FORBIDDEN SUBGRAPHS IN THE NORM GRAPH

SIMEON BALL AND VALENTINA PEPE

Abstract

We show that the norm graph with n vertices about $\frac{1}{2} n^{2-1 / t}$ edges, which contains no copy of the complete bipartite graph $K_{t,(t-1)!+1}$, does not contain a copy of $K_{t+1,(t-1)!-1}$.

1. Introduction

Let H be a fixed graph. The Turán number of H, denoted $e x(n, H)$, is the maximum number of edges a graph with n vertices can have, which contains no copy of H. The Erdős-Stone theorem from [7] gives an asymptotic formula for the Turán number of any non-bipartite graph, and this formula depends on the chromatic number of the graph H. When H is a complete bipartite graph, determining the Turán number is related to the "Zarankiewicz problem" (see [3], Chap. VI, Sect.2, and [9] for more details and references). In many cases even the question of determining the right order of magnitude for $e x(n, H)$ is not known.
Let $K_{t, s}$ denote the complete bipartite graph with t vertices in one class and s vertices in the other. The probabilistic lower bound for $K_{t, s}$

$$
e x\left(n, K_{t, s}\right) \geqslant c n^{2-(s+t-2) /(s t-1)}
$$

is due to Erdős and Spencer [6]. Kővari, Sós and Turán [15] proved that for $s \geqslant t$

$$
\begin{equation*}
e x\left(n, K_{t, s}\right) \leqslant \frac{1}{2}(s-1)^{1 / t} n^{2-1 / t}+\frac{1}{2}(t-1) n . \tag{1.1}
\end{equation*}
$$

The norm graph $\Gamma(t)$, which we will define the next section, has n vertices and about $\frac{1}{2} n^{2-1 / t}$ edges. In [1] (based on results from [14]) it was proven that the graph $\Gamma(t)$ contains no copy of $K_{t,(t-1)!+1}$, thus proving that for $s \geqslant(t-1)!+1$,

$$
e x\left(n, K_{t, s}\right)>c n^{2-1 / t}
$$

for some constant c.
Date: 10 March 2015.
The first author acknowledges the support of the project MTM2008-06620-C03-01 of the Spanish Ministry of Science and Education and the project 2014-SGR-1147 of the Catalan Research Council.

The second author acknowledges the support of the project "Decomposizione, proprietà estremali di grafi e combinatoria di polinomi ortogonali" of the SBAI Department of Sapienza University of Rome.

In [2], it was shown that $\Gamma(4)$ contains no copy of $K_{5,5}$, which improves on the probabilistic lower bound of Erdős and Spencer [6] for $e x\left(n, K_{5,5}\right)$. In this article, we will generalise this result and prove that $\Gamma(t)$ contains no copy of $K_{t+1,(t-1)!-1}$. For $t \geqslant 5$, this does not improve the probabilistic lower bound of Erdős and Spencer, but, as far as we are aware, it is however the deterministic construction of a graph with n vertices containing no $K_{t+1,(t-1)!-1}$ with the most edges.

2. The NORM GRAPH

Suppose that $q=p^{h}$, where p is a prime, and denote by \mathbb{F}_{q} the finite field with q elements. We will use the following properties of finite fields. For any $a, b \in \mathbb{F}_{q},(a+b)^{p^{i}}=a^{p^{i}}+b^{p^{i}}$, for any $i \in \mathbb{N}$. For all $a \in \mathbb{F}_{q^{i}}, a^{q}=a$ if and only if $a \in \mathbb{F}_{q}$. Finally $N(a)=a^{1+q+\cdots+q^{k-1}} \in \mathbb{F}_{q}$, for all $a \in \mathbb{F}_{q^{k}}$, since $N(a)^{q}=N(a)$.
Let \mathbb{F} denote an arbitrary field. We denote by $\mathbb{P}_{n}(\mathbb{F})$ the projective space arising from the $(n+1)$-dimensional vector space over \mathbb{F}. Throughout dim will refer to projective dimension. A point of $\mathbb{P}_{n}(\mathbb{F})$ (which is a one-dimensional subspace of the vector space) will often be written as $\langle u\rangle$, where u is a vector in the $(n+1)$-dimensional vector space over \mathbb{F}.
Let $\Gamma(t)$ be the graph with vertices $(a, \alpha) \in \mathbb{F}_{q^{t-1}} \times \mathbb{F}_{q}, \alpha \neq 0$, where (a, α) is joined to $\left(a^{\prime}, \alpha^{\prime}\right)$ if and only if $N\left(a+a^{\prime}\right)=\alpha \alpha^{\prime}$. The graph $\Gamma(t)$ was constructed in [14], where it was shown to contain no copy of $K_{t, t!+1}$. In [1] Alon, Rónyai and Szabó proved that $\Gamma(t)$ contains no copy of $K_{t,(t-1)!+1}$. Our aim here is to show that it also contains no $K_{t+1,(t-1)!-1}$, generalizing the same result for $t=5$ presented in [2].
Let

$$
V=\left\{(1, a) \otimes\left(1, a^{q}\right) \otimes \cdots \otimes\left(1, a^{q^{t-2}}\right) \mid a \in \mathbb{F}_{q^{t-1}}\right\} \subset \mathbb{P}_{2^{t-1}-1}\left(\mathbb{F}_{q^{t-1}}\right)
$$

The set V is the affine part of an algebraic variety that is in turn a subvariety of the Segre variety

$$
\Sigma=\underbrace{\mathbb{P}_{1} \times \mathbb{P}_{1} \times \cdots \times \mathbb{P}_{1}}_{t-1 \text { times }},
$$

where $\mathbb{P}_{1}=\mathbb{P}_{1}\left(\mathbb{F}_{q}\right)$. We briefly recall that a Segre variety is the image of the Segre embedding:

$$
\sigma:\left(v_{1}, v_{2}, \ldots, v_{k}\right) \in \mathbb{P}_{n_{1}-1} \times \mathbb{P}_{n_{2}-1} \times \cdots \times \mathbb{P}_{n_{k}-1} \mapsto v_{1} \otimes v_{2} \otimes \cdots \otimes v_{k} \in \mathbb{P}_{n_{1} n_{2} \cdots n_{k}-1}
$$

i.e. it is the set of points corresponding to the simple tensors. For the reader that is not familiar to tensor products we remark that, up to a suitable choice of coordinates, if $v_{i}=\left(x_{0}^{(i)}, x_{1}^{(i)}, \ldots, x_{n_{i}-1}^{i}\right)$, then $v_{1} \otimes v_{2} \otimes \cdots \otimes v_{k}$ is the vector of all possible products of type: $x_{j_{1}}^{(1)} x_{j_{2}}^{(2)} \cdots x_{j_{k}}^{(k)}$ (see [12] for an easy overview on Segre varieties over finite fields).

Then, the affine point $P_{a}=(1, a) \otimes\left(1, a^{q}\right) \otimes \cdots \otimes\left(1, a^{q^{t-2}}\right)$ has coordinates indexed by the subsets of $T:=\{0,1, \ldots, t-1\}$, where the S-coordinate is

$$
\left(\prod_{i \in S} a^{q^{i}}\right)
$$

for any non-empty subset S of T and

$$
\prod_{i \in S} a^{q^{i}}=1
$$

when $S=\emptyset$ (see [16]).
Let $n=2^{t-1}-1$.
We order the coordinates of $\mathbb{P}_{n}\left(\mathbb{F}_{q^{t-1}}\right)$ so that if the i-th coordinate corresponds to the subset S, then the $(n-i)$-th coordinate corresponds to the subset $T \backslash S$.

Embed the $\mathbb{P}_{n}\left(\mathbb{F}_{q^{t-1}}\right)$ containing V as a hyperplane section of $\mathbb{P}_{n+1}\left(\mathbb{F}_{q^{t-1}}\right)$ defined by the equation $x_{n+1}=0$.
Let b be the symmetric bilinear form on the $(n+2)$-dimensional vector space over $\mathbb{F}_{q^{t-1}}$ defined by

$$
b(u, v)=\sum_{i=0}^{n} u_{i} v_{n-i}-u_{n+1} v_{n+1}
$$

Let \perp be defined in the usual way, so that given a subspace Π of $\mathbb{P}_{n+1}\left(\mathbb{F}_{q^{t-1}}\right), \Pi^{\perp}$ is the subspace of $\mathbb{P}_{n+1}\left(\mathbb{F}_{q^{t-1}}\right)$ defined by

$$
\Pi^{\perp}=\{v \mid b(u, v)=0, \text { for all } u \in \Pi\}
$$

We wish to define the same graph $\Gamma(t)$, so that adjacency is given by the bilinear form. Let $P=(0,0,0, \ldots, 1)$. Let Γ^{\prime} be a graph with vertex set the set of points on the lines joining the aff points of V to P obtained using only scalars in \mathbb{F}_{q}, distinct from P and not contained in the hyperplane $x_{n+1}=0$. Join two vertices $\langle u\rangle$ and $\left\langle u^{\prime}\right\rangle$ in Γ^{\prime} if and only if $b\left(u, u^{\prime}\right)=0$. It is a simple matter to verify that the graph Γ^{\prime} is isomorphic to the graph $\Gamma(t)$ by the map $P_{a}+\alpha P \mapsto(a, \alpha)$ since

$$
N(a+b)-\alpha \beta=\sum_{S \subseteq T} \prod_{i \in S,} a_{j \in T \backslash S} a^{q^{i}} b^{q^{j}}-\alpha \beta=b(u, v),
$$

where

$$
u=(1, a) \otimes\left(1, a^{q}\right) \otimes \cdots \otimes\left(1, a^{q^{t-2}}\right)+\alpha P
$$

and

$$
v=(1, b) \otimes\left(1, b^{q}\right) \otimes \cdots \otimes\left(1, b^{q^{t-2}}\right)+\beta P
$$

We shall refer to Γ^{\prime} as $\Gamma(t)$ from now on.
We recall some known properties of Σ and its subvariety

$$
\mathcal{V}=\left\{(a, b) \otimes\left(a^{q}, b^{q}\right) \otimes \cdots\left(a^{q^{t-2}}, b^{q^{t-2}}\right) \mid(a, b) \in \mathbb{P}_{1}\left(\mathbb{F}_{q^{t-1}}\right)\right\}
$$

and prove a new one in Theorem 2.5.
Let $\overline{\mathbb{F}_{q}}$ denote the algebraic closure of \mathbb{F}_{q} and consider Σ as the Segre variety over $\overline{\mathbb{F}_{q}}$.
Theorem 2.1. Σ is a smooth irreducible variety.
Theorem 2.2. The dimension of Σ (as algebraic variety) is $t-1$ and its degree is $(t-1)$!.
Proof. The (Segre) product $X \times Y$ of two varieties X and Y of dimension d and e has dimension $d+e$, see, for example [13], page 138. The Hilbert polynomial of $X \times Y$ is the product of the Hilbert polynomials of X and Y (see [13, Chapter 18]). The Hilbert polynomial $h(m)$ of \mathbb{P}_{1} is $m+1$, hence the Hilbert polynomial of $\Sigma=\underbrace{\mathbb{P}_{1} \times \mathbb{P}_{1} \times \cdots \times \mathbb{P}_{1}}_{t-1 \text { times }}$ is $h_{\Sigma}(m)=(m+1)^{t-1}$. Since the leading term of h_{Σ} is 1 and the dimension of Σ is $t-1$, we have that the degree of Σ is $(t-1)$!.
Theorem 2.3. [16] Any t points of \mathcal{V} are in general position.
Theorem 2.4. [11] If $t+1$ points span $a(t-1)$-dimensional projective space, then that space contains $q+1$ points of \mathcal{V}.

ThEOREM 2.5. If a subspace of codimension t contains a finite number of points of Σ then it contains at most $(t-1)!-2$ points of Σ.

Proof. By Theorem 2.1, Σ is smooth, so it is regular at each of its points, i.e., if $T_{P} \Sigma$ is the tangent space of Σ at a point $P \in \Sigma$, then $\operatorname{dim} T_{P} \Sigma=t-1$.
Let Π be a subspace of codimension t containing a finite number of points of Σ. Let $P \in \Pi \cap \Sigma$. Then $\operatorname{dim}\left\langle T_{P} \Sigma, \Pi\right\rangle \leqslant n-1$. Therefore, there is a hyperplane H containing $\left\langle T_{P} \Sigma, \Pi\right\rangle$.
Suppose that H contains another tangent space $T_{R} \Sigma$, with $R \in \Pi \cap \Sigma$. The algebraic variety $H \cap \Sigma$ has dimension $t-2$ (since Σ is irreducible) and it has two singular points, P and R. Since $\operatorname{dim} H \cap \Sigma=t-2$ as an algebraic variety, there must be a linear subspace Π_{1} of codimension $t-2$ in H containing Π and such that $\Pi_{1} \cap H \cap \Sigma$ consists of $\operatorname{deg}(H \cap \Sigma) \leqslant(t-1)$! points of Σ counted with their multiplicity. Since Π_{1} contains P and R, which are singular points and so with multiplicity at least 2 , we have that

$$
|\Pi \cap \Sigma| \leqslant\left|\Pi_{1} \cap \Sigma\right| \leqslant(t-1)!-2
$$

Suppose now that H does not contain any other tangent space $T_{R} \Sigma$ with $R \in \Pi \cap \Sigma$, $R \neq P$. Then take $R \in \Pi \cap \Sigma$ and consider a hyperplane $H^{\prime} \neq H$ containing $\left\langle T_{R} \Sigma, \Pi\right\rangle$. Then the tangent spaces of P and R with respect to $H \cap H^{\prime} \cap \Sigma$ are $T_{P} \Sigma \cap H^{\prime}$ and $T_{R} \Sigma \cap H$, and they both have dimension $t-2$ (as linear spaces).
If $\operatorname{dim} H \cap H^{\prime} \cap \Sigma=t-3$ as an algebraic variety, then P and R are two singular points of $H \cap H^{\prime} \cap \Sigma$ and we can find, as before, a linear subspace Π_{1} of codimension $t-3$ in $H \cap H^{\prime}$ such that it contains Π and intersects $H \cap H^{\prime} \cap \Sigma$ in $\operatorname{deg}\left(H \cap H^{\prime} \cap \Sigma\right) \leqslant(t-1)$!
points, counted with their multiplicity. Since P and R have multiplicity at least 2 , we have

$$
|\Pi \cap \Sigma| \leqslant\left|\Pi_{1} \cap \Sigma\right| \leqslant(t-1)!-2
$$

If $\operatorname{dim} H \cap H^{\prime} \cap \Sigma=t-2$ as an algebraic variety, then $H \cap \Sigma$ is reducible. Hence, we have

$$
H \cap \Sigma=\mathcal{V}_{1} \cup \mathcal{V}_{2} \cup \cdots \cup \mathcal{V}_{r}
$$

where \mathcal{V}_{i} is an irreducible variety of dimension $t-2$, for all $i=1, \ldots, r$. So we have

$$
H \cap H^{\prime} \cap \Sigma=\mathcal{V}_{1} \cup \mathcal{V}_{2} \cup \cdots \cup \mathcal{V}_{s} \cup \mathcal{W}_{s+1} \cup \mathcal{W}_{s+2} \cup \cdots \cup \mathcal{W}_{r}
$$

where \mathcal{W}_{i} is a hyperplane section of \mathcal{V}_{i}, for all $i=s+1, \ldots, r$. We observe that also $H^{\prime} \cap \Sigma$ has to be reducible and, since the decomposition in irreducible components is unique, we have

$$
H^{\prime} \cap \Sigma=\mathcal{V}_{1} \cup \mathcal{V}_{2} \cup \cdots \cup \mathcal{V}_{s} \cup \mathcal{V}_{s+1}^{\prime} \cup \mathcal{V}_{s+2}^{\prime} \cup \cdots \cup \mathcal{V}_{r}^{\prime}
$$

where \mathcal{V}_{i} and \mathcal{V}_{j}^{\prime} are irreducible varieties of dimension $t-2$.
We have, by hypothesis, that $T_{P} \Sigma \subset H$ and $P \in \Pi$. So either $P \in \mathcal{V}_{i}$ and it is singular for \mathcal{V}_{i}, for some $i \in\{1,2, \ldots, r\}$, or it is not singular for \mathcal{V}_{ℓ}, for any $\ell \in\{1,2, \ldots, r\}$.
Suppose we are in the first case. We know that $P \in \Pi \subset H^{\prime}$. If $\mathcal{V}_{i} \subseteq H^{\prime}$, then P is singular for an irreducible component of $H^{\prime} \cap \Sigma$ and so $T_{P} \Sigma \subset H^{\prime}$, contradicting our hypothesis, so \mathcal{V}_{i} is not contained in H^{\prime} and $H^{\prime} \cap \mathcal{V}_{i}=\mathcal{W}_{i}$. We have that $\operatorname{dim} T_{P} \Sigma \cap H^{\prime}=t-2$ (as linear subspace) and $\operatorname{dim} \mathcal{W}_{i}=t-3$ (as algebraic variety), so P is singular for \mathcal{W}_{i}.
Suppose now that P is not singular for any \mathcal{V}_{i}, so the dimension of $T_{P} \mathcal{V}_{i}$, as a subspace, is $t-2$. If $P \notin \mathcal{V}_{j}$, for any $i \neq j$, then

$$
T_{P}(H \cap \Sigma)=T_{P}\left(\mathcal{V}_{i}\right)=T_{P}(\Sigma)
$$

a contradiction since the dimension of $T_{P}(\Sigma)$ is $t-1$. Hence $P \in \mathcal{V}_{i} \cap \mathcal{V}_{j}$, and so P is contained in the intersection of two components of $H^{\prime} \cap \Sigma$, so it is again a singular (or multiple) point. The same is true for the point R such that $T_{R} \Sigma \subset H^{\prime}$, so in

$$
\mathcal{V}_{1} \cup \mathcal{V}_{2} \cup \cdots \cup \mathcal{V}_{s} \cup \mathcal{W}_{s+1} \cup \mathcal{W}_{s+2} \cup \cdots \cup \mathcal{W}_{r}
$$

there are at least two multiple points and when we sum up all the degrees, we count at least two points twice, hence, by

$$
\sum_{i=1}^{s} \operatorname{deg} \mathcal{V}_{i}+\sum_{j=s+1}^{r} \operatorname{deg} \mathcal{W}_{j} \leqslant(t-1)!
$$

we get that the number of points in

$$
\Pi \cap\left(\mathcal{V}_{1} \cup \mathcal{V}_{2} \cup \cdots \cup \mathcal{V}_{s} \cup \mathcal{W}_{s+1} \cup \mathcal{W}_{s+2} \cup \cdots \cup \mathcal{W}_{r}\right)
$$

is at most $(t-1)!-2$.

Remark One could wonder whether one could try with one more hyperplane $H^{\prime \prime}$ such that $T_{Q} \Sigma \subset H^{\prime \prime}, T_{Q} \Sigma \nsubseteq H, T_{Q} \Sigma \nsubseteq H^{\prime}$ and $Q \in \Pi$. However, it can happen that $H \cap H^{\prime} \cap H^{\prime \prime}=H \cap H^{\prime}$, so $\operatorname{dim} T_{Q} \Sigma \cap H \cap H^{\prime} \cap H^{\prime \prime}=t-2$ (as a linear space) and $\operatorname{dim} H \cap H^{\prime} \cap H^{\prime \prime} \cap \Sigma=t-2$, so Q would not be a singular point of

$$
H \cap H^{\prime} \cap H^{\prime \prime} \cap \Sigma=H \cap H^{\prime} \cap \Sigma
$$

The locus of hyperplanes containing a tangent space to a variety X of \mathbb{P}^{n} is a variety X^{*} of the dual space $\left(\mathbb{P}_{n}\right)^{*}$ (see, e.g., $[13$, Chapter 15$]$). Let Σ^{*} be the dual variety of Σ. From [17], we know that Σ^{*} is a hypersurface, hence, if d is the degree of Σ^{*}, then the number of points of Σ^{*} on a general line of $\left(\mathbb{P}_{n}\right)^{*}$ is d. Suppose that the line of $\left(\mathbb{P}_{n}\right)^{*}$ defined by $H \cap H^{\prime}$ is general, hence if $|\Pi \cap \Sigma|>d$, then we could find a point $Q \in \Pi \cap \Sigma$ such that $T_{Q} \Sigma \subset H^{\prime \prime}$ and $H^{\prime \prime}$ is a hyperplane not containing $H \cap H^{\prime}$. If $d>(t-1)!-2$ then we would not be able to get a better bound than the bound in Theorem 2.5. The degree of Σ^{*} is found in [10], where it is given by N_{t-1}, where N_{r} is defined by the generating function

$$
\sum_{r \geqslant 0} N_{r} \frac{z^{r}}{r!}=\frac{e^{-2 z}}{(1-z)^{2}}
$$

Hence $d=\operatorname{deg} \Sigma^{*}$, is the evaluation of

$$
\left(\frac{e^{-2 z}}{(1-z)^{2}}\right)^{(t-1)}
$$

at $z=0$, where we denote by $f^{(n)}$ the n-th derivative of the function f.
Let $F=f g$, where f and g are two functions, then

$$
F^{(n)}=\sum_{i=0}^{n}\binom{n}{i} f^{(i)} g^{(n-i)}
$$

Let

$$
f=e^{-2 z} \text { and } g=(1-z)^{-2}
$$

It is easy to see that

$$
f^{(i)}=(-2)^{i} f \text { and } g^{(i)}=(i+1)!(1-z)^{-(i+2)}
$$

Since $f(0)=1$, we have that $F^{(n)}$, evaluated at $z=0$, is

$$
\sum_{i=0}^{n}\binom{n}{i}(-2)^{i}(n+1-i)!
$$

When $n=t-1$ and we have

$$
d=N_{t-1}=\sum_{i=0}^{t-1}\binom{t-1}{i}(-2)^{i}(t-i)!
$$

Now

$$
\sum_{i=0}^{t-1}\binom{t-1}{i}(-2)^{i}(t-i)!=(t-1)!\sum_{i=0}^{t-1} \frac{(-2)^{i}}{i!}(t-i)
$$

Note that

$$
\sum_{i=0}^{t-1} \frac{(-2)^{i}}{i!}(t-i)=1
$$

for $t=5$ and

$$
\sum_{i=0}^{t} \frac{(-2)^{i}}{i!}(t+1-i)-\sum_{i=0}^{t-1} \frac{(-2)^{i}}{i!}(t-i)=\sum_{i=0}^{t} \frac{(-2)^{i}}{i!}
$$

Since $\sum_{i=0}^{5} \frac{(-2)^{i}}{i!}=\frac{1}{15}$ and

$$
\frac{(-2)^{n-1}}{(n-1)!}-\frac{(-2)^{n}}{n!}=\frac{2^{n-1}(n-2)}{n!}>0
$$

when $n \geqslant 3$ is odd,

$$
\sum_{i=0}^{t} \frac{(-2)^{i}}{i!}>0
$$

for all $t \geqslant 4$ and so

$$
\sum_{i=0}^{t-1} \frac{(-2)^{i}}{i!}(t-i)
$$

is an increasing function. Thus, for $t \geqslant 5$,

$$
\sum_{i=0}^{t-1} \frac{(-2)^{i}}{i!}(t-i) \geqslant 1
$$

and so

$$
(t-1)!\sum_{i=0}^{t-1} \frac{(-2)^{i}}{i!}(t-i) \geqslant(t-1)!
$$

and hence $d=N_{t-1}>(t-1)!-2$.
THEOREM 2.6. For $q \geqslant(t-1)!+1$ the graph $\Gamma(t)$ contains no $K_{t+1,(t-1)!-1}$.
Proof. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{t+1}\right\}$ be $t+1$ distinct vertices of $\Gamma(t)$. The set of common neighbours of the elements of X is $\Pi^{\perp} \cap \Gamma(t)$, where Π is the subspace spanned by X. If any two elements of X project from P onto the same point of V, then $P \in \Pi$ and hence $\Pi^{\perp} \subset P^{\perp}$. Since P^{\perp} is the hyperplane $x_{n+1}=0, \Pi^{\perp} \cap \Gamma(t)=\emptyset$, and the elements of X have no common neighbour.
Therefore, we assume now that all the points in X project from P onto distinct points of V. Then, by Theorem 2.3, $\operatorname{dim} \Pi \geqslant t-1$.

If $\operatorname{dim} \Pi=t-1$, then by Theorem 2.4 , the projection of Π onto V contains at least q points of V (we recall that V is the affine part of \mathcal{V} and the hyperplane section we removed contains just one point of \mathcal{V}). Therefore, there are at least q points Y of Π on the lines joining P to the points of V. We wish to prove that the points of Y are vertices of the graph $\Gamma(t)$. To do this, we have to show that the points of Y, which are of the form $\langle(v, \lambda)\rangle$, where $v \in V$ and $\lambda \in \overline{\mathbb{F}_{q}}$, are of the form $\langle(v, \lambda)\rangle$, where $v \in V$ and $\lambda \in \mathbb{F}_{q}$. Assuming that the vertices in X have at least two common neighbours, we can suppose that there is a common neighbour of the elements of X of the form $\langle(u, \mu)\rangle$, where $u \in V$, $u \neq-v$ and $\mu \in \mathbb{F}_{q}$, is a common neighbour of the elements of X. Then $\langle(u, \mu)\rangle$ is in Π^{\perp} and since $Y \subset \Pi$,

$$
N(u+v)=\lambda \mu .
$$

Since $N(u+v) \in \mathbb{F}_{q}$ and $\mu \in \mathbb{F}_{q}$, we have that $\lambda \in \mathbb{F}_{q}$ and so the points of Y are vertices of the graph $\Gamma(t)$. Therefore, the vertices of X have at least q common neighbours. Since Γ contains no $K_{t,(t-1)!+1}$, if $q \geqslant(t-1)!+1$, then this case cannot occur.
If $\operatorname{dim} \Pi=t$ then $\operatorname{dim} \Pi^{\perp}=n-t$. Let Y be the points of Π^{\perp} which project from P onto V. Arguing as in the previous paragraph, the points Y are vertices of the graph $\Gamma(t)$. Since the vertices of X have at most $(t-1)$! common neighbours, there are a finite number of points in Y and so a finite number of points in the projection of Π^{\perp} onto V. By Theorem 2.5, this projection contains at most $(t-1)!-2$ points of V, so there are at most $(t-1)!-2$ points in Y. Therefore, the vertices in X have at most $(t-1)!-2$ common neighbours.

References

[1] N. Alon, L. Rónyai and T. Szabó, Norm-Graphs: Variations and applications, J. Combin. Theory Ser. B, 76 (1999) 280-290.
[2] S. Ball and V. Pepe, Asymptotic improvements to the lower bound of certain bipartite Turán numbers, Combin. Probab. Comput., 21 (2012) 323-329.
[3] B. Bollobás, Extremal Graph Theory, Academic Press, San Diego, 1978.
[4] W. G. Brown, On graphs that do not contain a Thomsen graph, Canad. Math. Bull., 9 (1966) 281-289.
[5] P. Erdős, A. Rényi and V. T. Sós, On a problem of graph theory, Studia, Sci. Math. Hungar., 1 (1966) 215-235.
[6] P. Erdős and J. Spencer, Probabilistic Methods in Combinatorics, Academic Press, London, New York, Akadémiai Kiadó, Budapest, 1974.
[7] P. Erdős and A. H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc., 52 (1946) 1087-1091.
[8] Z. Füredi, An upper bound on Zarankiewicz' problem, Combin. Probab. Comput., 5 (1996) 29-33.
[9] Z. Füredi, New asymptotics for bipartite Turán numbers, J. Combin. Theory Ser. A, 75 (1996) 141-144.
[10] I.M. Gelfand, M.M. Kapranov and A.V. Zelevinski, Hyperdeterminants, Adv. Math., 84 (1990), pp. 237-254.
[11] L. Giuzzi and V. Pepe, Families of twisted tensor product codes, Designs Codes Cryptogr., 67 (2013) 375-384.
[12] J.W.P. Hirschfeld and J.A. Thas, General galois geometries, Oxford University Press, New York (NY), 1991.
[13] J. Harris, Algebraic Geometry. A first course, Graduate Texts in Mathematics, 133, Springer-Verlag, New York, 1992.
[14] J. Kollár, L. Rónyai and T. Szabó, Norm-graphs and bipartite Turán numbers, Combinatorica, 16 (1996) 399-406.
[15] T. Kővári, V. T. Sós and P. Turán, On a problem of K. Zarankiewicz, Colloq. Math., 3 (1954) 50-57.
[16] V. Pepe, On the algebraic variety $\mathcal{V}_{r, t}$, Finite Fields Appl., 17 (2011) 343-349.
[17] J. Weyman and A. Zelevinsky, Singularities of Hyperdeterminants, Ann. Inst. Fourier, $46: 3$ (1996), 591-644.

Simeon Ball
Departament de Matemàtica Aplicada IV,
Universitat Politècnica de Catalunya, Jordi Girona 1-3, Mòdul C3, Campus Nord, 08034 Barcelona, Spain
simeon@ma4.upc.edu
Valentina Pepe
SBAI Department,
Sapienza University of Rome, Via Antonio Scarpa 16
00161 Rome, Italy
valepepe@sbai.uniroma1.it

