in the following entropy sense
Vk>0 Ti(u) € XB(Q), A()|u|™ |[VTi(w)P € L'(Q) and
| 4@+ WD)Vl 9uT T = 0) = [ Tiu=0) vo e X@) 0 1= (@),

where T}, denotes the truncation at level k.

The core of the proof is the same of the one of Theorem 0.7, i.e. we obtain suitable a priori estimates for
a sequence of approximating solution. The main difficulties here are given by the nonlinearity of the operator
and they require to adapt some technical tools to this L' setting, as the Minty Lemma (see [40]) and the almost
everywhere convergence of the gradients (see [24]).
Finally we use the techniques developed for solving (25) and (28) for studying problems with semilinear or
quasilinear lower order terms in the following form (see respectively Theorems 5.2 and 5.4)

b(x,u, Vu) = B(z)|u|??u (¢>1) or b(z,u, Vu) = D(z)u|Vul?
with
0A(x) < B(z) and 7A(z) < D(z) <cA(x) for 6,7,0 > 0.

The presence of these L' (£2)-lower order terms with sign condition gives rise to regularizing effects in the same
spirit of [46] and [34].

Qualitative behaviour of large solutions

This second part of the Thesis is devoted to the study of semilinear elliptic problems with explosive boundary
conditions; more precisely we are interested in the qualitative behaviour of solutions of problem

{—Au tgu) =f inq,

(29)
U = 400 on 01,
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where Q is a bounded smooth domain of RY, with N > 1, g € C*(R) is such that
g(a) >0 forsome a €R and ¢'(s) >0 forevery s€ R, (30)

and f is a Lipschitz continuous function. Here solutions are meant in the classical sense, i.e. C%(Q) functions
which satisfy the differential equation above pointwise and such that
lim u(x) = +o0.
z—00

In the literature solutions that blow-up at the boundary of the domain are known as large solutions. Looking
naively at (29) one naturally wonders under which assumptions on g the existence of a large solution is assured,
if the monotonicity assumption on g implies uniqueness of solution and how such a solution behaves near the
boundary.

In the seminal works by Keller and Osserman (see [62] and [79]) it is proved that the necessary and sufficient
condition for the existence of a large solution for problem (29) is the following:

Ity € [—o0, +00 < oo for t>ty, where G'(s)=g(s). (31)

©  ds
)= [ e
t 2G ( S)
This growth condition at infinity, known as Keller-Osserman condition, arises solving the one dimensional prob-

lem
—¢"+9(¢)=0, 5>0 and lim ¢(s) = +o0. (32)
S—

We stress that, in fact, ¢(s) = 1)~1(s) solves problem (32). We refer the interested reader to [55] (see also the
references cited therein) for existence issues with no monotonicity assumptions on g.

Uniqueness is not a trivial task in the sense that it is not known if the monotonicity of g is a sufficient
condition for it; we refer to [74], where it is proved that if g is convex then (29) admits a unique large solution,
and to [58] (see also [12]), where it is shown that assumptions of the type

g(t)

TH increasing for ¢ > 1 and some ¢ > 1

imply uniqueness of large solution. It is worthy to mention that the special case g(s) = |s[P~!s with p > 1
satisfies the latter condition.

Let us point out now that the function ¢ defined in (32) is strongly related with the boundary behaviour of
solutions of (29). In [1 1] and [ 2] it has been proved that the behaviour of w is, in some sense, one dimensional
near the boundary, i.e. it holds that

d(lgggo wgzg)) =1 where d(z) = dist(x, 092).

Moreover if g is such that
(B
lim inf

t—o0 w(t)

>1, Ve (0,1), (33)

then
u(r) — ¢(d(x))

namely the first order term in the asymptotic of u near the boundary only depends on the corresponding ODE
(32) and in particular is not affected by the geometry of the domain. In [14] the authors improve (34); assuming
in addition to (33) that

G(s)

g2

= o(@(d(2))) as d(x) 0, (34)

/
is strictly increasing for large s and limsup 4 ,(68) < 00
B—1,5—0 @ (5)
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they prove that

|u(x) = d(d(x))] < ch(d(x))d(x) as d(x) — 0,
where the positive constant ¢ depends on the mean curvature of the boundary of 2. After this first clue, the influ-
ence of the geometry of 0f2 in the expansion of u has been studied in [67] and [49] under different assumptions
on g. The most general result in this direction has been proved in [15]; in order to state it we need to define

_N-—-1 [? . fot \/2G(s)ds
J(s):= 5 /0 T(¢(t))dt, where T'(¢):= a0
and to assume that B W)
) +o .
;E}I}) Bo0) =1 and higsogp B(t)T'(t) < oo, (35)
where J (s)
N _ 49\
B(s) := 7V 2G(s) 26
Assuming (35), together with (31) and (33), it follows that
u(w) = ¢[d(x) — H(z)J(d(x))]| < ¢(d(z)o(d(x)) asd(z) — 0, (36)

where H is a smooth function whose restriction to 92 coincides with the mean curvature of the domain; more-
over it is worth stressing that (35) implies

J(d(x)) = O(d*(x)).

The relation above, together with (36), tells us that the second order contribution to the explosion of w is affected
by the geometry of the domain through the mean curvature of 0f2.

More recently in [47] (see also [22]), by means of an interesting application of the contraction theorem, all the
singular terms of the asymptotic of u have been implicitly calculated in the special case €2 = B.

For power type nonlinearities it is also possible to obtain the first asymptotic of the gradient of the solution
by means of scaling arguments. In particular in [1 1] and [13] (see also [81]) it is proved that if

lim @

s—oo SP

=1 forsome p > 1,

it holds true that

ou(z)  9¢(d(z)) ou(x) ,
— <
oy 5| T | ey | < 0ld'(d@)) asd(z) — 0, (37
where v is the unit normal to 9 (recall that v(Z) = —Vd(z) for € 9) and 7 € SV~! is such that

7(Z) - v(Z) = 0 for every T € 2. However, a general result for the second order term in the expansion of Vu in
the same spirit of (36) it is not available in the literature (see anyway [ 0] for a partial result in convex domains).

Our aim is to complete the picture of the asymptotic behaviour of the gradient of solutions of problem (38)
in the case g(s) = |s|P~!s, with p > 1 and 2 smooth enough. Thus the problem we deal with is

— P=1,y = i
{ Au+|uP~lu=f inQQ, (38)

u = 400 on 0f2,

where f € W1’°°(Q). It is easy to verify that with such a choice of g, assumptions (31)—(35) are satisfied. It is
also worth to recall that in this case problem (38) has a unique large solution and that the function ¢ defined in
(32) has the following explicit form

(&) 2 1

o(s) = ey with « = p—] and o¢ = [a(a+ 1)]7-T. (39)
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The result that we present in this paper will describe not only the second order behaviour of the gradient of the
large solution of (38), but also the complete asymptotic expansion of all the singular terms of » and Vu, for
every arbitrary sufficiently smooth domain and every p > 1. As a byproduct of this expansion we will be able to
provide the expected second order asymptotic for the normal and tangential components of Vu with respect to
0N2. Indeed we will prove

lim da(x)agi(x) — aopd(z)| = c(a, N)H(Z)

e v uniformly with respect to Z € 0. (40)
lim @ () 24 _
T—T 87‘ B

where c(a, N) is a precise constant that depends only on v and N (see Corollary 6.4 for more details). More in
general we will be able to prove (see Theorem 6.3 for the precise statement) that there exists a unique explicit
function S, sum of [a] + 1 singular terms where « is as in (39), such that

z:=u—8 €W (Q).

Let us say that the formula above expresses the leitmotiv of the paper, that is try to find an explicit simple
corrector function that describes the explosive behaviour of u.
Actually our method allows us to prove that the function z satisfies the following boundary condition

z(z) =0 and |Vz(Z)|=0 VT e .

See Theorem 6.3 for more details.

Finally we consider a more general class of nonlinearities that will be easily treated with an extension of our
method.

Plan of the Thesis

Let us briefly describe the plan of the Thesis.

Chapter 1. In this first Chapter we introduce useful notations and tools about the theory of decreasing rear-
rangements and others preliminary results related with Chapters 2-4.

Chapter 2. Here we deal with problems with a convection first order term with data in Lebesgue or Mar-
cikiewicz spaces. We present the known results for the proof of the existence and regularity of a solution with
Lebesgue data and explain why it cannot be adapted to the Marcinkiewicz framework. Hence we introduce and
develop our strategy, based on pointwise estimates of the rearrangement of both the solution and its gradient, to
solve the issue of regularity for f € M™ ().

Chapter 3. It is the twin Chapter of the previous one. We adapt the aforementioned strategy to prove the
Marcinkiewic regularity of problems with drift first order term. For the sake of completeness we also provide an
alternative, rearrangements free, approach for data in Lebesgue space.

Chapter 4. In Chapter 4 we generalize the results obtained in Chapters 2 and 3 to more general nonlinear
operators.

Chapter 5. In this Chapter we focus on problems with L' coefficients. We define suitable notions of energy
and entropy solutions in the L! setting and prove the existence of such solution. Moreover we analyze the inter-
play between the principal part of the operator and the lower order terms and the regularizing effect that can be
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obtained from this interaction.
All its content can be found in the article [44].

Chapter 6. This final Chapter is devoted to the study of the asymptotic behaviour of large solutions to a class
of semilinear problems. In particular we give a precise description of all the singular terms in the asymptotic
expansion of the gradient of the solution.

All its content can be found in the article [45].
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Chapter 1

Preliminary results

In this Chapter we collect some preliminaries about problems with convection or drift lower order term. In
Section 1.1 we give the main definitions and tools about the theory of decreasing rearrangement introduced in
the seminal paper [36]. In Section 1.2 we prove the almost everywhere convergence of the gradients for suitable
sequence of approximation solutions, generalizing to our setting the result by [24].

1.1 Rearrangements and relevant functions spaces
For any measurable function v : 2 — R we define the distribution function of v as
Aty :={z € Q : |v(z)| >t} fort >0,
and the decreasing rearrangement of v as
o(s) :=1inf{t >0 : A(t) < s} fors e 0,|Q]].
By construction it follows that
Hzx e : |v(@)] >t} =|{seR : 5(s) >t}, (1.1)

namely the function and its decreasing rearrangement are equimeasurable. We define also the maximal function
associated to v, namely

Notice that, since T(s) is non increasing, it follows that T(s) < ©(s) for any s € [0, |€2]].

By definition A(t) is right continuous non increasing, while 7(s) is left continuous non increasing. Thus both
functions are almost everywhere differentiable in (0, |€2]).

For a more detailed treatment of A(t) and T(s) we refer to [77] and [60]. We recall here the following property
of decreasing rearrangements.

Proposition 1.1. Forn € N, let v, v, : Q2 — R be measurable functions such that

lv(z)| < lirginf |vp(z)| a.e.x € Q.

Hence
o(s) < liminfw,(s) a.e.s € (0,9).
n— oo
Proof. For the proof see [60] Proposition 1.4.5. O

19
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Let us state and prove the following Propositions.

Proposition 1.2. For almost every s € (0, |92|)

A'(0(s)) <1 and if V'(s) #0 A'(v(s)) = ) (1.2)

Proof. Let us consider all the values s; with 7 € N such that the set
Bi ={t€(0,2)) : [o(t)] =v(s:)}

has a strictly positive measure. By constriction every B; is an half-open proper interval on which v(s) is constant
and, since T(s) is not increasing, B, N Ej = () for i # j (this assures us that the B; are indeed countable).
Moreover U;en B; is closed and

A'(W(s)) =0 Va.e. s€UgenB;.

On the other hand setting K = (0, |2]) \ U;enB; we have that
Vse K, |{|[v(t)|=v(s)} =0 hence A(v(s))=s.

Since both T(s) and A(s) are almost a.e differentiable in (0, |2|) and, since for a.e. s € K it holds true that
7' (s) # 0, we have finished. O

Let us state and prove the following useful Lemma (see Lemma 9 of [77]).
Lemma 1.3. For every measurable function v : Q — R, there exists a set valued map s — Q(s) C § such that
() = s forany s € 0,12,
Q(s1) C Qs2) whenever s1 < sa, (1.3)
Qs) ={lv[ >v(s)} i Kol =v(s)}| =0.

Remark 1.4. When we use Lemma 1.3 with v = u,, or w, (see (1.15) and (1.16) below for the definition of u.,
and wy,) the associated set functions are denoted with ,,(s). When we use Lemma 1.3 with v = Vu,, or Vw,
the associated set function is denoted with €., (s).

Proof. By construction v(x) and T(s) are equimeasurable thus
{lv(@)| >v(s)} = [{[o(r)] > v(s)} < s < {[o(r)| 2 0(s)}] = {[o(z)] = 0(s)}-
Since the Lebesgue measure is not atomic there exists §2(s) such that
{lv(@)] > v(s)} € Q(s) C {[v(z)] = V(s)} and [Q(s)] = s. (1.4)
Of course if [{|v] =T(s)}| = 0, then Q(s) = {|v(x)| > T(s)}.
O

In the next Lemma we define the pseudo rearrangement of a function g € L!(§2) with respect to a measurable
function v(x) (see [6] and [57]).

Lemma 1.5. Let v : Q — R a measurable function, 0 < g(x) € L'(Q) and Q(s) the set valued function
associated to v(x) defined in (1.3). Then

D(s) :== i/ g(x)dz, se€(0,[Q]) (1.5)
ds Jo(s)
is well defined and moreover
t t
) [ Deds= [ gwdn < [gts)ds, te o0 (16)
0 Q(t) 0
i) D(A(k))(=A'(k)) = d g(z)dz, k>0. 1.7)

Ak J{jun 1>k}
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Proof. Note now that the function defined for s € (0, |Q|) as

s — g(z)dx
Q(s)

is absolutely continuous in (0, |€2|). Thus it is almost everywhere differentiable and, denoting by D(s) its
derivative, (1.6) holds true. Reading equation (1.6) for every s such that s = A(k) it follows

A(k)
/ D(s)ds :/ g(x)dx :/ g(z)dz,
0 Q(A(k)) {lv|>k}

where we have used that Q(A(k)) = {|v| > v(A(k))} = {|v| > k}. Differentiating with respect to k the
previous identity we get (1.7). O

The following Lemma assures that the pseudo rearrangement of g has the same summability of g (see [0]).

Lemma 1.6. Assume that g € L"(Q) with 1 < r < oo. Then the function D(s) defined in (1.5) belongs to
L7((0,182]) and | D|| 0,10y < llgllzr(0)-
Moreover if we assume that g € M*(€2) with 1 < s < oo, then D belongs to M*(0, |2]).

Proof. Case g € L"()). We follow the proof given in [6] Lemma 2.2. Let us divide the interval (0, |{2|) into
i € N disjoint intervals of the type (s;_1,s;), for j = 1,--- ,4 ,of equal measure |2|/i. Let us consider the
restriction of g(z) on the set (s;) \ ©(s;_1) and take its decreasing rearrangement in the interval (s;_1, s;).
Repeating this for any j = 1,--- ,4 we define a function (up to a zero measure set) on (0, |2]). Clearly this
function depends on 4 and so we call it D;(s). We stress that by construction the decreasing rearrangement of
D;(s) coincides with the decreasing rearrangement of g(x), thus for any measurable w C (0, |€?])

||
/ Dj(s)ds < / g (s)ds. (1.8)
w 0
Hence the sequence {D? (s)} is equi-integrable and there exists a function X € L"(0, |€2|) such that
D;—X inL"(0,|Q) as i— oo.

The proof is concluded if we show that X = D. Let us define the function

®;(s) = /05 (D;(t) — D(t))dt

and notice that ®;(0) = ®;(|Q2|) = 0. Thus for any ((s) € C1(0,|]) it results

1]
| (Di6s) = Do)elyis

0
|92 s
_ / [/ (Di(t)—D(t))dt} do(s) < @] = oo | = cogan |2 (1.9)

By construction ®;(s;) = 0 forany j = 1-- -4, since

J

N D;(t)dt = - [ D;(t)dt = (z)dz
>/ > /

1—1 Y Qs1)/Qs1-1)

_ /Q o = /0 " Dty

0
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Hence if s;_; < s < s; we have that

Recalling (1.6) we deduce

121/ s s s 12/4
-/ qﬂWS—LHDwﬁSAAUM@—MmﬁSLAQWﬁSA B(t)dr,

J

that implies the following estimate
121/4
@i [ pa
0

Hence the right hand side of (1.9) goes to 0 as ¢ diverges and

12
lim (Di(s) — D(s))p(s)ds =0, Ve C(0,[Q]).

i—o0 Jo

Since we already know that D;(s) admits X (s) as weak limit in L" (0, |?]), it follows that X (s) = D(s) and we
conclude the proof.

Case g € M*(f2). As in the previous step we can construct a sequence {D;} such that D;(s) = g(s) for
s € (0,]€]) and
1 o]
lim D;¢ = D¢ V¢ e L>™(Q).
71— 00 0 0

Take ¢4 = x4 with A C (0, |©2|) and |A| = s. We deduce that

S

12| s s s
Doy < / ¢ and taking the sup with respect to A / D < / g.
0 0 0 0

Thus
_ 1 /8

1[5
D(s) < - Dsf/gsmwm>
S Jo s Jo

T _1
s .
r—1

O

Moreover, coupling the Fleming-Rishel coarea formula and the isoperimetric inequality, we obtain the fol-
lowing proposition (see [86]).

Proposition 1.7. Forany v € WO1 P(Q) and for any s € R

=

on < A(s)¥ (- A'(s))7 —i/ Vol ) -, (1.10)
ds J{jo|>s)

1
where o = Nwy and wy is the volume of the unitary ball in dimension N.

Proof. See pages 711 and 712 of [86]. O
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Lorentz Spaces

Let us give now the definition of Lorentz spaces. For 1 < m < oo and 0 < ¢ < oo we says that a measurable
functions f : Q@ — R belongs to the Lorentz space L™ %(€2) if the quantity

1
Ftmf(H)TL) T ifg < oo
Ly = {(fo et ifg <o
SUP¢e(0,00) tm f(t) ifg=o0
is finite. We recall that L™™(Q) = L™ () and that
L™9(Q) c L™"(Q2) forany 0< g <r < oo.
Usually the space L™ (), with 1 < m < oo is called Marcinkiewicz space of order m and we denote it by
M™(Q). 7 ;
If we replace f with f, we define another space L™ (Q) given by

1

(fo tm f(t) %)7 if g < o0

[flremo@) = ) .
SUP;e (0,00) tm f(t) ifg=oc.

i

Since

[ fllLma) < [flpmma@) < m || flloma@), (1.11)
it results that || - ||pm.a(q) and [-];m.q) (@) are equivalent if m > 1 and L™9(Q2) = L(m9)(Q). Anyway in the
borderline case 7 = 1 the space L% (Q) is rather unsatisfactory since for ¢ < oo it contains only the zero

function. This is because by definition f(s) ~ 1 for s > [Q)|. Hence, following [18], we define L1(12) as the
set of measurable function f such that

(f‘“'thf %)5 if g < oo
SUDP;e(0,|02)) tf(t) ifg=o0

[ fllLra) =

is finite. Even if the modification is refers only to the domain of integration, we stress that
L2(Q) c LY(Q) = LY(Q), (1.12)
and indeed the inclusion is strict as the following Lemma (see [18]) shows.

Lemma 1.8. A measurable function f belongs to IL.1:*(Q)) if and only if

/ |Fllog(1 + | f]) < oo

Proof. For the proof we refer to [18]. O

The Lorentz spaces L™4(Q) and IL.*9(2) arise quite naturally in the study of elliptic PDE through rear-
rangement techniques.
The next Lemma (see [4]) is used to establish the membership to Lorentz spaces of some integral quantities.

Lemma 1.9. Let 7 : (0,+00) — (0, 400) be a decreasing function and let us define for 5 > 0 and § # 1

Jo sPr(s)ds if 6<1
Rs(t) := {f 557’( )ds if §> 1. (1.13)

Then for every X\ > 0 it follows that

o0 >\ o0
/ (Ré(t)> t‘”‘@ < C<575’ )\)/ T(t)At)\(B-&-ts)ﬂ_
0 t t 0 t

Proof. For the proof see [4] Lemma 2.1. O
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1.2 Others useful results

The existence and regularity results of Chapters 2-4 are based on an approximation procedure. Let us introduce
the following families of approximating problems.

Leta: Q x RY — RY be a Carathéodory function that satisfies the following Leray-Lions assumptions, i.e.
there exist 1 < p < oo and 0 < «, § such that

alg]? < a(x, §)E,
@, &)l < BIEP, (1.14)
la(x, &) —a(z, £)][§ = €] > 0, if £#&"
With no modifications we can also consider the case a(x,u, Vu) assuming suitable growth conditions with
respect to the u variable.

Assume moreover that E € (Ll(Q))N and f € L'(Q). Thanks to [66], for any n € N we infer the existence of
Up, € VVO1 2(Q) and w, € VVO1 2(0) that solve respectively

—2
/a(x,vun)ws:/ MEn(x)vm/fn(x)qs Ve Q) (1.15)
Q a1+ funP? Q
and V| -
— NVwn """V w, 1,2
/Qa(:z:,an)go/QE,L(:C)1+}lewn|p_190+/0fn(:z:)go VpeW, (Q), (1.16)

where F,, (x) and f, (z) are the truncation at level n € N of E(x) and f(x). The general strategy of the existence
and regularity results of Chapters 2-4 can be resumed as follows:

e a priori estimates for the sequences {u,, } and {w, } in suitable spaces;
e existence of a converging subsequence;
e passage to the limit in (1.15) and (1.16) as n — co.
In this Section we prove the almost everywhere convergence of the gradients of {u,, } and {w,}.

Lemma 1.10. Let {u,,} be the sequence of approximating solutions of (1.15). Assume f € L'(Q), |E| €
LP(Q)" and moreover that there exists u € Wy*(Q) with s > 1 such that up to a subsequence u,, — u in
WO1 (). Hence, up to a further subsequence,

Vu, = Vu a.e. in§. (1.17)

Proof. We follow the approach of [24]. Taking T} (u,,) as test function in (1.15) and using Young inequality it
follows that for any € > 0

a / VT (un)? < Cok? / B + e / VT4 ()P + & / I
Q Q Q Q

with C, = ¢~ 71, Thanks to the previous estimate we deduce that for every £ > 0
VT (u)] € LP(Q) and Ty (u,) — Ti(u) weakly in W, (Q). (1.18)
In order to prove (1.17) let us define for k£ > 0 fixed

I¥(x) = [a(z, VT (un)) — a(z, VT (w)]V (Ti(tn) — Tr(u))
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and consider, for0 < 8 < land 0 < h < k,

/Ij;(x)edx:/ I,’j(x)edm—i-/ IF(x)dx
Q {I T (un) =T (u)|>h} {I T (un) =T ()| <h}

) 6
k(o)dx Up ) — u e i(2)de o
< (/an( )d ) {17k (un) = Ta(w)| > A7+ </{Tk(un)Tk(u)|<h} () > .

Note that, for every fixed h, the first term in the right hand side above goes to zero as n — oo because of (1.18)
and thanks to the convergence in measure of Ty (u,,). We claim that also the second term converge to zero taking
the limit at first with respect to n — oo and then with respect to h — 0. Once this claim is proved, it follows
that

lim [ I¥(z)dz =0,

n—oo Q

from which we deduce, like in [24], that V T} (u,, ) almost everywhere converges to VT (u) for every k > 0. An
this is enough to infer (1.17) as in [80].

In order to prove the claim let us take 7}, (u,, — Tj(u)), with 0 < h < k, as a test function in (1.15). After simple
manipulations we obtain that

—/ a(x,VGk(un))VTk(u)—i—/ a(x, VT (un))VTh(Tk (un) — Ti(u))
{lun =Ty (u)|<h} Q

U 72
< [11+ [ f e B 0 T - Tiw)

T fugr?

and also that

0< / ¥ @)z = / [a(e, VT (un)) — ale, VT ()] VTn (T (wn) — Th(w)
{ITk(un)—Tr(u)|<h} Q

<n [ 171+ [ e b @)V - i)

4 / a2, Vun) VT (u) — / (2, VT () V T (T () — T (12)).
{lun|>k}N{|un =Tk (u)|<h} Q

Noticing that {|u, — Tx(u)| < h} C {Jun| < h+ k} C {|un| < 2k}, that the sequence {|a(z, VToi(un))|}
is bounded in LP () and recalling (1.18), we can pass to the limit with respect to n — oo into the previous
inequality and obtain

limsup/ Iﬁ(x)dmg/ |u\P*2uEVTh(Gk(u))+h/|f‘
n—roo {ITk (un)—Tr(u)|<h} Q

+/ \I’kVTk(u)
{k<|u|<k+h}

) N
where U, € (LP (Q)) is the weak limit of a(x, V1o (uy)). Letting h — 0 we prove the claim and conclude
the proof of the Lemma. O

Lemma 1.11. Let {w,} be the sequence of approximating solution of (1.16). Assume f € L(Q),
MM (Q) and moreover that there exists w € Wy* () with s > % such that up to a subsequence w,, — w

in WO1 *(Q). Hence, up to a further subsequence,

Vw, - Vw a.e. in{. (1.19)



26 CHAPTER 1. PRELIMINARY RESULTS

and moreover

Proof. By hypothesis the sequence {|Vw,|P~!} is bounded in L"(2) with r = i
r’ < N. Hence taking T} (w,,) as a test function in (1.16), we obtain

o [19Tr <k | [ 111+ [ 1Bu@9u,r

<k (Il @) + 1B o oIV P ]

N
N-1

that implies
Ti(wy) — Tp(w) in Wy P(Q) forany k> 0.

Notice that we are in the same situation of Lemma 1.10 above. Thus we conclude the proof if we show that

lim Sup/Q [a(z, VT (wn)) — a(z, VI (w))| VT (w, — T (w)) = 0.

n—oo

As before let us thus choose Tp,(w, — Ti(w)), with 0 < h < k, as test function in (1.16). Manipulating the
resulting equation, we obtain

/Q [a(z, VTx(wn)) — az, VTi(w))] VTn(w, — Te(w)

< [Iflln o + 18]

LT'/(Q)|||vwn|p_1||L7‘(Q)} +/ a(x, Vw, ) VT (w).

{|wn|>k}IN{|wn =Tk (w)|<h}
—/ a(x, VTk(w))VTh(wn — Tk(w))
Q

Noticing that {|w,, — T (w)| < h} C {|w,| < h+ k} C {Jwy| < 2k} we can pas to the limit with respect to
n — oo and obtain

timsup | o, VT3 (0,) VI, — Te(w)) < Cht [ VYT (w),
n—oo JQO {k<|w|<k+h}
, N
where ¥}, € (Lp (Q)) is the weak limit of a(x, V5 (wy,)). Letting h — 0 we conclude the proof of the
Lemma. O

Lemma 1.12. Given the function \, v, @, p defined in (0, +00), suppose that \, v > 0 and that Ay, A\ and
A\p belong to L*(0, c0). If for almost every t > 0 we have

—+oo
() < plt) + (1) / A(r)p(r)dr,

then for almost every t > 0

+oo .
PO < o0+ [ pOND N ar

Proof. See [7] Lemma 6.1. O

Often in this Thesis we consider a sequence of approximating solutions, say {u,, }, that hopefully shall con-
verge to the expected solution u of a certain problem. To assure this convergence, we need some compactness
property. The first step for it is to obtain a bound for {u,, } in some suitable space. This requires a massive use of
absolute constants C, i.e. constant that may depend on whichever datum of the problem (€2, E, f, etc.) but that
can not depend on u,, neither on u. To avoid proliferation of sub indexes, unless otherwise explicitly specified,
the value of the constant C' can be updated inequality after inequality even in the same proof. We definitively are
not interested on sharp bounds or constants.



Chapter 2

Convection lower order term

This chapter is devoted to the study of existence and summability properties of solutions of

—div (A(z)Vu) = —div (v E(z)) + f(x) inQ, o1
u=0 on 012, '
where  is a bounded open set of RY with N > 2, A(z) is a measurable matrix that satisfies for o, 5 > 0
a<A@)E-¢ |A@)|<B, aexzeQ VEeRY, (2.2)

and the vector field F(x) and the function f(z) belong to suitable Lebesgue o Marcinkievicz spaces to be
specified in the sequel. Problem (2.1) has to be meant in the following weak form

we Wy'(Q) : / A(z)VuVe = / uB(x)Ve + / f(x)p Vo e CiQ). (2.3)
Q Q Q
Focusing on the convection term in (2.3), we easily note that it is well defined if
N N N N
E € (LY (Q)) ormore generally E e (M™(Q)) .

Indeed, on one hand, the classical Sobolev embedding gives that

[ ullE@ds < 1Bl g, g < +o0

and, on the other one, the sharp Sobolev embedding in Lorentz spaces (see for example [87] and reference
therein) assures also that

1 _
/Q|u||E(x)|dx S/o u(t) E(t)dt

< +00.

1 ¢ Nl\ll’l(ﬂ)

T dt
< ||E||p~. ——— =||FE oo
<Nl [ T = Bl
Thus the aim of the next two sections is to analyze the cases of F(x) in the Lebesgue and Marcinkiewicz spaces
of order NV and, for both cases, we consider f(z) belonging to L™ (§2) or M™(€2) with m > 1.
To be more precise the existence and regularity results we are interested in are summarized in the following
table.

27
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ferLm) feMm™(Q)
l<m< 29 | (2)<m<N/2|1<m< (2% | (2) <m<N/2
u L™ () L™ (Q) M™(Q) M™(Q)
Vu L™ (Q) L*(Q) M™ (Q) L?*(Q)
Table 1

The way to read the previous scheme is that, given a datum f in L™ () or M ™ (€2), then there exist a solu-
tion u of (2.3) such that u and Vu belong to the relative Lebesge or Marcinkiewicz spaces. It is worth to stress
that the results gathered in Table 1 are true for any |E| € LY () (see Section 1.1), while a if |[E| € MY ()
some control on the size of E(s) as s — 07 is required (see Section 2.2).

The original contributions of this chapter concern the second half of Table 1, while the first two column are
already know in the literature (see [52][27][28]). Anyway in order to give a complete overview of the problem,
we provide the proof for the all the type of data.

In order to study problem (2.3) it is useful to consider the following approximating problem
/A(x)Vuanb :/ “71"Env¢+/ fad Y e Wi2(Q), (2.4)
Q ol+ by \un\ Q

whose existence of a solution u,, € WO1 2(Q) is assured by Shauder’s fixed point theorem.

2.1 Convection term in LV (Q)

In this section we treat (2.1) assuming that

E:Q—RY belongsto (LV (Q))N . (2.5)

We will prove that the relationship between the Lebesgue and Marcinkiewicz regularity of the datum and the
solution is the same as in the case £ = 0.

As far as the the Lebesgue regularity is concerned (the first two column of the Table 1) we present here the
approach provided by [26]. On the other hand the proof of the Marcinkiewicz regularity is one of the original
results of this Thesis and it is obtained by means the symmetrization techniques introduced in [86], [52] and [4].

In order to better understand the nature of the problem, we believe that, before the statements and proof of
the results, it is useful to present some preliminary arguments that stress the differences in dealing with L™ ()
or M™ () datawith 1 < m < % Indeed in one case we look for integral estimates of the form

lun ™ < C or / [Vau,|™ < C, (2.6)
Q Q

for some absolute constant C' that does not depend on n. On the other one we need estimates like
™ [{Jun| > kY <C or k™ [{|Vu,| >k} <C, 2.7)

for some other absolute constant C.

At first glance the achievement of (2.6) seems more direct and it is natural to try to adapt the technique of
[34], where the Lebesgue regularity of problem (2.1) is treated in the case &Z = 0 to. The main idea of [34] is to
consider power like test functions and to dominate the right hand side by the principal part of the operator.
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To give an example, let us consider the case f € L™(Q), with (2*) < m < % sety = 7’;* and assume for
the moment that s
[07%)))

IEl L~ @) < - (2.8)

where S, is the sobolev constant relative to W, (). Taking ¢(z) = 271_1 [t u, as a test function ( it

is admissible because 2y — 2 > 0 in the considered range of the parameter m) in (2.4) and Using Holder and
Sobolev inequalities, we get

1
E m N\ ™
a/ IV [2[un |22 < 7||LN(Q)/ [V |2 |un] 72 + WA llzm(2) (/ |un|(271)m) . (2.9)
Q S2 Q 2y -1 0

Thanks to the definition of ~y, assumption (2.8) and using once more Sobolev inequality, we deduce that there
exist an absolute constant C' that does not depend on 7 such that

/ ™ < C.
Q

Similarly it is possible to treat the case 1 < m < (2*) and obtain the relative bounds for {|Vu,|} in L™ (£2).
Once that such estimates are obtained, one deduces that, up to a subsequence, {u,} weakly converges in
Wy m (Q) or Wy(£2), depending on the value of m, to the expected solution of problem (2.3). This weak
convergence is enough to pass to the limit in (2.4) (the principal part of the operator is linear) and prove the
existence of a solution of (2.3) with the expected regularity.

|2772

Thus, under the smallness condition (2.8), one recovers the Lebesgue regularity of (2.1) as a slight general-
ization of the approach of [85] and [34] (£ = 0), based on the direct use of suitable test functions. We stress that
this is due to the fact that, under the smallness condition (2.8), the lower order term is absorbed into the principal
part of the operator.

As we shall see, things change dealing with Marcinkiewicz regularity. Even in the case E' = 0 estimates (2.7)
are more subtle to obtain than (2.6). However in [85] and [25] (see also [63] for a slightly different approach)
such estimates are obtained via test functions methods. In particular the strategy of [25] (that improves the one
by [85]) consists in obtaining an estimate of the type

/Qle(un)l < Cl{lun| > K}'= 7, (2.10)

where G (s) = s — Ti(s) and Ty (s) = max{—k, min{s, k}}. From (2.10) it is possible to recover a bound in
M™" () for the sequence {u,,} taking advantage of the following relationship (see [85] and [33])

_% (/Q |Gk(u”)|> B _d% </{un>k}<un . k)> - =0

Let us try, hence, to obtain the Marcinkiewicz regularity for (2.1) following [25] in the case of smallness con-
dition on the norm of E. Let us assume (2.8), that f € M™ () with (2*)’ < m < & and set v = 2 with

(2*) < r < m; being 2y — 2 > 0 we can take |Gy (uy,)|*Y 2G}.(u,,) as a test function in (2.4). Let us focus at
first on the behaviour of the lower order term. It follows that

(27 - 1)/Q [unl | B[V G (un) |G (un) 7

: k/ | B[V un| G (un )72 +/ |G (un)[7| B[V G (1) | G ()
Q Q
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% B YE| o )
<= / |E)|Gr(un) 2772 + <e+L ““) / V|| G (1) 272
€ Ja So Q

Thanks to (2.8) we can choose ¢ small enough to absorb the second term in the right hand side above into the
principal part of the operator, but there is no hope to get rid of the first one, no matter the value of the LY ()
2

norm of E. Finally we obtain the estimate
2z o
(/ |Gk(un)|’“”) <C > ] : @2.11)
Q

The point is that it is not clear how to manipulate the inequality above in order to obtain something similar to
(2.10)". Thus it seem that, even with the smallness assumption (2.8), the arguments used in [25] and [63] cannot
be adapted to our framework (it is possible to show that also the approach of [63] does not work).

e /Q EP |G un) P2 4+ 1l ( /Q G )

To overcome this problem let us recall that estimates (2.7) can be expressed equivalently trough the rear-
rangement of u,, and Vu,,, namely

E3

an(t)gti and [Vanl(t) < <.

m

This strongly suggests to use the theory of rearrangement introduced by Talenti in [86]. As said in the introduc-
tion, we use some ideas of [52] and [4] to obtain pointwise estimates for the decreasing rearrangement of «,, and
Vuy,.

In the following two subsections we address the question of existence and regularity for a solution of (2.3)
for datum in Lebesgue or Marcinkiewicz spaces and F € (LN (Q)) " without smallness condition on the norm.

2.1.1 Data in Lebesgue spaces

To get rid of (2.8) we present here the approach of [26]. Without any control on the norm of the convection term,
the problem exhibit its non-coercive character and it is not possible to absorb the lower order term as we have
done in (2.9). The preliminary arguments that we presented at the beginning of the Chapter suggest, as natural
way to overcome this obstacle, to use powers of Gy (u,,) (instead of powers of u,,) as a test function in (2.4) and

try to make the quantity
[ e
|up | >k

small enough for k large. Thus we need to show that the measure of the sup-level set of u,, is uniformly small
(with respect to n) as k increase. The key idea of [26] is to prove this uniform smallness by means of the next
Lemma.

Lemma 2.1 (Lemma 4.1 of [26]). Assume (2.2), E € L?>(Q) and f € L'(Q). Hence for every n € N the
solution of (2.4) satisfy

2

P g
([ gt + 0™ < s [ 18+ 5 [ 1) 01

Proof. Using # as test function in (2.4) one obtains

oz/. |Vun|2 </ |t E |v“n‘ /|f| |5 |
o (L+|uan])? = Jo 1+ |uy 1+| nl L+ Jug|

|Vt /
< El——— + ,
/Q| Tearwad ALl

from which we deduce (2.12) by means of Young and Sobolev Inequalities. [

n the case E = 0 one deduce (2.10) from (2.11) by means of Sobolev and Holder inequalities
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Remark 2.2. Thanks to Sobolev and Chebyshev inequalities, estimate (2.12) implies that

* < e e PP s L)

and, due to the uniform continuity of the Lebesgue integral with respect to the domain of integration, we can
infer that

|{x€Q:|un )| >k}

Ve>0 3k0=k0(6)>0:/ |E|N < e YVE> k. (2.13)
[t | >k
The next Theorem provide the Lebesgue regularity of the solution of (2.1) in function of the Lebesgue
regularity of the datum.

Proposition 2.3 (Theorems 5.5 and 7.2 of [26]). Assume (2.2), (2.5) and f € L™(Q) with1 < m < % Hence
there exists u solution of (2.3). Moreover

o ifl<m< (2%, thenu € Wi™ (),
o if(2*) <m< %, thenu e Wy ()N me(Q)

2Gk (un)

Sketch of the proof. Case (2*)" < m < X. Setting v = T " it results that ‘G’“(“"”W is an admissible
test function for (2.4), because in this case 2y — 2 > 0. Using it in (2.4) we get the following inequality

o / VG (1) P G 1) P72 < / |||V G (1) |Gl (1) P72
Q Q

/IEIIVGk wn)|| G (un) 271 + “f”L o (/ |G (g, )| &= )

that, thanks to Young and Hoélder Inequalities, becomes

k2
o [ 19Gkn) PGr ()7 < %= [ [Gu(un) 2B+ [ IV Guun)P G ()7
Q & Jo 4 Jo

1

% 2
O L B O e Y O R T
So \J{Jun|>k} Q

Thus, using once more Holder Inequality in the first term in the right hand side above, choosing kg in (2.13) so
1

that ( f |5k} |E| ) < ¢ and recalling the definition of -y, we conclude that

AT«
Capy (/ |G (un)|™ ) < 5/ [V Gy () |Gy (1) 772
Q Q

2

SIENT ~ ] W\ T w
_7L(Q)|{| n|>k0}|m* (/ |Gk0 un)|m > -£|,|>/L_(19) (/ ‘G un > )

Thus we finally obtain that

</sz|Gk°(u")mw>22*<C[(/Q |Gko(un)’"**> (/ |G, (1 (271)m’>”1/]’

where C' = C(a, m,Q, ko, f). Slnce 5 1s larger then — if m < & we deduce that

|G <c
Q
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This in turn implies that the sequence {u,, } is bounded in L™ (€2). In order to obtain the L?(£2)-bound for the
sequence {|Vuy|} it is enough to take Tk, (u,,) and Gko uy,) in (2.4). We respectively obtain

/lVTkU u,)|? < /|E|2+ko/ |f| and (2.14)

2k2
5 [ WGP < 2 [ 152+ Sl

namely the sequence {|Vu,,|} is bounded in L?(2). Thus up to a subsequence u,, converges weakly in Wy2(Q)
to some u € Wy 2(Q) N L™ ().

Such a weak convergence it is enough to pass to the limit in the linear principal part of the operator of (2.4). As
far as the convection term is concerned, we couple the fact that v,, — u a.e. in 2 with the Lebesgue Theorem

and conclude that the limit function w« is indeed a solution of (2.1).
Gk (un)\+1)2” -1

Case 1 < m < (2*)'. In this range of the parameter m, the correct test function to consider is 51 sign(uy,)
with v = ™" Notice that 3 < 2y — 1 < 1 but 2y — 2 < 0. We get
of TG [ gy VGe()
(1G] + 1F2 = (Crln] = 1=
# [ Gt 1l S ML (6 )4 1y )
where we have used the inequality W < k+|Gg(s)|". Using Sobolev, Young and Holder Inequalities

and recalling the definition of -, it results

2
2

co (ot ) < [ R

k2 1 % m** 2%
ga/lEm(/ E|N> ([t +vm)
Q « {Jun|>k} Q

[ £llzm (o) L\
+271(/Q(|Gk(un)|+1) ) . (2.15)

Taking advantage once more of (2.13), we select kg large enough in order to infer that

(/Q(leo(Un) - 1)) <C |1+ (/Q(|Gk0(un)| N 1)nl**>,3u]

where the absolute constant C' = C'(a, m, €, kg, f) does not depend on n. This estimate and (2.15) imply that

|VGko (un)|
{un} and {<1+|Gko(un>|>1v}

are bounded in L™ (Q) and L?(f2) respectively. In order to recover the boundedness of {|Vu,|} in L™ (),
let us notice at firs that, taking T, (u,,) as test function in (2.4), we obtain as before (2.14); complementary we

have that ()
: (14 (G (1)) O

VG " L — VGO " m 0 -
L I9Gu ) = [ 96 )

= (/g (1 lvik(;tﬁ;—zw)m ( /Q (1+Gk(un))m**> i |

and the right hand side above is bounded thanks to (2.15). Thus there exists u € VVO1 m (€2) such that, up to a

subsequence, u,, weakly converge to v in WO1 m (). Reasoning as in the previous case we prove that such a u
is a solution of (2.1). O]
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2.1.2 Data in Marcinkiewicz spaces

In this section we study the Marcinkiewicz regularity of problem (2.3). As we already said our strategy consists
in constructing uniform pointwise estimates for the rearrangement of u,, and Vu,,. While there is a wide liter-
ature concerning estimates of the rearrangement of solutions of problems like (2.1) (see as examples [20] and
[52] and references therein), the approach that we follows to achieve the estimate for the gradient is new.

Lemma 2.4. Foranyn € N, let u,, be the solution of (2.4) and denote with u., its decreasing rearrangement. It
follows that for v = 5= there exist C = C(a, N, ||E|| L~ (q),7) such that

c e, -
U (t) <T(s) := t—,y/ sN I (s)ds. (2.16)
¢

Remark 2.5. As already said in the Introduction, it results that v(z) = D(wn|z|™) solves the symmetrized
problem (11). Thus Lemma 2.4 gives a pointwise uniform estimate of u., trough the rearrangement of a suitable
symmetric problem.

Proof. Asin [52] let us take T’L(G+(””)) with A > 0 and £ > 0 as test function in (2.4). Using (2.2) we get
o k+h
“/ Vs [ g BliVul. @
{k<|un|<k+h} {Jun|>k} {k<|un|<k+h}

Applying Holder inequality to the last integral in the right hand side above and letting h go to zero, we obtain

1
2

1

d Jgunziy [l k[ d Y d

_% Vi By M [ ) (- [ e
{Hun|>k} @ @ {un|>k} {lun|>k}

Letus set forany n € Nand k > 0
An(k) = [{lun| > E}|,

namely A, (k) is the distribution function of u,,. Consider moreover D, (s), with s € (0,]€]), the pseudo
rearrangement of | E|? with respect to u,, (see (1.5) for the definition). Thanks to Lemma 1.5 we have that

d

VE>0 D(An(k)(=AL(K)) = —— -

|E)2. (2.18)

Moreover Lemma 1.6 assures that || D, ||L < ||E||%N(Q). Hence using (1.10) it follows that

0,0

d 2 : An(k)%_l ’ 1,k 1 / i
4 2 < 2T CA )+ DAL () (—AL (K)E, (2.
( dk/{|u,,|>k}'w'> < /{lun|>k}|f|( L)+ E DAL)AL ()E, 219)

Qo N

that can be rewritten, using once more (1.10), as

2(%—1) 1 1
e 2T [ (= A0) + DA A0 (-4, 0)
aUN {lun|>k} aoN

Collecting the term — A/ (k), we get

1

2(45-1) pAn(k) 1 1
An(k)/o P DAk AL A | (- AL (R).

1<
2
oy
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Thanks to the definition of decreasing rearrangement and using Proposition 1.2 in Chapter 1, it results

,dﬂ;ﬂn(s) < ai]?\, $2(F 1) (/05 f_(T)dT) N %Dn(s)%sﬁﬂﬂn@).
Defining for fixed ¢ € (0, |€2|) the auxiliary function
Ry (s) = paoy Ji Dn (T)sz—ldT’
we finally obtain that
— di(R(s)an(s)) < %R 2% 1) (/ f(r dT) : (2.20)
s aoy;

Notice that in (2.20) the presence of the lower order term is hidden inside the function R,,(s). In order to use
(2.20) to infer that {u,,} is bounded in some Marcinkiewicz space, we have to estimate R, (s) in a convenient

way. By means of Young inequality and recalling that || D,, ||L ¥ 00 <|E|3 ~ (g (see Lemma 1.6), we obtain
that s s ’
/ Dn(r)irvldr < Cy || Bl L~ +7/ 7 ldr  withy = Symerg (2.21)
t t m
Hence the function R, (s) satisfies the following inequality
S\
R,(s) < C»y,HEHLN(Q) (;) i
Thus (2.20) becomes
d CrlBll N 208
——(R(s)u, < (7 -1+ / )dT | .
ds( (s)a (s)) - aoiitY f(r)dr
Integrating between ¢ and |{2| and recalling that by definition of both @,,(|2|) = 0 and R(¢) = 1, we get
C,\E 1
T (0) = ~ RO (19) + RO, (1) < e [T 200 ([ fryar ) as
oty t
O

Let us now give a pointwise estimate for the rearrangement of |Vu,,|. We recall that for any measurable
function h(x) it follows that h(s) < 1 [ h(

Lemma 2.6. Let |Vu,| be the decreasing rearrangement of |Vuy,|. There exists a positive constant C =
C(N, o, || E|| L~ (), €) such that

1

2

s s , . [¥] s
é/o |Vu,| <C é/o (U(t)D{;‘(t)—kftN)dt—k(i/s (v(t)2Dn(t)+f2tN)dt> , (2.22)

where T(s) and D,, are the functions introduced respectively in (2.16) and (2.18).

Proof. Taking advantage of Lemma 1.3 and recall Remark 1.4, it follows that

/ \Vun|d7:/ |Vuy,|dz
0 Q. (s)

|Vuy,|dz —|—/ |V, |dx

()N { |un | <Tn(s)}

/ﬁn(s)m{|un|>un(s)}
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1
2

g/ |V, |de + (/ |Vun|2dac> |2 (s)]

{lun|>Tn(s)} {lun|<Tn(s)}

In order to estimate I notice that the functions k — f {u
and hence (see [4])

Nl
N o)

<ILi(s)+ L (8)8%.

>k} |Vu,| and s — 1, (s) are absolutely continuous

d

d
o |Vu,|? = — |Vu,|?
S {‘un‘>ﬂn(5)}

L (s). (2.23)
Ak J {51y !

Thus we infer from (2.19) that

d

ds |Vun|2 <C (ﬂn(s)QD(s) + S%f(S)Q) '

{‘un‘>ﬂn(3)}

Integrating between s and ||, we get

12:/ |Vun|2:/ |Vun|2—/ V2
{lun'SEn(S)} Q {‘un‘>ﬂn(5)}

[¢] ) -
<C / T, (t)2D(2) +th(t)2dt] .

As far as I is concerned let us notice that

1
2
/ |Vu,| < (/ |Vun|2> {Tn (5) < |un| < Tn(s+h)} 2. (2.24)
{tn () <|un|<un(s+h)} {n () <|un|<un(s+h)}

Taking the limit as & — 0 and noticing that Proposition 1.2 implies |{|u,,| > %, (s)}|" < 1, we obtain

d d 2 P
— [Vu,| < (/ Vun|2> < C(un(s)D(s)z + f(s)s™ ).
ds J{ju,|>m,(s)} ds J{ju, | >wa(s)} ( )

Hence we have the following estimate for I3

I < 0/ (@D} + F)et) at,
0
Putting together the obtained information for I; and /5 and recalling (2.16), we prove (2.22). O

Now we are in the position to state and prove the main result of this chapter.

Theorem 2.7. Assume (2.2), (2.5) and f € M™(Q) with1 < m < % Hence there exists u solution of (2.3).
Moreover

e ifl <m < (2%), thenu € M™  (Q) and |Vu| € M™ ().
o if (2°) <m < &, thenu € Wy (Q) N M™"(Q)

Proof. Case 1 < m < (2*). From (2.16) it follows that

C m
< ||l arm ()

un(t) <T(t) =

2]
/ s8I0 ds < O f | arm(pt” 7 (2.25)
t
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where the last inequality follows from the choice v = ﬁ < L and the fact that m < % From estimates

m**

(2.22) and (2.25) and taking advantage of Lemma 1.6, we deduce that

=

S

< % K/OS Drjfv(t)dt>11V </Osv(t)NNldt>NN1 +/08tfv%dt]

2] LAV 2 2
T ( Dg(t)dt) (/ ”“)N&d’f) + / R wdt| < O fllpme @t
52 s s \

From this estimate we infer that there exists u € VVO1 ’T(Q), withl <r < J\][V_”:n , such that, up to a subsequence,

_ S 1 - 1] -
[Vu,| < C 1/ (v(t)DE(t)Jrft%)dtJr (1/Q (u(t)Dn(t)Jrf?tﬁ)dt) <
0 S Js

U, —u in Wy ().

This weak convergence is enough to pass to the limit in the left hand side of (2.4) for any ¢ € C(Q). In order
to handle the lower order term, notice that for any measurable w C () it follows that

M*t |w] e 1 L
/\un\|En| gc/ o )dtSCHfIILl(Q)/ =5 < Olwl ¥,
w 0 0

v

where we used (2.25). Namely the sequence

AEs ),

is equi-integrable. This together with the a.e. convergence of u,, allows us to take advantage of Vitali Theorem
and prove that

A(z)VuVe = / uE(x)VqH—/ f(x)p Vo€ CHR).
Q Q Q
Moreover thanks to Proposition 1.1
we M™ (Q) and |Vu| € M™ (Q).

Case (2*) <m < % Taking u,, as a test function in (2.4) and thanks to Young inequality we obtain

«
& [ vunt<c [ junPler+ [ 1)
Q Q Q

Q| L ko]
< C/ (02E° + fo,) < O/ tmedt < C
0 0
where we have used Hardy Inequality and (2.25) (that holds true for 1 < m < %). Thus there exists a function

u € W, *(£2) such that, up to a subsequence u,, — u in Wy >(€2). As in the previous case we can prove that u
is indeed a solution of (2.4). Moreover thanks to Proposition 1.1

— 1
u(t) < Ol fllarm @t = .
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2.2 Convection term in M (Q)

We treat now problem (2.1) assuming that
E:Q—RY belongs to (MN(Q))N . (2.26)

An easy example to bear in mind is E(z) = Bﬁ. As already mentioned in the Introduction, this assumption
is reasonable thanks to the inequality

1N -2

H|vll 220y < [Vollze@) Yo e We?(Q), with H=wf R (2.27)

proved in [2]. In some sense this section can be seen as a technical refinement of the previous one. The important
difference is that if we want to preserve the relationship between regularity of the data and regularity of the
solution sketched in Table 1, we need to impose some restriction on the M ™ (£2) norm of E or, more precisely,
on the size of E in a neighborhood of zero (see Comment 2.11).

2.2.1 Data in Lebesgue spaces
Let us start with the following result.

Theorem 2.8. Assume (2.2), f € L™(Q), with1 <m < % and that

LN -2
Ee MN(Q) with |Elly~q) < awl Tm (2.28)

Hence there exists u solution of (2.3). Moreover

o ifl <m< (2%), thenu € Wol’m*(Q);

*

o if(2*) <m< %, thenue W2 ()N L™ (Q)

Comment 2.9. A particular case of Theorem 2.8 is 0 € ) and

N2
E(zx) =B with B<a~—2""
|| m

Such case has been treated in [28], that inspired our approach.

Proof. Case 1 < m < (2*). Take ¢.(un) = (€ + |un])?>’ ™! — ¥~ Isign(u,), withy = 2" and ¢ > 0, as a
test function in (2.4). We get

1

|Vun|2 / |Vun| ||f‘L’”(Q) (/ 2v—1 ')W
a | — " < [ (e+ |u,|)"|E + €+ |u,)Z—Dm 2.29
/Q(EH%DQ_% (et 1B s+ 25 2 ([ (e ) (2.29)

We set now

(o (e + lun]) > B?) 2
(o l(e + lunl)y — 2| EP2)

Since 1 < I < 1+ €"[|E||2(q). it follows that lim,_,¢ /. = 1 uniformly with respect to n. The the lower order
term of (2.29) becomes

e B = < 1 ([ et eﬂﬂE?)é (f M)

I. =

1-
2
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At this point set z¢ ~ := (e + |u,|)” — € and notice that, thanks to (2.27), it follows

1

1
2 i WA
(ft1e) <t ( [ 22000 4
Q2 0

1 1
< 1By~ ([ v |2>2:v||E||MN<m (/ [V, )
S e Ho ol ul>>)

Thus the estimate of the convection term becomes

V| v / |V, |*
¥ un| ) |E|— o Vg e
/Q(E |U7L|) | ‘(€+ |un‘)1_7 = HH ||MN(Q) 0 (E+ |’U/n|)2_2’y

Since assumption (2.28) assures that & > ;|| E[[prv () and I — 1 as € goes to 0, we can absorb the lower
order term of (2.29) in the principal part taking e small enough. Then using Sobolev inequality and letting e — 0
we obtain that the sequence {u,, } is bounded in L™ (). This also implies that

2

from which we deduce that {|Vu,,|} is bounded in L™ (£2). Thus there exists v € W, "™ (§2) such that, up to a
sub sequence, u,, weakly converges to u in I/VO1 "™ (Q). Noticing that for any measurable A C

Al )
/ luE| < C/ t~mr < C|AM =,
A 0

we can pass to the limit in (2.4) and conclude that u € Wol’m* (€) is a solution of (2.1).

Case (2*) <m < % We just sketch the main differences with respect to the previous case. Taking u,, as a

test function in (2.4), it results
o [ 1Vunl < [ JunllEITu + [ (£l
Q Q Q

12 2
< 1Bl [ 190l + Sal ooy ([ 190a12)
Wy Q Q

that gives the bound of {u,, } in W, *(2). Moreover taking |u,, |>*~2u,, with v = ”; as a test function in (2.4)
(now 2y — 2 > 0), it follows as in the previous case that

{u,} isboundedin L™ ().

The existence of a solution in WO1 2((2) is straightforward. O

Theorem 2.8 is somehow unsatisfactory because, even if it deals with E/ € (M N (Q)))N, it does not gen-

eralize Theorem 2.3: there exist E in (LN (Q)))N that do not satisfy (2.8). This problem is solved in the next
subsection via symmetrization techniques.
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2.2.2 Data in Marcinkiewicz spaces

Theorem 2.10. Assume (2.2), f € M™(Q) with1l <m < & and E € (M" (Q)))N such that

E=F+¢& with Fe (LX) and E(s) < Bl with B < awﬁw. (2.30)
m

SN

Then there exists u solution of (2.3). Moreover

(i)if 1 <m < (2*), then |u| € M™ () and |Vu| € M™";

(i) if (2*)" < m < &, thenu € Wy*(Q) N M™ ().

Remark 2.11. We split in two the contribution of the E because the real obstruction in the achievement of the
required estimates is not exactly the value of the Marcinkiewicz norm of E but rather the size of its singular
component near zero. And we control it by means of the constant B in (2.30). This is essential in the estimates

for w, (2.34) and (2.35) below. Notice moreover that any E € (LN (Q)) N satisfies (2.30).

Proof. The fact that |E| € M”(Q) require some additional technicalities but the general strategy is the same
of the one followed in the Subsection 2.1.2; here we sketch the main differences. The proof is split into the
following steps.

Step 1. Pointwise estimate for u,, and |Vu,,|.

Step 2. A priori estimate for @,, and |Vu,,|.

Step 3. Existence and regularity for 1 < m < (2*)'.

Step 4. Existence and regularity for (2*)' < m < &

Step 1. Setting &,, = T,,(&), the family of approximating problems that we consider in this case is

/ 2)Vu, Vo = / 1‘ |]-‘+5 V¢+/fn¢ Vo e W, 2(9), (2.31)

whose existence of a solution u,, for any n € N is assured by Shauder’s fix point theorem. Taking M,

with h, k > 0, as a test function in (2.31), we obtain, as in the proof of Lemma 2.4, that

d S = 1 1 1
g < | T+ o (Do) + (D)) ¥~

ds

where D1 ,, and D, ,, are given by Lemma 1.5 and

d d
Dy (s) == %/Q ( )|.7-'(x)|2dw and Dsp(s) := £/9 ( )|E(x)|2daz.

As in Lemma 2.4 we define for fixed ¢ € (0, |©2|) the auxiliary function

o) = o T (P Pan )b

in order to obtain that

d -
- g(Rn(s)ﬂn(s)) < Can(s)SQ(%_l) (/ f(T)dT) . (2.32)
0
To estimate the function R,,(s) notice that by constriction
1 3 i L. N
—_— Dl,n(7)2 N dT< ||]:HLoc(Q 7‘Q|
Qo N

and

L 1 ° B (1
— Dzn( )iryldr < / Do (7)r % tdr + / —dr (2.33)
aoN 20 B ¢ ’ aoN T
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1 2 2—N
< ~—1 #-1 _z rE2 = 2
_QMNB[S / —t /5 /5d7‘]+ log (7)

< + B 1 ( )
o
2aUN(N—2) aoN & t
where we have used Young Inequality, integration by parts and assumption (2.30). Hence, integrating (2.32)
between t and (2 and setting v = %, we get

9]
a(6) = ~ROQDT(9) + RO (0 < 300) = 5 [ 5471 f(s)ds .34)

The pointwise estimate for the rearrangement of the gradient is obtained as in Lemma 2.6 with the following
preliminary estimate

1
2

S
/ |Vuy,|dr §/ |V, |dz + (/ |Vun|2d33> 52,
0 {l“n‘>ﬁn(3)} {lunlfﬂn(g)}
from which one deduces that
|y — 1 [® 1 - 1 (1%l - 2 :
;/ |Vu,| <C ;/ (W(t)DZ (t) + ft¥)dt + ;/ (U(t)* Dy (t) + f2tV)dt , (2.35)
0 0 s
where, in order to have a more compact notation, we set
d 2 d 2
D,(s) = — |F+E|*de = — |E(z)|“dx.
dS Qn(S) dS Q,,L(s)
Step 2. From (2.34), it follows
— C —1+ 1
Un(t) < = SN T=mds < Cs m~, (2.36)
t

where we have used that by definition v < m** . The achievement of the estimate for {|Vu,,|} is more technical.
Notice at first that, integrating by part and using Lemma 1.5, we get

/t‘ﬁDé(t)dtg (/ t_ml**Dn(t)dt> (/ t_ml**dt)
0 0 0
< (= [ 7

det) st

i e
and that
19] ) ) el __, 2 1] 5
/ t~m ™ D, (t)dt < |Q|” =™ E" (1) t~ T)dTdt
s 0 m s
=Cslmme — Lol < OslwE.
2 —m*

Thanks to (2.36) and to these two pieces of information, estimate (2.35) becomes

L [ 1 1 el
’/ [Vun| < C */ (fﬁDz( t) + 77" )dt + ( / (tmz**Dn(t)ﬂn?*)dt)
S Jo s Jo s /.

[SE
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< Ot~ w .

Step 3. Thanks to the previous steps we deduce, as in the proof of Theorem 2.7, the existence of a candidate
Nm

solution v € Wy (Q) with 1 < r < ~—r=such that up to a subsequence

U, —u in Wy (),

and
Un
1+ Luy|
This is enough to pass to the limit in (2.31) and conclude that « is a solution of (2.1). Moreover thanks to the
almost everywhere convergence of {|Vu,,|} provided by Lemma 1.10 we conclude that

(F(z) + En(z)) = uB(x) in LY(Q).

lul € M™ () and |Vu| € M™ (Q).

This weak convergence is enough to pass to the limit in the left hand side of (2.4) for any ¢ € C3(Q). In order
to handle the lower order term, notice that for every A C ( it follows that

1A @(l‘,) 4] N—p 1 1
/A|un|\En| sc/o dtscanLl(m/O 5 < oAb,

I~

where we used (2.25). Namely the sequence

U]

is equi-integrable. This together with the a.e. convergence of u,, allows us to take advantage of Vitali Theorem
and prove that

/ A(x)VuVe = / uwE(x)Ve +/ fx)p VoeChR).
Q Q Q
To conclude we still have to prove that

Hu||Mm**(Q) + ||VUHMm*(Q) < CHf”Mm(Q)-

To this aim we use the almost everywhere convergence of {|Vw,|} and the argument of Theorem 2.7 to infer
that w itself satisfies (2.34) and (2.35).

Step 4. Choosing u,, as a test function in (2.4) and Using Holder’s inequality we get

: 5o
o [ < ([ 1E2) ([ 902) "+ g e ([ 1907)
Q Q Q 2 Q

Moreover thanks to (2.36) it results that {u,, } is bounded in L?(2) for 2* < ¢ < m**. Thus

o 1 T L\ T
/ t7 272 (t)dt < / ol (t)dt / t~ N2 <C
0 0 0

2g

since 1 — =) 0. Hence

1
2

1
e, 2 1
[Vunllrz) < 1Bl a0 (/0 tZUQ(t)dt> + §2||f\|L(z*>'(Q) <cC

At this point we conclude as in the previous step that there exists a function u € WO1 2(Q) solution of (2.3) and
that belongs to M™ (). O
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Chapter 3

Drift lower order term

In this chapter we consider the following problem

{—div (A(z)Vw) = E(z)Vw + f(z) inQ, G

u=20 on 0,

where as before (2 is a bounded open set of R with N > 2, A(z) is a measurable matrix that satisfies the
standard condition (2.2) and as before

Ee (N@)" or Ee (MN(@)Y and feL™Q) or feM™(Q),

for some m > 1. The weak formulation of (3.1) is
we Wl (Q) : /A(x)Vngb = / E(x)Vw¢+/ fx)p VoeChR). (3.2)
Q Q Q

where r > % Notice that, while in (2.3) one can in principle consider I/VOM(Q) solutions, here an higher
regularity is required for the drift term of (3.2) to be well defined. As in Chapter 2, our aim is to provide exis-
tence and regularity results for problem (3.1), under borderline assumptions on the summability of E so that the
relationship between the summability of the datum and the solution continues to be expressed by Table 1. Also
in this drift case it results that for every |E| € LY (£2) we recover for problem (3.2) the same results of the case
E = 0. On the other hand, if |E| belongs to M~ () a smallness condition of its size is required. Our main

references are [42], [50], [52] and [69] (see the Introduction for a more detailed discussion).

Our starting point is once again to built a sequence of approximating solutions and thereafter to attain bounds
in suitable spaces for such a sequence. Consider hence

Vw,

w, € Wy?(Q) : /QA(x)anvfb:/QEn(x)W

o+ /Q fub VHECHQ), (33

that admits a solution for every n € N thanks to the Shauder’s fix point Theorem.

3.1 Drift term in LV (Q)

As pointed out in Section 2.1, it is possible to prove the Lebesgue regularity of problem (3.1) with small condi-

tion on the (LY (Q))N norm of E(x) by means of a direct generalization of [34].
To get rid of such a smallness condition, we couple the method of power-like test functions of [34] with a slice
technique originally introduced in [42]. We stress that such a slice technique does not involve estimates like

43
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(2.12). Rather priori estimates are obtaind through an iterative procedure made of a finite number of steps.
To treat the case of Marcinkiewicz data we adapt the strategy developed in Subsection 2.1.2 to obtain a pointwise
estimate for w,, and |[Vw,|.

To our knowledge, both the Lebesgue and Marcinkiewicz regularity results for problem (3.1), with E' € (LN (Q)) N
without smallness assumption, are new.

3.1.1 Data in Lebesgue spaces

Here we consider problem (3.1) assuming
N m : N
|E| € L™ (Q) and f e L™(Q2) with 1<m<5.

As already said we use a slice technique introduced at first in [42] to deal with existence of Wol’2 () solution of
(3.1). The main idea is to divide {2 in regions in which the corresponding L -norm of | E| is small enough. This
partition, together with the use of power test functions, allows us to achieve the expected bounds for {w,,} and
{|Vwy,|} through an iterative procedure.

We need some preliminary results. Let us define fork < hewv € WO1 2(Q)
Ag(v) ={zeQ : t<|v(z)| <, |Vo(z)| # 0}.
The following Proposition provides an important property of A; ;(v).

Proposition 3.1 (See [42]). Foranyv € Wol’2 (Q) and 0 < h < oo the function k — | Ay, n(v)| is continuous in
0<k<h.

Proof. Right continuity. Let {k,, }nen be a decreasing sequence converging to k € [0, ). It follows that
Apn(v) = | Ak, n(v)
neN

and that
[Arn(@) = Ak, n(v)] = Jim | A, g (0)].

neN

Thus we can infer the continuity from the right
lim | A; 5 (v)] = |Ag,n(0)]-
j—kt
Left continuity. Let us now consider an increasing sequence {ky, }nen * k with k € (0, h]. We have that

() Ak,n(v) = Ap () U{z € Q ¢ |u(2)| = k, Vu(z) # 0}.
neN
Thanks to Stampacchia’s Theorem it follows that [{z € 2 : |v(x)| = k, Vu(x) # 0} = 0, thus
[Ak.n(0)] = | DNAkmh(v)\ = lim | Ak, n(v)];

and we recover also the continuity from the left

lim A 5 (v)] = [Agn(v)]-
j—k—
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Thanks to Proposition 3.1 we can prove the next Lemma.

Lemma 3.2 (See [42]). Assume that v € W)2(Q2), g € L*(2), n > 0 and define

J:f‘w#o|9| - I{J ifJeN
[J] ifJ¢N

Hence there exist 0 = kry1 < - -+ < ko = +00 such that

J.

Proof. If I = 0 we take kg = +o0 and k1 = 0 and we are done. If not take a sequence of I + 2 real numbers
such that 0 = ky g < - -+ < kg = +o0. Of course

/IW;éO Z/Aml ks "

Thus thanks to the continuity of the function k& — |Ay »(v)| proved in Lemma 3.1 and the definition of I we
infer that the numbers k;, with j = 0,---, I + 1 can be chosen with the required property. O

gl =n forj =0, I—1, / BN <.
Akpiqkp (Wn)

ks (v

Now we are in the position to state and prove two Lemmas that give us the required bounds for {w,,} and
{IVwnl}.

Lemma 3.3. Let us assume (2.2) that E € LY (Q) and f € L™(Q) with 1 < m < ]3]:2 and consider the
solutions of the family of approximating problems (3.3). Hence there exists a constant C = C(«, E,m, N ) such
that

[Vwy|

)+ < O f]

L < v < 1) and define

Lm (Q)

Proof. Take v :=

w |E|N n if n
J, = I{WM;(J}N and I, = {] lfj € E (3.4)
(aSm* 22'51) n] 38 Tn
E|N if
J = f9|—| and [ = 4 ] JEN
(aSm* 221) [J] ifJ¢N
2m*

where S,,~ is the Sobolev constant relative to WO1 m (Q). Note by definition that I,, < I. We divide the proof
in the following steps:

Step 1. Case I,, = 0.

Step 2. Case I, = 1.

Step 3. Case I,, > 2.

Step 4. Conclusions.

Step 1. In this case

1
v 9 — 1
(/ |E|N> <a8m*7;2 . (3.5)
[Vw,|>0 m*

Take ¢ (wy) = [(€ + |wy])>7~! — €277 !]sign(wy,) as test function in (3.3). We get

ar-1) [ el < [ BIVulo ) + [ (7o)

€+ |w, )22y —
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1
N
< [( / |E|N) 19wl ) + 1]
Vwy,#0

where we have used Holder Inequality and the fact that % + T;* + % = 1. Moreover

I R e
Q Q

e+ wn]) A=

m* 2—m*
|Vw,|? oz / a-yem*\ 2
< R S S — Tom®
<( [ wermgm) (e

m*

2

[@e(wn)ll Lm (62):

1

N N
(L 1e) v
Vwn,#0
2—m*

mT* (—y)2m* 2
X ||¢E(wn)||Lm/(Q) Q(G + "LU,,LD 2—m ,

where Cy, = [a(2y — 1)]7!. Taking the limit with respecto to e — 0 (by means of Lebesgue Theorem),

recalling the definition of ¢, and that (2y — 1)m’ = % = m™**, it results

1
N
[( Lo 1) 19wl + 1]
Vw,#0

Ca, 2 ~ 2 . L
< (s v) K/ E|N> ||an|Lm*(Q)+||f||m(m] (/ V| ) ,
m* YVw,#0 .

where in the last inequality we have used the Sobolev embedding for the space VVO1 m (). Since

*
m

<a

L) + ||f||Lm(Q)]

_m*

MT* . 1 2m
Lm(m] (/Q |wn|™ )

Tll*

/ V™ < O
Q

0
Coz,'y (/ |E|N> § 1,
Smr \JVw,#0 2
we conclude that
[Vw || m= () < Cill fllzm @), (3.6)
_2_
where Cl = Mﬁ
Step 2. Thanks to Lemma 3.2 (applied with I,, given by (3.12)) there exist 0 < k; ,, < 400 such that
N N
2y -1 2y —1
/ BN = (aSm* i ) , / |EIN < (asm* i ) . (3.7)
Ak 00 (W) 2m= Aoy, (W) 2m=

Now we separately recover uniform W, m (€2) estimates for G, , (wy,) and Ty, , (w,) taking advantage of
(3.7). Let us take at first . (G, ,, (wn)) = [(e+|Gr,, (wn)])?Y ™1 — €277 ]sign(wy,) as a test function in (3.3).
Following the same arguments of Step 1 we get

IVGy, , (wn)]?
a2y — 1)/9 (e + Grr , (wn))2 2

1

N
< (/A |E|N> VG, (wa)ll L= () + [ lLm (@) | [0e(Gra o (W)l Lm0y
kal,n
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and that

m*

2

*

o (Car) ?
196w < (52)

1
N
( / |E|N) VG, ()l oy + 1 m e
onkl,n

< ([ 196w )

VG, (W)l Lm= )y < CillfllLm (9, (3.8)

that in turn implies (thanks to (3.7))

_2_
where again C; = Mﬁ (the same of (3.6)!).

Let us chose now ¢ (Ty, , (wn)) = [(e+ |Thy.,, (wy)|)*Y ™! — €271 ]sign(wy,) as a test function in (3.3). We get

‘VT]CL” (wn)|)|2
2y - 1)/9 (€ + [T, ,, (wn)])])2~2

< /Q | E[[Vwn|de(Th, ,, (wn))| + | Fll @) |9e(Thy . (W) L

- /A B[V |6e(Ter , (wn))] + / B[V n||$e(Thr , (wn))]

Akl,nvoo

Al @) 196 (T, (wr)) || L ()

1

N

< (/A |E|N> VT, ,, (wn) | L= (@) [l (Thy (W)l Lo
kal,n

+ [HEHLN(Q)”VGkLn(wn)HLm*(Q) + ||f||Lm(sz)] ||¢6(Tk1,n (wn))]

Taking advantage of the estimate above and (3.8) and taking the limit as ¢ — 0, we also deduce that

m* CO‘,
[V o < | 2 (/ |E|N>
Q m* onkl,n

m*

Cao 2
H(52) 7 Bl +1]

Lm' (Q) . (39)

1 m
= 2
N

/ VT, ()™
Q

1
m* m* N\ 2
A ([ 19T w0 )

We hence take advantage once more of (3.7) to infer that

VT, (W)l s () < CL(CLIEN L~ @) + DI fllLm (e

2
. o 2m*
with Cl = m Thus

[Vwn || me @y < C1 [14 (Ch

|Ellz~ @) + 1)) I/

Step 3. Let us use once more Lemma 3.2 to deduce the existence of +00 = kg, > ki1 pp > -+ > k1, >
kr, +1,» = 0 such that

2y —1\V
/ |E|N:(a8m* 'Yi ) forj=0,---,1,—1
Akjp1,n kg, (Wn) 2

Lm(©)- (3.10)
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2y — 1\
and / BN < (asm*%) .
A

Exactly as in Step 2, taking ¢e(Gr, . ko (Wn)) = [(€ + |Gy ko (wn)])?7 1 — €27~ ]sign(w,,) as a test
function in (3.3), we recover that

k,wrl‘n,kln,n(wn)

VG ko (Wil e (@) < Cill fllLm(0)- (3.11)

For j € {L T ’In} let us chose ¢E(Gk"+l,n;kj,n (wn)> = [(6 + |G7€j+1,mkj,n (wn)DQ’y_l - 627_1] sign(wn) as

J
a test function in (3.3). Splitting the contribution of the lower order term in slices we get

/ |Vij+l,nakj,n (wn)|
o (e+[Gx (wn)])?=27

j+1,m:Kn
1
N
|E|N> IV Ty, (Wi ) | Lm= (@) D (Thy o (W)l o ()

(...

||E||LN(Q) Z ||VGki+1,nJ<?i,n (wﬂ)”Lm* () + HfHL""(Q)
=0

+1,n:kjn

+ ||¢€(Tk1,n (wn))‘

Lm’ (Q):

As before from the previous inequality we infer that

. Cy
/ |VG1€j+1,n,kj,n (w”)|m S S = (/
Q m* Ay

i+1,m0Fjn

771.)‘<

% 2
E|N> /Q |Vij+1,n7k)j‘n (wn)|m

*

-1 5
1B~ @) D IVGhipr ki @)l e () + 1 f] L""(Q)‘|

=0
1
- 2
X (/ |Vij+1,nJ€j,n (wn)|m ) )
Q

m*

C’CW 2
* (sm* >

that, thanks to the definition of Ay can be rewritten as

J+1,m5Kjn

Q

<

j—1
HEHLN(Q) Z ||VGki+1,nJ€i,n (wn)”Lm*(Q) + ”fl L””(Q)] s
1=0

2
with C; = a(zy{ﬂqﬁ Notice at this point that the sum in the square bracket in the second line above involves

a finite number of contributions, hence it can be iteratively estimated starting from (3.11). We claim that the
previous inequality can be rewritten as

_1
( /Q |VGk_7.+1,n,kj,n<wn>|’"*) < CLL+ Bl om @y 1Y | fll -
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Let us prove the claim by induction. For the case 7 = 1 look at (3.10). Moreover we have that

2 j1 |
([ 19610t wn™ ) 1 [1BlLviay 3 L0+ 1B + 1| 1 mco
=0
j—1
= C1(1+ | Ell v @ Ch) [IEl v @) Y Crll + 1B vy Cr) ™ + 1] [ flme
i=1
j—1
= C1(1+ || Bl v @ C) |IE v @) Y Crll + 1 Ellia@)Ch) 2 + 1| I fllzm o)
=2

= C1(1+ 1Bl v @) CL) ™ I Bllv ) Cr(1 + [ Bll Ly ) Cr + 1] 1 fllm (0

and the claim is proved. Thus we have that

1 I,
( / |an|m*> <0 SO0+ 1B ey Pl
=0

I
<Ch Z(l + BNy @ CL N fllLm ()

=0

since by construction I,, < I. O

Lemma 3.4. Let us assume (2.2) that E € LV (Q) and f € L™ () with ]\2[71{2 < m < & and consider the

solutions of the family of approximating problems (3.3). Hence there exists a constant C = C(«, E, m, N ) such
that
||wn||Lm(Q)** S C

*ok

Proof. Take v := "5~ (in this case % < 7 < 1) and define

E\N i
Jn = I{WW;OH[L and I, = {i}l ] li jn ;E (3.12)
2v—1 n] WJn
(a5:75)
J =

BN if
e ™ I:{in €7
— 1

(05:%57)

where S5 is the Sobolev constant relative to VVO1 m* (Q). Note by definition that I,, < I. Lemma 3.2 assures the
existence of +o00 = ko, > k1 > -+ > k1, n > k1, 4+1,n = 0 such that

N 2y -1 N .
[E|Y = | oS, forj=0,---,I,—1
Ak 1,n kg, (Wn) 2y

2v — 1\ Y
and |E|N < <a52 i ) .
2y

Ak1n+1,n*kln,n (wn)

Let us take ¢ = |Gy, . (wy,)|*Y~*sign(w,) as test function in (3.3). We get

o2y~ 1) / VG () PGy, ()72
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S/ IEIIanIIle,n(wn)I%’l+/ |G, (w) 7
Q Q

S ‘;/(/ |E|N> / |Vle‘”(wn)|2|Gk1yn(w”)‘2W72 +/ |f||Gk1,n,(wn)|2’Y71.
2 Ay 00 (Wn) Q ;

where we have use Holder Inequality with exponents % + % + 2% = 1 and Sobolev Inequality. Thanks to the
choice of k1, using Sobolev Inequality and recalling the definition of +, the inequality above becomes

*

[ 96 (P16 w) 772 < €l e ( / |VGk1,,L<wn>|2|Gk<wn>|2v-2)

Thus we have the following estimates

S AP B
2 ([ 160nw)P) " < [ 196w PG (0P < Ol (a3

If I, = 0 we have finished. Otherwise let us take ¢ = |Gy, , .k, (wn)|*? " 'sign(wy,) for j = 1,---, I, in
order to obtain

(27— 1) /Q Gy or by (@) DI2IGi 1 (w0)2 2

:/ |E||an||GkJ+ln n(wn)|2“f—1
Akji1nikin
+Z/ |E||V1Un||Gk:j+1,,,b,kj,"(wn)‘Q’Y—l_|_/ |f||Gki,n,ki71,n(wn>27_1‘-
Q
kit1,n.k

Thanks to the choice of k1,5, k;j,, we can absorb the first integral in the right hand side above into the principal
part. Moreover by means of Holder and Sobolev Inequalities we get

*

2m/

/ |VG1€j+1,mk’j,n (wn)W‘Q S C
Q

1l ( /Q VG i <wn>v|2)

=0

j—1 3
B 3 IVGi i () 22000 ( R |2) ]
(3.14)

Let us use now Holder Inequality to get

3 j-1
(/Q ‘va]+l,n7kj,n (wn)'y|2> <cC [Hf”[j&ﬂ) + ||E||LN(Q) Z ||VGki+1,mki,n (wn)—y||L2(Q)‘| )

=0

where C = C(a, N, E,m). Arguing as in Lemma 3.2 we recover

( / VG (0 )2) < CL+ | Ellpx ) |12

L'In, (Q

Summing over j from 1 to I and using Sobolev Inequality, we conclude that there exists C = C(«, E, N) such
that

wnllLm ()= < CllfllLm(0)-
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We state and prove now the existence and regularity result of this subsection.

Theorem 3.5. Assume (2.2), (2.5) and f € L™(Q) with1 < m < % Hence there exists u solution of (3.2)
such that

o ifl <m < (2%, thenu € Wol"m*(Q),
o if(2*) <m < &, thenu e Wy2(Q)n L™

(62).
Comment 3.6. Theorem 3.5 is obtained in [30] by means of an alternative approach partially based on a duality
argument.

Proof. Case1 < m < (2*). Thanks to Lemma 3.3 we infer that there exist a function w € W, e (€2) such
that up to a subsequence w,, — w in WO1 m (). Since m* > % we take advantage of Lemma 1.11 to deduce
that

Vw, - Vw a.e. in .

Thus we can pass to the limit as n diverges in (3.3): the first and the last term are trivial; for the second one

notice that
E

7" v p in L™M(Q
14 LVw,| - @)

because (m*)’ < N and the almost everywhere convergence of {|Vw,|}.

Case (2°) <m < % Thanks to the previous step we already know that up to a subsequence w,, — w

in Wé’2, where w solves problem (3.2). Moreover taking advantage of Lemma 3.4 we also know that {w,, } is
bounded in L™ (Q2)** and so w itself belongs to such space. O

3.1.2 Data in Marcinkiewicz spaces

Let us now deal with the case

N

|E| € LY () and fe M™(Q) with 1<m< 5

The general strategy is close to the one of Subsection 2.1.2, namely comparison estimate for w,, through the

rearrangements of the solutions of a suitable symmetrized problem, and the estimate for |Vw,,|, similar to the

one given by Lemma 2.6. Anyway, despite this similarity, the different structure of the lower order term gives
rise to a different simmetrizing procedure.

Now we give the two Lemmas concerning the estimate for w,, and |Vwy|.

Lemma 3.7. For any n € N, let w,, be the solution of (3.3) and denote with w,, its decreasing rearrangement.
It follows that

12| t_
Wy (1) < Z(7) = C/ t%*%V/ f(s)s™Vdsdt. (3.15)
T 0
fory = ﬁ and C = C(a,m, E, N, 7).
Remark 3.8. The function z(x) = z(wy|z|V) solves the symmetrized problem
“Az=(CV2 ﬁ + Cof (wnlzY) in By,
z=0 on 0Bq,

where Bq, is the ball centered at the origin sucht that |Bq| = || and C; = C;(N, o, E,m, ) fori = 1,2.
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Proof. Taking w, with h > 0 and k > 0, as test function in (3.3) we get

[e%

o/ Vo< [ [ TulEle) (.16)
{k<|wn|<k+h} {lwn|>k} {|wn|>k}

and, passing to the limit with respect to h — 0,

d 1 1
o Vol [ e [ VelE @)
{lwn|>k} & J{|wn|>k} @ J{wn|>k}

Notice that the last integral above can be estimate as follows

+oo d
[ velg@) = [ (d / |an||En<x>|> ds
{|w"|>k} k & {‘wn|>5}
+oo 3 3
s/ (—d/ |D(x)|2> (-d/ |an|2> ds.
k ds J{jw,|>s} ds J{jwn|>s}

Letussetforanyn € Nand k > 0
An (k) = [{[wn| > K},

namely A, (k) is the distribution function of w,,. Consider moreover @, (s), with s € (0,|Q?]), the pseudo
rearrangement of | E,,|? with respect to w,, (see (1.5) for the definition). Thanks to Lemma 1.5 we have that for
allk >0

d
Qn(An(k))(—Ail(k)):—(ﬂC/{ - |En(x)]* and that || QnllLa/2(0 0 < 1Bl Ly () (3.17)
wy | >k

Thus we have
d

1
s IV ? < f/ I
Ak J{jw, >k} O S {w, >k}

1
2

+o0 L
b [ QuAnle (- o) (—j / |>V}an|2> ds.

& Jk

Using (1.10) we obtain

d/ 2 ’ 1 -1 ’ 1
e Va2 A am)?t [ )
( dk {\wn\>k}‘ ) aoy {|wn\>k}‘

Nl=

Wl
)
3
—
b
3
—
»
S~—
S~—
Wl
—
I
b
I~

s lamrtcamt [ (s (—d / |an2> ds.
aon k ds {lwn|>s}
Let us use Lemma 1.12 and make a change of variable to obtain that

}

d 9 1 1 , 1 An(k)f
S AL By MO LG AL A
{lwn|>k} ON 0

1 1 An (k) L - . TL.,—L* ;
+72An(’f)ﬁ_l(—z4;(k))%/ Qn(s)} s Fls)emw S P Qumze N Thar g
0
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s —

Recalling that f(s) = L [ f(r)dr, we note that the integral in the second line above can be written as

An(k) i d n 11
~aow [ ( | f<7>d7) a (ea:N [0 Guryb e ldf> .
0 0 ds

Thus integrating by parts' we get

d/ o\
e
< dk J{jw, >k}

1
Qo N

<

Using once more (1.10) and writing the differential inequality for %@n (s), we get

d__
il

1 b RS
1)< th? / F(s)ed J @it tar
Qo 0

To estimate the exponential in the right hand side above we take advantage of (3.17), to infer that for v =

gl
e S Qu 2N lar - ColBI N, ()
5
Integrating between 7 and |{2| we obtain

o -
Wy (1) < C’/ tﬁ72+7/ f(s)s™Vdsdt.
T 0

Lemma 3.9. Let |Vw,,| be the decreasing rearrangement of |Nw,,|. For any n € N, it result that

i/07|vw,l| <C E /OT s LY (/:t“*f(t)dt) ds
+ (i /TQI 2(F-147) (/Ost—’Yf(t)dt>2ds)

Nl

where C' = C(N,a,m, || B|| L~ q))-

Proof. Recalling Lemma 1.3 and Remark 1.4, we obtain that

/ |an|dT:/ [Vw,|dx
0 Qn (s)

|an|d:c—i-/~ |Vw,|dx

/ﬁn(s)m{wnpwn(s)} Qi (s)N{|wn|<Wn(s)}

'We can perform integration by parts because

1 1
L fsAn(k) Qn(T)éTﬁildT

lim/ f(r)dreoeN
0

s—0

1
< Clim —

s—0 s

/S F(r)drAn(k) = 0.
0

An(k)i n 1 1
A (k) ¥ Y (— AL (K))® / F(s)emn S @umzey Thar
0

53

(3.18)

1
2m/

(3.19)
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1
2

g/ W%M%(/ N%WO G (s)|} < Lo(s) + 2 (s)s?.

{lwn|>wWn(s)} {lwn|<wWn(s)}

Estimate of /. From (3.18) we also have

d

) Anll) 2
- (V|2 < CA (k) (F7157) ( / wm)dt) (—45,(k)),
{lwn|>k} 0

from which we infer that (see (2.23))

s 2
i IV, |? < Cs2(v=1+7) ( / t‘”f(t)dt) .
ds J{jw, > (s)} 0

Integrating between 7 and {2 we get

1] s 2
I < C/ s2(F-147) (/ t‘Vf(t)dt) ds.
T 0

Estimate of 7, (s). To deal with I; recall (2.24) so that

d d
7/ V| < (/ anF)
A5 J{jw, >, (5)} s J{jw, > ()}

Integrating between 0 and T we get

L :/ [Vw,| gc/ s%—lﬂ/ tVF(t)dtds.
{lwn |>Wn (7)} 0 0

|

2

gcs%—lﬂ/ £V F(t)dt.
0

O

Let us now combine the previous results to state and prove the existence and regularity Theorem of this
subsection.

Theorem 3.10. Let us assume (2.2), that E € (LN(Q))N and that f € M™(Q) with 1 < m < 5. Hence there
exists w solution of (3.2). Moreover

e ifl <m< (2%), thenu € M™ (Q) and |Vu| € M™ (),
o if (2°) <m < &, thenu e Wy?(Q)nM™" ().

Proof of Theorem 3.10. From (3.15) it follows that for every 1 < m < %

|22] t
Wi (T) SCHfIIMm(Q)/ t%”“/ s~ m Cdsdt (3.20)
T 0

‘Ql 2 1 1
< C”fHM'"(Q)/ t3 "t <O f lumiey ™

T

where we have used at first that € < n% and that % - % < 0. Let us now split the proof in two cases.

Case 1 < m < (2*)'. As far as the gradient is concerned, thanks to (3.19) we have that

l/ Vw,| < C [1/ s It (/ t”f(t)dt) ds
T Jo T Jo 0
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1

+ (i /TIQ $2(F—147) (/Os 1&"Yf(t)dt>2 ds) ’

1
1 T 11 1 19 P 2 L
< Ol | 7 [ o7 s+ {2 s | < Cll sy
0 T

where we have used that ¢ < -1, and that m* < 2, namely m < (2*). Thus we infer that {|Vw, |} is bounded

m/’

in W,""(2) with 5 < r < m*. Thus there exist a function v € W,"(2) such that up to a subsequence
w, —=v in Wy (Q).

Thanks to this weak convergence we can pass to the limit with respect to n — oo both in the principal part of
(3.3) and in the first order term since

En

— s F i L(T*)l Q).
1+%|an| 1n )

Hence we proved that there exist a solution of (3.2). Thanks to Proposition 1.1 we also have that [Vw| €

s

M™ (Q)andw € M™ " (Q).

Case (2*) < m < % Notice at first that in this range of the parameter m estimate (3.20) implies that {w,, }
is bounded in L")’ (€2). Taking hence w),, as a test function in (3.3) we easily obtain that

[Vwnl[r20) < ClfllLeo ()

Thus we have a weak W, %(2) limit w solution of (3.2). Moreover w € M™" " (Q). O

3.2 Drift term in M (Q)

We now focus on problem (3.1) with a drift term with Marcinkiewicz coefficient. As in Chapter 2, we have to
impone a size restriction on E/(s).

3.2.1 Data in Lebesgue spaces
Let us state the following result.

Theorem 3.11. Assume (2.2), f € M™(Q) with1 < m < % and

1 -1
Ee MN(Q) with | El|yn @) < awd No—. 3.21)
m
Then there exist u distributional solution of (2.3) and moreover
e ifl <m< (2%), thenu € M™ (Q) and |Vu| € M™ (),
o if(2*) <m <&, thenu e Wy () N M™ ().
Comment 3.12. A special case of Theorem 3.11 is 0 € ) and

N -2
E(:v):Bi with B < a——".
x

Such case has been treated in [69].

Proof. 1t is really close to the one of Theorem 2.8 and we omit it here for brevity. O
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3.2.2 Data in Marcinkiewicz spaces
Let us generalize now Theorem 3.10 in the case E € (MY (Q))N
Theorem 3.13. Assume (2.2), f € M™(Q) with1 < m < % and E € M™ (Q) such that

_ B 1 -1
E=F+& with Fe (L)Y and E(s) < — with B < owl N'm——. (3.22)
m

SN
Then there exist u distributional solution of (2.3) and moreover
o ifl <m< (2%), thenu € M™ (Q) and |Vu| € M™ (),
().

Comment 3.14. See Comment 2.11 for the reasons of assumption (3.22).

EES

e if(2*) <m < L&, thenu e Wy () N M™

Proof. As in Chapter 2, to take |E| € M™(Q) is a variation on the theme of the Lebesgue case, with the non
negligible difference that some control on the size of E is required. Here we follow strategy of Subsection 3.1.2,
stressing the main differences. We split the proof in the following steps.

Step 1. Pointwise estimate for u,, and |Vu,,|.

Step 2. Marcinkiewicz a priori estimate for ,, and |V, |.

Step 3. Existence and regularity for 1 < m < (2*).

Step 4. Existence and regularity for (2*) < m < %

Step 1. As in the proof of Theorem 2.10, in order to handle assumption (3.22), it is convenient to consider
the following sequence {w,} C W, *(Q2) of solutions of

Vw,

/Q A(x)Vw, Vg = /Q Fanle) ¥ &) T Twan]

<p+/ﬂfso Vo€ Wy (Q),

whose existence is assured by Schauder’s fixed point theorem. As usual for k& > 0 we set
An (k) = [{lwn| > K}|.

Th (Gr(un))
h

Taking , with h > 0 and k > 0, as test function and following Lemma 3.7 we obtain

d
- / |V, |? (3.23)
dk J{jw, >k}

[N

An (k) ok 1 1\ 1
< AR At [ Tt Y (@R e )
T ON 0
and .
() < e th? [ (e (@) ey,
dt " - OZJ]QV 0 ’
where J J
Quals) =4 [ \F@Pde and Quals) =5 [ (),
S JQn(s) S JQn(s)
By construction we have that
1 1

° 11 N
—— [ Qua(r)> 73 ldr < || Fllpee ) — QY
aoN Ji QON
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and, recalling (2.33), also that

1 s 1 19 NB B S
— N “gr < 1 (7) .
aoN Ji QQ’ (T)2TN T_QCM(TN(N72)+040'N 8 t
Thus
P S L
Wy (7) < C/ tN aoN / f(s)s™ @on dsdt. (3.24)
T 0
Once we have (3.23) and (3.24) we infer (as in Lemma 3.9) that
1 [T e— 1 (T 2 4y 8 (% _ B _
- [Vw,| <C |- sN aoN t eon f(t)dtds (3.25)
T Jo T Jo 0

0 o ey (e N2\
+ (1/ 82(W71+QON) (/ t‘“’Nf(t>dt> d8>
T Jr 0

Step 2. Here the assumption B < awN N mT_l plays its central role in the achievement of the Marcinkiewicz
estimate for {w,, } and {|Vw,,|}. From (3.24) we deduce that

|Q| 2 B ti B
< [ [ dsar (326
, 0

1€2] ) )
< Cllf”M’"(Q)/ t_W—l < C'HfHIMm(Q)T_W

where we used assumption (2.30). Coupling (3.25) with (3.26) it also results (see the second part of the proof of
Theorem 3.10) that

1 [ —— 1 (7 _ . 1o, ? _ 1
L ] < Clfllaamian | 2 [+ (2[5 ) | < Clllagmien
T Jo T Jo TJr

Step 3. From the previous Step we infer the existence of a function w € WO1 Q) withl <r <
that, up to a subsequence

Nm

~— such

w, = w in Wy (Q).

To show that such a w is indeed a solution of (3.2) we have to pass to the limit as n diverge in the family of
equations (3.3). The principal part pass to the limit thanks to the weak convergence of {w,}. In order to deal
with the lower order term notice that for any subset A C €2 it results (recall that m > 1)

1

Al |A|
/ |Vw, || En(z) g/ [Vw,|(s)B(s)ds < c/ e
A 0 0

7
m
3

2|~

<ClA

that is the equi-integrability of the sequence

{ Vw, - E(x) }
1+ LV, | |
This and the almost everywhere convergence of the gradients assured by Lemma 1.11 allows us to take advantage

of Vitali theorem and conclude that the function w satisfies (3.2). Moreover thanks to Proposition 1.1 it follows
that

W pgm== () + IV pgm= () < Cllflarm (-
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Step 4. Form estimate (3.26) we know that {w,, } is bounded in L?(Q2) for 2* < ¢ < m**. Thus
q—2

[T Jo] el L, \
/ t~ 2w (t)dt < / wl (t)dt / t~ N2 <C
0 0 0

since 1 — % > 0. Let us take now w,, as a test function in (3.3). Using Holder’s inequality we get

1 1
2 2 1
o ([1vunl)” < ([ 1820) + g 1flera)
Q Q 2

xo\E
< Ellarv o) (/Qt ’ w721> + 5 M lher @ < C

QN

Hence up to a subsequence {|Vw,|} weakly converge in W, () to a function w € W, %(Q). To show that w
solves (3.2) and belongs to M™" (©2) we follow exactly the same reasoning of the previous Step. O



Chapter 4

Nonlinear operator

Looking at Chapters 2 and 3 one naturally wonders if is possible to extend the results contained therein to a non
linear setting. Moreover the structure of the rearrangement-type estimates suggest to consider data in a general
Lorentz space rather then confine the analysis to Lebesgue or Marcinkiewicz spaces. Here we provide this type
of generalizations.

4.1 Convection lower order term

Given p > 1, the problem we consider in this section is

{—div (a(z, Vu)) = —div(u|u[P"2E(z)) + f(z) inQ, @

u=>0 on 012,

where the Carathéodory function a : Q x RN — RN satisfies (1.14), the vector field £ : Q — RY is such that
(see Remark 2.11)
B

— 1 1 N_
E=F+¢& with Fe (L®Q)Y and £(s) < —+ with B <ariw) — L
N (p—1)m

4.2)

V2]

and the datum f belongs to L' (2) or to a Lorentz space L™ () to be specified later. Problem (4.1) has to be
intended in the following weak formulation

|VulP~t e LY(Q), |ulP7YE(x)] € L'(Q) and

" wil) -
= [ aevave= [ lrtuseve s [ 1o voe )

(4.3)

Let us present the first result of this section.

Theorem 4.1. Let us assume f € L™9(Q)) and that conditions (1.14) and (4.2) hold true.
If max{1, W} <m < (p*)/ and 0 < q < oo, then there exists u solution of (4.3) such that

lu| € L% me = D9Q) and |Vu| € LEw - @=Da(q).

Theorem 4.1 provides a generalization of Table 1 for non-linear setting and Lorentz data. Anyway it is well
known in the literature that, in the case of both p and m close to 1, some subtleties arise. Indeed, if 1 < p < 2— %
and1 < m < ﬁ the notion of distributional solution is not any more adequate and entropy solutions
have to be introduced, see as an example [28]. We do not treat this case and instead focus on the bordeline values
m = max {1, ﬁ .

59
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Theorem 4.2. Let us assume m = max{l, W} and that conditions (1.14) and (4.2) hold true. (i) If

p>2-— and f € LY(Q), then there exists u solution of (4.3) such that

(Q) and |Vu| € LT (Q).

ul €

(i) Ifp>2— % and f € LY9(Q) with 0 < q < oo, then there exists u solution of (4.3) such that

lu| € L B 1)q(Q) and |Vu| € L(pfgi)lN’(p_l)q(Q).
(iii) If p = 2 — % and f € LY(Q) with0 < ¢ < p%l = N 1, then there exists u solution of (4.3) such that
lu| € L¥1"%9(Q) and |Vu eLl’(p_Uq(Q).

(iv)Ifp < 2— % and f € L™(Q) withm =
that

W 0<qg< < , then there exists u solution of (4.3) such

lul € LT P=DYQ) and |Vu| € LMED(Q).

The main observation on Theorems 4.1 and 4.2 is that, also in this nonlinear Lorentz setting, we recover the
same results of the case £ = 0 (see [4], [35], [76] and reference therein). Let us briefly comment Theorem
4.2. In points (i) and (i7) the summability of the data assures that |Vu| belongs to a Lebesgue space smaller
(more regular) than L' (£2). We refer to the Appendix the definition of I.1%(f)) and the fact that L**(Q) =
Llog L(2) € LY(Q) (see Lemma 1.8 in Chapter 1, [18]).

On the contrary, in points (iii) and (iv), the gradient belongs to Lorentz spaces with first exponent equal to 1.
Such spaces are contained at best in L*(2) and this make more difficult the proof of the result because L*() is
not reflexive. We refer to [35] for related results restricted to the Lebesgue framework.

4.1.1 Proof of the results

Before proving our main results, we need three preliminary Lemmas. The first one is devoted to the achievement
of a point-wise estimate for w,,, the solution of (1.15). The second Lemma gives the estimate relative to the
decreasing rearrangement of Vu,,. The third one provides the required Lorentz bounds for the sequences {u,, }
and {|Vuy,|}.

Lemma 4.3. Let us assume (1.14) and (4.2). For any n € N, let u,, be the solution of (1.15) and denote with
Uy, its decreasing rearrangement. It follows that
C

19]]
up,(t) <o(t) := t—,y/t sW'M_lf(s)ﬁds, 4.4)

where C = C(N,a,p, E,m) and v < (pN 1)pz<7nm

Remark 4.4. See Remark 2.5 for the meaning of (t).

Proof. Let us take W with h > 0 and k£ > 0 as test function in (1.15). Thanks to assumption (1.14) we

get
« (k+ h)P~1

X / VP < / A B / B[V | @.5)
{k<lun|<h-+h} {Jun| >k} (k< lun|<k-+h}

Letus set forany n € Nand k > 0
An(k) = [{lun| >k},

namely A, (k) is the distribution function of w,,. Consider moreover D1 ,,(s) and Dy ,,(s), with s € (0, |©2]), the

pseudo rearrangements of | F|? and |£|? with respect to u,, (see (1.5) for the definition). Thanks to Lemma 1.5
we have that for & > 0

d / d

D, (An (k) (AL (F)) = —— |F|P" and D3, (An (k) (=4 (k) = ——

£
Ak J{jun >k} Ak J{jun >k}
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Setting Dy, (s) = Di.n(s) + D2 (s), to have a more compact notation, and following the same argument of
Lemma 2.4 and Theorem 2.10, we obtain

1
7

d/ v
- |Vun|p>
( Ak J{jun|>k)

- An<"~'>(“)/ (= A7 + D An(h))?
{Jun|>k} @

QO N

that can be rewritten, using (1.10), as

1<

p —1
QO ao’%

il /{ >k} f| + ﬂm(An(k))ﬁAn<k><%—1>“’—”

Hence

_%ﬂn(s [Sp( 1)/ f+ — ( )l/s(zirl)(inl)uﬁ—l(s)‘|
N

aok;

1 101
< Gy i1 ( | ie df) + 2 Du(s)hsF (),
0 ar-lgy
where > 1 is such that
0B N —pm
7= < N
ar-1on (p - 1) m

This is possible thanks to assumption (4.2). Defining the auxiliary function

Ra(s) = c# J Par)#r¥ ar

9

we finally deduce that

— - (Bs)ma(5)) < Cs” FDR,(s) (/S f(T)dT) ,,%1.

In order to estimate R, (s) we recall the definition of D,, and Lemma 1.6. It results that

1

11 N 1
/ Dln TN 1dT < HJT_.”LOO(Q)i# |Q|N
ar-lon

8 1 1 B
/DQ’H(T; v ldr < < B 1/ Dy (r)r ¥ tdr + = /de
N
po T [ 7_1/ g’ tﬁ_l/ g _P- / / g’ dT:| log( )

Sm—FBlog( )

where we have used Young Inequality, integration by parts and assumption (4.2). Thus we have that

":X

and that

<

Rn(s) = 6% fts 'Dn(”')%TﬁildT < C (;)’y

Integrating between ¢ and |{2| and recalling that by definition of both @, (|2]) = 0 and R(¢) = 1, we get

e, s =
) = RO (2) + REOm (1) < & [ 0 (/0 f(T)dT> ds.

t
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The next Lemma provide the estimate relative to the decreasing rearrangement of Vu,,.

Lemma 4.5. Let us assume (1.14) and (4.2). Let |Vuy,| be the decreasing rearrangement of |Vuy,,|. There exists
C = C(N,a,p, E,m) such that

1 Ej _ 1 S 1
*/ V[ 1SC[/ (v(O)P~ D ()7
5 Jo s Jo

N . 1 1¢] 5 ,
+f(E)EN)dt + (/ (v(t)PDy(t) + f(E)P tN)dt> . (47

S

where v(t) is defined in (4.4).
Proof. Taking advantage of Lemma 1.3 (see Remark 1.4), it follows that

/|Vun|p_1drz/~ |Vun|p_1dx
0 Q.

= /~ \Vun|p_1dx+/~ |V, [P~ dx
Qan{|un|>Tn(s)} Qs {|un|<Tn(s)}

1
7

g/ |V, [P~ dx + </ Vun|Pda:> |ﬁs|% < (s)+ I3 (s)sP.
{lunl>un(s)} {lun|<un(s)}

As far as I is concerned we infer from (4.6) that

d

d
" Yl = Vi
A8 J{Jun|>Tn(s)}

Ak J{ju >k}

k=l (s)

< C [ ()" Du(s) + sk Fs].

Integrating between s and ||, we get

12:/ |Vun|p:—/ |Vun|p+/ VP
{lun|<n (s)} {lun|>wn ()} Q

o] R
<cC / ()P D () + 5 F(1) dt | .

In order to estimate 1 notice that

|V, [P~
{Tn (8)<|un|<Un(s+h)}
1

< (/ |wn|p> {1 (3) < Jtn] < T (s + W)} [3.
{tn (s)<|un|<Ty,(s+h)}

that, passing to the limit as & — 0 and recalling that |{|u,| > @, (s)}|" < 1, gives

1
o7

a [V, [P~ < (d/ Vun|p>
ds J{lun|>an(s)} ds J{jup|>@n(s)}

Hence we have the following estimate for Iy

L < C/OS (un(t)plpﬁl’(t) + f(t)tfv> dt.

Putting together the obtained information for I; and I, we prove (4.7). O

2|~

<C (“n(s)plpr‘i (5) + f(s)s

)
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The previous estimates on the decreasing rearrangements of u,, and Vu,, allow us to obtain the following
Lorentz estimates in function of the Lorentz summability of the datum f.

Lemma4.6. (i) If f € L™ Q) with1 <m < (p*) and 0 < g < o0, then

Hunll ()N m < Clfllzmae) and ||VUnHL% < Ol fllpmaca)-

»(p— l)q(Q) (p— l)q( Q)

(i) If f € LY9(Q) with 0 < ¢ < 00

lunll | aens (- Doy = S Clfllera and [[Vunll oo e=bagy < Ol fll reLrae)-

(iii) If f € L*(9Q), then

lunll w-v~x < Clflleie and |Vun| w-vx < Clfllq)-
LN Q) LT )

Proof. Point (i). Le us start with the f € L™%(Q) with 1 < m < (p*)" and 0 < ¢ < oc. Estimate for {w,,}.

Using (4.4) we get
+oo
e P A Ul
LN—p%n,’q(Q) 0 t

(r=1)q
+o0 e,
< C/ R =y (1) (/ sfv”‘lf(s)pilds> a
- t
0 t

oo 1 240 q Pl (p—1)q -
_ C/ AP (1) (p-1)g <ft shtlf ) % < c/ 1L %
0 0

t

where the last inequality comes from Lemma 1.9 with § = % — v + 1, that is strictly bigger the one

thanks to the choice of ~. In the case ¢ = 400, we obtain directly from (4.4) that
C

U(s) < —x—m 1 fllLm=()-
sNmp—1

Estimate for {Vw,, }. Thank to Lemma 1.6 estimate (4.7) can be rewritten as

1 57 _ 1 S ~ 1 ‘Ql » -, p, P

—/ Nl <cC f/ (vt 4 fe¥)dt + </ (v(t)Pt= % 4 fP tN)dt> . (48)
s Jo $Jo S Js

In order to prove the membership of the four terms above to L™ +4(Q) we use Lemma 1.9

[e'e] S 1 q N pm
fo (G o) S so [T <o
0 s Jo S
o0 g 1 S - 1
/ §m* (/ f(t)tth> C/ sm f(s)1— ® < 00
0 s Jo

and
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where we take § = -1 (p*)") in the last ones. Hence

we have that

||vun||iw1(p_l)q(ﬂ) < / Tm ( / ‘V’U}n| > — < C”fHLm a(Q)-

In the case ¢ = co we obtain by direct calculation from (4.8) that

_ m < m,o0 .
HVUHL%W(Q)_C”JCHL @)

Point (ii). It follows exactly the same argument of Point ().
Point (iii). Inequality (4.4) becomes

12
Un(t) < v(t) < Clfller)—= e / D+gs < Olfllprt™ TN SL
where we have used the fact that p’ (— — 1) 4+ v+ 1 < 0. On the other hand we have that

1 267;0—1 1 /[t 1, 1 [t p/( ) % N1
i [Vl <Ol |7 [ st tase (5 [ 9 D)) < Ol 7
0 0 0

and thus the proof is concluded. O

Now we are in the position of proving Theorems 4.1 and 4.2. We start from the latter.

Proof of Theorem 4.2. Case (i). Let us start with the case p > 2 — — and f € LY(Q). From Lemma 4.6 we
deduce that the {|Vu,|} is bounded in L(p§i>1N’“(Q) and, in turn, in L"(Q2) for 1 < r < (pN 1)1N. Hence

there exists u € W, " (Q) such that u,, — w in W, (€2). Thanks to the almost everywhere convergence of the
gradients proved in Lemma 1.10, we infer that

Vu, = Vu in L71(Q).

|V, P2V, — |VuP~2Vu in LY(Q).

Thus we can pass to the limit in the right hand side of (1.15) for every ¢ € C}(€2). In order to handle the lower
order term, notice that for every measurable w C 2 it follows that

|l - Wl N,
/|un|P—1|En| g/ vp—l(t)t_LNldtgC’Hf||L1(Q)/ NN < Olw|V, (4.9)
w 0 0

where we used Lemma 4.6. This together with the a.e. convergence of u,, allows us to take advantage of Vitali
Theorem and prove that

[ ate.Vuvo = [ uu? B@vo+ [ f@e voech@).
Q Q Q
From Proposition 1.1 we easily infer that

lu[~! € L¥5°(Q) and |Vu[P~' € L¥T°(Q).

Case (ii). If p > 2 — and f e L) with 0 < ¢ < oo, since % > 1 and following the same arguments

of the previous step, We infer that there exists u distributional solution of (4.1) such that

(p—1)N

lu| € L= "=D9Q) and |Vu| € L%

= (p— l)q(Q)
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Case (iii). On the other hand, if p = 2 — % and f € LY9(Q) with 0 < ¢ < p%l = % Lemma 4.6 implies

that {|Vu,|} is bounded in L (£2). Since L (€2) is not reflexive, this is not enough to assure the existence of a
weakly converging subsequence. In order to recover a compactness property for {|Vu,, |}, we need to prove its
equi-integrability (see [35]). For it, let w be a measurable subset of €2 and notice that

ol Wl /1 e )
/|Vun(m)|dm§/ \Vun|(t)dt§/ t(/ Nl 1)
w 0 0 t Jo

|l 1 /¢ p=1 ~ 1 1 1] p ~ p p% o dt
S/ t 7/ (v(s)P~1s™ ™ + fs¥)ds + f/ (v(s)Ps™N + fP sV )ds —
0 tJo tJi t

where the last inequality comes from (4.8). Lemma 4.6 with f € LU~ () implies that

€2 1 [t p—1 ~ 1 1] p =~ p ﬁ o dt
/ t f/ (v(s)P71s™F + fsNV)ds+ f/ (v(s)Ps™N + fP sV )ds —
0 tJo tJe t

<o [ ()™ 2 =cir,,

N .
(@)

N

YT i
t

(4.10)

2|~

This means that the function

1

t —1 ~ 1 ]
2/0 (v(s)P~Ls™ " + fs)ds + <1/t (v(s)Ps™

2

i N—1
+ frsk ) ds)
belongs to L (0, |2|). This consideration and inequality (4.10) imply that for every ¢ there exists § > 0 such that

/|Vun(x)\dx§e VwCQ with |w] <é.

Hence we take advantage of Dunford-Pettis Theorem to infer the existence of a vector field L € (L1 (Q)) ™ such
that N
Vu, = L in (L*(Q))" .

By the very definition of weak gradient of a Sobolev function it results that
/VunF = —/ updiv(F) vV F e (C()™. (4.11)
Q Q

Thanks to the weak convergence of Vu,, in (L (Q))N and the strong convergence of u,, in L!(Q2) (Lemma 4.6

says that indeed u,, strongly converge to w in L" () with 1 < r < %), we can pass to the limit in the equation
above and deduce that F' = Vu.
At this point, thanks to the almost convergence of Vu,, to Vu (see Lemma 1.10), we can infer that indeed

Vu, = Vu in (L'(Q)".
Since p— 1 =1 — + < 1, we also have that |Vu, [P"2Vu, — |[Vu[P~2Vu in L*(2). We follow the arguments
of the previous step to conclude that u is a solution of (4.1). Moreover, thanks to the almost everywhere of both

{u,} and {|Vuy,|}, it results

u| € LY ®~D9(Q) and |Vu| € LMPD9(Q).
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Case (iv). The case p < 2— % and f € L™9(Q) withm = W and 0 < ¢ < ﬁ is handled similarly

(p]\_,iﬂ = 1, thus Lemma 4.6 implies that
pm

{|Vu,|} is bounded in L' (2). Reasoning as in (4.10), (4.11) and using the almost everywhere convergence of
the gradient, we conclude that

to the Case (ii). Indeed for the considered values of m it results

Vu, — Vu in (L'(Q)".
From now on the proof is close to the one of the previous case. O

Proof of Theorem 4.1. Case (i). Following the same argument of the first step of the proof of Theorem 4.1. We

infer that there exists u € I/VO1 Q) withl <r < % such that up to a subsequence

Vu, = Vu in L7 (Q).

Since it is possible to chose 7 so that pil > 1, we deduce that
|V, PV, — |VulP?>Vu in L'(Q).
To to pass to the limit in (1.15) it is enough to notice that (4.9) is still valid. We also have that

[ulP~t € L¥T(Q) and [VulP~t € LFT(Q).

O
4.2 Drift lower order term
Finally let us focus on nonlinear drift term. Let us consider, for p > 1,
—div (a(z, Vw)) = |[Vw|P72VwE(z) + f(z) inQ,
4.12)
u=20 on 012,

where (2 is a bounded open set of RY with N > 2, the Carathéodory function a : 2 x RY — R satisfies (1.14),
the datum f belongs to some Lebesgue or Lorentz space to be specified later and the vector field £ : Q — RN is
such that

- B L -1
E=F+¢& with Fe (L®Q)" and £(s) < o with B < aw) N 4.13)
SN
We consider the following weak formulation of problem (4.12).
(VulP~™t e LY(Q), |VulP7'|E(z)| € L'(Q) and
u € Wy (4.14)

: a(x,Vu = ulP2VuE(x T L.
[ atw.v0ve= [ [wup=vab@o+ [ 1w veeci@)

The main result of this section is the following.

Theorem 4.7. Let us assume f € L™%(Q)) and that conditions (1.14) and (4.13) hold true.
(i) If max{1, ﬁ} <m < (p*) and 0 < q < oo, then there exist u solution of (4.14) such that

(p—1)Nm (p—1)Nm

lu| € L™%=rm ®=DUQ) and |Vu| e L™ ~=m #=DI(Q).

Notice that assumption (4.13) becomes more restrictive as m — 1. Here we not consider the limit case
m = 1 and refer the interested reader to [50] and [21].
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4.2.1 Proof of the results

In the next Lemma we recover the pointwise estimate for the the rearrangement of w,,, the solution of (1.16),
and Vw,.

Lemma 4.8. The sequence {w,} of solution of (1.16) satisfies the following estimates:

9] 1 B ti B piﬁ
Wa(7) < 2(t) = c/ ¢ (Xt (/ F(s)s™n d8> dt (“.15)
T 0

and

1 [ ——p-1 1 (% 1 4, B t_ __B
— [ Vw,| <C|= [ tN Teon f(r)r eondr ) dt
S Jo s Jo 0
1 |Q‘ (1 B ti _ B p/ o
+<s/ p (F-1+ats) (/ F(r)r qudT) dt . (4.16)
s 0

Proof. Letus set foranyn € Nand k > 0

An(k) = [{|lwn] > K},

namely A, (k) is the distribution function of w,,. Following the same arguments of Lemma 3.7 we obtain that

An (k) 1 rAn(R) r 1 e 1 g
A Ay [ e (Quo¥4@uain )k tar
Qo N 0
where . )
Qua(s) = */ |F(z)|Pdz and Q2n(s) := —/ 1€ () |Pdz.
ds Ja, () ds Jo (o

By construction and Lemma 1.6 we deduce that ||Q1 || L) < C|F|} () and moreover, by means of Young
Inequality and integration by parts, we have that

1

K _ NB t
/5 Qn(T)?T Ydr < pi(N—p) + Blog (s) .

Thus we recover the following estimate for w,,

0 st ([ e egs)
ETL(T) S C/ tp N aon(p—1) </ f(S)S aonN dS) dt.
T 0

In order to obtain the estimate for the gradient, we follow Lemma 3.9 to get

1 [ e——p— 1 (% 2 448 ('  __ B
f/ |an\p ' <C [/ pv It Ey (/ f(r)r S dT) dt
sJo sJo 0

el /., t ' ’
+ <i/ ¥ (W71+“EN) </ f(T)TadeT> dt)
s 0

S =
2|
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Lemma 4.9. There exist two constant C = C(a,p, E, N) and C' = C(«, p, E, N) such that
[wnll L i-vm=1*.o-nagay < CllflLmai) and [|Vwnllpo-nme .-y < C|lf|lLma@)-
Proof. Estimate for {w,,}. Assume tha ¢ > co. From (4.15) it follows that

+oo
a(N —pm) dt
_ T a
||wn||L(pN1)Nm, v-1a g /o t— Nm W, (t) :

+o0 (N—pm) 1 e,y B t B ﬁ (b dr
< C/ R+ (= 1)g (/ P (¥ -D+aestn (/ f(s)s‘des> dt) —
0 TJr 0 T
teo o T B ?d ¢ —qdt
<C {/ ptaey (’7‘1/ £ woN f(t)dt> T] < C/ t f—
0 0 T 0 ¢

+

1
m aoN

where we used Lemma 1.9 twice, once with § = (N_ipmm +1 > 1 and once with § =

DN <1l.Ifg=
directly from (4.15) we obtain that

Hl( ) OHf”LmOO(Q)t (P 1)Nm.

Estimate for {|Vwy|}. Let us start with

[e%e] T s q
/ S (1/ S%—H%/ t_afzvf(t)dtds> dr
0 T Jo 0 T

') g 1 T B _ q d

SC/ pmtiaTy (/ ¢ ww f(t)dt) &

0 0 T
<C/ T f(7)

S 1 rlel o t e P’ ?d
/ i </ P (N 1+afN) (/ F(r)r T dT) dt ar
0 T Jr 0 T

q q T p— q © q —

gc/ r ey (1/ tafzvf(t)dt> ar C/ s

0 s Jo T 0 T

_ 1 B
it ane < 1. Hence we have that

Moreover

/
where we used Lemma 1.9 twice, once with § = Tf’l -

e q—da
”an” @ DNm </ T / |an| </ Tm .
N (e l)q(Q) 0 o T

If ¢ = oo directly from (4.16) we obtain that

| __N-m__
|an| < C”fHLmoo(Q)t (>—DNm |

Proof of Theorem 4.7. 1s really close to the one of Theorem 3.13 and we omit it for brevity. O



Chapter 5

Elliptic problems with L!(Q) coefficients

The main topic of this chapter is the problem
—div(A(z)|Vul|P~2Vu) = f(x) inQ, 5.1)
u=0 on 95, '

where () is an open bounded subset of RV, with N > 2, and p is a real number such that 1 < p < N and the
function A(x) satisfies, for a > 0,

Ae LYQ), Az)> o (5.2)

We show that, despite the presence of the singular coefficient A(z), for any f € L®")'(Q) there exists u €
Wol’p (2) distributional solution of (5.1); if f belongs merely to L' (£2), we still prove that there exists a solution
of (5.1) in the entropy sense (see next section for the precise meaning of solutions).

Thereafter we use the techniques developed to solve problem (5.1) to obtain existence results for problems with
semilinear and quasilinear lower order terms. Finally we consider a more general nonlinear differential operator
in divergence form.

The linear version of problem (5.1), with general L' (Q) coefficients, has been addressed for the first time by

Trudinger in [88], using duality method between weighted Sobolev Spaces. More recently, always in the linear
case, problem (5.1) is considered in [32] without the weighted framework but with stronger assumptions on the
summability of A(x), that has to be at least an L?(£2) function. We stress that the previously quoted papers deal
also with possibly degenerate coefficients, while here we always assume (5.2).
As far as semilinear lower order terms are concerned, we refer to the classical paper [43] and to the more recent
ones [38] and [46]. For quasilinear lower order terms, we follow the monograph [33] (see the bibliography
therein for the original references). Finally we consider some generalizations of Leray-Lions operators in the
spirit of [68] and [80].

With respect to the existent literature, our contribution is to generalize some of the results of [88] to a wide
class of nonlinear problems. The difficulties, arising from both the nonlinearity of the operator and the singularity
of the coefficient, will be solved by coupling energy estimates of type

[A@ivar <.

with a modified version of the classical Minty Lemma (see [40]). We stress that in our treatment we avoid the
use of weighted Sobolev spaces.

69
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Before stating our results we give some notation. In the sequel we are going to use the following useful
cutoff functions (see [85]): the truncation function 7 : R — R with j > 0, defined as

T;(s) = max{min{j, s}, —j},

and the complementary of the truncation function G; : R — R with j > 0, defined as
Gj(s) = s — Ty(s).

Note that the previous functions are Lipschitz and their value at 0 is 0. Hence if v € WO1 P(Q) it follows that
T (v), G, (v) € Wa(Q).
We moreover define the space of functions

XP(Q) := {gp € W, P(Q) such that / A(z)|[VelP < oo}. (5.3)
Q

We also adopt the following notation
A, =T,(A), and f, =T,(f).

With C;, i € N, we indicate generic positive constants that may depend on the dimension N, on the real number
p, on the domain 2, on the Sobolev constant and on the other data of the problem, while with ¢,, we indicate a
generic sequence that goes to zero as n diverges.

5.1 Statement of the main results

We say that a measurable function u : 2 — R is a distributional solution of (5.1) if

ue XF(Q) and /

A(2)|VulP2VuVe = / fx)p Voe XP(Q). (5.4)
Q Q

The second meaning of solution that we consider is the one introduced for the first time in [17]. Let us define

TP () == {u : 0 — R measurable such that Ty (u) € W, P(Q) ¥ k > O} ,

i.e. the set of measurable functions whose truncates belong to VVO1 P(Q) (we refer to [17] for more details). We
say that u € 761 'P(Q) is an entropy solution of (5.1) if

Vk>0, / A(z)|VTi(u)|P < oo and
@ (5.5)
/Q A@)|VuP *VuVTe(u — ¢) = /Q F@)Ti(u—¢) ¥ e X2(Q) N L=(Q).

‘We state now our first result.

Theorem 5.1. Let us assume that the function A(x) satisfies (5.2) and that f € L®7)'(Q). Hence there exists
u € XP(Q) distributional solution of (5.1). If f € LY(Q) there exists u € T, " (Q) entropy solution of (5.1).

Let us recall that, for p large enough (p > 2 — &), f € L*(€2) and A € L>(Q), problem (5.1) admits a
distributional solution in WO1 Q) with ¢ < % (see [17]). Unfortunately, in this unbounded setting, we are
not able to recover the same type of result and thus we have to use the weaker notion (5.5) of entropy solutions

(see Remark 5.9). The main obstacle is that there exist no weighted versions of Sobolev Embeddings for a gen-
eral L(9) weight.
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The second type of problems we deal with presents a semilinear lower order term with sign condition. It
is known in the literature that such a lower order term can give a regularizing effect to the summability of the
solution and of its gradient (see [38] and [46]). Let us hence consider

—div(A(z)|Vu|P~2Vu) + B(x)|u|!2u= f inQ, (5.6)
u=0 on 09, '
where g > 1 and the the function B(x) satisfies, for 6 > 0,
Be L), §A(z) < B(x). (5.7

We state then our second existence result.

Theorem 5.2. Let us assume (5.2), ¢ > max{p, L7} and [ € LY(Q). Then there exists u € Wy (Q)

-1
r < @ solution of (5.6) in the following weak sense

/A(x)\VuV—I—/ B(2)|u|" ' < 0 and
Q Q

(5.8)
[ A@)up2vuvor [ Bl o= [ o voe @),
Q Q Q
Moreover, if f € LY (Q) with q > p*, it holds that u € W, (Q) and
/ A)[Vul? +/ B(a)[ul? < 0. (5.9)
Q Q

Remark 5.3. Note that q > ppj implies @ > 1 and hence there exist values of v such that 1 < r < p(qqul).

On the other hand, the fact that q > p implies that —=5 > 1; thus we can use Holder inequality (with coefficients

p—il and ﬁiﬂ ) to check that the first integral in the left hand side of (5.8) is well defined. Finally note that
if ¢ > p*, then ¢’ < (p*) and thus the enhanced regularity (5.9) is due to a further regularizing effect of the
semilinear lower order term. Other regularizing effects given by the interaction of the coefficients of semilinear

elliptic problems are considered in [9].

The third type of problems that we study is

—div(A(z)|Vu|P~2Vu) + D(z)g(u)|VulP = f(z) in €,
(5.10)
u=0 on 012,
where A(z) is as in (5.2), D(x) > 0 belongs to L!(2) and the function g : R — R satisfies
g€ C(R) and g(s)s > 0fors € R. (5.11)

The literature about problems with lower order terms with natural growth with respect to the gradient is huge
(see the monograph [33] and reference therein) and the main novelty here is that the functions A(x) and D(x)
are not bounded. It is worthy to stress that, if D € L'(2), there are no results available for problems like
—Apu+ D(z)g(u)|Vul? = f(z) inQ, (5.12)

u=~0 on 0f2,

because, roughly speaking, it is not possible to control the term D(z)g(u)|Vu|P with the principal operator.
On the contrary in (5.10), the interplay between the coefficients A(x) and D(x) allows to overcome such an
obstacle, as it is shown in the next Theorem.
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Theorem 5.4. Let us assume that the functions A and g € C(R) satisfy respectively (5.2) and (5.11), that D(x)
belongs to L*(Q), with D(x) > 0 and that there exists a constant o > 0 such that

D(z) < cA(z) ae. in. (5.13)
Thenif f € L(p*)/(Q) there exists u € Wol’p(Q) solution of (5.10) in the following weak sense

/ x)|Vul? + /D w)|VulP < oo and

| A@Ivar29uo+ [ D@glvare= [ o voe i@,
Q
If moreover there exist v, > 0 such that
g(s)sign(s) >~ for |s| > § (5.14)

and there exists 0 < 7 < o such that
TA(z) < D(x) a.e. in€, (5.15)

then, for any f € L*(S2), problem (5.10) admits a solution u € Wol’p(Q) in the previous weak sense.

Remark 5.5. Assumption (5.13) says, roughly speaking, that the lower order term is controlled by the principal
part of the operator. On the other hand (5.15) implies that the two terms have the same weight in the estimates
and this gives rise to a regularizing effect as in [37].

Let us compare the hypothesis on the coefficient B of the semilinear problem (5.6) with the ones of the
coefficient D of the quasilinear problem (5.10). Indeed while there is correspondence between (5.7) and (5.15),
there is no need of a semilinear counterpart of (5.13). This is because problem (5.6) is solved for bounded A(z)
and general positive B(z) in L!(Q) (see [43]), while, as we already said, problem (5.12) is still unsolved.

Lastly we generalize Theorem 5.1 for a wide class of elliptic operators (see [68] and [80]). Let us hence

consider (af ) = fa) q
—div(a(x,u,Vu)) = f(x) in(Q,
{ u=0 on 0%, (5.16)
where a : Q x R x RN — RN is a Carathéodory function that satisfies
a(x,s,6)€ > A(z)h(|s])[€]",
Ja(z, 5,€)| < yA()(1+ hlls]) €], (5.17)
[a(2,5,£) —a(z,s, )] = €] >0
for almost every = € (2, every s € R and every &,&* € RY with & # ¢*, with A(z) as in (5.2), v > 0 and

h € C(R™") such that, for 3 > 0,
h(ls) > 8 > 0. (5.18)

Theorem 5.6. Assume that (5.17)-(5.18) hold true. Then for every f € L'(Q) there exist u € 761”)((2) entropy
solution of (5.16) in the following sense

Vk>0 /A |u|p\VTk( )P < oo and

[ ate.u. VI 0) = [ f@Tiu-0) Vo e k@),
Q Q
If moreover f belongs to the space L*™) (Q), then u € Wol’p(Q)

/A(x)huu\)ﬂwp < oo and
Q

/a(m,u,Vu)V¢=/f(m)¢ Ve ChR).
Q Q
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5.2 Proof of the results

Before the proofs, we set the following notation
An(z) :=T,(A(z)), Bn(z):=T,(B(z)), Dp(x):=T,(D(x)), neN,

where T, is the truncate at level n. We moreover state and prove a preliminary Lemma (see [41] Lemma 3.3)
that will be often used in the sequel.

Lemma 5.7. Let 0, be a sequence of nonnegative bounded functions, almost everywhere convergent to some
function o, and let p,, : RN — RY be a sequence of functions which is weakly convergent in L1(Q)N (q > 1)
to some function p. If the sequence o, |p,|? is bounded in L*(2), then o|p|? belongs to L* () and

n—-+oo

/ olp|? <liminf | o,|pnl?. (5.19)
Q Q

If moreover o,, — o strongly in L (X2), then it holds true also that

1

Ol pn — a%p weakly in LI(Q)V. (5.20)
Proof. Note that for every k > 0 and every ¢ € (L4 (Q))" we have that
T1(00) pn — Ti(0)3p weakly in LI(Q)N.

Hence by the lower semi-continuity of the L?-norm it results

/ Ti(0)|pl? <lminf | Ti(on)|pn|? <lminf [ on|pnl? < Cy.
Q

n—-+4oo Q n—-+oo Q

Then letting % tend to infinity and using the monotone convergence theorem we obtain (5.19).

Let now W be an arbitrary element of L9 (Q), then

1 1 1 1
/aﬂpn~\lf:/ oﬁpn~\If+/ Ur‘{pn~\If:/ U%p'\Ij‘i’Gn“i’/ onpn- VY,
Q {on<k} {on>k} {o<k} {on>k}

Moreover

Q {O"ngk} {U'n>k} {ng} {Un>k}

It follows that
1 1
wilpallvl+ [ ool

{on>k

1
/[O”;{pn _O—%p] : \Ij‘ <é€n +/
Q {

on>k}
Using Holder inequality we have that

A : 7
e (/ an|pn|q) (/ |\II|Q)
{on>k} Q {on>k}

1
7

[ ot < ([ alor) (/ w’).
{on>k} Q2 {on>k}

Thanks to the assumption o,, — o in L'(Q) we deduce that the limit with respect to k& — oo of the quantities
1

and

above is zero uniformly with respect to n. So we can conclude that o p,, — o p weakly in L(Q)V. O
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Now we are ready to prove our first existence result.

Proof of Theorem 5.1. Case f € L(”*)/(Q).
Step 1. It is standard to prove the existence of functions u,, € VVO1 P(Q) that, for any n € N, satisfy

/An(x)\Vun|p72VunV¢:/fn¢ VQZ)EWOM’(Q). (5.21)
Q Q

Taking u,, as test function in the equation above, we get the following estimate

S” p=1
o [1vup < [ a@vup < L7 g,

a -1

that implies that there exists u € VVO1 "P(Q) such that, up to a not relabeled subsequence,

u, —u  weakly in W, (),
Up — U strongly in LI(§2) forany 1 < ¢ < p*,

Uy, —> U a.e. in €.
Moreover by means of Lemma 5.7, with o, = A,, and p,, = Vu,,, we deduce that
A(x)|VulP € LY(Q) (5.22)

and
An(2)?Vu, — A(z)?Vu weaklyin LP(Q)N. (5.23)

Step 2. Let ¢ belong to X (2), the space defined in (5.3), and take ¢ = (u,, — ) as a test function in (5.21).
We get
/A |vu |p 2vun Un / fn Un, )
Adding and subtracting in the equation above the term
/ Ao ()| VP2V (tn — ),
Q
we can take advantage of the monotonicity of the p—laplace operator to obtain

| 4@l VeV =) < [ fuli)un )

Thanks to (5.23), we pass to the limit in the inequality above obtaining

/A ) Vo|P 2V eV (u — @) /f Yu—¢) Ve XP(RQ). (5.24)

To recover (5.4) we use a weighted version of the classical Minty Lemma. Recalling (5.22), we can chose
© = u — tw as test function in (5.24), where ¢ € R and w € X' (). It follows

t/ﬂA(m)|V(u — tw)|P2V (u — tw)Vw < t/ﬂ fz)w

If ¢t — 0% we get

/QA(SU)|Vu|p_2Vqu§/Qf(x)w
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On the other hand, if £ — 0~, we get the opposite inequality. Then it results that
/ A(x)|Vu|P~2VuVw = / f@)w Ywe XE(Q).
Q Q

Case f € L'(Q).
Step 1. Due to the poor summability of the datum, we take T} (u,) with & > 0 as a test function in (5.21) and
we get the following energy estimate for the truncates

o /Q VT (un)l” < /Q A, (@) VT ()P < & /Q 7l

from which we can infer, arguing as in Theorem 6.1 of [17], that there exists a function u &€ 751’p () such that,
up to a not relabeled subsequence, for every k£ > 0

Ti(un) = Ti(u)  weakly in WyP(Q),
Ti(upn) = Tk (u) strongly in LI(Q2) V1< g < oo,

Up — U a.e. in ).

In this case from Lemma 5.7, with o0 = A,, and p,, = VT (u, ), we deduce that for every k > 0
A(2)|VTi(u)|P € L () and An(as)%VTk(un) — A(as)%VTk(u) weakly in  LP(Q)V. (5.25)
Step 2. To pass to the limit in equation (5.21), we follow the approach developed in [40]. Let ¢ belong to

XE(2) N L>(Q), where X[(£2) is the space defined in (5.3), and take ¢ = T} (u,, — ) as a test function in
(5.21). We get

| A @ITul 90,V = 0) = [ ()T = )
Adding and subtracting in the equation above the term
| 4@l T, — o),
we can take advantage of the monotonicity of the p—Laplace operator to obtain
| 4@Vl 9oV = ) < [ ful@) Tl = ). (5.26)

In order to pass to the limit in (5.26) with respect to n, let us notice that the right hand side above can be written
as

/ An(@)[VolP 2V oV T (un — )
Q

3=

_ / A (2)7 |Vo|P2VpVu, Ay ()7 — / A (2)|VolP.
{‘un_Solgk} {‘un,—tp‘gk}

Since {|u, — | <k} C {|un| < k+ ¢l L)}, recalling the properties of ¢ and using (5.25), we can pass to
the limit with respect to n in (5.26) in order to obtain

/Q A VP2V oV Tk (1 — ) < /g J@Tu—g) Ve XpR)NL¥(@) (5.27)

To prove that (5.27) implies (5.5) we take advantage of the L' version of the Minty Lemma proved in Lemma 7
of [40], that can be adapted to our case with minor modifications. We give just a sketch of the proof. Choosing
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@ = Tp(u) + tTi(u — ), with h > 0,

t| <landy € XF(Q) N L>®(Q), as a test function in (5.27), we have
/ A(@)|V (T (u) + T (u = )PV (Th (u) + tT3(u = ) VG (u)
{IGn(w)—tTk (u—y))|<k}

i / A(@)|V (T (0) + Tt — )2V (T () + T (t — 1))V T (ot — )
{IGr(u)=tTk (u—1p))|<k}

< | f(@)Tk(Grlu) = tTe(u — ) V¢ € XF(Q) N L>(Q).
Q
Taking the limit with respect to h — oo on both side of the inequality above, it follows that
—t/ A@)|V (u+ tTi(u = )PV (u + Tk (u = ) Vi (u — ) < —t/ f(@) T (u = ).
Q Q

Ast — 0~ we get

/ A() VP2 VuV Ty (u — ) < / F(@) Tl — ).
Q Q
Ast — 0T we get the opposite inequality and hence the thesis. O

Remark 5.8. Note that indeed we have proved that u and Ty (u) can be taken respectively as test functions in
(5.4) and (5.5).

Remark 5.9. In Theorem 5.1 we have considered only the extreme cases f € L'(Q) or f € L®)(Q), but
that there is no gain in considering an intermediate situation. Indeed as soon as f belongs to L™ () with
1<m< (p*)/, we are not able to recover a reasonable estimate of the type

(p—1)Nm

4 < <
/An(;v)|Vun\ < Cy forsome q < N—m

and thus there is no hope to pass to limit in (5.21) without the notion of entropy solutions.

As already said in the Introduction, adding a lower order term it is possible to observe some regularizing
effect and this is what we are going to show proving Theorem 5.2.

Proof of Theorem 5.2. Let us divide the proof in four steps.

Step 1. Approximation and a priori estimates.

Step 2. Almost everywhere converge of the gradients.

Step 3. Passage to the limit and conclusion.

Step 4. The case f € LY (Q) with g > p*.

Step 1. Thanks to [46] for any n € N there exists u,, € Wy’ (Q) N L () solution of the following approxi-
mating problem

/ A |Vt P2V, Ve + / By (@) un |92 = / fnd Yo e WEP(Q) N Lo(Q). (5.28)
Q Q Q

Let us start with some estimates of the lower order term. Taking ¢ =

/ Bo() un |~
{‘un|>k+j}

<1 / An(@) [ VT3 (Gr(un))I” + / B () 121, 2 G /{unbk}m ),

w, with j > 0 and k& > 0, we have

J J
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that, using Fatou Lemma as 5 — 0, becomes

/ B ()un]1™ < / I (5.29)
{|“71|>k} {|u7, ‘>k}

In particular, for £ = 0, we get

By (@) |un | < (| £l 11 (0)- (5.30)

Following [38], let us take now ¢ = [1 — (1 + |u,|) P ~V]sgn(u,) with0 < A < 1 — % as a test function
in (5.28), noticing that, thanks to the choice of ), it follows that |¢| < 1. Taking advantage of the sign condition
on the lower order term, we drop a positive term and obtain

/ An|vun‘p < ||f‘|L1(Q)
o (14 Jup[JPA=2 = 1 —p(1 = A)

(5.31)

Being our aim to obtain a uniform estimate of A,,|Vu,,|" in L!(Q) for some r > 1, let us consider

- A§|Vun\7" 1- _
Jy el = G i A0

- (/ A, \Vun| ) </A (14 Jun ) 255 A)) v
(1 + |un|)?
pr(i=x) \ pr(1—X) -2
gcg+c4</A|un| = ) < Cy+ i (/B(>un|w ) ,
0

where we used Holder inequality with exponents - £
control the last integral above with estimate (5.30), we have to impose that

pr(l—X) plqg—1) p(qg—1)
— 2 =g—1 namely r = )
p—r 1 Y p(1=A)+qg-1 q

where the last inequality is due to the fact that A < 1 — = Recalhng that ¢ > p’ implies (qq DS 1, we have
that

a/ |V“n\T§/AnIVun|T§05 with 1 << 24—
q

From the previous estlmate we deduce that there exists u € W0 " () such that, up to a not relabeled subsequence,
u, — u weak in Wy ""(Q) and u,, — u a.e. in Q. Using Lemma 5.7 we also have that

A(x)|Vu|" € LY(Q), (5.32)

and that ) )
Ap(z)7Vu, — A(z)*Vu weaklyin L"(Q)V

Notice moreover that, thanks to the sign condition on the lower order term, taking T} (u,,) as test function in
(5.28), we deduce, as in Theorem 5.1, the estimate

o [ 19Tl < /Q ATl < [ 1]

From which if follows that, for any & > 0,

An(2)7 VT (up) — A(z)7 VTi(u) weaklyin LP(Q)N
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and (see [17]) that
Np-1)

U, —u in WyP(Q) forany 1<p< N1

Step 2. Following [24], let us take ¢ = T (u,, — Tk (u)), with 0 < j < k, as test function in (5.28) in order
to obtain

/Q Ay [[Vun [PV, — VT3 (w)|P 2V T ()] VT (un — Ti(u)

< 25| fllzre) — / Ap| VT3 (w)[P 2V T (w) VT (un — Ti(u)), (5.33)
Q
where we have used that, thanks to (5.30),

/Q Bu(@)|tn | T (. — Ti(w))] < 401 £llp1o0-

The weak convergence of An(x)%VTk(un), proved at the end of Step 1, and the inclusion {|u, — Tk (u)| <
7} C {|un| < 2k} allow us to infer that the last term in (5.33) goes to zero as n diverges. Hence we get

< 2j||f||L1(Q).
@

lim sup / [IVun P2V, — (VT3 (u) P2V T (w) ] VT (up — Ti(u))
Q

n— oo

At this point, recalling the uniform bound of u,, in WO1 P (Q) with p < N]S,p __11) , we apply the argument of Step 3

in the proof of Theorem 2.1 in [24] to conclude that

Vu, = Vu a.e. in Q.
Step 3. Thanks to the assumption g > p, it is possible to choose r < p(q%q_l) such that r > p — 1. With this fact
in mind, let us rewrite the first term of (5.28) as

p—1 r—p+1
/AT/‘ |Vu,[P~2Vu, VoA, =~ .
Q

Notice that with the previous choice of r it follows that

T

p—1 p—1 )
/‘AF|Vun|P—2vun :/An|Vun|7 < Cg,
Q Q

that, together with the almost everywhere convergence of the gradients proved in Step 2, implies

p—1

A?\VU,L|p72Vu”4A(x) = |Vu|P~2Vu weakly in L#1 (Q)V.

On the other hand for every ¢ € C1(€2)

r—p+1 r—

A, 7 Vo — A(z)

7= V6 stronglyin L1 (Q)N.

This two pieces of information allow us to pass to the limit in the second order term of (5.28). It only remains to
pass to the limit in the lower order term. We show that B,, ()|, | 2u,, — B(x)|u|?"2u in L'() using Vitali
Theorem. For every measurable set £ C ) we have

/ Bo(@)un |t < K1 / Bu(z) + / By () g0
E En{|un|<k} En{|un|>k}

gkql/EB(x)+/{un>k}f(x)l,
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where we used estimate (5.29). From the estimate above easily follows that the sequence By, ()|u,|?%u,, is
equi-integrable. Moreover the a.e. convergence of the u,, allow us to apply the Vitali Convergence theorem to
conclude that By, (z)|u, |9 2u,, — B(z)|u|?"2u in L*($). Hence we have proved (5.8).

Step 4. Let us assume now that ¢ > p* and that f belongs to Lq/(Q) (note that ¢ > p* implies that
f ¢ W=LP(Q)). Choosing u,, as test function we get

/ An(@) [V ? + / B () un]? < / [l (5.34)
Q Q Q

Dropping the first integral in the left hand side and using assumption (5.7) and (5.2), we obtain

OZCS/ |Un|q < / Bn(m)|un|q < ”f”Lq’(Q) (/ |un|q) . (535)
Q Q Q

1 7 ||f||L<1'(Q).
Q " - 0[5

Hence we can go back to (5.34) and drop the second term in the left hand side in order to get
A
| ANV unl? < Wy ([ unlt) " < T2, (5.36)
Q Q (ad)a—T

Thus using the estimate (5.35) and (5.36), the a.e. convergence of the sequence u,, and Lemma 5.7, we prove
(5.9) in the case f € L7 (Q) with ¢ > p*.

that is

O

Remark 5.10. With minor modifications of the proof it is possible to consider more general lower order terms
as d(z,u), where d : R x Q — R is a Carathéodory function satisfying

d(z, s)sign(s) > A(z)|s|7" for |s| > 1,
and A(x) as in (5.2). See for example [413] and [16].

Now we give the proof of Theorem 5.4. We shall see that the main concern is to absorb the lower order term
into the second order operator, in order to obtain the strong convergence of the truncates of the approximating
solutions in the energy space and the almost everywhere convergence of the gradients. This is done combining
Lemma 5.7, assumption (5.13) and standard techniques developed for problems with first order terms with
natural growth. We stress that the stronger assumptions (5.14) and (5.15) give rise to a regularizing effect as in

[37].

Proof of Theorem 5.4. Let us at first analyze the case f € L") (Q) following three steps.

Step 1. Approximation and a priori estimates.

Step 2. Strong convergence of truncations and a.e. convergence of the gradients.

Step 3. Passage to the limit and conclusion.

Step 1. For any n € N, let us consider the function w,, € I/VO1 P(Q) N L>°(R), solution of the following
approximating problem

/ An|Vu, P2 Vu,Vé + / Dy (2)g(un) | Vun P = / fno, (5.37)
Q Q Q

with ¢ € W,?(Q) N L>(£2), whose existence is proved for example in [33]. Choosing u,, as test function in
(5.37) and dropping a positive term (recall the sign assumption on g), we get

I ey |y 2
() |‘AT€VU7LHLP(Q))

1
apr

/Q An@|Tunl? < [ Fl 0 (o el o ) < S
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that, thanks to assumption (5.2), becomes

SET e
o [ IVual? < [ @I Tul? < S 17 539
Q Q o (p—1)

This estimate assures that, up to a not relabeled subsequence, u,, converges to some u € WO1 P(Q) weakly in
WO1 P(Q), strongly in L4(Q) with ¢ < p*, and a.e. in Q. Moreover, thanks to Lemma 5.7, it follows that

1

AlVulP € LY(Q) and AZVu, — A(z)7Vu weaklyin LP(Q)N. (5.39)

As far as the lower order term is concerned, take M
Dropping a positive term we get

,with 7 > 0 and k£ > 0, as test function in (5.37).

T:(Gr(uy,
[ D@latunIVual < [ Da@lgtun)[Vaa LD < [y
{|un‘>k+]} J {|un|>k}

Using Fatou Lemma with respect to j — 0, we obtain

/ Do ()9 ()| [Vt |? < / 1| fork > 0. (5.40)
{lun|>k} {lun|>k}

Moreover, for k = 0, we can apply Lemma 5.7 to infer that
| P@lglIvup < timint | D)ot Vel < [ 171,
i.e. D(x)|g(u)||Vul? belongs to L!(Q).
Step 2. In this step we follow the approach of [37]. Let us use ¢ = @x(zy), with z, = T (u,) — Ti(u),
ox(t) = (eM*l — 1)sgn(t) and A > 0, as test function in (5.37). It is worthy to note that [px(2,)| + ¢4 (2n) <

(14 X)e?** and that, thanks to the a.e. convergence of u,, proved in Step 1, 5 (z,) — 0 and ¢} (2,,) — 1 a.e.
in (2. We get

/MWwW%Mwam—nwmwm+/EMMMWMme>
Q Q

Il 12

:Aﬂme»

—_—
I3

In order to rewrite I; in a more convenient way note at first that the term
/Q An|VGio(un) P72V G (un) VT (w) 94 (2)
converges to zero as n diverges. Indeed, on one hand, estimate (5.38) tells us that
AV (VG (un) P2V G (un)

is weakly convergent in Wol’p (€2); on the other, Lebesgue Theorem, together with the almost everywhere con-
vergence of u,, to u, (5.39) and the properties of ¢, assures that

An(x)%VTk(u)X“unbk}go')\(zn) — 0 stronglyin LP(Q)V.
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Secondly, using (5.39), it results that
An(2)7 V(Ti(un) — Te(u)) = 0 weaklyin LP(Q)V.

Thus we have that
I = /Q Ay [V Tk () [P 2V T () — [V Tk (w) P2V Ty ()] V(T () — T (1)) (2)
n /Q A VT (w) [P~V T (w) V(T (1) — T (1)) (2)
n /Q An VG (1) [P~V G (10 )V T (1) 2 (2

_ /Q A (VT () P2V T4 () — VT () P29 T3 ()] V(T () — T ()9 (20) + €,

where lim,, ., €, = 0. With regard to /5, using the sign assumption (5.11), we get

I = / D (2)9(11n) Vit P05 (2) + / D (2)9 (1) | Vit P05 (22)
{lun|>k} {lun|<k}

> /{un|<k} Dy (2)g(un)|Vun [Pox(2n) > —0gr /Q A (2)|V Tk (un) [P ox (20)]
= —ng/QAn HVTIC(Un)|p_2VTk(Un) - |VTk(u)‘p_QVTk(U>] V(Tk(un) — Tk(u)”(ﬂ)\(Zn)I
— 00k /Q An VT (u) P2V T (w) YV (Th (un) — Th(w)) |0 (20)]

+ ok / A [V T (11 ) P2V T (11 )V T () |0 (20
Q

where gr = max| <) g(s). Using (5.39) and the definition of ¢y (2,), we deduce that the last two integrals
above converge to zero as n diverges. Moreover it easily follows that I3 = ¢, as n — oo. Lastly notice that if
A =1+ ogs, then
/ _
@y = oGklea(zn)] > 1.
Thus summing up the information on I, I5, I3 and with the previous choice of A we get

lim [ Ay () [V Tk (un) P2V Tk (un) — VT (w) P2V Ty (w)] V(Tk(un) — Ti(u) = 0.
n oo O
Recalling assumption (5.2), we can infer that (see for example [66]) for every & > 0
Vu, = Vu a.e. and that An(a:)%VTk(un) — A(a:)%VTk(u) strongly in  LP(Q).
Step 3. Thanks to Step 1 and Step 2 we can pass to the limit in the first integral of (5.37). Now we claim that
D(2)g(un)|Vu, [P — D(z)g(u)|VulP  strongly in L' ().

In order to prove the claim, let E be any measurable subset of {2 and recall assumption (5.13) and estimate (5.40).
We get

/ D (2)]g (1t || Vit P
E

<% / D ()| VT ()P + / D ()9 1) |V G ) P
BO{Jun| <k} BO{Jun| >k}

< od / AT (un)]? + / £l
En{|un|<k} {lun|>k}
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From the strong convergence of the sequences u,, and A, (x)|V Tk (u,)[? in L*() (proved respectively in Step
1 and Step 2), it follows that the sequence D,,(x)g(uy,)|Vu,|P is equi-integrable. Taking advantage of the a.e.
convergence of the gradients proved in Step 2, we can apply Vitali Theorem and the claim is proved.

At this p)oint we can easily pass to the limit in (5.37) and conclude the proof of Theorem 5.4 in the case
fe L) Q).

In order to deal with the case f € L'(£2), with the additional assumptions (5.14) and (5.15), let us take
Ts(uy,), with § as in (5.14), as test function in (5.37). We get

| AT Tanl? + 735 [ Au[9Gsw)? < 51 s,
Q Q

that is -
g

ATL n P < . (14~ .
| 4alVunl € el

Hence using once more Lemma 5.7 we obtain that

5
1R e — 1
AA(x)|Vu| in{l,T’yé}HfHL ()

1 1
AEVu, — A(z)»Vu weaklyin LP(Q)V.

Note now that Step 2 and Step 3 hold true also for L*(£2) data. Hence exactly as in the previous case we obtain
the thesis. O

and that

In this last part we prove Theorem 5.6.

Proof of Theorem 5.6. Letus setforn € N

an(z,8,8) = mxﬁln(:ﬂ)hn(|s|)7 (5.41)

where h,,(s) := T,,(h(s)). Note that by definition a,,(z, s, £) satisfies
an(x,5,8)& = An(z)hn(|s])I€]7,

Jan(x, 5, €)| < VAR (@) (1+ ha(ls])) 1€F77],
[an($757§) - an(‘%?S,f*)Hf - g*} >0,

for almost every = € €, every s € R and every £, £* € RN with & # £*. Thus we can use for example [33] (see
also [66]) to infer the existence of u,, € Wy (Q2) N L> () solution of

/an(x,un,Vun)V¢:/fn¢ Vo € WP (Q). (5.42)
Q Q

We divide the rest of the proof into several steps; in the first three we assume only f € L'(§2) while in the last
one we consider L(®")'(2) data.

Step 1. A priori estimates.

Step 2. Entropy solutions.

Step 3. Vu,, — Vu a.e.in Q.

Step 4. Distributional solutions.

Step 1. In order to recover the basic energy estimate for the truncates of u,,, we need to define the following
auxiliary functions (see [80])

S

Hy(s) = /0 ha(|7])7Tdr and H(s) ::/0 h(|r|)7Tdr.
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By construction, H,, is a locally Lipschitz function and H,,(0) = 0, thus we can take H (T} (u,)), with & > 0,
as test function in (5.42) obtaining

O‘ﬂp,/ﬂwTk(u"NPgﬂp//QAn(x)WTk(unﬂpS/QAn(x)hn(Tk(un))p'|VTk(un)|P

< /Qan(xaunvVun)VTk(un)hn(‘Tk’(un)|)’71j < Hn(k)”f”Ll(Q) < H(k)Hf”Ll(Q)-

This estimate implies, on one hand, that there exists a function v € 761”’ () (see [17]) such that, up to a not
relabeled sub sequence,

Te(up) = Tp(u) in WyP(Q),

N(p-—1
U, —u in Wy*(Q) forany 1<p< L)7
N -1
Uy = u a.e. in £,
and on the other, by Lemma 5.7, that for every k£ > 0
A(2)|VTi(w)|P € L) and A, (2)7 VTi(un) — A(x)7VTi(u) weaklyin LP(Q)V. (5.43)

Step 2. Let ¢ belong to X} (©2) N L>($2), where X[ () is the space defined in (5.3), and take ¢ = Ty (u, — ¢)
as a test function in (5.42). Then it follows that

/Qan(a: Un,y V) VT (u / Fn(@) Tk (un — ).
Adding and subtracting in the equation above the term
/Q an (2, Upn, VO)VTi(tun, — @)
and taking advantage of the monotonicity condition of (5.17) we get
/Q an (2, Up, V)V (u / Sn(@) Tk (u ®). (5.44)

Noticing that {|u, — ¢| <k} C {|un| <k + ||@l|z (o)} and that

Ap (T, U Up — = w xT U Unp —
/Q et VI VT(n = 2) /{Iun—sﬂlﬁk} Az)h(un) Anl@)hn (1n )V (in = ),

we can pass to the limit in (5.44) using assumption (5.17), the a.e. convergence of u,, and the weak convergence
1
of A,,(x)» VT}(uy,) proved in Step 1. Hence we obtain, for every k > 0,

/ a(z,u, Vo)VTi(u— ¢ /f )Ti(u— @), YeeXF(Q)nLe9).
Q

As in the last part of Theorem 5.1 we take advantage of Lemma 7 of [40] to infer that, for every k£ > 0,

/a(x,u,Vu)VTk(ufgo):/f(:v)Tk(ufga) Ve XF(Q)NL>®(Q).
Q Q

Step 3. In order to prove the almost everywhere convergence of the gradients we adapt the methods used in [24].
Using T (u, — Tip(u)) with 0 < j < k as test function in (5.42) we get

/Q [an(x, Un,y Vy) — ap (T, Uy, VTk(u))] VT (up — Ti(u))

<31l — /Q (3, VT (1) VT 1t — T ().
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The last term above can be written as

A(@)h([un])

that converges to zero as n diverges thanks to (5.43), the a.e. convergence of w,, and the fact that {|u,, — T} (u)| <
7} C {|un| < 2k}. Thus, recalling the definition of a,,(x, s,£) and assumptions (5.2) and (5.18), it follows

/ 0l tin YLE00) 4 3 (a0 )Ty 1 — Ti(w),
[tp =T (u)|<j

j”fHLl(Q).

V(- Ty(u)) < 25 L

lim sup af8
n—oo

[a(x, Un, VT (uy)) B a(z, uy, VI (u))
ol  A@)h(|unl) A(@)h(|unl)

Noticing that the Carathéodory function

a(z, s,§)
A(z)h(]s)
satisfies the assumptions of a Leray-Lions operator and thanks to the weak convergence of u,, in WO1 " (Q) for any
p < M , we can use the argument of Step 3 in the proof of Theorem 2.1 in [24] to conclude that Vu,, — Vu

a.e. in Q
Step 4. In this last part of the proof we consider the stronger assumption f € L@ (). Recalling that u,, €

Wy (Q)NL>®(Q), we can choose H, (uy,) as test function in (5.42), where as before H,, (s) = I hn(|t\)ﬂ%1 dt.
We obtain

/A WHWP—/A () 19l < 11 oo g | ) o -

Using Sobolev inequality we get

| vl T
and, thanks to the a.e. convergence of Vu,, to Vu,, and Fatou Lemma,
[ A@h(up” .

Thus we have that the sequence

a(z, U, Vi)

A(z)h(|un])

4
7

Ap(2)7 hy(Jun|) isboundedin LP'(Q)N

and converges almost everywhere to a(x, u, Vu)Aﬁ*1 thanks to Step 3. Hence it also converges weakly in
LP (Q)V toits a.e.-limit. Noticing that for every ¢ € X7 (Q)

An(x)%v¢—> A(x)%qu strongly in  LP(Q),

we can pass to the limit in (5.42) and conclude the proof. O



Chapter 6

Gradient behaviour for large solutions to
semilinear elliptic problems

As already said in the introduction given p > 1 and f Lipschitz, under appropriate assumptions on the smooth-
ness of the bounded domain 2 C R, N > 1, we give a precise description of the asymptotic behaviour of the
gradient of the unique solution of

—Au+|ulPlu=f inf,
u = —+00 on 0.

In particular we show that there exists a corrector function S, finite sum of singular terms, such that
zi=u—8e€Wh>(Q).

Moreover we prove that
VT e oN 2(z) =0 and —V(i)zO,

where v is the outward unit normal to OS2.

6.1 Statement of the main results

Before stating precisely our main results, we need to give some notation.

6.1.1 Notation
We shall often work in tubular neighborhoods of 052 of the type

Qs ={y € Q : dist(u,00) < 0}, 6 > 0.

We recall that () is always at least of class C2. Hence the function dist(-, () distance from the boundary is
well defined and twice differentiable near 0€2. More precisely the following Theorem, proved in [64], gives the
relationship between the regularity of the boundary and the regularity of the distance function.

Theorem 6.1 (Theorem 3 in [64]). Let € be a domain of class C” with v > 2. Then
36 >0  such that dist(-,00) € C7 (). (6.1)

Thanks to the previous Theorem we can define the following smooth versions of the distance function.

85



86 CHAPTER 6. GRADIENT BEHAVIOUR FOR LARGE SOLUTIONS

Definition 6.2. Let Q be a domain of class C” with v > 2 and let § > 0 be given by (6.1). Then we define the
regularized distance as a function d € CV(Q) such that d(x) = dist(x, 0Q) for every x that belongs to Q5. We
moreover denote d,,(z) := d(z) + L.

It is worthy to stress that d,, (-) inherits from dist(-, 9€2) the following important properties
|Vd,(z)]? =1, Vd,(r)=-v(z) and Ad,(zr)=—(N—1)H(z), =€ Q

where the vector filed v and the function H are such that, for any Z € 95, v(Z) is the outward normal to 052 at
Z and H () is the mean curvature of 0f at 7.

Finally, unless otherwise specified, we indicate with C' a constant that depends only on the data of the
problem and that can vary line to line also in the proof on the same theorem.

6.2 Main results

The ansatz that guides our approach is that it is possible to give an explicit description of the explosive behaviour
of the large solution u and of its gradient Vu by means of a finite sum of singular terms. Inspired by (34), (36)
and (37) we conjecture that

u(z) ~ ogd™® + o1d T Fopd T2 4
where o, with £ = 0,1, - - - are smooth functions, and define the following regularized function
zi=u— (00d™ 4+ o1d ! 4 o0d 2 4. (6.2)
Hence the first question we want to answer is:
Can we find o, with k = 0,1, - - - such that z and |Vz| belong to L>°(2)?

Of course the functions o1, ..., 0 shall take into account several characteristics of the problem, among
others the geometry of the domain. Notice moreover that the definition (6.2) suggests that we need [«] 4 2 terms
for having z € W1°°(Q). Indeed we have the following result.

Theorem 6.3. Let us assume p > 1 and fix a := p%l. Let Q be a bounded domain of class C'*1+5 with [a]

the integer part of o, let f belong to W>°(Q), and let u be the unique large solution of (38). Let us define the
following functions

o0 :=[a(a + 1)]77

1 ao __a(N-1)H(x)
7)== 5T e M) = o oy
on(@) (a4 1—k)og_1(x)Ad(x) +2Vop_1(x)Vd(z)] + Aoy_o(x)
T (k—a)k—a—1)-2+a)(a+1) (6.3)
ab K P\
+ (k — a)(kj —a — 1) — (2 + Oé)(a + 1) = <j) 0y i1+mz+ij_k (711<J?) 0i; (x)
fork=2---[a]+ 1andii,--- ,ij positive integers.

Then oy, € C(Q)H5=F with k = 0,--- | [a] + 1, and the function S € C*(Q), defined as

[a]+1

S(x)= > on(z) d~(x), (6.4)

k=0
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is such that

2(z) == u(x) — S(x) € WH=(Q).

Moreover it holds true that 5
2(Z) and —Z( )=0 VZeq. (6.5)
v
Remark 6.4. Let us stress that the higher the value of o (i.e. the closer p is to 1), the higher the number of
singular terms is and the higher the regularity of Q) has to be.
Moreover if we split the above estimate along normal and tangential directions we get a very precise estimate of

all the singular terms in the expansion of the gradient. More specifically we have that

ou 1L o (x)
. v _ k—a—1 k—a —
Jim == kZ:O(a Rox(w) d*= (@) + =5 = d" () =0 (6.6)
while "
al+1
A 9ou(®) o, |
wava|or ;) o @ "@)=0 6.7)

V7 € SN such that T - v = 0. Let us stress that with the notation x — 9§ we mean that the limits above are
uniform with respect 0X) (see Theorems 6.12 and 6.13).

From (6.6) and (6.7) we easily obtain the second order asymptotic of the gradient (40) mentioned in the
introduction.

The core of Theorem 6.3 is a Bernstein type estimate for |Vz|. This type of technique, already used in the
framework of large solutions for quasilinear problem in [70] (see also [71]), has been originally developed in
[72] and [73] and it allows to obtain L ())-estimates for solutions of a vast class of boundary value problems.
Of course we do not know a priori the boundary condition (if any) satisfied by v — S; thus it is not possible to
obtain Bernstein estimates directly for z and |Vz|. We overcome this obstacle arguing by approximation and
considering the following regularized corrector function

! 1
Z o)dE(x),  dn, = d(z) + ~ (6.8)
where 0g, - - -, 0[q)41 are the functions defined in (6.3), and the following approximated problem
—Auy + JupP tu, = f, inQ
g 69
Tun = Tl,n on 0N.
Moreover we define z,, () := u,(x) — S, (), that solves
— Az + |20+ SulP N (zn + Sn) = [SalP S0 = fn inQ
6.10)
0z (
a—i =0 ondf,
where _
fn = f +AS, — |Sn|pilsn- (6.11)

Let us stress that the choice of the Neumann boundary condition in (6.9) and in turn in (6.10) is not the only
possible, but it is the most convenient for our scope; indeed Neumann problems are particularly suited for the im-
plementation of the previously mentioned Bernstein estimates. Observe at this point that u,, converges, at least in
C2 () (see Proposition 6.11) to the unique large solution to (38), and this in turn implies that z,, — z := u— S
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in C2 () where S = lim S,,. Hence, once a uniform estimate (with respect to n) in W1:°°(€2) is obtained for
n—0o0

the solution z,, of (6.10), it can be inherited by z as n diverges.

The proof of Theorem 6.3 is divided into the following main steps:

o we prove that there exists a constant C' = C/(c0, - - , 0[a)11, f) such that d,| f| +d2 |V f| < Cdltlel=«
for every n € N;

e we show that for every n € N problem (6.9) admits a solution u,, and we describe the first order behaviour
of u,, near the boundary;

e through a Bernstein type estimate, we show that there exists a positive constant B = B(0o, - , 0[a]+1, f)
such that ||z, || y1.0 () < B for every n € N. This implies that || z|[yy1, () < B.
Hence Theorem 6.3 tells us that 2 € C2(1) satisfies
—Az+ |24+ SP(z+8) —|SPIS = F inQ,
z € Whee(Q).
where _
f(z) = f(2) + AS(x) = [S(2) "~ S(x) 6.12)
and f = lim fn. Note that so far we do not have any information on the boundary behaviour of z, apart from

n—roo
the fact that is globally Lipschitz continuous. Thus, it is natural to wonder if z satisfies some boundary condi-
tion; and indeed, coupling the previously mentioned Bernstein technique with sub and super solutions method,
we prove we prove (6.5).

Let us now consider a class of nonlinearities for which Theorem 6.3 can be generalized with minor modifi-
cations. Let us thus focus on the following problem

{;iu+—;oh(x)u|plu =r(z,u) i:)anéQ’ 6.13)
where p > 1, h € C*(Q) is such that for 0 < A < B
A<h(z)<B VYze Q, (6.14)
and r € C1(Q x R) satisfies
r(z,s)s >0 and % (h(z)|s]P"'s —r(z,8)) >0 V(z,5) €QxR. (6.15)

In Theorem 2.7 of [12] it is proved that for any bounded domain 2 of class C2, under the assumptions (6.14)
and (6.15), problem (6.13) admits a positive large solution; moreover every large solution u of (6.13) has the
following asymptotic behaviour near 952

lim u(x)
120 6y (VA@(@)

Now we make additional growth assumptions on the function r(z, s) in order to be able to implement the Bern-
stein technique as in Theorem 6.3. We require that

sup |r(z,s™%)|s € L*>(Q),

=1. (6.16)

0<s<1
sup \m(x,s_aﬂsz € L>(Q),
0<s<1 6.17
sup |rs(z, s_(’“)|s2 =o(1), asd(z) — 0, ( )
0<s<1

sup [ry(z,s™*)|s7*" € Lo(Q),
0<s<1
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where r, := V,r and ry := %. As a first consequence of (6.17) we deduce that for 1 < g < p the function
g(x,s) == h(x)|s[P~ts — r(x, s) satisfies

g(z,s)
s4

is increasing for large values of s. (6.18)

Indeed

d _ p—1 _ -1
4 9(@5) = (=) rs(@,8) +r(z,5)s > (0 for large value of s, Vx € €.
ds s4 s4

Thus using (6.16) and (6.18) we can take advantage of (the proof of) Theorem 2 of [58] to infer that problems
(6.13) admits a unique large solution.

We stress here that we obtain the asymptotic expansion of large solutions and their gradient via an approx-
imation procedure; thus, in the absence of a uniqueness result, our method gives a description only of the large
solution obtained by the approximating scheme, i.e. the minimal large solution.

We can state our last result.

Theorem 6.5. Let us assume p > 1, fix o := p%l and let Q be a bounded domain of class C'*1*°. Assume
moreover that (6.14), (6.15) and (6.17lhold true. Then there exist functions o, ;; = op, ,(p, 2, h) (see (6.39) for
the precise definition) with oy, , € c(@Q)el+o-k g =0,..., [a] 4+ 1, such that, defining Sy, as
[a]+1 b
Si(e) = 3 onrle) (V@) 6.19)
k=0

it results u — S, € WH2°(Q) and 2(z) := u(Z) — Sn(z) = 0 for every & € 9. If moreover we assume

sup |r(z,s7%)| =o0(1) asd(z)— 0, (6.20)
0<s<1
it holds true that
_ 0z, _
2(Z) and a(x) =0 Vz e

Let us stress that the functions o}, ;, do not depend on the function r, due to assumptions (6.17). Indeed these
growth conditions imply that the contribution of the perturbation r(x, s) does not affect the asymptotic behaviour
prescribed by h(z)|s|P~1s.

On the other hand the presence of the weight h requires some modifications in the definition of the corrector
function Sy,. This in turn yield to even more involved formulas for 04,9, -+ , 0p,[o)+1 than (6.3). Notice that

o0 =[a(a+1)]7T = oy,
ah™2 (2)Vh(z)Vd,(z) + h (z)(N — 1)H(z)
2(1 + 2a) ’

on1(z) =aooh™ ()

namely the first order behaviour does not see the influence of the weight, that comes into play from the second
one onward. As a last comment to Theorem 6.5, notice that, in order to recover the Neumann boundary condi-
tions for z, the additional growth assumption (6.20) is needed (see Remark 6.7).

Unfortunately we are not able to treat problem (29) with g that satisfies just (30) and (31). The main obstacles
in considering a general ¢(s) (that satisfies anyway (30) and (31)) are, on one side, that the simple structure of the
corrector function S is lost and, on the other, that it becomes much harder to manipulate terms as g(z+.5) —g(5).
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6.3 Gradient bound

6.3.1 The choice of S,,.

In this first section we determine the regularity of the functions oy, k = 0, - - - , [a] + 1, defined in (6.3) and we
show that f,,, defined in (6.11), is such that

A0 = 6(0—07 5 O0la)+1s f) : dn‘ﬁl| + d721|V}Tn| < C’d}ir[a]ia,

We prove a slightly more general result that emphasizes the relationship between the number of elements of S,
and the required regularity of 2.

Proposition 6.6. Let us take a natural number M € [0, [a] + 1], Q a bounded open domain of class C™+*, oy,
as in (6.3) with k = 0,--- , M and S,, as in (6.8). Then we have that o}, € C(Q)M+3=% withk =0,--- M
and that there exists ng = no(co, -+ , o) such that for every n > ng

where C' = C(N, o, 0Q).

Proof. Note at first that the positive root of (kK — «)(k — o — 1) — (2+ a)(a + 1) = 0 (seen as an equation in
the variable k) is bigger then [«] 4 1: indeed denoting by k; i = 1, 2 the two roots, we have that

2a+1++/(2a+1)2+2(a+1)

k1 <0< ky = 5

and ko >2a+1>[a]+1 a>0.

Thus the denominator in (6.3) is always different from zero. As far as the regularity of the terms involved in
(6.21) is concerned, Theorem 6.1 assures us that d,, € CM+4 () (see also [59] and [64]); moreover, as it is clear
from the formulas in (6.3), the evaluation of o}, involves derivatives of d,, of order k£ + 1. Hence the regularity
ofopisM+4—(k+1)=M+3—k,ie o, € CMP3FQ)withk=1,--- , M.

Let us show now that such a choice of o, implies that (6.21) holds true. Thanks to the proved regularity property,
we are allowed to compute both the gradient and the 1Apllacian of S, (x). Recalling that by definition Vd,,(z) =
Vd(z) and Ad,(x) = Ad(x), we have that

M

AS,(x) = Z[(k —a)(k —a—1)opd"72(2)|Vd(x) > + (k — a)op(x)d " (2) Ad(z)
k=0

+2(k — a)dfi o7 (2) Vo (2)Vd(x) + Aok (x)dE = (x)].

Ordering the previous expression according to the power of the distance function and working in {23, in order to
use that |Vd|? = 1, we obtain

AS, (@) = ala + Dod,*~(x) + [ala = Doi(2) - aooAd(@)]d; "~ ()

M

+ Z { (k—a)(k—a—1)og(z)+(k—a—1) [Uk—l(IE)Ad(I) +2VoL_1 (:c)Vd(:v)] +Acy_o(z) }dia2(z)
k=2

+r(x)dM "1 (z) inQy,

where 7 = r(op—1,00) € CH(Q).
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Now let us focus on the non linear term |.S,,|P~1.S,,. Since any o, is bounded, there exists g = 5o(0g, - - ,oar),
with §g < 8, ng = n(](5()) and a function R = R(Uo, R 70']\/[) € CI(Q) such that
M o P
|SulP 180 = ofd;, 72 (Z ‘“dii) = 0bd, " +poglond,
0o
k=0

M k
+ Y d T apof ot af @"5’ S ooy | o+ R
k=2 = | M i1+ tij=k

in 25, and n > ng.
Now it becomes clear that the choice of o, - - - , o3 in (6.3) is the unique for which
‘AS’n (z) — |Sn(z) [P~ S, (2) ‘dn(x) = ’r(ac) — R(z) ’dfy_a(x) < CdM=*(z) in Qs and n > ng,
and moreover
[V(ASy = 1Sal"7 )5 ()| < (@ + 1= M)|V(r(z) = R()|dy" ™" (x) < Cdy'~*(x)
in 5, and n > ny,
with C = C(o0g,- -+ ,0p). The estimate in Q \ 5, it is straightforward thanks to the regularity of oy. O
Remark 6.7. For the proof of Theorem 6.3 we take M = [a] + 1, so that (6.21) becomes
[(ASy = [Sn[P71S0)du| + [V(AS, — [Sa[P~1S,)d2| < CdL = inQ
Since f € W1°°(Q), recalling the definition (6.11) Offn, it follows
3C = C(oo,...,om, f) suchthat — dy|fn| +d2|V ]| < Cditll- < O (6.22)
Remark 6.8. For the sake of completenesses we explicitly compute the expression for oa:

(a4 2)ob 02 (2)d(z) + (o — 1)[o1(z) d(z)Ad(x) + Vo, (z)Vd(z)]
2-—a)1l-—a)— 24+ a)(a+1) '

oo(x) =

Of course oo and o1(x) coincide with the ones already known in literature.

6.3.2 Existence and preliminary estimates for w,,

In this section we find suitable sub- and super-solutions for problem (6.9) in order to prove both existence and
some preliminary estimates on the solutions u,, of (6.9).
We first observe that

M
oS, .
S = aoon®tt 4+ n® E [(a — k)aknl_k + Vo - un_k] = aoon®tt +n%y, ifa#1
vV laa 1
while o
n 1 .
=ogn? + Vo, -v+Voy-v——09 =0oon® + 1, ifa=1,
o |sa n

where 1, € C(09) is uniformly bounded (with respect to n). More precisely

Such a bound is crucial in order to prove that problem (6.9) admits a pair of sub- and super-solutions.
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Proposition 6.9. Letp > 1, f € WH>(Q), S,, as (6.8) and T as in (6.23). Hence problem (6.9) admits a pair
of (classical) sub- and super-solutions.

Proof. Case o > 1, sub-solution. We prove that it is possible to chose M; and My positive constants such that
Wy, = ood, " — Mld}L_“ — M is a sub-solution for (6.9). Fix at first

(p — Daoo||Ad||p=) T }
(p+3) Ta—1

M > max{
and observe that this choice of M; implies that

T~ oo™ = gun® = [~(a — DM~ b, Jn® <0 on 09 (624

Moreover, using the monotonicity of the function s — |s|P~1s, let us fix g = do(M;) < § and ng = ng(dy) so
that
WP~ wn, < Joody @ — Midy,” [P~ ood,,* — Mydy,™®) = (00d,® — Myd,, )
M P M
_ O,gd;a72 <1 _ 0-01d"> - O—gdga*2 {1 —pa_foldn + O(di) in Q5,, n > no.

On the other hand an easy computation shows that

Aw,, = ala + 1)ogd,* 2 — ad,; > " [UoAd + (a — 1)M1} + (o = 1)Myd,;“Ad in Q5,, n > ng.

Recalling that

_ 3
pok 1fa(a71):pa2+pafa2+a:2%,
D

we deduce that
— Aw,, + |wn\p_1wn — f < =Aw, + (00d,* — Mld}l_"‘)p —f

3
< (—Z]Z;_thl + anAd> d,;* '+ 0(d,;*) <0 inQ;s,, n > ng,

where the last inequality holds true thanks to the choice of M;. Now taking

=

My 2 085 + (1Awn (@05, + I lL= (o))
and using once more the monotonicity of s — |s|P~1s, it follows that
— Awn + |wn|p71wn — f S —Awn — ||Awn||Loo(Q\Q50) — Hf”Loo(Q) — f S 0 inQ \ Q(so. (625)

and we conclude that w,, is a sub-solution of problem (6.9).

Case o > 1, super-solution. Let us show now that it is possible to take N; > M, such that v, := ood,; " +
Ny d,ll_a turns out to be a super-solution for (6.9). As far as the boundary condition is concerned we have

vy,

ol oon®t —p,n® = [(a@ — 1)Ny — ¢,]Jn® >0 ondQ,
1%

o0

where the last inequality follows from the previous choice of [V;.
Since v, is positive, thanks to the convexity of the function (1 + s)P with p > 1, we have that

p

N N
[on [P~ 0 = 0By, (1 + 1dn) > od, " ? <1 +p1dn) :
oo oo
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As in the previous case it follows that
P+ 3 —a—1 AN
—Av, +0P — f > 271N1 + aooAd, | d, +0(d,*) inQ5, n> ng,
p—

where we have used that |[Vd|?> = 1 in Q. Thanks, once again, to the choice of N; we can conclude that
—Av, + 2 > fin Q5.
Finally we have

— Av, + 0P — f = —Av, + (00d,* + Npd, )P — f
> —Av, + NP@PU=) — f > O\NP — CyN, — C3 inQ\ Q,
where the last inequality comes from the fact that in Q \ Q5 d,, > § and that in —Awv,, only linear powers of N,

appears. So by increasing if necessary the value of Ny, we have —Awv,, + v2 > fin Q \ Q5. It is then possible
to conclude that v,, is a super-solution of (6.9) in €2 and that v,, > w,,.

For the range 0 < o < 1 the proof is similar and we just stress the main differences.

Case o = 1. Note that, with this choice of a, we have p = 3, o9 = v/2. We claim that Wy, 1= \/id,jl +
Mslogd,, — My and v, := \/id,jl — Nslogd,, + N4, with M3, My, N3, Ny > 0, are a sub- and a super-solution
for (6.9). Let us choose M3 > T in order to obtain

Own,

ov

—V2n% — pn = [~ M3 — Yp]n < 0.
o0

Then we fix §p = do(M3) < min{4, 1} (so that log(dg) < 0) and ng = ng(dg) such that

f M. 3 f
wd <2243 <1 + TSdn log(dn)) = 23d + 6Msd;, 2 log(d,) + o(d? log(d,)) ins,, n > ng,
Hence it follows that
—Aw, + |wn [P w, — f < +6Msd;, ? logd,, + o(d? log(d,,)) < 0 inQs,, n > ng.
Now we fix
1
My 2 V257 + (I1Awn e @as) + 1 lL=@) "

that implies —Aw,, + |w,|P~ 1w, — f < 0in Q\ Qs, and we in turn that w,, is a sub-solution of problem (6.9).

For the super-solution v,,, we consider N3 > T'. Thus, exactly as in the previous case, we get

GUnl _ Gon? — hum = [Ny — thuln > 0.
v

o0

Noticing that v,, is positive and using the convexity of the function (1 + s)3, we obtain

N s
03 =23473 (1 - 7%% log(dy) + N4> >23d;% — 6N3d;; % log(d,,).

Moreover we fix 6y < § and ng = n¢(8g) so that

—Av, + v — [ > —6N3d, *logd,, + o(d% log(d,)) >0 inQs,, n > ng.
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At this point, choosing

<=

Ny 2 V205" + (vl @ias,) + 1)

it follows that —Av,, + v2 — f > 0in Q \ Qs, and we conclude.

Case o < 1. Finally we consider w,, = ood,,* — My + Mgd,, **! and v,, = ood;,* + N5 — Ngd, *“+! with
My, Mg, N5, Ng > 0. Let us fix Mg > %, in order to have

Owy,
ov

— aoon®t —,n® < 0.
aQ

Moreover, taking M5 > 0 it is possible to select 6y < & and ng = ng(dp) such that
|w, [P~ w, = ohd, * 7 — pag_1M5di + o(d?)

and that
—Aw, + |wa|Prw, — f < —pob T ' Msd;? 4 o(d;?) <0 in Qs,, 7 > ng.

Finally increasing the value of Mj5 so that

=

Ms > 098 + Mgdy * T + (HAwn”L‘”(Q\QgO) + ||f||L°°(Q)) :
it follows
—Aw, + [w, [P w, — F <0 inQ\ Qs

As far as v,, is concerned, let us fix as before Ng > % in order to get

ov
— —aoon®t —,n® > 0.
ov

o0

Take now N5 > 0 and fix g < 0 and ng = no(dy) such that

N,
v, [P~ o, = obd;, 2 <1 + 240

N P — .
— 6dn) > oPd 72 4 pob ' Nsd 2 + o(d;?) inQs,, n > ng.
a0 a0

and that

—Avy, A+ |vp P o, — f > pob T Nsd 2 + o(d; %) >0 inQs,, n > ne.
As in the previous cases, by increasing if necessary the value of N5, we have —Awv,, + |vn|p*1vn —f>0in
0\ Qs, and that vy, is a super-solution of (6.9). O

The ordered sub- and super-solutions obtained in the previous proposition allow us to prove existence of a
solution for problem (6.9) and, on the other hand, give us a control on the behaviour of u,, (and in turn of z,)
near O, which is crucial in order to prove the results of the next section.

Theorem 6.10. Letp > 1, f € W1>°(Q), S, as in (6.8). Then problem (6.9) has a unique classical solution
Uy, for every n € N. Moreover

3C = C(a, N, 9, f) ;"((?) - g"g; - 1‘ < Ce(dy(2)) (6.26)
where
s ifa>1
e(s) =< s(1+|logs|) fa=1 (6.27)

¢ ifa<l.
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Proof. The proof of the existence and uniqueness is standard and we sketch it here for the convenience of the
reeder. In Proposition 6.9, for every o > 0 we have constructed a pair of ordered sub- and super-solutions for
problem (6.9)

wy, < v, in €.
Let us set v = vy, C := max {||vn]| oo () |[[wn || L= (@)}, m > pCP~! and let us define v}, for i = 1,2, ... as
the solutions of

n

awl  9s,
= on 0f2.

{—Av; +mul =moit — |oimt Pyl 4 f 0 in Q,

The choice of m allows us to say that the function s — ms — |s[P~!s is increasing in [—C, C] so that we can
apply the standard procedure of the sub- and super-solution method for existence of solutions (see for instance
[56]). We claim that vi~! > v? forevery i = 1,2, .... Indeed for i = 1 we have that the function w := v} — v
satisfies

{—Aw +mw <0, in{,

g—;‘j =0, on 0f2.

Hopf’s Lemma and the Strong Maximum Principle assure us that w < 0, which implies vg > vy and we can
conclude the proof of the claim by induction. Similarly we can prove that w,, < v}, forevery¢=1,2,---. Then
we have that v}, \, u,, a.e in {} as ¢ — oo and that

Wy < Uy < Up;

moreover by compactness and regularity arguments (see respectively [2] and [1]) it is possible to prove that
u, € C2(2) N CH(N) solves of (6.9). The uniqueness follows by Theorem 3.6 of [59].
In order to prove (6.27) we first consider the case o > 1. We have that

ood, ™ — Mydy,™® — My < u, < ood,,® + Nrd),” %,
where M;, Ms and N; are the constant given by Proposition 6.9. Subtracting S,, we get
—(My = 01)dy + O(dy™*) < un — S < (N1 = 01)d,~* + 0(d,, ™) + O(d;™)

with b and B bounded functions. Thanks to the choice of M; and V; it follows that there exists a positive
constant constant C' = C(«, N, 99, f) such that

Sp(x)

- 1‘ < Cdp(z) inf.

The case o« < 1 follows similarly using the respective sub- and super-solutions and for brevity we omit the

proof. O
We close this section proving the following Proposition.

Proposition 6.11. The sequence w,, of solutions of problem (6.9) converges in CIQOC(Q) to the solution of problem
(38).

Proof. Let us define ¢, := u,, — uy,+1, Which, for n large enough, satisfies

*Adjn + |un|pilun - ‘un—s—l‘pilun—i-l = 07 in Q,
% <0, on 99.

The Neumann boundary condition assures us that the maximum of 1,, cannot be reached on 9f). So let it be
xo € € the maximum point for v,,. This implies that —Au),,(2¢) > 0 and then we obtain from the equation the
following information

[t (20) [P~ (0) = 41 (20) [P~ ttna (20) < 0.
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But, since s — |s|P~1s is increasing, it has to be ¥, (2¢) = un(xo) — unt1(z9) < 0. Being o the maximum
point, it follows that u,, < u,11 in . So we know that the sequence wu,, is increasing and converges pointwise
to some function u. Moreover we know, thanks to Theorem 6.10, that each wu,, is between the relative sub-
and super-solutions w,, < u, < wv,. Thus we have that for any w compactly contained in €2 there exists
¢ = ¢(w, o, N) such that

Un (2) < tpyr1(z) < - <wulz) <v(x)<c Vzecw,
where v is the limit as n diverges of the super-solutions v,,. On the other hand we also have that
w(z) <wu(zr) VaeqQ,

where w is the limit of the sub-solutions. Thus using standard compactness and interior elliptic regularity
arguments, we have that for every w CC Q u,, — u in C?(w). Thus we can pass to the limit with respect
to n in (6.9) and moreover we also obtain

lim u(z) = oo.
z—00N

6.3.3 Estimates of z,, and |Vz,|in L>(Q).

Now we are ready to prove the uniform estimate in W1’°°(Q) for z,, := u,, — S,, where u,, are the solutions of
problem (6.9) and S, has been defined in (6.8). Note that thanks to Proposition 6.11 we already know that for
every w compactly contained in €2 we have that

Yw CcC Q e, : lznllwioo @) < llunllwios @) + [|Snllwoew) < co.

Thus the main concern here is to obtain a Lipschitz control in €25, for some dp > 0 small enough.
Let us start with the bound in L> (5, ).

Theorem 6.12. Let z,, be as above. Then there exist 1 < § < 2+ [a] — a < 2 and Ay, Ay > 0 such that
— A1dP (z) < zp(z) < ApdB(z) Ve (6.28)

Proof. We build barriers in a neighborhood of 0f2 through sub- and super-solutions method. In order to do it, let
us fix 1 < 8 <2+ [a] — o <2and € > 0 such that

2 B 2 _
" ;:—ﬁ2+ﬁ—|—(1+e)§pa(’; 'S0 and Y2 12—52—&-5—1-(1—6)%]908 '>o.

This is always possible since pog_1 = % > 2 and the function s — —s% + s + v/2 admits 1+127+4‘/§ >1
1

as positive root. Moreover let us introduce the function d,, (z) = (d(x)% + %) * and notice that

n2

gdn < d, < d,. (6.29)

The reason of considering this further regularization of the distance function is that % = 0 on 05

Bound from above. We claim that there exists A; > 0 such that v, (z) = AJQ is a supersolution of (6.10).
Simple computations show that

L1
Vo, = A13d <d2 + 12> avd
n
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and

51 -1
Avn:A16<d2+n12> ldQ(ﬂ—2)<d2+nl2) +1+dAd

It is immediate to check that v,, satisfies the Neumann boundary conditions. Moreover, by definition of .S,,, there
exist 8y = 0o(00, -+ ,0[a]41) and ng = ng(do) such that S,, > 0 and pSE~" > (1 — €)pob~'d? in Qs, and
n > ng. Using (6.29) and the convexity of the function (1 + s)P? — 1 near zero, we obtain that

p ~ ~
~Auy 4 57 [(1 n ) - 1} L1l > —ABE [B — 1+ ][ Ad] 1~ )]

Sn
V2 p—1 8—2 F 78—2 £
5 (L= Sy = 1] 2 Avdy b = BlollAdl o) = 11 20
where the last inequality follows by a further decreasing of dg and (6.22). Since z,, and S,, are uniformly bounded

in Q \ Qs,, we choose A; large enough to conclude that v,, is a super solution of (6.10).

Bound from below. We want to prove that there exists Ao > 0 such that w,, = —AQJQ is a sub solution of
(6.10), where [ is the same of above. In this case we cannot take advantage of the convexity of the function
(1+ s)? — 1, but is always possible to conclude that there exist dg = 6(00, " - , 0[a]+1, B), no = no(do) such
that )

wy [P B w P
SulP7r S, |1+ 22 1—— | -1| =97 1 ) -1
s s gz (o) = [ 5)
_ap pdfi 200, 2 p—17-2 -
= SP(x) —AlS ) + O(d;*ws) | < —Ax(1+€)poy "d,* inQs, and n > ng.
n(x

Thus, arguing as in the previous part, it is possible to choose A5 large enough to conclude that

wy [P w :
—Aw, + S, P78, ’1 + S—" (1 + S”) — 1] —|fn] €0 inQfor n > ng.
Since the Neumann boundary conditions are satisfied we conclude the proof of the Theorem. O

We can now state and prove our main result.

Theorem 6.13. Let 2, be the functions defined in (6.10). Then there exists 69 = 0o(00," "+ ,0a]41), C =
C(a, N,09Q, f,00) and 0 < 1 < 1 such that

V| < Cdl - in Q. (6.30)

Proof. We divide the proof in two steps.
Step 1. Inequality satisfied by |V z,|?.
Step 2. Application of maximum principle to w,, := |V z,|2e " in Qj,.

Step 1. Thanks to (6.26) there exist 6, < & and ng = ng(Jp) such that

2, \P !
0<01§(1+Sn> SOQ

Yn > ng Vo € Qs,, (6.31)
p

Sn () Sn ()

where the positive constants C7, Cs and C3 depend only on o, N, ) and f. Moreover from the definition of
Sy, and recalling that |Vd,,| = 1 in Qs,, it follows that

|V 2|

‘VSTLVZM S 04 d%+1 .

(6.32)
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with Cy = Cy(cr, N, 09, f). All the computations performed from now on are meant on €25, and with n > ny.
At first let us recover the equation satisfied by |Vzn|2 (see [72] and reference therein). In order to do it, it is
useful to recall that

V(|Vz,|?) = 2D?2,Vz, andthat A(|Vz,|*) = 2V(Az,)Vz, +2|D?z,|%.
Hence, through Schwarz inequality, we get
~ 2
A(|Vzn?) > 2V [(2n + Sn)P — SE] Vz, — 2V [, V2, + N(Az”)Q .

Now we consider separately each one of the terms on the right hand side above.
First term. We rewrite it as

V(20 + Sn)? — SP| Vi = V {55 Kl + ;z)p - 1” Yz,

zn \ 7 Zn p-l
(6.33)

Note that in the right hand side above the first term is the coercive one, while the other has to be absorbed.
Thanks to (6.31) the coercive term of (6.33) becomes

p—1
=pSht (1 + ;") IV |® +p SP=2YS,Vz, .

n

V2|2

p—1
_ Zn
Iy >0 : pSP~t (1 + S) |Vzu|? > 3y P

n

Recalling (6.27), Theorem 6.12 and (6.31), the last term of (6.33) can be controlled as follows

zn \* Zn p-l
S"K”s) ‘1]‘2"(”5)

p 15 [P 2|V S,V 2|
_2|Vazn| |Vzn| Cy V2, |?
< Clzn|[Snl? da+l <C BB < 22-5) +7 2
where we have used (6.31), (6.32), (6.28) and Young’s inequality. Then we get
V2|2 C
p_ gp > _ b
n
Second term. We apply Young’s inequality and use (6.22) to obtain
r V2, [? 72,42 |V 2 [* ¢
_anvzn 2 - d% - C’y|vfn| dn 2 - d% - di(a_[a})
Third term.It is positive and we can drop it.
Hence, gathering together the inequalities above, we have that
9 |V z,|? 1 1
A(2P?) 2 7= = O | + (6.34)
‘VZn‘Q Cy

>y & —@ Yn > ng Vo € Qs,,

with 0 = max{2(2 — 8),2(a — [a])} < 2 and for some constant C; = C(a, N, 052, f).
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Step 2. As in [70] let us consider now w;, := |Vz,|*¢** with A > 2||Ad|| = (q). Its boundary behaviour
is described in Lemma 2.4 of [70] (using in turn an idea of [73]). For the convenience of the reader we report
here the computations. Notice at first that the boundary condition %le” = Vz, - v = 0 implies that there exists a
function p € L°°(9) such that

V(Vz,Vd,)|aa = pv.

To get convinced of this fact just observe that the regular function Vz, - d,, takes the value 0 on €2 (recall that
v = —Vd,). Then its gradient evaluated on the boundary cannot have any tangential component, otherwise the
condition for Vu,, - d,, would be violated. Hence we have

w -Vz, = V(V2,Vd,)Vz, = D*2,V2,Vd, + D*d,V2,Vz, ondQ.
But the left hand side above is zero, so that

oIV z,|?

=2D%d,Vz, - v < 2||D?d|| 0|V 2n |?
14

and as a consequence

aawun = V(|Vzn[?e) v =dw, Vd,, - v+ AV ([V 2, %) - v (6.35)
<[=A + 2||Ad|| oo ()| wn  on 0.
Hence we can take A large enough to have
dwy,
<0 on 9. (6.36)
v
Taking in to account (6.34), it follows that w,, satisfies
n C
Aw, > (A2 + A, )W, + 2AVw, Vd, — 232w, + 5o — =1,
d’!L d’!L
that is
2 21 Wn Cy
Hence, up to a decrease of §y and an increase of ng, we get
Cy .
— Aw,, + 2AVw, Vd, + %% < d—; in s, and n > ng. (6.37)

Let us consider now v,, = Adz =A (d2 + n%) ? with 0 <n < 1land A > 0. Easy computations show that

71}—"—@>141c'l7f2 @—

2d; dj ~

—Av,, + 2\Vv,,Vd,, + n —ndAd — Cod>~ 7"

Thus recalling that § < 2, up to a further decrease of §p and increase of ng, there exist 0 < n < land A > 0
such that v,, is a super solution of

—AY+22VYVd, + For < G in Qs

&,
%= on 99, (6.38)
w = maxagéo\ag \wn\ on 8950 \ 0.

Since (6.36) and (6.37) assure us that w,, is a sub solution of (6.38), we deduce that
Wy, < Vp,

that conclude the proof of the Theorem. O
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Let us now give the proof of Theorem 6.3.

Proof of Theorem 6.3. Thanks to Theorems 6.12 and 6.13 we have a uniform Lipschitz bound for the sequence
Zn = Up — Sy, in {15,, while Proposition 6.11 assures the interior regularity. Thus we can deduce that there exists
a constant C' = C'(a, N, 0%, f) such that

[2nlwree @) < l[2nllwre (s + [12nllwie@ns,) < C
and passing to the limit with respect to n
Ju = Sllwie () = l|z[lwre@ < C.

Moreover, passing to the limit in (6.28) and (6.30) with respect to n, we infer (6.5). O

6.3.4 Generalizations

It this last section we give for brevity the sketch of the proof of Theorem 6.5, just stressing the main differences
with respect to Theorem 6.3.

Sketch of the proof of Theorem 6.5. Let us give at first the compete expression of o, 0, *+ , Op o] 41

~2VhVd, 4+ hz(N — 1)H(z)

’ 2(1 +2a) ’
(@) = Li(ohk—1,0nk-2) + Pe(onk—1,0nk-2) + Qr(on k—2)
kA k—a)k—a—1)—2+a)(a+1) (6.39)
UZ 0 - p j
+ : o ? Ohyiy () oni; (2)
(k—a)(k—a—1)— (2+a)(a+1) ; (J) "o i1+.§j=k '
fork=2---[a] +1andiy,--- ,%; positive integers,
where

Li(Onp1,0hp2) =(a+1— k) [0 (h*%vwcln FhEAd, + Aak_2> n Qh%vgk_lvcln} Bt

1 1
Pe(ong1,0np2) =(a+2—k) |(k—a—1)ox_1VhVd, + op_2 <4h%|Vh|2 + QhéAhﬂ h2

(k—a—-3)
4

Qr(onk—2) =(a+2—k) |Vor_oVh+

Uk_2h2|Vh|2}

A tedious computation shows that with such a choice, there exist a positive constant 5’h = 5h(a, N,0Q, h,r)
such that

|(ASh,n - |Sh,n|p715h,n)dn| + |V(ASh,n - |Sh,n|p715h,n)d%| < C’hdiﬂa}ia < 6h in Qa

k—a
where Sy, () = La:]gl ohk(T) ( Vh(z)d, (x)) . Hence we can define the approximated problems

(6.40)

Ounn _ OSun
e = T on 0f2.

{_Auh,n + h(x)|uh,’n|p_luh,n = T(Z‘, uh,n)a in

For the sake of clarity we give some details of the construction of the sub-solution in the case o > 1. Let us
consider the function

Wh,n = Joh_%(x)d_“(x) — Mh’lh%(x)di_a(x) — ,Z\4h’27

n
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with s )
QA2 ||Vh| g () + A7 2[|Ady|
p+3 ’

My, > aoo(p—1)
Notice that thanks to (6.17)

|T(:1:,wh7n)d%+1\ = |r(z,d,;* + o(d,;*))|dnd;y < sup {|r(x,57°‘)|s} d,;*“=0(1) asd — 0, n — oc.
0<s<1
Then there exist o = Jo(Mp,1,7) and ng = no(dy) such that

- Awh,n + |wh,n|p71wh,n - T(xa wh,n) <

<2p+i’h“z“ My, — a*ooh™271VhVd, + aooh™ % Ad,, — r(z, whyn)df{“) d-ot
Py

+0(d,*) <0 Vn>mng Vo e Qs,.

Up to an increase of the value of M}, ; and taking the value of M), o large enough, we deduce (following the
same arguments that have led to (6.24) and (6.25)) that wy, ,, is a sub-solution of (6.40).

Once that sub- and super-solutions are obtained, we proceed as in Proposition 6.9, Theorem 6.10 and Proposition
6.11 in order to deduce that the solution uy, ,, of (6.40) converges (as n — 00) in 0120(;(9) to up,, unique solution
of (6.13). Moreover the following estimate is satisfied

Up,n ()

C = C(a, N, 0, h,r — 1| < Ce(dy(x 6.41
( ) [t < cetana) (641
where
S ifa>1
e(s) = ¢ s(1+ |logs|) ifa=1
s ifa<l.

Let us now define 2y, ,, := up_, — Sh n, that solves

—Azp gy + |2hm + ShP T zhon + Shon) — [Shn|P 7 Sk = 7(2, 210 — Shon) + ﬁzﬁu in €2,
aghz}’n =0, on 9%},

where ﬁL := ASp.n — |Sh.n|P~ Sk, n. Concerning the L (£2) estimate for zy, ,,, we adapt the proof of Theorem
6.12 and prove that there exists 1 < 8 < 2 and a positive constant C' such that

|Zh,n| S Cdg

Let us now have a closer glance to the perturbed version of Theorem 6.13, for which the growth conditions
(6.17) are especially designed. Exactly as in the previous section, we obtain that there exist dy and ¢ such that

2
+ N (Azh,n)2

+2Vr(z, znn + Shn)Vann — QV(ﬁ,n)Vzh,n in Qs,, V1 > ng.

A(Vznnl?) = 29 [Aznn + Shn)” = hSE, | Vo

The main concern of course is the third term on the right hand side above; we have

2V (x, zhm + Shn)Vann < 2VerVay, , + 2%|Vzh,n|2 — C%d;a’IVngzh,n

< 7|Vzh,n|2

<y Colra Py 4 2|rs| [Vanal* + C | do "
n
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Let us focus on the three last terms on the right hand side above. Using assumption (6.17) and estimate (6.41)
we get that for d(z) — 0 and n — oo

Zh,n d127 —a —a dgL
oo+ Sh)] = [ (.8 (14 22 ) )| G = 192 (oondi + oldr DI
< SUPp<s<1 {|er(m75_a)|52} < g
—a VZLHQ VZL'ILQ
e Zhm + S [Vannl? < sup {Jra(e, 5|2} V20l oq) VRl
0<s<1 dn dn

SUPg< g1 {75 (2,57 )[s*H} < &
dz? —dz
n n

Thus up to a decrease on the value of §y and an increase on the one of ng, we obtain

|’I’s(fE, Zh,n + Sh,n)‘d;a_l S

2
‘VZn‘ +£ in 950'

QV’I’((ﬂ, Zhm + Sh,n)vzn < (PY + 0(1)) d2 d2

At this point it is easy to deduce the counter of (6.34), i.e. that there exist some &y and ng = ng(dp) such that

V> C
A(\Vzh,n|2) > ’Y|df£ — dig Vn > ng Yz € Q.

From now on the proof follows closely the one of Theorem 6.13.
Hence we infer that there exists z;, € C?%(12), such that zp, ,, — 2, in C7 _(€2), that solves

—Azp + |zn + Sh|p_1(zh + Sh) — |Sh‘P—1Sh =r(z,zp — Sp) + ]?h, in €,
Zp € VVLOO(Q)7

and that moreover
Zh

Sh
The rest of the proof closely follows the one of Theorem 6.13. O

<o(1) as d(z) >0 and |fuld+ |V uld®> < C,
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