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Abstract

Among various and challenging objectives of the LHC

Injectors Upgrade project (LIU), one aim is to double the

beam intensity of the CERN Proton Synchrotron (PS) in

order to achieve the integrated luminosity target of the High-

Luminosity LHC project (HL-LHC). A known limitation

to reach the required high intensity is caused by the lon-

gitudinal coupled-bunch oscillations developing above the

transition energy. The unwanted oscillations induce large

bunch-to-bunch intensity variations not compatible with the

specifications of the future LHC-type beams. A wide-band

longitudinal damper has been installed in the PS to suppress

these instabilities and is going to be commissioned. A mea-

surement campaign of coupled-bunch oscillations has been

launched to substantiate the extrapolations and predictions

for the future High Luminosity LHC beam with the final aim

to determine the maximum intensity that could be provided

to the LHC. In parallel a Simulink© model of the PS is going

to be implemented to predict the machine behavior in the

parameter space of LIU and to be used during the beam

commissioning and optimization of the feedback system.

INTRODUCTION

The Proton Synchrotron (PS) [1] is the LHC injector

where the longitudinal structure of the beam train serving

LHC is established. RF systems at multiple harmonics be-

tween h = 7 and h = 458 provide the flexibility required

for the longitudinal bunch splitting [2]. After the beam is

accelerated above transition energy [3], dipolar longitudinal

coupled-bunch (CB) instabilities are observed [4, 5] . The

machine longitudinal impedance changes according to the

dynamic tuning of the main accelerating cavities along the

magnetic cycle. During the ramp all cavities are tuned at

h = 21 and the longitudinal impedance is maximized, thus

causing a crosstalk among bunches. Presently this instabil-

ity is cured by a controlled longitudinal emittance blow-up

at injection energy and dedicated feedback at 15 frev and

20 frev . From the present bunch population of 1.3 · 1011

p/b (72 bunches in h = 84), the LIU project [6] aims to

reach 2.6 · 1011 p/b [7]. This makes the present counter

measurement (blow-up) inadequate to control the instability,

producing, during the splitting at top energy, a bunch-by-

bunch intensity variation not compatible with the required

LHC luminosity performance.

In the following we assume as working hypothesis that the

train of equidistant bunches is regularly distributed along

the machine azimuth (to compare with the nominal filling

pattern with 18 bunches in h = 21). Under this condition,

the bunches are not sortable from the physical point of view

(circulant symmetry). Assuming in addition that the CB

oscillations can be described by a linear approximation, the

circulant matrix formalism [8] becomes the ideal mathemat-

ical tool to analyze the dipolar coupled-bunch oscillations.

The purpose of the study is to develop an algorithm to an-

alyze the longitudinal profiles of the bunch train and, us-

ing the circulant matrices formalism, to perform the mode

analysis of the system to study its stability. In addition a

Simulink© [9] model of the PS and the new damper cavity

is being implemented to take into account the non idealities

of the system, i.e. the limited voltage of the damper cavity,

the noise level of the longitudinal pickup (PU), the errors

introduced by the quantization and sampling of the low level

electronics of the feedback.

THE CIRCULANT MATRIX FORMALISM

A 2nb × 2nb circulant matrix, F, has the general form

F =
��
�

f1 . . . f2

. . . . . . . . .

f2nb
. . . f1

��
� . (1)

The evolution in the normalised longitudinal phase space

of nb bunches from turn n to turn n + 1 can be linearly

approximated by the following

���������
�

x1

Δp1/p

. . .

. . .

xnb

Δpnb
/p

���������
�n+1

=M ×

���������
�

x1

Δp1/p

. . .

. . .

xnb

Δpnb
/p

���������
�n
, (2)

where M is a stationary block circulant matrix where each

block represents a rotation matrix. This paper will discuss

how to derive the M matrix starting from the measurement

data from the longitudinal PU. Once M is known, the stabil-

ity of the system described in Eq. 2 can be investigated by its

eigenvalues if the matrix can be put in diagonal form. Since

we consider a perturbative approach, it is possible to assume

that all the bunches in the system have the same synchrotron

tune Qs . Therefore each bunch position xi and each bunch

momentum deviation Δpi/p can be written as

xi = �
{
aie

jφi · e j2πQs×n
}

(3)

Δpi/p = �
{
aie

jφi · e j2πQs×n
}

(4)

where i ∈ {1, . . . ,nb }, ai and φi are the amplitude and the

phase of the longitudinal bunch oscillation. The dynamic
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in Eq. 2 together with the assumption in Eq. 3 can be re-

formulated in a complex amplitude space and described by

the new variable Xn

�����
�

X1

.

.

Xnb

�����
�n+1

= Xn+1 = C ×
�����
�

X1

.

.

Xnb

�����
�n
= C × Xn (5)

where Xi = ai · e jφi is the phasor representing the complex

amplitude of the ith bunch and C is a nb × nb circulant

matrix.

The eigenvectors of a circulant matrix can be written as

v j =
1√
nb

(1, ω j , ω
2
j , . . . , ω

nb−1
j

)T (6)

with j = 0,1, . . . ,nb − 1 and ω j = exp
(

2πi j

nb

)
. Thus C can

be always written in the form

C = P × D × P
−1 (7)

where D is a diagonal matrix of eigenvalues and P is the base

of the eigenvectors of the system. From Eq. 6, one obtain

P = DFT (I) (8)

where I is the nb × nb identity matrix and DFT represents

the Discrete Fourier Transform [10]. It is possible to rewrite

the evolution of Eq. 5 from the bunch space Xn in the modes

space Wn, yielding

Wn+1 = D ×Wn. (9)

From previous equations the expression of the modes evolu-

tion can be achieved

Wn = P
−1

Xn (10)

which leads, in combination with the definition of eigenvec-

tors for circulant matrices in Eq. 6, to the next relation

Wn = IDFT(Xn). (11)

Eq. 11 allows to compute amplitude, Ai , and phase, Φi , for

each oscillation mode

Wi = Ai · e jΦi (12)

from the ai and φi of each bunch. We will show how the

formalism discussed above can be applied to the measured

data.

MEASUREMENTS CAMPAIGN

During the 2014 run, a measurements campaign of the CB

instabilities was performed. In the following the setup, the

analysis algorithms and the results are discussed. The aim is

to derive the matrix M of Eq. 2 starting from the measured

data and use it as an input for the Simulink© model of the

machine. A large memory digitiser has been used to acquire

160 ms of the beam data from a longitudinal PU at a fixed

sampling frequency of 400 MHz starting the acquisition just

after the transition crossing. To obtain, from measured data,

the Xn, one needs to gate the bunches. During the acquisition

the beam revolution period, Trev , varies making non trivial

the bunch gating. To make the gating possible during the

post processing phase, the Trev signal was recorded on the

same digitiser together with the PU signal (Fig. 1). The

t [ s]
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Figure 1: Longitudinal PU signal (WCM95) and beam syn-

chronous Trev signal (it is a signal proportional to the har-

monic of the machine) acquired during measurements.

center of mass oscillation xi in Eq. 3 is computed using

the data represented in Fig. 1. An example of the result is

plotted in Fig. 2 where it is shown that sub-ns sensitivity for

the synchrotron oscillation can be attained. From the data in

Fig. 2, ai and φi are computed using a non linear sinusoidal

fit

xi = αi + ai · sin (2πQsn + φi ) (13)

on a time moving window. In this case, with N ≈ 80 103

turns, the window has been selected to cover about two

synchrotron oscillation (∼2000 turns) with a Δ span of 100

turns between two consecutive windows (∼700 windows

in total). An alternative method is to compute from the

machine parameters the expected ωs and to find the bunch

oscillation phasor directly from a sliding interpolated FFT

of the signal [11]. From ai and φi one obtains Xn and finally,

using Eq. 11, the Wn (see Fig. 3).

The equation describing the evolution of Wn in the mode

space (Eq. 9) is valid between turns n and n+1. It is possible

anyway to rewrite this vector equation in a matricial form

by substituting the vectors Wn+1 and Wn with two matrices,

A and B, defined as

• A = [W2,W3, . . . ,WN ];

• B = [W1,W2, . . . ,WN−1].

Using this approach one can write

A = D × B (14)

and

D̄ = A × B
+ (15)
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Figure 2: Plot of center of mass oscillation of 4 bunches in

the case of nb = 18 in h = 21.
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Figure 3: Mode amplitude evolution in h = 21 and 21

bunches. One unstable mode (i=11, μ=10) is visible.

where B
+ is the pseudo-inverse [12] of B and D̄ is the least

square approximation, in Eq. 15, of D. Once the matrix D̄

is computed, the C is derived from Eq. 7 and the M can

be determined from Eq. 3, 4 and 5, by transforming each

element of C, as an example c11, in a pure rotation block of

M

m11 = �(c11 e j2πQs×n )

m12 = −�(c11 e j2πQs×n )

m21 = �(c11 e j2πQs×n )

m22 = �(c11 e j2πQs×n ).

LONGITUDINAL FEEDBACK AND

SIMULINK MODEL

The PS can presently work with a narrowband FB sys-

tem [13] by using the spare 10 MHz RF cavity as a longi-

tudinal kicker. It has a voltage availability up to 20 kV and

it is tunable from 2.8 MHz to 10.1 MHz (h = 7, . . . ,21).

Due to its limited bandwidth, the FB can address only two

adjacent modes. To relax this limitation, during the long

shutdown (LS1) in 2013-14, a new dedicated larger band-

width cavity has been installed in the straight section 2 of

the PS: the Finemet© cavity [14]. With a voltage up to 5 kV

and bandwidth from 0.4-5.5 MHz, the cavity can provide the

correcting RF voltage to address all the oscillation modes

in h = 21. In fact for each dipolar mode μ = i − 1, the

frequency spectrum, Ωμ ( f ), can be expressed for f > 0 by

the Dirac comb [15]

Ωμ ( f ) =

+∞∑

l=−∞
al δ( f − |(μ + l nb ) f0 − f s |) (16)

where al ∈ C. Therefore all modes μ ∈ {1, . . . ,20} have at

least one frequency component in the Finemet© frequency

range and can be in principle cured by the feedback. The

μ = 0 mode instead is damped by the beam phase loop.

The digital card of the low level RF is available [16] but the

firmware for the signal processing has still to be finalized. In

order to have an optimization tool in the design phase of the

firmware and an operational tool during the commissioning

of the FB, a Simulink© model of the machine loop and of the

FB loop is being prepared. The machine loop will describe

the linear system of Eq. 2 (linear loop) whilst the FB loop

will consider also the non linear aspects

• the limited maximum voltage (5 kV or lower depending

on requirements of the active loop reducing the effective

impedance of the cavity), the error induced by the 14-

bit quantization of the ADCs and DACs, the noise of the

wall current monitor, the noise in the mode detection

due to the limited clock frequency, fCLK , of the digital

card ( fCLK = 256 frev)

• and design parameters: optimization of the gains and

the digital filters to isolate the synchrotron bandwidths

of Eq. 16.

CONCLUSION

In this work a CB mode analysis technique has been pre-

sented by using the circulant matrices formalism. The math-

ematical model has been explained and applied to the mea-

sured data showing under which hypotheses the evolution

matrix M of the system can be obtained. The development

of a Simulink© model of the machine and the feedback is

ongoing as an auxiliary tool in view of the 2015 commis-

sioning of longitudinal feedback in the PS.

The authors acknowledge G. Arduini, S. Gilardoni, E. Mé-

tral, for the fruitful discussions and the PS OP team for their

help during the measurement campaign.
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