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Abstract

Let S be a Desarguesian (t − 1)–spread of PG (rt − 1, q), Π a m–
dimensional subspace of PG (rt − 1, q) and Λ the linear set consisting of
the elements of S with non–empty intersection with Π. It is known that
the Plücker embedding of the elements of S is a variety of PG (rt − 1, q),
say Vrt. In this paper, we describe the image under the Plücker embedding
of the elements of Λ and we show that it is an m–dimensional algebraic
variety, projection of a Veronese variety of dimension m and degree t, and
it is a suitable linear section of Vrt.
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1 Introduction

Let V be a vector space over a field F and denote by PG (V,F) the usual pro-
jective geometry given by the lattice of subspaces of V . In the case of a fi-
nite field Fq with q elements and dimV = n, shall write, as is customary,
PG (n − 1, q) := PG (V,Fq). Recall that if K is a subfield of F and [F : K] = t

then V is also endowed with the structure of a vector space V̂ of dimension rt
over K. We shall denote by PG (V,K), the projective geometry given by the
lattice of subspaces of V with V is regarded as a vector space over K.

As each point of PG (V,F) corresponds to a (t − 1)–dimensional projective
subspace of PG (V,K), it is possible to represent the projective space PG (V,F)
as a subvariety Vrt of the Grassmann manifold Grt,t of the t–dimensional vector
subspaces of V ; see [12].

A linear set of PG (V,F) is a set of points defined by an additive subgroup
of V . More in detail, let K ≤ F, as above, and suppose W to be a vector space
of dimension m + 1 over K. Then, the K–linear set Λ of PG (V,F) defined by
W consists of all points of PG (V,F) of the form

Λ = {〈X ⊗ F〉|X ∈W}.

Linear sets have been widely used to investigate numerous aspects of finite
geometry, the two most remarkable being blocking sets and finite semifields.
Following the approach pioneered by Schubert in [15], it can be seen how the
representation of subspaces on the Grassmann manifold G might provides an
important tool for the study of their behaviour and their intersections.
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In the present paper, we are interested in the representation of a K–linear
set Λ on G and in determining the space of linear equations defining it as linear
section of Vrt.

Throughout this paper, when discussing Grassmannians we shall use vector
dimension for the spaces under consideration, whereas we shall consider projec-
tive dimension when discussing projective spaces. The dimension of an algebraic
variety V defined over a field F shall here be usually understood as the dimen-
sion of the variety V, regarded over the algebraic closure F of F, defined by the
same equations as V.

2 Grassmannians and Schubert varieties

Fix an n–dimensional vector space V = Vn(F) over F and write G(n, k), k < n,
for the set of all the k–subspaces of V . It is well known that G(n, k) is endowed
with the structure of a partial linear space and it can be embedded in the
projective space PG (

∧k
V ) via the Plücker map

εk :

{
G(n, k)→

∧k
V

W = 〈v1, v2, . . . , vk〉 7→ v1 ∧ v2 ∧ · · · ∧ vk

in the projective space PG (
∧k

V,F); here dimF
∧k

V =
(
n
k

)
. The image of εk,

say Gnk, is an algebraic variety of PG (
∧k

V,F) whose points correspond exactly

to the totally decomposable 1–dimensional subspaces of
∧k

V .
We now recall some basic properties of alternating multilinear forms. Let

U be a vector space defined on F and let V k := V × V × · · · × V︸ ︷︷ ︸
k times

. A k–linear

map f : V k −→ U is alternating if f(v1, v2, . . . , vk) = 0 when vi = vj for some
i 6= j. This implies that ∀i, j ∈ {1, 2, . . . , k}, f(v1, . . . , vi, . . . , vj , . . . , vk) =
−f(v1, . . . , vj , . . . , vi, . . . , vk).

Theorem 1 (Universal property of the kth exterior power of a vector space, [14,
Theorem 14.23]). A map f : V k −→ U is alternating k–linear if, and only if,

there is a linear map f :
∧k

V −→ U with f(v1∧v2∧· · ·∧vk) = f(v1, v2, . . . , vk).
The map f is uniquely determined.

Corollary 2. The F–vector space

Alt k(V,U) := {f : V k −→ U |f is k–linear and alternating}

is isomorphic to the F–vector space Hom(
∧k

V,U).

In particular, let (
∧k

V )′ be the dual of
∧k

V . Then, (
∧k

V )′ ' Alt k(V,F).

Furthermore, we also have (
∧k

V )′ '
∧n−k

V . Actually, (
∧k

V )′ is spanned by

linear maps of type acting on the pure vectors of
∧k

V as

v1 ∧ v2 ∧ · · · ∧ vk 7→ v1 ∧ v2 ∧ · · · ∧ vk ∧ wk+1 ∧ · · · ∧ wn,

and extended by linearity; see [4, Chapter 5] for more details. Here (wk+1, wk+2, . . . , wn) ∈
V n−k is a fixed (n− k)–ple.
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Let F = A1 < A2 < · · · < Ak be a proper flag consisting of k subspaces of V .
The Schubert variety Ω(F ) = Ω(A1, A2, . . . , Ak) induced by F is the subvariety
of Gnk corresponding to all W ∈ G(n, k) such that dimW ∩ Ai ≥ i for all
i = 1, . . . , k. It is well known, see [8, Corollary 5] and [7, Chapter XIV], that a
Schubert variety is actually a linear section of the Grassmannian. Furthermore,
as the general linear group is flag–transitive, all Schubert varieties defined by
flags of the same kind, i.e. with the same list of dimensions ai = dimAi, turn
out to be projectively equivalent.

In the present work we shall be mostly concerned with Schubert varieties of
a very specific form, namely those for which a1 = h ≤ n− k and ai = n− k + i
for any i = 2, . . . , k. Under these assumptions, Ω(A1) := Ω(A1, A2, . . . , Ak) de-
pends only on A1 and corresponds to the set of all k–subspaces with non–trivial
intersection with A1. Indeed, using once more [8, §2, Corollary 5], we see that
Ω(A1) is the complete intersection of Gnk with a linear subspace of codimension(
n−h
k

)
, meaning that the subspace of the dual of

∧k
V of the elements vanishing

on Ω(A1) has dimension
(
n−h
k

)
.

Using Theorem 1 we can provide a description of the space of the linear
maps vanishing on Ω(A1). For any k–linear map f : V k → U , define the kernel
of f as

ker f = {w ∈ V |f(w, v2, . . . , vk) = 0,∀vi ∈ V }.

It is straightforward to see that ker f is a subspace of V ; when f is alternating
and non–null, the dimension of ker f is trivially bounded from above, as recalled
by the following proposition.

Proposition 3. The kernel of a non–null k–linear alternating map f of an
n–dimensional vector space V has dimension at most n− k.

Proof. By Theorem 1, f can be regarded as a linear functional f : ∧kV → F
where

f(v1, . . . , vk) = f(v1 ∧ v2 . . . ∧ vk).

Let E = 〈v1, . . . , vk〉 and observe that f(E) := f(v1, . . . , vk) = 0 when dimE <
k or dimE ∩ ker f > 0 In particular, if dim ker f > n − k we always have
dimE ∩ ker f > 0 for dimE ≥ k; this gives f ≡ 0.

Proposition 4. The subspace of (
∧k

V )′ consisting of the linear forms van-
ishing on Ω(A1) is isomorphic to the subspace of the k–linear alternating maps
whose kernel contains A1. In particular, if h = dimA1 ≤ n − k, then there
exists a basis for this subspace consisting of maps whose kernel contains A1 and
has dimension n− k.

Proof. Let f :
∧k

V → F be a linear function vanishing on Ω(A1). In particular,
f vanishes on all subspaces E with dimE ∩ A1 > 0. Thus, by the definition
of kernel, A1 ≤ ker f . If h > n − k, then by Proposition 3 the only function
vanishing on Ω(A1) is f ≡ 0 and there is nothing to prove. Let now h ≤ n− k.

By (
∧k

V )′ '
∧n−k

V , let us consider the linear maps:

v1 ∧ v2 ∧ · · · ∧ vk 7→ v1 ∧ v2 ∧ · · · ∧ vk ∧ wk+1 ∧ · · · ∧ wn

where {wk+1, wk+2, . . . , wn} is a set of n− k linearly independent vectors such
that A1 ≤ 〈wk+1, wk+2, . . . , wn〉. The kernel of such a map is the subspace
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〈wk+1, wk+2, . . . , wn〉. It is well known that the dimension of the Plücker em-
bedding of the (n− k)–subspaces containing a fixed h–dimensional subspace is(
n−h
k

)
. As, by [8, §2, Corollary 5] this is also the dimension of the space of the

linear functions vanishing on Ω(A1), we have the aforementioned linear maps
can be used to also determine a basis for it.

3 Desarguesian spreads and linear sets

A (t − 1)–spread S of PG (V,F) is a partition of the point-set of PG (V,F) in
subspaces of fixed projective dimension t − 1. It is well known, see [16], that
spreads exist if and only if t|n. Henceforth, let n = rt and denote by V1 a F–
vector space such that dimF V1 = n + 1 and V < V1. Under these assumptions
we can embed PG (V,F) as a hyperplane in PG (V1,F). Consider the point–
line geometry A(S) whose points are the points of PG (V1,F) not contained
in PG (V,F) and whose lines of are the subspaces of PG (V1,F) intersecting
PG (V,F) in exactly one spread element. We say that S is a Desarguesian spread
if A(S) is a Desarguesian affine space. Here we shall focus on spaces defined over
finite fields. We recall that, up to projective equivalence, Desarguesian spreads
are unique and their automorphism group contains a copy of PGL (r, qt). There
are basically two main ways to represent a Desarguesian spread.

Let V := V (r, qt) be the standard r–dimensional vector space over Fqt and
write PG (r − 1, qt) = PG (V, qt). When we regard V as an Fq–vector space,
dimFq V (r, qt) = rt; hence, PG (V, q) corresponds to PG (rt − 1, q); further-
more, a point 〈(x0, x1, . . . , xr−1)〉 of PG (r − 1, qt) corresponds to the (t − 1)–
dimensional subspace of PG (rt − 1, q) given by {λ(x0, x1, . . . , xr−1), λ ∈ Fqt}.
This is the so called the Fq–linear representation of 〈(x0, x1, . . . , xr−1)〉. The
set S, consisting of the (t− 1)–dimensional subspaces of PG (rt− 1, q) that are
the linear representation of a point of PG (r − 1, qt), is a partition of the point
set of PG (rt− 1, q) and it is the Fq–linear representation of PG (r − 1, qt).

Theorem 5 ([2]). The Fq–linear representation of PG (r−1, qt) is a Desargue-
sian spread of PG (rt− 1, q) and conversely.

Throughout this paper we shall extensively use the following result: if σ is
a Fq–linear collineation of PG (n − 1, qt) of order t, then the subset Fix (σ) of
all elements of PG (n−1, qt) point–wise fixed by σ is a subgeometry isomorphic
to PG (n − 1, q). This is a straightforward consequence of the fact that there
is just one conjugacy class of Fq–linear collineations of order t in PΓL(n, qt),
namely that of µ : X → Xq. In particular, all subgeometries PG (n − 1, q) are
projectively equivalent to the set of fixed points of the map (x0, x1, . . . , xn−1) 7→
(xq0, x

q
1, . . . , x

q
n−1).

Lemma 6 ([10, Lemma 1]). Let Σ ' PG (n−1, q) be a subgeometry of PG (n−
1, qt) and let σ be the Fq–linear collineation of order t such that Σ = Fix (σ).
Then a subspace Π of PG (n− 1, qt) is fixed set–wise by σ if and only if Π ∩ Σ
has the same projective dimension as Π.

Take now V to be a rt–dimensional projective space over Fqt and let Ui be the
subspace of V defined by the equations xj = 0, ∀j /∈ {ir, ir+1, . . . , (i+1)r−1}.
Then, clearly, V = U0⊕U1⊕· · ·⊕Ut−1. With a slight abuse of notation we shall
henceforth identify each element (x(1),x(2), . . . ,x(t−1)) ∈ U0 × U1 × · · · × Ut−1
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where x(i) = (xir, . . . , x(i+1)r−1) with the vector x = (x0, . . . , x(i+1)r−1) ∈ V .
Consider the Fq–linear collineation of PG (rt− 1, qt) of order t given by

σ : (x(0),x(1), . . . ,x(t−1)) 7→ (x(t−1)q,x(0)q, . . . ,x(t−2)q).

As seen above, the set Fixσ is a subgeometry PG (rt − 1, qt) isomorphic to
PG (rt−1, q): in the remainder of this section we shall denote such subgeometry
just as PG (rt− 1, q). In particular, we see that Fixσ = PG (rt− 1, q) consists

of points of the form {(x,xq, . . . ,xqt−1

),x = x0, x1, . . . , xr−1;xi ∈ Fqt}.
Observe that we have σ(Ui) = Ui+1 (mod t) and the semilinear collineation

σ acts cyclically on the Ui; furthermore, for any u ∈ U0, u 6= 0, we have
uσ

i ∈ Ui and the set {uσi

: i = 1, . . . , t} is linearly independent. In particular,

the subspace Π∗u = 〈u, uσ, . . . , uσt−1〉 has projective dimension t − 1. The set
S∗ = {Π∗u, u ∈ U0} consists of (t−1)–spaces and it is a Fq–rational normal t–fold
scroll of PG (rt − 1, qt) over PG (r − 1, qt) = PG (U0, q

t). Any subspace Π∗u is
fixed set-wise by σ; hence, by Lemma 6,Πu := Π∗u ∩ Σ has the same projective
dimension t−1. The collection of (t−1)–subspaces S = {Πu|u ∈ U0} is a spread
of PG (rt− 1, q), see [16], also called the Segre spread of PG (rt− 1, q).

Theorem 7 ([1]). The Segre spread of PG (rt−1, q), obtained as the intersection
with PG (rt−1, q) with a Fq–rational normal t–fold scroll of PG (rt−1, qt) over
PG (r − 1, qt), is a Desarguesian spread.

The correspondence between linear representations and Segre spreads is
given as follows:

〈u〉Fq ∈ PG (U0, q
t) ' PG (r − 1, qt) 7→ 〈u, uσ, . . . , uσ

t−1

〉 ∩ PG (rt− 1, q).

Throughout this paper, we shall silently identify the two aforementioned
representations of Desarguesian spreads. In particular, a spread element will be
regarded indifferently as a (t− 1)–subspace of PG (rt− 1, q) of type

{(λu, λquq, . . . , λq
t−1

uq
t−1

), λ ∈ Fqt}

and as its projection 〈u〉 ∈ PG (U0, q
t).

Fix now a Desarguesian (t − 1)–spread S of PG (rt − 1, q) and fix also a
subspace Π of PG (rt−1, q) of projective dimension m. The set Λ of all elements
of S with non–empty intersection with Π is a linear set of rank m + 1. In
other words, Λ may be regarded as the set of all points of PG (r − 1, qt) whose
coordinates are defined by a vector space W over Fq of dimension m+1. Linear
sets are used for several remarkable constructions in finite geometry; see [13] for
a survey.

In order to avoid the trivial case Λ = S, we shall assume m + 1 ≤ tr − t.
When m + 1 = rt − t we shall say that the linear set has maximum rank.
Furthermore, as we are interested in proper linear sets of PG (r − 1, qt), that
is linear sets which are not contained in any hyperplane of PG (r − 1, qt), we
have 〈Λ〉 = PG (r − 1, qt); hence, Λ must contain a frame of PG (r − 1, qt) and
m + 1 ≥ r. Throughout this paper a linear set will always be understood to
have rank m+ 1 with r ≤ m+ 1 ≤ rt− t.

We point out that, when regarded point sets of PG (r − 1, qt), linear sets
provide a generalization of the notion of subgeometry over Fq. This is shown
by the following theorem.
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Theorem 8 ([11]). Take r ≤ m + 1 ≤ t(r − 1) and let Λ be the projection in
PG (m, qt) of a subgeometry Θ ∼= PG (m, q) onto a PG (r − 1, qt). Then, Λ is
a Fq–linear set of PG (r − 1, qt) of rank m+ 1. Conversely, when Λ is a linear
set of PG (r − 1, qt) of rank m + 1, then either Λ is a canonical subgeometry
of PG (r − 1, qt) or there exists a subspace Ω ∼= PG (m − r, qt) of PG (m, qt)
disjoint from PG (r − 1, qt) and a subgeometry Θ ' PG (m, q) disjoint from Ω
such that Λ is the projection of Θ from Ω on PG (r − 1, qt).

In particular, when m + 1 = r, we have Λ ∼= PG (r − 1, q) and this is the
unique linear set of rank r, up to projective equivalence. When m+1 > r, there
are several non–equivalent linear set of any given rank; they do not even have
the same number of points. As r and t grow, the number of non–equivalent
linear sets also grows, so any attempt for classification is hopeless.

We end this section by showing that a linear set, when considered as a subset
of a Desarguesian spread, is a projection of a family of maximal subspaces of
a suitable Segre variety. We are aware that the same result appears in the
manuscript [9], but we here present a different and shorter proof which might
be of independent interest.

The embedding:

PG (V1,F)× PG (V2,F)× · · · × PG (Vt,F)→ PG (V1 ⊗ V2 ⊗ · · · ⊗ Vt,F)

(v1, v2, . . . , vt) 7→ v1 ⊗ v2 ⊗ · · · ⊗ vt
is the so called Segre embedding of PG (V1,F)×PG (V2,F)× · · · ×PG (Vt,F) in
PG (V1⊗V2⊗ · · ·⊗Vt,F). Its image, comprising the simple tensors of PG (V1⊗
V2 ⊗ · · · ⊗ Vt,F), is an algebraic variety: the Segre variety. Suppose t = 2
and dimVi = ni for i = 1, 2. Then, the Segre variety of PG (n1n2 − 1,F), say
Σn1n2

, contains two families of maximal subspaces: {Πw, w ∈ V1}, with Πw the
n2–dimensional vector space {w ⊗ v, v ∈ V2}, and {Πu, u ∈ V2}, with Πu the
n1–dimensional vector space {v ⊗ u, v ∈ V1}. For an introduction to the study
of this topic see, for instance, [6, Chapter 25].

A (t − 1)–regulus of rank r − 1 of PG (rt − 1, q) is a collection of (t − 1)–
dimensional projective subspaces of type 〈P, P γ1 , . . . , P γt−1〉, where P ∈ Γ,
P γi ∈ Γi with Γ,Γ1, . . . ,Γt−1 being (r − 1)–dimensional subspaces spanning
PG (rt − 1, q) and the collineations γi defined such that γi : Γ → Γi, i =
1, 2, . . . , t − 1; see [3]. Let now Σrt ⊂ PG (rt − 1, q) be the Segre variety of
PG (r − 1, q)× PG (t− 1, q). We recall the following result.

Theorem 9 ([3]). Any (t − 1)–regulus of rank r − 1 of a PG (rt − 1, q) is the
system of maximal subspaces of dimension t − 1 of the Segre variety Σrt and
conversely.

Using theorems 8 and 9 we can formulate the following geometric description.

Theorem 10. By field reduction, the points of a Fq–linear set Λ of PG (r−1, qt)
either correspond to the system of maximal subspaces of dimension t− 1 of the
Segre variety Σrt or there exists a subspace Θ ∼= PG ((m − r + 1)t − 1, q) of
PG ((m+1)t−1, q), disjoint from PG (rt−1, q) and a Segre variety Σm+1,t also
disjoint from Θ such that the field reduction of the points of Λ corresponds to the
projection of the (t− 1)–maximal subspaces of Σm+1,t from Θ on PG (rt− 1, q).
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Proof. Write m + 1 = r; then, Λ ∼= PG (r − 1, q). As all the Desarguesian
subgeometries of the same dimension are projectively equivalent, we can suppose
without loss of generality Λ = {〈(x0, x1, . . . , xr−1)〉Fqt

|xi ∈ Fq}. For any point

x := (x0, x1, . . . , xr−1), the corresponding spread element in PG (rt − 1, q) is

{(λx, λqx, . . . , λqt−1

x), λ ∈ Fqt}. Let (1, ξ1, . . . , ξt−1) be a basis for Fqt regarded
as Fq-vector space and

γi : (x(0),x(1), . . . ,x(t−1)) 7→ (ξix
(0), ξqi x

(1), . . . , ξq
t−1

i x(t−1)).

Observe that the collineations γi of PG (rt− 1, qt) all fix PG (rt− 1, q) set-wise;
thus, for all i = 1, . . . , t− 1 they act also as collineations of PG (rt− 1, q).

If P is the point (x,x, . . . ,x), then

{(λx, λqx, . . . , λq
t−1

x), λ ∈ Fqt} = 〈P, P γ1 , . . . , P γt−1〉Fq
;

so, by [3], the linear representation of a subgeometry is the system of maximal
subspaces of dimension t− 1 of the Segre variety Σrt

If m + 1 > r, then, by Theorem 8 and by the well–known fact that the
subspace spanned by any two elements of a Desarguesian spread is partitioned
by spread elements, we have the statement.

As a system of maximal subspaces of a Segre variety is always a partition
of the point-set of the variety, when we regard a linear set Λ of PG (r − 1, qt)
as a set of points of PG (rt − 1, q), rather than as a particular collection of
(t− 1)–subspaces, we see that Λ is either a Segre variety Σrt or, for m+ 1 > r
the projection of a Segre variety Σm+1,t on a PG (rt− 1, q). We point out that
Segre varieties and their projection share several combinatorial and geometric
properties; see, for example, [17].

4 Representation of linear sets on the Grass-
mannian

The image under the Plücker embedding of a Desarguesian spread S of PG (rt−
1, q) determines the algebraic variety Vrt; this variety actually lies in a subge-
ometry PG (rt − 1, q); see [16, 10, 12].

We briefly recall a few essential properties of Vrt. Let V := V (rt, qt) and
let εt : G(rt, t)→ PG (

∧t
V, qt) be the usual Plücker embedding of the (t− 1)–

projective subspaces of PG (rt − 1, qt) in PG (
∧t

V, qt). Denote by G∗rt,t the
image of such embedding. Recall that the subgeometry PG (rt− 1, q) is the set
of fixed points of σ : (x(0),x(1), . . . ,x(t−1)) 7→ (x(t−1)q,x(0)q, . . . ,x(t−2)q). As
PG (

(
rt
t

)
−1, qt) = PG (

∧t
V, qt) is spanned by its totally decomposable vectors,

that is its tensors of rank 1, we can define a collineation σ∗ of PG (
∧t

V, qt) as

σ∗ : v0 ∧ v1 ∧ · · · ∧ vt−1 7→ vσ0 ∧ vσ1 ∧ · · · ∧ vσt−1.

The collineation σ∗ turns out to be a Fq–linear collineation of order t of PG (
(
rt
t

)
−

1, qt); hence, the set of its fixed points is a subgeometry PG (
(
rt
t

)
− 1, q).

By Lemma 6, a subspace of PG (rt−1, qt) meets PG (rt−1, q) in a subspace of
the same dimension if, and only if, it is fixed set-wise by σ. Clearly, any subspace
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of PG (rt−1, q) is contained in exactly one subspace of PG (rt−1, qt) of the same
dimension. Thus, the Grassmannian of the (t− 1)–subspaces of PG (rt− 1, q),
say Grt,t, can be obtained as the intersection Grt,t = G∗rt,t(V ) ∩ Fix (σ∗).

Recall now the decomposition V = U0 ⊕ U1 ⊕ · · · ⊕ Ut−1 and let V ⊗t :=
V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸

t times

. Denote by I be the two-sided ideal of the tensor algebra

T (V ) =

∞∑
i=0

V ⊗i generated by {v ⊗ v, v ∈ V }. As
∧t

V = V ⊗t

V ⊗t∩I and u0 ⊗

u1 ⊗ · · · ⊗ ut−1 6∈ I when ui ∈ Ui and ui 6= 0, we can identify (with a slight
abuse of notation) the element u0⊗u1⊗ · · · ⊗ut−1 with u0 ∧u1 ∧ · · · ∧ut−1. In
particular, we shall regard U0 ⊗ U1 ⊗ · · · ⊗ Ut−1, as a subspace of

∧t
V , write

εt(Π
∗
u) = u⊗ uσ ⊗ · · · ⊗ uσt−1

and regard Vrt as a subvariety of Grt,t.
Now let Σ be the Segre variety of PG (rt − 1, qt) consisting of the simple

tensors of U0 ⊗ U1 ⊗ · · · ⊗ Ut−1, and denote by σ† the Fq–linear collineation
induced by σ on PG (U0 ⊗U1 ⊗ · · · ⊗Ut−1, qt); in particular, σ†(u0 ⊗ u1 ⊗ · · · ⊗
ut−1) = uqt−1 ⊗ u

q
0 ⊗ · · · ⊗ u

q
t−2 and Vrt = Σ ∩ Fix (σ†). Actually, Vrt is also as

the image of the map

α : (x0, . . . , xr−1) ∈ PG (r−1, qt) 7→

(
t−1∏
i=0

xq
i

f(i)

)
f∈F

∈ PG (rt−1, q) ⊂ PG (rt−1, q)

where F = {f : {0, . . . , t− 1} → {0, . . . , r− 1}}. Here, α is the map that makes
the following diagram commute:

[rowsep = large]PG (r−1, qt)[r, dotted, ”α”][d, ”Field Reduction”′]PG (rt−1, q)
PG (rt− 1, q)

S = Desarguesian Spread
[ru,− >, ”εt”′]

Let now Σrt be the Segre embedding of PG (r − 1,Fq) × PG (t − 1,Fq). It is
well known that the Plücker embedding of a family of maximal subspaces of
dimension t − 1 of Σrt is a Veronese variety of dimension r − 1 and degree t;
see, for instance, [5, Exercise 9.23]. By Theorem 10, the field reduction of a
subgeometry PG (r − 1, q) of PG (r − 1, qt) consists of the family of maximal
subspaces of dimension t− 1 of Σrt. Up to isomorphism, we can indeed assume
PG (r − 1, q) = {(x0, x1, . . . , xr−1), xi ∈ Fq}. The image under α of such a set
is, clearly, a Veronese variety of dimension r − 1 and degree t, the complete
intersection of Vrt with a subspace of dimension

(
r−1+t
t

)
− 1. As a consequence

of Theorem 10, the image of a linear set of rank m+1 on Vrt is the projection of
a Veronese variety of dimension m and degree t. Hence, the dimension of such
a variety is at most m.

Lemma 11. A minimal subspace Π defining a linear set Λ of PG (rt− 1, q) is
spanned by points {P0, P1, . . . Pm} such that ∀i = 0, 1, . . . ,m the spread element
containing Pi intersects Π only in Pi.

Proof. Let Π be a minimal defining subspace for Λ and suppose that every
spread element intersects Π in at least a line. Consider a hyperplane Π′ of Π.
As Π′ meets each spread element with non–empty intersection with Π, we have
that Π′ and Π determine the same linear set and Π′ < Π — a contradiction.
Thus, we can assume that Π contains at least a point P such that the spread
element through P intersects Π only in P . According to the terminology of [13],
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P is a point of the linear set of weight 1. Suppose now that Π is not spanned
by its points of weight 1. Then, there is a hyperplane Π′ in Π containing all of
these points. A spread element either intersects Π in only one point P , hence
P ∈ Π′, or it intersects Π at least a line; thus it must intersect also Π′. It
follows Π′ and Π determine the same linear set and Π′ < Π, contradicting the
minimality of Π again.

From now on, when we say that a linear set Λ has rank m+ 1, we suppose
that m is taken to be minimal; in particular the defining subspace of Λ is taken
to be of the type of Lemma 11.

Proposition 12. The image of a linear set Λ of PG (rt − 1, q) of rank m + 1
on the Grassmannian, hence on Vrt, is an algebraic variety of dimension m, the
projection of a Veronese variety of dimension m and degree t.

Proof. By Theorem 10 and the above remarks, the image of Λ, say V, is the
projection of a Veronese variety of dimension m. Thus, its dimension is at most
m. Let Π = 〈P0, P1, . . . , Pm〉 be a subspace determining Λ and suppose that each
Pi is of weight 1. Write Πi = 〈P0, . . . , Pi〉 and let Λi be the linear set determined
by Πi, with corresponding image Vi. Then we have V0 ( V1 ( · · · ( Vm−1 ( V.
Hence, the dimension of V is m.

Remark 13. In the particular case of rational varieties, the dimension is the
number of variables needed for a parametrization; this is well posed also over
finite fields. Observe that the variety we consider here can be parameterized by
monomials of degree t in m+ 1 variables.

It has been shown in [12], that the image of a linear set of a PG (1, qt) is a
linear section of V2t. We can now generalize this result.

Theorem 14. The image of a linear set Λ of rank m + 1 is the intersection
of Vrt with a linear subspace of codimension at most

(
rt−m−1

t

)
. In particular,

this image is the intersection of the images of
(
rt−m−1

t

)
linear sets of maximum

rank.

Proof. Let Π = PG (W, q) be a defining subspace of PG (rt− 1, q) for Λ. Write
Ω = Ω(W ) for the Schubert variety that is the Plücker embedding of the t-
subspaces with non–trivial intersection with W . Then, the image of the linear
set on Vrt is Ω ∩ Vrt and Ω is the complete intersection of the Grassmannian
with a subspace of codimension

(
rt−m−1

t

)
. The statement now follows from

Proposition 4.

We now want to provide some insight on the space of all linear equations
vanishing on Vrt ∩ Ω. Obviously, any subspace PG (m, q) of PG (rt − 1, q) ⊂
PG (rt−1, qt) is determined by n = rt−1−m independent Fq–linear equations.
These can always be chosen of the form

Tr

(
r−1∑
i=0

ajixi

)
= 0, j = 1, 2, . . . , n, (1)

where Tr : Fqt → Fq is the usual trace function.
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A spread element has non–empty intersection with the PG (m, q) given by
the equations in (1) if and only if there exists a non–zero λ ∈ Fqt such that

Tr

((
r−1∑
i=0

ajixi

)
λ

)
= 0 j = 1, 2, . . . , n.

In other words, this is the same as to require that the (rt−m− 1)× t matrix

M =



r−1∑
i=0

a1ixi (

r−1∑
i=0

a1ixi)
q · · · (

r−1∑
i=0

a1ixi)
qt−1

r−1∑
i=0

a2ixi (

r−1∑
i=0

a2ixi)
q · · · (

r−1∑
i=0

a2ixi)
qt−1

· · · · · · · · · · · ·
r−1∑
i=0

anixi (

r−1∑
i=0

anixi)
q · · · (

r−1∑
i=0

anixi)
qt−1


cannot have full rank; thus, each of its minors of order t must be singular. This
condition corresponds to a set of

(
rt−m−1

t

)
equations, each of them determining

a hyperplane section of Vrt. We remark that, as we expect from Proposition 4,
every set of t equations in (1) determines a (rt − t − 1)–dimensional subspace
containing PG (m, q), hence a linear set of maximum rank containing the given
one.

Clearly, not all of the equations obtained above are always linearly indepen-
dent of Vrt. For instance, if there were a minor M0 of order t− 1 in M which is
non–singular for any choice of xi 6= 0, then rt−m− t equations would suffice.

The rest of this paper is devoted to investigate the dimension the space of
the linear equations vanishing on the image of a linear set on Vrt. As we have
already remarked, for any fixed rank m+ 1 > r, there are many non–equivalent
linear sets; here we propose an unifying approach for linear sets of the same
rank.

Let Π = PG (W, q) be a m–subspace defining a linear set of PG (rt − 1, q),
PG (W ∗, qt) be the m–dimensional projective subspace of PG (rt − 1, qt) such
that PG (W ∗, qt)∩PG (rt− 1, q) = Π, and Ω∗ = Ω(W ∗) ⊂ G∗rt t be the Schubert
variety of the t–subspaces with non–trivial intersection with W ∗. Let also Σ be
the Segre variety of the simple tensors of U0⊗U1⊗· · ·⊗Ut−1; recall that we can
identify Σ with the set of {u0 ∧ u1 ∧ · · · ∧ ut−1, ui ∈ Ui} in

∧
V t. The lifting σ∗

of the Fq–linear collineation σ to PG (
(
rt
t

)
−1, qt) acts as σ∗(v1∧ v2∧ · · ·∧ vt) =

vσ1 ∧ vσ2 ∧ · · · ∧ vσt . As σ permutes the Ui’s, σ
∗ fixes Σ set-wise. Since W ∗ is

also fixed set-wise by σ, see Lemma 6, we see that Ω∗ is set-wise fixed by σ∗.
Lemma 6 guarantees dimFq Ω ∩ Vrt = dimFqt

Ω∗ ∩ Σ, hence we shall determine
dimFqt

Ω∗ ∩ Σ.

As there exists an embedding φ : U ⊗Uσ⊗· · ·⊗Uσt−1 →
∧t

V , there is also

a canonical projection φ′ : (
∧t

V )′ → (U⊗Uσ⊗· · ·⊗Uσt−1

)′, where (
∧t

V )′ and

(U⊗Uσ⊗· · ·⊗Uσt−1

)′ are the duals of respectively
∧t

V and U⊗Uσ⊗· · ·⊗Uσt−1

.
Let F be the subspace of (

∧t
V )′ consisting of the linear functions vanishing on

Ω∗, and let φ′/ be the restriction of φ′ to F . We are interested in the dimension

of the image of φ′/. The nucleus of φ′/ consists of the t–linear alternating forms

f such that ker f contains W ∗ and f(u0, u1, . . . , ut−1) = 0 for all ui ∈ Ui. Such
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a space is isomorphic to the space of the t–linear forms f defined on a subspace
W \ complement of W ∗ in V , with f(u1, u2, . . . , ut) = 0 for all ui ∈ Ui, where
Ui is the projection of Ui on W \ from W ∗.

Observe that dimUi = dim〈Ui,W ∗〉 ∩ W \ = dim〈Ui,W ∗〉 + dimW \ −
dim〈Ui,W ∗,W \〉 = dimUi − dim(Ui ∩ W ∗), so W ∗σ = W ∗ and Ui+1 = Uσi
imply that dimUi = dimU0, for all i = 1, . . . , t− 1.

Proposition 15. We have dimUi ∩W ∗ = h > 0 if and only if the linear set
Λ contains a Fqt–projective subspace of dimension h − 1. If the linear set is
proper, that is it spans PG (r − 1, qt) but it is not PG (r − 1, qt), this can occur
only for r ≥ 3. Furthermore, h ≤ m+1−r

t−1 in general and h = m+ 1− r if t = 2.

Proof. A proper linear set Λ, when considered as a subset of PG (r − 1, qt),
spans the whole projective space; hence, the projection of Π = PG(W, q) on
PG (U0, q

t) = PG (r − 1, qt) necessarily spans PG (U0, q
t). It follows that the

projection of PG (W ∗, qt) also spans PG (U0, q
t). For t = 2, this implies that

dimU1 ∩W ∗ = m + 1 − r and m + 1 − r > 0 can occur only if r ≥ 3, since
r ≤ m+ 1 ≤ t(r − 1).

Suppose now t > 2 and let Z = Ui ∩W ∗; then, 〈Zσi

, i = 0, . . . , t− 1〉 ⊆W ∗.
For any P ∈ PG (Z, qt), the projective (t−1)–space 〈P, P σ, . . . , P σt−1〉∩PG (rt−
1, q) is a spread element completely contained in PG (W, q). In particular,
PG (W, q) contains a subspace of dimension ht − 1 completely partitioned by
spread elements. Thus there exists a projective subspace PG (h − 1, qt) com-
pletely contained in the linear set Λ. Write m + 1 = ht + k and let W ∗1 be a

subspace of dimension k disjoint from 〈Zσi

, i = 0, . . . , t − 1〉 ⊆ W ∗. Then Λ is
a cone with vertex a PG (h− 1, qt) and base Λ1, with Λ1 the linear set induced
by W1 := W ∗1 ∩ PG (rt − 1, q). In order to have a proper linear set, we need
dim〈Λ1〉 = r − h and r − h > 0, so k ≥ r − h; hence, ht ≤ m+ 1− r + h. Since
m+1 ≤ rt− t, we have h ≤ m+1−r

t−1 . We can have h > 0 only if m+1 ≥ t−1+r,
but we also have m+1 ≤ rt− t, hence we get rt− t ≥ t−1+r and so r ≥ 3.

Theorem 16. Let c := dimUi. The map φ/ is injective if and only if m+ 1 >
rt − t − c. This is always the case for t = 2, (r, t) = (2, 3) and for t ≥ 3 with
m+ 1 > tr − t− 1− 2

t−2 .

Proof. The kernel of φ/ is the space of the alternating t–linear forms defined on

the vector space W \ of dimension rt−m−1 and such that f(u0, u1, . . . , ut−1) = 0
∀ui ∈ Ui or, equivalently, the space of of the linear forms defined on

∧t
W \

vanishing on all the points that are the Plücker embedding of a t–space with
non-trivial intersection with each Ui. For t+ c > rt−m− 1, every t–subspace
intersects every Ui non–trivially. This implies f ≡ 0 and φ is injective. By
Proposition 15, rt−m−1

t−1 ≤ c ≤ r and c = 2r −m − 1 for t = 2. Hence, when
t = 2, the condition m+ 1 > rt− t− c = 2r− 2− 2r+m+ 1 is always fulfilled.
Suppose now t ≥ 3. By Proposition 15, we have rt−t−c ≤ rt−t− rt−m−1

t−1 ; hence,

m+1 > rt−t− rt−m−1
t−1 implies m+1 > rt−t−c. Thus, m+1 > rt−t− rt−m−1

t−1
if and only if m + 1 > rt − t − 1 − 2

t−2 . When t = 3, this is equivalent to
m+ 1 > 3r − 6, a condition which is obviously always fulfilled for r = 2.

If t + c ≤ rt − m − 1, then the image via the Plücker embedding of the
t–spaces with non–trivial intersection with a Ui is a Schubert variety cut on
the Grassmannian by a linear subspace of codimension

(
rt−m−1−c

t

)
; hence, the

dimension of the kernel of the map φ/ is at least
(
rt−m−1−c

t

)
≥ 1.
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Corollary 17. Let PG (W, q) ⊂ PG (rt − 1, q) be the m–dimensional subspace
defining a linear set Λ and PG (W ∗, qt) be the unique subspace of PG (rt −
1, qt) such that PG (W ∗, qt) ∩ PG (rt − 1, q) = PG (W, q). Take W \ such that
V (rt, qt) = W ∗ ⊕ W \ and let also Ui be the projection of Ui on W \. Write
c = dimUi. Then, the image of Λ is the complete intersection of Vrt with a
linear subspace of codimension

(
rt−m−1

t

)
if and only if m+1 > rt−t−c. This is

always the case for t = 2, (r, t) = (2, 3) and for t ≥ 3 and m+1 > tr−t−1− 2
t−2 .

If m+1 ≤ rt− t−c, then the image of Λ is the complete intersection of Vrt with
a linear subspace of codimension dim〈u0 ∧ u1 ∧ . . . ∧ ut−1, ui ∈ Ui〉 <

(
rt−m−1

t

)
.

We can provide a complete description for the case t = 3.

Theorem 18. Let t = 3, r > 2 and m+ 1 ≤ 3r− 3− c. Then, the codimension
of 〈u0 ∧ u1 ∧ u2, ui ∈ Ui〉 in

∧t
W \ is 3

(
3r−m−1−c

3

)
.

Proof. As the projection of PG (W ∗, qt) on PG (U0, q
t) spans PG (U0, q

t) we
have dim〈Ui, Uj〉 ∩W ∗ = m + 1 − r; hence, dim〈UiUj〉 = 2r − m − 1 + r =
3r−m−1 = dimW \. Thus, 〈UiUj〉 = W \ for any i 6= j. Let Ωi be the Schubert
variety of the t–subspaces with non–trivial intersection with Ui and let Fi the
space of the linear functions defined on

∧t
W \ vanishing on Ωi. By a slight

abuse of notation, identify the elements of Fi with the corresponding trilinear
alternating maps defined on W \ ×W \ ×W \; the kernel of any element of Fi
contains Ui. Suppose fi + fj = 0 with fi ∈ Fi, fj ∈ Fj , i 6= j. Then, the kernel
of fi contains 〈Ui, Uj〉 = W \, so fi = fj = 0. Suppose now f0 + f1 + f2 = 0,
with fi ∈ Fi \ {0} and i = 0, 1, 2. For every u2 ∈ U2, f0(·, ·, u2) is a bilinear
map vanishing on 〈U0, U1〉 = W \; hence, it is identically 0 and the kernel of f0
would contain 〈U0, U2〉 = W \. This would imply f0 = 0, a contradiction. Hence
dim〈F1,F2,F3〉 = 3 dimFi

Corollary 19. Let t = 3 and r > 2. Suppose PG (W, q) ⊂ PG (3r − 1, q) to be
the m–subspace defining the linear set Λ. Let also PG (W ∗, q3) be the unique
subspace of PG (3r − 1, q3) such that PG (W ∗, q3) ∩ PG (3r − 1, q) = PG (W, q)
and take W \ such that V (3r, q3) = W ∗⊕W \. Denote by Ui the projection of Ui
on W \ and write c = dimUi. Assume also m+ 1 ≤ 3r− 3− c. Then, the image
of Λ is the complete intersection of Vr,3 with a linear subspace of codimension(
3r−m−1

3

)
− 3
(
3r−m−1−c

3

)
.

When t > 3 and m + 1 ≤ 3r − 3 − dimUi, it is not possible, in general,
to provide a formula for the codimension of the image of a linear set on Vrt
depending only on m, as shown by the following example.

In PG (5, q4), take the linear set Λ1 of rank 9 given by {(x, xq, y, yq, yq2 , z), x, y ∈
Fq4 , z ∈ Fq}. The subspace W1 of PG (23, q) defining Λ1 is

{(x, xq, y, yq, yq
2

, z, xq, xq
2

, yq, yq
2

, yq
3

, z, xq
2

, xq
3

, yq
2

, yq
3

, y, z, xq
3

, x, yq
3

, y, yq, z), x, y ∈ Fq4 , z ∈ Fq};

hence, the subspace W ∗1 of rank 9 of PG (23, q4) containing W1 is

{(x1, x2, x5, x6, x7, x9, x2, x3, x6, x7, x8, x9, x3, x4, x7, x8, x5, x9, x4, x1, x8, x5, x6, x9), xi ∈ Fq4}.

A complement is

W \
1 = {(0, 0, 0, 0, 0, 0, y1, 0, y2, y3, 0, y4, y5, 0, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15), yi ∈ Fq4}.
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Let Ui be the projection of Ui on W \
1 . By a straightforward calculation, we get

c = dimUi = 6, dimU0 ∩U1 = U0 ∩U3 = 1 and U0 ∩U2 = 0. Then, the number
of equations defining the image of Λ1 on V6,4 is

(
rt−m−1

t

)
− 4

(
rt−m−1−c

t

)
+

4
(
rt−m−1−2c+1

t

)
= 865.

Consider now the following linear set Λ2 of the same rank: {(x, y, yq, z, zq, zq2), x ∈
Fq2 , y ∈ Fq4 |Tr (y) = 0, z ∈ Fq4}, where Tr : Fq4 → Fq is the trace function. In
PG (23, q), we have

{(x, y, yq, z, zq, zq
2

, xq, yq, yq
2

, zq, zq
2

, zq
3

, x, yq
2

,−y−yq−yq
2

, zq
2

, zq
3

, z, xq,−y−yq−yq
2

, y, zq
3

, z, zq)};

hence in PG (23, q4) we getW ∗2 = {(x1, x3, x4, x6, x7, x8, x2, x4, x5, x7, x−8, x9, x1, x5,−x3−
x4 − x5, x8, x9, x6, x2,−x3 − x4 − x5, x3, x9, x6, x7), xi ∈ Fq4}. A complement is

W \
2 = {(0, 0, 0, 0, 0, 0, 0, y1, 0, y2, y3, 0, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15), yi ∈ Fq4}.

We see that c = dimUi = 6, dimU0 ∩ U1 = U0 ∩ U3 = 0 and U0 ∩ U2 = 1.
Thus, the number of equation defining the image of Λ2 on V6,4 is

(
rt−m−1

t

)
−

4
(
rt−m−1−c

t

)
+ 2
(
rt−m−1−2c+1

t

)
= 863 6= 865.

Remark. Even if it is not possible to provide a formula for the codimension
of the image of a linear set on Vrt depending only on m for t > 3 and m+ 1 ≤
3r−3−dimUi, the above arguments show a possible way to actually determine
its value on a case–by–case basis, as this codimension is, in general, the same
as dim〈u0 ∧ u1 ∧ . . . ∧ ut−1, ui ∈ Ui〉.
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