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Abstract

In this thesis the problem of achieving a full, experimentally based, representation

of the load and elastic deflection response of aeronautical and ship structures is

concerned by the development of numerical procedures and their assessment via

related experimental activities. The objective is to provide reliable estimations of

elastic deflections and external forces throughout the structure using noisy pointwise

measurements. This issue is critical for some important structural engineering ap-

plications such as Structural Health Monitoring and Condition-Based Maintenance.

The most important tools generally used for this purpose (e.g, Kalman filter)

have been first reviewed, pointing strengths and critical issues out. Then, an ap-

proach based on an optimal second-order natural observer has been proposed also

integrating this with signal processing approaches like discrete wavelet transform

and finite-element component analysis approaches like dynamics condensation. The

developed and integrated numerical framework was finally applied to the state es-

timation of two specific structures, namely, an aircraft and surface vessel operating

under unsteady environmental conditions featured by wind gust or sea waves, re-

spectively. More in detail, a scaled physical model of a fast catamaran, tested in the

towing-tank, and a numerical model of a flexible aircraft were studied as significant

test cases for assessing the introduced methodologies. Both the structures involved

are interesting in their respective research fields.

The accurate and complete estimation of the structural dynamics behavior of the

fast catamaran is particularly interesting since in real world it might be exposed to

critical slamming phenomena on the wetdeck region. The experimental set-up and in

particular the choice of the structural measurements were crucial to have a minimum

but reliable database for the reconstruction of the structural deflection field. By

applying the above methodologies, it was also possible to provide a deeper insight

relative to violent fluid-structure interaction phenomena and to evaluate possible

fatigue-life reduction for components where direct monitoring was not possible.
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Abstract v

The other case study consists of an aircraft research model that experiences a

particular kind of instability involving both aeroelasticity and flight dynamics. In

such aeronautical application, the structural measurements are virtually obtained

by means of simulations based on a flight dynamics and aeroelasticity toolbox de-

veloped for the present purpose and featured by an accurate description of the

coupling caused by aerodynamic and inertial forces. This case has been performed

to investigate numerically the technique proposed in this thesis by integrating the

methodology with multi-resolution analysis.
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Introductory remarks

The virtual sensing problem

The topic of the present thesis is closely concerned to the problem of transportation

safety. Although addressed on aeronautical and marine vehicles, the thesis aims

at providing the technological tools for enhancing the Structural Health Monitoring

(SHM) strategies for a wider range of engineering sectors, such as automotive, energy

production facilities and civil buildings. The main social challenge is to reduce as

much as possible fatalities that can cause the loss of human life by monitoring the

structure and identifying the presence of an anomalous behavior before the failure

occurs. Both in the aeronautical and ship engineering field, enormous efforts are

underway to improve the prevention tools and to reduce the number of incidents

year by year, thus reducing the number of victims and/or the economic consequences

that an accident causes.

Structural Health Monitoring thus denotes a new engineering field which includes

all the non-destructive methodologies, that point to monitor the health of the struc-

ture in real time rather than performing periodic inspections. In particular, the

missions concerning the SHM are i) warning about exceeding the maximum loads

that can be admissible from the structure under certain conditions, thus requiring

guidance actions; ii) providing an estimate of the damage accumulated by the struc-

ture during its operative lifetime in order to optimize maintenance strategies and

iii) providing, if possible, an estimate of any damage on the structure in terms of

identification, location and extension in order to predict the timing of maintenance.

For this purpose we distinguish between: local identification techniques, based on

the modification of mechanical properties detectable by arrays of sensors present in

the area affected by the damage and global identification approaches that look for

consequences at a general level, such as vibration-based methods [1].

Vibration-based methods are characterized by the presence of sensors spread

1
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throughout the structure, all contributing together to the estimation of changes in

the localized mechanical behavior of the structure. However, these methods are

validated and easy to apply only to non-complex 1D or 2D structures. When the

topology of the structure starts to get complicated these methods are generally

inaccurate.

When dealing with vibration-based SHM of complex structures such as aircrafts

or ships (but even bridges and wind turbines), the lack of information that can lead

to wrong estimation of the position and the severity of the damage is one of main

issues. The thesis tries to contribute positively to the above mentioned issue (see

Fig. 1): it aims at expanding the set of data necessary to develop SHM strategies.

The research field that aims at expansion of data from experimental measurements

(knowing the physical variables where they are not measured) is generally referred

as virtual sensing. Thus, an accurate estimation of elastic deflections and internal

and external loads throughout the structure can lead to:

� an enhancement in the estimation of fatigue life reduction as it is based on

virtual measurements of the stress tensor field; an application based on a fast

catamaran case study will be illustrated in this dissertation;

� an improvement in the position and severity prediction of the damage that

represents the next step beyond this thesis activity.

For this purpose, in this thesis an approach based on hybrid model, that is, the

combination of the mathematical model and the experimentally collected data, is

carried out. Thus, it is necessary a numerical model of the structure representing its

topology and its mechanical properties, and, consequently, a toolbox able to inte-

grate the measurements collected with the information available from the numerical

model. This can be done in principle by means of several strategies, including in-

terpolation of data, modal filters or state observers. The system state, generally

made up by a set of Lagrangian coordinates (and, in case, their time-derivatives),

represents the minimum information basis that can be considered to describe the be-

havior of the structure under consideration at different levels of detail (based on the

number of states considered). Subsequently, the shape functions obtainable from

the numerical model allow expanding at any point of the structure the informa-

tion condensed in the state estimation. It is thus possible to estimate the external

loads, displacements, the stress and strain field, and the elastic energy density at

each point. Through these reconstructions, it is therefore possible to support and

enhance the several methodologies proposed in structural monitoring literature.
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Figure 1: State of the work and future perspective scheme.

Literature review

The problem of virtual sensing has been much debated in recent years and is still an

open problem. The aim is to optimize the quality and quantity of information on the

structural behavior that can be achieved through a limited number of measurements.

With respect to the present literature analysis it must be considered that some

methods that are applicable for certain types of structure may not be for other

types that operate in different environments.

The more information is given to the observer, the more accurate the estimate

will be. On the contrary, the less information you have the more the problem is chal-

lenging. In order to understand this concept, let us consider the example concerning

the knowledge of external forces, under the assumption of having an accurate nu-

merical model. Indeed, methods that use direct knowledge of external forces provide

better estimates than the methods in which external forces are completely unknown.

However,even if the force input is unknown, some minimal information can be pro-

vided. There are therefore methods that assign a covariance to the external forces or

a power spectral density (PSD). Each structure is excited in a specific way, and, net

of the effectiveness of each method, the type of observer suitable for each structure
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must depend on the type of information provided. Note that in the aircraft and ship

cases, there are spectral statistical models that describe the environment in terms

of turbulence and oceanic waves, respectively based on the informations that are

provided to the state observer, all the methods below are summarized in Tab. 1.

Furthermore, the virtual sensing methodology must be supported by a good

sensor placement strategy. This last problem, however, is not addressed in the work

of this thesis, but may help the development of the proposed methodologies.

The first approach possible to virtual sensing consists of the interpolation of data

by means of appropriate shape functions. However, this method is not applicable

when the topology of the structure is complex and its application is relevant only

when dealing with beams or plates.

The problem of virtual sensing of complex structures has traditionally been ad-

dressed through modal filters [2, 3]. Although optimal sensor placement can aid to

capture an adequate amount of information by reducing the problem of leakage and

spatial aliasing, this is not very robust when system order and measurement noise

increase. From this, different approaches have been inferred aimed at improving the

estimation of the displacement and load fields.

Avitabile and Pingle [4] presented a methodology based on the SEREP reduc-

tion method. The goal was to provide an estimate of the stress and strain field on

wind turbines. The displacement data obtained from patches and targets used, re-

spectively, for digital image correlation and dynamic photogrammetry were used to

expand the displacement field over the entire structure. The use of a direct SEREP

method has some drawbacks due to the least squares numerical approximation car-

ried out to explicit the unmeasured degrees of freedom, and above all, no control

on measurement and process noise. Kullaa [5] applied dynamic substructuring to

estimate the displacement field throughout the structure. A dynamic condensation

was used where displacement measurements were applied on the structure interfaces

enabling to estimate the displacement on a numerical case study of plane frame and

a vehicle crane. Albeit this procedure avoids the least-square approximation, again

it doesn’t consider the effects of the process and measurement noises.

Hwang et al. [6] proposed the use of Kalman filter to estimate modal elastic de-

flections. The state vector used for the estimate was made up by modal coordinates

and velocities. Subsequently, the virtually estimated modal coordinates were used to

estimate wind loads on a numerical case study of five-story building. Papadimitriou

et al. [7] proposed to predict fatigue-life reduction of metallic structures by using

the stress field obtained by means of Kalman filter.
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Lourens et al. [8] introduced the augmented Kalman filter. In this work, the state

vector to be estimated by means of Kalman filter was augmented with the external

forces that, in this way, were directly estimated. From the dynamic modelling point

of view, these external forces, though unknown, were provided of a random walk

dynamics with an own process noise. Naets et al. [9] suggested the use of dummy

measurements to avoid drift whenever only accelerations were used.

Relying on the work of Gillijns and De Moor [10], Lourens et al. [11] proposed

to use a joint input-response estimation to estimate at the same time the state

(made up by modal coordinates and velocities) and the input to the system. The

joint input-response estimation exploits an algorithm similar to Kalman filter that,

besides the steps of measurement update and time update considers a further step

of input estimation. In this step the input is recursively estimated by means of an

unbiased minimum-variance process. Practically, the input is estimated by linear

combination of the measurements by considering a gain matrix that minimizes the

error of the prediction of input. One of the limits of this approach is that it can

be used only in the situation where the measured quantities are accelerations. The

stated advantage of this methodology is that there is no prior information to be

provided on the statistics of external forces. However, as it will be shown in Sec. 1.2.1

all the methods that exploit Kalman filtering are not natural for second order system,

such as the structural systems [12]. This is an application limit that is revealed when

unknown external forces are dominant with respect to process and measurement

noises. In this case the natural relationship of derivation between the estimation of

modal velocities and modal coordinates is lost.

To this end, Balas [12] proposed a first order observer that, besides to make the

state error converge, pursues also to make converge the naturality of the observation

process in a relative finite time. Hashemipour et al. [13] readapted the Kalman filter

formulation to second order systems. Belvin [14] presented a method of estimation

of dynamic states for feedback control of structural systems. The observation of

the state, which includes also additional states to integrate accelerometer measure-

ments, is performed by synthesizing the state observer by means of pole placement.

Demetriou [15] presented a natural second order observer that utilizes a parameter-

dependent Lyapunov function to ensure the asymptotic convergence of the state

error. Demetriou [16] adapted the formulation of the unknown input observer for

second-order systems. The formulation aims to fault detection of mechanical sys-

tems. Azad et al. [17] proposed an observer-type H∞ filter designed for structural

systems.
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Hernandez [18] presented a second-order natural observer based on velocity mea-

surements. The peculiarities of this observer rely on that it is synthesized by express-

ing the error dynamics in frequency domain, although it works in time-domain. This

increases the capability of the proposed observer since the statistics of measurement

and process noise are not considered by means of covariance matrices as in Kalman

filter, but they are defined directly in frequency domain. This feature, that is not

particularly stressed in the paper, can help the observation of systems when dealing

with structural problems that are intrinsically featured by their frequency domain

behavior. The main drawback consists in the synthesis of the observer that must be

designed through an optimization problem that may involve several design variables.

In [19], Hernandez directly implemented the observer in a finite element framework,

whereas Erazo and Hernandez [20] validated experimentally the approach by means

of a cantilever test beam.

Methodology

The thesis work falls among the methods of structural health monitoring and presents

methodologies to obtain an optimal observer able to reconstruct the load and elastic

deflection field of structural systems. The aim is to yield much more tailored state

observers for structural dynamics problems, providing the second-order observers of

some extensions that make them more customizable according to the user’s engi-

neering sensitivity and the interested structural problem.

The state estimators most used in literature obtain the estimates by condensing

the precious information of the different frequency behavior of the external forces

and the measurements into normal distributions. These features, that are good for

systems in which external forces are known and dominant with respect to process and

measurement noises, do not make these types of observers appealing for processes

in which external forces are generally unknown and, above all, have a well defined

frequency content.

On the other hand, the methodology presented in this thesis uses the power

spectral density of external loads for state estimation. The description of the ambi-

ent loads is thus provided through the identification of the power spectral densities

obtainable by performing experimental tests and/or numerical simulations. This

information is then integrated into a complex numerical framework that combines

output from finite element models even with the power spectral densities of mea-

surement and process noise to synthesize an optimal observer in accordance with
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the formulation in [18] by means of an appropriate optimization process. The ob-

server obtained is then applied to the current experimental measurements to provide

an estimate of the generalized coordinates (the state of the system) for each time

instant.

Nevertheless, two main improvements of the formulation in [18] are proposed:

� the use of the measurements stored in a foregoing stage to the observer synthe-

sis to enhance the observation capabilities and yield the state observer adaptive

with the stored measurements. This observer will be referred as learning phase

driven observer. Here, it is worth noticing that these measurement data could

belong to a set of sensors that are no longer installed on the structure;

� the use of wavelet multi-resolution analysis (WMRA) [21] to decompose the

state observation in a multi-scale problem and synthesize the state observer

for each specific scale. Splitting the signal out in different scales means that

we can express the signal by means of a summation of different contributions

each having a different frequency content. This method can be performed

in real time and allows designing a multi-scale observer. Similar applications

have been performed in [22] by applying WMRA to design a frequency-band

adaptive controller.

The extensions have been applied to two different case studies, that are, i) an

experimental scaled model of a surface vessel and ii) a numerical model of flexible

aircraft. These application cases are chosen based on the complementary train-

ing of the three years of doctoral activity, specially in naval experimental testing

through the partecipation in experimental campaigns in towing-tank and in theoret-

ical/numerical apects of integrated modeling of flight dynamics and aeroelasticity

that provided the tools to perform virtual tests in aeronautical field. Although it is

recommended to start with a numerical model rather than an experimental model,

in this case it was decided to privilege an increasing order of the complexity of the

proposed methods rather than of the applications.

The surface vessel is a fast catamaran that experiences critical slamming phe-

nomena. This model, that is built with the technique of segmented model with

continuous backbone, presents concentrated forces at the interfaces between the

backbone and the hulls that make helpful the use of different Lagrangian coordi-

nates rather than the modal-ones. In particular the dynamic condensation (also

known as Craig-Bampton reduction [23]) was used for this end.
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Figure 2: Thesis flowchart.

For this type of application we rely on the first proposed extension, namely, the

learning-phase-driven observer. The results provide an estimate of the concentrated

forces and space-continuous displacements of the structure in the time-frequency

domain to underline some typical behaviors of the ship structures that can be high-

lighted through an accurate estimate of the elastic deflections. Three different trials

in different sea conditions have been considered to assess the state observation.

In this regard, it is highlighted how the methodology provides important scientific

informations on the behavior of the structure and its response to the slamming

phenomena [24].

Subsequently, the stress field obtained has been used to evaluate the reduction of

fatigue life at any point of the structural frame for each of the considered trial cases.

Even if applied to a structure that experiences loads not leading to fatigue damage

during its use in towing tank, it gives the areas of the structure comparatively most

exposed to fatigue in the considered test conditions. Therefore, this procedure has

the potential to improve the estimation of fatigue life reduction of vessel structures

where the internal loads are of a greater order of magnitude. [25].

The numerical aeronautical model is freely inspired by Lockheed Martin X56-a

Body Freedom Flutter [26], that is, a experimental aircraft used to study a specific

kind of instabilities that involves the first bending mode of the wings with the

short period mode. The problem of estimating elastic deflections is a current study

problem for flutter control of this type of aircraft [3]. This model has been tested

to validate the multi-scale observer.
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Thesis outline

The thesis is organized as follows:

In Chap. 1 the theoretical background concerning the numerical modeling of

structural systems and the methods generally used in literature to observe their

dynamics are introduced and discussed. Specially, the modeling of structural dy-

namic system through a general finite element theory is provided. Then, virtual

sensing traditional formulations are introduced, thus pointing out advantages and

application limits.

Chap. 2 describes the methodology in depth. First of all, the toolbox necessary

for the virtual sensing of the structural dynamics is introduced together with the

practical issues to be overcome. Subsequently the declared extensions of second

order observer are proposed concerning precisely the use of data recorded during

the learning phase and the use of multi-resolution analysis.

In Chap. 3, it is performed the first application concerning the estimation of

loads and deflections of a fast catamaran scaled model, by applying the state ob-

server synthesized by using experimental recorded data. The Chapter includes also

a sensitivity analysis on the number of sensors involved.

In Chap. 4, the numerical case study will be illustrated concerning the estimation

of elastic deflections of a flexible aircraft obtained by virtual experiments. The

observation is performed by using the multi-scale observer.

In Appendix A the theoretical background on wavelet multi-resolution analysis

will be illustrated.

In appendix B the theoretical development of a method that aims at providing

an optimal estimation of the external forces is introduced.

In appendix C an application on fatigue life reduction is presented for the ex-

perimental catamaran case study.

In appendix D the integrated modeling of aeroelasticity and flight dynamics used

to generate data for the flexible aircraft virtual experiment is explained.



Methods Natural
Is the
Input
known?

Prior statistics
Referencesmeasurement

noise
process noise

unknown
forces

Modal filters Yes No No No No [2, 3]

Reduction/expansion
(SEREP, Guyan, Dynamic
condensation)

Yes No No No No [4, 5]

Kalman filter No Yes Covariance Covariance No [6, 7]

Augmented Kalman filter No No Covariance Covariance
Covariance (of
the derivative
of forces)

[8, 9]

Joint input-state estimation No No Covariance Covariance No [10, 11]

Unknown input second-order
observer

Yes No No No No [16]

Other second order observers Yes No Yes Covariance Covariance
[12, 13, 14, 15,
17]

Second order observer with
frequency domain synthesis

Yes No PSD PSD PSD [18, 19, 20]

Table 1: Virtual sensing strategies in literature.



Chapter 1

Theoretical issues on structural

dynamics systems and their

state observers

The approach developed in this thesis to assess the structural behavior of ship and

aeronautical structures is based on advanced concepts from structural dynamics and

the theory of state observers. This toolbox allows for the development of the re-

quired numerical procedures which implement the present approach. The chapter

is organized as follows: Sec. 1.1 refers to the main useful notions related to Finite

Element Analysis, that is, the numerical tool used to generate an a priori knowl-

edge of the structures being objects of the present thesis, along with reduced order

modeling; Sec. 1.2 reviews the optimal state observers.

1.1 Numerical modeling

The aim of this thesis is to perform the estimation of the loads and elastic deflec-

tion field for aircrafts and ships. To this end, we need to introduce the concepts

related to continuous-space elastic displacements and external forces. Denoting with

ξα(α = 1, 2, 3) the material coordinates of the structure and with x(ξα, t) and x̊(ξα),

respectively, the actual and initial positions of the material point, it is possible to

express the displacements of the material point at each instant t as

uE(ξα, t) = x(ξα, t)− x̊(ξα) (1.1)

11
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The elastic continuum is featured by the principles of conservation of mass and

momentum that lead to the well-known Cauchy equations of motion:

ρ
Dv

Dt
= div(T) + ρf (1.2)

where D•
Dt indicates the material derivative symbol, v is the material derivative of

uE, T is the stress tensor and f are the volume forces. Because of the complexity

of such structures, the discretization into finite element (FE) model is the only

way forward. With FE model we pursue to describe as best as possible the true

structure, identifying the numerical model as its virtual twin. In FE description, the

structure is discretized into a certain number of nodes and elements. Discretizing

by means of finite elements means assume a set of Lagrangian coordinates p =

[p1 · · · pk · · · pNdof ]T able to reconstruct the elastic deflection field as follows:

uE(ξα, t) =

Ndof∑
k=1

pk(t)ϕ̆
(k)(ξα) (1.3)

where ϕ̆(k)(ξα) is generally a space-dependent tent function that coincides with elas-

tic deflection field when only pk is non null. According with the kind of discretization

(e.g. solid, shell, linear elements or concentrated mass), the Lagrangian coordinates

pk, namely the DoFs of the FE model, assume the meaning of physical displacements

and rotations of the nodes. Consequently, the field associated to external forces f is

given by:

f(ξα, t) =

Ndof∑
k=1

f̆kϕ̆
(k)(ξα) (1.4)

where f̆k are nodal forces. It is worth recalling that, while the nodes provide the DoFs

to reconstruct the displacement field, the elements which are defined assuming the

nodes at the corners, elaborate the density and the constitutive laws to get the mass,

damping and stiffness properties of the structure. In this way, the discretization of

the structure into finite elements allows to get a detailed picture of the structure

in terms of static and dynamic behavior. An example of discretization in finite

elements is illustrated in Fig. 1.1. The figure shows the scaled catamaran (namely,

one of the case study of the present thesis). The elements that form the structure

are characterized by user assigned properties such as, for instance, the definition of

material and the thickness of the shell elements.
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(a) Experimental model

(b) Finite element model

Figure 1.1: Scaled catamaran: experimental and numerical models.

The FE analysis, by means of a weak form procedure and considering the stress

tensor split up in a conservative portion depending on the material deformations and

non-conservative one depending on velocity of deformation, provides a description

of the structure in terms of mass M̆, damping D̆ and stiffness K̆ matrices

M̆p̈ + D̆ṗ + K̆p = f̆ + w̆ p(0) = p0, ṗ(0) = ṗ0 (1.5)

where p is the vector of nodal degrees of freedom (displacements and rotations

according to the FE modelling, i.e., pk k = 1, ..., Ndof ), whereas f̆ is the vector

collecting the external forces on each DoF and w̆ is the process noise. The challenge

of the present work is not providing simulations in numerical environments, but
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dealing with the real structures. The process noise w̆ is already introduced in order

to consider any kind of uncertainties with respect to real structure to be investigated.

The measurements concerning the structural behavior of the structure are data

arrays that depend on structural dynamics. In this section, without considering the

internal dynamics of the sensors we can state that this data can always be expressed

as a function of the displacement field, and, in turn, of the Lagrangian coordinates.

For instance, consider the specific material point ξ̄α. If we install a displacement

sensor about it (e.g. a potentiometer), we assume that the output y(tk) at the

specific time tk is expressed as the projection of uE(ξ̄α, tk) along the axis of the

sensor represented with the versor g(ξ̄α) of the local reference system. In this way,

a dependency of the measurements from the Lagrangian coordinates is obtained as:

y(tk) = uE(ξ̄α, tk) · g(ξ̄α) =

Ndof∑
n=1

pn(tk)ϕ̆
(n)(ξ̄α) · g(ξ̄α) (1.6)

This equation mathematically expresses a displacement measure. However, similar

expressions can be derived to consistently express any type of structural output in-

cluding accelerations and strains. Hence, generalizing the concept above, the outputs

can be expressed according to the DoFs of FE model:

y = S̆ap̈ + S̆vṗ + S̆dp + v̆ (1.7)

where S̆a, S̆v and S̆d are the selection matrices able to express the measurements by

means of vector p and its derivatives (e.g. accelerometer and strain gage data can

be expressed, respectively, as a function of S̆a and S̆d) and v̆ is the measurement

noise. To understand the meaning of the selection matrices above, it is worth to

notice that in presence of strain gage measurements, S̆d would assume the meaning

of finite difference between the displacements and rotations of the element nodes

involved.

If the structure has a linear behavior, M̆ and K̆ are symmetric. Moreover, defined

as

T =
1

2
ṗTM̆ṗ > 0 ∀ṗ 6= 0 (1.8a)

E =
1

2
pTK̆p ≥ 0 ∀p 6= 0 (1.8b)

respectively, the kinetic and elastic energy, it is possible to state that M̆ is positive

definite matrix whereas K̆ is a semi-positive definite matrix.
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The problem in Eq. 1.5 is associated to the well-known eigenproblem such that:

K̆z(r) = ω2
rM̆z(r) (1.9)

where ωr and z(r) are, respectively, the r-th natural frequency and eigenvector. It

can be demonstrated that ωr is always real and, that the eigenvectors ensure the

following relationships 1:

z(r)TK̆z(s) = krδrs (1.10a)

z(r)TM̆z(s) = mrδrs (1.10b)

z(r)TD̆z(s) = drδrs (1.10c)

Hence, by means of the eigenproblem and defining qr (r = 1, ..., Ndof ) the set of

generalized modal coordinates, it is possible to express p as

p =

Ndof∑
r=1

z(r)qr (1.11)

and, thus, obtain a decoupled set of equations such that

mr q̈r + dr q̇r + krqr = fr + wr qr(0) = qr0, q̇r(0) = q̇r0 (1.12)

where the modal force and noise are expressed as follows:

fr = z(r) · f̆ (1.13a)

wr = z(r) · w̆ (1.13b)

In this respect the load and elastic deflection fields associated to the vibration modes

1 where the simplifying assumption of Rayleigh or modal damping has been considered [27]:

dr =
α

2ωr
+

2ωr

β
if Rayleigh damping

dr = 2ξrmrωr if modal damping

where α and β are the coefficients of Rayleigh model whereas ξr is the r-th damping ratio of the modal
damping model.
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can be expressed as

uE(ξα, t) =

Ndof∑
r=1

qr(t)ϕ
(r)(ξα) (1.14a)

f(ξα, t) =

Ndof∑
r=1

fr(t)ϕ
(r)(ξα) (1.14b)

where the vibration mode shape functions ϕ(r) are expressed as linear combination

of the tent functions ϕ̆(k) expressed in Eq. (1.3) in the following way:

ϕ(r)(ξα) =

Ndof∑
k=1

ϕ̆(k)(ξα)z
(r)
k (1.15)

It is worth to introduce here the driven response problem in frequency domain.

q̃r = h̃r(ω)
(
f̃r + w̃r

)
(1.16)

where the symbol •̃ is used to represent the Fourier transform, and, subsequently,

h̃r(ω) is the frequency response function of the r-th mode defined as

h̃r(ω) =
(
− ω2mr + iωdr + kr

)−1
(1.17)

By introducing hr(t) as the inverse transform of h̃r(ω), the driven response in time

domain is provided by the following convolution product:

qr(t) = hr(t) ∗ (fr + wr) =

∫ t

0
hr(t− τ)(fr(τ) + wr(τ))dτ (1.18)

The number of equations in Eq. (1.18) necessary to describe the structural dynamics

of discretized structures is theoretically equal to the number of degrees of freedom

of the problem. However, although the number of DoFs of a FE model is highly

influenced by the discretization, the number of DoFs of a sufficiently refined model is

still too high for the aim of force and elastic deflections estimation. This well-known

issue can be solved by reducing the problem size and finding a reduced basis of

generalized coordinates able to get the best picture possible of structural behavior.
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1.1.1 Reduced order modeling

Modal truncation

Modal truncation techniques over finite-element analysis is usually the way to obtain

a computationally cost-effective model. When the structural behavior of interest is

limited in a certain frequency band, it is possible to consider just a limited number

of modes. Firstly, the user should spot the frequency range of interest. Usually,

the choice is made upon the frequency range of the external forces. Then, relying

on the expected frequency response as in Eq. (1.17), one can think to truncate

the summation in Eq. (1.11) to those modes that should not be excited. Hence,

the following modal transformation allows to get the diagonal mass, stiffness and

damping matrices along with a new description of the selection matrices expressed

as a function of the generalized modal coordinates:

ZTM̆Z = M (1.19a)

ZTK̆Z = K (1.19b)

ZTD̆Z = D (1.19c)

S̆aZ = Sa (1.20a)

S̆vZ = Sv (1.20b)

S̆dZ = Sd (1.20c)

where

Z =
[
z(1) · · · z(r) · · · z(Nq)

]
(1.21)

and Nq is the number of modes considered to reduce the problem size. In this case

Z is usually a rectangular matrix. Therefore, M,D and K are diagonal matrices with

size Nq ×Nq. It follows:

p = Zq + pRM (1.22a)

f = ZTf̆ (1.22b)

w = ZTw̆ (1.22c)

where pRM is the displacements due to residual modes dynamics 2 and f and w are

2 The dynamics of residual modes is described as follows:

pRM =

Ndof∑
r=Nq+1

z(r)qr



Theoretical issues on structural dynamics systems and their state observers 18

modal forces and process noise. Thus, it is possible to rearrange Eqs. (1.5,1.7) by

means of truncated modal transformation 3

Mq̈ + Dq̇ + Kq = f + w (1.23)

y = Saq̈ + Svq̇ + Sdq + v

where v includes also effects owing to modal truncation.

v = v̆ + S̆ap̈RM + S̆vṗRM + S̆dpRM (1.24)

Therefore, reduction of order size results in an increase of measurement noise. In

particular, it means that the useful signal of y can be considered in a frequency band

lower than ωNq . Now it is possible to introduce the frequency response function

matrix:

H̃S(ω) = [−ω2M + iωD + K]−1 =


h̃1(ω)

. . .

h̃Nq(ω)

 (1.25)

along with impulsive response of the structural system:

HS(t) = F−1{H̃S(ω)} =


h1(t)

. . .

hNq(t)

 (1.26)

In a similar way, we introduce an uncommon operator that assort in frequency

3 Pre-multiplying Eq.(1.5) with the transpose of Z we get:

ZT
(

M̆p̈ + D̆ṗ + K̆p = f̆ + w̆
)

that, considering the above modal expansion can be written as follows:

Mq̈ + Dq̇ + Kq + ZTM̆p̈RM + ZTD̆ṗRM + ZTK̆pRM = f + w

Being the residual modes orthogonal to the considered modes the following quantities are null:

ZTM̆p̈RM = ZTD̆ṗRM = ZTK̆pRM = 0
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domain the selection matrices Sa, Sv and Sd:

S̃(ω) = −ω2Sa + iωSv + Sd (1.27)

namely, a frequency-condensed state-to-output matrix, whose its inverse transform

is defined as S(t) = F−1(S̃) such that:

y = S(t) ∗ q + w (1.28)

Dynamic condensation

The dynamic condensation, also known as Craig-Bampton method [23], is a tech-

nique that allows for reduction of the number of degrees of freedom p of a struc-

tural problem if the dynamic response is limited to a certain frequency range. This

method differs from the modal truncation by the capability to include physical dis-

placements in the set of generalized coordinates; this provides a set of reduced DoFs

on which the decomposition depends, which are called master and hereafter denoted

by pM. Besides the master DoFs, an additional set of modal DoFs η is considered

to complete structural dynamics behavior in the interest frequency range. By tak-

ing into account this reduction technique, the physical DoFs p can be expressed by

superimposition as:

p =

{
pM

pS

}
=

{
pM

ZIpM + ZSη + p
(RM)
S

}
(1.29)

=

[
I 0

ZI ZS

]{
pM

η

}
+

{
0

p
(RM)
S

}
= Zcb

{
pM

η

}
+

{
0

p
(RM)
S

}

where Zcb is the Craig-Bampton transformation matrix. The dynamics of the slave

DoFs pS depends on the master DoFs by means of the boundary modes ZI obtained

by a static condensation, as well as the dynamics associated to the fixed-boundary

modes ZS. There are several reasons why one could use Craig-Bampton reduction.

Generally, in aerospace design, this technique is used to enable the partition of

models into superelements, allowing the reduction of computational cost for the

analyses whenever only some parts of the structure are under process, and, thus,

the separation of the design stage between multiple offices.

For the present aim, Craig-Bampton technique is used as a smart tool to provide

a suitable description of the external forces by using as Master DoFs those where

concentrated loads at interfaces are exchanged. In fact, if only concentrated forces
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are present on the substructure of interest, we can consider the forcing terms of the

master DoFs as interface forces. Then, a user dependent number of fixed-boundary

modes is considered in order to have also a displacement span complete enough for

the interest frequency range. Thus, the transformation matrix in Eq. (1.29) allows

to get a reduced order system whose dynamic behavior is described by the following

mass and stiffness matrices:

Mcb =

[
M̆MM + ZT

I M̆SSZI ZT
I M̆SSZS

ZT
S M̆SSZI I

]
Kcb =

[
K̆MM + K̆MSZI 0

0 ΩS

]

The second order linear dynamic system can be expressed as follows:

Mcbq̈cb + Dcbq̇cb + Kcbqcb = fcb + wcb (1.30)

where qT
cb =

{
pT

M ηT
}

is the vector of the reduced generalized coordinates, Dcb is

the structural damping matrix 4 expressed by means of Craig-Bampton modes, fcb

is the vector of the external forces and wcb is the process noise 5.

Similarly to the modal transformation, also in this case it is possible to recon-

struct the load and deflection fields by means of physical mode shapes ϕ
(r)
cb associated

to this Lagrangian coordinates:

uE(ξα, t) =

Ndof∑
r=1

qcbr(t)ϕ
(r)
cb (ξα) (1.31a)

f(ξα, t) =

Ndof∑
r=1

fcbr(t)ϕ
(r)
cb (ξα) (1.31b)

4 The damping matrix Dcb is rebuilt from the modal damping matrix D by means of modal expansion on
nodal degrees of freedom:

Dcb = ZT
cbD̆Zcb = ZT

cbZ−TDZ−1Zcb

5 If we define as p(RM) =
{

0T p
(RM)T
S

}T
the residual vector, the process noise would become:

wcb = ZT
cb

(
w̆ + M̆p̈RM + D̆ṗRM + K̆pRM

)
However, if the number of added modes is enough to describe the entire frequency range of the excitation,
we can assert that:

wcb ≈ ZT
cbw̆
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where, defining as z
(r)
cb the r-th column of Zcb, the ϕ

(r)
cb are expressible in such a

following way:

ϕ
(r)
cb (ξα) =

Ndof∑
k=1

ϕ̆(k)(ξα)z
(r)
cbk

(1.32)

In the rest of dissertation the equations concerning the state-observer will be

developed by considering a generic modal truncation. However, all the equations

below could be used with any reduced order model like dynamic condensation.

1.2 State observers

In this section, the theory of the most important state observer will be discussed.

At the beginning, first-order observers are introduced along with Kalman filter and

Kalman-based approaches that will be reviewed for structural dynamics problems.

These observers are introduced to show why it is necessary to consider more suitable

tools for the mechanical problems under consideration.

1.2.1 First order observer

In control theory, it is defined as state observer a dynamic system able to estimate

the evolution of a state under observation. The evolution of a system with state

x ∈ RNx and output y ∈ RNy (with Nx and Ny sizes of state and measurement

vectors) is given by

ẋ(t) = f(x(t), u(t)) + w(t) (1.33)

y = g(x(t), u(t)) + v(t)

where f and g represent the evolution of state and output as a nonlinear function

of the state, u ∈ RNu is the input vector (with Nu number of inputs), and w and

v represent, respectively, the process and measurements noises. If we consider ap-

plications in the range of linearized time-invariant systems, the Eq. (1.33) can be

arranged as follows:

ẋ(t) = Ax(t) + Bu(t) + w(t) (1.34)

y(t) = Gx(t) + Ju(t) + v(t)
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where the following time-invariant matrices are introduced: A state matrix, B out-

put matrix, G state-to-output matrix and J input-to-output matrix. When dealing

with state-observation an important issue concerns the observability of the system,

namely the possibility to observe the state evolution given the active measurement

set y(t). For linear time-invariant systems like the previous-one, the observability

condition is ensured when the observation Gramian

Wo(tf , t0) =

∫ tf

t0

eAT(τ−t0)GTeA(τ−t0)dτ

is full rank. Generally, the observation is performed by introducing an additional

term in the Eq. (1.34) that updates the state estimation relying on the knowledge

of the measurements. The observer must ensure the convergence of estimation to

the state of the plant in Eq. (1.34). Hereafter, we will use the symbol •̂ to mark

estimations of quantities already introduced. The observation of system in Eq. (1.34)

is generally expressed as

˙̂x(t) = Ax̂(t) + Bu(t) + L̄(t)r(t) (1.35)

ŷ(t) = Gx̂(t) + Ju(t)

where, without loss of generality, L̄(t) is the time-dependent gain matrix that ensures

the asymptotically convergence of the error e = x − x̂ to zero, and r = y − ŷ is the

measurement residual between the measured quantities and the ones estimated by

means of the observation process itself. When the gain matrix L̄ is constant in

Figure 1.2: Block diagram of state observers.

time, the state observers are generally referred as Luenberger observers. Then, if

the system is observable, the necessary condition to get a convergent observation
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is that A − L̄G has stable poles. Therefore, the gain matrix L̄ can be computed by

means of pole-placing and the poles of A− L̄G can be chosen arbitrarily. The rate of

convergence depends on the choice of the poles. Frequently, it leads to choose high-

gain observers that have as main drawbacks the sensitivity to noise (see Eq. (1.34))

and the peaking phenomena at beginning of the estimation process.

Kalman Filter

Kalman filter (KF) is a recursive observation process that estimates the state of the

system by considering noisy measurements and process [29]. Even though KF is not

used in this thesis, its theory is illustrated in order to outline the state of the art.

In this framework the continuous-time version of KF, also known as Kalman-Bucy

filter, will be considered as the limit of the discrete case [29, 30]. KF assigns to the

evolution of the system a multivariate normal distribution that depends on process

and measurement noises. The idea behind KF is to compute recursively a gain

matrix able to minimize the error covariance P(t) = E[(x(t)− x̂(t)) (x(t)− x̂(t))(t)T]

in order to get always the most likely value of the state, that is the reason why KF

is referred as optimal estimator. Therefore, consider a zero-mean Gaussian process

and measurement noises such that:

E[w(t) w(τ)T] = Qδ(t− τ) (1.36a)

E[v(t) v(τ)T] = Rδ(t− τ) > 0 (1.36b)

E[w(t) v(τ)T] = Uδ(t− τ) (1.36c)[
Q U

UT R

]
≥ 0 (1.36d)

and initial condition given by the expected value of the state x̂0 = E[x0] and its

uncertainty P0 = cov(x0). From Eq. (1.34), under the hypothesis above, it is possible
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to consider the propagation of state covariance Π(t) = cov(x) as 6

Π̇(t) = AΠ(t) + Π(t)A + Q (1.37)

Π0 = cov(x0) Initial conditions

Now, considering a state observer like the one in Eq. (1.35) and the error defined as

e(t) = x(t)− x̂(t), it is possible to define the state error dynamics as

˙̂e(t) = (A− L̄(t)G)x̂(t) + w(t)− L̄(t)v(t) (1.38)

Similarly to Eq. (1.37), by means of Eq. (1.38) it is possible to get the dynamics of

P(t):

Ṗ(t) = (A− L̄(t)G)P(t) + P(t)(A− L̄(t)G)T + Q + (1.39)

L̄(t)RL̄T(t)− UL̄T(t)− L̄(t)UT

with initial condition P0 assigned. It can be demonstrated that the optimal solution

of Eq. (1.39) is obtained when

L̄(t) = (P(t)GT + U)R−1 (1.40)

Substituting the expression in Eq. (1.40) in Eq. (1.39), the quadratic differential

equation below is obtained

Ṗ(t) = AP(t) + P(t)AT + Q− L̄(t)RL̄T(t) (1.41)

that is also known as Lyapunov Equation. This equation is asymptotically stable

and, a stationary value of Pss (and in turn also the steady state gain L̄ss) can be

6 To obtain the propagation of state covariance, consider to proceed with the limit of difference quotient:

lim
ε→0

x̂(kε) = lim
ε→0

(I + Aε)x̂((k − 1)ε) + w((k − 1)ε)ε

lim
ε→0

Π(kε) = lim
ε→0

(I + Aε)Π((k − 1)ε)(I + Aε)T + Q((k − 1)ε)ε
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computed by solving the following quadratic equation 7:

0 = APss + PssA
T + Q− L̄ssRL̄T

ss (1.43a)

L̄ss = (PssG
T + U)R−1 (1.43b)

If the idea is to monitor along time the response of a linear time-invariant system

like the ones being object of this thesis, the use of the unsteady KF could result in

a loss of computational power, thus the steady state KF can fit better the purpose.

KF, in case the system is observable and the conditions in Eq. (1.36a) are respected,

is always computable by means of the closed formula in Eq. (1.43a) that admits only

two solutions, of which only one stable solution.

However, KF is not a suitable tool to study second-order mechanical systems

[12, 18], namely it does not ensure the kinematic relationship present within these

problems. Indeed, consider the following second-order linear dynamic system recast

in first order form 8 :{
q

q̇

}·
=

[
0 I

−M−1K −M−1D

]{
q

q̇

}
+

[
0

M−1

]
u + w (1.44)

y = Gdq + Gvq̇ + Ju + v

where q and q̇ represent, respectively, the displacement and velocity vectors, w =

[0 wT
v ]T the process noise, M,D,K, respectively, general mass, damping and stiffness

matrices, y the output, v the process noise and Gd,Gv and J, respectively, matrices

that express the output through q, q̇ and u. The state estimation equation associated

7 It is worth to remind that combining the two equations in Eq. (1.43a), the well known Riccati equation
is obtained:

0 = APss + PssAT + Q− (PssGT + S)R−1(PssGT + S)T (1.42)

8 By taking into account Eq. (1.23) it is possible to get Gd, Gv , J by taking into account also accelerations

Gd = Sd − SaM−1K Gv = Sv − SaM−1D J = SaM−1
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to the dynamics in Eq. (1.44) is generally expressed as follows:{
q̂
ˆ̇q

}·
=

[
0 I

−M−1K −M−1D

]{
q̂
ˆ̇q

}
+

[
0

M−1

]
u + (1.45)[

Ľ

M−1L

]
(y − Gdq̂− Gv ˆ̇q− Ju)

KF provides a gain matrix such that ˙̂q 6= ˆ̇q, except if Ľ = 0 (never possible [18]) or

the residual y − Gdq̂− Gv ˆ̇q− Ju→ 0. The last case is only possible when there are

no unknown inputs and the modeling uncertainties are negligible.

Other optimal estimators

Moreover, KF has another fundamental problem, that is it requires the knowledge

of the external input. Consider the case where u = ū + f where ū and f represent,

respectively, the known and unknown inputs. Here, two different assumptions could

be made: i) consider the unknown input as Gaussian and consequently as part of the

process noise (that is a hypothesis too restrictive on the behavior of the inputs) or

ii) modify KF in order to estimate also the unknown inputs. The first considerable

approach, referred as Augmented Kalman Filter (AKF), was to include the unknown

input in the state vector along with an associated user-defined stable random walk

dynamics [8, 9]

ḟ = −αf + wf α ≥ 0 (1.46)

eventually having the following state vector

xT =
{

qT q̇T fT
}

and system
q

q̇

f


·

=

 0 I 0

−M−1K −M−1D I

0 0 −αI




q

q̇

f

+

 0

M−1

0

 ū +

0 0

I 0

0 I

{wv

wf

}

y =
[
Gd Gv J

]
q

q̇

f

+ Jū + v (1.47)
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The augmented system is then observed by means of the same procedure shown

above in KF theory. It works by assigning an a priori covariance matrix to the

derivative of external forces. Another important tool used for this purpose is the one

presented in [10, 11, 28], that is originally known as Unbiased minimum-variance

input and state estimation and recently referred as Joint Input-State estimator.

This algorithm is inspired by the discrete-time KF and consists of three different

steps: i) time update of the state (expressed in a similar way w.r.t. KF considering

an unknown input to be estimate), ii) input update where a minimum variance

and unbiased gain matrix is synthesized to update the input at each step and iii)

the measurement update (also similar to the one in discrete KF). It is worth to

notice that also this procedure, like KF, converges for t → ∞ providing a steady

state observer. The stated advantage of this method concern the estimation of

external forces without any prior knowledge of inputs. However, it works only

with acceleration measurements and, consequently, it is highly dependent on sensor

placement. It is worth noticing that both the mentioned methods are still not natural

for mechanical systems.

1.2.2 Second order observer

Considerations that the first order observer is not natural for mechanical systems

have been made since the last years of nineties [12]. If we consider a mechanical

system like the one in Eq. (1.23) (without considering the known external inputs),

a second order natural observer can be written as follows:

M¨̂q + D ˙̂q + Kq̂ = Lr (1.48)

y = Sdq̂ + Sv ˙̂q + Sa¨̂q

In the natural observer defined above the relationship ˙̂q = ˆ̇q is always ensured.

Unfortunately there exists no closed formula to find an optimal state observer and

the gain matrix must always be synthesized by means of a numerical optimization

procedure. The definition of state error is critical for this end. In KF and other first

order observers the error is defined by the difference between the predicted state and

the true unknown state. From the definition of state error, there follows the Riccati

equation and, consequently, a closed relationship that allows to define the optimal

gain matrix. It is worth to notice that, in a general second order observer the state

is not necessarily made up by velocities and displacements. The definition of state

relies on the user choice. In case we define the state error ε taking into account only
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Figure 1.3: Block diagram of second order observers.

the displacements such as follows:

ε = q− q̂ (1.49)

it is possible to obtain the error dynamics from Eqs. (1.44, 1.48):

Mε̈+ Dε̇+ Kε+ LSaε̈+ LSv ε̇+ LSdε = f + w + Lv (1.50)

The Fourier transform of Eq. 1.50 yields

[
−ω2(M + LSa) + iω(D + LSv) + (K + LSd)

]
ε̃(ω) = f̃(ω) + w̃(ω) + Lṽ(ω) (1.51)

By defining

H̃O(ω) = [−ω2(M + LSa) + iω(D + LSv) + (K + LSd)]
−1 (1.52)

Eq. 1.51 provides the frequency response of the state error as

ε̃ = H̃O (̃f + w̃ + Lṽ) (1.53)

If the statistical features of the forcing terms and process and measurement noises

are stochastic, known and uncorrelated each other, the system response to stochastic

inputs is easily obtained by means of Eq. (1.53):

Φεε(ω) = H̃∗O(ω)(Φff(ω) + Φww(ω)− LΦvv(ω)LT)H̃T
O(ω) (1.54)
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where Φ•• indicates the power spectral densities. Finaly, Eq. (1.54) yields the co-

variance of the state error

Σ2
εε =

∫ +∞

−∞
Φεε(ω)dω (1.55)

Note that the quantity above depends on the gain matrix L. Given the power spectral

densities of external forces and the process and measurement noises, the goal is to

find the optimal free parameters that minimize the trace of Σ2
εε making this observer

optimal. However, the synthesized observer should be such that the stability of the

observation system is ensured. Indeed, all the poles of H̃O must have negative real

part.

This approach is similar to the one of KF. The main differences consist in the

different definition of L̄ and state error. In the present case Ľ portion is constrained

to be zero ensuring a natural observation of the system. Although the error definition

is different, note that it is possible to consider the same definition of the P trace

used in the Kalman filter. Indeed if we consider the error e such that

e =

{
ε

ε̇

}

the following relationship is valid:

tr(P) = tr
(∫ +∞

−∞
Φee(ω)dω

)
≡ tr

(∫ +∞

−∞
(1 + ω2)Φεε(ω)dω

)
It is worth noting that it is not the integration to be equivalent. We obtain the

equivalence only when the trace is performed. The choice of the function to be

minimized at this point is completely user-dependent. If the state consists of modal

coordinates in which the mass matrix and the stiffness are diagonal, an energetic

meaning could be assigned to the covariance function. In fact, by defining an error

such that:

ē =

{
K1/2ε

M1/2ε̇

}
=



√
k1ε1

...√
kNqεNq√
m1ε̇1

...
√
mNq ε̇Nq


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the function to be minimized would become

tr(P̄) ≡ tr
(∫ +∞

−∞

[
KΦεε + ω2MΦεε

]
dω
)

With this approach we go completely out of the rigid Kalman filter patterns. The

objective function becomes customizable according to the user’s engineering sensi-

tivity. The main drawback of this approach relies on the fact that this gain matrix

can be computed only by means of an optimization procedure that involves a large

design variables space. In Sec. 2.2 we will investigate how to get this gain matrix

despite the so many variables involved.



Chapter 2

Methodological approach for

virtual sensing

The aim of the thesis is to develop a numerical procedure for the estimation of

load and elastic deflection field from a discrete set of experimental data. To do

this, interpolation methods can be used, but if the topology of the structure is

complex, some issues arise in the construction of the basis functions with respect to

the nodes. However, in general, a large number of sensors is welcome to minimize

these problems. Furthermore, another common requirement is that these sensors

should be homogeneous in type.

In this thesis, to overcome these issues, the proposed approach relies on state

observers. There are several reasons to follow an approach based on state observers.

First, these involve additional information about the underlying physics, that is,

the theoretical model of the observed system. Interpolation methods exploit only

indirectly and rather weakly some knowledge about the system. Second, the state

concept is a more general concept with respect to the raw information available at

sensor nodes. The state, obtained by modal truncation (or other transformations in

Lagrangian terms, such as the Craig-Bampton reduction method) is able to describe

the structural dynamics behavior of a complex structure rather efficiently by means

of a minimum number of parameters. Consequently, the state observers are able to

estimate the system dynamics by means of measurements also in presence of noise

provided that its statistical features are provided by user.

In particular, a second order natural observer will be used for this purpose. This

observer, as explained in the Chap. 1, has great advantages compared to the gen-

erally used approaches but demands for an optimization process that unfortunately

31
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involves a great number of free parameters. To overcome this issue, in Sec. 2.2 it

is presented a technique to reduce the number of free parameters along with de-

tails about the optimization process and further arising considerations. The main

novelties of the present thesis are introduced in the extensions proposed in Sec. 2.3.

The chapter is ended by a section that introduces the quality indicators generally

used in state observation.

2.1 Description of the methodology

In this section, the main steps of the approach are reviewed. Fig. 2.1 illustrates

synthetically the methodology work-flow. To get a full picture of the behavior of

the structure we need an updated numerical model along with a-priori statistical

informations of the system. These informations combined with measurement data

and a good estimation algorithm are able to provide the real-time digital twin of

the structure which informs the crew (or an expert system) about dynamic behavior

and loads.

In Sec. 2.1.1 the model updating phase will be reviewed. whereas the way the

a priori statistical informations are obtained will be explained in Sec. 2.1.2, on the

other hand, points out how to get the a priori statistical informations needful for the

synthesis of the observer. Secs. 2.1.3 and 2.1.4 will provide a more comprehensive

classification of the sensor data.

2.1.1 Model updating phase

First of all, an updated numerical model is fundamental. This step is particularly

challenging since obtaining a finite element model with an elastic behavior similar

to the one of the real structure is not straightforward. There are several strategies

to perform model updating. The easier way pursues for convergence of modes and

natural frequency, whereas a more complicated approach aim to the convergence of

experimental frequency response functions. However, with the increasing complexity

of the structure topology full convergence is not ensured.

A robust structural updating requires an optimization process that can involve

a large number of free parameters that must be carefully identified. Anisotropic

materials, bonding, welds and sensor layouts can make the structural updating pro-

cess very complicated. Furthermore, it is recommended that the final model still

has a physical meaning, i.e. that the model updating design variables have final

values that are within the uncertainty range. The procedure that is used in this
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Figure 2.1: Methodology flowchart.

thesis activity to perform model updating exploits the MSC Nastran gradient-based

optimization solver [32], by defining the following user dependent objective function
1 :

f =

√√√√ Nf∑
n=1

(
cfn∆ω2

n + cMACnMAC2
n

)
where ∆ωn and MACn are, respectively, the difference between the measured n-th

modal angular frequency and the numerical-one and the n-th diagonal element of

MAC matrix, whereas cfn and cMACn are their user assigned weights.

1MAC is defined as follows:

MACn =
|φEnφNn |2

|φEnφEn ||φNnφNn |

where φEn is the n-th experimental modal vector and φNn is the n-th numerical-one.
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2.1.2 A priori statistical informations

In addition to the FE model, the approach presented in Sec. 1.2 needs for the

statistical properties of the measurements, process noise and the external loads. A

correct description of this statistical quantities is essential for the synthesis of a

consistent state observer. Providing non-coherent statistical properties results in

the design of an observer that aims to observe a different physical process, thus

yielding a sub-optimal estimate.

In this regard, there are several ways to get the statistical information about

the external loads in the form of their PSD Φff . Among these we recognize the

possibility to use i) numerical simulations, or, ii) experimental trials. Indeed, before

their operational life, aerospace and marine vehicles go through a whole design

phase that involves the numerical and experimental simulations of their dynamic

behavior under different external loads. These simulations can be used to obtain

the statistical properties of the structure in different cells (i.e. operating conditions

of the structure). Otherwise, if the structure is available to undergo to a learning

phase stage with a sufficient number of sensors, numerical regression methods can

be used to get the statistics of external forces.

The statistical properties associated with the measurement noise Φvv are gener-

ally given by specifications provided by the sensor manufacturers. The sensor noise

is generally weakly correlated to external forces. Thus, for sake of simplicity, this

allows for assuming that the external forces and measurement noise are uncorrelated

for the present applications.

On the other hand, the statistical description of process noise Φww is not easy

to define. Generally, this depends on:

� incorrect modeling of the PSD of external forces.

� numerical modeling uncertainties (mass, stiffness and damping matrices);

Concerning the external forces, it is necessary to provide accurately their PSD by

adjusting the gain at every variation of the operating conditions. Regarding the pro-

cess noise relative to the structural modeling uncertainties, the experimental tests

can be used to estimate the difference between the numerical and real transfer func-

tions. For the sake of clarity, the latter contribution to the process noise is also

dependent on the intensity of the external forces, which adds a further complication

that is not addressed in this thesis activity. The common practice in virtual sens-

ing applications is to introduce a modal diagonal process noise PSD matrix, which
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Figure 2.2: Classification of sensor datasets.

means assuming process noise that is uncorrelated to the external forces and to the

measurement noise. In this thesis this process noise has been set constant up to the

sampling frequency, proportional to the intensity of the external forces.

2.1.3 Classification of sensor datasets

Not all measurements are generally used to update and estimate the state. In this

regard, in this section a more comprehensive classification of the available data is

provided. Indeed, the available measurements are split up into three different groups:

� Active measurements y. This is the input processed by the presented

method to build the approximation model. These data are provided by sen-

sors constituting the permanent sensor array upon which the expert monitoring

system will be permanently based and coincide with the data used in Chap. 1.

� Stored measurements ys. The use of this type of data will be introduced in

Sec. 2.3.1 when it will be proposed to use the data already stored to improve the

synthesis of the state observer. It includes the data upon which the procedure

internally tries to minimize its errors, or conversely to refine its capability to

predict the correct values.

� Control measurements yc. These are available measurements used to check

the final performances but which do not drive the optimization procedure.
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The introduction of the Stored meas. set corresponds to perform the so-called “learn-

ing phase” when the system is installed on-board the vehicle or in the monitored

structure; the Stored Measurements are obtained by means of an array of sensors

some of which, after the “learning phase”, are removed (see yr in Sec. 2.3.1). These

concepts are further explained in the diagram in Fig. 2.2. The Stored and the Control

Measurements are distinct sets because we are specifically interested in evaluating

the performances also in points which does not take part to the optimization pro-

cess. The introduced available measurement sets can be expressed as a function of

the state:

y = Saq̈ + Svq̇ + Sdq + v (2.1a)

ys = Ss
aq̈ + Ss

vq̇ + Ss
dq + vs (2.1b)

yc = Sc
aq̈ + Sc

vq̇ + Sc
dq + vc (2.1c)

where the selection matrices Sa,Sv and Sd are specialized for the considered type of

output by means of apexes •s and •c.

2.1.4 Virtual measurements

Virtual measurements consist of the new information (not directly recorded) that is

desirable to get. It is up to the state observer provide these data. This information

is obtained a posteriori once the state is evaluated, and, similarly to Eq. (2.1a) can

be expressed as follows:

ŷv = Sv
a
¨̂q + Sv

v
˙̂q + Sv

dq̂ (2.2)

Example of virtual measurements are:

� the elastic deflections

� the external loads

� the internal loads (stress field)

� the strain field

� other structural output that can be obtained through finite elements

These quantities can subsequently be used for other purposes (see Appendix C).
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2.2 Application issues on observer synthesis

In this section we will discuss the practical issues concerning the second order ob-

servers. Among these we recognize: i) the reduction of the design variables by means

of an opportune decomposition strategy, and ii) the optimization procedure that in-

volves the reduced design variables space. Then, some practical considerations are

introduced concerning the meaning of the proposed observer.

2.2.1 Gain decomposition

The estimate of optimal gain matrix represents a complex optimization problem,

where the set of design variables is made up by all the elements of L. In this section,

a generalized approach based on the one presented in [15] and [18] is introduced.

Usually, the measurements of accelerations, velocities and displacements are uncor-

related each other so having that the output y can be partitioned as

y =


y[a]

y[v]

y[d]

 (2.3)

where y[a], y[v] and y[d] are the partition of measurements vector into accelera-

tions (e.g., accelerometers), velocities (e.g., potentiometers) and displacements (e.g.,

strain gages), respectively, with size N [a], N [v] and N [d]. In a similar way we can

express the selection matrices as it follows:

Sa =

S[a]

0

0

 Sv =

 0

S[v]

0

 Sd =

 0

0

S[d]

 (2.4)

where the partitions of selection matrices S[a], S[v] and S[d] have, respectively, size

N [a] ×Nq, N
[v] ×Nq and N [d] ×Nq. Consequently, the gain matrix is defined as

L =
[
L[a] L[v] L[d]

]
(2.5)
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By taking into account the decompositions in [15] and [18], the gain matrices L[a],L[v]

and L[d] can be synthesized as it follows:

L[a] = S[a]TΞa (2.6a)

L[v] = S[v]TΞv (2.6b)

L[d] = S[d]TΞd (2.6c)

where Ξa (N [a] × N [a]), Ξv (N [v] × N [v]) and Ξd (N [d] × N [d]) are assumed to be

diagonal matrices. Their diagonal elements (whose number is the same of active

measurements) could be in a sufficient number to get a good compromise for an

optimal observer. In addition, the particular shape assumed by the gain matrix

ensures the symmetry of the problem since

H̃O(ω) = [−ω2(M + S[a]TΞaS[a]) + iω(D + S[v]TΞvS[v]) + (K + S[d]TΞdS[d]]−1 (2.7)

This observer is such that a weight for each sensor is assigned by means of the

diagonal elements of Ξa (N [a]×N [a]), Ξv (N [v]×N [v]) and Ξd (N [d]×N [d]). However,

this approach may be too restrictive to achieve a good optimum since it relies only

on a weight assigned to each sensor [18]. Albeit it is still possible to perform the

optimization of the full gain matrix L (although it is unlikely to find a global optimum

owing to high number of free parameters involved), in this work another observer

decomposition is proposed:

L[a] = ΛaS[a]TΞa (2.8a)

L[v] = ΛvS[v]TΞv (2.8b)

L[d] = ΛdS[d]TΞd (2.8c)

where Λa,Λv and Λd (each having size Nq × Nq) are matrices that weigh the gen-

eralized coordinates according to how these modes are supposed to be influenced

by external forces and their own dynamics. In this way, we pursue to get the best

observer possible by considering a reduced number of variables.

2.2.2 Optimization technique

Generally speaking, an optimal estimator is obtained by minimizing the state error

through an optimization problem subject to stability constraints. The problem can
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Figure 2.3: Optimization process loop.

be stated as follows:

� design variables. λ ∈ RNo (with No number of variables) lists the diagonal

elements of Ξa,Ξv,Ξd,ΛaΛv and Λd;

� objective. The trace of Σ2
εε is assumed as objective function although it has

been pointed out that P or P̄ can be used as well

min
λ∈RNo

tr(Σ2
εε)(λ)

� constraints. The observer system must be stable, such that:

Re
[
poles(H̃−1

O )
]
< 0

The optimization process is implemented within Matlab® Framework [31] and

illustrated in Fig. 2.3. The optimization framework requires for the specific inputs

of this problem, such as the mass, damping and stiffness matrices along with the

PSDs of noises and external forces.

To enhance the process, several factors must be considered. First of all, the num-

ber of variables involved. When dealing with a consistent number of design variables

(such as in the case the observer were designed by considering all the elements of L),

it is unlikely to reach a global optimum with any type of optimization algorithm.

Deterministic algorithms (e.g. gradient or pattern search methods) would stagnate
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too early on local minima. Furthermore, there are stability constraints to be re-

spected that greatly limit the applicability of some gradient methods. The issue of

heuristic algorithms concerns the vastness of space to be explored.

Although the evaluation of the objective function is fast (it is possible to carry

out tens or hundreds of evaluations per second, in accordance with the number

of spectral lines that are used to compute Σεε), this issue, along with the stabil-

ity constraint, also makes these last algorithms inefficient in presence of too many

free parameters. However, the gain matrix decomposition proposed above allows

to manage the optimization in a easier way with both deterministic and heuristic

algorithms. With this decomposition, considering tens of modal coordinates and

measurements, the number of free parameters, generally, does not exceed 50. The

best practice found out in this thesis is to use a genetic algorithm followed by a

pattern search.

2.2.3 Data transformation

The second order observer, as it is possible to notice from Eq. (1.48) results in the

estimation of the generalized coordinates by means of structural dynamics measure-

ments. The values of the gain matrices influence the estimation dynamics. Stating

that the poles of the state observer must be stable means that the estimation must

not diverge. In addition, it is recommended that the natural frequencies associated

to the observer are out of the excitation frequency range. Otherwise, if that poles are

not sufficiently damped, the estimate becomes incorrect due to numerical resonance

(that does not depend on the physical response of the system).

However, the estimation process introduced above is perfectly able to avoid this

issue since resonance phenomena are recognized as an increase of spectral density of

state error. As a consequence, this phenomenon is taken into account in the trade

off performed by the optimizer.

Let’s consider the case that the measurement data consist of strain gages and

accelerations, as in the general sensor layouts. Eq. (1.52) shows how these measure-

ments result in new mass and stiffness of the observation system.

Observer mass matrix: M + ΛaS[a]TΞaS[a]

Observer stiffness matrix: K + ΛdS[d]TΞdS[d]

By imposing the natural constraint of positive definite mass and stiffness matrices

it can be noticed that: i) positive values of Ξd results in an increase of observer
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frequencies whereas ii) positive values of Ξa produces a decrease of the observer

frequencies. Generally speaking, accelerations make the observer slower to follow the

physical dynamics. This last consideration highlights a great issue: the optimizer

can not give importance to acceleration measurements since it may lead to numerical

resonances. The easiest way to proceed is to integrate accelerations in displacements

numerically, even if this causes an initial condition problem along with a possible

signal drift.

In such applications where we deal with accelerations and strains, the output

vector is recast as follows:

y =

{
ȳ[a]

y[d]

}
(2.9)

where

ȳ[a](t) =

∫ t

0

∫ s

0
y[a](τ)dτds (2.10)

thus implying a modification of the observer mass and stiffness matrices:

Observer mass matrix: M

Observer stiffness matrix: K + ΛdS[d]TΞdS[d] + ΛaS[a]TΞaS[a]

2.2.4 Considerations on second-order observers

In aeronautical and ship engineering applications the external forces are generally

unknown, except for the ones produced by actuators and engines that can be intro-

duced in a straightforward way in the observer equations.

Let us consider the case in which we have only displacements (or we integrate

the accelerations as presented in section above). In such a scenario, the idea of an

observer that filters experimental measurements through the expected dynamics of

the system (see Kalman filter) falls due to the lack of knowledge of the external

forces. Hence, the following considerations arise:

� the resulting observer tends to be practically ON/OFF type, where with ON it

is meant the observer is high-gain and with OFF that is practically null. The

dynamics with a level of excitation (or process noise) dominant compared to

the measurements noise will be featured by a high gain observer (ON), whereas

the others will have a low gain (OFF). In practice, the observer discerns be-
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tween the visible or not visible dynamics;

� the observer assigns more weight to the sensors able to describe the most likely

dynamics (depending on its position, each sensor will be able to observe some

dynamics better than others).

It is recommended that the low damping poles of the observer (i.e. the poles of

H̃O) come out of the excitation spectrum of the external forces. This happens if the

number and positioning of the sensors are appropriate. If this happens the state

estimation q̂ is instantaneous with respect to the measurements y.

2.3 Second-order observer extensions

All the observer introduced in 1.2 are obtained by searching for the free parameters

of gain matrix that minimize the state error. This feature makes those observers

optimal. The second order observer introduced in 1.2.2 expands the capabilities

of KF since it allows to introduce frequency dependent noise and force statistics.

In this section, we pursue to improve the features of second-order observers by

proposing at first in Sec. 2.3.1 the use of data stored in a stage previous to the

observer synthesis and installation (making the observer adaptive to stored data).

Subsequently, passing by an intermediate passage in which a frequency-adaptive

observer is defined (see Sec. 2.3.2), we get to the synthesis of the multi-scale observer

in Sec. 2.3.3. A further extension is introduced in Appendix B where an optimal

estimation of external forces is proposed.

2.3.1 Learning-phase-driven observer

Let us consider the second order observer in Sec. 1. If a set of stored data ys were

recorded in a system learning stage, one could use these measurements to enhance

the synthesis of the observer for the state estimation problem. The state estimation

can be rewritten as it follows:

˜̂q = H̃O(ω)Lỹ = H̃O(ω)
[
L 0

]{ ỹ

ỹr

}
= H̃O(ω)Lsỹs (2.11)

where ỹr is the vector of the stored measurements of removed sensors, that are no

longer active for state observation. It follows that it is possible to define also the
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post-fit measurement residual by means of Eq. 2.1b:

r̃s = ỹs − ˜̂ys = [I− S̃s(ω)H̃O(ω)Ls]ỹs (2.12)

This relationship is however influenced by the noise present in ys and from non-

optimal estimation of state. In a way similar to Eq. 1.54, the power spectral density

of the post-fit measurement residual can be processed using the data gathered in

the learning phase 2:

Φrsrs(ω) =
[
I− S̃s(ω)H̃O(ω)Ls

]∗
Φysys(ω)

[
I− S̃s(ω)H̃O(ω)Ls

]T
(2.14)

Finaly, Eq. (2.14) yields the covariances of the post-fit residual

Σ2
rsrs

=

∫ +∞

−∞
Φrsrs(ω)dω (2.15)

Note that this quantity depends on the gain matrix L. The aim is to assess and

minimize also the trace of covariance in Eq. (2.15) along with the trace of covariance

of the state Σ2
εε to obtain the learning phase driven observer.

Refinement of optimization process

Minimizing tr(Σ2
rsrs

) means designing an observer that makes the post-fit residues

converge to zero. This information must be managed carefully since it does not

ensure the convergence of displacements throughout the structure and, generally, it

may be conditioned by measurement noise. However, the minimization of tr(Σ2
rsrs

)

could be very helpful in the case some measurements are available only in a learning

stage since the resulting state observer would address the estimation to converge

also in that points that are no longer directly monitored. Moreover, in a structural

system it is also very difficult to quantify the process error and the minimization

of the post-fit measurement residue can be used to guide towards a synthesis of an

observer that also takes into account the collected data. The natural second-order

2 The same PSD expressed in Eq. 2.14 can be expressed without defining yr:

Φrsrs (ω) = Φysys (ω) +
(

S̃s(ω)H̃O(ω)L
)∗

Φyy(ω)
(

S̃s(ω)H̃O(ω)L
)T

+ (2.13)(
S̃s(ω)H̃O(ω)L

)∗
Φyys (ω) + Φysy(ω)

(
S̃s(ω)H̃O(ω)L

)T
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observer proposed in such a way is synthesized by minimizing tr(Σ2
εε) as well as

tr(Σ2
rsrs

) in a bi-objective optimization framework and can be stated as it follows:

� design variables. λ ∈ RNo lists the diagonal elements of Ξa,Ξv,Ξd,ΛaΛv

and Λd;

� objective functions. The trace of tr(Σ2
rsrs

) is considered along with Σ2
εε:

min
λ∈RNo

tr(Σ2
εε)(λ)

min
λ∈RNo

tr(Σ2
εε)(λ)

� constraints. Again, the state observer must be stable:

Re
[
poles(H̃−1

O )
]
< 0

Figure 2.4: Bi-objective optimization process loop.

In Fig. 2.4 some differences arise than Fig. 2.3. Indeed, according to Eq. (2.14),

also Φysys(ω) should be provided. Moreover, being two objectives, the optimal de-

signs will be distributed on the Pareto frontier. It is worth stating that the engineer-

ing sensitivity will guide the choice of the best final design among all the solutions.

The user criteria depends on the reliance on the description of the statistics assigned

to noises and external forces with respect to experimental data.
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2.3.2 Frequency-adaptive optimal observer

The other proposed approach concerns the design of a frequency-dependent observer.

In Sec. 1.2.2, the covariance is obtained by integrating the PSDs of the state error

over the frequencies. If the gain matrix is constant in time (and consequently in

frequency), this implies that the optimization tends to minimize the state error

globally by giving more weight to the most excited frequencies. Consequently, some

dynamics result extremely penalized. This issue can be summarized by the following

preposition:

� if the predicted input (assigned by means of Φff(ω)) has a dominant frequency-

band, it means that the observer will be synthesized by only focusing on that

band, thus neglecting the others.

� if the sensor noise is frequency-dependent (e.g. accelerometers have an op-

erating range that excludes low frequencies), a constant observer is not able

to give more gain to those sensors that are less noisy for a specific frequency

value. Rather, the importance of measurements is averaged over the frequency

domain.

Considering a general second order system in the form of Eq. (1.23) and the

observer in Eq. (1.48), two possible approaches to overcome the previous issue will

be introduced. Defining a gain matrix as a function of the frequency, the observer

in Eq. (1.48) is recast by means of convolution product:

M¨̂q + D ˙̂q + Kq̂ = F−1
(

L̃(ω)(ỹ − S̃˜̂q)
)

(2.16)

Consequently, the error dynamics ε = q− q̂ is expressed by

Mε̈+ Dε̇+ Kε+ F−1
(

L̃(ω)S̃ε̃
)

= f + w − F−1
(

L̃(ω)ṽ
)

(2.17)

and its Fourier transform yields

ε̃ = H̃O(ω)(̃f + w̃ − L̃(ω)ṽ) (2.18)

where the transfer function depends on the frequency dependent gain matrix L̃(ω):

H̃O(ω) = [−ω2M + iωD + K + L̃(ω)S̃]−1 (2.19)

Under the assumption of uncorrelated noises and external forces, Eq. 2.18 yields the
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following PSD:

Φεε(ω) = H̃∗O(ω)(Φff(ω) + Φww(ω)− L̃(ω)∗Φvv(ω)L̃(ω)T)H̃T
O(ω) (2.20)

where Φff , Φww and Φvv are identified as in Sec. 2.1.1. Again, the gain is synthesized

by minimizing the trace of Σ2
εε in Eq. (1.55). The inverse transform of Eq. (2.16)

the time domain observation system

M¨̂q + D ˙̂q + Kq̂ = L(t) ∗ r(t) =

∫ t

0
L(t− τ)r(τ)dτ (2.21)

where

L(t) = F−1{L̃(ω)} (2.22)

The convolution in Eq. (2.21) implies a causal relationship between the residual

vector r and the estimation q̂. The causality is ensured only if H̃O respects the

Kramers-Kronig principle. For this purpose, L̃(ω) must be defined by means of an

analytic function. Indeed, it is not possible to define a gain matrix independently

for each frequency line. Generally, an analytical expression of L̃(ω) can be obtained

by means a rational-polynomial expansion as follows:

L̃(ω) =

(
N∑
n=0

(iω)nDn

)−1( M∑
m=0

(iω)mNm

)
N < M (2.23)

where Dn and Nm are the coefficient matrices of this approximation.

Although the approach seems to be appealing, it results to be inapplicable since

N + M gain matrices are required, thus obtaining an excessive number of free pa-

rameters to perform the optimization. In practical applications, the shape of the

observer could be suggested by control theory by using a Proportional Integrative

Derivative (PID) observer as it follows

L̃(ω) = LP + LI/(iω) + iωLD (2.24)

2.3.3 A multi-scale observer

To overcome the previous issue, the multi-scale observer is presented below. As

first, the basic notions about wavelet multi-resolution analysis (WMRA) will be

provided. Then this decomposition technique will be exploited to synthesize an
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observer tailored for each characteristic time scale of the response.

Introduction to multi-resolution analysis

In the last decades, wavelet transform has revealed as one of the most important

tools for signal processing and its use have involved a great number of applications.

In this context, the so called wavelet multi-resolution analysis is an appealing tool

able to decompose in real time a generic signal into a certain number of orthogonal

sub-signals defined in different time-scales. It follows that each of these sub-signals

are defined in a precise frequency range. In control theory, wavelet multi-resolution

analysis has been employed as signal decomposition tool in order to get an effective

frequency-dependent control strategy. Especially, Parvez et al. [22] used WMRA

to decompose the error signal (the residue in control theory) in different scales so

obtaining a controller that behaves much better than classical PID in terms of its

ability to provide smooth control signal, better disturbance and noise rejection.

The section goal concerns the use of WMRA for a state observation strategy

based on the synthesis of several observers, each specific for the different measure-

ment time-scale. In the main body of the thesis only the basic concepts of WMRA

will be provided. However, a deeper description of wavelet multi-resolution analysis

is provided in Appendix A.

According with the level N of the decomposition, WMRA provides a decompo-

sition of the signal x(t) in one approximation x(aN ), that is, the sub-signal at lower

frequency and N several details x(dj) with different time-scales, such that:

x(t) = x(aN ) +
N∑
j=1

x(dj) (2.25)

These signals are obtained through Quadrature Mirror Filters, that is, a discrete-

time Finite Impulse Response (FIR) filters that employs the definition of discrete

wavelet transform. Fig. 2.5 shows the frequency content of the filters associated to a

3-level decomposition. By observing Fig. 2.5, the main features of WMRA are here

summarized:

� according to the level N required, the mechanism works by recursively splitting

the approximation (e.g., , x = x(a1) + x(d1), x(a1) = x(a2) + x(d2), x(a2) =

x(a3) + x(d3), and so on).

� The increase of the scale parameter corresponds to a shift to a lower frequency
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Figure 2.5: Frequency domain representation of 3-level WMRA with db12 wavelets.

band with a halved width. This is due to the dyadic nature of the discrete

wavelet transform.

� Although the signals are orthogonal to each other, there is an overlap be-

tween the various scales. This detail must be taken into account for further

considerations following.

Error dynamics

The system dynamics in Eq. (1.48) is recast by means of WMRA decomposition of

Eq. (2.25) as it follows:

M
(

q̈(aN ) +

N∑
j=1

q̈(dj)
)

+ D
(

q̇(aN ) +

N∑
j=1

q̇(dj)
)

+ K
(

q(aN ) +

N∑
j=1

q(dj)
)

=

(
f(aN ) +

N∑
j=1

f(dj)
)

+
(

w(aN ) +
N∑
j=1

w(dj)
)

(2.26)

(
y(aN ) +

N∑
j=1

y(dj)
)

= S(t) ∗
(

q(aN ) +
N∑
j=1

q(dj)
)

+
(

v(aN ) +
N∑
j=1

v(dj)
)

In a similar way, an observation strategy based on WMRA is introduced where the

residues at different time-scales are applied to several gain matrices tailored for each
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time scale as it follows:

M
(

¨̂q(aN ) +
N∑
j=1

¨̂q(dj)
)

+ D
(

˙̂q(aN ) +
N∑
j=1

˙̂q(dj)
)

+ K
(

q̂(aN ) +
N∑
j=1

q̂(dj)
)

=

(
L(N+1)(t) ∗ r(aN ) +

N∑
j=1

L(j)(t) ∗ r(dj)
)

(2.27)

To get an optimal observer we need to design L(N+1) (associated to the approxima-

tion) and L(j) (associated to the details) able to minimize the state error for each

residual sub-signal r(dj). Eqs. (2.26,2.27) provide the state error dynamics in the

following form:[
Mε̈(aN ) + Dε̇(aN ) + Kε(aN ) + L(N+1)(t) ∗ (S(t) ∗ ε(aN ))− f(aN ) (2.28)

−w(aN ) − L(N+1)(t) ∗ v(aN )
]

+
∞∑
j=1

[
Mε̈(dj) + Dε̇(dj) + Kε(dj) +

L(j)(t) ∗ (S(t) ∗ ε(dj))− f(dj) − w(dj) − L(j)(t) ∗ v(dj)
]

= 0

The rest of the section aims to provide a methods to synthesize the gain matrices.

Hypothesis on the spectral decomposition

Next, the following conjecture is assumed. In order to obtain an observer able to

feel the vibration dynamics at the different time-scales involved, it is desirable to

assume all the quantities in squared brackets in Eq. (2.28) equal to zero. Under this

hypothesis, all L(j) can be estimated in a straightforward way, since Eq. (2.28) can

be decomposed as follows:

Mε̈(aN ) + Dε̇(aN ) + Kε(aN ) + L(N+1)(t) ∗ (S(t) ∗ ε(aN )) = (2.29a)

f(aN ) + w(aN ) + L(N+1)(t) ∗ v(aN )

Mε̈(dj) + Dε̇(dj) + Kε(dj) + L(j)(t) ∗ (S(t) ∗ ε(dj)) = (2.29b)

f(dj) + w(dj) + L(j)(t) ∗ v(dj) j = 1...N

Fourier transforms of Eqs. (2.29a, 2.29b) are:

ε̃(aN ) = H̃
(N+1)
O (ω)(̃f(aN ) + w̃(aN ) − L̃(N+1)(ω)ṽ(aN )) (2.30a)

ε̃(dj) = H̃
(j)
O (ω)(̃f(dj) + w̃(dj) − L̃(j)(ω)ṽ(dj)) (2.30b)
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If the hypothesis of uncorrelated forces and noises is verified, Eqs. (2.30a, 2.30b)

yield the PSDs of the approximation ε(aN ) and details ε(dj) errors:

Φε(aN )ε(aN )(ω) = H̃
(N+1)∗
O (ω)(Φf(aN )f(aN )(ω) + Φw(aN )w(aN )(ω)− (2.31a)

L̃(N+1)∗(ω)Φv(aN )v(aN )(ω)L̃(N+1)T(ω))H̃
(N+1)T
O (ω)

Φ
ε(dj)ε(dj)

(ω) = H̃
(j)∗
O (ω)(Φ

f(dj)f(dj)
(ω) + Φ

w(dj)w(dj)(ω)− (2.31b)

L̃(j)∗(ω)Φ
v(dj)v(dj)

(ω)L̃(j)T(ω))H̃
(j)T
O (ω)

where H̃
(j)
O is the j − th observer transfer function obtained by means of the j − th

gain L(j).

The power spectral densities Φ
f(dj)f(dj)

, Φ
v(dj)v(dj)

, Φ
w(dj)w(dj) (and the ones for the

approximation) can be obtained by knowing the filter transfer function associated

to each level (ϕ̃(aN ) and ϕ̃(dj) in Fig. A.3), so having that the PSDs of subsignals

are provided by:

Φ•(aN )•(aN )(ω) = ||ϕ̃(aN )(ω)||2Φ••(ω) (2.32a)

Φ•(aN )•(dj)(ω) = ||ϕ̃(dj)(ω)||2Φ••(ω) (2.32b)

The gain matrices L(j) can be thus obtained by minimizing the covariances:

Σ2(aN )
εε =

∫ +∞

−∞
Φε(aN )ε(aN )(ω)dω (2.33a)

Σ
2(dj)
εε =

∫ +∞

−∞
Φ
ε(dj)ε(dj)

(ω)dω (2.33b)

By respecting the hypothesis above it is possible to decompose Eq. (2.27) thus

performing the following multi-scale observation:

M¨̂q(aN ) + D ˙̂q(aN ) + Kq̂(aN ) + L(N+1)(t) ∗ (S(t) ∗ q̂(aN )) = (2.34a)

L(N+1)(t) ∗ y(aN )

M¨̂q(dj) + D ˙̂q(dj) + Kq̂(dj) + L(j)(t) ∗ (S(t) ∗ q̂(dj)) = (2.34b)

+L(j)(t) ∗ y(dj) j = 1...N

However, this conjecture is not mathematically consistent. Indeed, although the

following relationships are always valid due to the orthogonality between subspaces
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of different scales,

〈ε(dj), ε(dl)〉t = 0 ∀j 6= l (2.35a)

〈ε(aN ), ε(dj)〉t = 0 j = 1, ..., N (2.35b)

the following scalar products

〈ε(dj), ε̇(dl)〉t 6= 0 (2.36a)

〈ε(aN ), ε̇(dj)〉t 6= 0 (2.36b)

〈ε(dj), ε̈(dl)〉t 6= 0 (2.36c)

〈ε(aN ), ε̈(dj)〉t 6= 0 (2.36d)

〈ε(dj), L(l)(t) ∗ (S(t) ∗ ε(dl))〉t 6= 0 (2.36e)

〈ε(aN ), L(j)(t) ∗ (S(t) ∗ ε(dj))〉t 6= 0 (2.36f)

〈ε(dj), L(l)(t) ∗ v(dl)〉t 6= 0 (2.36g)

〈ε(aN ), L(j)(t) ∗ v(dj)〉t 6= 0 (2.36h)

do not vanish implying that Eqs. (2.34a, 2.34b) and, in turn, Eqs. (2.31a, 2.31b)

are provided by a very strong approximation. Generally, any non-constant time-

frequency operator applied to a generic signal x(dj)(t) results in an output that

is not orthogonal to the other sub-signals3. This issue implies that this synthesis

process provides a sub-optimal observer.

However, it can be stated that the multi-scale observer will be as optimal as we

get a synthesis of the state observers L(j) such that:

〈ε̃(dj)(ω), H̃
(l)
O (ω)(̃f(dl) + w̃(dl) − L̃(l)(ω)ṽ(dl))〉ω → 0 ∀j 6= l (2.37a)

〈ε̃(aN )(ω), H̃
(l)
O (ω)(̃f(dl) + w̃(dl) − L̃(l)(ω)ṽ(dl))〉ω → 0 (2.37b)

In order to make the above relationships converge making the observer actually

optimal, the necessary condition is the synthesis of a high-gain observer such that in

the frequency range interested by the j−th detail level, it provides an instantaneous

estimation with respect to the measurements (see Sec. 1.2.2). It suggests to use a low

order gain matrices L̃(j)(ω), besides the assumption in Sec. 2.2.3 However, in order

to provide the dynamics of the observer of further damping (in order to smooth the

3 Note that the orthogonality in the previous equations is practically respected only if |j − l| > 1, namely,
when the scalar product is performed between two signal that do not belong to two contiguous scales.
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peaks of the observer dynamics poles), a quasi-steady gain matrix is considered:

L̃(j)(ω) = L
(j)
0 + iωL

(j)
1 (2.38)

where it is recommended that L
(j)
0 � iωL

(j)
1 in the range of frequencies interested by

level j. Under the hypothesis in Eq. 2.29, the state estimation can be obtained from

the sum of the estimations obtained at the various levels (as illustrated in Fig.2.6):

q̂ =
N+1∑
j=1

q̂(j) (2.39a)

q̂(N+1) = H
(N+1)
O ∗

(
L(N+1)(t) ∗ y(aN )

)
(2.39b)

q̂(j) = H
(j)
O ∗

(
L(j)(t) ∗ y(dj)

)
j = 1...N (2.39c)

In Eq. 2.39 it has been referred as q̂(j) and q̂(N+1) instead of q̂(dj) and q̂(N+1) since,

for the reason mentioned above in this section, q̂(j) is not necessarily the j−th detail

of q̂. However, the assumption in Eq. (2.37) is usually respected when dealing with

structural systems with an adequate number of sensors with a good signal to noise

ratio, thus having that q̂(j) → q̂(dj) and q̂(N+1) → q̂(aN ).

Figure 2.6: Block diagram related to the multi-scale observer.
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2.4 Quality indicators

The fidelity level of the observation process is generally addressed by means of two

different functions called Time Response Assurance Criterium (TRAC) and Fre-

quency Response Assurance Criterium (FRAC) introduced in [4, 37]. These func-

tions are a generalization of the concept of modal assurance criterion (MAC) for

signal arrays in time and frequency domain. By taking into account two general

time dependent arrays a(t) and b(t) and their Fourier transform, TRAC and FRAC

are defined as below:

TRACab(t) =
‖ a(t)T W b(t) ‖2

(a(t)T W a(t))(b(t)T W b(t))
(2.40a)

FRACab(f) =
‖ ã(f)H W b̃(f) ‖2

(ã(f)H W ã(f))(b̃(f)H W b̃(f))
(2.40b)

where W is a user defined weight function. The functions above represent, respec-

tively, the similarity of the signal array a and b with an appropriate indicator in time

and frequency domain. The values of these functions are limited in a range between

0 and 1. This property makes these functions good candidates for being considered

as quality indicators in time and frequency. The average of the values over time

TRACab and frequency FRACab in the interest range are assumed as global indica-

tors for the quality of the estimation as a function of the interest parameters of the

system such as number and distribution of sensors. When the observation process

is assessed on simulated data, we know the exact behavior of the system beyond

process and measurement noises. In these case studies TRAC and FRAC will be

assessed directly on the modal coordinates (our state) that represent a complete and

sufficient set of informations to evaluate the quality of the observation process.

a = q

b = q̂

W = M

where the mass matrix is used as weight, allowing to give greater importance to those

DoFs that are more massive. Thus, this leads to give less weight to the degrees of

freedom that have less inertia and influence less the structural dynamics.

On the other hand, when the observation is upon experimental cases, the real

behavior of the structure is always hidden. In such cases this assessment is carried
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out on the Control Meas. defined in Sec. 2.1.3:

a = yc

b = ŷc

W = I

where the identity matrix is assumed as weight.



Chapter 3

Application to a scaled elastic

model of a catamaran

The developed approach for loads and elastic deflection field estimation is first ap-

plied to the test data collected on the catamaran scaled model (see Fig. 3.1). In

this chapter, first the reference physical model is introduced in Sec. 3.1 in terms

of its principal features and Finite Element description; subsequently in Sec. 3.2

the estimation procedure is customized to fit the needs of the present case study.

Finally, the main results concerning three different runs are shown in Sec. 3.3. The

chapter ends with a convergence analysis on the number of sensors employed for the

observation. An application of cumulative damage estimation based on the results

of this chapter is provided in Appendix C where the stress estimation is used to

enhance the computation of fatigue life accumulated by the present experimental

model during the towing tests taken into consideration.

Figure 3.1: Experimental model under the carriage.

55
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3.1 Physical model description

The elastically scaled model of catamaran that will be the object of this analysis is

a model used to study particular fluid-structure interaction phenomena occurring in

the naval field. When dealing with hydroelastic behavior of this kind of structure,

two main aspects must be considered: i) the perturbations to the fluid dynamic field

introduced by the structure vibrations are generally orders of magnitude lower than

the wave loads and the perturbations introduced by the rigid-body dynamics of the

ship. This generally brings to the case of a one-way hydroelastic coupling; ii) the

structure is submerged in a two-phase fluid. Hence, when a large portion of the hull

surface (such as the wetdeck) slams to the free surface, it generates extreme loads

to the structure. This phenomenon is referred as slamming (see Fig. 3.2).

The structure in question was built to study particular slamming phenomena

that occur in the wetdeck region. The case study is specialized for a structure that

has a flat wetdeck that is not able to absorb the impacts with the free surface in an

optimal way. This feature makes this structure interesting for the present study due

Figure 3.2: Slamming illustrated by combining five consecutive frames to provide
an impression of the event in time.

to the high loads involved. Moreover the construction complexity represents a step

forward to the study of full-scale structures.

3.1.1 The experimental model

The experimental model of the catamaran is built with the elastic backbone ap-

proach, whose goal is to decouple the structural and hydrodynamic functions of the

structure. This technique involves the construction of a structural frame that scales

the elastic behavior of the full-scale model [33] and a segmented hull, where the

segments - rigidly connected to the backbone beams - transmit hydrodynamic forces
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Variable value

Mass 206.8 Kg
Length Overall 3.96 m

CoG 1.628 m
Pitch radius 1.143 m

Table 3.1: Main model parameters.

and moments. Moreover, the experimental model includes a segmented wetdeck

connected to the transversal beams of the deck region to transmit the loads gener-

ated by slamming impacts. From Fig. 3.1 it is possible to observe the catamaran

below carriage with its metallic backbone and hull segments. The main rigid-body

characteristics of the model are listed in Tab. (3.1).

The backbone truss is made of aluminum and includes several structural com-

ponents: two longitudinal beams, two transverse beams, a central beam in the

symmetry plane, and two hinged beams near the bow to support the wetdeck as

shown in Fig. 3.3.

The truss is connected to the segments by using stiff vertical elements called

legs. The role of the hull segments is to transfer concentrated hydrodynamic forces

to the elastic backbone via the legs. Each hull is divided into four segments as

shown in Fig. 3.1. In order to ensure a certain stiffness and lightness, the segments

are made with fiberglass laminate with a stiffening core material. The gaps between

adjacent segments is made water-tight by using thin rubber straps. On the other

hand, the wetdeck is made up by different materials such as fiberglass, wood and

polylactide (PLA) in order to make it robust enough and, in turn, it is segmented in

two parts, with length of 1/3 and 2/3 length overall, respectively for the forward and

the backward part. The forward part, where all the slamming phenomena occur, is

connected to the two hinged beams.

A great number of structural lab tests have been carried out on the model, such

as static and vibration tests, that has been used to enhance the numerical model.

These tests were performed also during the construction phase, involving different

configurations and parts of the catamaran. The results concerning the vibration

tests of the final configuration are shown in this dissertation. However, for a deeper

insight refer to [35]. The experimental first six elastic mode shapes of the free-free

structure with the corresponding natural frequencies and damping ratios are shown

in Fig. 3.4. It is worth to notice that the free-free conditions have been reproduced

by hanging the present model by means of 8 soft springs in order to keep the rigid-
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(a) Wetdeck view

(b) Working principle of wetdeck balance

Figure 3.3: Wetdeck arrangement.

body modes frequencies lower than 2.0 Hz [33]. Finally, natural frequencies and

modes have been computed by means of Polymax 1. Further wet vibration tests

have been carried out showing a general decrease of the natural frequencies. Fig. 3.5

shows the shapes of the wet modes associated to the dry-ones in Fig. 3.4. In caption

it is possible to notice the change of the values of natural frequencies and damping

ratios.

These wet vibration modal characteristics will provide further hints to assess the

observation process and the behavior of the structure during the experimental towing

tests. Finally, the experimental campaign has been performed at the CNR-INSEAN

towing-tank basin Emilio Castagneto in Rome, that is a 220 m long, 9 m wide and

1 Polymax is a standard method used in structural dynamics modal identification [34]
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(a) f1 = 10.36 Hz, ζ1 = 0.042 (b) f2 = 16.33 Hz, ζ2 = 0.007

(c) f3 = 23.65 Hz, ζ3 = 0.019 (d) f4 = 29.33 Hz, ζ4 = 0.015

(e) f5 = 46.36 Hz, ζ5 = 0.008 (f) f6 = 55.41 Hz, ζ6 = 0.01

Figure 3.4: Natural modes from dry vibration tests.
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(a) f1 = 8.63 Hz, ζ1 = 0.022 (b) f2 = 12.02 Hz, ζ2 = 0.004

(c) f3 = 15.45 Hz, ζ3 = 0.006 (d) f4 = 23.19 Hz, ζ5 = 0.017

(e) f5 = 35.51 Hz, ζ6 = 0.013 (f) f6 = 38.69 Hz, ζ6 = 0.011

Figure 3.5: Natural modes from wet vibration tests.
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3.5 m deep linear basin equipped with wavemaker system, able to generate regular

waves and irregular sea according to different kind of spectra. The monitoring of the

elastic deflections and the hydrodynamic loads is applied to a scaled physical vessel

model tested in towing tank with on board acquired data. Some details about the

towing system and the sensor layout follows. However, deeper insights about design

and model assessments can be found in [33].

The model was towed by an eight-drive wheels carriage moving on a railroad

guide. The complex towing system was such that it only allowed for heave and

pitch modes by means of a barycentric hinge connected to vertically oriented linear

bearing and a fork-type device at the stern.

3.1.2 Sensor layout

Heterogeneous data related to strains and rigid-body motion have been used. This

vast amount of data has been recorded by means of a manifold of synchronized

DEWE-43 modules. In particular, the sensor used for this analysis consists of 36

HBM strain gages spread to cover the whole backbone (see Fig. 3.6), and Rodymm

Krypton optical system to measure all six rigid-body DOFs. The strain gages water-

proof protection is shown in Fig. 3.7. The strain gage electrical calibration was

Figure 3.6: Strain gages layout.

carried out to provide the values of the strains. Static tests involving concentrated

masses were performed to compare the measurements of local strains with those

obtained via the finite element model reproducing the experimental set-up (loads and

BCs of the calibration tests). Subsequently, the finite element model also provided

conversion factors to obtain directly the local bending moments from the calibration
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Figure 3.7: Strain gage arrangement with its water-proof protection.

Figure 3.8: Static experimental tests for strain gages calibration assessment.

tests. The experimental set-up for the strain-gages calibration assessment is shown

in Fig. 3.8.

3.1.3 Numerical model description

The physical model introduced in Sec. 3.1.1 has been modeled by means of a detailed

FE model. The development of present FE model has been particularly challenging

since the mass properties are highly influenced by sensor layout and hull mass dis-

tribution. In order to obtain a numerical model as close to the experimental-one as

possible, a model updating has been carried out in a cascade way by updating the

structural components step by step during the model assembly stage. Hence, first

the properties of backbone have been update by experimental vibration tests of the

bare metallic frame up to a frequency of 120 Hz and then, an equivalent model of

wetdeck has been generated in order to model its stiffness and mass. Eventually, a

final updating is performed considering the whole structure in order to reach a good

matching between the experimental dry modes and the first two numerical vibration

modes.

The FE natural modes and frequencies are shown in Fig. 3.9. Notice that the
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(a) f1 = 10.11 Hz (b) f2 = 16.90 Hz

(c) f3 = 19.62 Hz (d) f4 = 19.75 Hz

(e) f5 = 20.15 Hz (f) f6 = 27.71 Hz

Figure 3.9: Natural modes from dry numerical modal analysis.

first two modes and frequencies are very close to the experimental ones. Moreover it

is possible to notice some vibration modes not identified in the experimental tests,

such as the modes of the symmetric torsion of forward part of the trusses with

frequency 27.71 Hz. Finally a modal damping matrix has been assumed by taking

into account the experimental damping ratios.

3.2 Customization of the technique for the present case

This case study was used to test the first extension of the second-order observer

introduced in Sec. 2.3.1, namely the Learning phase driven observer. Thus a con-

stant observer in frequency is considered, but introducing the statistics of the stored

measurements to enhance the convergence of the estimation.

In this section there will be illustrated how the Craig-Bampton method works
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for this case study along with the definition of the statistical properties.

3.2.1 The Craig-Bampton method

We have seen in Sec. 1.1.1 how obtaining a reduced order model through modal

truncation and Craig-Bampton reduction method. In particular in this case study,

we will use the Craig-Bampton method thanks to its ability to keep unchanged the

information in some physical points (master DoFs) within the set of the reduced

DoFs. These features allows for estimating the elastic deformations even when

external forces are concentrated in space and time as in the case the catamaran

scaled model where the structural frame exchanges concentrated forces with the

segmented hull, the segmented wetdeck and the towing system. It is clear that an

Figure 3.10: Concentrated forces acting on the catamaran scaled model.

effective strategy to choose the master DoFs is to make coincide this DoFs with the

characteristic points of the concentrated forces, that is, the interface characteristic

points. Fig. 3.10 shows the concentrated loads that we are interested. The red and

green arrows represent, respectively, the concentrated forces and moments. Concen-

trated rolling moments about the barycentric hinge and yaw bar are neglected. The

set of generalized coordinates are associated to a set of non-canonical mode shapes,

i.e. boundary and fixed-boundary modes. Example of these modes are illustrated

in Fig. 3.11. For the present case study an amount of 23 master DoFs have been

considered, that are chosen by selecting:

� the vertical displacements and rotations about the transversal axis in each

connection point between segments and backbone (8 points with DoFs 3 and

5, see Fig. 3.11a-b);
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(a) (b)

(c) (d)

(e) (f)

Figure 3.11: Craig-Bampton modes: examples of boundary modes (a,b,c,d) and
fixed-boundary modes(e,f)
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� the vertical displacements in each connection point between the forward part

of the wetdeck and relative bars (4 points with DoF 3, see Fig. 3.11c);

� the vertical and lateral displacements as well as the rotation about the vertical

axis of the hinge point of the CoG (1 point with DoFs 2,3 and 6, see Fig. 3.11d).

These DoFs are introduced in order to have the minimum number of variables able

to describe in a complete fashion the concentrated forces exchanged between the

segmented hull and the backbone as well as the constraint force exchanged with the

seakeeping bar. Then, a user dependent number of fixed-boundary modes is con-

sidered in order to have also a displacement space complete enough for the interest

frequency range. For this case study an amount of 4 fixed-boundary modes have

been considered.

3.2.2 Statistical properties

The spectral densities have been estimated by considering the recorded outputs

during the towing tank campaign and recast in order to estimate the structural

behavior of the model in an effective way. The external forces spectral densities

are obtained by estimating the forces in a least-squares sense. To this end, the

transfer function has been considered that concerns only the Master DoFs (namely

a static condensation) of the system made symmetrical with respect to the xz plane:

˜̂
fR =

[
−ω2M̂ + K̂

]−1
Ĉ† ỹ

where M̂ and K̂ are the mass and stiffness matrices of the statically condensed system

with xz plane symmetry constraints and f̂R is the rough estimation of external forces

that will be used to compute the spectral density. This approach allows to get a

rough frequency representation of the external forces, that, subsequently are filtered

in order to take into account only the wave loading in the hulls regions ( low-pass

filtering sufficiently below the first natural frequency < 7 Hz ) and the slamming

phenomena on the wetdeck (below the first wetdeck local natural frequency < 40

Hz). Once these forces are obtained, the power spectral density of external forces is

computed:

Φff(ω) = F
{∫ t

0
f̂R(t− τ )̂fR(τ)dτ

}
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However this power spectral density matrix takes into account only some features

of the hydrodynamic forces (for instance the effects of added hydrodynamic mass

and damping are not considered). As a consequence, it results into an estimation

process that is sub-optimal. The uncertainties related the reconstruction of the

external forces are introduced into the user-defined process noise along with other

structural uncertainties.

On the other hand, the spectral densities of the measurements (Φyy(f)) are

obtained by considering the rough data without any filtering process. The power

spectral density of the strain gage measurement noise is assigned equal to 1e−
1(µstrain)2Hz−1 for each value of frequency up to the sampling frequency. This

represents an upper limit experienced by observing the strain gages spectral densities

of all the 36 sensors. On the other hand, the spectral densities of the process noise

are such that the 10% of sum of the power of the estimated external forces is spread

homogeneously on all the noise components. Since the process noise is artificially

inserted and is not linked to any prior knowledge of the system, the assumption is

that ||f|| >> ||w||, so having that:

f̂ = Lr

For further detail about this assumption see Eq. (B.1) in Appendix B.

3.3 Illustrative results

The method presented in Sec. 3.2 have been applied on the experimental model of

Sec. 3.1.1. The results that are shown below concern three runs for different sea

condition that cause different dynamic responses. In towing-tank two different kind

of sea conditions are considered. We will refer to regular sea conditions for those

run where mono-frequency waves propagate along the tank. The main features are

the wave height and the wave period. The response of the ship also depends on the

speed. On the other hand, irregular sea conditions are featured by specific kind of

spectra. Usually, for this type of trials, characteristic spectra are considered. In

particular in this case the so called JONSWAP spectrum [36] has been considered

that is featured by some parameters that approximate the oceanic sea conditions

such as significant wave period and height.

ΦJ(ω) = 320
H2

1/3

T 4
p

ω−5 exp
(−1950

T 4
p

ω−4
)
γA (3.1)
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Run Speed [m/s] wave height [m] Period [s] Type Impact

1 1.779 0.1053 0.798 irregular yes
2 1.779 0.035 2.410 regular No
3 1.779 0.04 2.114 regular yes

Table 3.2: Sea condition related to the considered runs.

where H1/3 is the characteristic wave height, Tp is the peak period, γ is an opportune

parameter whilst

A = exp
{
−
( ωTp

2π − 1

σ
√

2

)2}
(3.2)

where σ is another parameter that fits the PSD experimentally obtained in [36].

The runs that have been considered are listed in Tab. 3.2. Note that for irregular

sea, wave properties refer to significant wave period/height (Tp, H1/3). The three

contemplated runs were performed by using the velocity of 1.779m/s. The statistical

properties concerning the responses of heave and pitch motions in each run are shown

in Fig. 3.12 by means of their power spectral densities. On the other hand, the strain

gage responses are shown in Fig. 3.13 considering the sum of the PSDs of the strain

gage data. Rigid-body response shows peaks in correspondence of the encounter

frequency and its multiples due to the nonlinearities introduced by the hull shape

(see Fig. 3.12a). The seakeeping response may lead to intense slamming phenomena

as illustrated in Fig. 3.2.

3.3.1 Estimation of forces and elastic deflections

In this section the response of the catamaran in terms of forces and elastic deflec-

tions to the sea conditions pointed out in Tab. 3.2 is analyzed and discussed. The

results are illustrated with the best sensor configuration possible, i.e., by considering

that the sets of active, stored and control measurements coincide. In this way all

measurements are used for the synthesis of gain matrix, state-updating and for eval-

uating the elastic displacements by means of quality indicators. Albeit the observer

gain matrix can be computed for each of the sea condition above, the observer is

synthesized by considering the statistical properties obtained from the irregular sea

case (Run 1). In this way, the results relating the other two tests in regular sea

conditions represent a qualitative assessment of the methodology robustness.
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(a) Run 1

(b) Run 2

(c) Run 3

Figure 3.12: Power spectral densities of Heave and Pitch responses.
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(a) Run 1

(b) Run 2

(c) Run 3

Figure 3.13: Sum of power spectral densities of strain gage data.
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Run 1: irregular sea conditions with slamming

The first run is featured by an irregular sea condition, which has been performed by

considering JONSWAP spectrum. The strain gages response is shown in Fig. 3.12b.

The observer is then computed according to the method proposed in Sec. 3.2 and its

quality is assessed by means of the quantities introduce in Sec. 2.4 (i.e., TRAC and

FRAC). TRAC and FRAC for this run are shown in Fig. 3.14. Because of all sensors

are used for state updating, naturally we reach high values of TRAC and FRAC.

The estimations of hydrodynamic loads on the right beam are shown in Fig. 3.15 by

means of the PSDs of the vertical forces on the legs. The PSDs clearly show some

peaks in correspondence of the wet natural frequencies. It could be due to modeling

errors or other hydrodynamic behavior difficult to spotlight, such as the effects

of added hydrodynamic mass and damping. The time response of the estimated

vertical load acting on the second segment of the right hull is shown in Fig. 3.16 as

compared with the vertical displacement of the same segment. It is worth to notice

the sharp shape of the cyclic loads, likely owing to the shape of the hull that does not

produce linear response according to the submersion. Moreover, in correspondence

of slamming time instant (about 57 s and 60 s) the estimation presents a behavior

at higher frequency. As before, modeling errors or other hydrodynamic phenomena

could influence the estimation.

Further results concern the time-frequency domain response of the deflection field

projected on the vibration modes. In Fig. 3.17 the response the principal vibration

modes are shown by means of continuous wavelet transform. In that figures it is

superimposed also the vertical displacement of the fore wetdeck center point relative

the wave height. It is worth noticing the occurrence of slamming phenomena in

correspondence of the negative peaks that exceed a certain threshold. In particular,

Fig. 3.17a shows the response of the split mode. It can be noticed that the main

frequency is contained in a range between 7 and 9 Hz, that is about the value came

out from the vibration tests carried out with the wet configuration (see Fig. 3.5).

It can be pointed out that the frequency trend swings following the trend of the

relative displacement of the deck. Indeed, the split mode mainly involves the bow

region and this particular behavior is owing to dynamic variation of hydrodynamic

mass distribution caused by heave and pitch motion.

The vertical two-node bending mode, instead, presents evident wide-band instant

responses due to the impacts in the wetdeck region. After the slamming, the wavelet

spectrum shows an halo at about 12 Hz that is the trace left by the associated modal



Application to a scaled elastic model of a catamaran 72

(a) Time response assurance criterion

(b) Frequency response assurance criterion

Figure 3.14: Time and frequency response assurance criterion of strain outputs.
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Figure 3.15: Run 1. Power spectral densities of the estimated concentrated forces
on right beam legs. The legend is sorted starting from the bow to the stern.

response. It is worth noting that these two effects add up to the response of the

wave load at very low frequencies.

An interesting result also concerns the sixth vibration mode. The trend of its

natural frequency is highly dependent on the attitude of the structure with respect to

the free surface. Indeed, the sixth mode (see in Fig.3.11) is featured by symmetrical

torsion of the long beams at the bow, thus reflecting on an impressive increase of

added modal mass when the fore region is submerged.

Run 2: regular sea conditions without slamming

The second run relates the response to long regular waves. It leads to a limited sea-

keeping response, which does not trigger impact phenomena in the wetdeck region.

The heave and pitch frequency response can be appreciate in Fig. 3.12a. This sea

condition leads to a moderate elastic response as shown in Fig. 3.13a. Note that the

most of response is owing to wave loads. The observation process seems effective

over time (see TRAC in Fig. 3.18a). However, the FRAC function shows lower

value compared to the case in irregular sea, except for that frequency lines where

the excitation is higher(see Fig. 3.18b). For this run, the most valuable result is the
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Figure 3.16: Run 1. Time response of the force on the second segment pointed out
in the sketch above.

estimation of the loads exchanged at the interfaces with the hulls. In Fig. 3.19 the

PSDs of the estimated concentrated forces on the right beam legs are shown where

the main structural response is at the frequencies of the rigid-body modes.

Run 3: regular sea conditions with intense slamming

The third run is concerned with the catamaran response to short and high regular

waves that lead the structure to experience slamming phenomena in the fore wet-

deck region. In this case the rigid-body response shows sharp super-harmonic peaks

exalted by the recurring impacts (see Fig. 3.12a). The resulting elastic response is

clearly conditioned from these impacts such that the spectrum is highly conditioned

by the presence of the spikes. The observer quality is assessed by means of the

quantities introduce in Sec. 2.4. TRAC and FRAC are shown in Fig. 3.20. One of

the most interesting results concerning this run is the extrapolation of the estimated

forces in the wetdeck region, whose time response estimation is shown in Fig. 3.21.

Although the sea conditions are completely different, the structural response is sim-

ilar to that of run 1. Indeed, Fig. 3.22 underlines that also in this case the first two

vibration modes present a behavior simile to the ones already shown for the irregular

sea condition case, emphasizing the effectiveness of the observer also in assessing the
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(a) First mode (b) Second mode

(c) Fifth mode (d) Sixth mode

Figure 3.17: Run 1. Vibration modes wavelet spectrum. The red line represent the
time domain response of vertical displacement of wetdeck center point relative to
the wave height.
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(a) Time response assurance criterion

(b) Frequency response assurance criterion

Figure 3.18: Run 2. Time and frequency response assurance criterion of strain
outputs.
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Figure 3.19: Run 2.Power spectral densities of the estimated concentrated forces on
right beam legs. The legend is sorted starting from the bow to the stern.

response in different sea conditions.

3.3.2 Convergence analysis

According with the measurement set classification in Sec. 2.1.3, a sensitivity anal-

ysis on the spatial density of strain gages is carried out. In order to simplify the

description of the current analysis, the available measurements are divided into 4

groups by considering the strain gages layout in Fig. 3.6:

g1 : 1-36

g2 : 1,3,5,7,9,12

g3 : 16,18,22

g4 : 14,25-29,30,32,34

The sensitivity analysis is then carried out by considering six cases obtained by com-

bination of the four groups above (in accordance with the classification in Sec. 2.1.3)

as reported in Tab. 3.3.
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(a) Time response assurance criterion

(b) Frequency response assurance criterion

Figure 3.20: Run 3. Time and frequency response assurance criterion of strain
outputs.
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Figure 3.21: Run 3. Time histories of concentrated forces on wetdeck region.

subset case 1 case 2 case 3 case 4 case 5 case 6

Active g1 g1 − g2
g1−(g2∪
g3)

g1−(g2∪
g3 ∪ g4)

g1−(g2∪
g3)

g1−(g2∪
g3 ∪ g4)

Stored g1 g1 g1 g1 g1 − g2
g1−(g2∪
g3)

Control g1 g1 g1 g1 g1 g1

Table 3.3: Set classification.
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(a) First mode (b) Second mode

(c) Fifth mode (d) Sixth mode

Figure 3.22: Run 3. Vibration modes wavelet spectrum. The red line represent the
time domain response of vertical displacement of wetdeck center point relative to
the wave height.
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Case TRAC
(1)
ycŷc

FRAC
(1)
ycŷc

TRAC
(2)
ycŷc

FRAC
(2)
ycŷc

TRAC
(3)
ycŷc

FRAC
(3)
ycŷc

1 0.9922 0.9808 0.9873 0.8914 0.9932 0.9747
2 0.9875 0.9663 0.9776 0.7701 0.9874 0.9514
3 0.9587 0.9174 0.9310 0.7345 0.8531 0.8664
4 0.8635 0.8368 0.8710 0.6779 0.8505 0.8667
5 0.7135 0.7278 0.9241 0.7154 0.7526 0.8004
6 0.7137 0.7097 0.5952 0.5174 0.6713 0.7260

Table 3.4: Values of average FRAC for each run and each sea condition.

For each run and for each set of sensors, the values of TRACycŷc and FRACycŷc

have been computed and reported in Tab. 3.4. The rows are related to the cur-

rent classification of sensors while the columns refer the values of TRAC
(i)
ycŷc

and

FRAC
(i)
ycŷc

for i-th run. Tab. 3.4 indicates that the higher the number of sensors

used the better is the estimation. However, it shows that also reducing drastically

the number of sensor (as in case 4 and 6) the average values of FRAC and TRAC

still remain acceptable. However, case 4 presents a better estimation than case 6

despite it has the same number of active sensors. It demonstrates that the employ-

ment of sensors that are used only to guide the synthesis of the observer (such as

ys) may improve the observation process.



Chapter 4

Application to a flexible aircraft

In this chapter we will investigate the problem of reconstruction of the elastic dis-

placements of the structure by means of a purely numerical case concerning the

aeronautical sector. In Sec. 4.1, the reference numerical model will be described

while in Sec. 4.2 the generation of data will be discussed along with the results

concerning the specific case study.

4.1 Numerical model description

The suitability of the observation methodology in Sec. 2.3.3 applied to flexible vehi-

cles is assessed by means of the body-freedom flutter reference flying wing described

in Refs. [40, 41] and shown in Fig. 4.1. This configuration shows relevant coupling

effects due to the interaction between the short-period mode and the first aeroelastic

mode, which eventually leads to body freedom flutter.

The case study concerns a truly existing model used to study this particular type

of instability that, with the technological development that leads to the production

of increasingly light-weight and more flexible airplanes, represents a constraint on

the design of modern aircraft. The problem of the development of elastic deflections

observer of this model has already been debated in [3] where a virtual sensing with

modal filter has been realized as a necessary step for the designed control.

The model has been tuned to match the modal scenario described in [41] using

the MSC Nastran gradient-based optimization solver [32]. The first six elastic mode

shapes of the unrestrained structure are illustrated in Fig. 4.2. In Tab. 4.1 the main

characteristics of the aircraft are listed.

82
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(a) Upper view

(b) Front view

(c) Side view

Figure 4.1: FEM model of the flying-wing vehicle [42].

Variable value

Mass 5.4571 Kg
span 3.04 m
c̄ 0.4 m
J11 1.1427 Kg m2

J22 0.2324 Kg m2

J33 1.3707 Kg m2

Table 4.1: Main aircraft parameters.
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(a) f1 = 5.830 Hz , m1 = 0.129 kg m2 (b) f2 = 8.831 Hz, m2 = 0.145 kg m2

(c) f3 = 13.452 Hz , m3 = 0.222 kg m2 (d) f4 = 19.817 Hz , m4 = 0.004 kg m2

(e) f5 = 20.093 Hz , m5 = 0.003 kg m2 (f) f6 = 23.727 Hz , m6 = 0.002 kg m2

Figure 4.2: Elastic mode shapes of the flying-wing FEM model [42].
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Stability analysis of the reference case study

The stability analysis of the present case study has been carried out by means

of the approach presented in [42] and synthetically reported in Appendix D. The

approach exploits an integrated modeling of aeroelasticity and flight dynamics that

allows to get a full picture of the linearized dynamic behavior of a flying aircraft

around any steady maneuver, providing a state space representation in terms of

small perturbations. The state is expressed as follows:

x =



∆x
G

∆Θ

∆q

∆v
G

∆ω

∆q̇

∆a


(4.1)

where x
G

and ∆Θ are, respectively, the perturbations of position of instantaneous

center of mass and aircraft attitude, ∆v
G

and ∆ω are the perturbations of center

of mass speed and angular velocity with respect to he body axes, ∆q and ∆q̇ are,

respectively, the vector of generalized coordinates and velocities, whilst ∆a is a vector

of added aerodynamic states necessary to describe the unsteady aerodynamics. The

state matrix is thus expressed as a function of speed U∞, Mach number M∞, altitude

(density), and if non null, the steady angular velocity.

The stability analysis of the aircraft in steady rectilinear flight is carried out for

U∞ = 15 → 30 m/s, M∞ = 0 and sea level conditions. The root locus is shown in

Fig. 4.3 along with the zoom on the poles associated to the critical modes. In figure,

the circles represent the poles at the first parameter value of the root locus (i.e. at

U∞ = 15) with the name of the modes from which the poles originate, whereas the

stars represent the poles at the flutter speed.

It can be deduced that the instability mainly arises due to the coupling between

the first structural mode and the short period mode. The combined dynamics leads

to flutter at UoF = 20.91 m/s. This speed value represents an upper limit for the

analyses we are going to discuss showing the observer’s efficiency even in cases where

the dynamics presents coupled modes.
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(a)

(b) Short-period and first aeroelastic mode

Figure 4.3: Root locus in steady rectilinear flight (U∞ = 15→ 30 m/s).
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4.2 Virtual experiment of the aircraft

The strategy with which the response to the gusts are generated is important for

having consistent data with the physics we want to observe. In this section the

characteristics of the runs that we will examine and the various virtual measurements

layouts are illustrated. Also, the response analyses have been performed through

the approach presented in [42] and reported in Appendix D.

4.2.1 Virtual tests generation

In this case we want to excite the structure with loads that behaves similarly to

that presented in Chap. 3 regarding the naval application. We have seen that

for seakeeping trials in towing tank both regular and irregular sea condition were

considered. The regular sea condition represented a deterministic excitation on the

structure. On the other hand, irregular sea conditions excited the structure in a

stochastic manner. On the other hand, aeronautical structures are concerned by

gust conditions that can deterministic (usually of type 1-cosine) or stochastic. Also

in this case, the gusts will be featured by characteristic wavelength and amplitude

combined with the speed of the structure.

From one side, type 1-cosine gusts are defined by the following time law

wg(t) =

wmax
g

1
2

[
1− cos(2πU∞L t)

]
, 0 < t < 1/fg

0 , t ≥ 1/fg

where wmax
g is the vector collecting the maximum value of each speed component,

and L is the length of the gust (see Fig. 4.4a).

On the other side, the stochastic gusts are featured by Von Karman spectra.

Referring to the gust model in Appendix D (see Eq. (D.31)), each component of the

gust is considered independent by each others. In such a way, the i-th component

of the spectral density is expressed by

Φwgi
(ω) = σ2

wgi

2L

U∞

[
1 + 8

3

(
1.3392πL

U∞
f
)2][

1 +
(
1.3392πL

U∞
f
)2]11/6

where σwgi is the root mean square of the i-th component and L is the characteristic

length of the gust. The gust spectra are generated similarly to what happens in

towing-tank experiments performed on the catamaran where the JONSWAP spec-
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Run Speed [m/s] σwg3 or wmaxg3 σwg4 or wmaxg4 L/c̄ Type

1 (reference) 17.7 0.5 0.05 1. turbulence
2 15.0 0.5 0. 12.5 turbulence
3 17.4 0.5 0. 3.125 1-cosine

Table 4.2: Reference gust conditions.

trum was used to generate waves with determined ocean statistical properties (see

Fig. 4.4b) 1.

In this work, two stochastic gust conditions and one deterministic gust will be

considered as reference case study (see Tab. 4.2), where each of the simulations is

10 seconds long with a sampling frequency of 500 Hz. The structural response is

obtained by considering 40 vibration modes.

4.2.2 Sensor layouts

A rich set of measures is considered as experimental output of the virtual model.

The accelerometer and strain gage sets are introduced in Fig. 4.5. The recorded

accelerations are considered to be directed along z-axis, whereas the strains measured

parallel to the elastic axes of the wing. The power spectral density of the strain

gage noise is assigned equal to 1e − 1(µstrain)2Hz−1 for each value of frequency

up to the sampling frequency. Concerning the accelerometers, the noise PSDs are

not constant in frequency but present values ten time greater for f < 1 Hz as in

Fig. 4.6. This is done in order to consider the internal sensor dynamics of the

commercial piezoelectric accelerometers. Specially we will perform the analyses by

considering eleven different sensor layouts in accordance with the sensor positions

shown in Fig. 4.5. Note that for this case study we mean only active sensors . Indeed,

the assessment of the observation performance is carried out directly by means of

comparison between estimated and simulated generalized coordinates response. The

measurement datasets are thus listed below 2:

ds1 : strain gages 1-16 , accelerometers 1 6 7 12 13 [tot: 16+5] (reference)

ds2 : strain gages 1 2 5 6 9 10 13 14, accelerometers 1 4-7 10-13 [tot: 8+9]

1 Remind that the generated signal is only one sample of the several samples possible of gust obtainable
with the same spectrum.

2 NB As mentioned in Assumption 1 in Sec. 2.2.3, the accelerations provided by the accelerometers
are previously integrated to have displacement data (and consequently also the spectral densities are
multiplied by a factor ω−2).
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(a) 1-cosine gust

(b) Turbulence gust

Figure 4.4: Example of gust loads: the carpet below the aircraft represents the gust
vertical velocity.
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(a) Accelerometers

(b) Strain gages

Figure 4.5: Accelerometer and strain gage positions.
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Figure 4.6: Power spectral density associated to accelerometer noise.

ds3 : accelerometers 1-13 [tot: 0+13]

ds4 : strain gages 1-16 [tot: 16+0]

ds5 : strain gages 1-6 8-14 16 [tot: 14+0]

ds6 : strain gages 1-5 8-13 16 [tot: 12+0]

ds7 : strain gages 1 2 4 5 8-10 12 13 16 [tot: 10+0]

ds8 : strain gages 1 4 5 8 9 12 13 16 [tot: 8+0]

ds9 : strain gages 1 3-9 11-16 [tot: 14+0]

ds10 : strain gages 1 4-9 12-16 [tot: 12+0]

ds11 : strain gages 1 4 5 7 8 9 12 13 15 16 [tot: 10+0]

4.3 Illustrative results

In this section the results concerning the observation of the flexible aircraft response

to different gust conditions will be investigated. The section is previously introduced

by a paragraph where the hypothesis concerning the current observation problem

are enunciated.
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mode fn[Hz] mn[kg m2]

7 24.222 0.123
8 27.189 0.023
9 55.145 0.007
10 57.304 0.006
11 57.949 0.027
12 60.754 0.003
13 60.836 0.003
14 65.185 0.026
15 92.669 0.003

Table 4.3: Natural frequencies and modal masses of modes from 7-th to 15-th.

4.3.1 Customization of the state observer for the present case study

The analysis of the flexible aircraft is different with respect to the experimental-one

proposed in Chap. 3, since the flight data are simulated by means of an appropriate

numerical framework (see [42]). The FE model of the observer coincides with that

used for the simulation. This represents a mere simplification to the problem, albeit

not strictly necessary. As a consequence, the modal base used for the observation

is a subset of that used for the simulations. This simplifies the reading of the

results in which it will be possible to directly link the real modal coordinates that

are the output of the simulations with those provided by the estimation process 3.

However, numerical errors are included through the employment of i) a different

damping model (between the simulation model and the one used to enhance the

synthesis of the state observer) and ii) different flight and gust conditions. The

measurement noise properties used to synthesize the observer are the same used to

generate noisy data.

The target of the analysis is to estimate the response of the aircraft in terms of

three rigid body modes (heave, pitch and roll) and 14 vibration modes. The number

of modes have been chosen since the model presents an appropriate gap between the

14-th and the 15-th natural frequencies. Tab. 4.3 indeed lists the natural frequencies

of the vibration modes missing from Fig. 4.2.

The objective of the present case study is the validation of the multi-scale ob-

server described in Sec. 2.3.3. This procedure consists in subdividing the signal

3 Even using a different model, it is very easy to project the displacements of the simulated modal response
on the modal basis used in observation by knowing the mass matrix of the model used for the simulation
and the modal mass matrix used by the observer plant.
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into a certain number of sub-signals making the various observers L(j) designed to

be optimal for each specific frequency content. Here, 2 cases of multi-resolution to

be compared were considered: i) a first (the reference one) in which the observer

relies on 7-level decomposition and ii) another on 2-level decomposition. Once the

sampling frequency is assigned, the frequency content of each wavelet level is easily

obtained. In Fig. 4.7a the equivalent transfer functions of the approximation and

details are shown for the present case. The first two level of detail (dot lines at

higher frequencies) will not be considered for the present analysis. Indeed, the mea-

surement noise for these scales is very high due to the response of the residual modes

not included within the dynamics to be estimated 4. The 2-level decomposition (see

Fig. 4.7b) is considered for the comparison since its approximation signal includes

all the details and the approximation levels considered in the 7-level decomposition.

y(a3) = y(a7) + y(d7) + y(d6) + y(d5) + y(d4) + y(d3)

Note that this last case coincide with the case in which the observer is synthesized

simply considering the whole output y(t) with a low-pass filter.

In the following analyses the simulated modal response (true data) will be com-

pared with i) the estimated response obtained by means of 7-level multi-resolution

decomposition and, ii) the estimated response obtained by synthesize the observer

for the 2-level decomposition when it results useful for the evaluation of the effec-

tiveness of the multi scale observer. In order to understand the results, let us remind

that:

q̂ = q̂(a7) +
7∑
j=3

q̂(dj) ≡
8∑
j=3

q̂(j)

q̂(dj) 6= q̂(j) = H
(j)
O (t) ∗ y(dj) j ≤ 7

q̂(a7) 6= q̂(8) = H
(8)
O (t) ∗ y(a7)

If on the one hand q̂(j) are output directly from the estimation process, q̂(dj) and q̂(a7)

can be estimated a posteriori from q̂. Moreover we will refer as q̂cmp (i.e. comparison

results) the estimation obtained by means of 2-level decomposition observer. Also

4 A detailed measurement noise modeling would lead to the synthesis of a very low gain for these levels of
detail, thus producing an analogous result to neglect them as it is done in this case.
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(a) 7-level decomposition

(b) 2-level decomposition

Figure 4.7: Absolute value of the equivalent frequency domain filtering transfer
functions associated to the WMRA approximation and details used for the flexible
aircraft case study.
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q̂cmp can, in turn, be decomposed a posteriori in q̂
(dj)
cmp and q̂

(a7)
cmp.

q̂cmp = q̂(a7)
cmp +

7∑
j=1

q̂
(dj)
cmp ≡ q̂(3)

cmp

4.3.2 Run 1: response to high frequency turbulence

In this section the response of the aircraft to the condition expressed in the first

row of Tab. 4.2 will be be investigated. The goal is to assess the performance of the

proposed multi-scale observer and its dependency on sensor datasets.

Multi-level estimation

The first analysis is performed by considering only the first dataset ds1. Fig. 4.8

shows the response of modes 1,4,5,6,9 and 18 that are the ones more excited by

the load profile in Tab. 4.2. Here the blue lines represent the simulated modal

response whilst the green lines represent the response obtained by means of an

observer based on 7-level decomposition. The black lines represent the estimation

provided by the observer based on 2-level decomposition. The observation based on

7-level decomposition shows a general improvement of the estimation process as it

is possible to see a better correspondence between the green and the blue lines.

Fig. 4.8, instead, shows the power spectral densities related to the modal response

and its estimation. Especially modes 4, 5 and 9 result to be significantly improved

when an observation based on multi-resolution analysis is performed. This figure

confirms qualitatively that the decomposition of the signal in several levels (as in

Sec. 2.3.3) improves the estimate of elastic deflections.

In Fig. 4.10 the decomposition of the response of the 5-th generalized coordinate

is shown. It can be noticed that for any level of detail the estimation provided by

the observer based 7-level decomposition is better than the one based on 2-level

decomposition. This fact is easy to understand since every state observer H
(j)
O is

optimized to estimate the state for the time scale of j-th level, even though the last

level (i.e. the approximation) does not provide the expected response yet. It is worth

to notice that the green and red lines are practically superimposed. This behavior

validates (for this conditions) the hypothesis that has been made in Sec. 2.3.3 since

the observer is sufficiently stiff to verify that q̂(dj) ≈ q̂(j).

The improvements provided by multi-scale observer is quantified in Tab. 4.4. It

is worth to notice that TRAC
q(dj)q̂(dj) is better than TRAC

q(dj)q̂
(dj)
cmp

for each level

as discussed above.
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(a) mode 1 (b) mode 4

(c) mode 5 (d) mode 6

(e) mode 9 (f) mode 12

Figure 4.8: Run 1: simulated response of the more excited modal coordinates (blue)
against their estimations by means of observers based on 7-level (green) and 3-level
approximation (black).



Application to a flexible aircraft 97

(a) mode 1 (b) mode 4

(c) mode 5 (d) mode 6

(e) mode 9 (f) mode 12

Figure 4.9: Run 1: PSD of simulated response of the more excited modal coordinates
(blue) against their estimations by means of observers based on 7-level (green) and
3-level approximation (black).
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(a) detail 3 (b) detail 4

(c) detail 5 (d) detail 6

(e) detail 7 (f) approx. 7

Figure 4.10: Run 1: WMRA decomposition of simulated response of the 5-th modal
coordinate against its estimation at various levels of detail.
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level TRAC
q(dj)q̂(dj) TRAC

q(dj)q̂(j) TRAC
q(dj)q̂

(dj)
cmp

total 0.9862 0.9862 0.9713

d3 0.8889 0.8907 0.8304
d4 0.9969 0.9968 0.9870
d5 0.9979 0.9978 0.9896
d6 0.9981 0.9982 0.9920
d7 0.9873 0.9881 0.9599
a7 0.6983 0.6917 0.4681

Table 4.4: Mean values of TRAC for the between simulated response against estima-
tion with 7-level decomposition (first and second column) and 2-level decomposition
(third column) for each scale.

ds1 : TRACqq̂ ds2 : TRACqq̂ ds3 : TRACqq̂

0.9862 0.9619 0.9241

Table 4.5: Mean values of TRAC for the 3 considered sensor layout.

Sensors layout dependency

The position of sensors (and consequently the number) is matter of another great

problem that stands along the observation strategy, but that is not properly taken

into account in this thesis. However, in this section a qualitative analysis on the

spatial distribution and kind of sensors will be performed. First the dependency on

the kind of data is considered. For this purpose only the first three sensor layouts

in Sec. 4.2.2 are taken into account.

Fig. 4.11 shows the time response of the most exited modes for the three consid-

ered layouts. It can be noticed that the estimation is good for each set of measures,

except for modes 9 and 12. In particular, the set ds3 does not provide good estimates

especially at low frequency. This behavior is due to i) the kind of data, since the set

ds3 is made up by only accelerometers (that are extremely noisy at low frequencies)

and ii) by the number of sensors. Tab. 4.5 provides the values of TRAC for the 3

sensor layouts taken into account.

The second analysis concerns the number of sensors. In this case only strain

measurements are considered. It means that rigid-body modes are not estimated to-

gether with the vibration modes. Moreover, in this analysis the target is to estimate

only the first 8 vibration modes. In Fig. 4.12 the strain gage datasets are shown

more explicitly (consider that the distribution is symmetric so that it is shown only
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(a) mode 1 (b) mode 4

(c) mode 5 (d) mode 6

(e) mode 9 (f) mode 12

Figure 4.11: Run 1: simulated response of the more interesting modal coordinates
against the their estimation by means of 7-level decomposition obtained with 3
different sensor layouts.
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the left half of the aircraft). From dataset 4 to 8, a sensor is progressively removed

starting from the tip in a zigzag pattern. From dataset 9 to 11, the sensor is removed

from the root by following the same pattern.

Fig. 4.13 shows the trend of TRACqq̂ with respect to the number of strain gages

involved and the two different patterns used for the remotion of the strain gages

(blue line represent the pattern that starts from the tip, whereas the red one the case

where the strain gages are removed starting from the root). It is worth noting that

in addition to the number of sensors involved, also their distribution is important

to obtain a good observation. The results in Fig. 4.13 show how the configuration

with dataset 8 (which should be the worst in terms of number of sensors involved)

provides better results than configurations with datasets 9-11. It appears as if the

removal of sensors 2 and 10 is a critical point. In the transition from datasets 10 to

11, the removal of sensors 7 and 15 instead seems to drastically improve the estimate.

This mechanism is still unclear and needs further investigation.

4.3.3 Run 2: response to medium frequency turbulence

In this analysis the aircraft is assumed flying at speed of 15.0m/s with a charac-

teristic gust length of 12.5c̄ (see case 2 in Tab. 4.2). The observer performances

are assessed also with different turbulence conditions by comparing the same multi-

level observer synthesized for the gust conditions in Sec. 4.3.2 with the multi-level

observer synthesized for the current gust condition. The comparison between the

simulated response against the observation is shown in Figs. (4.14,4.15) by means

of time response of modes 1,3,5,6,9,12 and their PSDs. The figures compares the

simulated response (blue lines) with the estimated modal coordinates obtained by

means of the observer based on the statistics of Run 1 condition(blue lines) with re-

spect to the same quantities estimated by means of a multi-level observer specifically

synthesized for the current gust condition. The figures show an accurate observa-

tion at low frequencies (except for mode 12). Quantitatively, the estimation is still

good since the TRAC is 0.9096. However this value is lower than the one obtained

by synthesizing the gain matrices specifically for run 2 condition that provides a

TRAC equal to 0.9236. This result, that seems obvious, suggests the use of a differ-

ent observation system for each gust condition. It allows to get always an accurate

estimate of elastic deformations.
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(a) dataset 4 (b) dataset 5 (c) dataset 6

(d) dataset 7 (e) dataset 8 (f) dataset 9

(g) dataset 10 (h) dataset 11

Figure 4.12: Strain gage datasets to be used for sensitivity analysis on the number
and distribution of sensors.
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Figure 4.13: Dependency of the estimate with respect to the number of sensors.

4.3.4 Run 3: response to 1-cosine gust profile

The robustness of the observer in Sec. 4.3.2 is also evaluated by verifying what

happens with a deterministic type of gust. In this analysis the aircraft is assumed to

fly at speed of 17.4m/s. The 1-cosine gust has a characteristic length equal to 3.125c̄.

Fig. 4.16 shows the time response of simulated (blue lines) and observed systems

(green lines). For this gust profile the excitation is practically mono-component.

As a result, estimates at different frequencies will be significantly contaminated by

noise (see Fig. 4.16f). For this run the TRAC is 0.3933. The value is influenced

by the reduced length in time of the response. Being the most of response null, the

estimate of the dynamics is highly influenced by measurement noise. Practically, at

the beginning the TRAC is high and tends to zero as soon as the response goes to

zero.
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(a) mode 1 (b) mode 3

(c) mode 5 (d) mode 6

(e) mode 9 (f) mode 12

Figure 4.14: Run 2: simulated response of the more interesting modal coordinates
against the their estimation by means of 7-level approximation synthesized specifi-
cally for run 1 and 2 gust conditions.
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(a) mode 1 (b) mode 3

(c) mode 5 (d) mode 6

(e) mode 9 (f) mode 12

Figure 4.15: Run 2: PSD of simulated response of the more interesting modal
coordinates against the PSD of their estimation by means of 7-level decomposition.
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(a) mode 1 (b) mode 3

(c) mode 5 (d) mode 6

(e) mode 9 (f) mode 12

Figure 4.16: Run 3: simulated response of the more interesting modal coordinates
against their estimation by means of 7-level decomposition.



Conclusions

The objective of this thesis was to yield methodologies for a real-time reliable estima-

tion of loads and elastic deflections of marine and aeronautical structures, providing

tools to improve the structural health monitoring vibration-based strategies. The

methods generally used for SHM purposes are featured by signal processing of mea-

sures that aim to return parameters for the characterization of the structural health.

However, a lack of spatial information remains. The virtual sensing strategies are

inserted in this framework since they aim to provide physical quantities not directly

accessible through measurement, such as displacement fields, external loads, stresses

and strains that represent the core for a fine structural monitoring strategy.

The thesis activity has therefore had as its objective to develop virtual sens-

ing methodologies that are more appropriate for the types of structure in question.

The needful theoretical background for the development of these techniques lies in

i) properly modeling the topology and the structural dynamics of the considered

structures and ii) an in-depth knowledge of the environment where the considered

structures operate and iii) of the type of data available through measurements. For

the present purpose is fundamental that the numerical model (generally FEM) pro-

vides consistent data with the real behavior of the structure. Environmental models

along with numerical or experimental frameworks are critical for the characterization

of loads acting on the structures.

It has been seen that in literature the problem is generally dealt with by con-

sidering Kalman filter-based observers. These observers, however, are not tailored

for the observation of structural dynamics of aircrafts and ships since they are not

natural for mechanical systems and do not specifically use information on the en-

vironment. Indeed its knowledge is the key point of the observation strategies of

structures operating under ambient loads that, in turn are the object of study and

estimate.
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After a careful review of the literature concerning problems of state estimation

for structural problems, the works of Hernandez et al. were identified as the starting

point for the development of the current observation techniques [18, 19, 20]. The

thesis activity has led to the formulation of natural second order observers that

better exploit the available measurement data and the intrinsic features of the system

responses.

Therefore, two main developments have been proposed based on the general

theory presented in [18].

1. The first proposal concerns the use of measurements stored during the so

called learning phase prior to the observer’s synthesis (see Sec. 2.3.1). The

state estimators do not generally adapt to the stored data, but simply use the

informations that a priori are provided to the observer, i.e., the process noise

(and therefore on external forcing) and measurement noise. In this activity

it is proposed to use the measurements of the learning phase to guide the

observer’s synthesis. Please note that these measurements may be more than

those currently available on board that are used for observation, thus enabling

the convergence of the estimation even in the points no longer measured.

2. Next, it is proposed to combine the natural observer of the second order with

the multi-resolution analysis. Structural systems generally behave differently

at different scales based on the characteristics of external loads. Because of the

state observers do not assume direct knowledge of external loads (but only their

statistical distribution), they are generally designed to provide an estimate

that minimizes the state error globally over the frequency domain. The use of

multi-resolution analysis that decomposes the system into many sub-signals,

each defined at a different time scale, can be used for the construction of

multi-scale observer. This type of proposed observer is able to give back an

estimation of the state by means of the synthesis of an optimal gain for each

of the time scales on which the measurements are decomposed. This type of

observation based on WMRA is only possible using a state observer like the

one proposed in [18] that uses the PSDs to describe the statistics of external

loads and noise.

The above mentioned methodologies have been applied to two different case

studies: i) an experimental model of a surface vessel scaled model and ii) a flex-

ible aircraft numerical model. The surface vessel model is a catamaran tested in
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towing-tank that experiences critical fluid-structure interaction phenomena such as

slamming in the wetdeck region. It was used to validate the approach that employs

the measurement statistics available from the learning phase . Three different ex-

perimental runs have been considered to show the effective use of this observer. A

suitable reduced order model that employs the dynamic reduction technique was

used to get a detailed description of the elastic deflections and loads exchanged at

the interfaces between the segmented hulls and metallic backbone scaling the elastic

behavior of the correspondent full-scale structure. The statistical properties to be

included into the observation synthesis process were obtained by exploiting the same

experimental data. The tool was proved to be useful for the study of hydroelastic

phenomena occurring during the considered towing-tank tests and, specifically, to

recognize particular structural dynamic behaviors in terms of elastic deflections and

hydrodynamic loads. The definition of appropriate parameters, namely TRAC and

FRAC, allowed to perform a rough sensitivity analysis on the distribution of the

sensors, that, among the results confirms the capability of the proposed extension

to improve the estimation when the statistics of removed sensors are inserted in the

observer synthesis process. Furthermore, a quantification of the fatigue life reduc-

tion of each component during the towing-tank tests was provided by exploiting the

reconstruction of the internal stress field together with the Miner’s rule. This esti-

mate of fatigue life reduction, although applied on scaled models, provides estimates

of meaningless residual life values, can be tailored to full-scale structure, thus aiding

the structure’s maintenance.

The second case study concerned a flexible aircraft model freely inspired by Lock-

heed Martin X56-a Body Freedom Flutter [26]. It was used as numerical case study

of the approach based on multi-scale observer . To this end, a virtual experiment

was carried out using a toolbox developed during thesis activities for integrated

modeling of aeroelasticity and flight dynamics. The observation synthesis was made

by considering a model with the same mass and stiffness characteristics but with

different damping features and, in some applications, also different flight conditions

that may affect negatively the observation process. Goal of this case study was to

demonstrate that the use of multi-resolution analysis generally provides better state

estimation thanks to the specialization of the observer to each time-scale involved.

Also for this case study, a sensitivity analysis was performed on the distribution and

the number of sensors used that shows how the distribution of the sensors remains

a critical problem for an effective observation strategy.
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The methodologies presented are aimed at improving the estimation process

and providing an observer that more broadly considers the amount of information

available, exploiting the knowledge of known measurement data on the structure

and the frequency definition of the assigned statistical properties. In this activity,

we have acted on the core of the problem, that is, the state observer.

Nonetheless, potential margins for future development are still recognized. Spe-

cially, performing an observation that involves the optimal estimation of external

loads as in Appendix B with a numerical/experimental application. The optimal

estimation of external loads requires a more complex optimization process (which

can eventually be carried out through multiple optimization processes in cascada).

It also requires a detailed identification of process noise as a function of frequency, of

which in this thesis activity only a rough description of the PSD has been assigned.

In the work some properties on the convergence properties of the observation

remain to be understood. This problem is also closely related to the integration of

optimal sensor placement strategies to the present methodologies.

The use of the present methodology on full-scale structures is still an open ques-

tion which will require further steps. Based on the knowledge acquired from its

application to a ”laboratory” case, the present thesis has tried to highlight the re-

quirements in order to apply the proposed technique to full-scale structures. The

model uncertainties on the real structure, the presence of not modeled noise and any

other unexpected effect may have an order of magnitude such to make the virtual

sensing problem much more challenging but not impossible to be solved with the

same approach.

The final goal of the research remains the monitoring of the health of the struc-

ture. If on one hand the monitoring of the loads and the fatigue life of each point is

a goal already achievable with the virtual sensing patterns, the integration of virtual

sensing for the recognition of damages and their location and quantification remains

a goal on which continue to invest our energies.



Appendix A

Theoretical issues on wavelet

and multi-resolution analysis

The aim of this appendix is to provide the theoretical background on wavelet multi-

resolution analysis which is extensively applied to avoid some issues in the develop-

ment of the involved techniques as applied to the framework of present work. For

further details, the readers is addressed to [21, 43, 44].

A.1 Introduction remarks to wavelet transform

Wavelet analysis is a modern signal processing tool able to provide a picture of a

function in time-scale (or in time-frequency). Its aim is the same of Short Time

Fourier Transform (STFT) but the time-frequency picture is provided in a different

way that makes wavelet analysis a more appealing approach for modern engineering

applications. STFT is obtained performing the Fourier Transform in an user-defined

time window in which the ratio between frequency and time resolution is suitably

assigned. Let’s consider a continuous-time signal x(t) ∈ L2(R) that, for definition,

has an infinite time resolution as well as a Fourier Transform with an infinite fre-

quency resolution. When a sliding time window is applied to Fourier transform basis

functions, making the time-frequency transform featured by two parameters t and

f , the time-frequency resolution becomes finite (Heisenberg uncertainty principle).

Assigning a time-window means fixing the time and frequency resolutions for the

higher frequencies as for the lower-ones. A smarter time-frequency transform would

adapt the time resolution as a function of the frequency. It is enabled by means of

Continuous Wavelet Transform (CWT).
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A.1.1 General remarks on Continuous Wavelet Transform

The wavelets are localized waves with a finite duration that are defined by dilating

(stretching or compressing) and moving a chosen mother wavelet ψ(t) ∈ L2(R) with

||ψ|| > 0, that are not necessarily limited to exponential (or sinusoidal) functions

as opposed to Fourier Transform. From the mother wavelet, a family of functions

called daughter wavelets ψa,b(t) such that

ψa,b(t) =
1√
a
ψ

(
t− b
a

)
(A.1)

is defined as a function of the pair (a, b) ∈ R+ × R. The relationship in Eq. (A.1)

respects the following properties

||ψa,b|| = ||ψ|| (A.2a)

lim
(a,b)→(a0,b0)

||ψa,b − ψa0,b0 || = 0 ∀(a0, b0) ∈ R+ × R (A.2b)

that represent, respectively, the norm conservation and the continuity. The coef-

ficients a and b are, respectively, referred as the scale and translation parameters,

namely the dilatation of the mother wavelet, and the time instant where the wavelet

is centered over time axis. The family of wavelets ψa,b allows to define the CWT of

a function x(t) by means of the following inner product:

CWT (a, b) =

∫ ∞
−∞

ψ∗a,b(t)x(t)dt (A.3)

that means the coefficients (a, b) measure the similarity between the function x(t)

and the wavelets ψa,b that are limited in time and frequency. Evaluating the CWT

at higher scales means performing the operation in Eq. (A.3) with more stretched

wavelets meaning that the signal is evaluated at the lower frequencies. Being the

wavelet more stretched, it is easy to infer that the higher is the scale, the higher is

the frequency resolution as the lower is the time resolution.
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A.1.2 Time-Frequency localization of wavelets

Taken a wavelet such that tψ(t) ∈ L2(R), it is possible to define the mean in time

and the radius (standard deviation) as follow

µψ =
1

||ψ||2

∫ ∞
−∞

t||ψ(t)||2dt (A.4a)

∆ψ =

(
1

||ψ||2

∫ ∞
−∞

(t− µψ)2||ψ(t)||2dt

)1/2

(A.4b)

where the standard deviation is considered as an indicator of time resolution. It

follows from Eqs. (A.1, A.4a, A.4b) that:

µψa,b = aµψ + b (A.5a)

∆ψa,b = a∆ψ (A.5b)

allowing to define the time-resolution and the center of the daughter wavelet accord-

ing to the scale and translation parameters. Similarly, considered as ψ̃ the Fourier

Transform of ψ, it is possible to identify the mean frequency and radius of the

analyzing wavelet

µψ̃ =
1

||ψ̃||2

∫ ∞
−∞

t||ψ̃(ω)||2dω (A.6a)

∆ψ̃ =

(
1

||ψ̃||2

∫ ∞
−∞

(ω − µψ̃)2||ψ̃(ω)||2dt

)1/2

(A.6b)

and, in turn, the same quantities for the daughter wavelets:

µψ̃a,b = µψ̃/a (A.7a)

∆ψ̃a,b
= ∆ψ̃/a (A.7b)

defining the mean frequency and the frequency-resolution of the wavelets as a func-

tion of scale and translation parameters. As for the considerations on time-frequency

resolution in STFT, the Heisenberg principle of indetermination states that ∆ψ∆ψ̃ ≥
1/2, namely, that it is not possible to be resolutive in frequency and in time at the

same time [44]. In wavelet analysis, the mother wavelet is dilated and shifted main-

taining the product ∆ψ∆ψ̃ unmodified. Here, there is the great advantage of the

CWT with respect the STFT, that tunes the time resolution, and, in turn, the

frequency resolution as a function of the frequency content (see Eq. A.7b).
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A.1.3 Toward Discrete Wavelet Transform

CWT also admits an own inverse transform

x(t) =
1

Kψ

∫ a=∞

a=−∞

∫ b=∞

b=−∞
CWT (a, b)ψa,b(t)

1

a2
dbda (A.8)

where Kψ depends on the kind of wavelet involved. However, the daughter wavelets

basis is more than complete leading to redundancy in CWT. In order to avoid the

redundancy, the idea was to define a new family of wavelets by means of a discrete

number of parameters, chosen among the integers Z. The standard way to discretize

wavelet transform is to use a set of discrete dilation and translation parameters

expressed as in the following dyadic way:

a = 2−j

b = k 2−j

where the pair (j, k) ∈ Z refers to discrete scale and translation parameter. The

daughter wavelets are defined as follows

ψj,k(t) = 2j/2ψ
(
2jt− k

)
(A.9)

providing the following Discrete Wavelet Transform (DWT):

Cj,k = 〈ψj,k(t), x(t)〉 (A.10)

The mother wavelet ψ(t) must be chosen so having that ψj,k make up a Riesz 1 basis

in L2(R). If the wavelet ψ is such that ψj,k is also an orthogonal basis, it is possible

to obtain an orthogonal wavelet transform so having

x(t) =

∞∑
j=−∞

∞∑
k=−∞

〈ψj,k(t), x(t)〉ψj,k(t) (A.13)

1 it means that the linear span of ψj,k(t) is dense in L2(R) and there exists a dual basis ψ̄l,m(t) such that

〈ψj,k(t), ψ̄l,m(t) 〉 = δjlδkm j, k, l,m ∈ Z (A.11)

and
ψ̄j,k(t) = 2j/2ψ̄

(
2jt− k

)
(A.12)
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that allows to decompose a signal x(t) by using a minimum number of parameters.

Now, consider the subspaces Wj generated by including ψj,k : k ∈ Z such that

Wj ⊥ Wl l 6= j, given by the assumption that the ψj,k form an orthogonal basis.

The Hilbert space L2(R) is given by

L2(R) =W1 ⊕W2 ⊕ ...+Wj ⊕+... (A.14)

At the same time, a signal x(t) ∈ L2(R) can be decomposed as sum of sub-signals

x(t) =

∞∑
j=−∞

x(Wj)(t) (A.15)

where x(Wj)(t) ∈ Wj∀j ∈ Z. It is worth to notice that the frequency content of each

level, namely µψ̃j,k and ∆ψ̃j,k
is generated by the choice of the mother wavelet and

its dilatation.

A.2 Wavelet multi-resolution analysis

Wavelet Multi-Resolution Analysis (WMRA) is a useful tool that allows to decom-

pose a discrete signal x(t) into various resolution scales. At a given scale j, the

signal is represented by means of an approximation (containing the low-frequency

features of the signal) plus a certain number of details.

Considering orthogonal wavelets, multi-Resolution Analysis is a series of closed

subspaces Vj ∈ L2(R) that satisfy different properties than Wj [44]:

Vj ⊆ Vj+1 ∀j ∈ Z (A.16a)

∪j∈ZVj = L2(R) (A.16b)

∩j∈ZVj = {0} (A.16c)

f(t) ∈ Vj−1 ⇐⇒ f(2t) ∈ Vj (A.16d)

f(t) ∈ Vj ⇐⇒ f(t− e−jk) ∈ Vj ∀k ∈ Z (A.16e)

It is worth to notice that, as opposed to the subspaces Wj , the subspaces Vj are

nested (see Eq. (A.16a)) that means the subspace at scale j includes the subspaces

at previous levels. The subspace V0 is spanned by a scaling function (also called

father function) φ(t) ∈ L2(R) by the orthogonal set {φ0,k k ∈ Z}.
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Given a signal x(t) ∈ L2(R), the approximation at the scale j can be written as:

x(Vj)(t) =

∞∑
k=−∞

c(j)(k)φ(2jt− k) (A.17)

with

c(j)(k) = 〈φj,k(t), x(t)〉t (A.18)

From Eq. (A.16a), being the subspace Vj nested in Vj+1, it follows that it is possible

to express the generating functions of Vj+1 as linear combination of the ones of Vj

and in particular:

φ(2jt) =

∞∑
k=−∞

h(k)φ(2j+1t− k) (A.19)

The subspace Vj+1 can be defined as the sum of Vj and the detail space Wj :

Vj+1 = Vj ⊕Wj (A.20)

The higher is the scale parameter j, the finer is the approximation x(j)(t) of x(t).

Eqs. (A.17, A.20) yield

x(Vj+1)(t) = x(Vj)(t) +
∞∑

k=−∞
d(j)(k)ψ(2jt− k) (A.21)

with

d(j)(k) = 〈ψj,k(t), x(t)〉t (A.22)

Summarizing the concepts above, given a signal x(V0) ∈ V0, the N-level approxima-

tion is given by:

x(V0)(t) = x(V−N )(t) +

N−1∑
j=0

x(W−N+j)(t) (A.23)

that is the sum of an approximation and N details.
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The wavelets ψ(2j) are expressed by means of the following relationship:

ψ(2jt) =

∞∑
k=−∞

g(k)φ(2j+1t− k) (A.24)

From Eqs. (A.19, A.24) it is possible to recognize h(k) and g(k) as digital filter pair

that are computed as:

h(k) =

∫ ∞
t=0

φ(t)φ∗(2t− k) (A.25a)

g(k) =

∫ ∞
t=0

ψ(t)φ∗(2t− k) (A.25b)

h(k) and g(k) form a quadrature conjugate mirror filter pair, where h(k) acts as

low-pass and g(k) as high-pass filter. Their relationship is given by

g(k) = (−1)kh(−k + 1 + 2n) ∀n ∈ Z (A.26)

g(k) and h(k) along with Eqs. (A.18, A.22) allow to express the coefficients at level

j as a function of the coefficients at the finer approximation:

c(j)(k) =
∞∑

n=−∞
h∗(n− 2k)c(j+1)(n) (A.27a)

d(j)(k) =
∞∑

n=−∞
g∗(n− 2k)c(j+1)(n) (A.27b)

The definitions in Eqs. (A.27a,A.27b) lead to the Mallat algorithm [21] for the fast

calculation of DWT and reconstruction procedure. Indeed, different wavelets scales

are computable by means of successive filtering and down sampling strategy.

In practical applications x(t) is a sampled signal. It means that the finest ap-

proximation subspace depends on the sampling frequency. Let’s consider a signal

x(t) ∈ VJ . Fig.A.1 illustrates a N-level decomposition tree. The discrete signal x(tk)

is first decomposed by means of the digital filter pair in the first level of approx-

imation and detail. After the down-sampling, the procedure is recursively applied

to the approximations until the desired N-level is reached, providing a cost-effective

strategy to compute the discrete wavelet coefficients. The DWT coefficients are then

used in the reconstruction process by means of up-sampling and filtering procedure

as shown in Fig. A.2.
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Figure A.1: WMRA decomposition diagram.

Figure A.2: WMRA reconstruction diagram.
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(a) 1-level approximation (b) 3-level approximation

Figure A.3: Frequency domain representation of WMRA.

As a result of the reconstruction, N+1 sub-signals are obtained so having that:

x(t) = x(aN ) +
N∑
j=1

x(dj) (A.28)

It is worth to notice that, in order to be consistent with other engineering ap-

plications, the notation related to the sub-signals has been modified such that

x(aN ) ≡ x(VJ−N ) and x(dj) ≡ x(WJ−j). This notation switching hides a subtlety

to which the reader must pay attention. In the previous notation an increase of j

implies a decrease of the time scale, while with the current-one an increase of j con-

stitutes an increase in the time scale and therefore a lower frequency content of the

j-th detail. The frequency of such a sub-signals is not unequivocally determinable

since they are not computed by means of periodic functions, but their frequency

content depend on the one of the scaling and wavelet function.

The quadrature mirror filters along with the Mallat algorithm provides a subdi-

vision of the frequency content of the signal into N+1 scales. However, the frequency

content between two contiguous scales presents a certain overlapping that can be

seen in Fig. A.3 that is obtained by using db12 wavelet [43]. This overlapping de-

pends on the choice of particular wavelets and their vanishing moments 2. In this

2 The degree of continuity of a wavelet depends on the vanishing moment. A wavelet is said to have p
vanishing moments if

∫ +∞

−∞
tkψ(t)dt = 0 k = 1, . . . , p
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figure the absolute value of equivalent filtering transfer functions in frequency do-

main are shown. They correspond to the absolute value of the Fourier transform of

the wavelet at each scale. In Fig. A.3(a) the red line represents the transfer function

of the approximation whilst the blue-one is the transfer function of the detail. In

Fig. A.3(b) the transfer function of the approximation at level 3 is the purple line,

the blue line is the same of Fig. A.3(a) and represent the transfer function of detail at

level 1. The red and yellow lines represent the transfer function of the details of the

discrete scales 2 and 3. Note that these two functions, along with the approximation

can be obtained by means of multiple filters.
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Optimal estimation of external

forces

In Sec. 1.2.1 the Augmented Kalman filter was introduced to consider in the esti-

mation process also the external forces. This section aims at the same goal: get an

estimation of external forces in a similar way, but for a natural second order system.

Recall Eq. (1.48) by adding the estimation of external forces:

M¨̂q + D ˙̂q + Kq̂ = f̂ + Lvr =
(

Lf + Lv
)

r (B.1)

f̂ = Lf r

ŷ = S(t) ∗ q̂

where Lv is the observer compensating the process noise and Lf is a gain matrix

that attempts to estimate the external forces, that, in turn, reentries in the second

order observation equation. Now, besides the state error ε = q − q̂, let’s define the

external force error as

εf = f − f̂ (B.2)

and the classical second order gain matrix as L = Lv + Lf . In this manner, it is

possible to get a synthesis of L by minimizing the covariance associated to ε as in

Sec. 1.2.1. Once L is synthesized, and we get Φεε(ω), we want to find the values of

Lf that minimize the external force error. By definition:

εf = f − f̂ = f − Lf r = f − Lf

(
v + S(t) ∗ ε

)
(B.3)
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Defining as Φεfεf
(ω) the power spectral density of the external forces error, and

considering that the state error is correlated with external forces and measurement

noise (see Eq. (1.53)), we get:

Φεfεf
= Φff + LfΦvvLT

f + (Lf S̃)∗Φεε(Lf S̃)T − (Lf S̃H̃O)∗Φff (B.4)

+Φff(Lf S̃H̃O)T + (Lf S̃HOL)∗ΦvvLT
f + L∗fΦvv(Lf S̃HOL)T

In a similar way than in Secs. (1.2.1,2.3.1), we define the covariance of the external

force error:

Σ2
ff =

∫ +∞

−∞
Φεfεf

(ω)dω (B.5)

As in Sec. 2.3.1 a multi-objective optimization can be performed considering the

minimization of tr(Σ2
ff) as one of the objectives. However, in this manner the number

of free parameters are doubled so increasing the computational effort. Alternatively,

it is possible to consider the minimization of εf less important than ε and, as a

consequence, solve another optimization process in cascade with respect to the one

associated to the state error.
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Estimation of the accumulated

damage

In this section, the elastic deflections estimated for the runs in Chap. 3 are used

to enable the computation of the accumulated damage at every point of the struc-

ture. The estimation of accumulated damage is critical for predictive maintenance

applications since they can provide useful information to understand which parts or

components of the structure have reached or are about to reach the useful life limits.

In this case the object of the present analysis is the load-bearing structure of the

catamaran, namely the truss frame. However, the catamaran scaled model, even

if it experiences considerable loads, will present internal stresses that are far from

being comparable to those of the real structure, and consequently, also the fatigue

life prediction presents results that are meaningless as compared to full-scale struc-

tures. Nonetheless, the qualitative results that have been obtained illustrates the

potential of the approach based on stress field estimation. The estimation approach,

indeed, aims to provide an estimation of the displacement field (and in turn of the

stresses throughout the structure) by minimizing the errors given by disturbances

and complexity of geometries. For the estimation of fatigue life reduction, it has

been used the Basquin relationship, that links the number of fatigue cycles with

the cyclic load σa (expressed in MPa and defined as the half of the amplitude of

oscillation) on a logarithmic scale:

σma N = C

where N is the number of cycles and m and C are coefficients of the regression line

that approximates the Wöhler curve. For this case study, m and C have been chosen
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equal to 4.1 and 3.15e+ 14, respectively.

Figure C.1: Stress-cycles curve for the stress range of interest of the present case
study. This plot does not provide realistic values for real structures.

Fig. C.1 shows the Stress-Cycles curve in the range of stress that the catamaran

experiences. It can be noticed that, even if the structure experienced always the

maximum of stress, more than 1011 cycles would be necessary to fulfill the fatigue

life of the structure. The structure experiences loads at various levels of excitation.

Each of these levels of load consumes the life with different number of cycles. Miner’s

rule [38] states that the damage accumulated D by the material due to the cyclic

load is proportional to the ratio between the number of cycles that the structure has

been undergone ni and the number of cycles Ni that causes the failure at the i-th

stress level σai :

D =

Nstress∑
i=1

ni
Ni

This cumulative damage can be computed by means of traditional methods like rain

flow [39]. By means of the estimation process presented in this thesis, it is possible to

get a full picture of the stress loads throughout the structure. In particular, dealing

with a complex 3-D structure, we need to recognize a principal stress direction to

which we will apply the Miner’s rule. However, the present structure has a main load

directions in every point as it is suggested by the expected external loads. Without

loss of generality we can state that the principal loads will be everywhere longitudinal

to the truss directions. In this manner it is possible to plot the accumulated damage
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for each element of the metallic frame.

Fig. C.2 represents the damage accumulated by each element at the end of all

the tests discussed above. The values highlighted in the color-bar are normalized

with respect to the damage maximum value Dmax, that is expressed in caption for

each of the runs. It can be noticed that Run 1 and Run 3 accumulates much more

damage than Run 2 due to the slamming phenomena present in the wetdeck region.

In fact, the wetdeck fore bar is the most damaged area for both the runs. During

Run 2 the structure accumulates more damage on the trusses (in particular on the

left-one, likely due to estimated asymmetries of the external load).
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(a) Run 1: Dmax = 2.51e− 10.

(b) Run 2: Dmax = 1.33e− 13.

(c) Run 3: Dmax = 2.76e− 10.

Figure C.2: Visualization of fatigue life consumption estimation. The color scale
indicates the normalized life consumption for each element at the end of the run.



Appendix D

Integrated model of flight

dynamics and aeroelasticity

The integrated model of flight dynamics and aeroelasticity developed in Ref. [42]

assumes a set of body axes that verifies the practical mean-axis constraints [45] to

describe the nonlinear motion of a flexible vehicle as a whole. Structural displace-

ments with respect to these axes are assumed small and represented in terms of a

modal decomposition. Inertial coupling between rigid-body and elastic degrees-of-

freedom is described in terms of a reduced set of coefficients which can be evaluated

using a FEM model of the aircraft. Fully nonlinear equations of rigid-body motion

and structural dynamics are obtained by the weak formulation of Cauchy’s equation

for a generic unrestrained continuum [49] and linearized around steady maneuvers

for stability and response analysis.

D.1 Kinematics

The motion of an unrestrained flexible vehicle is described by assuming a set of

practical mean axes (PMAs) of unit vectors ek (k = 1, 2, 3) as body reference frame.

A set of inertial axes of unit vectors ik (k = 1, 2, 3) is also introduced. According

to the practical mean-axis constraints [45], the PMA frame has origin at the instan-

taneous aircraft center of mass and it is fixed to the undeformed configuration (see

Fig. D.1).

The position of a generic vehicle material point P in the inertial coordinate
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Figure D.1: Reference frames to describe the motion of an unrestrained flexible
vehicle.

system is given by 1

x = x
G

+ z + u
E

(D.1)

where x
G

= xGi1 + yGi2 + zGi3 is the instantaneous position of the center of mass,

z = z1e1 + z2e2 + z3e3 is the relative position of P in the PMAs in undeformed

configuration, and

u
E

=
∞∑
n=1

qnφ
E
n (D.2)

is the elastic displacement. In Eq. (D.2), φE
n is the nth elastic mode shape of the

unconstrained structure and qn the corresponding modal coordinate. The relative

position of P with respect to the PMAs in deformed configuration is given by

r := x− x
G

= z + u
E

(D.3)

From Eqs. (D.1), (D.2), and (D.3), the absolute velocity and acceleration of P follow

1 Note that this representation is not in conflict with the one of Sec. 1.1. Indeed:

x = xG + r

x̊ = xG + z
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as

v = v
G

+ ω × r + v
E

(D.4)

a = v̇
G

+ ω̇ × r + ω × (ω × r) + 2ω × v
E

+ a
E

where v
G

= ue1 +ve2 +we3 is the velocity of the center of mass, ω = pe1 +qe2 +re3

is the angular velocity of the PMA frame with respect to the inertial frame, and

v
E

=
∞∑
n=1

q̇nφ
E
n a

E
=
∞∑
n=1

q̈nφ
E
n (D.5)

are the relative velocity and acceleration due to elastic motion.

D.2 Inertial coupling

Inertial coupling between rigid-body and elastic degrees of freedom vanishes when

a mean-axis body reference frame is used [50], but not in the case of a PMA

frame [51, 42]. In the present model, the residual inertial coupling terms in the

equations of motion are not neglected (as frequently done, see Refs. [45, 46, 40]).

This allows to study the influence of inertial versus aerodynamic coupling effects

for each application without preliminary simplifications [42]. Coupling vectors and

tensors to describe inertia coupling effects are introduced below for a generic con-

tinuous structure and can be evaluated for complex configurations described by a

FEM model as reported in Ref. [42].

The aircraft inertia tensor in deformed configuration is written as

J = 〈r⊗ r〉 = J0 + 2
∞∑
n=1

Jnqn +
∞∑

n,m=1

Jnmqnqm (D.6)

having introduced the integral operator:

〈a⊗ b〉 :=

∫∫∫
V
ρ [(a · b) I− a⊗ b ] dV (D.7)

In Eq. (D.6), J0 is the inertia tensor in undeformed configuration, while

Jn :=
1

2

[
〈z⊗ φE

n〉+ 〈φE
n ⊗ z〉

]
Jnm :=

1

2

[
〈φE

n ⊗ φE
m〉+ 〈φE

m ⊗ φE
n〉
]

(D.8)

are first- and second-order coupling tensors. The sensitivity of the inertia ten-
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sor (D.6) on the nth modal coordinate is described by the tensor

Yn := sym 〈r⊗ φE
n〉 = Jn +

∞∑
m=1

Jnmqm =
1

2

∂J

∂qn
(D.9)

The following inertial coupling vectors are also introduced:

bnm :=

∫∫∫
V
ρφE

n × φE
m dV = −bmn (D.10)

Using Eqs. (D.6), (D.8), and (D.10), the angular momentum of a generic flexible

body is written as

h
G

=

∫∫∫
V
ρr× (ω × r) dV +

∫∫∫
V
ρu

E
× v

E
dV = Jω +

∞∑
n,m=1

bnmqnq̇m (D.11)

D.3 Nonlinear equations of motion

Having assumed a PMA body frame, the equations of motion are as follows [42]:

1. Translational equations:

m
dv

G

dt
= f

T
(D.12)

2. Rotational equations:
dh

G

dt
= m

G
(D.13)

3. Elastic equations:

mnq̈n −
dω

dt
·
∞∑
m=1

bnmqm − ω ·Ynω − 2ω ·
∞∑
m=1

bnmq̇m + knqn = fn (D.14)

where m is the total aircraft mass, f
T

= Xe1+Y e2+Ze3 and m
G

= Le1+Me2+Ne3

are respectively the total force and the total moment with respect to the center of

mass, mn is the nth generalized mass, kn the nth generalized stiffness, and fn the

nth generalized force obtained by projecting loads on the mode-shape functions.

Inertial coupling between rigid-body and structural dynamics stems from the

angular momentum in Eq. (D.13) and due to the centrifugal, Coriolis, and angular

acceleration terms in Eq. (D.14). Aerodynamic coupling occurs through the right-

hand sides of Eqs. (D.12), (D.13), and (D.14). Equations (D.12), (D.13), and (D.14)

have been also obtained in Ref. [51] using a Lagrangian approach, and they reduce



Integrated model of flight dynamics and aeroelasticity 131

to the ones in Refs. [45, 46, 40] by neglecting inertial coupling effects. Further details

on the derivation of Eqs. (D.12), (D.13), and (D.14) are found in Ref. [42].

D.4 Linearized equations of motion

The nonlinear equations in Subsec. D.3 [Eqs. (D.12), (D.13), and (D.14)] are lin-

earized for small disturbances with respect to a steady maneuver, defined by the

trim translational and angular velocities v
Ge

and ωe and by the corresponding lin-

ear aeroelastostatic deflection described by the modal coordinates at equilibrium

qne . Accordingly, the linearized model is as follows:

m (∆v̇
G

+ ωe ×∆v
G
− v

Ge
×∆ω) = ∆f

T
(D.15)

∆J̇ ωe + Je ∆ω̇ +

∞∑
n,m=1

bnmqne∆q̈m − Jeωe ×∆ω +

+ωe × (∆Jωe + Je ∆ω +

∞∑
n,m=1

bnmqne∆q̇m) = ∆m
G

(D.16)

mn∆q̈n −∆ω̇ ·
∞∑
m=1

bnmqme − ωe ·∆Ynωe +

−2∆ω ·Yneωe − 2ωe ·
∞∑
m=1

bnm∆q̇m + kn∆qn = ∆fn (D.17)

where

Je = J0 +

∞∑
n=1

(Jn + Yne) qne ∆J = 2

∞∑
n=1

Yne∆qn ∆J̇ = 2

∞∑
n=1

Yne∆q̇n

Yne = Jn +

∞∑
m=1

Jnmqme ∆Yn =

∞∑
m=1

Jnm∆qm

(D.18)

Equations (D.15), (D.16), and (D.17) are recast in matrix form by replacing the

physical perturbation vectors ∆v
G
, ∆v̇

G
, ∆ω, ∆ω̇, ∆f

T
, and ∆m

G
by the following
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vectors of their components in the PMA frame:

∆v
G

= {∆u, ∆v, ∆w}T ∆ω = {∆p, ∆q, ∆r}T

∆f
T

= {∆X, ∆Y, ∆Z}T = ∆f
A

+ ∆f
W

∆m
G

= {∆L, ∆M, ∆N}T = ∆m
A

(D.19)

where ∆f
A

and ∆f
W

are respectively the perturbations of the aerodynamic and weight

force and ∆m
A

is the perturbation of the aerodynamic moment. Any other physical

quantity in Eqs. (D.15), (D.16), and (D.17) is also represented in terms of the vector

or matrix of its components in the PMA frame (for instance, the trim angular

velocity ωe is replaced by the vector of its components ωe). Equations (D.15), (D.16),

and (D.17) are written in concise form as

Me


∆v̇

G

∆ω̇

∆q̈

+ De


∆v

G

∆ω

∆q̇

+ Ke


∆xB

G

∆θ

∆q

 =


∆f

T

∆m
G

∆f
E

 (D.20)

The quantities

∆q = {∆q1, . . . , ∆qN}T ∆fE = {∆f1, . . . , ∆fN}T

∆xB
G

=
{

∆xB
G
, ∆yB

G
, ∆zB

G

}T
∆θ = {∆θ1, ∆θ2, ∆θ3}T

(D.21)

are respectively the perturbation vectors of the modal coordinates, generalized forces,

center of mass position expressed in the PMAs, and rigid-body rotation about the

PMAs. Once the generalized mass matrix M, the generalized stiffness matrix K, and

the matrices

Be :=
[∑N

n=1 bn1qne · · ·
∑N

n=1 bnNqne

]
Ye := 2

[
Y1eωe · · · YNeωe

]

Fe :=


ωT
e J11ωe · · · ωT

e J1Nωe
...

. . .
...

ωT
e JN1ωe · · · ωT

e JNNωe

 Ge := 2


ωT
e b11 · · · ωT

e b1N

...
. . .

...

ωT
e bN1 · · · ωT

e bNN


(D.22)
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are introduced, the matrices in Eq. (D.20) are written as

Me =


mI 0 0

0 Je Be

0 BT
e M



De =


mΩ̂e −mV̂

Ge
0

0 Ω̂eJe − Ĥ
Ge

Ω̂eBe + Ye

0 −YT
e −Ge

 (D.23)

Ke =


0 0 0

0 0 Ω̂eYe

0 0 K− Fe


where Ω̂e and V̂e are, respectively, the skew-symmetric matrices associated with the

cross product of ωe and v
Ge

.

D.5 Small disturbance aerodynamics

Small disturbance aerodynamics is modeled via DLM, which is a potential-flow

lifting surface aerodynamic model standardly used in commercial FEM aeroelas-

tic solvers [52]. In these solvers, small disturbance unsteady aerodynamics is de-

scribed in the frequency domain by the generalized aerodynamic force (GAF) matrix

E := E(k;M∞), where k := ωb/U∞ is the reduced frequency, ω is the dimensional

Fourier variable, b is the reference half chord, U∞ is the freestream velocity, and M∞

the freestream Mach number. In a fully unsteady description, the GAF matrix has

a transcendental dependency on the reduced frequency due to lag effects associated

with wake dynamics. This makes the linear aeroelastic system integrodifferential,

so that it cannot be directly recast in state-space form. However, a state-space rep-

resentation of the aeroelastic system can be achieved by approximating the GAF

matrix by means of polynomials and rational functions of k [48, 53]. Using this

approach, the aerodynamic terms on the right-hand side of Eq. (D.20) can be rep-
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resented as functions of the non-dimensional Laplace variable p as follows [42]:
∆f̃

A

∆m̃
G

∆f̃
E

 =
1

2
ρ∞U∞ b (pĀ2 + Ā1)


∆ṽ

G

∆ω̃

∆˜̇q

+ (D.24)

qD Ā0


∆x̃B

G

∆θ̃

∆q̃

+ qD C̄ (pI− P̄)−1 B̄


∆x̃B

G

∆θ̃

∆q̃


where Laplace transforms are denoted by a tilde, qD = ρ∞U

2
∞/2 is the freestream

dynamic pressure, and Ā0, Ā1, Ā2, B̄ and C̄ are interpolative matrices for the (6+N)×
(6+N) GAF matrix data obtained from a standard FEM/DLM flutter analysis [52].

The last term in Eq. (D.24) approximates the wake dynamics in terms of a finite

number Na of aerodynamic states [42]

∆ã := (pI− P̄)−1 B̄


∆x̃B

G

∆θ̃

∆q̃

 (D.25)

D.6 State-space flexible-aircraft model

A state-space representation of the flexible-aircraft system is obtained from the

linearized equations in Subsec. D.4 [Eqs. (D.15), (D.16), and (D.17)] and using

the small disturbance finite-state aerodynamic model in Subsec. D.5 [Eqs. (D.24)

and (D.25)]. The state-space model has order [2(6 +N) +Na] and is associated to

the state-space vector

x =



∆x
G

∆Θ

∆q

∆v
G

∆ω

∆q̇

∆a


(D.26)

where

∆x
G

= {∆x
G
, ∆y

G
, ∆z

G
}T ∆Θ = {∆φ, ∆θ, ∆ψ}T (D.27)
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are the perturbation vectors of the center of mass inertial coordinates and Euler

angles.

D.6.1 State-space matrix

The linearized equations in Subsec. D.4 [Eqs. (D.15), (D.16), and (D.17)] are com-

pleted with the kinematic equations:
∆ẋ

G

∆Θ̇

∆q̇

 = T1


∆v

G

∆ω

∆q̇

 =


Le 0 0

0 Te 0

0 0 I




∆v
G

∆ω

∆q̇

 (D.28)

where Le and Te are respectively the linearized forms of the transformation matrix

from the PMAs to the inertial axes and the matrix relating the Euler angles rates to

the angular velocity components expressed in the PMAs. Using Eqs. (D.20), (D.24),

and (D.25) and introducing the attitude stiffness matrix K
W

to project the pertur-

bation of the weight force onto the PMAs [42], the flexible-aircraft model is written

in standard state-space form

ẋ = A x (D.29)

with state matrix [42]

A =


0 T1 0

−M−1K −M−1D qDM−1C̄

U∞
b B̄ 0 U∞

b P̄

 (D.30)

where

M := Me −
1

2
ρ∞b

2Ā2

D := De −
1

2
ρ∞U∞ b Ā1

K := Ke − qDĀ0 + K
W

The state vector elements [Eq. D.26] describe the rigid-body motion of the PMA

frame (12), structural displacements relative to the PMA frame (2N), and finite-

state unsteady aerodynamics (Na). The number of rigid-body state variables can be

reduced to 9 in case aircraft flight path is out of interest for stability and response

analysis [47] and the effect of the density gradient is neglected.
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D.6.2 Gust inputs

In this framework, a quasi-steady gust is considered to have a quasi-uniform velocity

profile in space that is given by:

vg =
3∑
i=1

vgiei +
3∑
i=1

ωgiei × z (D.31)

By projecting the gust velocity over the rigid-body and elastic mode shapes it is

possible to rewrite Eq. (D.24) as
∆f̃

A

∆m̃
G

∆f̃
E

 =
1

2
ρ∞U∞ b (pĀ2 + Ā1)


∆ṽ

G
− ṽg

∆ω̃ − ω̃g
∆˜̇q

+ qD Ā0


∆x̃B

G

∆θ̃

∆q̃

+ qD C̄ ∆ã (D.32)

where the linear gust velocity is assumed to be as ṽg = [0 0 ṽg3 ]T and the rotational

gust velocity as ω̃g = [0 0 ω̃g3 ]T. This allows to represent non-symmetric gust profile

with respect to the plane xz (as opposed to [54]). Therefore ṽg and ω̃g are merged

in w̃g. In such a way w̃g is a six component vector. Once Eq. (D.32) is developed as

in Sec. D.6.1, the linearized system is written as

ẋ = A x + Bg ug (D.33)

where the elements of the input vector uT
g are the gust velocity components and

their time derivatives as it follows:

ug =

{
wg

ẇg

}
(D.34)

and the input matrix is

Bg = −1

2
ρ∞U∞ b


0 0

M−1Ā
(1,6)
1

b
U∞

M−1Ā
(1,6)
2

0 0

 (D.35)

The matrices Ā
(1,6)
1 and Ā

(1,6)
2 consist, respectively, of the first six columns of Ā1 and

Ā2.
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