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Abstract: We investigated the possible influence of TERC and TERT genetic variation and 

leukocyte telomere length (LTL) on human lifespan. Four polymorphisms of TERT and three 

polymorphisms of TERC were examined in a sample of elderly subjects (70–100 years). After nine 

years of follow-up, mortality data were collected, and sub-samples of long-lived/not long-lived 

were defined. TERT VNTR MNS16A L/L genotype and TERT rs2853691 A/G or G/G genotypes 

were found to be associated with a significantly higher risk to die before the age of 90 years, and 

with a significantly lower age at death. The association between lifespan and LTL at baseline was 

analyzed in a subsample of 163 subjects. Age at baseline was inversely associated with LTL (p < 

0.0001). Mean LTL was greater in the subjects still living than in those no longer living at 

follow-up (0.79 T/S ± 0.09 vs 0.63 T/S ± 0.08, p < 0.0001). Comparison of age classes showed that, 

among the 70–79-year-olds, the difference in mean LTL between those still living and those no 

longer living at follow-up was greater than among the 80–90-year-olds. Our data provide evidence 

that shorter LTL at baseline may predict a shorter lifespan, but the reliability of LTL as a lifespan 

biomarker seems to be limited to a specific age (70–79 years).  
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1. Introduction 

The dramatic increase in rates of survival to an advanced old age over the past century has 

prompted extensive research in the attempt to identify the mechanisms involved in lifespan 

determination. Among the most extensively studied biological processes associated with longevity 

are those involved in cell maintenance/senescence. Telomeres, the structures at the ends of 

eukaryotic chromosomes with a protective action against genome instability, have been widely 

studied as a possible determinant of lifespan [1]. Human telomeres are composed of repeated 

TTAGGG nucleotide sequences located at the ends of each chromosome. Because telomere 

sequences are not fully replicated during DNA replication due to the inability of DNA polymerase 

to replicate the 3′ end of the DNA strand, telomeres shorten as cells divide. In the absence of special 

telomere maintenance mechanisms, telomeres (and chromosomes) become shorter with each cell 

division. Once a critically short telomere length is reached, the cell is triggered to enter replicative 

senescence, ultimately leading to cell death. Telomerase, a cellular ribonucleoprotein enzyme 

complex, counteracts telomere shortening [2]. Human telomerase is constituted by a DNA reverse 

transcriptase polymerase (telomerase reverse transcriptase, TERT), which uses an RNA template 
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(telomerase RNA component, TERC) to add telomeric DNA onto telomeres, thus compensating for 

the telomere shortening caused by cell divisions [3]. The two components of human telomerase are 

encoded by the TERT gene on 5p15.33 (OMIM:187270) and by the TERC gene on 3q26 

(OMIM:602322). Since telomerase is almost totally absent in adult tissues, including the skin, 

kidney, liver, blood vessels, and peripheral leukocytes, the telomeres of replicating cells shorten 

progressively. This mechanism is thought to underlie aging and age-associated diseases [4–6]. 

Average leukocyte telomere length (LTL) is generally used as a marker of overall telomere length, 

since TLs have been found to be strongly correlated across different cell types within the same 

individual [7,8]. Population studies that have applied analysis of LTL support the hypothesis that 

leucocyte telomere shortening is associated with aging and lifespan [4–6,9,10]; however, the 

associations with age-related chronic diseases (cardiovascular and metabolic disease, cancer) are 

not always concordant [8,9,11,12]. 

As fully functional telomerase is critical for telomere maintenance, genetic variations of human 

TERT and TERC genes may alter the stability of the telomerase complex or directly affect its 

enzymatic activity [13]. Studies assessing the possible effect of genetic polymorphisms of human 

TERT and TERC genes on LTL [13–16], and on aging and lifespan [17–19], have produced mixed 

results. While some TERC or TERT SNPs were found to be associated with longevity, the relation 

was not always mediated by the association with telomere length. Similar contradictory results 

have come from genetic association studies of TERT polymorphisms and common diseases [8].  

In the present study, we investigated the possible impact on the human lifespan of four 

polymorphisms of the TERT gene (MNS16A, rs2853691, rs33954691, rs2736098) and three 

polymorphisms of the TERC gene (rs12696304, rs3772190, rs16847897). MNS16A is a minisatellite 

(variable number of tandem repeats, VNTR) located downstream of exon 16 of the TERT gene and 

upstream in the putative promoter region of an antisense TERT transcript. It shows two common 

alleles (VNTR-302 or L and VNTR-243 or S on the basis of the PCR fragment size) [20]. It has been 

studied in relation to longevity and cancer risk [18,21–23]. The detection of antisense TERT mRNA 

suggested its possible role in regulating human telomerase expression [20]. TERT rs2853691 is 

located in an intronic region and shows two common alleles, A and G, while rs33954691 is located 

in exon 14, where a C to T substitution does not result in a change of the amino acid (Histidine) at 

codon 1013. These two TERT SNPs have been reported to be associated with both LTL and lifespan 

[13,17]. rs2736098 is located in exon 2, where a G to A substitution does not result in a change of the 

amino acid alanine at codon 305; it has shown a strong association with some cancer types (see 

OMIM %613059). The TERC SNPs rs12696304, rs3772190, and rs16847897 are all located 

downstream of TERC in a noncoding region [14,17] and have been consistently associated with 

variation of LTL [14,16,17,24]. In addition, in the attempt to gain a better understanding of the 

relationships between telomere length and lifespan, in the present study, we analyzed LTL in a 

subsample of elderly subjects who had been genotyped for TERT and TERC polymorphisms.  

The association between LTL and TERT and TERC polymorphisms and longevity was 

investigated by means of a follow-up study. The study sample was originally recruited in 2000. 

After collecting mortality information in 2009, we defined a sample of long-lived subjects as those 

who died after the age of 90 years, and a sample of not-long-lived subjects composed of those who 

had died before reaching 90 years of age. 

2. Materials and Methods 

2.1. Materials 

The sample was recruited in 2000 for the multidisciplinary LONCILE (Longevity of Cilento) 

study on the anthropological and biological characteristics of the elderly population of the Cilento 

area in the district of Salerno, southern Italy [25]. As previously reported [26], it consisted of 277 

unrelated individuals (43.7% males) born between 1900 and 1930 (mean age, 82.9 ± 5.7 years ± 

standard deviation [SD]), enrolled without selection criteria, except age (>70 years) and birth place; 

they had no manifest pathologies and were healthy, consistent with age. Mortality data on 267 
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subjects were collected in 2009. In 2000, 14.5% were aged 90 years old or older. During the nine-year 

follow-up period, the mortality rate was 62.5% (51.5% men), and 44.9% of the subjects died after the 

age of 90 years, including those aged 90 at baseline. As the mean life expectancy in this geographic 

area in 2000 for subjects 83 years old was seven years for women and six years for men (ISTAT, 

http://demo.istat.it/unitav/index.html), we defined as long-lived those subjects who, at follow-up in 

2009, had died at an age of more than 90 years (≥90 years). The sample of the long-lived (n = 75) 

comprised 100% of subjects aged 90 years or older in 2000 and 36.3% of those aged over 80 years in 

2000. The sample of the not long-lived (n = 89) was made up of individuals who had died between 

2000 and 2009 before reaching the age of 90 years.  

The protocol for the collection of biological material for the scientific studies was approved by 

the institutional committees (Local Health Unit, Salerno 3). The study was approved by the 

Department Board (12/06/2009 session) of the former Department of Genetics and Molecular 

Biology of La Sapienza University, Rome. Written, informed consent was obtained from all subjects. 

2.2. Laboratory Methods 

Genomic DNA was extracted according to the salting out procedure described by Miller et al. 

[27] from venous blood drawn in EDTANa2 as anticoagulant from all subjects after overnight 

fasting. 

TERT VNTR MNS16A was genotyped according to the allelic-specific PCR method, as 

previously reported [20,23]. Genotyping revealed, in addition to the most common alleles 

corresponding to 243 bp band and 302 bp band, less frequent but still polymorphic alleles 

corresponding to 274 bp band and 333 bp band. The genotypes were then classified according to 

Wang et al. [20]: short allele (S) corresponds to 243 and 274 bp bands and long allele (L) to 302 and 

333 bp bands. The MNS16A genotypes were L/L, L/S, and S/S. TERT SNPs (rs2853691 and 

rs33954691) were investigated by polymerase chain reaction amplification followed by restriction 

fragment length polymorphism (PCR-RFLP), as previously reported [23]. Genotyping of the TERT 

SNP (rs2736098) and the TERC SNPs (rs12696304, rs3772190, and rs16847897) was carried out by 

allelic discrimination using predesigned TaqMan SNP genotyping assays (Applied Biosystems), as 

previously reported [23]. The genotyping techniques are reported in detail in Supplementary 

Materials. 

The average (of triplicate) telomere length in leukocytes was measured by real-time PCR 

quantitative analysis (qPCR) on a 7300 real-time PCR instrument (Applied Biosystems). This 

method allows the determination of the number of copies of telomeric repeats (T) compared to a 

single copy gene (S) used as a quantitative control (T/S ratio) [28]. The telomere and single-copy 

gene β-globin (HGB) were analyzed on the same plate in order to reduce inter-assay variability. 

DNA (35 ng) was amplified in a total volume of 20 µl containing 10 µl of SYBER Select Master Mix 

(Applied Biosystems); primers for telomeres and the single-copy gene were added to final 

concentrations of 0.1 µM (Tel Fw), 0.9 µM (Tel Rev), 0.3 µM (HGB Fw), and 0.7 µM (HGB Rev), 

respectively. The primer sequences were: Tel Fw 

5′-CGGTTTGTTTGGGTTTGGGTTTGGGTTTGGGTTTGGGTT-3′; Tel Rev 

5′-GGCTTGCCTTACCCTTACCCTTACCCTTACCCTTACCCT-3′; HGB Fw 

5′-GCTTCTGACACAACTGTGTTCACTAGCAAC-3′; and HGB Rev 

5′-CACCACCAACTTCATCCACGTTCACCTTGC-3′ [29]. The enzyme was activated at 95 °C for 10 

min, followed by 40 cycles at 95 °C for 15 s and 60 °C for 1 min. In addition, two standard curves 

(one for HGB and one for telomere reactions), were prepared for each plate using a reference DNA 

sample (Control Genomic Human DNA, Applied Biosystems) diluted in series (dilution factor = 2) 

in order to produce five concentrations of DNA ranging from 50 to 6.25 ng in 20 µL. Measurements 

were performed in triplicate and are reported as the T/S ratio relative to the calibrator sample to 

allow for comparison across runs. 

2.3. Statistical Analysis 
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Allelic frequencies were determined by the gene-counting method. Agreement between the 

observed genotype distributions and those expected according to the Hardy-Weinberg equilibrium 

was verified with a chi square test. Linkage disequilibrium (LD) between the TERT and TERC SNPs 

and haplotype frequencies were estimated by the maximum likelihood method using the EH 

program (http://www.genemapping.cn/eh.htm) [30]. The differences in allele, genotype, and 

haplotype frequencies between patients and controls were analyzed with a chi square test. The 

probability of living to an age over 90 years (≥90 years) or not associated with TERT genotypes was 

estimated by odds ratios (ORs) adjusted for other variables calculated by logistic regression.  

Parametric (ANOVA) and non-parametric (Kruskal-Wallis) tests were used to compare the 

distribution of LTL across long-lived and not long-lived subjects, and the distribution of the mean 

T/S ratio across the various TERT and TERC genotypes. Level of significance was set at p < 0.05. The 

relationship between T/S ratio and age was evaluated by regression analysis.  

3. Results 

To evaluate the involvement of the TERT and TERC polymorphisms in lifespan determination, 

genotype frequencies of TERT and TERC SNPs observed in the long-lived subjects were compared 

against those observed in the subjects who had died before reaching the age of 90 years (not 

long-lived) (Table 1). In both groups, the genotype frequencies of TERT and TERC polymorphisms 

agreed with those expected according to Hardy-Weinberg equilibrium. No difference in the 

distribution of TERC SNPs and TERT SNPs rs33954691 and rs2736098 genotypes was observed 

between the long-lived and the not long-lived (Table 1). By contrast, a significant defect of the TERT 

VNTR MNS16A L/L genotype (p = 0.018), and rs2853691 A/G and G/G genotypes (p = 0.01), was 

found in the long-lived compared to the not long-lived. The two TERT polymorphisms were found 

in strict linkage disequilibrium (p < 0.0001, D = 80% of Dmax), with a trend of the MNS16A L allele 

to be associated with the rs2853691 G allele and the MNS16A S allele with the rs2853691 A allele.  

Logistic regression analysis was then applied to correctly evaluate the effect of TERT 

genotypes on longevity. In the analysis, the independent variable was the genotype constituted by 

the combination of MNS16A L/L and rs2853691 A/G or G/G genotypes. The dependent variable was 

having lived to an age of over 90 years (≥90 years) or not. The results showed that, after adjusting 

for sex, carrying MNS16A L/L and rs2853691 A/G or G/G genotypes was associated with a 

significantly lower probability of living to more than 90 years of age (odds ratio [OR] 0.34, 95% 

confidence interval [CI] 0.15–0.79, p = 0.012), or, in other words, a risk of 2.94 (1/0.34) to die before 

the age of 90 years. Analysis of the association between TERT MNS16A and rs2853691 genotypes 

and age at death supported previous findings, showing that the L/L genotype and carrying G 

alleles are associated with a lifespan of less than 90 years (Table 3). 

Leukocyte telomere length (LTL), expressed as the T/S ratio, was measured in a subgroup of 

153 subjects at baseline. The mean LTL value at baseline was 0.69 ± 0.12 T/S (range, 0.49–1.03, 

median 0.69), with only a slight difference between males and females (males: n = 59, LTL = 0.67 ± 

0.11; females: n = 94, LTL = 0.70 ± 0.12, p = 0.18). Age at baseline was inversely associated with 

telomere length. Linear regression (y = −0.009x + 1.4, p < 0.0001, n = 153) (Figure 1) yielded an 

estimated telomere loss rate of about 0.010 T/S ratio/year. 
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Table 1. TERT and TERC genotype distribution in long-lived and not long-lived. Percentage is given 

in brackets. 

Gene/Genotype  Not long-lived Long-lived 

TERC rs12696304   

G/G 11 (12.4) 5 (7.0) 

G/C 35 (39.3) 31 (43.7) 

C/C 43 (48.3) 35 (49.3) 

TOTAL 89 71 

p 0.52 

TERC rs3772190   

C/C 56 (67.5) 40 (58.8) 

C/T 22 (26.5) 25 (36.8) 

T/T 5 (6.0) 3 (4.4) 

TOTAL 83 68 

p 0.40 

TERC rs16847897   

C/C 7 (8.6) 8 (11.9) 

C/G 36 (44.4) 34 (50.7) 

G/G 38 (46.9) 25 (37.3) 

TOTAL 81 67 

p 0.47 

TERT VNTR    

MNS16A   

L/L 

L/S 1 

32 (36.0) 

42 (47.2) 

13 (18.8) 

35 (50.7) 

S/S 1 

TOT 

15 (16.9) 

89 

21 (30.4) 

69 

p 0.018 

TERT rs2853691   

A/A 41 (45.1) 48 (67.6) 

A/G1 42 (46.2) 22 (31.0) 

G/G1 8 (8.8) 1 (1.4) 

TOT 91 71 

p 0. 004 

TERT rs33954691   

C/C 77 (85.6) 62 (84.9) 

C/T1 11 (12.2) 9 (12.3) 

T/T1 2 (2.2) 2 (2.7) 

TOTAL 90 73 

p 0.91 

TERT rs2736098   

C/C 56 (64.4) 52 (72.2) 

C/T1 30 (34.5) 17 (23.6) 

T/T1 1 (1.1) 3 (4.2) 

TOTAL 87 72 

p 0. 29 
1 These genotypes were pooled for the analysis. 
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Table 2 lists the estimated haplotype frequencies in the long-lived and the controls. In 

accordance with single polymorphism observations, a significant defect of the MNS16A 

L—rs2853691 G haplotype was observed in the long-lived compared to the not long-lived to 

controls (p = 0.03), suggesting that the presence of the two TERT alleles may prevent attainment of 

the oldest ages. 

Table 2. TERT VNTR MNS16A and TERT rs2853691 haplotype distribution in long-lived and not 

long-lived.  

VNTR MNS16A/rs2853691 

Haplotype 
Not long-lived Long-lived 

L-A 0.294 0.278 

L-G 0.301 0.164 

S-A 1 0.397 0.548 

S-G 1 0.008 0.010 

p 0.03 
1 These genotypes were pooled for the analysis. 

Table 3. Relationship between TERT genotypes and age at death (mean ± sd). In brackets is the 

number of subjects. 

SNP/Genotypes Age at death 

VNTR MNS16A  

L/L 87.6 ± 6.0 (45) 

L/S 88.4 ± 5.4 (77) 

S/S 90.8 ± 6.2 (36) 

p 0.04 

rs2853691  

A/A 89.9 ± 5.7 (89) 

A/G 87.6 ± 5.7 (64) 

G/G 85.8 ± 3.7 (9) 

p 0.01 

 

Figure 1. LTL expressed as T/S ratio as a function of age at baseline. 
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The relationship between LTL at baseline and years of life remaining was analyzed using the 

follow-up data on lifespan. A significant positive relation was observed (regression line y = 0.009x + 

0.6, p = 0.01, n = 99), where the regression coefficient 0.009 T/S provides an estimate of how much 

longer the telomeres are at baseline for each additional year of life remaining. We then compared 

the baseline LTL values of the subjects still living at follow-up with those no longer living in both 

the total sample, and when the sample was divided into three age classes at baseline (70–79, 80–89, 

and ≥90 years). The mean LTL values at baseline were significantly higher in those still living than 

in those who had died during the follow-up years. Within each age group, the LTL of those still 

living was higher than the mean class value and the LTL of those who had died was lower (Table 

4). The difference between those who were still living and those who had died was greater among 

the 70–79-year-olds than among the 80–89-year-olds (Table 4 and Figure 1). The over 90-year-olds 

had all died during the follow-up period.  

Table 4. Mean LTL (T/S ratio) in the total sample, still living and no longer living at follow-up, by 

age class (mean ± SD).  

1 The p value refers to the comparison between No longer living and Still living at follow-up. 

These findings are illustrated in Figure 1: the vast majority of the deceased in the age range 70–

79 years had LTL values below the regression line at baseline, whereas those still living had LTL 

values above the line. Differently, in the higher age range of 80–90 years, the baseline LTL values of 

the no–longer living and the still living were fairly mixed below/above the line. We then compared 

the LTL values in the not long-lived (0.67 ± 0.09, n = 56) and the long-lived (0.59 ± 0.08, n = 43, p = 

0.003). The long-lived sample, 84% of which were already 90 years old at baseline, had a lower 

mean LTL value than the not-long-lived, who belonged to younger age groups.  

Finally, the mean LTL associated with TERT VNTR MNS16A and rs2853691 genotypes 

involved with lifespan determination was examined in not long-lived and long-lived subjects. No 

difference in mean LTL was observed among TERT VNTR MNS16A and rs2853691 genotypes. 

However, in subjects carrying the combined risk genotypes MNS16A L/L + rs2853691 G/G or A/G 

(Table 5), LTL was found to be significantly shorter in the Not long-lived than in the Long-lived (p = 

0.05). No difference in mean LTL was observed among the genotypes of the other TERC and TERT 

SNPs (data not reported). 

Table 5. Mean LTL (T/S ratio) associated with the combined genotypes of MNS16A/rs2853691 

polymorphisms. 

 L/L + G/G or A/G L/S or S/S + A/A 

Not long-lived 0.63 ± 0.08 (16) 0.64 ± 0.11 (40) 

Long-lived 0.72 ± 0.10 (6) 0.66 ± 0.06 (37) 

p 0.05 0.57 

4. Discussion 

Here, we investigated a possible association between TERT and TERC polymorphisms and 

LTL and lifespan by means of a follow-up study. This study design allowed us to extend the 

investigation to include a sample for which the lifespan was known, and to distinguish between a 

sample of subjects definitely not long-lived and a sample of long-lived subjects. Furthermore, all the 

 All ages age 70–79 years age 80–89 years ≥ 90 years 

Total sample 0.69 ± 0.12 (153) 0.72 ± 0.12 (54) 0.73 ± 0.10 (63) 0.57 ± 0.06 (36) 

No longer living 

at follow-up 
0.63 ± 0.09 (99) 0.63 ± 0.08 (26) 0.69 ± 0.09 (37) 0.57 ± 0.06 (37) 

Still living at 

follow-up 
0.79 ± 0.08 (54) 0.80 ± 0.08 (28) 0.77 ± 0.09 (26) / 

p 1 <0.0001 <0.0001 0.0007  
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subjects belonged to the same birth cohort and had experienced similar social and environmental 

influences.  

Examination of the genetic variation of TERT and TERC genes showed a significant association 

between two TERT polymorphisms (the minisatellite MNS16A and the SNP rs2853691) and 

lifespan. Carrying the TERT VNTR MNS16A L/L genotype and rs2853691 A/G and G/G genotypes 

turned out to be associated with an increased risk (2.94) of dying before the age of 90 years, i.e., 

below the mean life expectancy for subjects living in this geographic area, with an average age of 

about 83 years at study baseline. The observation was confirmed “in vivo” by mortality data and 

showed that the same risk genotypes were associated with the shortest lifespan. An association 

between VNTR MNS16A genotypes and longevity has been observed by Concetti et al. [18], 

whereas rs2853691 SNP has been reported to belong to a haplotype involved in longevity [13,17]. 

Our data support these findings and highlight that the MNS16A L/L genotype and rs2853691 A/G 

and G/G prevent the attainment of longevity. Consistent with this result are previous findings that 

the MNS16A L/L genotype is associated with an increased risk of Alzheimer’s disease [23] and 

lower survival in patients with glioblastoma or lung cancer [31,32], and that rs2853691 A/G and G/G 

are associated with esophageal squamous cell carcinoma [33]. The shorter lifespan associated with 

TERT genotypes would therefore, at least in part, be explained by their involvement in the onset of 

aging-related diseases. We observed a marginally significant association of the combined risk 

genotypes of the two TERT polymorphisms with shorter LTL in the Not long-lived subjects. 

Although the sample was quite small, this observation is consistent with a previous work [18] that 

reported a tendency of greater telomere shortening in elderly subjects with homozygous VNTR 

MNS16A L/L as compared with the other MNS16A genotypes. Considering that the L allele seems 

to have a negative regulatory role in the expression of telomerase [20], the overall picture suggests 

that the relationship of TERT genotypes with lifespan is mediated by an action of TERT on telomere 

length. We found no significant relationships of the TERC SNPs with longevity or telomere length, 

although the TERC SNPs we examined were often found to be associated with telomere length 

[14,16,17,19], and with longevity (rs3772190) [17]. The conflicting data might depend on diverse 

factors such as sample size, population examined, and mean age of the population sample, among 

others. Telomere length being a complex character, numerous genes will contribute to its 

determination, each providing a small contribution that could be difficult to distinguish. In 

addition, the interaction of genetic determinants with environmental factors, such as different 

population lifestyles, could explain the inconsistencies. Furthermore, the discordant results might 

depend on the technique used for LTL measurement as well. In the majority of the population 

studies cited above, the average length of telomeres was measured by Real-Time PCR quantitative 

analysis (qPCR) or by Southern blot analysis of the terminal restriction fragments, and there is 

evidence that intra- and inter-laboratory technical variation severely limits the comparability of 

telomere length estimates between laboratories [34]. 

Here, we also examined the relationships between LTL and lifespan. A significant negative 

correlation between age and LTL at baseline was observed, with an estimated telomere loss rate of 

0.009 T/S ratio/year. This observation is shared by previous studies [35]; the yearly telomere loss 

was very similar to the reported value (0.010 T/S ratio/year) [35]. The mortality data provided by 

the follow-up allowed us to evaluate the relationship between LTL at baseline and the number of 

the remaining years of life. The positive relationship we observed indicates that the shorter the 

telomeres at baseline, the fewer the remaining years of life. In line with this result, analysis of the 

mean LTL values at baseline showed that the mean LTL was much shorter in those who had died 

within nine years of follow-up than in those still alive at follow-up (Table 4). This is partly due to 

the fact that among the deceased, all were already 90 years old at baseline (about 36%), and 

therefore with reduced telomeres according to age. The remaining 64% included subjects who had 

died before the age of 90 and who, as can be seen from the LTL data in Table 4, had LTL values 

lower than both the average value of their age class and the average value of those still living at 

follow-up. This is illustrated in Figure 1, where the LTL values for subjects who died during the 

follow-up are mostly distributed below the regression line. Taking into account the different age 
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classes (Table 4), a comparison of the mean LTL between those still living and those no longer 

living at follow-up, showed a greater difference in the 70-to-79-year olds compared with the 

80-to-90-year-olds, in which the LTL of the no longer living was closer to the LTL of the still living. 

Again, this pattern is clearly shown in Figure 1: before the age of 80 years, the LTL values of the still 

living and the no longer living are well-separated by the regression line, but they become quite 

mixed after the age of 80 years. On the whole the picture provided by our data indicates that 

telomere length is related to lifespan. Indeed, it is almost a lifespan biomarker. However, this 

relationship is stronger for the younger age group (70–79), and then weakens after 80 years of age.  

Despite the mixed results [36] of epidemiologic studies investigating the link between LTL and 

lifespan/mortality, accumulating data tend to confirm that shorter baseline TL is a marker of greater 

susceptibility to age-related diseases and of higher overall mortality risk [37–39]. Varying sample 

sizes and other characteristics, such as age range or the length of the follow-up period, underlie the 

conflicting data. In addition, the wide inter-individual variability in telomere length for individuals 

of the same chronological age due to inherited and environmental factors may mask any 

relationships between LTL and lifespan [40].  

The association between TL and lifespan we observed seemed to weaken in the older age 

classes. Several studies have reported that the magnitude of the association of shorter LTL with 

higher mortality rates declines with increasing age [4,38–43]. A plausible explanation is the 

so-called “survival bias”. In collecting study samples of older individuals, subjects with shorter 

baseline TL, being more susceptible to age-related diseases, may be less likely to be included in the 

study [36,37]. This would lead to a reduced variability of LTL measurements, shifted towards a 

longer telomere length. Furthermore, leukocyte telomere shortening reflects active cell proliferation 

triggered by factors such as oxidative stress and chronic systemic inflammation, both of which are 

aging-related processes. The overexpression of proinflammatory cytokines and mediators observed 

in older individuals, activating leukocyte proliferation, may lead to alterations in the relationship 

between LTL and age, and ultimately lifespan [38,44,45]. In this context, it could be hypothesized 

that, at an age before 80 years, shorter telomere length may indicate a greater susceptibility to 

aging-related diseases and therefore be predictive of reduced lifespan, whereas in those older than 

80 years of age, chronic systemic inflammation, together with oxidative stress, could act as 

prevailing determinants of leukocyte proliferation and telomere shortening, thus making the 

relationship between telomere length and lifespan less linear. LTL therefore seems to be a more 

reliable lifespan biomarker in a younger age class.  

There are indications that the relationship between LTL and age depends on nongenetic factors 

such as age, sex, race/ethnicity, lifestyle practices, and dietary patterns [10]. The strength of the 

present paper is the examination of a fairly well-defined population sample for ethnicity, age range, 

lifestyle, and dietary patterns. This homogeneity allowed us to define a temporal window, the 

interval of 70-79 years, in which LTL could be seen as a good lifespan biomarker. These 

observations provide useful indications for designing investigations that aim to assess the possible 

use of LTL as a lifespan predictor. 
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